
Intel® Fortran Compiler User and
Reference Guides

Document Number: 304970-006US

Contents
Legal Information..77
Getting Help and Support...79

Chapter 1: Introduction
Introducing the Intel(R) Fortran Compiler...81
Notational Conventions..81
Related Information...87

Part I: Building Applications

Chapter 2: Overview: Building Applications
..93

Chapter 3: Introduction: Basic Concepts
Choosing Your Development Environment....................................95
Invoking the Intel® Fortran Compiler..95
Default Tools..97
Specifying Alternative Tools and Locations....................................99
Compilation Phases...99
Compiling and Linking for Optimization......................................100
Compiling and Linking Multithread Programs...............................101
What the Compiler Does by Default...102
Generating Listing and Map Files...103
Saving Compiler Information in your Executable..........................104

3

Chapter 4: Building Applications from the Command Line
Using the Compiler and Linker from the Command Line.........107
Syntax for the ifort Command..108
Examples of the ifort Command..109
Creating, Running, and Debugging an Executable Program.....110
Redirecting Command-Line Output to Files...........................113
Using Makefiles to Compile Your Application.........................114
Specifying Memory Models to use with Systems Based on Intel®

64 Architecture...115
Allocating Common Blocks...116
Running Fortran Applications from the Command Line...........118

Chapter 5: Input and Output Files
Understanding Input File Extensions....................................121
Producing Output Files...122
Temporary Files Created by the Compiler or Linker................124

Chapter 6: Setting Environment Variables
Using the ifortvars File to Specify Location of Components......127
Setting Compile-Time Environment Variables........................129
Setting Run-Time Environment Variables..............................132

Chapter 7: Using Compiler Options
Compiler Options Overview..137
Using the Option Mapping Tool..138
Compiler Directives Related to Options................................140

Chapter 8: Preprocessing
Using the fpp Preprocessor...143
Using fpp Directives..146
Using Predefined Preprocessor Symbols...............................153

Chapter 9: Using Configuration Files and Response Files

4

Intel® Fortran Compiler User and Reference Guides

Configuration Files and Response Files Overview...................157
Using Configuration Files..157
Using Response Files...158

Chapter 10: Debugging
Debugging Fortran Programs..161
Preparing Your Program for Debugging................................161
Locating Unaligned Data..164
Debugging a Program that Encounters a Signal or Exception...164
Debugging and Optimizations...165
Debugging Multithreaded Programs.....................................168

Chapter 11: Data and I/O
Data Representation..171

Data Representation Overview...................................171
Integer Data Representations.....................................174
Logical Data Representations.....................................176
Character Representation..178
Hollerith Representation..179

Using Traceback Information..181
Supported Native and Nonnative Numeric Formats........181
Porting Nonnative Data...187
Specifying the Data Format..188

Fortran I/O..197
Devices and Files Overview..197
Logical Devices..197
Types of I/O Statements..201
Forms of I/O Statements...203
Assigning Files to Logical Units...................................205
File Organization..208
Internal Files and Scratch Files...................................209
File Access and File Structure.....................................210
File Records...213

5

Contents

Record Types...213
Record Length..222
Record Access..223
Record Transfer..225
Specifying Default Pathnames and File Names..............227
Opening Files: OPEN Statement..................................228
Obtaining File Information: INQUIRE Statement...........232
Closing Files: CLOSE Statement..................................234
Record I/O Statement Specifiers.................................235
File Sharing on Linux* OS and Mac OS* X Systems.......236
Specifying the Initial Record Position...........................237
Advancing and Nonadvancing Record I/O.....................238
User-Supplied OPEN Procedures: USEROPEN Specifier...238
Microsoft Fortran PowerStation Compatible Files...........246
Using Asynchronous I/O..253

Chapter 12: Structuring Your Program
Structuring Your Program Overview.....................................257
Creating Fortran Executables..257
Using Module (.mod) Files..258
Using Include Files..260
Advantages of Internal Procedures......................................261
Storing Object Code in Static Libraries.................................261
Storing Routines in Shareable Libraries................................261

