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Spin—chain with variable bond length

Consider a one—dimensional (ring) chain of N consecutive segments (distances) and NV
nodes (Lennard-Jones particles), as shown in Figure 1 of the manuscript. The total chain
length . = gN we parameterize through g, i.e., g denotes mean distance between particles.
Segment lengths are allowed to be in one of two possible states, either short (represented by
spin state ¢ = 0) or long (¢ = 1). Short segments have length unity, by = 1 (and represent
the gelatin phase, dark regions in the images), while by > g is the length of stretched
segments (maltodextrin phase, light areas). Particles are not allowed to cross each other,
and we consider only nearest neighbor interactions between particles. This corresponds to
cutting the LJ interaction at a distance of twice the length of a short segment, 2by. The
configurational energy, H({¢}), of such a spin—chain in state {¢} = {¢p1,¢2,...,0n},
representing the one—dimensional elastic LJ model, is a sum of elastic and LJ contributions,

N
k
H({¢})=> 5621. + U(s, Pit1), (1)
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where ¢n1 = ¢1, as we are focusing on a ring chain without end effects. Particles sur-
rounded by long segments (¢; = 1) are part of the low density phase and do not contribute
to the LJ energy, U(1,1) = UY(b1) =~ 0, while particles located at the interface between
the high and low density phases (¢;+¢®;+1 = 1) have alower LJ energy owing to their single
short bond, U (0,1) = U(1,0) = UY(by) ~ —1. Finally, the energetically preferred state
(from the point of view of the LJ potential) is U(0,0) = UY(by) + UM (2bg) ~ —1 — a,
with positive nonzero but small . Using by = 1, one has o = 63/1024 ~ 0.03. Having
specified U, the hamiltonian (1) can be alteratively cast into the following form

N

k

H({¢}) =—(1+a)N+ > [2@. +a(di + div1) + (1 — a)idis )
i=1

In passing we note that if the same model is used to interpret the behavior of the two— or

three—dimensional elastic LJ system, o might receive slightly larger values. Obviously, U

is symmetric in its arguments, U (¢;, ¢i+1) = U(¢; + ¢i41). With the Hamiltonian (1) and
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values for by, b1, o (and thus U) at hand, we would have completely specified the spin—
chain model and can resolve its statistical behavior, i.e. temperature dependence assuming
a canonical ensemble, via standard methods. However, we have not yet specified by, the
length of stretched segments. This length is not a constant but its value depends on the
actual spin state. It is fixed by the above—mentioned constraint of constant contour length,
which reads gN = b1 ¥ + by(IN — ¥), with the number of long bonds, V.

To summarize, the spin—chain is defined by hamiltonian (2) with bond lengths

N
bo =1, b1:1+(g‘;)N, \IIEZ@. 3)
=1

The model can be solved numerically or analytically. It ultimately captures the competition
between short range attraction (via the LJ interaction) and long range repulsion (via the
constraint for by, Eq. 3, which is effective as long as k is nonzero) inherent in the elastic
Lennard-Jones model. The model has parameters N, g, k, «, and temperature 7', which
enters by considering a canonical ensemble of such spin chains. To be specific, an average
(A) for an observable A({¢}) in the canonical ensemble is calculated via a sum over all
possible (2V) spin states, denoted as {¢},

1
(4) =~ {% Aexp(—H/kgT), “

where Z = 3y exp(—H/kgT) is the partition sum. Averages such as (¥), the order
parameter or mean size of inclusions are analytically obtained by derivatives of In Z with
respect to model parameters 7', «, and k.

Solution methods There are at least three basic methods which can be applied to calculate
the partion sum Z and free energy F' = —kg In Z of the spin chain.

A) Direct summation

Direct summation of (4) over 2V states can be performed exactly and quickly for
given model parameters up to N ~ 20 on a modern processor. For much larger
N, one must resort to Metropolis Monte Carlo or other numerical schemes or to the
analytic solution.

B) Metropolis Monte Carlo

In a Metropolis Monte Carlo simulation, one (i) randomly assigns values ¢; € {0,1}
to N spins, (ii) calculates energy H = H({¢}) — according to (1) with (3) — for
the spin state, (iii) randomly selects a spin j € 1,..., N, flips it (qS;- = 1-9j),
and calculates H' = H ({¢'}) for the modified state, (iv) accepts the modified state
with probability min(1, exp[(H — H')/kgT]), and finally continues with (ii) until the
statistical error of the observable of interest reaches a desired small value.



