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What are the thermodynamic factors?

Can be shown using the grand canonical ensemble
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Reservoir:  
T, V and Nj constant

Test volume has  
T, V , μj constant

For the small volumes:



Periodic (large) system (reservoir):  Has no surface energy

The test volume (not periodic): Has surface energy 

Schnell et al. Mol. Phys. 110, 1069(2011 )

The test volume is according to Hill a «small system»
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Small systems in 
equilibrium 

• Do thermodynamic 
equations apply?

• Is there a link 
between the 
nanoscale and 
macroscale?

• If so, can we make 
systematic use of it?

1963



Hill’s thermodynamics for small systems 
Use N replicas of the small system

1

N N N
n

C C C C C

t t j j

j

dU TdS p dV dN X dµ
=

= − + +∑

, ,
N C

t j

C
C t

S V N

U
X

 ∂
=  

∂ 

XCdN: work to be added to a system of replica, 
when the number of replicas N changes

Gibbs relation with V, T and Nj controlled

XC is the replica energy
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Using extensivity in N gives NC C C

t t
U TS X= +

Define averages by N   and   NC C C C

t t
U U S S≡ ≡

It follows that C C C C
X U TS F= − =

The replica energy is equal to the Helmholtz energy per replica

C is short for canonical



1

N N N
n

C C C C C

t t j j

j

dU TdS p dV dN X dµ
=

= − + +∑

Substituting N   and   NC C C C

t t
U U S S≡ ≡

Substitution of C C C C
X U TS F= − =

It follows that

in

gives
1

n
C C C C

j j

j

dU TdS p dV dNµ
=

= − +∑

gives

1

n
C C C C

j j

j

dF S dT p dV dNµ
=

= − − +∑

( ) ( )

( )

, ,

, ,

, ,   ,  , ,

, ,

j j

k j

C C
C C

j j

V N T N

C
C

j l

j V T N

F F
S V T N p V T N

T V

F
V T N

N
µ

≠

   ∂ ∂
= − = −   

∂ ∂   

 ∂
=   ∂ 



Hill’s thermodynamics for small systems 
Use N replicas of the small system

,
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Gibbs relation with V, T and μj controlled

The replica energy is now

Extensivity gives
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GC is short for grand canonical
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factors:



Substituting the averages into

,
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integral pressure



Statistical mechanics of small systems

Hamiltonian for N particles
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The canonical partition function is
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The grand canonical partition function is
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The integral pressure is
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Calculation of the partition functions makes it possible to 
obtain the thermodynamic properties of small systems.



Exercises: calculate the canonical and 
grand canonical partition functions for a 
multi-component ideal gas in a cubic box, 
where particles of component k can be 
adsorbed at the surface with a binding 
energy Es

k. Calculate the resulting
thermodynamic quantities.



Excercise: controlled variables V, T, Nj

The canonical partition function for 1 particle of component k is
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Using Stirling this gives

It is clear that for large L the Helmholtz energy is linear in 1/L



Using the Helmholtz energy we can calculate pC and μC
k

( )B

1,

1
( , , ) 1 exp

l

C n
C s sk

l k d k

kT N

F
p V T N k T n c E

V d L
β

=

   Λ∂
= − −   

∂   
∑≃

( ) ( )

( )

B
B B

, ,

1

( , , ) ln exp
2

                                                 exp

l

C
jC d s s

j l j j d j

j jV T N

sn
s sk k
d k k

k j

k TF
V T N k T n c k T E

N N L

E
c n E

L n

µ β

β
=

  Λ∂
= − Λ + −  ∂ 

Λ ∂
−

∂
∑

≃

Similarly we can calculate SC and  ΓC
jk , were we have given terms to 

linear order in 1/L. There are higher order contributions in 1/L.

Note that there are contributions containing derivatives of the
binding energy to the surface.



Excercise: controlled variables V, T, μj

The grand canonical partition function is
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This gives, to linear order in 1/L, for the integral pressure
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and for the differential pressure (they are different!!!)
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The derivatives of     give the entropy and the particle number
densities.  
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The inverse matrix of thermodynamic factors is given by the
second derivative of     with respect to μ.

