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Tutorial Example

Chaikin, Lubensky: macroscopic dynamics
of real physical systems is either quite
complicated ... or confusing because of
possibly unfamiliar time evolution.

Principles of
condensed
\ matter physics

B M. Chaikin & T. C. Labensky
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Tutorial Example

Chaikin, Lubensky: macroscopic dynamics
of real physical systems is either quite
complicated ... or confusing because of
possibly unfamiliar time evolution.

Thus, study simple model system:
» no known physical realization

» but illustrate essential features

Principles of
condensed
\ matter physics

B M. Chaikin & T. C. Labensky [*
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Tutorial Example: XY model

Study simple model system and learn essential features of thermodynamically
consistent coarse graining.

Consider a system of N identical, two-dimensional
spins u; = (sin 6, cos 6;).

The 2N microscopic degrees of freedom are ‘
22(91,...,9N,/1,...,/N).

Hamiltonian :
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Tutorial Example: XY model dynamics

Hamilton's equations of motion:

: OH
OH .
lj = —8701 =—J E sm(t9j — ek)
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Tutorial Example: XY model dynamics

Hamilton's equations of motion:

; OH
OH .
IJ = —aiej =—J E Sln(ej — ek)

equivalent formulation

d

AR) = iLA = {AH)

with microscopic Poisson bracket

N
0A OB 0A OB
W =3 (55 5 %)
j=1
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Tutorial Example: Poisson bracket

Properties of Poisson bracket

> anti-symmetry
{A7 B} = _{BvA}

» Leibniz rule
{AB,C}=A{B,C}+{A,C}B

> Jacobi-identity

{A{B,C}} +{B,{C,A}} +{C,{A,B}} =0
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Tutorial Example: conservation laws

Fixed lattice = only 2 conserved quantities
1. total energy E = H

2. total angular momentum L = ZJNZIIJ
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Tutorial Example: choice of collective variables

On macroscopic scales, most disturbances decay rapidly to
equilibrium.
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Tutorial Example: choice of collective variables

On macroscopic scales, most disturbances decay rapidly to
equilibrium.
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Tutorial Example: choice of collective variables

On macroscopic scales, most disturbances decay rapidly to
equilibrium.
Want to choose collective variables that are slowly evolving.
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Tutorial Example: choice of collective variables

On macroscopic scales, most disturbances decay rapidly to
equilibrium.

Want to choose collective variables that are slowly evolving.
Certainly need:

» densities of conserved quantities
> broken-symmetry variables

That's all for our tutorial example.
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LTutoriaI Example: XY model

Tutorial Example: choice of collective variables

On macroscopic scales, most disturbances decay rapidly to
equilibrium.
Want to choose collective variables that are slowly evolving.
Certainly need:

» densities of conserved quantities

> broken-symmetry variables

That’s all for our tutorial example.
But which additional ones for complex fluids??
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Tutorial Example: densities of conserved quantities

define macroscopic fields

8([‘, t) = <|_|5(I’, t)>7 é(r, t) = <|-|e(r, t))

with mappings My : z +— T1j

NP
Z éffzcos((),]) x(r — 1))

=1 i (nnj)

Me(rot) = D lhix(r—r)
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Tutorial Example: densities of conserved quantities

define macroscopic fields

E(ra t) = <|_|5(I’, t)>7 e(ra t) = <|_|g(l', t))

with mappings My : z — Ty

M‘g\
N\k

MNe(r,t) Z (

j=1

cos(6 x(r—r;)
i (nnyj)

N
= > gx(r—n)
j=1
N
> hx(r—1)
j=1

I'Ig(r, t)
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Tutorial Example: densities of conserved quantities

define macroscopic fields

e(r,t) = (Na(r, t)), £L(r,t) = (Me(r, t))
with mappings My : z — Ty
-
cos(6 ) x(r—r;) ¢
i (nnyj)

N
= > gx(r—n)
j=1

l\)‘g\
N\K

Jj=1

MNe(r,t) Z <

Me(r,t) = Z lix(r =)

