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Consider the Langevin equation

q̈ = −∇V (q)− γq̇ +
√

2γβ−1Ẇ , (1)

with V (q) being a confining potential (later on we will also
consider periodic potentials), γ is the friction coefficient and β the
inverse temperature.
Write it as the first order system

dqt = pt dt , (2a)

dpt = −∇V (qt ) dt − γpt dt +
√

2γβ−1 dWt . (2b)
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The process (qt , pt ) is a Markov process on Rd × Rd (or Td × Rd

for periodic potentials) with generator

L = p · ∇q −∇qV (q) · ∇p + γ(−p · ∇p + β−1∆p). (3)

The Fokker-Planck operator (L2(R2d )−adjoint of the generator) is

L∗· = −p · ∇q ·+∇qV · ∇p ·+γ
(
∇p(p·) + β−1∆p ·

)
(4)

The law of the process at time t (distribution function) ρ(q,p, t) is
the solution of the Fokker-Planck equation

∂ρ

∂t
= L∗ρ, ρ|t=0 = ρ0. (5)
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Introduce the notation X q,p
t :=

(
qt ,pt ; q0 = q,p0 = p

)
.

The expectation of an observable

u(q,p, t) = Ef (X q,p
t ),

can be computed by solving the backward Kolmogorov equation

∂u
∂t

= Lu, u|t=0 = f (q,p). (6)
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For sufficiently nice potentials the Langevin dynamics (2) is
ergodic with respect to the Gibbs measure

µ(dqdp) =
1
Z

e−βH(q,p) dqdp =: ρ∞(q,p) dpdq, (7a)

Z =

∫
R2d

e−βH(q,p) dqdp. (7b)

The density ρ∞ can be obtained as the solution of the stationary
Fokker-Planck equation L∗ρ∞ = 0.
Furthermore, we have exponentially fast convergence to
equilibrium

‖ρ(t , ·)− ρ∞‖ ≤ Ce−λt‖ρ(0, ·)− ρ∞‖, (8)

for positive constants C, λ.
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Why use the Langevin equation?
I As a thermostat, i.e. to sample from the distribution (7) and to also

compute time dependent quantities such as correlation functions.
I As a reduced description of a more complicated system. Think of

the physical model of Brownian motion: colloid particle interacting
with the molecules of the surrounding fluid. We obtain a closed
(stochastic) equation for the dynamics of the Brownian particle by
”integrating out” the fluid molecules.

One of the goals of these lectures is to derive the Langevin
equation from a more basic model (”first principles”).
We also want to give a miscroscopic definition of the friction
coefficient γ.
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It is often useful (also in experimental set-ups) to probe a system
which is at equilibrium by adding a weak external forcing.
The perturbed Langevin dynamics (assumed to be at equilibrium
at t = 0) is

q̈ε = −∇V (qε) + εF (t)− γq̇ε +
√

2γβ−1Ẇ . (9)

We are interested in understanding the dynamics in the weak
forcing regime ε� 1. We will do this by developing linear
response theory (first order perturbation theory).
We will see that the response of the system to the external forcing
is related to the fluctuations at equilibrium.
A result of this analysis is the derivation of Green-Kubo formulas
for transport coefficients. For the diffusion coefficient we have
(Einstein relation/Green-Kubo)

D = β−1µ =

∫ +∞

0
〈p(t)p(0)〉eq dt , (10)

where µ = limF→0
V
F , where V is the effective drift.
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LINEAR RESPONSE THEORY
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Let Xt denote a stationary dynamical system with state space X
and invariant measure µ(dx) = f∞(x) dx .
We probe the system by adding a time dependent forcing εF (t)
with ε� 1 at time t0.
Goal: calculate the distribution function f ε(x , t) of the perturbed
systems X ε

t , ε� 1, in particular in the long time limit t → +∞.
We can then calculate the expectation value of observables as
well as correlation functions.
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We assume that the distribution function f ε(x , t) satisfies a linear
kinetic equation e.g. the Liouville or the Fokker-Planck equation:

∂f ε

∂t
= L∗ εf ε, (11a)

f ε
∣∣
t=t0

= f∞. (11b)

The choice of the initial conditions reflects the fact that at t = t0
the system is at equilibrium.
Since f∞ is the unique equilibrium distribution, we have that