The explicit calculation leads to an expansion in 1/L.

p̂

End exercises



The probability to be close to the 
surface differs from that far away  

Surface energies: Es
k(T,µj) 

A general feature we find for the thermodynamic properties of 
small systems in molecular dynamics simulations is ( V=Ld)

This makes it possible to obtain the thermodynamic limit from 
simulations of small systems

2
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V L L
α α α α

Λ Λ   
= = + + +   

   

Small system method



We simulate a system of a few thousand particles. In small sub-
volumes with a volume V, the temperature T and the chemical
potentials µj are determined by the large box.

This gives the inverse thermodynamic factors in the
thermodynamic limit as a function of T,V,µj.

Kirkwood, Buff, JCP19 (1951)774 explain how to obtain the
relevant quantities from Γjk in other ensembles. 
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In the Small System Method we use this feature

For the inverse thermodynamic factors one has:
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Interaction potential, example

Reservoir

Lennard-Jones pair-potential
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L J-particles, T* = 2.0, ρ* = 0.1
Schnell et al. Mol Phys. 2011, CPLetters, 2011

Testing the formula from statistical mechanics
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Comparing cubic and spherical sub-volumes
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Experiments give the Fick diffusion coefficient. MD simulations give
the Maxwell-Stefan diffusion coefficients. Their ratio gives the
thermodynamic factor:

Molfraction acetone in tetrachloromethane

Th
erm

o
d

yn
am

ic facto
r

Liu et al, J. Phys. Chem B 115, 12921 (2011)
Excellent agreement



Recipy

1. Choose the reservoir with a given µ,V,T

2. Choose shape and size of test volume
3. Count fluctuations in N in the test volume and find

the limit value (infinite L) by extrapolation

4. Control: The result must not depend on the reservoir
size

2 3

1 1
...

A B C

L L L∞

= + + +
Γ Γ

Small System’s Method



Conclusions

• It is possible to describe the properties of small systems using

thermodynamics

• The Small System Method gives a scaling law for properties on

the nanoscale as a function of 1/L

• Bulk properties can be found in a rapid manner using linear 

extrapolation. 
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Kirkwood−Buff Integrals for Finite Volumes

Dick Bedeaux, NTNU, Norway

Peter Krüger, Chiba Univ, Japan

Sondre K. Schnell, TU Delft, Netherlands

Thijs H.J. Vlugt, TU Delft, Netherlands

Signe Kjelstrup, NTNU, TU Delft

Jean-Marc Simon, Bourgogne Univ, France

Studies of small systems 
in a reservoir
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Kirkwood-Buff integrals of radial distribution functions

Why are these integrals so important?

Kirkwood and Buff showed that many thermodynamic
properties, like the thermodynamic factors, compressibility, 
activity coefficients, partial molar volumes can be calculated
in terms of the KB integrals

What is difficult in their calculation?
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Kirkwood-Buff integrals of radial distribution functions

Binary mixture

Convergence problems due to the fact that the pair 
correlation functions do not properly approach 1 for 
large r when V is finite
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Kirkwood−Buff Integrals for Finite Volumes

When the volume size >> correlation length this reduces to
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Standard approximation: ( )
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The small volume correction (Peter Krüger, Jean-Marc Simon)

Where we choose V to be a hypersphere with radius R and 
where
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w(r,x) for hyperspheres in 1 to 3 dimensions

P. Krüger, S.K. Schnell, D. Bedeaux, S. Kjelstrup, T.J.H. Vlugt, J.M. Simon, 
J. Phys. Chem. Lett. 4, 235 (2013)
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One may show that:
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This suggests to Taylor expand in 1/R to get a better approximation. 
This leads to:

Using as trial correlation function:

ˆ,  and R R R
G G Gαβ αβ αβ
ɶwe compare: for  χ =2 and  χ =20
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The green curve gives 
which has huge 
oscillations and converges 
very slowly

R
Gαβ
ɶ

ˆ R
Gαβ

The red curve gives 
which has much 
smaller oscillations 
and converges rapidly

R
Gαβ

The blue curve gives 
which has very small 
oscillations and with a 
1/R extrapolation which 
gives the correct value

The black curve gives h(r)
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Conclusion

gives an efficient way to calculate
Kirkwood-Buff integrals using the
1/R extrapolation

