![]()
New controlled release systems produced by self-assembly of biopolymers and colloidal particles at fluid-fluid interfaces
The dynamic behavior of highly permeable interfaces in phase-separated biopolymer solutions, liposomes, polymersomes, and colloidosomes is investigated. Using nonequilibrium thermodynamics, an expression for the correlation function of the height of a flat interface is derived for a multicomponent system, incorporating the effects of mass transfer across the interface. In addition, an expression is derived for the relaxation time of the height correlation function. This relaxation time is calculated for a phase-separated gelatin-dextranwater system. Comparing our expression with the expression for an impermeable interface shows that mass transfer has a significant impact on the fluctuations of the interface. At small values for the amplitude, the relaxation of fluctuations is completely dominated by the permeability of the interface. At high values for the amplitude, the relaxation is dominated by the viscosities and densities of the bulk phases. In this regime, the long-time limit of the height correlation function shows multiexponential decay. The existence of such a multiexponential response was confirmed by recent experiments (Biomacomolecules 2006, 7, 2224). The crossover length between permeability- and viscosity-dominated relaxation is in the range of 0.1-50 mu m. [hide]
Scientific Board
Andreas Bausch
TU Munich, Germany ►
Peter Fischer
ETH Zurich, Switzerland ►
Anne-Marie Hermansson
SIK, Sweden ►
Martin Kroger
ETH Zurich, Germany/Switzerland ►
Erik van der Linden
Wageningen UR, The Netherlands ►
Niklas Loren
SIK, Sweden ►
Leonard Sagis
Wageningen UR, The Netherlands ►
Erich Windhab
ETH Zurich, Switzerland ►
Klaas-Jan Zuidam
Unilever, The Netherlands ►
Scientific Stuff
Manuela Duxenneuner
ETH Zurich, Switzerland ►
Sophia Fransson
SIK, Sweden ►
Nam-Phuong Humblet-Hua
Wageningen UR, The Netherlands ►
Joeska Husny
ETH Zurich, Australia/Switzerland ►
Orit Peleg
ETH Zurich, Israel/Switzerland ►
Cyrille Vezy
TU Munich, Germany ►
Varvara Mitropoulos
ETH Zurich, Switzerland ►
Associated Scientists
![]()
Enjoy your reading
SY Tee, AR Bausch, PA Janmey,
The mechanical cell
CURRENT BIOLOGY 19 (2009) R745 ►Selected conferences (co-)organized by project members
8th World Congress on Computational Mechanics WCCM8 2008
30 June - 5 July 2007, Venice, Italy ►13 May 2025
mk