Applied Rheology: Publications
T.H. Phan, M. Chaouche
Rheology and stability of self-compacting concrete cement pastes

Appl. Rheol. 15:5 (2005) 336-343

Abstract: The rheological behaviour of a cement paste used in Self-Compacting Concretes (SCC) formulations is compared to that of an 'ordinary' cement paste (OC) devoid of organic admixtures. In order to mimic the flow conditions experienced by the cement paste in the inter granular space of concretes, the rheological behaviour is investigated in a squeeze flow geometry. By considering the evolution of the squeeze force for different velocities as a function of the instantaneous distance between the discs, it is found that the behaviors of the two cement pastes are qualitatively different. For the OC pastes, the force decreases with increasing squeeze velocity for any given discs separation, indicating that the material is undergoing fluid-solid separation due to filtration of the fluid phase through the porous media made up by the grains. Such behaviour reflects the very poor flowability of the OC paste. The behaviour of the SCC paste is qualitatively different. Above a certain critical value of the speed Uc, the force is an increasing function of the speed for any given disc separation. Under these flow conditions the rheological behaviour of the material is that of a viscous, although highly non-Newtonian, fluid which corresponds to the flowability conditions of the material. For squeeze speeds smaller than Uc, the rheological behaviour of the SCC paste is similar that of OC, indicating that below this critical velocity the material undergoes solid-fluid separation corresponding then to its non-flowability zone. © 2005 Applied Rheology.

DOI 10.3933/ApplRheol-15-336

-- full text PDF available for subscribers --

-- open access PDF extract available for non-subscribers --

You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here

download to disk (some browsers prefer this option)
login name

Purchase this article for 20 € ?

Forgotten your login details? Send an email with subject "AR login" to

Appl Rheol 15 (2005) issues:


© Applied Rheology 2018