RGαβ
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Chemical reactions

Dissociation of hydrogen H2    ↔  2H 



Partial molar enthalpies, constant T,V, µj

2
2

, ,
, ,

( )

j
i

i i B i

i

i T V i j
T V

UN U N k T NH
H L

N N Nµ
µ

 − + ∂  = = 
 ∂ −   

, ,

1 1
1 .......

jT Vi i

A

H H L µ
∞

 
= + +  

Chemical reactions



Results from SSM (circles) and  direct Monte Carlo simulations (squares) 

Partial molar enthalpies, constant T, V and µ



Aim: 
Partial molar enthalpy at constant T, p and Nj: 

, , , ,j j
i iT V T p N

H H
µ

∞ ∞   ⇒   

Legendre transform

Schnell, Skorpa, Bedeaux, Kjelstrup, Vlugt, Simon, JCP, 141, 144501 (2014)



Skorpa, Simon, Bedeaux, Kjelstrup, PCCP, 2014, 16, 19681 
and 16, 1227

Dissociation of hydrogen H2    ↔  2H 

1 2 (2) (3)( , , ... ) ( ) ( , , )
N ij i j k

i j i j k

U r r r u r u r r r= +∑ ∑
≺ ≺ ≺

Density 156 K:          0.0011 /   0.0191 g (cm)-3  

• F.H. Stillinger and T.A, Weber, JPC, 1988
• Diedrich and Anderson,  Science 1992, JPC 1994 
• D. Kohen, J.C. Tully, F.H. Stillinger, Surface

Science, 1998 

Energy surface of U for H-H….H



2HH2

Thot Tcold• Constant pressure

• Closed system

• Temperature gradient

• What are the 
transport properties?

Away from equilibrium
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Transport of H og H2
due to a temperature
gradient!

2H H2J J= −



43

Laws of transport 

• Heat  transport 

• Mass transport

H 22
0 H*

q J

dT
J q J

dx

′ λ =
 = − +
 

2 2

1

H H

*q D dT d
J D c

T dx dx

−= −Γ −

Bird, Stewart , Lightfoot, Transport Phenomena, 2nd. Ed. 2007: 
«The Dufour energy flux q is quite complex of nature and usually of minor importance»  

Heat of transfer

Diffusion constant
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Diffusion in a reacting mixture

10 Å 4 Å

12 Å 3-6 Å

H 2 F 2

Kinetic gas theory
D ≈  10-6 m2 /s

Penetration depth

Mean free path



Heat conduction and heat of transfer

λ J = 0 

W/K

λ ΔG/T=konstant

W/K

q*

kJ/mol

Δr H

kJ/mol

1.5 4.4 -3000 424

Compare Bird, Stewart, Lightfoot, Transport Phenomena, 2nd. Ed. 2007!  

[ ]
20 H*q J

dT
J q J

dx

′ λ == − +



Conclusions

• It is possible to describe the properties of small systems using

thermodynamics

• The Small System Method gives a scaling law for properties

from the nano to the macroscopic scale

• A bulk property can thus be found in a rapid manner. 

• Non-equilibrium thermodynamics can be used to define the 

laws of transport. The mechanism can be understood from 

simulations.



Mol fractions Kx reaction enthalpy

2

2

H

H

x

x
K

x
=

1430 kJ molH
−∆ =

T* xH Kx

0.15 0.405 0.28

0.20 0.647 1.18

0.25 0.730 1.97

0.30 0.939 4.09

0.40 0.964 5.50

Skorpa et al. PCCP, 2014

Dissociation of hydrogen H2 ↔  2H 

Ideal mixture



But the mixture is not ideal!  



Equilibrium constant from reaction enthalpy
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H
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=

∆  
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Fra Kx: 430 kJ/mol

Density: 0.0003

r i i i i
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H v H v H∆ = −∑ ∑

2

2

H

0

H

th x

p
K K

p

γ

γ
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Thermodynamic equilibrium constant

Average reaction enthalpy:

460 kJ/mol

Temperature dependent reaction enthalpy

T* K th (γH )^2 /  γH2

0.15 700 1.2

0.20 4 300 1.0

0.25 12 300 1.3

0.30 25 100 1.0

0.40 60 900 1.3

T* K th (γH )^2 /  γH2

0.15 600 1.0

0.20 3 200 0.8

0.25 8 000 0.9

0.30 16 600 0.7

0.40 37 900 0.8

2 5( * 0.0003 ) 0.0003 8.9 4.9 10H T T xr ρ∆ = = − +

SSM gives very good accuracy.  Only one simulation



Implementing the code
LAMMPS Molecular Dynamics Simulator 

Results NOTUR

• Stand alone code:

