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A. Einstein: “Everything should be made as simple as possible,
but not simpler”
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Fick

Langevin Dynamics Brownian Dynamics

Fluct Hydrodynamics

Consider a colloidal suspension.
Each level of description

is defined by a set of
relevant variables

with characteristic time
scales
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4 / 74

The Theory of Coarse-Graining, also known as , Non-Equilibrium Statistical Mechanics



Intro Microdynamics Macrodynamics Examples Conclusions

Non-Equilibrium Statistical Mechanics

Based on the concept of microstates and macrostates.

5 / 74

The Theory of Coarse-Graining, also known as , Non-Equilibrium Statistical Mechanics



Intro Microdynamics Macrodynamics Examples Conclusions

Non-Equilibrium Statistical Mechanics

Based on the concept of microstates and macrostates.

Objective: to obtain the dynamics of the macrostates from the
dynamics of the microstates.
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Outline

Microscopic dynamics

Macroscopic dynamics

M. Green’s approach: the macro dynamics is a Markov process
R. Zwanzig’s approach: exact macro dynamics from projection
operators.
generic approach: when energy is a function of CG variables

Examples:

Brownian motion
Thermal blobs

6 / 74

The Theory of Coarse-Graining, also known as , Non-Equilibrium Statistical Mechanics



Microscopic dynamics



Intro Microdynamics Macrodynamics Examples Conclusions

Microscopic dynamics
Full atomistic description. The microstate of the system is
z = {qi , pi , i = 1, · · · ,N}.

8 / 74

The Theory of Coarse-Graining, also known as , Non-Equilibrium Statistical Mechanics



Intro Microdynamics Macrodynamics Examples Conclusions

Microscopic dynamics
Full atomistic description. The microstate of the system is
z = {qi , pi , i = 1, · · · ,N}.
Hamilton’s equations

q̇i =
∂H

∂pi
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Microscopic dynamics
Full atomistic description. The microstate of the system is
z = {qi , pi , i = 1, · · · ,N}.
Hamilton’s equations

q̇i =
∂H

∂pi

ṗi = −
∂H

∂qi

The Hamiltonian

H(z) =

N∑

i

p2
i

2mi

+ V (q1, · · · , qN)

r

V(r)
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Microscopic dynamics

Hamilton’s equations can also be written as





q̇i

ṗi



 =





0 1

−1 0









∂H
∂qi

∂H
∂pi





ż = J
∂H

∂z
= −

∂H

∂z
J
∂

∂z
z = Lz

where L is the Liouville operator.
The solution of Hamilton’s equation with initial condition z is

zt = exp{Lt}z = Ttz
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10 / 74

The Theory of Coarse-Graining, also known as , Non-Equilibrium Statistical Mechanics



Intro Microdynamics Macrodynamics Examples Conclusions

Microscopic dynamics

The motion of zt takes place in the 6N dimensional phase
space Γ.

q
i

p
i

Γ

z zt

Submanifold of dynamic invariants.

10 / 74

The Theory of Coarse-Graining, also known as , Non-Equilibrium Statistical Mechanics



Intro Microdynamics Macrodynamics Examples Conclusions

Microscopic dynamics

The motion of zt takes place in the 6N dimensional phase
space Γ.
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Chaos, volume preserving
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There is no way that we can specify the initial condition z of
a macroscopic sample of a system in an experiment.

At most, we may specify the probability density of initial
conditions ρ0(z) as a reflection of our ignorance.

ρ0(z)dz is the probability of finding the microstate in a
volume dz around z .

The question is then: what is the probability density ρt(z) of
finding the system at z at a later time?

Given by Liouville theorem
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ρt(z)dz .

z ′ = Ttz → =
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“The probability at time t is
the one that it had initially”
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Liouville Theorem:

Tt M
Ttz

z

M

Note that

ρt(z)= ρ0(T−tz)

implies

∂tρt(z) = Lρt(z)

Liouville equation
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ĺım
t→∞

ρt(z) = ρeq(z) = Φ(H(z))

for some Φ(E ), in weak sense.

13 / 74

The Theory of Coarse-Graining, also known as , Non-Equilibrium Statistical Mechanics



Intro Microdynamics Macrodynamics Examples Conclusions

(Eq) Statistical Mechanics

“Experimental observation”: Many Hamiltonians are mixing
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“Experimental observation”: Many Hamiltonians are mixing

ĺım
t→∞

ρt(z) = ρeq(z) = Φ(H(z))

for some Φ(E ), in weak sense. Obviously, Lρeq = 0
(stationarity)

“All microstates (with the same energy) are equiprobable
(in the long run)”.
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∫

dzρeq(z)δ(H(z)− E )

=

∫
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The result is intuitive

ρeq(z) =
P0(H(z))

Ω(H(z))

The probability of being at z is the probability that the system
has the energy H(z) divided by the “number of microstates”
compatible with that energy.
If P0(E ) = δ(E − E0) we obtain the microcanonical ensemble

ρeq(z) =
δ(H(z)− E0)

Ω(E0)
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The Principle of Maximum Entropy (PME)
Assume you know P(E ), but not ρ(z)

P(E ) =

∫

dzρ(z)δ(H(z) − E ) (1)

Many ρ(z) give the same P(E ). Which one is the “correct”
one?
Consider the Gibbs-Jaynes entropy functional

S [ρ] = −kB

∫

dzρ(z) ln
ρ(z)

ρ0

PME: The least biased ρ(z) is the one that maximizes the GJ
entropy subject to (1).
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(Eq) Statistical Mechanics

The solution is

ρ(z) =
P(H(z))

Ω(H(z))

identical to the “Experimental observation” !

Therefore, the Principle of Maximum Entropy gives the same
kind of “equiprobability” as mixing Hamiltonians.
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Statistical Mechanics
Summary of StatMech:

The microstate is qi ,pi moving with Hamilton’s eq.

The Jacobian of the Hamiltonian flow is 1.

We are ignorant of the initial microstate → ρ0(z).

