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Tutorial Example

Chaikin, Lubensky: macroscopic dynamics
of real physical systems is either quite
complicated ... or confusing because of
possibly unfamiliar time evolution.

Thus, study simple model system:

I no known physical realization

I but illustrate essential features
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Tutorial Example: XY model

Study simple model system and learn essential features of thermodynamically
consistent coarse graining.

Consider a system of N identical, two-dimensional
spins uj = (sin θj , cos θj).
The 2N microscopic degrees of freedom are
z = (θ1, . . . , θN , l1, . . . , lN).
Hamiltonian

H(z) =
N∑
j=1

l2
j

2I
− J

2

∑
<i,j>

cos(θi − θj)
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Tutorial Example: XY model dynamics

Hamilton’s equations of motion:

θ̇j =
∂H
∂lj

= lj/I

l̇j = −∂H
∂θj

= −J
∑
k(nnj)

sin(θj − θk)

equivalent formulation

d

dt
A(z) = iLA = {A,H}

with microscopic Poisson bracket

{A,B} =
N∑
j=1

(
∂A

∂θj

∂B

∂lj
− ∂A

∂lj

∂B

∂θj

)
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Tutorial Example: Poisson bracket

Properties of Poisson bracket
I anti-symmetry

{A,B} = −{B,A}
I Leibniz rule

{AB,C} = A{B,C}+ {A,C}B
I Jacobi-identity

{A, {B,C}}+ {B, {C ,A}}+ {C , {A,B}} = 0
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Tutorial Example: XY model

Tutorial Example: conservation laws

Fixed lattice ⇒ only 2 conserved quantities

1. total energy E = H
2. total angular momentum L =

∑N
j=1 lj
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Tutorial Example: XY model

Tutorial Example: choice of collective variables

On macroscopic scales, most disturbances decay rapidly to
equilibrium.

Want to choose collective variables that are slowly evolving.
Certainly need:

I densities of conserved quantities

I broken-symmetry variables

That’s all for our tutorial example.
But which additional ones for complex fluids??
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Tutorial Example: densities of conserved quantities

define macroscopic fields

ε(r, t) = 〈Πε(r, t)〉, `(r, t) = 〈Π`(r, t)〉

with mappings Πk : z 7→ Πk

Πε(r, t) =
N∑
j=1

 l2
j

2I
− J

2

∑
i (nnj)

cos(θij)

χ(r − rj)

=
N∑
j=1

εjχ(r − rj)

Π`(r, t) =
N∑
j=1

ljχ(r − rj)
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Π ⇓
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Tutorial Example: time evolution of mapping
direct calculation:

Π̇`(r, t) = {Π`(r, t),H}

= −
∑
j

∂H
∂θj

χ(r − rj) = −J
∑
<i,j>

sin(θi − θj)χ(r − rj)

= −J

2

∑
<i,j>

sin(θi − θj) (χ(r − rj)− χ(r − ri ))

Use identity χ(r − rj)− χ(r − ri ) = − ∂
∂r ·
∫ 1

0
ds rijχ(r − ri + srij)

⇒ find form of (instantaneous) local conservation law

Π̇`(r, t) = − ∂

∂r
· τ̂ (r, t)

τ̂ (r, t) =
J

2

∑
<i,j>

rij sin(θij)

∫ 1

0

ds χ(r − ri + srij)
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Tutorial Example: time evolution of mapping

Similar calculation for the energy density gives

Π̇ε(r, t) = − ∂

∂r
· ̂(r, t)

̂(r, t) =
J

2I

∑
<i,j>

(li + lj)rij sin(θij)

∫ 1

0

ds χ(r − ri + srij)
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Tutorial Example: closed-form equations?

balance equations for mappings

I fields are smeared out in space

I but rapidly varying in time

I microscopic expressions can be evaluated in MD

I but are not in closed-form for coarse-grained description,

Π̇k 6= Gk(Πε,Π`), k = (ε, `)

I how to obtain closed-form equations for macroscopic variables
xk = 〈Πk〉?
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Statistical Mechanics

scale bridging!?

