This project is supported by the Swiss National Supercomputing Centre

Principal Investigators

Argyrios Karatrantos (PI)
 Institute of Science and Technology, Luxembourg
Martin Kröger (PI)
 Polymer Physics, ETH Zurich, Switzerland

Project Partners

Clement Mugemana
 Institute of Science and Technology, Luxembourg
Jeremy Odent
 Laboratory of polymeric and composite materials, Mons University, Belgium

Scientific Staff

Ahmad Moghimikheirabadi
 Polymer Physics, ETH Zurich, Switzerland


Patricia Horn
 Polymer Physics, ETH Zurich, Switzerland

Enjoy your reading

M Sadeghi, MH Saidi, A Moosavi, M Kroger,
Tuning Electrokinetic Flow, Ionic Conductance, and Selectivity in a Solid-State Nanopore Modified with a pH-Responsive Polyelectrolyte Brush: A Molecular Theory Approach

R Ranganathan, V Kumar, AL Brayton, M Kroger, GC Rutledge,
Atomistic Modeling of Plastic Deformation in Semicrystalline Polyethylene: Role of Interphase Topology, Entanglements, and Chain Dynamics
MACROMOLECULES 53 (2020) 4605

N Gheczy, K Sasaki, M Yoshimoto, S Pour-Esmaeil, M Kroger, P Stano, P Walde,
A two-enzyme cascade reaction consisting of two reaction pathways. Studies in bulk solution for understanding the performance of a flow-through device with immobilised enzymes
RSC ADVANCES 10 (2020) 18655

RS Hoy, M Kroger,
Unified Analytic Expressions for the Entanglement Length, Tube Diameter, and Plateau Modulus of Polymer Melts

A Moghimikheirabadi, P Ilg, LMC Sagis, M Kroger,
Surface Rheology and Structure of Model Triblock Copolymers at a Liquid-Vapor Interface: A Molecular Dynamics Study
MACROMOLECULES 53 (2020) 1245

M Kroger,
Developments in Polymer Theory and Simulation
POLYMERS 12 (2020) 30

ZQ Shen, DT Loe, A Fisher, M Kroger, JL Rouge, Y Li,
Polymer stiffness governs template mediated self-assembly of liposome-like nanoparticles: simulation, theory and experiment
NANOSCALE 11 (2019) 20179

MS Khan, AV Karatrantos, T Ohba, Q Cai,
The effect of different organic solvents and anion salts on sodium ion storage in cylindrical carbon nanopores

A Moghimikheirabadi, P Fischer, M Kroger, LMC Sagis,
Relaxation Behavior and Nonlinear Surface Rheology of PEO-PPO-PEO Triblock Copolymers at the Air-Water Interface
LANGMUIR 35 (2019) 14388

S Costanzo, L Scherz, G Floudas, R Pasquino, M Kroger, AD Schluter, D Vlassopoulos,
Hybrid Dendronized Polymers as Molecular Objects: Viscoelastic Properties in the Melt
MACROMOLECULES 52 (2019) 7331

ZQ Shen, HL Ye, M Kroger, S Tang, Y Li,
Interplay between ligand mobility and nanoparticle geometry during cellular uptake of PEGylated liposomes and bicelles
NANOSCALE 11 (2019) 15971

D Messmer, A Sanchez-Ferrer, S Tacke, H Yu, H Nusse, J Klingauf, R Wepf, M Kroger, A Halperin, R Mezzenga, AD Schluter,
Can one determine the density of an individual synthetic macromolecule?
SOFT MATTER 15 (2019) 6547

M Kroger,
Efficient hybrid algorithm for the dynamic creation of wormlike chains in solutions, brushes, melts and glasses

W Wang, F Shao, M Kroger, R Zenobi, AD Schluter,
Structure Elucidation of 2D Polymer Monolayers Based on Crystallization Estimates Derived from Tip-Enhanced Raman Spectroscopy (TERS) Polymerization Conversion Data

A Karatrantos, RJ Composto, KI Winey, M Kroger, N Clarke,
Modeling of Entangled Polymer Diffusion in Melts and Nanocomposites: A Review
POLYMERS 11 (2019) 876

A Karatrantos, RJ Composto, KI Winey, N Clarke,
Nanorod Diffusion in Polymer Nanocomposites by Molecular Dynamics Simulations
MACROMOLECULES 52 (2019) 2513

D Messmer, C Bottcher, H Yu, A Halperin, K Binder, M Kroger, AD Schlutert,
3D Conformations of Thick Synthetic Polymer Chains Observed by Cryogenic Electron Microscopy
ACS NANO 13 (2019) 3466

A Moghimikheirabadi, LMC Sagis, M Kroger, P Ilg,
Gas-liquid phase equilibrium of a model Langmuir monolayer captured by a multiscale approach

PS Stephanou, M Kroger,
Assessment of the Tumbling-Snake Model against Linear and Nonlinear Rheological Data of Bidisperse Polymer Blends
POLYMERS 11 (2019) 376

Selected conferences (co-)organized by project members

3rd Global Summit Nanotechnology & Nanomedicine
Sep 2019, 3rd Global Summit Nanotechnology & Nanomedicine, Barcelona, Spain

5th International Conference on Biopolymers & Polymer Chemistry
Jul 2020, 5th International Conference on Biopolymers & Polymer Chemistry, Houston, USA

learn more

login name

Master student internship: Open position / Opening

Master Student Internship in Computational modelling of ionic polymer nanocomposites (M/F). A full description is available at Apply online here.

