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1. Introduction.  Single generator Hamiltonian formalism.

2. Simple polymer models: One mode viscoelasticity.

3. Stress-induced migration in a polymer solution: Two-fluid 
model.

4. Non-homogeneous and reactive systems: Shear Banding in a 
concentrated rodlike micellar solution.



Motivation
• To use a framework that it allows the imposition “ab initio” of the 

most restrictive physically possible guidelines governing the 
dynamics of complex systems

• To have a formalism that is rich enough to accommodate a 
complex, inhomogeneous, internal microstructure, including the 
possibility of:
– Internal structural parameters
– Nonlocal interactions
– Multiple scales of length
– Internal phase space of higher dimensions

• Certain limitations are still inevitable:  most importantly, that the 
system we study is “close enough” to equilibrium so that a 
generalized thermodynamic description in terms of deneralized 
thermodynamic potentials is still applicable; yet we want the 
formalism to not be introducing arbitrary constraints.  



General Features
• The general formalism has to reduce to well-

established ones at characteristic limiting 
cases:
– In the limit of infinite time: Equilibrium (Gibbs) 

thermodynamics
– In the limit of reversible dynamics:  Hamiltonian 

dynamics
– In the limit of infinitesimally small deviations from 

equilibrium: Linear Irreversible Thermodynamics 
(Onsager/Casimir relations)

• It is inspired by discrete particle dynamics



Hamiltonian Particle Dynamics
• Consider a single particle of mass m, moving in a 

potential field V(x).
• We can describe its motion in at least 4 different, 

equivalent ways:
– Newton’s second law
– Lagrangian least action principle
– Hamilton’s least action principle
– Poisson bracket equations

• All 4 have been used in physics; the last one is the 
most general one, and the one preferred* in Quantum 
Mechanics:  

*P.A.M Dirac 
   , ,        d H H H i H

dt



Newton’s Second Law of Motion
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It also leads to the law of conservation of energy  
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Least Action Principle (1)
Newton’s equations of motion can be equivalently 
derived from the minimization of action I integral, 
where L is the Lagrangian
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Least Action Principle (2)
Equivalently, the least action principle 
can also be expressed in terms of the 
momentum, p, and the Hamiltonian, H, 
which are now formally defined in terms 
of the Lagrangian  
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Hamiltonian Dynamics
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Yet, the Hamiltonian dynamics can be also equivalently reproduced through the 
Poisson bracket equations 
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Hamiltonian Structure

The Hamiltonian structure is therefore presented by the Poisson bracket, {F,G}.
This is

- Bilinear function: linear with respect to F and linear with respect to G
- Antisymmetric:  {F,G} = - {G,F}
- Satisfies the Jacobi identity:  {F,{G,H}}+{G,{H,F}}+{H,{F,G}} for any F,G,H

By construction therefore it also satisfies that the Hamiltonian is conserved:
- dH/dt = {H,H} = 0

In general, and in terms of the total vector variable q, qT = (x,p)T, the Poisson bracket 
can be represented by a matrix L:

 , F GF G  
  
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q q

In which case, application of the Poisson bracket equations directly gives the evolution 
equations:
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Limitations of the Hamiltonian 
Structure

The main limitation of the Hamiltonian structure is that it can only recreate reversible 
dynamics (i.e. in the absence of dissipation).

For example, let us assume that we have a 1d oscillator subject to a spring force with 
a spring coefficient K: 
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In which case, the Hamiltonian, represented by the sum of kinetic and potential energies 
is automatically conserved.  The question now arises what happens in the presence of
dissipation, such as for example represented in this example by a dashpot of dashpot 
damping coefficient  μ:
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Dissipative Structure

For example, let us assume that we have a 1d oscillator subject to a spring force with 
a spring coefficient K and a dashpot with damping coefficient μ: 
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In this case the Hamiltonian, represented again by the sum of kinetic and potential 
energies is not conserved but rather monotonically decays:
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To allow the representation of such dissipative structures, the Hamiltonian structure
of the equations needs to be changed.  It is postulated here that such a generalization
can be done at the bracket level introducing a generalized bracket form:
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Properties of the Dissipative Structure
By comparison to the Poisson bracket the dissipative bracket has the following 
properties:

- It reduces to bilinear close to equilibrium; just linear in F otherwise
- its bilinear approximation is symmetric/antisymmetric satisfying the 

Onsager-Casimir relations
- it does not satisfy a Jacobi identity; however, there are restrictions on the
material coefficients:  μ ≥ 0  so that the useful energy represented by the 

