![]()
New controlled release systems produced by self-assembly of biopolymers and colloidal particles at fluid-fluid interfaces
Cells make use of semi flexible biopolymers such as actin or intermediate. laments to control their local viscoelastic response by dynamically adjusting the concentration and type of cross-linking molecules. The microstructure of the resulting networks mainly determines their mechanical properties. It remains an important challenge to relate structural transitions to both the molecular properties of the cross-linking molecules and the mechanical response of the network. This can be achieved best by well defined in vitro model systems in combination with microscopic techniques. Here, we show that with increasing concentrations of the cross-linker heavy meromyosin, a transition in the mechanical network response occurs. At low cross-linker densities the network elasticity is dominated by the entanglement length I-e of the polymer, whereas at high heavy meromyosin densities the cross-linker distance I-c determines the elastic behavior. Using microrheology the formation of heterogeneous networks is observed at low cross-linker concentrations. Micro- and macrorheology both report the same transition to a homogeneous crosslinked phase. This transition is set by a constant average cross-linker distance I-c approximate to 15 mu m. Thus, the micro- and macromechanical properties of isotropically cross-linked in vitro actin networks are determined by only one intrinsic network parameter. [hide]
Scientific Board
Andreas Bausch
TU Munich, Germany ►
Peter Fischer
ETH Zurich, Switzerland ►
Anne-Marie Hermansson
SIK, Sweden ►
Martin Kroger
ETH Zurich, Germany/Switzerland ►
Erik van der Linden
Wageningen UR, The Netherlands ►
Niklas Loren
SIK, Sweden ►
Leonard Sagis
Wageningen UR, The Netherlands ►
Erich Windhab
ETH Zurich, Switzerland ►
Klaas-Jan Zuidam
Unilever, The Netherlands ►
Scientific Stuff
Manuela Duxenneuner
ETH Zurich, Switzerland ►
Sophia Fransson
SIK, Sweden ►
Nam-Phuong Humblet-Hua
Wageningen UR, The Netherlands ►
Joeska Husny
ETH Zurich, Australia/Switzerland ►
Orit Peleg
ETH Zurich, Israel/Switzerland ►
Cyrille Vezy
TU Munich, Germany ►
Varvara Mitropoulos
ETH Zurich, Switzerland ►
Associated Scientists
![]()
Enjoy your reading
SY Tee, AR Bausch, PA Janmey,
The mechanical cell
CURRENT BIOLOGY 19 (2009) R745 ►Selected conferences (co-)organized by project members
8th World Congress on Computational Mechanics WCCM8 2008
30 June - 5 July 2007, Venice, Italy ►13 May 2025
mk