• brute force approach is
computationally very expensive or
even unfeasible

• “... molecular modeling has become
standard ... severe time and length
scale limitations. Simulations on
scales [>100nm, > 1µs] impossible
without multiscale modeling.”

• “... progress is coming more through
refined simulations than from
increased computational power.”
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Statistical Mechanics

Statistical Mechanics: bridge to macro

I it is neither feasible nor desirable to specify initial conditions
for z for a macroscopic system.

I rather specify probability density of initial conditions ρ(z ; 0).

I aim is then to find ρ(z ; t) for some later time t.

I ρ(z ; t) still too detailed, really only interested in a few
macroscopic quantities x .
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Statistical Mechanics

Microscopic dynamics

I microstate z ∈ Γ ⊂ IRn

I probability density ρ(z ; t)
with ρ(z ; t) ≥ 0,

∫
Γdz ρ(z ; t) = 1.

I microscopic dynamics (e.g. Liouville, Fokker-Planck)

∂

∂t
ρ = −iLρ

I averages: 〈A〉(t) =
∫

Γdz A(z)ρ(z ; t)
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Statistical Mechanics

Collective variables and closure problem

I coarse-grained state specified by a few macroscopic
(collective) variables only, x = {x1, . . . , xn},

xk(t) =

∫
Γ
dz Πk(z)ρ(z ; t), k = 1, . . . , n

I but no closed-form equations for moments

d

dt
xk =

∫
Γ
dz Πk(z)(−iL)ρ(z ; t)

= Gk(x1, . . . , xn, xn+1, . . .)
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Statistical Mechanics

Example of “closure problems”

I BBGKY hierarchy

I rare events

I polymers and soft matter

I subgrid turbulence modeling

I reaction kinetics

I . . .
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Maximum-Entropy Closures

slow manifolds

how to close moment system?
simply truncating is dangerous, often leads to thermodynamically
inadmissible, ill-behaved equations.

I choose “relevant” density ρ∗ = ρ∗x to capture coarse-grained
state

I manifold {ρ∗x} hopefully “slow”
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Maximum-Entropy Closures

maximum entropy distribution

I entropy functional S [ρ] = −
∫

Γdz ρ ln(ρ/ρ0)

I maximum entropy principle

S [ρ]→ max, xk [ρ] fixed

I solution: quasi-equilibrium (generalized canonical) distribution

ρ∗(z) = ρ0(z) exp [−λkΠk(z) + βG (λ)]

x∗k =

∫
Γ
dz Πk(z)ρ∗(z)

I with Lagrange multiplier λk = λk(x)

[Gibbs; Jaynes; Grad, etc.]
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Maximum-Entropy Closures

Generating function

normalization of probability density:

e−βG(λ) =

∫
dz ρ0(z)e−λkΠk (z)

macro variables from derivative

∂(βG )

∂λk
=

∫
dzρ∗(z)Πk(z) = xk
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Maximum-Entropy Closures

Quasi-equilibrium entropy

define
S∗(x) = S [ρ∗]

insert definition:

S∗(x) = −βG + λkxk + S0

with S0 = const. for ρ0 = const.
and S0 = β(F0 − E ) if ρ0 canonical.
Thus, S is Legendre transform of G and

• Lagrange multipliers as dual variables

∂S∗

∂xk
= λk
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Maximum-Entropy Closures

Tutorial Example: statistical mechanics

relevant ensemble: generalized canonical distribution

ρ(z) =
1

Ξ
exp [−

∫
dd r β(r)Πε(z ; r)−

∫
dd r λ(r)Π`(z ; r)]

Ξ(T , λ) =

∫
dNθdN l exp [−

∫
dd r β(r)Πε(z ; r)−

∫
dd r λ(r)Π`(z ; r)]

β, λ: Lagrange multipliers conjugate to the collective variables,

− δ ln Ξ

δβ(r)
= 〈Πε〉 = ε(r), −δ ln Ξ

δλ(r)
= 〈Π`〉 = `(r)
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Maximum-Entropy Closures

Tutorial Example: Entropy

physically, entropy emerges since we have eliminated degrees of freedom.
Legendre transform

S [ε, `] = kB ln Ξ + kB

∫
dd r β(r)ε(r) + kB

∫
dd r λ(r)`(r)

with (
δS

δε(r)

)
`

=
1

T (r)
,

(
δS

δl(r)

)
ε

= kBλ(r)
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Maximum-Entropy Closures

maximum entropy closures

I closed equations !

d

dt
x∗k =

∫
Γ
dz Πk(z)(−iL)ρ∗

I are we done?