Hamiltonian only dissipates

This simple example is only indicative of the concepts involved.  In the actual 
applications, several extensions are involved, as outlined next. Most importantly, the 
Hamiltonian is extended to include all energy, including internal and the variables 
include the entropy; as a result, there is now an extra energy correction term in the 
dissipation bracket



Eulerian Description of Dynamics
We need to make the transition from a finite-dimensional Lagrangian dynamics
to an infinite-dimensional Eulerian description:

- Instead of discrete components we have an infinite dimensional phase space
represented macroscopically by a position vector x (and possibly 
microscopically by another vector Q) 
- instead of the finite-dimensional q state vector with a fixed number of
components (6 per particle) we have a system-dependent vector v of state 
variable fields that are functions of the phase space (like velocity, mass density, 
internal variables etc)
- Instead of functions F, G, H of the q vector we have F, G, H defined as
general functionals in the x, Q phase space
- Instead of dependencies of the brackets on the partial derivatives of the 
functions F,G,H with respect to the components of the q vector we have 
dependencies  on the Volterra derivatives of the functionals with respect to
the components vi of the v state vector field
- Most importantly, the Hamiltonian now involves the total energy of the system.
This includes, in addition to the kinetic and the potential energy, the internal 
energy of the system, including the bulk and any surface interactions.



GENERIC*
• The most general formalism for the dynamics of a structured system, 

macroscopic as well as microscopic, described by x, is the one developed 
(after many years multiple-investigator efforts) by Oettinger and Grmela* 
and called as “GENERIC” 

(for General Equation for Non-Equilibrium Reversible-Irreversible Coupling) :

* H. C. Oettinger and M. Grmela, Dynamics and thermodynamics of complex fluids. II.
Illustrations of a general formalism, Phys. Rev. E 56, 6633-6655 (1997). 
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where L and M are linear differential operators of specific structure (Poissonian
and Dissipation) subject to the additional degeneracy requirements:
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and E, S are the total energy (Hamiltonian) and total entropy, functionals of x.

See also:  H.C. Oettinger, Beyond Equilibrium Thermodynamics, Wiley, 2005



Features of GENERIC
• It can be shown to be consistent with all well 

accepted dynamic transport equations ranging 
from the very microscopic (Maxwell-
Boltzmann) to the microscopic (kinetic theory in 
polymers) and macroscopic (transport 
phenomena) levels

• It can provide corrections/suggestions to many 
complex modeling problems, such as:
– Reptation theory models
– Closure approximations

see Öttinger’s homepage: http://www.polyphys.mat.ethz.ch/ and
Öttinger H-C, Beyond Equilibrium Thermodynamics, Wiley 2005



Single Generaror Approximation
• For macroscopic systems, it is possible to deduce a 

simpler structure, the Single Generator Hamiltonian 
Formalism:
– the entropy and energy potentials are directly related:

– we can express the dynamics solely in terms of energy 
(Hamiltonian) potentials!

• This is shown to be equivalent to GENERIC:
– Edwards BJ, J. Non-Equil. Thermodyn., 23:300-332 (1998)  
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Hamiltonian Functional Formalism*

• For any arbitrary functional F, its time evolution 
can be described as the sum of two contributions:
– a reversible one, represented by a Poisson bracket:

• {F,H}

– an irreversible one, represented by a dissipative 
bracket:

• [F,H]

• The final dynamic equations are recovered 
through a direct comparison with the expression 
derived by differentiation by parts:

{ , } [ , ]dF F dF H F H dVdt dt


    x
x

*Beris and Edwards, Thermodynamics of Flowing Systems, Oxford UP, 1994



Poisson Structure
• Defined for two arbitrary functionals F, G as the 

bilinear functional {F,G}:

• such that:
– It is antisymmetric: {F,G} = - {G,F}
– It satisfies the Jacobi identity: 

{F,{G,H}} + {G,{H,F}} + {H,{F,G}} = 0

{ , } F GF G L d 
 

  x x



Dissipation Structure
• Defined for two arbitrary functionals F, G as the 

bilinear functional [F,G]:

• such that the matrix operator Mij, in the limit of 
small departures from equilibrium:
– is symmetric or antisymmetric with respect to an 

interchange of i, j depending on whether the 
corresponding xi, xj components have the same or 
different parities upon time reversal (Generalized 
Onsager-Casimir relations of Linear Irreversible 
Thermodynamics)
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Advantages of Hamiltonian 
Formalism (1)

• It only requires knowledge of the following:
– A set of macroscopic variables, taken uniformly as volume 

densities.  The include, in addition to the equilibrium 
thermodynamic ones (the component mass density, ρi, for every 
component i, the entropy density si), the momentum density, ρv, 
and any additional structural parameter, again expressed as a 
density

