Applied Rheology: Publications
Tomas Honek, Berenika Hausnerova, Petr Saha
Temperature dependent flow properties of powder injection moulding compounds

Appl. Rheol. 12:2 (2002) 72-80

Abstract: The temperature dependent flow properties of highly filled polymer compounds intended for production of hard-metal parts by powder injection moulding (PIM) technology were studied. The pure binder based on polyethylene, ethylene and butyl acrylate block copolymer and paraffin, and its compounds with hard-metal carbide powder (up to 55 vol. %) were prepared by melt mixing at 180.C. The flow properties were investigated at the temperature range from 140.C to 200.C using capillary rheometer operating flow at a constant piston speed. The measure of temperature sensitivity of PIM compounds, activation energy of shear flow, decreases with powder loading and shear rate. The Arrhenius relation for these materials is only valid in the stable flow region. At the temperatures above 170.C the compounds filled with 45 vol. % carbide powder and higher exhibit an unstable flow of pressure oscillations type at the shear rates above 103 s-1. The onset of pressure oscillations is strongly affected by temperature. The relation between critical shear stress for the onset of pressure oscillations and temperature is non-linear. © 2002 Applied Rheology.

DOI 10.3933/ApplRheol-12-72

-- full text PDF available for subscribers --

-- open access PDF extract available for non-subscribers --

You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here

download to disk (some browsers prefer this option)
login name

Purchase this article for 20 € ?

Forgotten your login details? Send an email with subject "AR login" to

Appl Rheol 12 (2002) issues:


© Applied Rheology 2018