L∗0f∞ = 0. (12)
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The operator L∗ ε can be written in the form

L∗ ε = L∗0 + εL∗1, (13)

where L∗0 denotes the Liouville or Fokker-Planck operator of the
unperturbed system and L∗1 is related to the external forcing.
We will assume that L1 is of the form

L∗1 = F (t) · D, (14)

where D is some linear (differential) operator.
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Example
(A deterministic dynamical system). Let Xt be the solution of the
differential equation

dXt

dt
= h(Xt ), (15)

on a (possibly compact) state space X. We add a weak time
dependent forcing to obtain the dynamics

dXt

dt
= h(Xt ) + εF (t). (16)

We assume that the unperturbed dynamics has a unique invariant
distribution f∞ which is the solution of the stationary Liouville equation

∇ ·
(

h(x)f∞
)

= 0, (17)

equipped with appropriate boundary conditions.
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Example
The operator L∗ ε in (13) has the form

L∗ ε· = −∇ ·
(

h(x) ·
)
− εF (t) · ∇ · .

In this example, the operator D in (14) is D = −∇.

A particular case of a deterministic dynamical system of the
form (15), and the most important in statistical mechanics, is that
of an N-body Hamiltonian system.
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Example

(A stochastic dynamical system). Let Xt be the solution of the
stochastic differential equation

dXt = h(Xt ) dt + σ(Xt ) dWt , (18)

on Rd , where σ(x) is a positive semidefinite matrix and where the Itô
interpretation is used. We add a weak time dependent forcing to obtain
the dynamics

dXt = h(Xt ) dt + εF (t) dt + σ(Xt ) dWt . (19)

We assume that the unperturbed dynamics has a unique invariant
distribution f∞ which is the solution of the stationary Fokker-Planck
equation

−∇ ·
(

h(x)f∞
)

+
1
2

D2 :
(

Σ(x)f∞
)

= 0, (20)

where Σ(x) = σ(x)σT (x).
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Example
The operator L∗ ε in (13) has the form

L∗ ε· = −∇ ·
(

h(x) ·
)

+
1
2

D2 :
(

Σ(x) ·
)
− εF (t) · ∇.̇

As in the previous example, the operator D in (14) is D = −∇.

A particular case of Example 3 is the Langevin equation:

q̈ = −∇V (q) + εF (t)− γq̇ +
√

2γβẆ . (21)

We can also add a forcing term to the noise in (18), i.e. we can
consider a time-dependent temperature. For the Langevin
equation the perturbed dynamics is

q̈ = −∇V (q) + εF (t)− γq̇ +
√

2γβ−1(1 + εT (t))Ẇ , (22)

with 1 + εT (t) > 0. in this case the operator L∗1 is

L∗1 = −F (t) · ∇p + γβ−1T (t)∆p,

where p = q̇.
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We proceed with the analysis of (11). We look for a solution in the
form of a power series expansion in ε:

f ε = f0 + εf1 + . . . .

We substitute this into (11a) and use the initial condition (11b) to
obtain the equations

∂f0
∂t

= L∗0f0, f0
∣∣
t=0 = f∞, (23a)

∂f1
∂t

= L∗0f1 + L∗1f0, f1
∣∣
t=0 = 0. (23b)

The only solution to (23a) is

f0 = f∞.

We use this into (23b) and use (14) to obtain

∂f1
∂t

= L∗0f1 + F (t) · Df∞, f1
∣∣
t=0 = 0.
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We use the variation of constants formula to solve this equation:

f1(t) =

∫ t

t0
eL
∗
0 (t−s)F (s) · Df∞ ds. (24)

Now we can calculate the deviation in the expectation value of an
observable due to the external forcing: Let 〈·〉eq and 〈·〉 denote the
expectation value with respect to f∞ and f ε, respectively.
Let A(·) be an observable and denote by A(t) the deviation of its
expectation value from equilibrium, to leading order:

A(t) := 〈A(Xt )〉 − 〈A(Xt )〉eq

=

∫
A(x)

(
f ε(x , t)− feq(x)

)
dx

≈ ε

∫
A(x)

(∫ t

t0
eL
∗
0 (t−s)F (s) · Df∞ ds

)
dx .
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Assuming now that we can interchange the order of integration we
can rewrite the above formula as

A(t) = ε

∫
A(x)