Liouville theorem propagates our ignorance in time
ρt(z) = ρ0(T−tz).

If mixing, at long times the system reaches an effective
equilibrium ensemble in which all microstates are
equiprobable.

This ensemble may also be obtained with the Principle of
Maximum Entropy.
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The dynamics of macrostates

Other names for macrostates:
Macroscopic variables, slow variables, gross variables, collective
variables, coarse-grained variables, reaction coordinates, order
parameters, internal variables, structural variables, etc.
The macrostates are phase functions A(z). There is a mapping

R
6N → R

M

z → a = A(z)
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The dynamics of macrostates

q
i

p
i

Γ
a aa0 1 2

Knowing a0 does not
allow to predict the ma-
crostate later!
This implies a stochastic
description and we need
P(a, t)
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The dynamics of macrostates

The relation between micro and macro probabilities

P(a, t) =

∫

dzρt(z)δ(A(z)− a)

P(a, t) =

∫

dzρ0(z)δ(A(Ttz)− a)

How do we specify the initial ensemble ρ0(z)?
Assume that the only knowledge we have is the macroscopic
P(a, 0).

PME: → ρ0(z) =
P(A(z), 0)

Ω(A(z))
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Back to the macroscopic probability
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P(A(z), 0)
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δ(A(Ttz)− a)

23 / 74

The Theory of Coarse-Graining, also known as , Non-Equilibrium Statistical Mechanics



Intro Microdynamics Macrodynamics Examples Conclusions

The dynamics of macrostates

Back to the macroscopic probability

P(a, t) =

∫

dzρ0(z)δ(A(Ttz)− a)

=

∫

dz
P(A(z), 0)

Ω(A(z))
δ(A(Ttz)− a)

∫

da0δ(A(z)− a0)

23 / 74

The Theory of Coarse-Graining, also known as , Non-Equilibrium Statistical Mechanics



Intro Microdynamics Macrodynamics Examples Conclusions

The dynamics of macrostates

Back to the macroscopic probability

P(a, t) =

∫

dzρ0(z)δ(A(Ttz)− a)

=

∫

dz
P(A(z), 0)

Ω(A(z))
δ(A(Ttz)− a)

∫

da0δ(A(z)− a0)

=

∫

da0P(a0, 0)
1

Ω(a0)

∫

dzδ(A(z)− a0)δ(A(Ttz)− a)

23 / 74

The Theory of Coarse-Graining, also known as , Non-Equilibrium Statistical Mechanics



Intro Microdynamics Macrodynamics Examples Conclusions

The dynamics of macrostates

Back to the macroscopic probability

P(a, t) =

∫

dzρ0(z)δ(A(Ttz)− a)

=

∫

dz
P(A(z), 0)

Ω(A(z))
δ(A(Ttz)− a)

∫

da0δ(A(z)− a0)

=

∫

da0P(a0, 0)
1

Ω(a0)

∫

dzδ(A(z)− a0)δ(A(Ttz)− a)

=

∫

da0P(a0, 0)P(a0, 0|a, t)

23 / 74

The Theory of Coarse-Graining, also known as , Non-Equilibrium Statistical Mechanics



Intro Microdynamics Macrodynamics Examples Conclusions

The dynamics of macrostates

Back to the macroscopic probability

P(a, t) =

∫

dzρ0(z)δ(A(Ttz)− a)

=

∫

dz
P(A(z), 0)

Ω(A(z))
δ(A(Ttz)− a)

∫

da0δ(A(z)− a0)

=

∫

da0P(a0, 0)
1

Ω(a0)

∫

dzδ(A(z)− a0)δ(A(Ttz)− a)

=

∫

da0P(a0, 0)P(a0, 0|a, t)

This tells us how to evolve P(a, 0) → P(a, t).
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The transition probability is

P(a0, 0|a1, t) =
1

Ω(a0)

∫

dzδ(A(z)− a0)δ(A(Ttz)− a1)
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The dynamics of macrostates

The transition probability is

P(a0, 0|a1, t) =
1

Ω(a0)

∫

dzδ(A(z)− a0)δ(A(Ttz)− a1)

This is the fundamental micro-macro link between
microscopic and macroscopic dynamics.

(only assumption: initial microstates are equiprobable)
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The dynamics of macrostates

The geometric interpretation is simple

P(a0, 0|a1, t) =

∫
dzδ(A(z)− a0)δ(A(Ttz)− a1)

∫
dzδ(A(z)− a0)
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The dynamics of macrostates

The geometric interpretation is simple

P(a0, 0|a1, t) =

∫
dzδ(A(z)− a0)δ(A(Ttz)− a1)

∫
dzδ(A(z)− a0)

q
i

p
i

Γ
aa

10

The transition probabi-
lity is the fraction of mi-
crostates of a0 that land
on a1 after time t.
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The dynamics of macrostates

Summary of Macrodynamics:

The dynamics of macrostates is necesarily stochastic P(a, t).

26 / 74

The Theory of Coarse-Graining, also known as , Non-Equilibrium Statistical Mechanics



Intro Microdynamics Macrodynamics Examples Conclusions

The dynamics of macrostates

Summary of Macrodynamics:

The dynamics of macrostates is necesarily stochastic P(a, t).

Macro probability P(a, t) =
∫
dzρ0(z)δ(A(Ttz)− a).

26 / 74

The Theory of Coarse-Graining, also known as , Non-Equilibrium Statistical Mechanics



Intro Microdynamics Macrodynamics Examples Conclusions

The dynamics of macrostates

Summary of Macrodynamics:

The dynamics of macrostates is necesarily stochastic P(a, t).

Macro probability P(a, t) =
∫
dzρ0(z)δ(A(Ttz)− a).

PME: Knowing P(a, 0) implies ρ0(z) =
P(A(z),0)
Ω(A(z)) .
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The dynamics of macrostates

Summary of Macrodynamics:

The dynamics of macrostates is necesarily stochastic P(a, t).

Macro probability P(a, t) =
∫
dzρ0(z)δ(A(Ttz)− a).