Chapter 13: Programming with Mixed Languages
Programming with Mixed Languages Overview......................263
Calling Subprograms from the Main Program........................263
Summary of Mixed-Language Issues...................................264
Adjusting Calling Conventions in Mixed-Language

Programming...266
Adjusting Calling Conventions in Mixed-Language

Programming Overview...266

6

Intel® Fortran Compiler User and Reference Guides

ATTRIBUTES Properties and Calling Conventions...........268
Adjusting Naming Conventions in Mixed-Language

Programming...274
Adjusting Naming Conventions in Mixed-Language

Programming Overview...274
C/C++ Naming Conventions......................................274
Procedure Names for Fortran, C, C++, and MASM.........275
Reconciling the Case of Names...................................276
Fortran Module Names and ATTRIBUTES......................278

Prototyping a Procedure in Fortran......................................279
Exchanging and Accessing Data in Mixed-Language

Programming...280
Exchanging and Accessing Data in Mixed-Language

Programming...280
Passing Arguments in Mixed-Language Programming.....281
Using Modules in Mixed-Language Programming...........283
Using Common External Data in Mixed-Language

Programming...285
Handling Data Types in Mixed-Language Programming...........289

Handling Data Types in Mixed-Language Programming
Overview...289

Handling Numeric, Complex, and Logical Data Types.....290
Handling Fortran Array Pointers and Allocatable

Arrays...293
Handling Integer Pointers..294
Handling Arrays and Fortran Array Descriptors..............295
Handling Character Strings..301
Handling User-Defined Types......................................305

Intel(R) Fortran/Visual Basic* Mixed-Language Programs.......306
Interoperability with C...306
Compiling and Linking Intel® Fortran/C Programs..........311
Calling C Procedures from an Intel® Fortran Program.....312

7

Contents

Chapter 14: Using Libraries
Supplied Libraries...315
Creating Static Libraries...319
Creating Shared Libraries...321
Calling Library Routines...323
Portability Considerations...325

Portability Library Overview.......................................325
Using the IFPORT Portability Module............................325
Portability Routines...326

Math Libraries..329

Chapter 15: Error Handling
Handling Compile Time Errors...331

Understanding Errors During the Build Process.............331
Compiler Message Catalog Support.............................335
Using Source Code Verification...................................336

Handling Run-Time Errors..351
Understanding Run-Time Errors..................................351
Run-Time Default Error Processing..............................353
Run-Time Message Display and Format........................353
Values Returned at Program Termination.....................356
Methods of Handling Errors..357
Using the END, EOR, and ERR Branch Specifiers...........357
Using the IOSTAT Specifier and Fortran Exit Codes........358
Locating Run-Time Errors..359
List of Run-Time Error Messages.................................361
Signal Handling (Linux* OS and Mac OS* X only).........410
Overriding the Default Run-Time Library Exception

Handler...411
Using Traceback Information......................................412

Chapter 16: Portability Considerations

8

Intel® Fortran Compiler User and Reference Guides

Portability Considerations Overview.....................................429
Understanding Fortran Language Standards.........................429

Understanding Fortran Language Standards Overview...429
Using Standard Features and Extensions......................430
Using Compiler Optimizations.....................................431

Minimizing Operating System-Specific Information................432
Storing and Representing Data...432
Formatting Data for Transportability....................................433

Chapter 17: Troubleshooting
Troubleshooting Your Application...435

Chapter 18: Reference Information
Key Compiler Files Summary..437
Compiler Limits..438

Part II: Compiler Options

Chapter 19: Overview: Compiler Options
New Options..444
Deprecated and Removed Compiler Options.........................457

Chapter 20: Alphabetical Compiler Options
Compiler Option Descriptions and General Rules...................465
0 - 9

1..469
4I2, 4I4, 4I8..469
4L72, 4L80, 4L132..469
4Na, 4Ya...469
4Naltparam, 4Yaltparam..469
4Nb,4Yb..469
4Nd,4Yd..469
4Nf...469

9

Contents

4Nportlib, 4Yportlib...469
4Ns,4Ys...471
4R8,4R16..471
4Yf...471
4Nportlib, 4Yportlib...471
66..472
72,80,132...472