(∫ t

t0
eL
∗
0 (t−s)F (s) · Df∞ ds

)
dx

= ε

∫ t

t0

(∫
A(x)eL

∗
0 (t−s)Df∞ dx

)
· F (s) ds

=: ε

∫ t

t0
RL0,A(t − s)F (s) ds, (25)

where we have defined the response function

RL0,A(t) =

∫
A(x)eL

∗
0 tDf∞ dx (26)

We set now the lower limit of integration in (25) to be t0 = −∞
(define RL0,A(t) in (26) to be 0 for t < 0) and assume that we can
extend the upper limit of integration to +∞ to write

A(t) = ε

∫ +∞

−∞
RL0,A(t − s)F (s) ds. (27)
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As expected (since we have used linear perturbation theory), the
deviation of the expectation value of an observable from its
equilibrium value is a linear function of the forcing term.
(27) has the form of the solution of a linear differential equation
with RL0,A(t) playing the role of Green’s function. If we consider a
delta-like forcing at t = 0, F (t) = δ(t), then the above formula
gives

A(t) = εRL0,A(t).

Thus, the response function gives the deviation of the expectation
value of an observable from equilibrium for a delta-like force.
Consider a constant force that is exerted to the system at time
t = 0, F (t) = FΘ(t) where Θ(t) denotes the Heaviside step
function. For this forcing (25) becomes

A(t) = εF
∫ t

0
RL0,A(t − s) ds. (28)

G.A. Pavliotis (IC London) Linear Response Theory 22 / 64



There is a close relation between the response function (26) and
stationary autocorrelation functions.
Let Xt be a stationary Markov process in Rd with generator L and
invariant distribution f∞.
Let A(·) and B(·) be two observables.
The stationary autocorrelation function 〈A(Xt )B(X0)〉eq can be
calculated as follows

κA,B(t) := 〈A(Xt )B(X0)〉eq

=

∫ ∫
A(x)B(x0)p(x , t |x0,0)f∞(x0) dxdx0

=

∫ ∫
A(x)B(x0)eL

∗tδ(x − x0)f∞(x0) dxdx0

=

∫ ∫
eLtA(x)B(x0)δ(x − x0)f∞(x0) dxdx0

=

∫
eLtA(x)B(x)f∞(x) dx ,

where L acts on functions of x .
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Thus we have established the formula

κA,B(t) =
〈
StA(x),B(x)

〉
f∞
, (29)

where St denotes the semigroup generated by L and
〈
·, ·
〉

f∞
denotes the L2 inner product weighted by the invariant distribution
of the diffusion process.
Consider now the particular choice B(x) = f−1

∞ Df∞. We
combine (26) and (29) to deduce

κA,f−1
∞ Df∞

(t) = RL0,A(t). (30)

This is a version of the fluctuation-dissipation theorem.
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Example
Consider the Langevin dynamics with an external forcing F .

dq = p dt , dp = −V ′(q) dt + F dt − γp dt +
√

2γβ−1 dWt .

We have D = −∂p and

B = f−1
∞ Df∞ = βp.

We use (30) with A = p:

β〈p(t)p(0)〉eq = RL0,p(t).

G.A. Pavliotis (IC London) Linear Response Theory 25 / 64



Example (continued)

When the potential is harmonic, V (q) = 1
2ω

2
0q2, we can compute

explicitly the response function and, consequently, the velocity
autocorrelation function at equilibrium:

RL,q(t) =
1
ω1

e−
γt
2 sin(ω1t), ω1 =

√
ω2

0 −
γ2

4

and

RL,p(t) = e−
γt
2

(
cos(ω1t)− γ

2ω1
sin(ω1t)

)
.

Consequently:

〈p(t)p(0)〉eq = β−1e−
γt
2

(
cos(ω1t)− γ

2ω1
sin(ω1t)

)
.

Similar calculations can be done for all linear SDEs.
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Example
Consider the Langevin dynamics with a perturbation in the
temperature

dq = p dt , dp = −V ′(q) dt + F dt − γp dt +
√

2γβ−1(1 + F ) dWt .

We have D = γβ−1∂2
p and

B = f−1
∞ Df∞ = γβ(p2 − β−1).

Let H(p,q) = p2/2 + V (q) denote the total energy. We have

f−1
∞ L∗0H(p,q)f∞ = L0H(p,q) = γ(−p2 + β−1).