0 10 20 30 40 50 80 70 80 90 100
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I

Tutorial Example: time evolution of mapping

direct calculation:

Me(rt) = {N(r,1), 1}
= —Z%X(r—rj) =—J Z sin(H,-—ej)X(r_,-j)

= 23 (6 - 6) (x(r — 1) ~ x(r — )

<ij>
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Tutorial Example: time evolution of mapping

direct calculation:

ﬁl("y t) {rlg(l’, t)vH}

= - Z %X(r —r)=-J Z sin(6; — 0;)x(r — ;)

<i,j>

= =3 3 sin0 - ) (x(r — 1) — x(r = 1)

<ij>

Use identity x(r —r;) — x(r—r) = -2 - folds riix(r — ri + srj)
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Tutorial Example: time evolution of mapping

direct calculation:

ﬁé("y t) {rlg(l’, t)vH}

= - Z %X(I’ —r)=-J Z sin(6; — 0;)x(r — ;)

<i,j>

= =3 3 sin0 - ) (x(r — 1) — x(r = 1)

<ij>

Use identity x(r —r;) — x(r—r) = -2 - folds rix(r — ri + sr)
= find form of (instantaneous) local conservation law
o .

I;Ig(r,t) = —5-7'(?,1‘)

1
% Z rj sin(0,-j)/ ds x(r —ri + sry)
0

<ij>

F(r, t)
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Tutorial Example: time evolution of mapping

Similar calculation for the energy density gives

. o R
nE(ra t) = _a 'J(ra t)

. J . !
](r, t) = E z (/,' =+ IJ)I‘U Sln(a,'j) /O‘ ds X(I’ —r + SI','j)

<i,j>
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Tutorial Example: closed-form equations?

balance equations for mappings

>

>

>

fields are smeared out in space
but rapidly varying in time
microscopic expressions can be evaluated in MD

but are not in closed-form for coarse-grained description,
M # Ge(Ne, M), k = (¢,0)

how to obtain closed-form equations for macroscopic variables
xe = (My)?
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L Statistical Mechanics

scale bridging!? [‘% '

Model Reduction
s and Coarse-Graining

Approaches
for Multiscale
Phenomena

e brute force approach is
computationally very expensive or
even unfeasible

e “... molecular modeling has become
standard ... severe time and length
scale limitations. Simulations on
scales [>100nm, > 1us] impossible —
without multiscale modeling.”

e “... progress is coming more through
refined simulations than from
increased computational power.”
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Statistical Mechanics: bridge to macro

> it is neither feasible nor desirable to specify initial conditions
for z for a macroscopic system.

» rather specify probability density of initial conditions p(z;0).
» aim is then to find p(z; t) for some later time t.

» p(z; t) still too detailed, really only interested in a few
macroscopic quantities x.
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Microscopic dynamics

> microstate z € [ C IR"
» probability density p(z; t)

with p(z;t) >0, [dzp(z;t) =1.
» microscopic dynamics (e.g. Liouville, Fokker-Planck)

0 .
E = —Iﬁp

> averages: (A)(t) = [(dz A(z)p(z; t)
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Collective variables and closure problem

> coarse-grained state specified by a few macroscopic
(collective) variables only, x = {xy,...,xs},

xk(t) = /rdz MNi(z)p(z;t), k=1,...,n

» but no closed-form equations for moments

%xk = /rdzl'lk(z)(—iﬁ)p(z;t)

= Gr(x1,.. .y Xny Xn+1,---)
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L Statistical Mechanics

Example of “closure problems”

v

BBGKY hierarchy
> rare events

» polymers and soft matter

v

subgrid turbulence modeling

reaction kinetics

v
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slow manifolds

how to close moment system?
simply truncating is dangerous, often leads to thermodynamically
inadmissible, ill-behaved equations.
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L Maximum-Entropy Closures

slow manifolds

how to close moment system?
simply truncating is dangerous, often leads to thermodynamically
inadmissible, ill-behaved equations.
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L Maximum-Entropy Closures

slow manifolds

how to close moment system?
simply truncating is dangerous, often leads to thermodynamically
inadmissible, ill-behaved equations.