I maximum entropy closure conserves type of dynamics

d

dt
S∗ =

d

dt
S [ρ]

∣∣∣∣
ρ∗

[Gorban, Karlin, 1992]
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Maximum-Entropy Closures

example applications

I polymer solutions

I magnetic fluids

I liquid crystals

I chemical reactions

I etc.
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Maximum-Entropy Closures

limitations and improvements

I improvement of maximum entropy closures:
method of invariant manifolds
(A.N. Gorban, I.V. Karlin)

I but how to derive irreversible equations?
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Mori-Zwanzig approach

Mori-Zwanzig approach

I z = {p, r} ∈ Γ

I phase space density ρ(z ; t)

I Liouville equation ∂tρ = −iLρ
I Liouville operator

iLA = {A,H} =
∑N

i=1

(
∂A
∂ri
· ∂H∂pi

− ∂A
∂pi
· ∂H∂ri

)
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Mori-Zwanzig approach

Heisenberg picture of classical mechanics

I formal solution (L not explicitly time-dependent)
ρ(z ; t) = e−iLtρ(z ; 0)

I averages: time-dependent observables

〈A〉(t) =

∫
Γ
dz A(z)ρ(z ; t)

=

∫
Γ
dz A(z)e−iLtρ(z ; 0)

=

∫
Γ
dz ρ(z ; 0)e iLtA(z)

⇒ A(z ; t) = e iLtA(z)
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Mori-Zwanzig approach

decomposing the dynamics

a(t) = 〈A〉(t)⇒ ȧ(t) =
d

dt
〈A〉(t)

=

∫
Γ
dz ρ(z ; 0)iLe iLtA(z)

define projectors P,Q = I − P
(with P2 = P,Q2 = Q,PQ = QP = 0)
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Mori-Zwanzig approach

Duhamel-Dyson identity

d

dt
A = e iLt iLA = e iLtP iLA + OA

projected dynamics: hopefully slow
orthogonal dynamics: OA = e iLtQiLA
rewrite OA using Duhamel-Dyson relation

e iLt = eQiLt +

∫ t

0
ds e iL(t−s)P iLeQiLs
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Mori-Zwanzig approach

equation of motion: exact

projection operator approach uses operator identity

e iLt = e iLtP +

∫ t

0
ds e iLsP iLQe iLQ(t−s) +Qe iLQt

choose A = Πk

d

dt
Πk = e iLtP iLΠk +

∫ t

0
ds e iL(t−s)P iLFk(s) + Fk(t)

Fk(t) = eQiLtQiLΠk

- Q

- P
6 6 6 6 6 6 6 6
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- P
6 6 6 6 6 6 6 6
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Mori-Zwanzig approach

choice of projector

here: [H. Grabert, 1982]

PA =

∫
Γ
dz ρ∗(z)A(z) + (xj − Πj)

∫
Γ
dz

∂ρ∗

∂xj
A(z)

e iLtPA =

∫
Γ
dz ρ∗x(t)(z)A(z) + (xj − Πj)

∫
Γ
dz

∂ρ∗

∂xj(t)
A(z)

note: other choices (Robertson, etc.) lead to same equations for
averages
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Mori-Zwanzig approach

exact, non-Markovian time evolution

use generalized canonical ensemble for ρ∗

d

dt
xk = vk +

∫ t

0
ds Kkj(t, s)λj(t − s)

vk = 〈{Πk ,H}〉x(t) deterministic drift

Kkj(t, s) = 〈Fk(0)Fj(s)〉x(t−s) memory kernel

Fk(t) = eQiLtQiLΠk “random force”

