Applied Rheology: Publications

Contributions
matching >Glazunova.VA<

Follow the blue link(s) below for abstracts and full text pdfs .

  Author index
  Most cited recent articles
  Articles for free download
  Search conferences
S. O. Umerova, I. O. Dulina, A. V. Ragulya, T. E. Konstantinova, V. A. Glazunova
Rheology of plasticized screen printing pastes based on BaTiO3 nanopowder

Appl. Rheol. 26:3 (2016) 33274 (9 pages)

This paper represents the rheology of screen printing pastes based on BaTiO3 nanopowder. It is found that the pastes are shear thickened fluids with subsequent shear thinning under high shear rates. Different concentrations of plasticizer in organic binder lead to various conformations of ethyl cellulose molecules that influence the type of adsorption between polymer molecules and nanoparticles. The flow loop shows intervals of shear rate corresponding to rheopexy, pseudoplasticity and thixo - tropy. The appearance of rheopexy indicates that the added amount of plasticizer may be insufficient to bind the majority of free functional groups of the polymer and the remaining groups are bound with BaTiO3 nanoparticles forming a strong structural network. But in the case of pseudoplastic structures, the polymer molecule exists in the conformation where almost all free functional groups are bound with the nanoparticle surfaces. The pseudoplastic properties of the system are caused by the structural polymer-polymer links. SEM and optical profilometry of the obtained films shows that plasticization lead to the formation of thin (less than 1 μm) smooth (Ra is equal to the size of individual BaTiO3 nanoparticle) prints.

Cite this publication as follows:
Umerova SO, Dulina IO, Ragulya AV, Konstantinova TE, Glazunova VA: Rheology of plasticized screen printing pastes based on BaTiO3 nanopowder, Appl. Rheol. 26 (2016) 33274.


© Applied Rheology 2024