Consequently (using (29)): κA,f−1
∞ Df∞

(t) = −β d
dt κA,H(t).

For A = H we obtain RH,L(t) = −β d
dt 〈H(t)H(0)〉eq.
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We assume that the diffusion process Xt with generator L and
Markov semigroup St = etL has a unique invariant measure.
We will also assume that L has a spectral gap, this is sufficient to
justify the calculations that follow.
Assume that the observable A(·) is mean zero,∫

A(x)f∞(x) dx = 0. We calculate∫ t

0
RL,A(t − s) ds =

∫ t

0

∫
A(x)eL

∗(t−s)Df∞ dx ds

=

∫ ∫ t

0

(
eL(t−s)A(x)

)
Df∞ ds dx

=

∫ (
etLt

∫ t

0
e(−s)L dsA(x)

)
Df∞ dx

=

∫ (
etL(−L)−1

(
e(−t)L − I

)
A(x)

)
Df∞ dx

=

∫ ((
I − etL)(−L)−1A(x)

)
Df∞ dx . (31)
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Our assumptions on the generator L imply that

lim
t→+∞

Sth =

∫
h(x)f∞(x) dx .

Since the function h =
(
(−L0)−1A(x)

)
Df∞ is mean zero, passing

to the limit as t → +∞ in (31) to obtain

Σ := lim
t→+∞

∫ t

0
RL,A(t − s) ds =

∫
(−L)−1A(x)Df∞ dx . (32)

Using this in (28) and relabeling εF 7→ F we deduce that

lim
F→0

lim
t→+∞

A(t)
F

=

∫
(−L)−1A(x)Df∞ dx . (33)

G.A. Pavliotis (IC London) Linear Response Theory 29 / 64



Remark
At least formally, we can interchange the order with which we take
the limits in (33).
Formulas of the form (33) enable us to calculate transport
coefficients, such as the diffusion coefficient.
We can rewrite the above formula in the form

lim
F→0

lim
t→+∞

A(t)
F

=

∫
φDf∞ dx , (34)

where φ is the solution of the Poisson equation (when A(x) is
mean zero)

− Lφ = A(x), (35)

equipped with appropriate boundary conditions.
This is precisely the formalism that we obtain using
homogenization theory.
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Consider the Langevin dynamics in a periodic or random potential.

dqt = pt dt , dpt = −∇V (qt ) dt − γpt dt +
√

2γβ−1 dW .

From Einstein’s formula (10) we have that the diffusion coefficient
is related to the mobility according to

D = β−1 lim
F→0

lim
t→+∞

〈pt〉
F

where we have used 〈pt〉eq = 0.
We use now (34) with A(t) = pt , D = −∇p, f∞ = 1

Z e−βH(q,p) to
obtain

D =

∫ ∫
φpf∞ dpdq = 〈−Lφ, φ〉f∞ , (36)

which is the formula obtained from homogenization theory (e.g.
Kipnis and Varadhan 1985, Rodenhausen 1989).
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Consider the unperturbed dynamics

dq = p dt , dp = −V ′(q) dt − γp dt +
√

2γβ−1 dW , (37)

where V is a smooth periodic potential. Then the rescaled process

qε(t) := εq(t/ε2),

Converges to a Brownian motion with diffusion coefficient

D =

∫ ∫
((−L)−1p)pf∞ dpdq. (38)

A similar result can be proved when V is a random potential.
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Consider now the perturbed dynamics

dqF = pF dt , dpF = −V ′(qF ) dt + F dt − γpF dt +
√

2γβ−1 dW .
(39)

At least for F sufficiently small, the dynamics is ergodic on T× R
with a smooth invariant density f F

∞(p,q) which is a differentiable
function of F .
The external forcing induces an effective drift

VF =

∫ ∫
pf F
∞ dpdq. (40)

The mobility is defined as

µ :=
d

dF
VF

∣∣∣
F=0

. (41)
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Theorem (Rodenhausen J. Stat. Phys. 1989)
The mobility is well defined by (41) and

D = β−1µ. (42)

Proof.
Ergodic theory for hypoelliptic diffusions.
Study of the Poisson and stationary Fokker-Planck equations.
Girsanov’s formula.
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Upon combining (30) with (33) we obtain