A
align...472
allow..476
altparam...478
ansi-alias, Qansi-alias...479
arch..480
architecture...483
asmattr...483
asmfile..485
assume...486
auto, Qauto...496
auto-scalar, Qauto-scalar...496
autodouble, Qautodouble...498
automatic..498
ax, Qax...500

B
B..503
Bdynamic..504
bigobj...506
bintext..507
Bstatic..508

C
c..509
C..510
CB..510

10

Intel® Fortran Compiler User and Reference Guides

ccdefault...510
check..511
cm...516
common-args, Qcommon-args...................................516
compile-only..516
complex-limited-range, Qcomplex-limited-range...........516
convert...517
cpp, Qcpp..520
CU..520
cxxlib..520

D
D...522
d-lines, Qd-lines...523
dbglibs..524
DD...526
debug (Linux* OS and Mac OS* X).............................526
debug (Windows* OS)...529
debug-parameters..532
define...533
diag, Qdiag..533
diag-dump, Qdiag-dump..538
diag, Qdiag..539
diag-enable sc-include, Qdiag-enable:sc-include...........544
diag-enable sc-parallel, Qdiag-enable:sc-parallel..........545
diag-error-limit, Qdiag-error-limit...............................547
diag-file, Qdiag-file...548
diag-file-append, Qdiag-file-append............................550
diag-id-numbers, Qdiag-id-numbers............................551
diag-once, Qdiag-once..552
dll..553
double-size..554
dps, Qdps..556

11

Contents

dryrun..556
dumpmachine..557
dynamic-linker...558
dynamiclib...559
dyncom, Qdyncom..560

E
E..561
e90, e95, e03..562
EP..562
error-limit...563
exe...563
extend-source..565
extfor...566
extfpp...567
extlnk...568

F
F (Windows*)..569
f66...570
f77rtl..572
Fa..573
FA..573
falias..573
falign-functions, Qfnalign...574
falign-stack...575
fast..577
fast-transcendentals, Qfast-transcendentals.................578
fcode-asm...580
Fe..581
fexceptions..581
ffnalias..582
FI...583
finline...583

12

Intel® Fortran Compiler User and Reference Guides

finline-functions...584
finline-limit..585
finstrument-functions, Qinstrument-functions...............586
fixed...588
fkeep-static-consts, Qkeep-static-consts......................589
fltconsistency...590
Fm...593
fma, Qfma...593
fmath-errno...594
fminshared..596
fnsplit, Qfnsplit...597
fomit-frame-pointer, Oy...598
Fo..600
fomit-frame-pointer, Oy...600
fp-model, fp...601
fp-model, fp...606
fp-port, Qfp-port..611
fp-relaxed, Qfp-relaxed...612
fp-speculation, Qfp-speculation..................................613
fp-stack-check, Qfp-stack-check615
fpconstant...616
fpe...617
fpe-all...620
fpic...623
fpie..624
fpp, Qfpp...625
fpscomp..627
FR..637
fr32..637
free..638
fsource-asm..639
fstack-security-check, GS..640

13

Contents

fstack-security-check, GS..641
fsyntax-only..642
ftrapuv, Qtrapuv...642
ftz, Qftz..643
func-groups...646
funroll-loops..646
fverbose-asm...646
fvisibility...647

G
g, Zi, Z7..650
G2, G2-p9000..651
G5, G6, G7..653
gdwarf-2...655
Ge..656
gen-interfaces..657
global-hoist, Qglobal-hoist...658
Gm...660
Gs..660
fstack-security-check, GS..661
Gz..662

H
heap-arrays...662
help..663
homeparams..665
hotpatch...666

I
I..667
i-dynamic..669
i-static..669
i2, i4, i8..669
idirafter...669
iface...670

