Applied Rheology: Publications
Jeremy N. Fowler, John Kirkwood, Norman J. Wagner
Rheology and microstructure of shear thickening fluid suspoemulsions

Appl. Rheol. 24:4 (2014) 43049 (10 pages)

Abstract: A novel shear thickening suspoemulsion is formulated and studied with a new rheo-microscope instrument. The experimental fluid system is comprised of a immiscible blend of Newtonian, low molecular weight poly(dimethylsiloxane) and a shear thickening suspension of colloidal silica in poly(ethylene glycol). The blend is studied as a function of composition where phase inversion is evident at low shear rates and is found to be shear rate dependent. A shear thickening viscosity curve is observed when blends comprised of shear thickening fluid dispersed as droplets are subjected to high shear rates. Dispersing a continuously shear thickening fluid, φsilica = 0.42, results in continuously shear thickening response from the blend. Dispersing a discontinuously shear thickening fluid, φsilica = 0.51, results in bulk shear thickening that can also be discontinuous. Shear thickening in the final suspoemulsion is consistently first detected at φSTF = 0.2, with the magnitude of shear thickening being dependent on the particle concentration in the STF phase. The onset of shear thickening also corresponds with the formation of extended droplet structures in the fluid. The complex properties of these suspoemulsions and the ability to formulate dispersed droplet morphologies in this mixture are shown to result from the underlying shear thickening rheology of the dispersed phase. © 2014 Applied Rheology.

DOI 10.3933/ApplRheol-24-43049

-- full text PDF available for subscribers --

-- open access PDF extract available for non-subscribers --

You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here

download to disk (some browsers prefer this option)
login name

Purchase this article for 20 € ?

Forgotten your login details? Send an email with subject "AR login" to

Appl Rheol 24 (2014) issues:


© Applied Rheology 2018