D = lim
t→+∞

∫ t

0
κA,f−1

∞ Df∞
(t − s) ds. (43)

Thus, a transport coefficient can be computed in terms of the time
integral of an appropriate autocorrelation function.
This is an example of the Green-Kubo formula
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We can obtain a more general form of the Green-Kubo formalism.
We define the generalized drift and diffusion coefficients as
follows :

V f (x) = lim
h→0

1
h
E
(

f (Xh)− f (X0)
∣∣∣X0 = x

)
= Lf (44)

and

Df ,g(x) := lim
h→0

1
h
E
(

(f (Xt+h)− f (Xt ))((g(Xt+h)− g(Xt ))
∣∣∣Xt = x

)
= L(fg)(x)− (gLf )(x)− (fLg)(x), (45)

where f ,g are smooth functions (in fact, all we need is f , g ∈ D(L)
and fg ∈ D(L0)).
The equality in (44) follows from the definition of the generator of a
diffusion process.
Sometimes Df ,g(x) is called the opérateur carré du champ .
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To prove (45), notice first that, by stationarity, it is sufficient to
prove it at t = 0. Furthermore

(f (Xh)− f (X0)) (g(Xh)− g(X0)) = (fg)(Xh)− (fg)(X0)

−f (X0)(g(Xh)− g(X0))

−g(X0)(f (Xh)− f (X0)).

Consequently:

Df ,g(x) := lim
h→0

1
h
E
(

(f (Xh)− f (X0))((g(Xh)− g(X0))
∣∣∣X0 = x

)
= lim

h→0

1
h
E
(

(fg)(Xh)− (fg)(X0)
∣∣∣X0 = x

)
− lim

h→0

1
h
E
(

g(Xh)− g(X0)
∣∣∣X0 = x

)
f (x)

− lim
h→0

1
h
E
(

f (Xh)− f (X0)
∣∣∣X0 = x

)
g(x)

= L(fg)(x)− (gLf )(x)− (fLg)(x).
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We have the following result.

Theorem

(The Green-Kubo formula) Let Xt be a stationary reversible diffusion
process with state space X, generator L, invariant measure µ(dx) and
let V f (x), Df ,g(x) defined in (44) and (45), respectively. Then

1
2

∫
Df ,gµ(dx) =

∫ ∞
0

E
(

V f (Xt )V g(X0)
)

dt . (46)
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Proof.

Let (·, ·)µ denote the inner product in L2(X, µ). We note that

1
2

∫
Df ,gµ(dx) = (−Lf ,g)µ, (47)

In view of (47), formula (46) becomes

(−Lf ,g)µ =

∫ ∞
0

E
(

V f (Xt )V g(X0)
)

dt . (48)

Now we use (29), together with the identity
∫∞

0 eLt · dt = (−L)−1

to obtain ∫ ∞
0

κA,B(t) dt = ((−L)−1A,B)µ.

We set now A = V f = Lf , B = V g = Lg in the above formula to
deduce (48) from which (46) follows.
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Remark
The above formal calculation can also be performed in the
nonreversible case to obtain

1
2

∫
Df ,fµ(dx) =

∫ ∞
0

E
(

V f (Xt )V f (X0)
)

dt .

In the reversible case (i.e. L being a selfadjoint operator in
H := L2(X, µ)) the formal calculations can be justified using
functional calculus.
For the reversible diffusion process

dXt = −∇V (Xt ) dt +
√

2β−1 dWt

and under appropriate assumptions on the potential, the
generator L has compact resolvent and its eigenfunctions form an
orthonormal basis in H. In this case the proof of (9) is based on
eigenfunction expansions.
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The spectral representation of L is

L =

∫ 0

−∞
λdEλ,

from which it follows that

eLt =

∫ 0

−∞
eλt dEλ and eLtL =

∫ 0

−∞
eλtλ.

