Applied Rheology: Publications
S.-C. Dai, F. Qi, R.I. Tanner
Interpreting Shear Creep Data for Bread Dough Using a Damage Function Model

Appl. Rheol. 21:4 (2011) 45070 (6 pages)

Abstract: We have interpreted the results of shear creep data on samples of bread dough, tested in a parallel plate rheometer, by using a damage function model. Whilst the agreement between calculation and experimental results is satisfactory for the dough for stress levels less than 500 Pa, increasingly large deviations from the predictions occur for stress levels of 500 and 1000 Pa. This is in contrast with the behaviour in simple shearing, where agreement with the damage function model can be obtained up to shear stresses of several kPa. It is therefore of interest to see why the discrepancy between model predictions and experiments occurs in shear creep at such low stress levels. It is shown that edge fracture in a parallel-plate rheometer, due to the second normal stress difference, N2, is responsible for the deviations and the model behaves quite well for stress levels 300 Pa and below, where edge fracture is not important. Therefore the edge fracture instability, which depends on N2, limits the range of stress which can be applied in shear creep tests. © 2011 Applied Rheology.

DOI 10.3933/ApplRheol-21-45070

-- full text PDF available for subscribers --

-- open access PDF extract available for non-subscribers --


You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here

download to disk (some browsers prefer this option)
login name
password

Purchase this article for 20 € ?

Forgotten your login details? Send an email with subject "AR login" to login@appliedrheology.org


Appl Rheol 21 (2011) issues:

           


© Applied Rheology 2018