PME: Knowing P(a, 0) implies ρ0(z) =
P(A(z),0)
Ω(A(z)) .

The probability evolves P(a, t) =
∫
da0P(a, 0)P(a0, 0|a, t)

Micro-Macro dynamics link.

P(a0, 0|a, t) =
1

Ω(a0)

∫

dzδ(A(z)− a0)δ(A(Ttz)− a)
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Looking for a dynamic equation

Imagine that the macrostate A(z) is a quasi-invariant of the
dynamics:
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Looking for a dynamic equation

Imagine that the macrostate A(z) is a quasi-invariant of the
dynamics:

Γ

A(z)=a1

A(z)=a0

The flow is quasi-stratified
in phase space and we
expect that, after short time
the ensemble becomes a
quasi-equilibrium ensemble

ρt(z) ≃ ρt(z) =
P(A(z), t)

Ω(A(z))
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Imagine that the macrostate A(z) is a quasi-invariant of the
dynamics:

Γ

A(z)=a1

A(z)=a0

The flow is quasi-stratified
in phase space and we
expect that, after short time
the ensemble becomes a
quasi-equilibrium ensemble

ρt(z) ≃ ρt(z) =
P(A(z), t)

Ω(A(z))

In the time scale in which P(a, t) has hardly changed, the
system has reached (conditional) equilibrium.
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The time derivative of the probability is

∂tP(a, t) =

∫

dz∂tρt(z)δ(A(z)− a)
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Looking for a dynamic equation

In the quasi-equilibrium approximation

∂tP(a, t) = −
∂

∂a
v (a)P(a, t)

with the drift term is given by the microscopic expression

v (a) = 〈LA〉a =
1

Ω(a)

∫

dzδ(A(z)− a)LA(z)

Wow! Closed equation for P(a, t) in microscopic terms!
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Looking for a dynamic equation

Unfortunately, the quasi-equilibrium approximation is not very
good in general.
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Unfortunately, the quasi-equilibrium approximation is not very
good in general.

It is a deterministic equation:

If P(a, 0) = δ(a − a0) then P(a, t) = δ(a − a(t))
with ȧ(t) = v (a(t)) and a(0) = a0 is the solution.
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Looking for a dynamic equation

Unfortunately, the quasi-equilibrium approximation is not very
good in general.

It is a deterministic equation:

If P(a, 0) = δ(a − a0) then P(a, t) = δ(a − a(t))
with ȧ(t) = v (a(t)) and a(0) = a0 is the solution.

There is no widening of P(a, t)...
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Green’s approach
Melville Green 1952 proposed that the stochastic process of
macrostates is a Markov process:

P(a1t1, a2, t2, . . . , antn) = P(a1, t1)P(a1, t1|a2, t2) · · ·P(an−1, tn−1|an, tn)
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Green’s approach
Melville Green 1952 proposed that the stochastic process of
macrostates is a Markov process:

P(a1t1, a2, t2, . . . , antn) = P(a1, t1)P(a1, t1|a2, t2) · · ·P(an−1, tn−1|an, tn)

A mathematical result: for a continuum Markov process,
the transition probability obeys the Fokker-Planck equation

∂

∂t
P(a0t0|a, t) = −

∂

∂a
D(1)(a)P(a0t0|a, t) +

1

2

∂2

∂a∂a
D(2)(a)P(a0t0|a, t)

with initial condition

P(a0, t0|a, t0) = δ(a − a0)
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Green’s approach

For sufficiently short times ∆t

∂

∂t
P(a0t0|a, t) = −

∂

∂a
D(1)(a)P(a0t0|a, t) +

1

2

∂2

∂a∂a
D(2)(a)P(a0t0|a, t)
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∂

∂t
P(a0t0|a, t) = −D(1)(a0)

∂

∂a
P(a0t0|a, t) +D(2)(a0)

1

2

∂2

∂a∂a
P(a0t0|a, t)
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Green’s approach

For sufficiently short times ∆t

∂

∂t
P(a0t0|a, t) = −D(1)(a0)

∂

∂a
P(a0t0|a, t) +D(2)(a0)

1

2

∂2

∂a∂a
P(a0t0|a, t)

Which is a diffusion equation with constant coefficients with a
Gaussian solution

P(a0, t0|a1, t0 +∆t)

= exp

{

−
1

2∆t

(

a1 − a0 −∆tD(1)(a0)
)

D−1
(2)

(a0)
(

a1 − a0 −∆tD(1)(a0)
)

}

×
1

(2π∆t)M/2 det(D(2)(a0))1/2
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Green’s approach

The moments of the transition probability give the drift and
diffusion matrix

∫

da1(a1 − a0)P(a0, t0|a1, t0 +∆t) = D(1)(a0)∆t

∫

da1(a1 − a0)(a1 − a0)P(a0, t0|a1, t0 +∆t) = D(2)(a0)∆t

These are known as Kramers-Moyal coefficients.
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Green’s approach

The moments of the transition probability give the drift and
diffusion matrix

∫

da1(a1 − a0)P(a0, t0|a1, t0 +∆t) = D(1)(a0)∆t

∫

da1(a1 − a0)(a1 − a0)P(a0, t0|a1, t0 +∆t) = D(2)(a0)∆t

These are known as Kramers-Moyal coefficients.
Use the micro-macro link

P(a0, 0|a1, t) =
1

Ω(a0)

∫

dzδ(A(z)− a0)δ(A(Ttz)− a1)
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Green’s approach

By using the fundamental micro-macro link we obtain
microscopic expressions for drift and diffusion

D(1)(a0) =

〈

A(∆t) − A(0)

∆t

〉a0

D(2)(a0) =
1

∆t

〈

[A(∆t)− a0]
2
〉a0 = Einstein-Helfand
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Green’s approach

Summary of Green’s approach:

The dynamics of the macrostates is assumed to be described
by a Markov diffusion process.
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The dynamics of the macrostates is assumed to be described
by a Markov diffusion process.

