![]()
New controlled release systems produced by self-assembly of biopolymers and colloidal particles at fluid-fluid interfaces
Neurofilaments belong to the class of cytoskeletal intermediate filaments and are the predominant structural elements in axons. They are composed of a semiflexible backbone and highly charged anionic sidearms protruding from the surface of the filaments. Here, the rheology of in-vitro networks of neurofilaments purified from pig spinal cord was determined. The mechanical properties of these networks are qualitatively similar to other hydrogels of semiflexible polymers. The low-deformation storage modulus G'(omega) showed a concentration (c) dependence of G' similar to c(1.3) that is consistent with a model for semiflexible networks, but was also observed for polyelectrolyte brushes. A terminal relaxation was not observed in the frequency range investigated (0.007-5 Hz), supporting the notion that sidearms act as cross-links hindering slip between filaments on a time scale of many minutes. The mesh size distribution of the network was measured by analysis of Brownian motion of embedded beads. The concentration dependence of the mesh size follows the same power law behaviour as found for F-actin networks, but shows a significantly wider distribution attributable to the smaller persistence length of neurofilaments. The attractive interaction between filaments is increased by addition of A1(3+) ions resulting in a reduction of the linear response regime from strains bigger than 80% to less than 30%. [hide]
Scientific Board
Andreas Bausch
TU Munich, Germany ►
Peter Fischer
ETH Zurich, Switzerland ►
Anne-Marie Hermansson
SIK, Sweden ►
Martin Kroger
ETH Zurich, Germany/Switzerland ►
Erik van der Linden
Wageningen UR, The Netherlands ►
Niklas Loren
SIK, Sweden ►
Leonard Sagis
Wageningen UR, The Netherlands ►
Erich Windhab
ETH Zurich, Switzerland ►
Klaas-Jan Zuidam
Unilever, The Netherlands ►
Scientific Stuff
Manuela Duxenneuner
ETH Zurich, Switzerland ►
Sophia Fransson
SIK, Sweden ►
Nam-Phuong Humblet-Hua
Wageningen UR, The Netherlands ►
Joeska Husny
ETH Zurich, Australia/Switzerland ►
Orit Peleg
ETH Zurich, Israel/Switzerland ►
Cyrille Vezy
TU Munich, Germany ►
Varvara Mitropoulos
ETH Zurich, Switzerland ►
Associated Scientists
![]()
Enjoy your reading
SY Tee, AR Bausch, PA Janmey,
The mechanical cell
CURRENT BIOLOGY 19 (2009) R745 ►Selected conferences (co-)organized by project members
8th World Congress on Computational Mechanics WCCM8 2008
30 June - 5 July 2007, Venice, Italy ►13 May 2025
mk