Applied Rheology: Publications

Appl Rheol online available publications for selected issue

Follow the blue link(s) below for abstracts and full text pdfs .

Ulf Bjorkman
The Nonlinear History of Fibre Flow Research: Part 2. Continuation, Reflections and Suggestion

Appl. Rheol. 18:3 (2008) 34694 (26 pages)

Technical fibre flows are normally flocky but have theoretically mainly been treated as individual fibre flows. The reason for this can only be understood through the subject's historic development. In Part 1 of this investigation the origin of fibre flow research was traced to the beginning of the 19th century, and was followed through its formative years at the first half of the 20th century up to about WWII. This second and final part takes us up to about the 1960s when the present main theoretical research tradition had been firmly established. An example of an alternative approach is given. Finally, some suggestions for future work are advanced. In Appendix methods of characterising the inner geometry of technical fibre suspensions are discussed.

Cite this publication as follows:
Bjorkman U: The Nonlinear History of Fibre Flow Research: Part 2. Continuation, Reflections and Suggestion, Appl. Rheol. 18 (2008) 34694.

Vassilios Kelessidis, Roberto Maglione
Shear rate corrections for Herschel-Bulkley fluids in Couette geometry

Appl. Rheol. 18:3 (2008) 34482 (11 pages)

A methodology is presented to invert the flow equation of a Herschel-Bulkley fluid in Couette concentric cylinder geometry, thus enabling simultaneous computation of the true shear rates, ΓHB, and of the three Herschel-Bulkley rheological parameters. The errors made when these rheological parameters are computed using Newtonian shear rates, ΓN, as it is normal practice by research and industry personnel, can then be estimated. Quantification of these errors has been performed using narrow gap viscometer data from literature, with most of them taken with oil-field rheometers. The results indicate that significant differences exist between the yield stress and the flow behavior index computed using ΓHB versus the parameters obtained using ΓN and this is an outcome of the higher ΓHB values. Predicted true shear rates and rheological parameters are in very good agreement with results reported by other investigators, who have followed different approaches to invert the flow equation, both for yield-pseudoplastic and power-law fluids.

Cite this publication as follows:
Kelessidis V, Maglione R: Shear rate corrections for Herschel-Bulkley fluids in Couette geometry , Appl. Rheol. 18 (2008) 34482.

Patrice Estelle, Christophe Lanos, Arnaud Perrot, Sofiane Amziane
Processing the vane shear flow data from Couette analogy

Appl. Rheol. 18:3 (2008) 34037 (6 pages)

A new procedure is described to convert the vane torque and rotational velocity data into shear stress vs shear rate relationships. The basis of the procedure consists in considering locally the sheared material as a Bingham fluid and computing a characteristic shear rate from Couette analogy. The approach is first applied to experimental vane data of Newtonian fluid, then used to process vane experimental data of non-Newtonian and yield stress materials. Results, which are favourably compared with torsional flow, show that the approach correctly predicts the rheological behaviour of the materials investigated.

Cite this publication as follows:
Estelle P, Lanos C, Perrot A, Amziane S: Processing the vane shear flow data from Couette analogy, Appl. Rheol. 18 (2008) 34037.

Simon Cox, Stephen Neethling, Helen Wilson
British Society of Rheology mid-winter meeting on The Rheology of Foams and Emulsions

Appl. Rheol. 18:3 (2008) 193-195

Cite this publication as follows:
Cox S, Neethling S, Wilson HJ: British Society of Rheology mid-winter meeting on The Rheology of Foams and Emulsions, Appl. Rheol. 18 (2008) 193.

Steffen Schneider
Methods to characterize electrorheological suspensions in consideration of the temperature influence (PhD thesis summary)

Appl. Rheol. 18:3 (2008) 148-149

Cite this publication as follows:
Schneider S: Methods to characterize electrorheological suspensions in consideration of the temperature influence (PhD thesis summary), Appl. Rheol. 18 (2008) 148.


© Applied Rheology 2019