Applied Rheology: Publications
Hui Li, Yingshe Luo, Donglan Hu
Long term creep assessment of room-temperature cured epoxy adhesive by time-stress superposition and fractional rheological model

Appl. Rheol. 28:6 (2018) 64796 (10 pages)

Abstract: The creep behavior of a new type epoxy resin adhesive which is room-temperature cured and used for reinforcing engineering structures was studied. The tensile strength of the adhesive has reached the desired values for the structural adhesive used for bonding concrete as the base material with steel. The short-term creep tests were conducted under four different stress levels. The generalized curve for reference stress was obtained by utilizing the time-stress equivalent principle. Moreover, compared with traditional Burgers model, an improved fractional KBurgers model obtained by replacing the Newton derivative with the fractional derivative element (Abel component) in the traditional Burgers model can capture the creep behavior of this epoxy adhesive with high precision in the condition of the room-temperature and tensile stress of 36 MPa. © 2018 Applied Rheology.

DOI 10.3933/ApplRheol-28-64796

-- full text PDF available for subscribers --

-- open access PDF extract available for non-subscribers --

You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here

download to disk (some browsers prefer this option)
login name

Purchase this article for 20 € ?

Forgotten your login details? Send an email with subject "AR login" to

Appl Rheol 28 (2018) issues:


© Applied Rheology 2018