Mechanics with missing details

Miroslav Grmela



Thermodynamics — human endeavor

History of nonequilibrium thermodynamics:

I. Mu"ller, W. Weiss, Thermodynamics of irreversible processes: past
and
present, European Physical Journal H, 37, 139 (2012)

G. Lebon, D. Jou, Early history of extended irreversible thermodynamics
(1953-1983),. An exploration beyond local equilibrium and classical transport
theory, European Physical Journal H, 40, 205 (2015)



History of science in general:

Thomas Kuhn: The structure of scientific revolutions (1962)

Paradigm shift (can the creators of one paradigm switch to a new one?)



Anthropology:

Nonequilibrium-thermodynamics scientific community as a tribe

Tribal chiefs, ceremonies (regular meetings, potlatch, regular wars,...),



- By ignoring unimportant details (by making a pattern-recognition process) we
(as well as all animals) are able to survive [note: not a coarse-graining, something possibly related to

aesthetics ]

- Alarge majority of time evolutions that we observe are time-irreversible
(Aristotle : Physics - Martinas, K.; Ropolyi, L. Aristotelian and Modern Physics.
International Studies in the Philosophy of Science 1987, 2, 1-9)
thermodvnamic time evolution
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- Galileo, Newton - Time reversible (permanent) time evolution
mechanic time evolution
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q Uuestion: mechanic time evolution combined with thermodynamic time evolution so that

dE(x) dS(x)
7 (), and o

= () where state variables : = =[xy, T3, ..,Ty)

dNSWET: one of the simplest examples
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state variables : r = (p.q,e): E = e, assume 3 =0
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GENERIC

.1 .:]'
e.g.

T = f[,r_ v): = .“'f'?‘]- {'[T‘;:- u:;-r‘} ): kinetic theory as both : (i) nonequilibrium thermodynamics itself and

— (3. 1) fluc . . (ii) @ mesoscopic microscopic theory providing
L= fl_.i‘ 1) .-lr uctuations; ... microscopic foundation of the classical
(local equilibrium) nonequilibrium thermodynamics

History:
Alfred Clebsch (1859), Vladimir Arnold (1966) - mechanic time evolution-, Landau, Ginzburg (1950)
Cahn, Hilliard (1958) - thermodynamic time evolution -, Dzyaloshinskii, Volovick (1980) - combined

AMS-IMS-SIAM Joint Summer Research
Conference

in the Mathematical Sciences on Fluids and
Plasmas:Geometry and Dynamics

- held at the University of Colorado, Boulder,

July 17-23 1983), - proceedings in Contemp. (summer 1983, the first conference about EIT)
Math. (1984)

GENERIC (1997)

More recently: two monographs (one written by Antony Beris and Brian Edwards (1994)
and the other by Hans Christian Oettinger (2005)) and one review article in
Advances in Chemical Engineering written by M.G. (2010)



Three routes to GENERIC

Common structure of mesoscopic dynamical theories, started by A. Clebsch in 1859

note: non-uniqueness, it depends on the pool of dynamical theories and on the focus (e.g. rational mechanics)

Agreement of theoretical predictions with results of experimental observations

guantitative and qualitative observations - quantitative and qualitative theoretical predictions

Mesoscopic dynamics as a natural extension of thermodynamics toward time evolution

dynamical MaxEnt Principle



GENERIC a5

i =LE, + AS,

Equivalent reformulation of GENERIC

P(z; )
= —S(x) + + E(x)

r=TLE,®, — Ad,

energy conservation = x stays on an energy shell during the total
time evolution ( T parametrizes the
energy shell)
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CLASSICAL EQUILIBRIUM THERMODYNAMICS

mechanical state variables: (V,N]
and mechanical energy Enge. (overall kinetic plus potential); "mechanical
wall” separating the system from the environment (work)

thermodynamical state variables: E' internal energy
the total energy E+ E\,c-, "7 thermodynamical walls” separating the system
from the environment (heat)

the influence of ignored details is expressed in MarEnt Principle
entropy 5 = S(V,N,F) (fundamental thermodynamic relation) reaches
its maximum allowed by constraints

thermodynamic potential &(E, N; E* N*) = —S(E,N) + E*E + N*N
(8" = F:N" =)

