Contributions
matching >Merger.D<
Follow the blue link(s) below for abstracts and full text pdfs
.
Author index ►
Most cited recent articles ►
Articles for free download ►
Search conferences ►
Dimitri Merger, Mahdi Abbasi, Juri Merger, A. Jeffrey Giacomin, Chaimongkol Saengow, Manfred Wilhelm
Simple Scalar Model and Analysis for Large Amplitude Oscillatory Shear
Appl. Rheol. 26:5 (2016) 53809 (15 pages)
►
This work presents a simple, scalar model for predicting a nonlinear shear stress response of a viscoelastic fluid in Large Amplitude
Oscillatory Shear (LAOS) experiments. The model is constructed by replacing the viscosity in the well-known Maxwell
model by a shear rate dependent viscosity function. By assuming the empirical Cox-Merz rule to be valid, this shear rate dependent
viscosity function is specified based on the Maxwell expression for the complex viscosity. We thus construct a particular
case of the White-Metzner constitutive equation. Numerical solutions as well as an asymptotic analytical solution of the model
are presented. The results, analyzed for higher harmonic content by Fourier transform, are compared to experimental data of
a viscoelastic solution of wormlike micelles based on cetyltrimethylammonium bromide. Good agreement is found for low
frequencies, where viscous properties dominate.
► Cite this publication as follows:
Merger D, Abbasi M, Merger J, Giacomin AJ, Saengow C, Wilhelm M: Simple Scalar Model and Analysis for Large Amplitude Oscillatory Shear, Appl. Rheol. 26 (2016) 53809.
© Applied Rheology 2025