Applied Rheology: Publications
You have network access to this resource: olauk528 [1638]
Anne Kowalczyk, Bernhard Hochstein, Philipp Stahle, Norbert Willenbacher
Characterization of complex fluids at very low frequency: experimental verification of the strain rate-frequency superposition (SRFS) method

Appl. Rheol. 20:5 (2010) 52340 (10 pages)

Abstract: Strain rate frequency superposition (SRFS) has been suggested as new method to extend the frequency range for assessment of the complex storage modulus G* of soft glassy materials to lower frequencies. The basic idea is that relaxation processes in such fluids are accelerated by an external shear field, analogous to the effect of a temperature shift in polymer melts and solutions. Master curves for G' and G'' are constructed from the apparent modulus data determined from non-linear oscillatory shear experiments. Here we validate the SRFS principle for the first time by independent experiments and also demonstrate its limitations.We compare SRFS results to directly measured G', G'' at frequencies down to 10-3 rad/s and creep experiments lasting up to 104 s for a variety of gel-like fluids, including polymeric thickener solutions, a highly concentrated w/oemulsion, and wormlike micellar surfactant solutions, as well as a weakly viscoelastic non-Brownian suspension of glass beads. Good agreement between SRFS data and directly measured G', G'' values for the thickener solutions, the emulsion as well as the suspension. Apparent viscosity data obtained from creep experiments and absolute values of the complex viscosity in the low frequency limit agree fairly well for these fluids. But the method fails for the wormlike micellar solutions and this could be due to non-uniform flow or due to flow-induced structural changes. Finally,we demonstrate that the combination of SRFS, rotational rheometry, and advanced high frequency rheology methods allows for a broad bandwidth characterization of complex fluids spanning an unprecedented frequency range of about eleven decades. © 2010 Applied Rheology.

DOI 10.3933/ApplRheol-20-52340

-- full text PDF available for subscribers --

-- open access PDF extract available for non-subscribers --

You have no password-free access to Applied Rheology Online. If you are a subscriber, enter login details below. For password-free access, we need your IP address. Sample manuscripts for free download can be found here

download to disk (some browsers prefer this option)
login name

Purchase this article for 20 € ?

Forgotten your login details? Send an email with subject "AR login" to

Appl Rheol 20 (2010) issues:


© Applied Rheology 2018