λj =
∂S∗

∂xj

[H. Mori 1965, R. Zwanzig 1961]
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Mori-Zwanzig approach

Markovian approximation
crucial assumption: separation of time scales.
collective variables: slowly evolving (� τs)
fast fluctuations (� τs) ⇒ short memory ⇒ Markovian
approximation

∫ t

0
ds Kkj(t, s)

∂S∗

∂xj

∣∣∣∣
x(t−s)

≈ Mkj(x(t))
∂S∗

∂xj

∣∣∣∣
x(t)

Mkj(x) =

∫ τs

0
ds 〈Fk(0)Fj(s)〉

d

dt
xk = 〈{Πk ,H}〉+ Mkj

∂S∗

∂xj



Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Mori-Zwanzig approach

choice of collective variables

Statistical mechanics does not
tell us what the relevant
variables are. This is our
choice. If we choose well, the
results may be useful; if we
choose badly, the results will
probably be useless.

R. Zwanzig



Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Mori-Zwanzig approach

4 tasks for coarse grainers

Coarse-graining program has to meet four tasks

1. choice of collective variables x , mapping Π

2. deterministic drift vk

3. entropy S∗(x)

4. friction matrix M
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Mori-Zwanzig approach

Macroscopic Poisson bracket

deterministic drift:
vk = 〈{Πk ,H}〉x(t)

require: energy accessible on coarse-grained level H(z) = E (Π(z)).
Then,

〈{Πk ,H}〉 = Lkj
∂E

∂xj
Lkj = 〈{Πk ,Πj}〉 anti-symmetric

and the powerful GENERIC structure emerges

d

dt
xk = Lkj

∂E

∂xj
+ Mkj

∂S∗

∂xj

[M. Grmela, H.C. Öttinger (1997)]
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Mori-Zwanzig approach

4 tasks for coarse grainers

Coarse-graining program has to meet four tasks

1. choice of collective variables, mapping

2. deterministic drift:

X macroscopic energy E (x).
X macroscopic Poisson bracket

Lkj = 〈{Πk ,Πj}〉

3. entropy S∗(x)

4. friction matrix M(x)



Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Macroscopic Poisson Bracket

Back to our tutorial example

macroscopic energy: E =
∫
dr ε(r) and δE

δε(r)
= 1.

Thus,

vk(r) = Lkj
∂E

∂xj
=

∫
dd r ′ 〈{Πk(r),Πε(r′)}〉

insert:

vε(r, t) = − ∂

∂r
· 〈̂(r, t)〉x , v`(r, t) = − ∂

∂r
· 〈τ̂ (r, t)〉x

In the absence of external perturbations there are no reversible fluxes and
therefore

vε = v` = 0.
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Macroscopic Poisson Bracket

Back to our tutorial example

macroscopic energy: E =
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Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Macroscopic Poisson Bracket

Include Magnetization

want to describe also anisotropic phase, include additional collective variable:

Πm(r, t) =
N∑
j=1

ujχ(r − rj) =
N∑
j=1

(
sin θj
cos θj

)
χ(r − rj)

with m = 〈Πm〉 the macroscopic magnetization.

Note: m is NOT a conserved quantity.

So there is also not local form of the conservation law expected.

How does the time evolution/macro Poisson bracket look like?
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Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Macroscopic Poisson Bracket

additional Poisson bracket

Need to find the deterministic drift for the magnetization

vm(r) =

∫
dr ′ Lm,ε(r, r′)

Lm,ε(r, r′) = 〈{Πm(r),Πε(r′)}〉

= 〈
∑
j

(
cos θj
sin θj

) lj
I
χ(r − rj)χ(r′ − rj)〉

Averages over angular momenta can be done analytically:

Lm,ε(r, r′) = Ω(r)×m(r)δ(r′ − r)

with Ω(r) = (0, 0, ω(r)) and ω(r) = I−1`(r) = λ(r)/β(r).