The transition probability obeys the Fokker-Planck equation

The Fokker-Planck equation contains a drift and a diffusion
term
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Green’s approach

Summary of Green’s approach:

The dynamics of the macrostates is assumed to be described
by a Markov diffusion process.

The transition probability obeys the Fokker-Planck equation

The Fokker-Planck equation contains a drift and a diffusion
term

By using the fundamental micro-macro link the drift and
diffusion can be, in principle, computed from MD simulations.
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Zwanzig’s approach
Zwanzig (1961): The relevant ensemble is obtained from the
real ensemble through a projector :

ρt(z) =
P(A(z), t)

Ω(A(z))

=

∫

daδ(A(z)− a)
P(a, t)

Ω(a)

=

∫

daδ(A(z)− a)
1

Ω(a)

∫

dz ′δ(A(z ′)− a)ρt(z
′)

= P†ρt(z)

Then

ρt(z) = ρt(z) + (ρt(z)− ρt(z)) + (1− P†)ρt(z)
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Zwanzig’s approach
The trick:

∂tρt(z) = ∂tP
†ρt(z) = P†Lρt(z) + P†Lδρt(z)

∂tδρt(z) = Q†Lρt(z) = Q†Lρt(z) +Q†Lδρt(z)

The formal solution of the second Eq is

δρt(z) = exp{Q†Lt}δρ0(z)
︸ ︷︷ ︸

=0

+

∫ t

0

dt ′ exp{Q†L(t − t ′}Q†Lρt′(z)

Inserting into the first equation leads to a closed equation for
ρt(z)

∂tρt(z) = P†Lρt(z) +

∫ t

0

dt ′P†L exp{Q†L(t − t ′}Q†Lρt′(z)
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Zwanzig’s approach

The final exact and closed equation for P(a, t) is

∂tP(a, t) = −
∂

∂a
v(a)P(a, t)

+

∫ t

0
dt′
∫

da′Ω(a′)
∂

∂a
D(a, a′, t − t′)

∂

∂a′
P(a′, t′)

Ω(a′)
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Zwanzig’s approach

The final exact and closed equation for P(a, t) is

∂tP(a, t) = −
∂

∂a
v(a)P(a, t)

+

∫ t

0
dt′
∫

da′Ω(a′)
∂

∂a
D(a, a′, t − t′)

∂

∂a′
P(a′, t′)

Ω(a′)

Ω(a) =

∫

dzδ(A(z) − a)

v(a) = 〈LA〉a

D(a, a′, t) = 〈(LA − 〈LA〉a
′

) exp{LQt}δ(A − a)(LA− 〈LA〉a)〉a
′
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Zwanzig’s approach

The final exact and closed equation for P(a, t) is

∂tP(a, t) = −
∂

∂a
v(a)P(a, t)

+

∫ t

0
dt′
∫

da′Ω(a′)
∂

∂a
D(a, a′, t − t′)

∂

∂a′
P(a′, t′)

Ω(a′)

Ω(a) =

∫

dzδ(A(z) − a)

v(a) = 〈LA〉a

D(a, a′, t) = 〈(LA − 〈LA〉a
′

) exp{LQt}δ(A − a)(LA− 〈LA〉a)〉a
′

This is just a rewriting of Liouville’s theorem!!
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Zwanzig’s approach

Markov approximation: The crucial approximation now is
the separation of time scales between A(z) and the memory
kernel.
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Zwanzig’s approach

Markov approximation: The crucial approximation now is
the separation of time scales between A(z) and the memory
kernel.

t

D(t)

tt’=0

D(t-t’)

P(t)

t’

P(t’)

∫ t

0
dt′D(t − t′)P(t′) ≈ P(t)

∫ ∞

0
D(t′)dt′

D(t − t′) ≈ δ(t − t′)

∫ ∞

0
D(t′′)dt′′
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Zwanzig’s approach

Final Zwanzig-Fokker-Planck Equation

∂tP(a, t) =
∂

∂a
v(a)P(a, t) + kB

∂

∂a
Ω(a)M(a)·

∂

∂a

P(a, t)

Ω(a)
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Zwanzig’s approach

Final Zwanzig-Fokker-Planck Equation

∂tP(a, t) =
∂

∂a

[

v(a) +M(a)·
∂S

∂a
(a)

]

P(a, t) + kB
∂

∂a
M(a)·

∂

∂a
P(a, t)
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Zwanzig’s approach

Final Zwanzig-Fokker-Planck Equation

∂tP(a, t) =
∂

∂a

[

v(a) +M(a)·
∂S

∂a
(a)

]

P(a, t) + kB
∂

∂a
M(a)·

∂

∂a
P(a, t)

Ω(a) =

∫

dzδ(A(z) − a) ∝ Peq(a) Equilibrium prob.

S(a)= kB lnΩ(a) Entropy

v(a) = 〈LA〉a Rev. Drift

M(a) =
1

kB

∫ ∞

0
dt′〈(LA − 〈LA〉a) exp{Lt′}(LA − 〈LA〉a)〉a Green-Kubo
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Zwanzig’s approach

Final Zwanzig-Fokker-Planck Equation

∂tP(a, t) =
∂

∂a

[

v(a) +M(a)·
∂S

∂a
(a)

]

P(a, t) + kB
∂

∂a
M(a)·

∂

∂a
P(a, t)

Ω(a) =

∫

dzδ(A(z) − a) ∝ Peq(a) Equilibrium prob.

S(a)= kB lnΩ(a) Entropy

v(a) = 〈LA〉a Rev. Drift

M(a) =
1

kB

∫ ∞

0
dt′〈(LA − 〈LA〉a) exp{Lt′}(LA − 〈LA〉a)〉a Green-Kubo

This FPE is identical to the one obtained by Green. In
particular Green-Kubo ⇔ Einstein-Helfand
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Zwanzig’s approach

Summary of Zwanzig’s approach:

Exact equation obtained with a projection operator
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Summary of Zwanzig’s approach:

Exact equation obtained with a projection operator

The Markov property assumes a white noise model for the
projected current.
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Zwanzig’s approach

Summary of Zwanzig’s approach:

Exact equation obtained with a projection operator

The Markov property assumes a white noise model for the
projected current.

