Applied Rheology: Publications

Appl Rheol online available publications for selected issue

Follow the blue link(s) below for abstracts and full text pdfs .

Peter Fischer, Martin Kroger
Patents Review (October 2005)

Appl. Rheol. 15:5 (2005) 348-350

Cite this publication as follows:
Fischer P, Kroger M: Patents Review (October 2005), Appl. Rheol. 15 (2005) 348.

Markus Gahleitner
Austrian Rheologists meet in Leoben, Sep 19, 2005

Appl. Rheol. 15:5 (2005) 344

Cite this publication as follows:
Gahleitner M: Austrian Rheologists meet in Leoben, Sep 19, 2005, Appl. Rheol. 15 (2005) 344.

T.H. Phan, M. Chaouche
Rheology and stability of self-compacting concrete cement pastes

Appl. Rheol. 15:5 (2005) 336-343

The rheological behaviour of a cement paste used in Self-Compacting Concretes (SCC) formulations is compared to that of an 'ordinary' cement paste (OC) devoid of organic admixtures. In order to mimic the flow conditions experienced by the cement paste in the inter granular space of concretes, the rheological behaviour is investigated in a squeeze flow geometry. By considering the evolution of the squeeze force for different velocities as a function of the instantaneous distance between the discs, it is found that the behaviors of the two cement pastes are qualitatively different. For the OC pastes, the force decreases with increasing squeeze velocity for any given discs separation, indicating that the material is undergoing fluid-solid separation due to filtration of the fluid phase through the porous media made up by the grains. Such behaviour reflects the very poor flowability of the OC paste. The behaviour of the SCC paste is qualitatively different. Above a certain critical value of the speed Uc, the force is an increasing function of the speed for any given disc separation. Under these flow conditions the rheological behaviour of the material is that of a viscous, although highly non-Newtonian, fluid which corresponds to the flowability conditions of the material. For squeeze speeds smaller than Uc, the rheological behaviour of the SCC paste is similar that of OC, indicating that below this critical velocity the material undergoes solid-fluid separation corresponding then to its non-flowability zone.

Cite this publication as follows:
Phan,PH, Chaouche M: Rheology and stability of self-compacting concrete cement pastes, Appl. Rheol. 15 (2005) 336.

Francesca Lionetto, Francesco Montagna, Alfonso Maffezzoli
Ultrasonic Dynamic Mechanical Analysis of Polymers

Appl. Rheol. 15:5 (2005) 326-335

The propagation of ultrasonic waves in polymers depends on their viscoelastic behaviour and density, resulting significantly affected by phase transitions occurring with changing temperature and pressure or during chemical reactions. Therefore, the application of low intensity ultrasound, acting as a high frequency dynamic mechanical deformation applied to a polymer, can monitor the changes of viscoelastic properties associated with the glass transition, the crystallization, the physical or chemical gelation, the crosslinking. Thanks to the non-destructive character (due to the very small deformation amplitude), low intensity ultrasound can be successfully used for polymer characterization. Moreover, this technique has a big potential as a sensor for on-line and in-situ monitoring of production processes for polymers or polymer matrix composites. Recently, in the laboratory of Polymeric Materials of Lecce University a custom made ultrasonic set-up for the characterization of polymeric material, even at high temperatures, has been developed. The ultrasonic equipment is coupled with a rotational rheometer. Ultrasonic waves and shear oscillations at low frequency can be applied simultaneously on the sample, getting information on its viscoelastic behaviour over a wide frequency range. The aim of this paper is to present the potential and reliability of the ultrasonic equipment for the ultrasonic dynamic mechanical analysis (UDMA) of both thermosetting and thermoplastic polymers. Three applications of UDMA to different polymeric systems will be reviewed, concerning the cross-linking of a thermosetting resin, the crystallisation from melt of a semicrystalline polymer and the water sorption in a dry hydrogel film. From the ultrasonic velocity and attenuation measurements, the viscoelastic properties of the tested polymers are evaluated in terms of complex longitudinal modulus and compared with the results of conventional dynamic mechanical analysis, carried out at low frequency.

Cite this publication as follows:
Lionetto F, Montagna F, Maffezzoli A: Ultrasonic Dynamic Mechanical Analysis of Polymers, Appl. Rheol. 15 (2005) 326.

C. Lacoste, L. Choplin, P. Cassagnau, A. Michel
Rheology Innovation in the Study of Mixing Conditions of Polymer Blends during Chemical Reaction

Appl. Rheol. 15:5 (2005) 314-325

Polymer melts can be mixed with many monomers, plasticizers, antistatics or foaming additives. Properties of such mixtures can change during blending because of chemical reactions like polymerization or crosslinking. The process may be carried out either in stirred tanks, extruders or in motionless mixers. In this paper we focused on the mixing time and the diffusion time of reagent, plasticizer and polymer thanks to rheological tools, and on the way how rheological properties can be studied during chemical reaction in polymer blending. The concept of rheoreactor and Couette analogy were introduced since we have a reactor on our disposal that can mix solution and measure rheological properties without taking sample. This apparatus appears to be an appreciable tool in complement of internal mixers that are specific to polymer blending. For example, we show the importance of the competition between mixing time and reaction time for reactive systems.

Cite this publication as follows:
Lacoste C, Choplin L, Cassagnau P, Michel A: Rheology Innovation in the Study of Mixing Conditions of Polymer Blends during Chemical Reaction, Appl. Rheol. 15 (2005) 314.

Walter Richtering
Fundamentals of Interface and Colloid Science: Volume IV: Particulate Colloids and Volume V: Soft Colloids (J. Lyklema)

Appl. Rheol. 15:5 (2005) 310

Cite this publication as follows:
Richtering W: Fundamentals of Interface and Colloid Science: Volume IV: Particulate Colloids and Volume V: Soft Colloids (J. Lyklema), Appl. Rheol. 15 (2005) 310.

Martin Kroger
Understanding the Properties of Matter (Michael Podesta)

Appl. Rheol. 15:5 (2005) 311-312

Cite this publication as follows:
Kroger M: Understanding the Properties of Matter (Michael Podesta), Appl. Rheol. 15 (2005) 311.


© Applied Rheology 2019