Applied Rheology: Publications
Meral Akkoyun, Christian Carrot, Benoit Blottiere
On the use of an internal mixer to study the impregnation of carbon fillers by organic liquids

Appl. Rheol. 24:1 (2014) 13487 (8 pages)

Abstract: Impregnation of organic liquid electrolytes in conductive powders is of major importance in the field of energy storage devices such as batteries or super-capacitors. Impregnation during mixing and processing operations becomes usual for practical reasons and requires a better understanding of the changes of the rheological behavior of the mix. In this paper, the impregnation of propylene carbonate (PC) and dimethyl sulfoxide (DMSO) in activated carbon (AC) and carbon black (CB) was studied by using an internal mixer. Monitoring of the torque of the filler/liquid blend as a function of the amount of liquid fed in the mixing chamber, enables to detect the transition from the solid friction of the dry powder to the lubricated liquid (or viscous) behaviour of the concentrated paste of wetted powder. The results were compared with data obtained by conventional nitrogen adsorption porosimetry combined with the knowledge of the molecular diameter of the liquids. A characteristic change was observed as soon as the liquid completely fills the porosity of the filler. Both tested liquids (DMSO and PC) impregnate more carbon black and the take-up rate is slightly higher for DMSO in comparison to PC because, as a polar liquid, DMSO has a better interaction with both fillers. © 2014 Applied Rheology.

DOI 10.3933/ApplRheol-24-13487

-- full text PDF available for subscribers --

-- open access PDF extract available for non-subscribers --

You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here

download to disk (some browsers prefer this option)
login name

Purchase this article for 20 € ?

Forgotten your login details? Send an email with subject "AR login" to

Appl Rheol 24 (2014) issues:


© Applied Rheology 2018