![]()
http://www.complexfluids.ethz.ch/snf19 This project is supported by the Swiss National Supercomputing Centre
The effects of interphase topology, entanglements, and chain dynamics on the mechanical response of semicrystalline polyethylene have been examined using atomistic simulations. In particular, the prevalence of the cavitation and melting/recrystallization mechanisms for yield and plastic flow were found to depend on both topological and dynamical properties of the molecular segments in the semicrystalline interphase. First, two different protocols were used during preparation of the interphase ensemble to modulate the distribution of (i) loops, bridges, and tails and (ii) entanglements within the noncrystalline domain. A protocol denoted "step-wise cooling" produced structures having a large fraction of long, entangled segments that yielded by the melting/recrystallization mechanism about 50% of the time. By contrast, the protocol denoted "instantaneous quench" produced structures that yielded by melting/recrystallization about 73% of the time. Second, two different united atom force fields, PYS and TraPPE-UA, that exhibit nearly identical topological characteristics of the noncrystalline domain but different mobilities were used to study the effect of chain dynamics on yield mechanisms. At the slower strain rate used in this work, yield and plastic flow proceeded exclusively via cavitation for the model using the TraPPE-UA force field, whereas both cavitation and melting/recrystallization were observed for the model using the PYS force field. The greater prevalence of melting/recrystallization in the latter case is attributed to faster chain-sliding dynamics in the crystalline domain. The dependences of the yield mechanism on topology and dynamics are found to be related. [Ranganathan, Raghavan; Kumar, Vaibhaw; Brayton, Alexander L.; Rutledge, Gregory C.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA. [Ranganathan, Raghavan] Indian Inst Technol, Mat Sci & Engn, Gandhinagar 382355, Gujarat, India. [Kroger, Martin] Swiss Fed Inst Technol, Dept Mat, Polymer Phys, CH-8093 Zurich, Switzerland. Rutledge, GC (corresponding author), MIT, Dept Chem Engn, Cambridge, MA 02139 USA. rutledge@mit.edu [hide]
Principal Investigators
Argyrios Karatrantos (PI)
Institute of Science and Technology, Luxembourg ►
Martin Kröger (PI)
Polymer Physics, ETH Zurich, Switzerland ►
Project Partners
Clement Mugemana
Institute of Science and Technology, Luxembourg ►
Jeremy Odent
Laboratory of polymeric and composite materials, Mons University, Belgium ►
Scientific Staff
Ahmad Moghimikheirabadi
Polymer Physics, ETH Zurich, Switzerland ►
Secretary
Patricia Horn
Polymer Physics, ETH Zurich, Switzerland ►
Enjoy your reading
M Kroger,
Developments in Polymer Theory and Simulation
POLYMERS English 12 (2020) 30 ►Selected conferences (co-)organized by project members
3rd Global Summit Nanotechnology & Nanomedicine
Sep 2019, 3rd Global Summit Nanotechnology & Nanomedicine, Barcelona, Spain ►
learn more ►
About this project
Fundamentally important to the processability and the material properties of polymer nanocomposites is the underlying interaction between polymer and nanoparticles, the resulting structure and dynamics. A high degree of nanoparticle dispersion is necessary for an effective reinforcement in a polymer matrix. A recent experimental approach to distributing nanoparticles into a polymer matrix is to let the interaction between nanoparticles and polymer chains to be of ionic nature.Ionic nanoparticles can impart charged polymers with unique mechanical and functional properties such as self-healing and shape memory. Upon studying a single model nanocomposite via molecular simulation, we found that nanoparticle dispersion can indeed be achieved due to the insertion of electrostatic charge, that nanoparticle diffusion slows down due to this electrostatic charge, and that the ionic nanoparticles move according to a hopping mechanism.
These recent findings have the potential to spur new studies in modelling ionic polymer nanocomposites containing ionic functionalized silica nanoparticles.
We hereby propose to focus in a more detailed and conclusive fashion on four combined experimental/theoretical research objectives:
Investigate the role of ionic interactions and calculate viscoelastic properties (viscosity, storage modulus, loss modulus) with nanoparticle loading, for differently charged and sequenced polymers.
Quantify the lifetime of dynamic crosslinks between nanoparticles and polymers, formed in ionic nanocomposites, during deformation processes.
Calculate the dynamics and structure of polymers and their entanglements for differently charged and filled polymer ionic nanocomposite models,
Resolve the role of nanosilica surface confinement on polymer entanglements and dynamics. The novelty of the proposed work stems from the combination of experiments, simulation and theoretical models to capture the interactions and polymer structural/dynamical, as well as rheological phenomena present in these ionic nanocomposites, who seem to offer qualitatively new properties worth being quantified and supplemented with an informed microscopic picture.
Lay-Summary (German only, as required by SNF)Hintergrund: Polymer-Nanokomposite (PNCs) stellen eine zunehmend wichtige Hybrid-Materialklasse dar. Das fehlende Verständnis der chemischen und physikalischen Mechanismen stellt seit Jahrzehnten ein Hindernis bei der weiteren Entwicklung dar. Für die Verarbeitung und die Eigenschaften von PNCs ist die Wechselwirkung zwischen Polymer und Nanoteilchen, sowie die resultierende Struktur und Dynamik von fundamentalem Interesse. Eine gute Dispersion der Nanoteilchen wird für die effiziente Verst&aauml;rkung von Polymer-Muttergewebe benötigt. Einer der neueren Ansätze, die diese Eigenschaft bewerkstelligen soll, ist die Verwendung von ionischen PNCs. Ionische Nanoteilchen können den ionischen Polymeren zudem neuartige mechanische und funktionelle Eigenschaften verleihen. Inhalt und Ziel des Forschungsprojekts ist ein besseres Verstädnis der ionischen PNCs. Dazu untersuchen wir die (i) Rolle von ionischen Wechselwirkungen und berechnen viskoelastische/mechanische Eigenschaften und ihre Abhäigkeit von System-Parametern (Konzentration, Ladungen, Ladungs-Sequenzen); (ii) Lebensdauer von Vernetzungspunkten in PNCs, isbesondere während Deformationsprozessen; (iii) Dynamik und Struktur der Polymere und deren Verschlaufungs-Netzwerke in Abhängigkeit der Ladungs-Sequenz; (iv) Rolle der Oberflächen-Beschaffenheit von Nano-Silikaten. Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts. Wir möchten neuen Technologien für PNCs den Weg bereiten, die benötigt werden, um leichte, hoch-qualitative, und multifunktionelle Materialien weiter zu entwickeln. Ionische PNCs verprechen nicht nur die genannten mechanischen Eigenschaften, sondern auch ein Potential für Selstheilung, ionische Leitfähigkeit, und selektive Permeabilitä Simulationsmodelle erlauben uns, die genannten Abhäigkeiten im Detail zu untersuchen, und öffnen eue Horizonte für das Design ionischer PNCs für Anwendungen etwa in der Biomedizin, Biotechnologie, Energiespeicherung, Gastrennung.
04 May 2025
mk