Applied Rheology: Publications
Alexander Malkin, Alexander Semakov, Valery Kulichikhin
Macroscopic modeling of a single entanglement at high deformation rates of polymer melts

Appl. Rheol. 22:3 (2012) 32575 (9 pages)

Abstract: We constructed a macroscopic model illustrating behavior of a single entanglement knot of macromolecules in a melt and examined its behavior at different deformation rates. A model consists of flexible elastic strips, which are tied in a granny knot (modeling not a real geometrical form of entanglements but their behavior at relatively easy sliding). This scheme models the situation when elastic energy exceeds the energy of the Brownian motion. The behavior of a knot chosen for modeling is different at low and high deformation rates. In the previous case knots disentangle as predicted by the .tube. model, elastic strips slip out a knot and this is an illustration of flow. In the latter case, knots tighten up, further extension of strips leads to the increase in stresses up to breakup of a strip. This effect imitates the transition from the flow to the rubbery-like behavior of polymer melts, when flow becomes impossible due to the formation of quasi-permanent entanglements. The general dimensionless correlation for the process under discussion has been proposed. © 2012 Applied Rheology.

DOI 10.3933/ApplRheol-22-32575

-- full text PDF available for subscribers --

-- open access PDF extract available for non-subscribers --

You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here

download to disk (some browsers prefer this option)
login name

Purchase this article for 20 € ?

Forgotten your login details? Send an email with subject "AR login" to

Appl Rheol 22 (2012) issues:


© Applied Rheology 2018