The resulting equation is the FPE by Green
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The generic framework

When the Hamiltonian of the system is expressible in terms of
the macrostates

H(z) = E (A(z))

then a powerful structure emerges.
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The generic framework
Note

LAµ(z) =
∂Aµ

∂z
J0
∂H

∂z
=

∂Aµ

∂z
J0

∂E

∂aν
(A(z))

∂Aν

∂z
(z)

= {Aµ,Aν}
∂E

∂aν
(A(z))
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The generic framework
Note

LAµ(z) =
∂Aµ

∂z
J0
∂H

∂z
=

∂Aµ

∂z
J0

∂E

∂aν
(A(z))

∂Aν

∂z
(z)

= {Aµ,Aν}
∂E

∂aν
(A(z))

then

vµ(a) = 〈LAµ〉
a = Lµν(a)

∂E

∂aν
(a)

where the reversible matrix is

Lµν(a) ≡

〈
∂Aµ

∂z
J0
∂Aν

∂z

〉a

= 〈{Aµ,Aν}〉
a
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The FPE
The Fokker-Planck Equation is

∂tP(a, t) =−
∂

∂a

[[

L
∂E

∂a
+M

∂S

∂a

]

P(a, t)

]

+ kB
∂

∂a
M

∂

∂a
P(a, t)
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The FPE
The Fokker-Planck Equation is

∂tP(a, t) =−
∂

∂a

[[

L
∂E

∂a
+M

∂S

∂a

]

P(a, t)

]

+ kB
∂

∂a
M

∂

∂a
P(a, t)

Two theorems

M
∂E

∂a
= 0

∂E

∂a
L
∂S

∂a
= kB

∂L

∂a

∂E

∂a
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The FPE
The Fokker-Planck Equation is

∂tP(a, t) =−
∂

∂a

[[

L
∂E

∂a
+M

∂S

∂a

]

P(a, t)

]

+ kB
∂

∂a
M

∂

∂a
P(a, t)

Two theorems

M
∂E

∂a
= 0

L
∂S

∂a
= 0

47 / 74

The Theory of Coarse-Graining, also known as , Non-Equilibrium Statistical Mechanics



Intro Microdynamics Macrodynamics Examples Conclusions

The generic framework

Summary of the generic framework:

When the Hamiltonian may be expressed in terms of the
relevant variables, generic emerges.
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Summary of the generic framework:

When the Hamiltonian may be expressed in terms of the
relevant variables, generic emerges.

There are a number of restrictions to be satisfied by any
possible model for the building blocks.
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The generic framework

Summary of the generic framework:

When the Hamiltonian may be expressed in terms of the
relevant variables, generic emerges.

There are a number of restrictions to be satisfied by any
possible model for the building blocks.

Typically, whenever you look for non-isothermal models, look
for generic.
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Examples

Brownian Dynamics

Thermal Blobs

Black box: “You give me the CG variables, I tell you how the
move” (if...)
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Brownian Dynamics

Consider a colloidal suspension

(1) The Hamiltonian

H(z) =
∑

i

(

p2
i

2mi

+
P2
i

2Mi

)

+
1

2

∑

ij

(

V SS
ij (q) + V SC

ij (q,Q) + V CC
ij (Q)

)
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Brownian Dynamics

Consider a colloidal suspension

(1) The Hamiltonian

H(z) =
∑

i

(

p2
i

2mi

+
P2
i

2Mi

)

+
1

2

∑

ij

(

V SS
ij (q) + V SC

ij (q,Q) + V CC
ij (Q)

)

MD simulation unfeasible

(2) The relevant variables A(z) →
{H(z),Qi} (Smoluchowski level)
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Brownian Dynamics

(3) The equilibrium solution

Ω(Q) =

∫

dzδ(H(z) − E)δ(Qi −Q i )

≈

∫

dz exp{−βH(z)}δ(Qi − Q i )

∝

∫

dq exp{−βV (Q , q)}

≡ exp{−βV
PMF

(Q)}

The potential of mean force V PMF(Q) captures the effective
interaction between colloids due to the solvent.
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Brownian Dynamics

The potential of mean force gives the mean force

FMF
i (Q) = −

∂

∂Qi

V
PMF

(Q)

= −
∂

∂Qi

(

−kBT ln

∫

dq exp{−βV (Q, q)}

)

=

=

∫

dq
exp{−βV (Q, q)}

∫
dq exp{−βV (Q, q)}

[

−
∂

∂Qi

V (Q, q)

]

= 〈Fi〉
Q
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Brownian Dynamics
(4) The time derivative is LA → Vi
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Brownian Dynamics
(4) The time derivative is LA → Vi

(5) The drift term. The conditional expectation

〈. . .〉a =
1

Ω(a)

∫

dzδ(A(z) − a) . . .

becomes

〈. . .〉Q =
1

Ω(Q)

∫

dqdpdQdPδ(H(z) − E)δ(Q − Q) . . .

v(a) = 〈LA〉a is the conditional expectation of particle’s
momentum. It vanishes by symmetry.
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Brownian Dynamics
(4) The time derivative is LA → Vi

(5) The drift term. The conditional expectation

〈. . .〉a =
1

Ω(a)

∫

dzδ(A(z) − a) . . .

becomes

〈. . .〉Q =
1

Ω(Q)

∫

dqdpdQdPδ(H(z) − E)δ(Q − Q) . . .

v(a) = 〈LA〉a is the conditional expectation of particle’s
momentum. It vanishes by symmetry.
(6) The friction matrix M(x) becomes the diffusion tensor.