Remember that V f = Lf . We calculate (with St = eLt )

E[V f (Xt )V g(X0)] = (StLf ,Lg)µ =

∫ 0

−∞
λ2eλtd(Eλf ,g)µ. (49)

From Fubini’s theorem and Cauchy-Schwarz it follows that∫ ∞
0

∫ 0

−∞
λ2eλt |d(Eλf ,g)µ|dt ≤ DL(f )1/2DL(g)1/2 < +∞

with DL(f ) := (−Lf , f )µ.
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We use now (49) and Fubini’s theorem to calculate

∫ +∞

0
E[V f (Xt )V g(X0)] dt =

∫ t

0
(StLf ,Lg)µ dt

=

∫ +∞

0

∫ 0

−∞
λ2eλtd(Eλf ,g)µ dt

=

∫ 0

−∞
(−λ)d(Eλf ,g)µ

=

(∫ 0

−∞
(−λ)dEλf ,

∫ 0

−∞
dEλg

)
µ

= (−Lf ,g)µ =
1
2

∫
Df ,g(x)µ(dx).
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DERIVATION OF THE LANGEVIN EQUATION
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We will consider the dynamics of a Brownian particle (”small
system”) in contact with its environment (”heat bath”).
We assume that the environment is at equilibrium at time t = 0.
We assume that the dynamics of the full system is Hamiltonian:

H(Q,P; q,p) = HBP(Q,P) + H(q,p) + λHI(Q,q), (50)

where Q,P are the position and momentum of the Brownian
particle, q, p of the environment (they are actually fields) and λ
controls the strength of the coupling between the Brownian
particle and the environment.
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Let H denote the phase space of the full dynamics and
X := (P,Q,p,q). Our goal is to show that in some appropriate
asymptotic limit we can obtain a closed equation for the dynamics
of the Brownian particle.
In other words, we need to find a projection P : H 7→ R2n so that
PX satisfies an equation that is of the Langevin type (2).
We can use projection operator techniques at the level of the
Liouville equation

∂ρ

∂t
= {H, ρ} (51)

associated to the Hamiltonian dynamics (50)–Mori-Zwanzig
formalism.
Projection operator techniques tend to give formal results.
Additional approximation/asymptotic calculations are needed.
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We will consider a model for which we can obtain the Langevin
equation (2) from the Hamiltonian dynamics (50) in a quite explicit
way.
We will make two basic assumptions:

1 The coupling between the Brownian particle and the environment is
linear.

2 The Hamiltonian describing the environment is quadratic in
positions (and momenta).

In addition, the environment is much larger than the Brownian
particle (i.e. infinite dimensional) and at equilibrium at time t = 0.
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We have 4 different levels of description:
1 The full Hamiltonian dynamics (50).
2 The generalized Langevin equation (GLE) that we will obtain after

eliminating the heat bath variables:

Q̈ = −∇V (Q)−
∫ t

0
γ(t − s)Q̇(s) ds + F (t). (52)

3 The Langevin equation (1) that we will obtain in the rapid
decorrelation limit

4 The overdamped Langevin (Smoluchowski) dynamics that we
obtain in the high friction limit

q̇ = −∇V (q) +
√

2β−1Ẇ . (53)

Each reduced level of description includes less information but is
easier to analyze.
For example, we can prove exponentially fast convergence to
equilibrium for (1) and (53), something that is not known, without
additional assumptions, for (50) and (52).
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The Hamiltonian of the Brownian particle (in one dimension, for
simplicity) is described by the Hamiltonian (notice change of
notation)

HBP =
1
2

p2 + V (q), (54)

where V is a confining potential.
The environment is modeled as a linear the wave equation (with
infinite energy):

∂2
t φ(t , x) = ∂2

xφ(t , x). (55)

The Hamiltonian of this system (which is quadratic) is

HHB(φ, π) =

∫ (
|∂xφ|2 + |π(x)|2

)
dx . (56)

where π(x) denotes the conjugate momentum field.
The initial conditions are distributed according to the Gibbs
measure (which in this case is a Gaussian measure) at inverse
temperature β, which we formally write as

”µβ = Z−1e−βHHB(φ,π) dφdπ”. (57)
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Under this assumption on the initial conditions, typical
configurations of the heat bath have infinite energy. In this way,
the environment can pump enough energy into the system so that
non-trivial fluctuations emerge.
The coupling between the particle and the field is linear:

HI(Q, φ) = q
∫
∂xφ(x)ρ(x) dx , (58)

where The function ρ(x) models the coupling between the particle
and the field.
The coupling (58) can be thought of as the first term in a Taylor
series expansion of a nonlinear, nonlocal coupling (dipole coupling
approximation).
The Hamiltonian of the particle-field model is