⇒ co-rotational derivative vm = Ω×m with local angular momentum.
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Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Thermodynamic Integration

4 tasks for coarse grainers

Coarse-graining program has to meet four tasks

1. choice of collective variables, mapping

2. deterministic drift:

X macroscopic energy E (x).
X macroscopic Poisson bracket

Lkj = 〈{Πk ,Πj}〉

3. entropy S∗(x)

4. friction matrix M(x)



Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Thermodynamic Integration

Quasi-equilibrium entropy

want to determine macroscopic entropy S∗(x).
remember dual nature of Lagrange multipliers:

• Lagrange multipliers as dual variables

∂S∗

∂xk
= λk

• recover entropy via thermodynamic integration

S∗(x)− S∗0 =

∫ x

0
λkdxk
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Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Thermodynamic Integration

near equilibrium

• quasi-equilibrium 6= near equilibrium

• near equilibrium: linear relation xk = xk,eq − Ckj λj with
Ckj = 〈ΠkΠj〉eq − xk,eqxj ,eq

• therefore quadratic entropy:
S∗(x) = S∗(0)− 1

2 (xj − xj ,eq)(C−1)jk(xk − xk,eq)

• starting point for Einstein’s fluctuation theory

• in the following, we allow for strong (non-linear) deviations
from equilibrium
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Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Thermodynamic Integration

Tutorial example

generating function

e−βG(λ) =

∫
dzρ0(z)e−λkΠk (z)

ideal orientational contribution

e−βGid(λ) = e−βG0

∫
du e−λ·u = e−βG0 I0(λ)

magnetization

m =
∂(βG)

∂λ
=

I1(λ)

I0(λ)
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Thermodynamic Integration

Tutorial example: ideal contribution to entropy

entropy

S(m) = S0 + βG − kBλ ·m

expansion for weak ordering:
β(G − G0) ≈ −λ2/4 + λ4/64 + . . ..

⇒ Sid(m) ≈ S0 −m2 −m4/4− 5m6/36 + . . .

⇒ Sid(m) is NOT quadratic, diverges near
perfectly ordered state!

⇒ recover S = Sid + Sexc numerically from
thermodynamic integration
(or mean-field calculation).

0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5
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Thermodynamic Integration

Tutorial example: ideal contribution to entropy
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Thermodynamic Integration

example: Landau-de Gennes free energy for Liquid Crystals
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Thermodynamic Integration

example: Landau-de Gennes free energy for Liquid Crystals

• system of N hard, prolate particles

• orientations ui

• orientational order parameter
S2 = 〈P2(ui · n)〉

• Monte-Carlo simulations in generalized
canonical ensemble

• thermodynamic integration:
F = F0 −

∫
λdS2

• reconstructed free energy

F = F id − aS2 − bS2
2 [A. Luo, L. Sagis, PI, JCP 2014]
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Thermodynamic Integration

example: random walk

• 3d random walk of N steps Q1, . . . ,QN , each of size b

• end-to-end vector R =
∑N

i=1 Qi .

• collective variable x = {M1, . . . ,M6} = 〈RR〉
• ρ(Q) = ρ0 exp [−R · Λ · R− λ0]

• identify Λ = − 3
2Nb2 1 + 1

2x−1

• QE entropy: S∗(x) = 1
2 ln det x− 1

2Nb2 tr(x)
“entropy spring” potential
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Thermodynamic Integration

example: entropic spring for unentangled polymers
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Thermodynamic Integration

example: entropic spring for unentangled polymers

• bead-spring model of polymer melt

• Monte-Carlo simulations in
generalized canonical ensemble

• ρ(Q) = ρ0 exp [−R · Λ · R− λ0]

• thermodynamic integration:
S∗(x) = Seq +

∫ x
xeq

Λ : dx
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Thermodynamic Integration

example: entropic spring for unentangled polymers

• bead-spring model of polymer melt

• Monte-Carlo simulations in
generalized canonical ensemble

• ρ(Q) = ρ0 exp [−R · Λ · R− λ0]

• thermodynamic integration:
S∗(x) = Seq +

∫ x
xeq

Λ : dx

S∗ = SR(I1, I3) + ∆S(I1)

[PI, M. Kröger, JOR 2011]



Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Friction Matrix

4 tasks for coarse grainers

Coarse-graining program has to meet four tasks

1. choice of collective variables, mapping

2. deterministic drift:

