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1      INTRODUCTION

Epoxy resin adhesive is widely used in civil engineering
structures and other engineering applications because
of its excellent comprehensive performance and good
bonding to the surface of materials. The long-term be-
havior of the structural adhesive has a great impact on
the engineering structures which have a design life of
several decades or even a hundred years [1]. Therefore,
the long-term behavior of the structural adhesive in the
certain condition needs to be studied. Obviously, it is
impossible to estimate the long-term property accord-
ing to the method listed in the standard, because it will
cost at least several months or even several years. It has
been proved that the high temperature and high stress
can accelerate the creep rate of materials. In recent
decades, temperature, load and physical aging attract-
ed lots of attention were considered to be the main fac-
tors of great effect on the creep [2 – 6] and some accel-
erated methods developed to assess the long-term
creep behavior of epoxy adhesive were mainly the uti-
lization of time-temperature equivalence principle and
time-temperature-stress equivalence principle [7 – 14].

In the past decades, extensive efforts have been devot-
ed to understanding the principle of time-temperature
equivalence applied to predict the long-term perfor-
mance of epoxy adhesive in a short time [15, 16]. Never-
theless, the creep behavior of adhesive was found to be
very sensitive to small change in temperature and
sometimes in order to obtain data in the certain tem-
perature, tests need to be operated at extremely low
and high temperature which cannot be readily realized
in the laboratory [17, 18]. On the contrary, it is easier to
control and realize the extremely low and high stress
in the laboratory. According to the time-temperature-
stress equivalence principle, the generalized curve of
reference temperature and stress level can be con-
structed by the short-term creep curve shifted along the
time scale. Luo et al. had proved that the time-stress
equivalence principle can be deduced from time-tem-
perature-stress equivalence and verified it by experi-
ments [14]. The validity and practicability of the time-
stress equivalence principle focused on accelerating
the creep behavior of materials were indicated by con-
siderable research [19 – 21]. Except for temperature and
stress, the physical aging, such as hydrothermal aging
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indicated that the epoxy adhesive was a typical nonlin-
ear viscoelastic material. The generalized curve was ob-
tained by the time-stress equivalence principle in the
condition of the room-temperature and tensile stress
of 36 MPa. Compared with the Burgers model, the sim-
ulation results indicated that the KBurgers model can
predict the creep behavior of this new adhesive in the
condition of the room-temperature and tensile stress
of 36 MPa with high precision. Collectively, the experi-
ments and the model predictions can provide guidance
for the various practical applications of the newly de-
veloped adhesives in the future. For a new type of ma-
terial, this study was also an exploratory work, and a lot
of work needs to be perfected in the follow-up. For in-
stance, more rheological models, especially fractional
order rheological model should be explored which was
more suitable for describing this new material in the
other conditions.
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Figure 13: The master creep curve and fitting curve when the stress is 36 MPa: (a) Fitting curve from KBurgers model and (b) fit-
ting curve from KBurgers model.
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