H(Q,P, φ, π) = HBP(P,Q) +H(φ, π) + λHI(Q, φ). (59)
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Let us first consider a caricature of (59) where there is only one
oscillator in the ”environment”:

H(Q,P,q,p) =
P2

2
+ V (Q) +

[(
p2

2
+

1
2
ω2q2

)
− λqQ

]
, (60)

Hamilton’s equations of motion are:

Q̈ + V ′(Q) = λq, (61a)
q̈ + ω2 (q − λQ) = 0. (61b)

We can solve (61b) using the variation of constants formula. Set
z = (q p)T , p = q̇. Eqn (61b) can be written as

dz
dt

= Az + λh(t), (62)

where

A =

(
0 1
−ω2 0

)
and h(t) =

(
0

Q(t)

)
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The solution of (62) is

z(t) = eAtz(0) + λ

∫ t

0
eA(t−s)h(s) ds.

We calculate
eAt = cos(ωt)I +

1
ω

sin(ωt)A, (63)

Consequently: where I stands for the 2× 2 identity matrix. From
this we obtain

q(t) = q(0) cos(ωt) +
p(0)

ω
sin(ωt)

+λ
1
ω

∫ t

0
sin(ω(t − s))Q(s) ds. (64)
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Now we substitute (64) into (61a) to obtain a closed equation that
describes the dynamics of the Brownian particle:

Q̈ = −V ′(Q)− λ2
∫ t

0
D(t − s)Q(s) ds + λF (t), (65)

where
D(t) = −1

ω
sin(ωt), (66)

and
F (t) = q(0) cos(ωt) +

p(0)

ω
sin(ωt). (67)

Since q(0) and p(0) are Gaussian random variables with mean 0
and 〈q(0)2〉 = β−1ω−2, 〈p(0)2〉 = β−1, 〈q(0)p(0)〉 = 0 we have

〈F (t)F (s)〉 = β−1ω−2 cos(ω(t − s)) =: β−1C(t − s).

Consequently,
D(t) = Ċ(t). (68)

This is a form of the fluctuation-dissipation theorem.
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We perform an integration by parts in (64):

q(t) =

(
q(0)− λ

ω2 Q(0)

)
cos(ωt) +

p(0)

ω
sin(ωt)

+λ
1
ω2 Q(t)− λ 1

ω2

∫ t

0
cos(ω(t − s))Q̇(s) ds.

We substitute this in equation (61a) to obtain the Generalized
Langevin Equation (GLE)

Q̈ = −Veff(Q)− λ2
∫ t

0
γ(t − s)Q̇(s) ds + λF (t), (69)

where Veff(Q) = V (Q)− λ2

2ω2 Q2,

γ(t) =
1
ω2 cos(ωt), (70a)

F (t) =
[(

q(0)− λ

ω2 Q(0)

)
cos(ωt) +

p(0)

ω
sin(ωt)

]
. (70b)
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The same calculation can be done for an arbitrary number of
harmonic oscillators in the environment.
When writing the dynamics of the Brownian particle in the
form (69) we need to introduce an effective potential.
We have assumed that the initial conditions of the Brownian
particle are deterministic, independent of the initial distribution of
the environment. i.e. the environment is initially at equilibrium in
the absence of the Brownian particle.
We can also assume that the environment is initially in equilibrium
in the presence of the distinguished particle, i.e. that the initial
positions and momenta of the heat bath particles are distributed
according to a Gibbs distribution, conditional on the knowledge of
{Q0, P0}:

µβ(dpdq) = Z−1e−βHeff(q,p,Q) dqdp, (71)

where

Heff(q,p,Q) =

[
p2

2
+

1
2
ω2
(

q − λ

ω2 Q
)2
]
. (72)
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This assumption implies that

q(0) =
λ

ω2 Q0 +
√
β−1ω−2 ξ, p(0) =

√
β−1 η, (73)

where the ξ, η are independent N (0,1) random variables.
This assumption ensures that the forcing term in (69) is mean
zero.
The fluctuation-dissipation theorem takes the form

〈F (t)F (s)〉 = β−1γ(t − s). (74)
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We can perform the same calculation for the coupled particle-field
model (59). We obtain

Q̈ = −V ′(Q)−
∫ t

0
D(t − s)Q(s) ds + 〈φ0,e−Ltα〉, (75)

where

A =

(
0 1
∂2

x 0

)
,

〈f ,h〉 =
∫

(∂x f1∂xh1 + f2h2) dx , f = (f1, f2) and
α̂(k) =

(
−ik ρ̂(k)/k2,0

)
in Fourier space.

