![]()
New controlled release systems produced by self-assembly of biopolymers and colloidal particles at fluid-fluid interfaces
It is the purpose of this paper to establish a bottom-up multiscale approach for dendronized polymers. Based on our understanding of the phenomenology of an atomistic model for this class of polymers, we introduce a "Janus chain" (JC) model which adds a vectorial degree of freedom (Janus vector)-related to the sectorial amphiphilicity-to each segment of the linear backbone of a (classical) uncharged, semiflexible, and multibead chain representation of a polymer. The JC features induced polymeric curvature and ultimately triggers complexation. JC parameters related to the topology and chemical details are obtained from the atomistic level. Available experimental observations including the formation of superstructures and double helical conformations are well reproduced by the JC model. JC is efficiently solved via Brownian dynamics simulation and can be seen as a member of a universality class which is one (two) level(s) above the magnetic (semiflexible) chain model. It therefore should allow to model not only dendronized polymers but also structures belonging to the same class-exhibiting induced (or spontaneous) curvature-such as single stranded DNA and actin filaments. [hide]
Scientific Board
Andreas Bausch
TU Munich, Germany ►
Peter Fischer
ETH Zurich, Switzerland ►
Anne-Marie Hermansson
SIK, Sweden ►
Martin Kroger
ETH Zurich, Germany/Switzerland ►
Erik van der Linden
Wageningen UR, The Netherlands ►
Niklas Loren
SIK, Sweden ►
Leonard Sagis
Wageningen UR, The Netherlands ►
Erich Windhab
ETH Zurich, Switzerland ►
Klaas-Jan Zuidam
Unilever, The Netherlands ►
Scientific Stuff
Manuela Duxenneuner
ETH Zurich, Switzerland ►
Sophia Fransson
SIK, Sweden ►
Nam-Phuong Humblet-Hua
Wageningen UR, The Netherlands ►
Joeska Husny
ETH Zurich, Australia/Switzerland ►
Orit Peleg
ETH Zurich, Israel/Switzerland ►
Cyrille Vezy
TU Munich, Germany ►
Varvara Mitropoulos
ETH Zurich, Switzerland ►
Associated Scientists
![]()
Enjoy your reading
SY Tee, AR Bausch, PA Janmey,
The mechanical cell
CURRENT BIOLOGY 19 (2009) R745 ►Selected conferences (co-)organized by project members
8th World Congress on Computational Mechanics WCCM8 2008
30 June - 5 July 2007, Venice, Italy ►13 May 2025
mk