14

Intel® Fortran Compiler User and Reference Guides

implicitnone...674
include..674
inline..674
inline-debug-info, Qinline-debug-info..........................676
inline-factor, Qinline-factor...677
inline-forceinline, Qinline-forceinline............................679
inline-level, Ob...680
inline-max-per-compile, Qinline-max-per-compile.........682
inline-max-per-routine, Qinline-max-per-routine...........683
inline-max-size, Qinline-max-size...............................685
inline-max-total-size, Qinline-max-total-size................687
inline-min-size, Qinline-min-size.................................688
intconstant..690
integer-size...691
ip, Qip...693
ip-no-inlining, Qip-no-inlining.....................................694
ip-no-pinlining, Qip-no-pinlining.................................695
IPF-flt-eval-method0, QIPF-flt-eval-method0................696
IPF-fltacc, QIPF-fltacc...698
IPF-fma, QIPF-fma..699
IPF-fp-relaxed, QIPF-fp-relaxed..................................699
ipo, Qipo...699
ipo-c, Qipo-c..701
ipo-jobs, Qipo-jobs...702
ipo-S, Qipo-S...704
ipo-separate, Qipo-separate.......................................705
isystem...706
ivdep-parallel, Qivdep-parallel....................................707

L
l...708
L..709
LD..710

15

Contents

libdir...710
libs...712
link...715
logo..716
lowercase, Qlowercase..717

M
m...717
m32, m64...719
map..720
map-opts, Qmap-opts...721
march...723
mcmodel...724
mcpu..726
MD...726
MDs..728
mdynamic-no-pic...729
MG...730
mieee-fp...730
minstruction, Qinstruction..730
mixed-str-len-arg...732
mkl, Qmkl...732
ML..733
module...734
mp...735
multiple-processes, MP..735
mp1, Qprec...737
mrelax..738
MT..739
mtune...740
multiple-processes, MP..743
MW...744
MWs...744

16

Intel® Fortran Compiler User and Reference Guides

N
names..744
nbs...746
no-bss-init, Qnobss-init...746
nodefaultlibs..747
nodefine..748
nofor-main..748
noinclude..749
nolib-inline..749
nostartfiles..750
nostdinc..751
nostdlib...751
nus...752

O
o..752
O...753
inline-level, Ob...758
object...760
Od..761
Og..763
onetrip, Qonetrip..764
Op..765
openmp, Qopenmp...765
openmp-lib, Qopenmp-lib..766
openmp-link, Qopenmp-link.......................................768
openmp-profile, Qopenmp-profile...............................770
openmp-report, Qopenmp-report................................771
openmp-stubs, Qopenmp-stubs..................................772
openmp-threadprivate, Qopenmp-threadprivate...........774
opt-block-factor, Qopt-block-factor..............................775
opt-jump-tables, Qopt-jump-tables.............................776
opt-loadpair, Qopt-loadpair..778

17

Contents

opt-malloc-options..779
opt-mem-bandwidth, Qopt-mem-bandwidth.................780
opt-mod-versioning, Qopt-mod-versioning...................782
opt-multi-version-aggressive,

Qopt-multi-version-aggressive...............................783
opt-prefetch, Qopt-prefetch.......................................784
opt-prefetch-initial-values,

Qopt-prefetch-initial-values....................................786
opt-prefetch-issue-excl-hint,

Qopt-prefetch-issue-excl-hint.................................787
opt-prefetch-next-iteration,

Qopt-prefetch-next-iteration..................................788
opt-ra-region-strategy, Qopt-ra-region-strategy............790
opt-report, Qopt-report...791
opt-report-file, Qopt-report-file..................................793
opt-report-help, Qopt-report-help...............................794
opt-report-phase, Qopt-report-phase..........................795
opt-report-routine, Qopt-report-routine.......................796
opt-streaming-stores, Qopt-streaming-stores...............797
opt-subscript-in-range, Qopt-subscript-in-range...........799
optimize..800
Os..800
Ot..802
Ox..803
fomit-frame-pointer, Oy...803

P
p..805
P..806
pad, Qpad...806
pad-source, Qpad-source...807
par-affinity, Qpar-affinity...808
par-num-threads, Qpar-num-threads..........................810