Dij(Q) =
1

kBT

∫ τ

0
dt′〈ViVj(t

′)〉Q
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Brownian Dynamics

(7) The dynamic equation is the Smoluchowski equation

∂tP(Q, t) =
∂

∂Qi

[

Dij (Q)FMF
j (Q)P(Q, t)

]

+ kBT
∂

∂Qi

Dij(Q)·
∂

∂Qj

P(Q, t)

equivalent to the SDE

dQi =
∑

j

Dij(Q)FMF
i (Q)dt + kBT

∑

j

∂Dij

∂Q j

(Q)dt + dQ̃i

with the Fluctuation-Dissipation theorem

dQ̃idQ̃j = 2kBTDij (Q)dt
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Brownian Dynamics

(8) Model, model, model:

Fi(Q) and Dij(Q) are many-body functions.
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Fi(Q) and Dij(Q) are many-body functions.

No way we can sample the 3M-dimensional space of Q’s
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Brownian Dynamics

(8) Model, model, model:

Fi(Q) and Dij(Q) are many-body functions.

No way we can sample the 3M-dimensional space of Q’s

We will assume pair-wise forms.
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Brownian Dynamics
(8) Pair wise assumption

Fi (Q) =
∑

j

〈Fij〉
Q≈

∑

j

〈Fij〉
Qij

Dij(Q)≈
1

kBT

∫ τ

0
dt′〈ViVj(t

′)〉Qij
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Brownian Dynamics
(8) Pair wise assumption

Fi (Q) =
∑

j

〈Fij〉
Q≈

∑

j

〈Fij〉
Qij

Dij(Q)≈
1

kBT

∫ τ

0
dt′〈ViVj(t

′)〉Qij

For very dilute suspension, it is simple

Dij(Q) = δij
1

kBT

∫ τ

0
dt′〈ViVi (t

′)〉eq = δij1D0
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Brownian Dynamics
(8) Pair wise assumption

Fi (Q) =
∑

j

〈Fij〉
Q≈

∑

j

〈Fij〉
Qij

Dij(Q)≈
1

kBT

∫ τ

0
dt′〈ViVj(t

′)〉Qij

For very dilute suspension, it is simple

Dij(Q) = δij
1

kBT

∫ τ

0
dt′〈ViVi (t

′)〉eq = δij1D0

For concentrated suspensions, the diffusion tensor describes all
the interactions mediated by the solvent.
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Brownian Dynamics

(9) Micro→macro transfer of parameters.

Method 1: Run a short MD for two colloidal particles at a
given distance, compute average force and correlation of the
fluctuations of the force. Repeat for other distances.
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Brownian Dynamics

(9) Micro→macro transfer of parameters.

Method 1: Run a short MD for two colloidal particles at a
given distance, compute average force and correlation of the
fluctuations of the force. Repeat for other distances.
Method 2: Run a short MD for M fixed colloidal particles.
Compute average force and correlation of the fluctuations of
the force. Sort by distances.

The crucial point of the exercise is that we need to run short
simulations to compute the mean force and diffusion tensor.
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Thermal Blobs
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What are thermal blobs?

Complex molecules...
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What are thermal blobs?

Complex molecules...

... described at a CG level
with the CoM ...
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What are thermal blobs?

Complex molecules...

... described at a CG level
with the CoM ...

... and the internal energy
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The CG variables
We choose as the CG variables

R̂µ(z) =
1

Mµ

N
∑

i

mi riδµ(i)

P̂µ(z) =
N
∑

i

pi δµ(i)

Êµ(z) =
N
∑

i

mi

2
(vi − v̂µ(z))

2δµ(i) + φµ(z)

Mµ =
N
∑

i

miδµ(i)

v̂µ(z) =
P̂µ(z)

Mµ

φµ(z) =
1

2

N
∑

ij

φijδµ(i)
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The CG variables
We choose as the CG variables

R̂µ(z) =
1

Mµ

N
∑

i

mi riδµ(i)

P̂µ(z) =
N
∑

i

pi δµ(i)

Êµ(z) =
N
∑

i

mi

2
(vi − v̂µ(z))

2δµ(i) + φµ(z)

Mµ =
N
∑

i

miδµ(i)

v̂µ(z) =
P̂µ(z)

Mµ

φµ(z) =
1

2

N
∑

ij

φijδµ(i)

Energy and momentum are functions of the CG variables

Ĥ(z) =
N
∑

i

p2
i

2mi

+
1

2

N
∑

ij

φij =
M
∑

µ

[

P̂2
µ(z)

2Mµ
+ Êµ(z)

]

P̂(z) ≡
N
∑

i

pi =
M
∑

µ

P̂µ(z)
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Time derivatives of CG variables

The time derivatives are

LR̂µ(z) = Vµ(z)

LP̂µ(z) =
M
∑

ν

F̂µν(z)

LÊµ(z) =
M
∑

ν

[

Q̂µν(z)−
1

2
F̂µν(z)·Vµν(z)

]

F̂µν(z) ≡
N
∑

ij

δµ(i)δν(j)Fij = −F̂νµ(z)

Q̂µν(z) ≡
N
∑

ij

Fij

(

(vi − vµ) + (vj − vν)

2

)

δµ(i)δν(j) = −Q̂νµ(z)
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The equilibrium probability

Peq(R,P, E) = Φ(E ,PT ) exp

{

1

kB
S(R,P, E)

}

S(R, E) ≡ kB lnΩ(R, E)

Ω(R, E) =

∫

dz

M
∏

µ

δ(Rµ − R̂µ(z))δ(Pµ − P̂µ(z))δ(Eµ − Êµ(z))
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The conditional expectations

The conditional averages are of the form

〈· · · 〉RPE =
1

Ω(α)

∫

dz

M
∏

µ

δ(Rµ − R̂µ(z))δ(Pµ − P̂µ(z))δ(Eµ − Êµ(z)) · · ·
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The final SDE
The final SDE equations are