C) Analytical solution (transfer matrix method)

In order to calculate the partition sum one can consider ¥, defined in (3), as a constant,
and introduce a corresponding Lagrange parameter, A. The Hamiltonian (1) is supple-
mented by a term A(V — ). ¢;), and then written as Hy = ), hw (¢, ¢iv1), where
one can read off ~y. With the four components 7, , = exp{—hw (i, v)/kgT'} of ma-
trix T, the partition sum becomes Z = 2]\1\17:1 Zy with Zy = tr(TV) = /\ﬁ + AN
where A, and A_ are the smallest and largest eigenvalue of T, respectively. The
Lagrange parameter is determined by 0A/JA = 0 which yields A = 1.

D) Analytic solution in the thermodynamic limit (large V)

For large IV, the partition sum is well approximated by Z ~ )\f .

E) Mean-field approximation

Within a mean—field approximation, we may replace the term ¢; ;11 in (2) by ¢; (),
and ¥ by N(¢) in order to essentially remove the Lagrange parameter and to reduce
the problem to a single—spin problem.

Derived quantities, model predictions To provide a rough impression, some of the highly
degenerate energetically preferred configurations of this spin—chain model are shown in Tab.
1 of the manuscript. Importantly, the model allows to calculate the mean number of (low
density, maltodextrin) inclusions from half the number of interfacial bonds using the ob-
servable A = 237,84, 16,,,.1 in (4), where &;; is the Kronecker symbol. We also have
access to the total size of inclusions, using A = ). ¢;by,, or to the total thickness of high
density regions (which corresponds to the thickness of filaments in higher dimensions) via
A = 3".(1 — ¢i)bo. For the spin—hain model, the number of filaments equals the number
of inclusions so that we can deduce the mean number and mean size of a low density (mal-
todextrin) inclusion, in particular. Moreover, we can calculate the order parameter (amount
of gelatin) defined previously for the elastic LJ model, as it had been defined as the fraction
of particles with at least one neighbor at close distance (bg). In two dimensions, the order pa-
rameter quantifies the fraction of clustered particles. The order parameter, denoted as ¢ and
bound to the interval [0, 1], is most conveniently calculated by A = 1 — % 37, 0, 46:.1,25
i.e. by the complementary fraction of particles that belong to the low density phase. Such
particles are attached with two long springs, giving rise to the form of the Kronecker sym-
bol in this expression. The size (length fraction) of the high density region (gelatin area
fraction), @, is obtained from the order parameter via &y = by®/g. In summary, quick
access is gained to all statistical properties of the spin—chain model, which provides a sim-
plified description of some of the main features of the one—dimensional elastic LJ system.
A qualitative impression is provided by the exact results (employing exact enumeration) for
N = 20 presented in Fig. 2 of the manuscript. For the reason of completeness, Fig. 10
shows results obtained via Monte Carlo, for N = 100.
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Figure 10: Results for the spin—chain with variable bond length, made of N = 100 spins,
obtained via Metropolis Monte Carlo with 50, 000 spin flip attempts for each (g, k, T') triple.
Figure shown for comparison with the exact result for N = 20, cf. Fig. 2 of the manuscript.
Phase diagrams in the k-1 plane for the spin—chain with N = 100 spins (bonds), and
a = 0.03, for three different choices (arranged in rows) of the total contour length L = gN
of the chain. (a) order parameter ®, (b) number of inclusions (divided by N, the number
of spins or ”bonds”), (c) mean size of inclusions divided by length L of the spin—chain (or
“radius” of confinement), (d) mean thickness of filaments divided by L. Grayscale bars,
different for each individual plot, are drawn above the plots.

It is worthwhile mentioning that a given pair of values for the size and number of inclu-
sions (at given system size ~ IN) can be realized for various combinations of the system
parameters of g, k and T'. On the other hand, there are regions in the phase diagram where
the elastic LJ model does not predict this kind of a microphase—separated state of circular
inclusions. The phase behavior of the elastic LJ is more rich, as we have learned from pre-
vious studies. It is only in the case of small ¢’s (as already discussed), and relatively low
temperatures, and relatively low spring coefficients, that a highly ordered, non—filamentous,
phase is observed. With increasing temperature, the size and number of inclusions can still
be measured, but the variance of these values increases with temperature, as follows from
the spin—chain model. The spin—chain model leaves us with some characteristic behavior
which helps to interpret the results and to rate the meaning of the ELJ parameters chosen in



the comparisons with experiments.

Extensions Above, we have considered a ring—chain of spins, i.e., a one—dimensional
chain with periodic boundary conditions. This setting can be released to study the effect of
boundary conditions to the expense of an additional model parameter. Solution method B)
can be basically overtaken without modification, while analytical calculations (methods A
and C-E) become more tedious, when the periodic boundary condition is released.

Online tool An interactive application evaluating the spin—chain with variable bond length
using methods A) for N < 20 and B) for NV > 20 is permanently available online at
http://www.complexfluids.ethz.ch/fransson.html . The website furthermore reports the his-
togram of inclusion sizes, as they are obtained by weighting each of the recognized inclu-
sions by the Boltzmann weight of their spin state.



