Applied Rheology: Publications

Contributions
matching >Luo.Y<

Follow the blue link(s) below for abstracts and full text pdfs .

  Author index
  Most cited recent articles
  Articles for free download
  Search conferences
Hui Li, Yingshe Luo, Donglan Hu
Long term creep assessment of room-temperature cured epoxy adhesive by time-stress superposition and fractional rheological model

Appl. Rheol. 28:6 (2018) 64796 (10 pages)

The creep behavior of a new type epoxy resin adhesive which is room-temperature cured and used for reinforcing engineering structures was studied. The tensile strength of the adhesive has reached the desired values for the structural adhesive used for bonding concrete as the base material with steel. The short-term creep tests were conducted under four different stress levels. The generalized curve for reference stress was obtained by utilizing the time-stress equivalent principle. Moreover, compared with traditional Burgers model, an improved fractional KBurgers model obtained by replacing the Newton derivative with the fractional derivative element (Abel component) in the traditional Burgers model can capture the creep behavior of this epoxy adhesive with high precision in the condition of the room-temperature and tensile stress of 36 MPa.

Cite this publication as follows:
Li H, Luo Y, Hu D: Long term creep assessment of room-temperature cured epoxy adhesive by time-stress superposition and fractional rheological model, Appl. Rheol. 28 (2018) 64796.

Qianmei Li, Guozhong Wu, Yaodong Liu, Yingshe Luo
A rheological study of binary mixtures of Ionic Liquid [Me3NC2H4OH]+[Zn2Cl5]- and ethanol

Appl. Rheol. 16:6 (2006) 334-339

In this paper, by means of Advanced Rheometric Expanded System (ARES), oscillatory and steady shear behavior of binary mixtures of a quaternary ammonium based ionic liquid [Me3NC2H4OH]+[Zn2Cl5]- with ethanol (EtOH) were determined at 25 C and 25-50 C, respectively. The effects of shear rate, temperature and concentration on viscosity were elucidated sufficiently. It was found that the solutions show pseudo-plastic behavior at low shear rate and Newtonian property at higher shear rate. The addition of EtOH caused a substantial decrease in viscosity of the ionic liquid and the viscosity of binary mixtures could be described by an exponential equation. Arrhenius Equation and Power Law equation were applied to describe the respective effects of temperature and shear rate on viscosity. Activation energy derived from Arrhenius equation decreased with increasing the EtOH fraction in the mixture.

Cite this publication as follows:
Li Q, Wu G, Liu Y, Luo Y: A rheological study of binary mixtures of Ionic Liquid [Me3NC2H4OH]+[Zn2Cl5]- and ethanol, Appl. Rheol. 16 (2006) 334.


© Applied Rheology 2022