Ṙµ =Vµ

Ṗµ =
M
∑

ν

〈F̂µν〉
RE−

1

2

M
∑

νµ′ν′

Γµµ′νν′ ·Vνν′

∂S

∂Eν
+

M
∑

ν

F̃µν

Ėµ =−
1

2

M
∑

ν

〈Fµν〉
RE ·Vµν+

M
∑

νµ′ν′

κµµ′νν′

∂S

∂Eν
+

1

4

M
∑

νµ′ν′

Vµµ′ ·Γµµ′νν′ ·Vνν′

∂S

∂Eν′

+
M
∑

ν

[

Q̃µν − Vµν ·F̃µν

]
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The final SDE
The final SDE equations are

Ṙµ =Vµ

Ṗµ =
M
∑

ν

〈F̂µν〉
RE−

1

2

M
∑

νµ′ν′

Γµµ′νν′ ·Vνν′

∂S

∂Eν
+

M
∑

ν

F̃µν

Ėµ =−
1

2

M
∑

ν

〈Fµν〉
RE ·Vµν+

M
∑

νµ′ν′

κµµ′νν′

∂S

∂Eν
+

1

4

M
∑

νµ′ν′

Vµµ′ ·Γµµ′νν′ ·Vνν′

∂S

∂Eν′

+
M
∑

ν

[

Q̃µν − Vµν ·F̃µν

]

where we have introduced the Green-Kubo transport coefficients

Γµµ′νν′ ≡
1

kB

∫ ∞

0
dt
〈

δFµµ′ δFνν′ (t)
〉α

κµµ′νν′ ≡
1

kB

∫ ∞

0
dt
〈

δQµµ′ δQνν′ (t)
〉α
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The final SDE
The final SDE equations are

Ṙµ =Vµ

Ṗµ =
M
∑

ν

〈F̂µν〉
RE−

1

2

M
∑

νµ′ν′

Γµµ′νν′ ·Vνν′

∂S

∂Eν
+

M
∑

ν

F̃µν

Ėµ =−
1

2

M
∑

ν

〈Fµν〉
RE ·Vµν+

M
∑

νµ′ν′

κµµ′νν′

∂S

∂Eν
+

1

4

M
∑

νµ′ν′

Vµµ′ ·Γµµ′νν′ ·Vνν′

∂S

∂Eν′

+
M
∑

ν

[

Q̃µν − Vµν ·F̃µν

]

Galilean invariant, conserve momentum and energy, random
terms satisfy Fluctuation-Dissipation
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Model for the entropy

Whatever model for S(α) and 〈Fµν〉
α should satisfy the

generic restriction

∂E

∂α
L
∂S

∂α
= kB

∂L

∂α

∂E

∂α

which for the present CG description is

∂S

∂Rµ
=

1

2

M
∑

ν

Fµν

(

1

Tµ
+

1

Tν

)

+ kB

M
∑

ν

1

2

[

∂

∂Eµ
+

∂

∂Eν

]

Fµν

This shows that the entropy plays now the role of a (minus)
“potential of mean force”.
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Model for the entropy
Recall the definition of internal energy

Êµ(z) ≡
N
∑

i

mi

2
(vi − v̂µ(z))

2δµ(i) +
1

2

N
∑

ij

φijδµ(i)

=
N
∑

i

mi

2
(vi − v̂µ(z))

2δµ(i) +
1

2

N
∑

ij

φijδµ(j)δµ(i) +
∑

ν 6=µ

1

2

N
∑

ij

φijδν(j)δµ(i)

≈ E int
µ (z) +

∑

ν 6=µ

Φµν(Rµν(z))
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Model for the entropy
Recall the definition of internal energy

Êµ(z) ≡
N
∑

i

mi

2
(vi − v̂µ(z))

2δµ(i) +
1

2

N
∑

ij

φijδµ(i)

=
N
∑

i

mi

2
(vi − v̂µ(z))

2δµ(i) +
1

2

N
∑

ij

φijδµ(j)δµ(i) +
∑

ν 6=µ

1

2

N
∑

ij

φijδν(j)δµ(i)

≈ E int
µ (z) +

∑

ν 6=µ

Φµν(Rµν(z))

The entropy

S(R, E) ≡ kB ln

∫

dz

M
∏

µ

δ(Rµ − R̂µ(z))δ(Pµ − P̂µ(z))δ(Eµ − Êµ(z))

= kB ln
M
∏

µ

∫

dzµδ(Rµ − R̂µ(zµ))δ(Pµ − P̂µ(z))δ(Eµ − Φµ − Ê int
µ (z))

=
∑

µ

Sµ(Eµ − Φµ(R))
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Model for the entropy
Recall the definition of internal energy

Êµ(z) ≡
N
∑

i

mi

2
(vi − v̂µ(z))

2δµ(i) +
1

2

N
∑

ij

φijδµ(i)

=
N
∑

i

mi

2
(vi − v̂µ(z))

2δµ(i) +
1

2

N
∑

ij

φijδµ(j)δµ(i) +
∑

ν 6=µ

1

2

N
∑

ij

φijδν(j)δµ(i)

≈ E int
µ (z) +

∑

ν 6=µ

Φµν(Rµν(z))

The entropy is given by the sum of entropies of isolated blobs!

S(R, E) ≡ kB ln

∫

dz

M
∏

µ

δ(Rµ − R̂µ(z))δ(Pµ − P̂µ(z))δ(Eµ − Êµ(z))

= kB ln
M
∏

µ

∫

dzµδ(Rµ − R̂µ(zµ))δ(Pµ − P̂µ(z))δ(Eµ − Φµ − Ê int
µ (z))

=
∑

µ
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Model for the entropy

This model is OK, because it satisfies the generic restriction

∂S

∂Rµ
=

1

2

M
∑

ν

Fµν

(

1

Tµ
+

1

Tν

)

+ kB

M
∑

ν

1

2

[

∂

∂Eµ
+

∂

∂Eν

]

Fµν

67 / 74

The Theory of Coarse-Graining, also known as , Non-Equilibrium Statistical Mechanics



Intro Microdynamics Macrodynamics Examples Conclusions

Model for the entropy

This model is OK, because it satisfies the generic restriction

∂S

∂Rµ
=

1

2

M
∑

ν

Fµν

(

1

Tµ
+

1

Tν

)