> choose “relevant” density p* = p} to capture coarse-grained
state

» manifold {p}} hopefully “slow”
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maximum entropy distribution

» entropy functional S[p] = — [-dz pIn(p/po)
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L Maximum-Entropy Closures

maximum entropy distribution

» entropy functional S[p] = — [-dz pIn(p/po)
> maximum entropy principle

S[p] = max, xk[p] fixed
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L Maximum-Entropy Closures

maximum entropy distribution

» entropy functional S[p] = — [-dz pIn(p/po)
> maximum entropy principle

S[p] = max, xk[p] fixed

» solution: quasi-equilibrium (generalized canonical) distribution

p(2) = po(2)exp[=AMi(2) + BG(N)]
X = /rdzl'lk(z)p*(z)

[Gibbs; Jaynes; Grad, etc.]
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L Maximum-Entropy Closures

maximum entropy distribution
» entropy functional S[p] = — [-dz pIn(p/po)
> maximum entropy principle

S[p] = max, xk[p] fixed

» solution: quasi-equilibrium (generalized canonical) distribution
p*(z) = po(z)exp[=AMi(z) +BG(N)]
X = /rdz Mk(z)p*(2)

» with Lagrange multiplier Ay = A\((x)

[Gibbs; Jaynes; Grad, etc.]
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[ Maximum-Entropy Closures

Generating function

normalization of probability density:

o860 _ / dz po(z)e—i2)
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L Maximum-Entropy Closures

Generating function

normalization of probability density:
o860 _ / dz po(z)e—i2)

macro variables from derivative

W00~ [azp(Iu(z) = x
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Quasi-equilibrium entropy

define

5 (x) = S[p7]
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Quasi-equilibrium entropy

define

S*(x) = S[p’]
insert definition:

S*(X) = —BG + A\exk + So

with S¢ = const. for pg = const.
and So = 5(Fo — E) if po canonical.
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L Maximum-Entropy Closures

Quasi-equilibrium entropy

define

S*(x) = S[p’]
insert definition:
5*(X) = —0G + Agxx + So

with Sg = const. for pg = const.
and So = B(Fo — E) if po canonical.
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L Maximum-Entropy Closures

Quasi-equilibrium entropy

define
5*(x) = S[p"]

insert definition:
5*(X) = —0G + Agxx + So

with Sg = const. for pg = const.
and So = B(Fo — E) if po canonical.
Thus, S is Legendre transform of G and

e Lagrange multipliers as dual variables
as*
an B

Ak
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L Maximum-Entropy Closures

Tutorial Example: statistical mechanics

relevant ensemble: generalized canonical distribution

p(z) = %exp[— /ddrﬂ(r)ﬂs(z; I’)—/ddr/\(r)l_lg(z;r)]
=(T,n) = /dNedN/ exp [~ /ddrﬁ(r)l'ls(z;r) - /ddr A(r)Me(z;v)]

B, \: Lagrange multipliers conjugate to the collective variables,
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L Maximum-Entropy Closures

Tutorial Example: statistical mechanics

relevant ensemble: generalized canonical distribution

p(z) %exu) (- /ddr/a’(r)l'le(z; I’)—/ddr/\(r)l'lg(z;r)]

=(T, ) / dM0d" 1 exp [~ / A BN (z;¥) — / AP A(F)Mo(2: ¥)]

B, \: Lagrange multipliers conjugate to the collective variables,

= (M) = e~ = (M) = £0)
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L Maximum-Entropy Closures

Tutorial Example: Entropy

physically, entropy emerges since we have eliminated degrees of freedom.
Legendre transform

S[e,f] = ks In= + kg / d’r B(r)e(r) + ks / d?r A(r)e(r)

(655))z N Ttr)’ (57({)) = ksA(r)

with
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[ Maximum-Entropy Closures

maximum entropy closures

» closed equations !

d . oy
%= /rdz MNk(z)(—iL)p
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[ Maximum-Entropy Closures

maximum entropy closures

» closed equations !

d . oy
%= /rdz MNk(z)(—iL)p

» are we done?