About this project

Fundamentally important to the processability and the material properties of polymer nanocomposites is the underlying interaction between polymer and nanoparticles, the resulting structure and dynamics. A high degree of nanoparticle dispersion is necessary for an effective reinforcement in a polymer matrix. A recent experimental approach to distributing nanoparticles into a polymer matrix is to let the interaction between nanoparticles and polymer chains to be of ionic nature.

Ionic nanoparticles can impart charged polymers with unique mechanical and functional properties such as self-healing and shape memory. Upon studying a single model nanocomposite via molecular simulation, we found that nanoparticle dispersion can indeed be achieved due to the insertion of electrostatic charge, that nanoparticle diffusion slows down due to this electrostatic charge, and that the ionic nanoparticles move according to a hopping mechanism.

These recent findings have the potential to spur new studies in modelling ionic polymer nanocomposites containing ionic functionalized silica nanoparticles.

We hereby propose to focus in a more detailed and conclusive fashion on four combined experimental/theoretical research objectives:

  • Investigate the role of ionic interactions and calculate viscoelastic properties (viscosity, storage modulus, loss modulus) with nanoparticle loading, for differently charged and sequenced polymers.

  • Quantify the lifetime of dynamic crosslinks between nanoparticles and polymers, formed in ionic nanocomposites, during deformation processes.

  • Calculate the dynamics and structure of polymers and their entanglements for differently charged and filled polymer ionic nanocomposite models,

  • Resolve the role of nanosilica surface confinement on polymer entanglements and dynamics.

    The novelty of the proposed work stems from the combination of experiments, simulation and theoretical models to capture the interactions and polymer structural/dynamical, as well as rheological phenomena present in these ionic nanocomposites, who seem to offer qualitatively new properties worth being quantified and supplemented with an informed microscopic picture.

    Lay-Summary (German only, as required by SNF)

    Hintergrund: Polymer-Nanokomposite (PNCs) stellen eine zunehmend wichtige Hybrid-Materialklasse dar. Das fehlende Verständnis der chemischen und physikalischen Mechanismen stellt seit Jahrzehnten ein Hindernis bei der weiteren Entwicklung dar. Für die Verarbeitung und die Eigenschaften von PNCs ist die Wechselwirkung zwischen Polymer und Nanoteilchen, sowie die resultierende Struktur und Dynamik von fundamentalem Interesse. Eine gute Dispersion der Nanoteilchen wird für die effiziente Verst&aauml;rkung von Polymer-Muttergewebe benötigt. Einer der neueren Ansätze, die diese Eigenschaft bewerkstelligen soll, ist die Verwendung von ionischen PNCs. Ionische Nanoteilchen können den ionischen Polymeren zudem neuartige mechanische und funktionelle Eigenschaften verleihen. Inhalt und Ziel des Forschungsprojekts ist ein besseres Verstädnis der ionischen PNCs. Dazu untersuchen wir die (i) Rolle von ionischen Wechselwirkungen und berechnen viskoelastische/mechanische Eigenschaften und ihre Abhäigkeit von System-Parametern (Konzentration, Ladungen, Ladungs-Sequenzen); (ii) Lebensdauer von Vernetzungspunkten in PNCs, isbesondere während Deformationsprozessen; (iii) Dynamik und Struktur der Polymere und deren Verschlaufungs-Netzwerke in Abhängigkeit der Ladungs-Sequenz; (iv) Rolle der Oberflächen-Beschaffenheit von Nano-Silikaten. Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts. Wir möchten neuen Technologien für PNCs den Weg bereiten, die benötigt werden, um leichte, hoch-qualitative, und multifunktionelle Materialien weiter zu entwickeln. Ionische PNCs verprechen nicht nur die genannten mechanischen Eigenschaften, sondern auch ein Potential für Selstheilung, ionische Leitfähigkeit, und selektive Permeabilitä Simulationsmodelle erlauben uns, die genannten Abhäigkeiten im Detail zu untersuchen, und öffnen eue Horizonte für das Design ionischer PNCs für Anwendungen etwa in der Biomedizin, Biotechnologie, Energiespeicherung, Gastrennung.

  • 24 November 2020 mk