X macroscopic energy E (x).
X macroscopic Poisson bracket

Lkj = 〈{Πk ,Πj}〉

3. entropy S∗(x)

X thermodynamic integration S∗(x)− S∗
0 =

∫
λkdxk

4. friction matrix M(x)
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Friction Matrix

Fluctuations

approximate Π̇f
`(t) = − ∂

∂rα
e iQLt τ̂α ≈ − ∂

∂rα
τ̂α(t) and Π̇f

ε(t) ≈ − ∂
∂rα

̂fα(t) with

̂fα(t) = 1
2I

∑
<i,j>(̃li + l̃j)rijFij

∫ 1

0
ds χ(r − ri + srij)

M``(r, r′) =
∂

∂rα

∂

∂r ′β

1

kB

∫ τs

0

dt 〈τ̂α(r, t)τ̂β(r′, 0)〉x

Mεε(r, r′) =
∂

∂rα

∂

∂r ′β

1

kB

∫ τs

0

dt 〈̂fα(r, t)̂fβ(r′, 0)〉x
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Friction Matrix

Macroscopic balance equations

On macro scales: correlations are short-range in space ⇒ locality

∂

∂t
ε =

∂2

∂r2
κ

1

T

∂

∂t
` =

∂2

∂r2
Γλ
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Friction Matrix

Correlated fluctuations

Mmm(r, r′) =
1

kB
D(r)δ(r′ − r)

D(r) =
∑
i

D(ri )χ(r − ri ), D(ri ) =

∫ τs

0

dt 〈u̇i (t)u̇i (0)〉

Mmαε(r, r′) = − ∂

∂r ′µ

∫ τs

0

dt 〈
∑
i

u̇i,α(t)̂fµ(r′, 0)〉
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Friction Matrix

Correlated fluctuations

Mmm(r, r′) =
1

kB
D(r)δ(r′ − r)

D(r) =
∑
i

D(ri )χ(r − ri ), D(ri ) =

∫ τs

0

dt 〈u̇i (t)u̇i (0)〉

Mmαε(r, r′) = − ∂

∂r ′µ

∫ τs

0

dt 〈
∑
i

u̇i,α(t)̂fµ(r′, 0)〉

⇒ ∂tm = Ω×m + D · λ−∇ · A 1

T



Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Friction Matrix

example: rigid ellipsoids in 2d

[A. Luo, L.M.C. Sagis, H.C.Öttinger, C. De Michele, PI, 2015]



Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Friction Matrix

example: rigid ellipsoids in 2d

theoretical expectation:

(Mrot)ijkl =
1

kBnpτrot
(Cikδjl + Cilδjk + Cjlδik + Cjkδil − 4C

(4)
ijkl )

[A. Luo, L.M.C. Sagis, H.C.Öttinger, C. De Michele, PI, 2015]



Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Friction Matrix

example: polymer melts

perform nonequilibrium MD
simulations
choose gyration tensor as
collective variable x = 〈Π〉

analyze fluctuations of Π:

Fk(t) = eQiLtQiLΠk

≈ Π̇k(t)− ẋk(t), t ≤ τs

Mkj(x) =
∫ τs

0 ds 〈Fk(0)Fj(s)〉x [PI, M. Kröger, H.C.Öttinger, 2009]
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Friction Matrix

hybrid simulations
non-equilibrium stationary state:
Monte-Carlo simulations in
relevant ensemble ρ∗ = ρ0e

−λkΠk

known analytically
@
@@R〈{Πk ,H}〉 = −Mkjλj

determine λ consistently!
non-equilibrium molecular dynamics

Mkj(x) =
∫ τs

0 ds 〈Fk(0)Fj(s)〉x

[PI, M. Kröger, H.C. Öttinger, 2009]
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Friction Matrix

results



Towards constitutive equations of complex fluids derived from thermodynamically guided molecular simulations

Open questions

Open questions

I how successful is this approach for different systems?

I how-to identify collective variables?

I better approximation for friction matrix?

I what to do if time-scale separation does not hold??
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