[Gorban, Karlin, 1992]



Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

L Maximum-Entropy Closures

maximum entropy closures

» closed equations !

» are we done?

» maximum entropy closure conserves type of dynamics

d . d
55 = ES[P]

p*

[Gorban, Karlin, 1992]



Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

[ Maximum-Entropy Closures

example applications

v

polymer solutions

v

magnetic fluids

v

liquid crystals

chemical reactions

v

> etc.
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L Maximum-Entropy Closures

limitations and improvements

» improvement of maximum entropy closures:
method of invariant manifolds
(A.N. Gorban, I.V. Karlin)

» but how to derive irreversible equations?
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Mori-Zwanzig approach

v

z={p,r} el
phase space density p(z; t)

v

v

Liouville equation 0yp = —iLp

v

Liouville operator

. _ . N O0A OH O0A  OH
ILA={AH} =31, (a—r,'a—m—a—m'a—n>
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L Mori-Zwanzig approach

Heisenberg picture of classical mechanics

» formal solution (£ not explicitly time-dependent)
p(zt) = e "p(z;0)
> averages: time-dependent observables

(0 = [dzA@E0)
= /r dz A(z)e "t p(z;0)
_ /r dz p(z; 0)e £t A(2)
= A(z;t) = eF'A(2)
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[ Mori-Zwanzig approach

decomposing the dynamics

a(t) = (A1) = 3(1) = (A

= /rdz p(z;0)iLe*tA(z)

define projectors P,Q =1—-"P
(with P2 =P, Q0% = Q,PQ = QP =0)

4
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L Mori-Zwanzig approach

Duhamel-Dyson identity

%A = eCtiLA = e C'PiLA + Og

projected dynamics: hopefully slow
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L Mori-Zwanzig approach

Duhamel-Dyson identity

%A = eCtiLA = e C'PiLA + Og

projected dynamics: hopefully slow
orthogonal dynamics: Ox = e/“tQiLA
rewrite Op using Duhamel-Dyson relation

t
oLt — eQi£t+/ ds e/ £(t=9) P eQiLs
0
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L Mori-Zwanzig approach

equation of motion: exact

projection operator approach uses operator identity

t
oLt — eichJr/ ds e/L5PiL Qe LAt=s) | QgiLot
0
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equation of motion: exact

projection operator approach uses operator identity
t
elﬁt _ e’ﬁt'P—i—/ ds eIESzPI-EQe/EQ(t—s) + QeICQt
0

choose A =Ty

t
%nk = eFUPILM + / ds eFE)PILF(s) + Fi(t)
0
Fe(t) = e2£tQicn,
P
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L Mori-Zwanzig approach

choice of projector

here: [H. Grabert, 1982]

PA — /dzp*(z)A(z)+(>g—n,-)/d

iLt —
e'""'PA = /dsz(t (2)A(2) -1 )/dz Ix(0)

note: other choices (Robertson, etc.) lead to same equations for
averages
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L Mori-Zwanzig approach

exact, non-Markovian time evolution

use generalized canonical ensemble for p*

d t
—Xx = Vi+ / ds Kkj(t, 5))\](1.' — S)
dt A

vk = {({Mk, H})xr) deterministicdrift
Kij(t,s) = (Fk(0)Fj(s))x(t—s) memory kernel

Fi(t) = e2*tQicn, “random force”
oS*
N o= o

[H. Mori 1965, R. Zwanzig 1961]
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L Mori-Zwanzig approach

Markovian approximation

crucial assumption: separation of time scales.

collective variables: slowly evolving (> )

fast fluctuations (< 75) = short memory = Markovian
approximation

*

t oS
ds Kii(t,s) —
/0 k_/( ) 8XJ X(t)

My(x) = / " ds (FL(0)Fi(s))

*

oS
~ Myi(x(t)) .
J

x(t—s)

d 0S*
= ({Mk, H}) + M"fa_xj
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choice of collective variables

Statistical mechanics does not
tell us what the relevant
variables are. This is our
choice. If we choose well, the
results may be useful; if we
choose badly, the results will
probably be useless.