– The total energy of the system or any suitable Legendre 
transform of it, typically the total Helmholtz free energy, 
expressed as a functional of all other densities with the 
temperature substituting for the entropy density

– The Poisson bracket, {F,H}
– The dissipation bracket, [F,H] (with properties: [H,H]=0; [S,H]≥0)



Advantages of Hamiltonian 
Formalism (2)

A set of macroscopic variables can easily be assumed depending on the 
physics that we want to incorporate to the problem
The total Helmholtz free energy can also easily be constructed as the sum 
of kinetic energy plus an extended thermodynamic free energy that 
typically includes an easily derived expression (in terms of the structural 
parameters) in addition to a standard equilibrium expression
The Poisson bracket, {F,H} is rarely needed by itself: only when an 
equation is put together for the first time characteristic of the variables 
involved in this system; otherwise, its effect is probably already known from 
previous work:  it corresponds to a standard reversible dynamics.  For 
viscoelastic flows, this corresponds to the terms defining an upper 
convected derivative
The dissipation bracket, [F,H] is the only one to contain major new 
information and is typically where our maximum ignorance lies.  Barren any 
other information (say, by comparison against a microscopic theory) the 
main information that we can use is a linear irreversible thermodynamics 
expression:  according to that, the dissipation bracket becomes a bilinear 
functional in terms of all the nonequilibrium Hamiltonian gradients with an 
additional nonlinear (in H) correction with respect to δF/δs (entropy 
correction) that can be easily calculated so that the conservation of the 
total energy is satisfied:  [H,H] = 0.



Example Case: Single Mode 
Viscoelasticity

• Reference:
– A.N. Beris, Simple Nonequilibrium 

Thermodynamics Applications to Polymer 
Rheology (As it appeared on: RHEOLOGY 
REVIEWS 2003, The British Society of Rheology 
(publisher), 37-75)



Variables
• For an incompressible, homogeneous (uniform 

polymer concentration, n=chain number 
density is constant) system we have
– v, the velocity
– s, the entropy density (alternatively, T, temperature)
– c, the conformation tensor where

• C = <RR> (second moment of the end-to-end distribution 
function) = nc

• At equilibrium, c=kBT/K I where K is the 
equilibrium equivalent entropic elastic energy 
constant of the polymer chain and I the unit 
tensor



Hamiltonian
• The Hamiltonian (extended Helmholtz free energy 

of the system) is assumed to have the form:

 21
2V

dVA v a 
where various expressions can be assumed to represent 
the elastic free energy density, a, depending on the nature 
of the polymer phase (i.e, dilute solution, polymer melt 
etc).  A list of the most widely used ones is supplied in 
Table 1 together, for convenience, with the corresponding 
expressions for the corresponding thermodynamic 
potential. 







Poisson Bracket: Reversible 
Equations

• For an isothermal system, we get the standard reversible 
dynamics for an elastic medium (together with the 
divergence-free velocity constraint):

D
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General Dissipation Bracket
• The general dissipation bracket (within an entropy 

correction) can be easily formulated as a bilinear 
expression in terms of the nonequilibrium 
components of the Hamiltonian potential,  δH/δc
and (δH/δv) as
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F G F GF G dV Q dV
c c v v

F G G FL dV
v c v c

where, to preserve Onsager’s relations, the matrices Λ and Q are symmetric with 
respect to an exchange of γ,ε by α,β and, moreover, given the symmetry of c, the 
matrix Λ does not change upon an exchange of γ by ε and/or α by β; additional 
constraints on Q can also be derived based on the principle of material indifference



Typical Choices for L, Q

• If L is symmetric upon change of γ by ε and/or α by β it 
turns out that it does not contribute to the entropy 
production; thus there is no need for further constraints.  A 
typical choice is therefore (following the simplest choice 
for Λ, see Table 2) 

/ 2( )L c permutationsof and           
where ξ is a scalar parameter between 0 and 1

Similarly, for Q, we use the expression which is valid for a 
homogeneous and isotropic (Newtonian) system of 
viscosity ηs:

( )sQ         



Final Equations

• For an isothermal system, we get the standard dynamics 
for a viscoelastic medium (together with the divergence-
free velocity constraint):

D
Dt

T
sp     v v T

 D :
Dt 2

T a 
         


c v c c v γ c c γ Λ

c
 

2(1 )T a 
  


T c

c



Typical Choices for Λ
• Various models can be generated using different 

expressions for the relaxation tensor Λ.
• A compilation of some of the most often employed 

forms can be found in Table 2 





Single Mode Viscoelasticity: Conclusions

• The Hamiltonian formalism can provide a uniform 
representation for viscoelastic models

