Applied Rheology: Publications
You have network access to this resource: k-mai670 [1758]
Vinay Kumar, Behzad Nazari, Douglas Bousfield, Martti Toivakka
Rheology of microfibrillated cellulose suspensions in pressure-driven flow

Appl. Rheol. 26:4 (2016) 43534 (11 pages)

Abstract: Rheology of Microfibrillated Cellulose (MFC) suspensions is useful for designing equipment to transport, mix, or process them. Pressure-driven flow behavior is particularly important for MFC suspensions if they are to be pumped, extruded or coated. Herein, we report use of slot and pipe geometries for determination of MFC suspension rheology and compare the results to boundary-driven flows. MFC flow behavior in a slot with varying gaps was studied at mass concentrations of 1, 2, and 3% and up to shear rates of 100 000 s-1. The suspensions exhibited yield stress and were highly shear thinning (pseudo-plastic) with apparent power law indices of 0.22 – 0.43. The shear thinning behavior can be explained by a microstructural picture in which a non-yielding center plug is surrounded by a yielded layer and a fiber-depleted water rich boundary layer. © 2016 Applied Rheology.

DOI 10.3933/ApplRheol-26-43534

-- full text PDF available for subscribers --

-- open access PDF extract available for non-subscribers --


You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here

download to disk (some browsers prefer this option)
login name
password

Purchase this article for 20 € ?

Forgotten your login details? Send an email with subject "AR login" to login@appliedrheology.org


Appl Rheol 26 (2016) issues:

           


© Applied Rheology 2018