Applied Rheology: Publications

matching >Hebraud.P<

Follow the blue link(s) below for abstracts and full text pdfs .

  Author index
  Most cited recent articles
  Articles for free download
  Search conferences
Alexandre Rothan, Rene Muller, Pascal Hebraud, Mickael Castro, Michel Bouquey, Christophe Serra
Unusual time dependent rheological behavior of a concentrated suspension

Appl. Rheol. 27:6 (2017) 64182 (7 pages)

The time dependent rheological behavior of a concentrated CaCO3 particle suspension is studied. The particles are suspended in a mixture of three industrial products: two resins, composed of styrene monomer, a styrene-butadiene-styrene block copolymer, and an unsaturated polyester oligomer, and one surfactant, acting as a dispersing agent for the particles. For the measurements, a MCR 301 rheometer from Anton Paar is used in the rotational mode, with a Couette geometry. An unusual behavior is observed, in which the low shear-rate viscosity of the suspension depends in a non-monotonous way on the shear rate applied during a previous shear history. The viscosity of the suspension at low shear rate depends both on the value of the prior shear rate, and the time during which it is applied. We found that the phenomenon is more pronounced when the particles volume fraction is increased. We propose an interpretation of the observed phenomenon in which links of different strengths can be formed between the particles and only the weakest links are destroyed by moderate shear rates.

Cite this publication as follows:
Rothan A, Muller R, Hebraud P, Castro M, Bouquey M, Serra C: Unusual time dependent rheological behavior of a concentrated suspension, Appl. Rheol. 27 (2017) 64182.

Didier Lootens, Pierre Jousset, Camille Dagallier, Pascal Hebraud, Robert Flatt
The ''Dog Tail Test'': a quick and dirty measure of yield stress. Application to polyurethane adhesives

Appl. Rheol. 19:1 (2009) 13726 (7 pages)

It is observed that, although consisting on very different formulations, the rheological properties of filled polyurethane adhesives may be rescaled onto simple master curves, and described with a small number of parameters: a yield stress, a low frequency elastic modulus and a characteristic time of flow. As a consequence, very simple and qualitative measurements of their deformations, such as the Dog Tail Test, may be used to deduce these parameters. By comparing the values obtained from Dog Tail Test measurements to well-controlled rheological measurements and to finite element computation, we show that such a simple and qualitative test may be used as a tool to measure both the yield stress and the elastic modulus of highly viscoelastic systems

Cite this publication as follows:
Lootens D, Jousset P, Dagallier C, Hebraud P, Flatt R: The ''Dog Tail Test'': a quick and dirty measure of yield stress. Application to polyurethane adhesives, Appl. Rheol. 19 (2009) 13726.

© Applied Rheology 2022