• New possibilities thus arise for new model 
development through “mix and match” of terms

• In addition, the evaluation of thermodynamic 
consistency is facilitated:  new constraints can be 
easily derived on acceptable parameter values and 
suitable approximations for the dissipative terms of the 
equations

• The extension of the above-mentioned work to 
multimode models is straightforward!  See the 
mentioned references (book and review) for several 
characteristic examples



Stress-Induced Migration in a 
Viscoelastic Fluid*

• Two approaches: Single and two-fluid system
• Formalism can tell you what it CAN be, but not 

what it ACTUALLY is! (Comparison with 
underlying microscopic theory is necessary)

• The cruder the structure, the easier to work out 
the predictions but also the more cloudy those 
predictions are

• Single fluid model: coarser; 2-fluid model: finer
• Next:  Develop general equations 

*Following the development in “Beris and Edwards, 1994, Section 9.2”



Single Fluid Model: Variables

• For an incompressible, inhomogeneous (variable 
polymer concentration, n=chain number density is 
variable) system we have
– ρ1, the polymer density (n=NAρ1/MW1)
– v, the velocity
– s, the entropy density (alternatively, T, temperature)
– c, the conformation tensor where

• C = <RR> (second moment of the end-to-end distribution 
function) = nc

• At equilibrium, c=kBT/K I where K is the equilibrium 
equivalent entropic elastic energy constant of the 
polymer chain



Single Fluid Hamiltonian
• The Hamiltonian (extended Helmholtz free energy 

of the system) is assumed to have the form:

 21
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where ae is the elastic free energy density corresponding to a dilute solution:
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where ns is the solvent number density and φ is the polymer volume fraction:
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and am represents the mixing energy density  (approximated by a Flory-Huggins) term:
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Single Fluid Poisson Bracket: 
Reversible Equations

• For an isothermal system, we get the standard reversible 
dynamics for an elastic medium together with a convection 
equation for the polymer density:

1
D 0
Dt

 

D
Dt

T    C v C C v 0

2 
 


T eaT C

C

D
Dt

Tp   v T



Single Fluid: Dissipation Structure

• Defined for two arbitrary functionals F, G by the bilinear 
functional [F,G] (to within an entropy correction term):
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Single Fluid: Final Equations

 1
21

1

D
Dt

HD E T      



 
     

 

 1
2

1

D
Dt

HC v C C v
C

HC E C B T

       


        







    

 
      

 

2 
 


T eaT C

C

  D
Dt a sv p T v v             



Single Fluid Formalism
• The general formalism leads to new terms to the 

polymer mass balance and conformation evolution 
equations:
– In the polymer mass balance:  A new driving force appears 

proportional to the gradient to the polymer stress
– In the polymer conformation evolution equation: Two new 

terms appear, involving second derivatives of the chemical 
potential and the stress 

– In addition, there are other dependencies (n hidden within C)

• Moreover, many uncertainties still remain (too many 
adjustable parameters) and the nonnegative entropy 
production is hard to ascertain in the general case



Particular Case: D=-1/2E=1/4B=Dδ
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Two- Fluid Model: Variables
• For an incompressible, inhomogeneous (variable 

polymer concentration, n=chain number density is 
variable) system we have (keeping ρ=ρ1+ρ2=constant)
– ρ1, the polymer density (n=NAρ1/MW1); ρ2, the solvent density 
– g1=ρ1v1, the polymer momentum density; g2=ρ2v2

– s, the entropy density (alternatively, T, temperature)
– c, the conformation tensor where

• C = <RR> (second moment of the end-to-end distribution 
function) = nc

• At equilibrium, c=kBT/K I where K is the equilibrium 
equivalent entropic elastic energy constant of the 
polymer chain



Two-Fluid Hamiltonian
• The Hamiltonian (extended Helmholtz free energy 

of the system) is assumed to have the form:
 2 21 1
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where ae is the elastic free energy density corresponding to a dilute solution:
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where ns is the solvent number density and φ is the polymer volume fraction:
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and am represents the mixing energy density  (approximated by a Flory-Huggins) term:
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Two- Fluid Poisson Bracket: 
Reversible Equations

• For an isothermal system, we get the standard reversible 
dynamics for 2 interpenetrating continua of which one is 
an elastic medium
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Transformation of Variables

• To introduce the dissipation terms it is first 
necessary to make a transformation of variables
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Two- Fluid: Reversible Equations in 
Transformed Variables
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Two-Fluid: Dissipation Structure

