T. A. Cheema, G. M. Kim, C. Y. Lee, J. G. Hong, M. K. Kwak, C. W. Park
Characteristics of blood vessel wall deformation with porous wall conditions in an aortic arch
Appl. Rheol. 24:2 (2014) 24590 (8 pages)Abstract: Blood vessels have been modeled as non-porous structures that are permeable to solutes mixed in the blood. However, the use of non-physiological boundary conditions in numerical simulations that assume atmospheric pressure at the outlet does not illustrate the actual structural physics involved. The presence of pores in the wall influences wall deformation characteristics, which may increase the risk of rupture in specific conditions. In addition, the formation of secondary flows in a curved blood vessel may add complications to the structural behavior of the vessel walls. These reservations can be addressed by a fluid structure interaction-based numerical simulation of a three-dimensional aortic arch with increased physiological velocity and pressure waveforms. The curvature radius of the arch was 30 mm with a uniform aorta diameter of 25 mm. A one-way coupling method was used between physics of porous media flow and structural mechanics. A comparison of results with a non-porous model revealed that the approximated porous model was more prone to hypertension and rupture. Similarly, the secondary flows found to be an important indicator for the vascular compliance that forced the outer aortic region to experience the largest deformation. Consequently, it is very important to use actual physiological situations of the blood vessels to reach a diagnostic solution. © 2014 Applied Rheology.
DOI 10.3933/ApplRheol-24-24590
-- full text PDF
available for subscribers --
-- open access PDF extractavailable for non-subscribers --
You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here ►
Forgotten your login details? Send an email with subject "AR login" to login@appliedrheology.org
Purchase this article for 20 € ? ►
Appl Rheol 24 (2014) issues:
© Applied Rheology 2018