Applied Rheology: Publications
Monika Sellerberg, Diego Di Bartolo, Julia Oberrecht, Jörg Tiller, Peter Walzel
Viscometric measurement of protease activities on gelatine substrate

Appl. Rheol. 24:6 (2014) 62660 (10 pages)

Abstract: The knowledge of enzymatic activity is necessary in many industrial processes. The common measurement techniques are time-consuming and therefore cost-intensive. Measurements of viscosities are a promising approach as a fast and cheap testing method. The major challenges are to find a suitable substrate with Newtonian flow behavior throughout the whole testing range as well as a correlation between viscosity of the solution and the decomposed mass. Water based gelatinebuffer- system as substrate is tested extensively regarding the dependence on different solvents, pH-values and gelatine batches. All viscosity measurements are performed with a rotational viscometer. It is shown that the gelatine-buffer-system is independent of the given parameters and found to fulfill the said requirements. A correlation model based on the Martin equation and necessary assumptions are presented. The required parameters intrinsic viscosity and Martin parameter can be derived by few measurements with little effort. The digesting enzyme Trypsin is used as model enzyme in the degradation experiments. The enzyme concentration is varied and the decrease of the viscosity is measured. A dependency between the enzyme concentration and the enzymatic activity or respectively the viscosity decrease is observed. © 2014 Applied Rheology.

DOI 10.3933/ApplRheol-24-62660

-- full text PDF available for subscribers --

-- open access PDF extract available for non-subscribers --

You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here

download to disk (some browsers prefer this option)
login name

Purchase this article for 20 € ?

Forgotten your login details? Send an email with subject "AR login" to

Appl Rheol 24 (2014) issues:


© Applied Rheology 2018