Applied Rheology: Publications
You have network access to this resource: k-mai670 [1758]
Thanunya Saowapark, Pongdhorn Sae-oui, Narongrit Sombatsompop, Chakrit Sirisinha
Storage Instability of Fly Ash Filled Natural Rubber Compounds

Appl. Rheol. 22:5 (2012) 55414 (9 pages)

Abstract: Generally, fly ashes (FA) could function as either semi-reinforcing or non-reinforcing fillers in polymeric systems, depending on particle size, specific surface areas and surface chemistry of FA particles. Typically, FA particles are spherical with smooth surfaces having significant influences on viscoelastic and mechanical properties. Additionally, the presence of heavy metals in FA particles could play role on degradation process of rubber molecules to some extent. In this article, the storage instability and thermal aging properties of FA filled natural rubber (NR) compounds were focused via changes in viscoelastic responses. Results obtained reveal that the storage duration of FA filled NR compounds leads to decreases in elastic modulus and molecular weight, particularly in the compounds with high FA loading. By replacing NR with polyisoprene (IR) containing no non-rubber substances, the storage stability is significantly enhanced. It is believed that the presence of metal ions in both FA and non-rubber substances in NR could catalyze the degradation process of rubber molecules. Such degradation process could effectively be suppressed by the addition of amine-based antioxidant. © 2012 Applied Rheology.

DOI 10.3933/ApplRheol-22-55414

-- full text PDF available for subscribers --

-- open access PDF extract available for non-subscribers --


You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here

download to disk (some browsers prefer this option)
login name
password

Purchase this article for 20 € ?

Forgotten your login details? Send an email with subject "AR login" to login@appliedrheology.org


Appl Rheol 22 (2012) issues:

           


© Applied Rheology 2018