R. Zwanzig



Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

L Mori-Zwanzig approach

4 tasks for coarse grainers

Coarse-graining program has to meet four tasks
1. choice of collective variables x, mapping I
. deterministic drift v,

entropy S5*(x)

NN

. friction matrix M
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L Mori-Zwanzig approach

Macroscopic Poisson bracket
deterministic drift:
Vi = ({Mk; H ) x(2)

require: energy accessible on coarse-grained level H(z) = E(I(z)).
Then,

0E
{Nk, H}) = kaa_xj
Ly = ({N,MN;}) anti-symmetric

and the powerful GENERIC structure emerges

d OE 0S*
o = L2 ML
thk K 0x; + Mig Ox;

[M. Grmela, H.C. Ottinger (1997)]
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L Mori-Zwanzig approach

4 tasks for coarse grainers

Coarse-graining program has to meet four tasks

1. choice of collective variables, mapping
2. deterministic drift:

v" macroscopic energy E(x).
v" macroscopic Poisson bracket

Ly = ({Mk, N;})

3. entropy S*(x)
4. friction matrix M(x)
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|—Mar:roscopic Poisson Bracket

Back to our tutorial example

macroscopic energy: E = [dre(r) and 5‘25) =1

Thus,

0E T d ,
w() = Ly = [ar (). ()

0x;
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|—Macroscopic Poisson Bracket

Back to our tutorial example

macroscopic energy: E = [dre(r) and 5‘25) =1.
Thus,

ve(r) = Lk,-gg - / ar ({Me(r), N ()}
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|—Macroscopic Poisson Bracket

Back to our tutorial example

macroscopic energy: E = [dre(r) and 5‘25) =1
Thus,
OE
wle) = Ly = [ 4% (o). n.))
Xj
insert:

) = o (O s il €)= o (75 )
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LMacroscopic Poisson Bracket

Back to our tutorial example

macroscopic energy: E = [dre(r) and 5‘;5) =1

Thus,
OE
wle) = Ly = [ 4% (o). n.))
Xj
insert:
)=~ O D vl t) = o (55 1))
e\l = T or I, X5 e\r, =~ T or 5 x
In the absence of external perturbations there are no reversible fluxes and
therefore

ve = vp = 0.
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LMacroscopic Poisson Bracket

S,

Include Magnetization

want to describe also anisotropic phase, include additional collective variable:
N
sinf
Mo, ¢) Zu,x(r —p) = ( &g )xr—n)

Jj=1

with m = (M) the macroscopic magnetization.
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LMacroscopic Poisson Bracket

S,

Include Magnetization

want to describe also anisotropic phase, include additional collective variable:
N
sinf
Mo, ¢) Zu,x(r —p) = ( &g )xr—n)
j=1

with m = (M) the macroscopic magnetization.

Note: m is NOT a conserved quantity.
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LMacroscopic Poisson Bracket

| S

Include Magnetization

want to describe also anisotropic phase, include additional collective variable:
N
sinf
Mon(r, £) Zu,x(r —p) = ( &g )xr—n)
j=1
with m = (M) the macroscopic magnetization.

Note: m is NOT a conserved quantity.

So there is also not local form of the conservation law expected.
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LMacroscopic Poisson Bracket

Include Magnetization

want to describe also anisotropic phase, include additional collective variable:
N
sinf
Mon(r, £) Zu,x(r —p) = ( &g )xr—n)
j=1
with m = (M) the macroscopic magnetization.
Note: m is NOT a conserved quantity.

So there is also not local form of the conservation law expected.

