Applied Rheology: Publications
You have network access to this resource: k-mai670 [1758]
Peggy Courtois, Rammile Ettelaie, Jianshe Chen
Numerical Studies of Transport Properties in Heterogeneous Food Systems

Appl. Rheol. 16:5 (2006) 275-286

Abstract: The current computer simulation based study aims to elucidate the complex role that the state of aggregation and morphology of the food materials plays in determining their transport behaviour. Using Brownian dynamic simulations, applied to colloidal systems, we simulate the compression of two different dense layers of nanoparticles (with reversible and irreversible bonds), at interface, at three different compression rates. We determine the desired transport coefficient for these structures using a novel technique, originally proposed by Torquato and Kim (1990). This method allows us to consider complex structures in our study, for which calculations of effective transport coefficients using conventional methods, like finite elements and finite difference, would be relatively difficult. We first validate our algorithm by comparing its results with those of exact calculations, for different regular lattices. Our results are in excellent agreement with the theory. The variation in the transport coefficient of nano-particle monolayers during the compression, are also correlated with the build up of stress and changes in the structure of the films. © 2006 Applied Rheology.

DOI 10.3933/ApplRheol-16-275

-- full text PDF available for subscribers --

-- open access PDF extract available for non-subscribers --

You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here

download to disk (some browsers prefer this option)
login name

Purchase this article for 20 € ?

Forgotten your login details? Send an email with subject "AR login" to

Appl Rheol 16 (2006) issues:


© Applied Rheology 2018