- Python: 10 hours /16 kernels
- C++: 5 minutes / single kernel
- C++/OMP: 4 minutes /16 kernels
- Time profile: 95% for reading,  5% for computing

Trinh, Nagel, Holvik, Kjelstrup, in prep. 

http://lammps.sandia.gov/index.html



2HH2

Thot Tcold• Constant pressure

• Closed system

• Temperature gradient

• What are the 
transport properties?

Away from equilibrium
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Transport of H og H2
due to a temperature
gradient!

2H H2J J= −
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Laws of transport 

• Heat  transport 

• Mass transport

H 22
0 H*

q J

dT
J q J

dx

′ λ =
 = − +
 

2 2

1

H H

*q D dT d
J D c

T dx dx

−= −Γ −

Bird, Stewart , Lightfoot, Transport Phenomena, 2nd. Ed. 2007: 
«The Dufour energy flux q is quite complex of nature and usually of minor importance»  

Heat of transfer

Diffusion constant
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Diffusion in a reacting mixture

10 Å 4 Å

12 Å 3-6 Å

H 2 F 2

Kinetic gas theory
D ≈  10-6 m2 /s

Penetration depth

Mean free path



Heat conduction and heat of transfer

λ J = 0 

W/K

λ ΔG/T=konstant

W/K

q*

kJ/mol

Δr H

kJ/mol

1.5 4.4 -3000 424

Compare Bird, Stewart, Lightfoot, Transport Phenomena, 2nd. Ed. 2007!  

[ ]
20 H*q J

dT
J q J

dx

′ λ == − +



Conclusions

• It is possible to describe the properties of small systems using

thermodynamics

• The Small System Method gives a scaling law for properties

from the nano to the macroscopic scale

• A bulk property can thus be found in a rapid manner. 

• Non-equilibrium thermodynamics can be used to define the 

laws of transport. The mechanism can be understood from 

simulations.



CO2 adsorption on graphite



CO2 adsorption on graphite

Interaction potential

2 2(CO CO ) +VLJ Columbic
V V− =

2(C CO ) LJ
V V− =

CO2 : Rigid rotor TraPPE force field



Equilibrium adsorbate – gas

CO2 adsorption on graphite

Two surface layers!

Trinh et al. CPLetter, 2014



Adsorption isotherms for layer 1 and 2

Langmuir- isotherm for 
layer 1.

CO2 adsorption on graphite

Henry’s law applies to layer 2 

Choose Henry’s law standard state! 

Fully covered surface at 350 K: 12.5 molekyl/(nm)² 



Reservoir: 
168 Å x 216 Å x 336 Å

L

CO2 adsorption on graphite

1 1
1

s s

B

L∞

 
= + Γ Γ  

α+β

cylindrical test volume
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Termodynamic factor, CO2 on graphite

1 1
1

s s

B

L∞

 
= + Γ Γ  

CO2 adsorption



Activity coefficients
for CO2 in layers 1 and 2

CO2 adsorption

21 ( )s s s

i i iaC b Cγ = + +



0
0

0 0 0

 

 

i
i

p

i i i

S
T

H TS

µ
−

µ

 ∂
=  

∂ 

= +

Standard chemical potential, 
enthalpy and entropy for layers
1 og 2 

298 K Total 

layer

Layer 1 Layer 2 CO2

gas

µ0

kJ/mol
-47
± 1

-47
± 1

-42
± 1

-54.11

S0

J/K mol
157
± 3

145
± 3

155
± 3

213.78

H0

kJ/mol
0

± 1
-4

± 1
3

± 1
9.36

CO2 adsorption on graphite

10 1 kJ moladsH − |∆ = ±
Trinh et al , PCCP, 2014



Conclusions

• It is possible to describe the properties of small systems using

thermodynamics by introducing the reversible work related to 

change in system size

• The Small System Method gives a scaling law for properties on

the micro and macroscopic scales

• A bulk property can thus be found in a rapid manner. 

• Non-equilibrium thermodynamics can be used to define the 

laws of transport. The mechanism can be understood from 

simulations.


