![]()
New controlled release systems produced by self-assembly of biopolymers and colloidal particles at fluid-fluid interfaces
In contrast with entangled actin solutions, transiently cross-linked actin networks can provide highly elastic properties while still allowing for local rearrangements in the microstructure-on biological relevant time scales. Here, we show that thermal unbinding of transient cross-links entails local stress relaxation and energy dissipation in an intermediate elasticity dominated frequency regime. We quantify the viscoelastic response of an isotropically cross-linked actin network by experimentally tuning the off rate of the transiently cross-linking molecules, their density, and the solvent viscosity. We reproduce the measured frequency response by a semiphenomenological model that is predicated on microscopic unbinding events. [hide]
Scientific Board
Andreas Bausch
TU Munich, Germany ►
Peter Fischer
ETH Zurich, Switzerland ►
Anne-Marie Hermansson
SIK, Sweden ►
Martin Kroger
ETH Zurich, Germany/Switzerland ►
Erik van der Linden
Wageningen UR, The Netherlands ►
Niklas Loren
SIK, Sweden ►
Leonard Sagis
Wageningen UR, The Netherlands ►
Erich Windhab
ETH Zurich, Switzerland ►
Klaas-Jan Zuidam
Unilever, The Netherlands ►
Scientific Stuff
Manuela Duxenneuner
ETH Zurich, Switzerland ►
Sophia Fransson
SIK, Sweden ►
Nam-Phuong Humblet-Hua
Wageningen UR, The Netherlands ►
Joeska Husny
ETH Zurich, Australia/Switzerland ►
Orit Peleg
ETH Zurich, Israel/Switzerland ►
Cyrille Vezy
TU Munich, Germany ►
Varvara Mitropoulos
ETH Zurich, Switzerland ►
Associated Scientists
![]()
Enjoy your reading
SY Tee, AR Bausch, PA Janmey,
The mechanical cell
CURRENT BIOLOGY 19 (2009) R745 ►Selected conferences (co-)organized by project members
8th World Congress on Computational Mechanics WCCM8 2008
30 June - 5 July 2007, Venice, Italy ►13 May 2025
mk