Applied Rheology: Publications
Salaheldin Elkatatny, Muhammad Shahzad Kamal, Fahd Alakbari, Mohamed Mahmoud
Optimizing the Rheological Properties of Water-based Drilling Fluid Using Clays and Nanoparticles for Drilling Horizontal and Multi-Lateral Wells

Appl. Rheol. 28:4 (2018) 43606 (8 pages)

Abstract: Drilling fluid constitutes an important part of the drilling operations. Gel strength property of drilling fluids plays a key role in drilling multilateral and long horizontal reservoir sections. Losing the gel strength will accumulate drilled cuttings and as a result, sticking of the drill string. Solving this issue takes a long time and increase the total cost of the drilling operations. The objectives of this paper are to (1) determine the rheological properties of calcium carbonate water-based drilling fluid over a wide range of temperature, (2) assess the effect of adding nanoclay, bentonite, and nanosilica on the gel strength problem associated with the current field formulation of calcium carbonate water-based drilling fluids, and (3) optimize the concentration of bentonite, nanosilica, and nanoclay in the drilling fluid. The concentration of bentonite, nanoclay, and nanosilica was varied from 1 wt% to 10 wt%. Rheological properties results confirmed that the gel strength of the calcium carbonate water-based drilling fluid reached zero lb/100ft2 by increasing the temperature to 200 °F (93.33 °C). This issue was solved by adding different concentrations of bentonite, nanoclay, and nanosilica. At low bentonite concentrations (3.33 wt%), the gel strength still reduced with time. At high bentonite concentrations (10 wt%), the gel strength increased with time. The optimum concentration of bentonite was 6.66 wt%, which yielded a flat rheology profile of the gel strength. These results confirmed that the rheological properties of the water-based drilling fluid were optimized by using bentonite. Similarly, 7.5 wt% nanosilica showed the optimum performance. Nanoclay was not effective in improving the rheological properties of the calcium carbonate drilling fluid. © 2018 Applied Rheology.

DOI 10.3933/ApplRheol-28-43606

-- full text PDF available for subscribers --

-- open access PDF extract available for non-subscribers --


You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here

download to disk (some browsers prefer this option)
login name
password

Purchase this article for 20 € ?

Forgotten your login details? Send an email with subject "AR login" to login@appliedrheology.org


Appl Rheol 28 (2018) issues:

           


© Applied Rheology 2018