+ kB

M
∑

ν

1

2

[

∂

∂Eµ
+

∂

∂Eν

]

Fµν

provided that the average force defined as

Fµν(R) = −
∂Φµ

∂Rν
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Model for the transport coefficients
The Green-Kubo coefficients

Γµµ′νν′ ≡
1

kB

∫ ∞

0
dt
〈

δFµµ′ δFνν′ (t)
〉α

κµµ′νν′ ≡
1

kB

∫ ∞

0
dt
〈

δQµµ′ δQνν′ (t)
〉α

Model projected currents with the following white noise

δF̂µν ≡ F̂µν − 〈F̂µν〉
α 7→ F̃µν ≡ AµνeµνWµν(t)

δQ̂µν ≡ Q̂µν − 〈Q̂µν 〉
α 7→ Q̃µν ≡ BµνVµν(t)
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Model for the transport coefficients
The Green-Kubo coefficients

Γµµ′νν′ ≡
1

kB

∫ ∞

0
dt
〈

δFµµ′ δFνν′ (t)
〉α

κµµ′νν′ ≡
1

kB

∫ ∞

0
dt
〈

δQµµ′ δQνν′ (t)
〉α

Model projected currents with the following white noise

δF̂µν ≡ F̂µν − 〈F̂µν〉
α 7→ F̃µν ≡ AµνeµνWµν(t)

δQ̂µν ≡ Q̂µν − 〈Q̂µν 〉
α 7→ Q̃µν ≡ BµνVµν(t)

where the white noise satisfies
〈

Wµµ′ (t)Wνν′ (t′)
〉

=
[

δµνδµ′ν′ + δµν′ δνµ′

]

δ(t − t′)
〈

Vµµ′ (t)Vνν′ (t′)
〉

=
[

δµνδµ′ν′ + δµν′ δνµ′

]

δ(t − t′)
〈

Wµµ′ (t)Vνν′ (t′)
〉

= 0

68 / 74

The Theory of Coarse-Graining, also known as , Non-Equilibrium Statistical Mechanics



Intro Microdynamics Macrodynamics Examples Conclusions

Model for the transport coefficients
With these modelling assumptions, the Green-Kubo coefficients

Γµµ′νν′ ≡
1

kB

∫ ∞

0
dt
〈

δFµµ′ δFνν′ (t)
〉α

κµµ′νν′ ≡
1

kB

∫ ∞

0
dt
〈

δQµµ′ δQνν′ (t)
〉α

become

Γαβ
µµ′νν′

=
[

δµνδµ′ν′ + δµν′ δνµ′

]

Aµµ′Aνν′eαµµ′e
β
νν′

κµµ′νν′ =
[

δµνδµ′ν′ + δµν′ δνµ′

]

Bµµ′Bνν′
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0
dt
〈

δQµµ′ δQνν′ (t)
〉α

become

Γαβ
µµ′νν′

=
[

δµνδµ′ν′ + δµν′ δνµ′

]

Aµµ′Aνν′eαµµ′e
β
νν′

κµµ′νν′ =
[

δµνδµ′ν′ + δµν′ δνµ′

]

Bµµ′Bνν′

The prefactors of the white noise are microscopically computable

A2
µν =

1

kB

∫ ∞

0
dt 〈δFµν ·eµνδFµν(t)·eµν 〉

RPE

B2
µν =

1

kB

∫ ∞

0
dt 〈δQµνδQµν(t)〉

RPE
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With these modelling assumptions, the Green-Kubo coefficients

Γµµ′νν′ ≡
1

kB

∫ ∞

0
dt
〈

δFµµ′ δFνν′ (t)
〉α

κµµ′νν′ ≡
1

kB

∫ ∞

0
dt
〈

δQµµ′ δQνν′ (t)
〉α

become

Γαβ
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=
[

δµνδµ′ν′ + δµν′ δνµ′

]

Aµµ′Aνν′eαµµ′e
β
νν′

κµµ′νν′ =
[

δµνδµ′ν′ + δµν′ δνµ′

]

Bµµ′Bνν′

The prefactors of the white noise are microscopically computable

A2
µν =

1

kB

∫ ∞

0
dt 〈δFµν ·eµνδFµν(t)·eµν〉

|Rµν |

B2
µν =

1

kB

∫ ∞

0
dt 〈δQµνδQµν (t)〉

|Rµν |
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The simpler SDE

Under the approximations on the transport coefficients we have

Ṙµ = Vµ

Ṗµ =
M
∑

ν

〈Fµν〉
RE−

M
∑

ν

γµν(eµν ·Vµν)eµν +
∑

ν

F̃µν

Ėµ = −
1

2

M
∑

ν

〈Fµν〉
RE ·Vµν+

M
∑

ν

κµν

[

1

Tµ
−

1

Tν

]

+
M
∑

ν

γµν(Vµν ·eµν)
2

+
M
∑

ν

[

Q̃µν − Vµν ·F̃µν

]

These are the equations of DPD+E (Español ’97, Bonet &

Mackie ’97) BUT with microscopic foundation.

70 / 74

The Theory of Coarse-Graining, also known as , Non-Equilibrium Statistical Mechanics



Conclusions



Intro Microdynamics Macrodynamics Examples Conclusions

Conclusions

The Theory of Coarse-Graining gives the dynamics of CG
variables.
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Conclusions

The Theory of Coarse-Graining gives the dynamics of CG
variables.

Another name for it is Non-Equilibrium Statistical Mechanics.

Black-Box: The derivation of the dynamic equations is just a
recipe.

The structure of the equations is determined by iLA(z).

The essential assumption is the separation of time scales or
Markov property.

Markov allows you to run short MD simulation to extract
macroscopic parameters.
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The big problems of the theory of CG

You need to know in advance what are the CG variables.

These variables should be slow (Markovian).

The Curse of Dimensionality: Drift and Diffusion depend
on all the CG variables.

The theory gives you the structure of the equations.
You need to provide the physical insights for proper

modelling.
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