Furthermore
D(t) = 〈eLtLα, α〉 = Ċ(t).

C(t) is the covariance of the Gaussian noise process

F (t) = 〈φ0,e−Ltα〉.

In particular:

E(F (t)F (s)) = β−1C(t − s) = β−1
∫
|ρ̂(k)|2eikt dk .
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The spectral density of the autocorrelation function of the noise
process is the square of the Fourier transform of the density ρ(x)
which controls the coupling between the particle and the
environment.
The GLE (75) is equivalent to the original infinite dimensional
Hamiltonian system with random initial conditions.
Proving ergodicity, convergence to equilibrium etc for (75) is
equivalent to proving ergodicity and convergence to equilibrium for
the infinite dimensional Hamiltonian system.
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For general coupling functions ρ(x) the GLE (75) describes a
non-Markovian system. It can be represented as a Markovian
system only if we add an infinite number of additional variables.
However, for appropriate choices of the coupling function ρ(x) the
GLE (75) is equivalent to a Markovian process in a finite
dimensional extended phase space.

Definition
We will say that a stochastic process Xt is quasi-Markovian if it can be
represented as a Markovian stochastic process by adding a finite
number of additional variables: There exists a stochastic process Yt so
that {Xt , Yt} is a Markov process.
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Proposition

Assume that p(k) =
∑M

m=1 cm(−ik)m is a polynomial with real
coefficients and roots in the upper half plane then the Gaussian
process with spectral density |p(k)|−2 is the solution of the linear SDE(

p
(
−i

d
dt

)
xt

)
=

dWt

dt
. (76)

Proof.
The solution of (76) is

xt =

∫ t

−∞
k(t − s) dW (s), k(t) =

1√
2π

∫
eikt 1

p(k)
dk .

We compute

E(xtxs) =

∫
eik(t−s) 1

|p(k)|2
dk .
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Example
Take p(k) ∼ (ik + α). The spectral density is

|ρ̂(k)|2 =
α

π

1
π2 + α2 .

The autocorrelation function is

C(t) =
α

π

∫
eikt 1

k2 + α2 dk = e−|α|t .

The linear SDE is
dxt = −αxt dt +

√
2αdWt .
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Consider the GLE

Q̈ = −V ′(Q)− λ2
∫ t

0
γ(t − s)Q̇(s) ds + λF (t), (77)

with 〈F (t)F (s)〉 = β−1γ(t − s) = β−1e−α(t−s).

F (t) is the stationary Ornstein-Uhlenbeck process:

dF
dt

= −αF +
√

2β−1α
dW
dt

, with F (0) ∼ N (0, β−1). (78)

We can rewrite (77) as a system of SDEs:

dQ
dt

= P,

dP
dt

= −V ′(Q) + λZ ,

dZ
dt

= −αZ − λP +
√

2αβ−1 dW
dt

,

where Z (0) ∼ N (0, β−1).
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The process {Q(t), P(t), Z (t)} ∈ R3 is Markovian.
It is a degenerate Markov process: noise acts directly only on one
of the 3 degrees of freedom.
The generator of this process is

L = p∂q +
(
− V ′(q) + λz

)
∂p −

(
αz + λp

)
∂z + αβ−1∂2

z .

It is a hypoelliptic and hypocoercive operator.
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Rescale λ→ λ
ε , α→ α

ε2

Eqn. (79) becomes

dqε = pε dt , (80a)

dpε = −V ′(qε) dt +
λ

ε
zε dt , (80b)

dzε = − α
ε2

zε dt − λ

ε
pε dt +

√
2αβ−1

ε2
dW , (80c)

In the limit as ε→ 0 we obtain the Langevin equation for
qε(t), pε(t).
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Proposition

Let {qε(t),pε(t), zε(t)} on R3 be the solution of (80) with
V (q) ∈ C∞(T) with stationary initial conditions. Then {qε(t),pε(t)}
converge weakly to the solution of the Langevin equation

dq = p dt , dp = −V ′(q) dt − γp dt +
√

2γβ−1dW , (81)

where the friction coefficient is given by the formula

γ =
λ2

α
. (82)
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