How does the time evolution/macro Poisson bracket look like?
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|—Macroscopic Poisson Bracket

‘
S
ps
f

additional Poisson bracket

Need to find the deterministic drift for the magnetization

Vin(r) = /dr' Lne(r,r")

e
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|—Macroscopic Poisson Bracket s
punss

(Rt

R

additional Poisson bracket :
Need to find the deterministic drift for the magnetization
Vin(r) = /dr' Lne(r,r")

bne(r¥) = ({0, 1(0))
(D2 ) Pt =i — )

J
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LMacroscopic Poisson Bracket

additional Poisson bracket :

Need to find the deterministic drift for the magnetization
Vn(r) = /dr' Lne(r,r")

bne(r¥) = ({0, 1(0))
(D2 ) Pt =i — )

J

Averages over angular momenta can be done analytically:
Lne(r,¥) = Q(r) x m(r)é(r —r)

with Q(r) = (0,0,w(r)) and w(r) = I74(r) = X(r)/B(r).
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LMacroscopic Poisson Bracket

additional Poisson bracket

Need to find the deterministic drift for the magnetization

Vim(r) = /d", Lm,e(r,t")
{Mm(r), N (F)})
(Z_ ( :?nsgf ) %X(r —rx(r' =)

J

Lin,e(r,r")

Averages over angular momenta can be done analytically:

Lne(r,¥) = Q(r) x m(r)é(r —r)

with Q(r) = (0,0,w(r)) and w(r) = I74(r) = X(r)/B(r).

= co-rotational derivative v, = 2 X m with local angular momentum.
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LThermodynamic Integration

4 tasks for coarse grainers

Coarse-graining program has to meet four tasks

1. choice of collective variables, mapping
2. deterministic drift:

v" macroscopic energy E(x).
v" macroscopic Poisson bracket

Ly = ({Mk, N;})

3. entropy S*(x)
4. friction matrix M(x)
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|—Thermodynamic Integration

Quasi-equilibrium entropy

want to determine macroscopic entropy S*(x).
remember dual nature of Lagrange multipliers:

Lagrange multipliers as dual variables

0S*
— =
Oxy .
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LThermodynamic Integration

Quasi-equilibrium entropy

want to determine macroscopic entropy S*(x).
remember dual nature of Lagrange multipliers:

e Lagrange multipliers as dual variables

as*
an -

Ak

e recover entropy via thermodynamic integration

5*(X) — Sg :/ )\kdxk
0
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|—Thermodynamic Integration

near equilibrium

e quasi-equilibrium # near equilibrium
near equilibrium: linear relation x, = Xk eq — Cij Aj with
ij — <|_Ik|_|j><‘(| — Xk,eqXj,eq
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|—Thermodynamic Integration

near equilibrium

e quasi-equilibrium # near equilibrium
e near equilibrium: linear relation xx = Xy oq — Cij Aj with
Cij = (MkMj)eq = XkeqXj.eq
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near equilibrium

e quasi-equilibrium # near equilibrium

e near equilibrium: linear relation xx = Xy oq — Cij Aj with
G = (McMj)eq — Xi,eqXj,eq

e therefore quadratic entropy:
5 (x) = $*(0) = 30 — Xiea) (€ )ik (xk — Xk,eq)
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LThermodynamic Integration

near equilibrium

e quasi-equilibrium # near equilibrium

e near equilibrium: linear relation xx = Xy oq — Cij Aj with
G = (McMj)eq — Xi,eqXj,eq

e therefore quadratic entropy:
5 (x) = $*(0) = 30 — Xiea) (€ )ik (xk — Xk,eq)

e starting point for Einstein’s fluctuation theory
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LThermcndynamic Integration

near equilibrium

e quasi-equilibrium # near equilibrium

e near equilibrium: linear relation xx = Xk eq — Cij Aj with
G = (McMj)eq — Xi,eqXj,eq

e therefore quadratic entropy:
§*(x) = S*(0) = 3% — Xea) (C 1) (X = Xieq)

e starting point for Einstein’s fluctuation theory

e in the following, we allow for strong (non-linear) deviations
from equilibrium
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|—Thermodynamic Integration

Tutorial example

generating function
o BN _ /dzpo(z)e—xmk(z)
ideal orientational contribution

e PGaN) — =BG /<lue Ao /'G”/o(/\)

magnetization
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|—Thermodynamic Integration