MaxEnt: &g = 0;®y = 0 solution (E.4(E*, N*), N4(E*,N*)), evaluate
®(E,N) at (Egq, Ngy) = 5*(E*,N*) = [@][EEQ:NW}
Legendre transformation S(E,N) — S*(E*, N7



Robert Hermann (1984), Confact geometry formulation of thermodynamics

argument:

Maxent 15 the basis of thermodynamics — MaxEnt is in fact a Legendre
transformation — group of Legendre transformations is the fundamental group
of thermodynamics — the space in which Legendre transformations appear as

natural transformations is the space equipped with contact geometry (1-form
specifying the contact geometry is preserved in Legendre transformations)

state variables: (E, N, E* N* ¢);, 1-form: d¢ — E*dE — N*dN,
(Gibbs-Legendre manifold (representing geometrically the fundamental ther-
modynamic relation):

(E.N) = (E,N,&g(E.N), &y (E, N).(E,N))



MESOSCOPIC EQUILIBRIUM THERMODYNAMICS thermodynamic reduction

state variables: =
fundamental thermodynamic relation: S = S(z), E = E(z), N = N(x)
thermodynamic potential: ®(x, E* N*) = —5(z)+ E*E(x) + N*N(x)

thermodynamic reduction (Legcndre transic-rmatmn} S*(E*,N*) = [fl?] r=zeq(E" .N*)

example: (Boltzmann kinetic theory)

xr= f(r,v), S(z)=—kg[dr [dv(flnf—1), E(x)= fdrfdvf%,
N(z)= [dr [dvf

Ideal gas fundamental thermodynamic relation



SOLUTION OF GENERIC - GENERIC reduction

de=0; 3L =0, L <0=> 1z 3 T9ast— 00 =>

thermodynamic reduction = GENERIC reduction

GENERIC addresses the passage between two levels of description.

usually it is the passage between a dynamical theory and equilibrium thermodynamics
but it can also be a passage between a dynamical theory and another dynamical
theory involving less details



Since the results of the GENERIC time evolution from t=0 to t=c°

is a Legendre transformation (thermodynamic reduction), we suggest that the
GENERIC time evolution is a sequence of infinitesimal Legendre
(contact-structure-preserving) transformations

MaxEnt - Dynamical MaxEnt

T = W,
T o= =W+,
b = —U+<z* U, > (1)

U(zx,z*, @) contact Hamiltonian

Problem: Find ¥(z, 2%, ¢) such that the Gibbs-Legendre manifold is an in-
variant manifold and the time evolution (1) evaluated on it becomes GENERIC



1
Uz, 2" ", n") = —xS(z,z",e",n" )+ —H(z,z",e", n")
o EARL
where

S(z,z",e",n") = E(x,2",y") - E(z, 2%, e\ n")] g,
H{ﬂ?: ‘T*:E*: ﬂ.*} = < ﬂ?*!L{I):I! =

and y : M) — B+ Tt is a matter of direct verification to show that the contact-

structure preserving dynamics with the contact Hamiltonian ¥ becomes on the
Gibbs-Legendre manifold GENERIC.



Variational formulation

T= j dt[U(z, z*, y*)— < z*, 7 >

Observations:

(1) [T]er—manifaida has the physical interpretation of the entropy generated
during the time evolution.

(11) The Euler-Lagrange equations 4I = () become on the GL-manifold equiv-
alent to GENERIC.



Properties of solutions to GENERIC

guantitative (detailed) compare with quantitative experimental observations

qualitative compare with qualitative experimental observations

Examples of quantitative experimental observations: shear rate versus shear stress in complex fluids

Examples of qualitative experimental observations: compatibility with equilibrium thermodynamics

more generally,
compatibility with more macroscopic description



Qualitative properties of solutions to GENERIC

1. t—>oo GENERIC reduction

2. H. Grad (1965), C. Villani (2005) Boltzmann kinetic equation

only thermodynamic time evolution t—>ec approachto local equilibrium
only mechanic time evolution f(r,v,0)>f(r-vt/m,v,0) no approach
Combined mechanic and thermodynamic time evolution

t—>oo approachto total equilibrium

Conjectu Fe: averysmall nucleus of ignorance introduced on the microscopic level growths during the time evolution
and the resulting irreversibility brings macroscopic systems to states of thermodynamic equilibrium



Complementary dynamics

EXTERNALLY UNFORCED
SYSTEMS

micro

GENERIC reduction S(micro—ca)
eq

[S(micro—eq)] . g the classical-equilibrium-thermodynamics entropy; 2. is
the state approached (as ¢ — oo)in the GENERIC time evolution evolution



EXTERNALLY UNFORCED
SYSTEMS

micro

CENERIC reduction S'micro—eq)
€q

micro

J GENERIC reduction §'miere—sn—Grad)
n-Grad n-Crad
l GENERIC reduction §'"—Grod—hud]
hyd hyd

lGENERIE‘- reduction §'vded)
eq



EH]:___J:.J (r) = f{itﬂlm Uy f(r, )
A= (aM, . ,al™); B=(a"t, ...

