Applied Rheology: Publications

Contributions
matching >Meng.Y<

Follow the blue link(s) below for abstracts and full text pdfs .

  Author index
  Most cited recent articles
  Articles for free download
  Search conferences
Yan Meng, Joshua Otaigbe
Mechanism of unexpected viscosity decrease of polymer melts by low-Tg inorganic phosphate glass during processing

Appl. Rheol. 21:4 (2011) 42654 (11 pages)

We report unprecedented non-Einstein-like viscosity decrease of polymer melts by special low glass transition, Tg, inorganic tin fluorophosphate glass (Pglass) that is remarkably counter to widely accepted dispersions, suspensions, and composites theories. The well dispersed low-Tg Pglass dramatically decrease the polymer melt viscosity while increasing its Young's modulus in the solid state at low loading (<2%) however decreasing with high loading (>2%), making the hybrid Pglass/polymer solid material stronger yet easier to process in the liquid state. Disruption of the Nylon 6 melt dynamics, strong physicochemical interactions, and submicrometer nanophase separation (proved by rheometry, FTIR, DSC, SEM, NMR and XRD) are thought to be responsible for this experimental fact. This finding should beneficially impact our ability to prepare lower viscosity, very highly filled Nylon 6 melts from already existing materials and polymer processing methods such as injection molding and extrusion, making the simple strategy potentially widely applicable in a number of applications such as thinner barrier resistant thin films, composites, and membranes for heterogeneous catalysis.

Cite this publication as follows:
Meng Y, Otaigbe J: Mechanism of unexpected viscosity decrease of polymer melts by low-Tg inorganic phosphate glass during processing, Appl. Rheol. 21 (2011) 42654.


© Applied Rheology 2024