Tutorial example

generating function
o OO _ /dzpo(z)e‘*k”k(z)

ideal orientational contribution
e PG = g=F% /due Au— g% ()

magnetization

__0(56) _ h(Y)

ax (v
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|—Thermodynamic Integration

Foer e b
L

Tutorial example: ideal contribution to entropy

entropy

S(m):SO—i—,BG—kB)\-m
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|—Thermodynamic Integration

Foer e b
L

Tutorial example: ideal contribution to entropy

entropy
S(m):SO—i—,BG—kB)\-m

expansion for weak ordering:
B(G — Go) =~ —N2/4+ A\ /64 + ...

= Su(m)~ Sy —m* —m*/4—5m°/36 + ...
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Tutorial example: ideal contribution to entropy

entropy

S(m):SO—i—,BG—kB)\-m

expansion for weak ordering:
B(G — Go) =~ —N2/4+ A\ /64 + ...

= Su(m)~ Sy —m* —m*/4—5m°/36 + ...

= Sia(m) is NOT quadratic, diverges near
perfectly ordered state!
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Tutorial example: ideal contribution to entropy

entropy

S(m):SO—i—,BG—kB)\-m

expansion for weak ordering:
B(G — Go) =~ —N2/4+ A\ /64 + ...

= Su(m)~ Sy —m* —m*/4—5m°/36 + ...

= Sia(m) is NOT quadratic, diverges near
perfectly ordered state!

= recover S = Siq + Sexc numerically from
thermodynamic integration
(or mean-field calculation).
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LThermodynamic Integration

Foer e b
L

Tutorial example: ideal contribution to entropy

entropy
S(m):SO—i—,BG—kB)\-m

expansion for weak ordering:
B(G — Go) =~ —N2/4+ )\ /64 + ...

= Su(m)~ Sy —m* —m*/4—5m°/36 + ...

= Sia(m) is NOT quadratic, diverges near
perfectly ordered state!

= recover S = Siq + Sexc numerically from
thermodynamic integration
(or mean-field calculation).
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example: Landau-de Gennes free energy for Liquid Crystals




Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

LThermodynamic Integration

example: Landau-de Gennes free energy for Liquid Crystals
v ; =

e system of N hard, prolate particles

e orientations u;

e orientational order parameter
52 = <P2(u; . n)>

e Monte-Carlo simulations in generalized
canonical ensemble

e thermodynamic integration: i
F=F— f)\dSQ . 7

e reconstructed free energy

§i oz

_ rid 2
F =F—aS — bS; [A. Luo, L. Sagis, PI, JCP 2014]
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LThermcndynamic Integration

example: random walk

Qj+1
Q-1 Q;

e 3d random walk of N steps Q1,...,Qpn, each of size b
e end-to-end vector R = Z,N:l Q;.
e collective variable x = {M,..., Ms} = (RR)
* p(Q)=poexp[-R-N-R— (]
e identify A = —W‘Q’bgl + %x_l
e QE entropy: S5*(x) = 3 Indetx — ﬁtr(x)
“entropy spring” potential
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|—Thermodynamic Integration

example: entropic spring for unentangled polymers
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LThermodynamic Integration

example: entropic spring for unentangled polymers

bead-spring model of polymer melt

Monte-Carlo simulations in
generalized canonical ensemble
p(Q) = poexp[~-R-A- R — Aq]
thermodynamic integration:
S*(x) = Seq + f;eq A: dx
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LThermodynamic Integration

example: entropic spring for unentangled polymers

bead-spring model of polymer melt

Monte-Carlo simulations in
generalized canonical ensemble

p(Q) = poexp[-R- AR — Aq]

thermodynamic integration:
S*(x) = Seq + f;eq A: dx

[ ]
(5=8F) /N,

oy
0
03
4
03

74In(AI‘7?
S* = SR(I, k) + AS(h)

[PI, M. Kroger, JOR 2011]
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LFriction Matrix

