![]()
New controlled release systems produced by self-assembly of biopolymers and colloidal particles at fluid-fluid interfaces
The complete free energy density, including all eight Frank-Ericksen elastic coefficients and all anisotropic Ericksen-Leslie viscosities of nematic and discotic polydomain nematic liquid crystals are derived from the kinetic model of a spatially inhomogeneous system of uniaxial liquid crystal molecules with given shape. The authors take into account the known anisotropy of the translational diffusion tensor and its dependence on shape, rotational diffusion, and a macroscopic flow field for elongated particles (including disks). In this manuscript they release all of the previously made assumptions about closure relationships or the interrelationship between Frank elastic coefficients (such as a simple quadratic closure, or the one-constant approximation) in order to derive results which not only generalize or improve earlier results, but also apply to more general cases, and for arbitrary forms of the mean-field potential in terms of the scalar order parameter (or temperature). The kinetic model is shown to confirm all proposed inequalities between Frank-Ericksen-Leslie coefficients, i.e., satisfies the main result of the macroscopic approaches. They resolve quantitatively the effect of molecular shape, order parameters, and mean-field strength and form of the mean-field potential on all results, compare with experimental findings, theoretical predictions, and discuss some implications for various special cases of the general result derived in this work. (C) 2007 American Institute of Physics. [hide]
Scientific Board
Andreas Bausch
TU Munich, Germany ►
Peter Fischer
ETH Zurich, Switzerland ►
Anne-Marie Hermansson
SIK, Sweden ►
Martin Kroger
ETH Zurich, Germany/Switzerland ►
Erik van der Linden
Wageningen UR, The Netherlands ►
Niklas Loren
SIK, Sweden ►
Leonard Sagis
Wageningen UR, The Netherlands ►
Erich Windhab
ETH Zurich, Switzerland ►
Klaas-Jan Zuidam
Unilever, The Netherlands ►
Scientific Stuff
Manuela Duxenneuner
ETH Zurich, Switzerland ►
Sophia Fransson
SIK, Sweden ►
Nam-Phuong Humblet-Hua
Wageningen UR, The Netherlands ►
Joeska Husny
ETH Zurich, Australia/Switzerland ►
Orit Peleg
ETH Zurich, Israel/Switzerland ►
Cyrille Vezy
TU Munich, Germany ►
Varvara Mitropoulos
ETH Zurich, Switzerland ►
Associated Scientists
![]()
Enjoy your reading
SY Tee, AR Bausch, PA Janmey,
The mechanical cell
CURRENT BIOLOGY 19 (2009) R745 ►Selected conferences (co-)organized by project members
8th World Congress on Computational Mechanics WCCM8 2008
30 June - 5 July 2007, Venice, Italy ►13 May 2025
mk