Applied Rheology: Publications

matching >Moravkova.T<

Follow the blue link(s) below for abstracts and full text pdfs .

  Author index
  Most cited recent articles
  Articles for free download
  Search conferences
Tereza Moravkova, Petr Stern
Rheological and textural properties of cosmetic emulsions

Appl. Rheol. 21:3 (2011) 35200 (6 pages)

A set of 31 cosmetic emulsions, as the most frequent cosmetic dispersions, comprising lotions and creams (o/w, w/o), was analyzed by rheological procedures (RheoStress 300, Thermo Fischer Scientific) and by sensory profiling. The power law model was used for pseudoplastic body lotions and the Herschel-Bulkley model for viscoplastic creams to get basic rheological parameters (apparent viscosity, consistency parameter, yield stress value, plastic viscosity and flow behaviour index). The content of TiO2 in sun lotions probably caused better agreement with viscoplastic creams. Rheological analysis proved to be more suitable for the storage stability testing of the emulsion than sensory evaluation. Psychorheology was applied as a suitable complex method. Rheological parameters were compared to sensory texture attributes (removing from a package, ease of spreading, skin feel and thickness). Almost 60% of relationships among rheological and sensory parameters were statistically significant (P = 0.05). Considering relationships only between rheological and sensory characteristics (with each other), 46 % were statistically significant (P = 0.05). In the case of apparent viscosity and removing the lotion from a bottle the relationship was reliable enough (correlation coefficient 0.91) to estimate the sensory attribute by fast rheological measurement. The other statistically significant relationships (correlation coefficients proved that the sensory texture acceptability of a cosmetic emulsion could be partly predicted by rheological analysis.

Cite this publication as follows:
Moravkova T, Stern P: Rheological and textural properties of cosmetic emulsions, Appl. Rheol. 21 (2011) 35200.

© Applied Rheology 2024