4 tasks for coarse grainers

Coarse-graining program has to meet four tasks

1. choice of collective variables, mapping
2. deterministic drift:

v/ macroscopic energy E(x).
v" macroscopic Poisson bracket

Lij = {M, 1;})
3. entropy S*(x)
v thermodynamic integration S*(x) — S§ = [ Axdxk
4. friction matrix M(x)
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|—Fricticm Matrix

Fluctuations

approximate T15(t) = —%eigmfa ~ —%?a(t) and MNL(t) ~ —%jfa(t) with

A 7 7 1
Ja(t) = 53 2 ooy (i +T)riFy [y ds x(r — ri + srj)
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I—Friction Matrix

Fluctuations

approxmate ni(e) = — = e QL7 ~ —%?a(t) and MNL(t) ~ —%j&(t) with
Ja( ) = ﬁ Z<i,j>(l' + IJ rUFfJ’j;) dSX(I’ —ri +sr"f)
o 9 1 (™
M Y = Ta #5(r', 0))x
W) = G / dt (Fa(r, t)25(r',0)

/ 0 0 1
MEE(I’,I’) = %@kB / dt (r t jﬁ(r )>
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|—Fri::ticm Matrix

Macroscopic balance equations

On macro scales: correlations are short-range in space = locality
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|—Fricticm Matrix

Macroscopic balance equations

On macro scales: correlations are short-range in space = locality

o, _ o1

8t5 oo T
2

aé = o D)

ot or?
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|—Fricticm Matrix

Correlated fluctuations

Mum(r,¥) = iD(r)é(r' —)

D = YDEIr—r). D)= [ arli(o(o)

Mac(t) = = [Tae(Y na(050,0)

- /!
I Jo

01 0002
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L,
008
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|—Fricticm Matrix

Correlated fluctuations

Mum(r,¥) = éD(r)é(r' —r

D() = Y Dr—r). D)= /OTsdtm;(t)uf(o»

/ a s . /
Mnoe(r,¥) = =50 | de (3 ina(0)(r',0)
s i

=0m = Q><m+D-A—V~A%
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|—Frir:ticm Matrix

example: rigid ellipsoids in 2d

[A. Luo, L.M.C. Sagis, H.C.éttinger, C. De Michele, PI, 2015]
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|—Fricticm Matrix

example: rigid ellipsoids in 2d

theoretical expectation:

1
(Mrot)ijit = ————(Cidjt + Cidjic + Citdi + Ciredig — 4C,-5~2,))

kg NpTrot

! ! ! ! 107 T T
isotropic nematic
10°F 1
o
e s —1 ]
x e
E 10'F 9
g
= 10°F 9
10°F E
L L L | |M ‘
10 0,0 0 3 10755 s, 07 08
,

[A. Luo, L.M.C. Sagis, H.C.Ottinger, C. De Michele, PI, 2015]
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LFriction Matrix

example: polymer melts

perform nonequilibrium MD
simulations

choose gyration tensor as
collective variable x = ()

analyze fluctuations of [1:

Fi(t) = e%FtQiLn,
Me(t) — x(t), t<m

M components

%

Mkj(X) — OTSdS <Fk(O)FJ(S)>X [PI, M. Kroger, H.C.éttinger, 2009]
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LFriction Matrix

hybrid simulations

non-equilibrium stationary state:
Monte-Carlo simulations in
relevant ensemble p* = ppe

GENERIC building blocks ——
(macro)

Lagrange
parameter A

— Akl

%
A-ensemble @O
Monte Carlo n

level 1

Molecular (micro)

Dynamics

known analytically

\t{nkv H} = _Mk.l

determine A consistently!
non-equilibrium molecular dynamics

Mkj(X) = fg—sds <Fk(0)Fj(5)>X

[PI, M. Krdger, H.C. Ottinger, 2009]
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L Friction Matrix

results
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LOpen questions

Open questions

v

how successful is this approach for different systems?

v

how-to identify collective variables?

v

better approximation for friction matrix?

v

what to do if time-scale separation does not hold??
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