• Defined for two arbitrary functionals F, G by the bilinear 
functional [F,G] (to within an entropy correction term):
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Two- Fluid: Final Momentum and 
Conformation Equations
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Two- Fluid: Small Differential 
Inertia
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and therefore, substituting this relationship into the polymer density equation, we have:



Two- Fluid Formalism: Conclusions

• The general formalism leads to specific new terms to 
the polymer mass balance and conformation evolution 
equations:
– In the polymer mass balance:  A new driving force appears 

proportional to the gradient to the polymer stress
– In the polymer conformation evolution equation: The reference 

velocity with respect to which it is calculated is the polymer 
phase velocity

– In addition, there are other dependencies (n hidden with C)

• The 2-fluid equation leaves no uncertainties!
• It has been confirmed from microscopic theory (Curtiss 

and Bird, 1996).



Applications

• Coupled mass/momentum transport in a dilute polymer system: 
Two-fluid model.
• Apostolakis MV, Mavrantzas VG, Beris AN  Stress gradient-induced 

migration effects in the Taylor-Couette flow of a dilute polymer solution
J. NON-NEWTONIAN FLUID MECH. 102: 409-445 (2002)

• Non-homogeneous systems: Surface Effects on the Rheology and 
Chain Conformation in Dilute Polymer Solutions.
• Mavrantzas VG, Beris AN A hierarchical model for surface effects on chain 

conformation and rheology of polymer solutions. I. General formulation
JOURNAL OF CHEMICAL PHYSICS 110: 616-627 (1999)

• II. Application to a neutral surface
JOURNAL OF CHEMICAL PHYSICS 110: 628-638 (1999)
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Micellar systems: concentrated suspensions of surfactants

CMC Concentration



Rodlike Micellar Systems:  Shear-Banding

       



Previous Models for Rodlike Micellar Solutions



VCM Central Concept:  A -> B Reaction

Number Densities:   ; 

Conformation Tensor Densities: C  ;  C  ;  
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General reaction kinetics in multicomponent systems

• Assume that the system: 
• involves n components, optionally with internal structure and 
• participates in I chemical reactions

• For each component, i = 1, 2, … n, the following primary variables are defined:
• the mass density, ρi
• the momentum density, mi, mi = ρivi

• (optionally) the internal structural tensor parameter density, Ci , Ci = ni ci

where:

 is the mass‐based velocity of component 

 is the number density of component 

 is the conformation tensor of component  ;  
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NET Extension for Chemical Reaction Rates

• It preserves standard transition theory kinetics that assigns for the corresponding 
forward (-) and reverse (+) flux of the reaction I, an Arhenius dependence on the 
corresponding affinity:
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• However, a generalized affinity is proposed in order to also accommodate other, 
nonequilibrium, changes associated with the reaction I, such as momentum and 
conformation (for entropy one needs a more general (GENERIC) formulation):
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Corresponding Dissipation Bracket*
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• It duly satisfies Onsager’s reciprocity relations
• It does not affect the overall momentum equation
• It redistributes among the products the excess momentum and conformation

* to within an entropy correction term, not needed for isothermal processes



NET Implementation for Homogeneous Micellar System



Key Element:  Dissipation Induced by the Reaction 



Final Equations



Model Non-Dimensionalization & Parameters



Comparison with the VCM Model



New Model Predictions



Homogeneous Shear Flow Predictions -1



Homogeneous Shear Flow Predictions -2



Start-up of Couette Flow Predictions -1



Start-up of Couette Flow Predictions -2



Start-up of Couette Flow Predictions -3



VCM Predictions



Rodlike Shear-Banding Micelles: Conclusions

• We have corrected and significantly extended the description within NET that 
first appeared in our previous work [Beris and Edwards, 1994] of chemical 
reactions taking into account momentum and (for systems with internal 
structure) conformation transfers during each elementary reaction

• The new description allows for reaction rates that are conformation-dependent:  
- This can explain some very recent experiments on DNA scission under 
extension [Muller et al., ICR Lisbon, 2012]
- The new description has been applied to the modeling of a system of 
concentrated rodlike micelles:

• The new model produces very similar, non-monotonic shear stress vs. 
shear rate, predictions for homogeneous shear flows, while being 
thermodynamically consistent and requiring fewer parameters

• The new model shows much more significant recoil than the VCM in 
the cylindrical Couette flow

• More recent work:  Extension of the model to account for mass diffusion, along 
the lines of the two-fluid approach:  Presentation at 14:00 today  