B Y ©

How to get Meaosure 7
Route I: investigate solutions of the hierarchy 2
Route 2; investigate solutions of the complementary hierarchy 3

dB
— =LWPap — AD 9
ot " B (3)
(B A*) =o(B)— [ drbin+1}{ﬁ*}u[”+1]
As t — oo, solutions to 3 approach solutions to g = 0 that form the closure
manifold Meimure

moreover, we obtain

[ @I Metoeure = S(A)



EXTERNALLY DRIVEN
SYSTEMS

micro
GENERIC redllCtiOIl S( micro—mes)

meso (externally driven)

[S(micrommeso)] g the entropy of driven systems; z, is the state ap-
proached (as ¢ — oo)in the GENERIC time evolution evolution



Chapman-Enskog type reductions; new emerging entropies

Ch-E

SE] ? 51

MaxEnt k ‘ MaxEnt

My ——> M
o ohp

The new emerging entropies are typically weakly nonlocal (Cahn-Hilliard type)



VARIATIONS ON GENERIC

natural, desirable, to be encouraged
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Variations on LE.

Godunov (1972), Friedrichs, Lax (1971) local conservation laws (e.g. Grad’s hierarchy) implying
another local conservation law

for entropy physical regularity - mathematical regularity
(Euler fluid mechanics is both Hamiltonian and Godunov)

- example:
- slip in advection of an internal structure



Variations on S —

=(z,0) =0, Yo e M

reaches its minimum at r* =0

[1]

[1]

is a conver function in a neighborhood of =™ =10

We shall first consider a special case when = 1s a quadratic function of =*, i.e.

Sx,x*) = % <, Az)z* =

AX L
Consequences of dissipation potential in chemical kinetics -

Involving two reactions




M. Huetter
C. Beretta (later this afternoon)

A. Mielke (in the context of diffusion —2013)

reminder:

(Grad-Villani) solutions of (and thus physics associated with) —iﬁi—' = [Epe]z==5
are very different from solutions of (and the physics associated with)
d. — -
4t = LEz 4 [Ex-|z-=s,

T



What is common to all of us a bright future

Framework for modeling ; modules (1) state variables, (2) their kinematics
(i.e. Poisson bracket), (3) thermodynamic
forces, dissipation, (4) energy and entropy
as functions of the chosen state variables

(e.g. Il many new rheological models of complex fluids have been
introduced in in this way)

Multiscale descriptions absolutely needed in nano and bio technologies

e.g biological systems — systems of membranes — heterogeneous systems
Dick Bedeaux, Hans Christian Oettinger, Leonard Sagis

Big data  artists are being employed; thermodynamics - aesthetics



Example of an open problem:

M.G. {IQ?B
Boltzmann —— Enskog-Vlasov

GENERIC GENERIC 7

eq. ideal gasvdfh eq. van der Waals gas

Enskog-Vlasov kinetic equation:
8/(r.v) ‘;;ﬂ = free flow term 4 Vlasov term + Enskog collision term

Enskog collision term = Boltzmann collision term with excluded volume =
the Enskog collision term becomes a sum of the Boltzmann dissipative (and time
irreversible) term and a new term that is time reversible = entropy is a sum of
the Botzmann entropy and a new entropy corresponding to the excluded volume
constraint. Problem: the standard Poisson bracket appearing in the Boltzmann
kinetic theory — a new Poisson bracket taking into account the excluded volume
constraint



A comment about derivations from “first principles”

1. What are the “first principles”
(particle mechanics)
2. What is the (ideal) “derivation”
step 1: get the phase portrait
step 2: recognize a pattern in it (a pattern that represents a reduced —
mesoscopic — experience)
3. What are the (real) derivations
(various short cuts)