18

Intel® Fortran Compiler User and Reference Guides

par-report, Qpar-report...811
par-runtime-control, Qpar-runtime-control...................813
par-schedule, Qpar-schedule......................................814
par-threshold, Qpar-threshold....................................818
parallel, Qparallel...819
pc, Qpc...821
pdbfile..822
pg..823
pie...823
prec-div, Qprec-div...825
prec-sqrt, Qprec-sqrt..826
preprocess-only...827
print-multi-lib..828
prof-data-order, Qprof-data-order...............................829
prof-dir, Qprof-dir...830
prof-file, Qprof-file..832
prof-func-groups..833
prof-func-order, Qprof-func-order...............................834
prof-gen, Qprof-gen..836
prof-genx, Qprof-genx..838
prof-hotness-threshold, Qprof-hotness-threshold..........838
prof-src-dir, Qprof-src-dir..840
prof-src-root, Qprof-src-root......................................841
prof-src-root-cwd, Qprof-src-root-cwd.........................843
prof-use, Qprof-use..845

Q
ansi-alias, Qansi-alias...847
auto, Qauto...848
auto-scalar, Qauto-scalar...848
autodouble, Qautodouble...850
ax, Qax...850
Qchkstk..853

19

Contents

common-args, Qcommon-args...................................855
complex-limited-range, Qcomplex-limited-range...........855
cpp, Qcpp..856
d-lines, Qd-lines...856
diag, Qdiag..857
diag-dump, Qdiag-dump..862
diag, Qdiag..863
diag-enable sc-include, Qdiag-enable:sc-include...........867
diag-enable sc-parallel, Qdiag-enable:sc-parallel..........869
diag-error-limit, Qdiag-error-limit...............................871
diag-file, Qdiag-file...872
diag-file-append, Qdiag-file-append............................873
diag-id-numbers, Qdiag-id-numbers............................875
diag-once, Qdiag-once..876
dps, Qdps..877
dyncom, Qdyncom..877
Qextend-source..879
fast-transcendentals, Qfast-transcendentals.................879
fma, Qfma...880
falign-functions, Qfnalign...882
fnsplit, Qfnsplit...883
fp-port, Qfp-port..884
fp-relaxed, Qfp-relaxed...885
fp-speculation, Qfp-speculation..................................886
fp-stack-check, Qfp-stack-check888
fpp, Qfpp...889
ftz, Qftz..891
global-hoist, Qglobal-hoist...893
QIA64-fr32..894
QIfist..895
Qimsl..895
inline-debug-info, Qinline-debug-info..........................896

20

Intel® Fortran Compiler User and Reference Guides

Qinline-dllimport..897
inline-factor, Qinline-factor...898
inline-forceinline, Qinline-forceinline............................900
inline-max-per-compile, Qinline-max-per-compile.........901
inline-max-per-routine, Qinline-max-per-routine...........903
inline-max-size, Qinline-max-size...............................905
inline-max-total-size, Qinline-max-total-size................906
inline-min-size, Qinline-min-size.................................908
Qinstall...910
minstruction, Qinstruction..911
finstrument-functions, Qinstrument-functions...............912
ip, Qip...914
ip-no-inlining, Qip-no-inlining.....................................915
ip-no-pinlining, Qip-no-pinlining.................................916
IPF-flt-eval-method0, QIPF-flt-eval-method0................917
IPF-fltacc, QIPF-fltacc...919
IPF-fma, QIPF-fma..920
IPF-fp-relaxed, QIPF-fp-relaxed..................................920
ipo, Qipo...920
ipo-c, Qipo-c..922
ipo-jobs, Qipo-jobs...923
ipo-S, Qipo-S...925
ipo-separate, Qipo-separate.......................................926
ivdep-parallel, Qivdep-parallel....................................927
fkeep-static-consts, Qkeep-static-consts......................928
Qlocation...929
lowercase, Qlowercase..931
map-opts, Qmap-opts...931
mkl, Qmkl...933
no-bss-init, Qnobss-init...934
onetrip, Qonetrip..935
openmp, Qopenmp...936

21

Contents

openmp-lib, Qopenmp-lib..937
openmp-link, Qopenmp-link.......................................939
openmp-profile, Qopenmp-profile...............................940
openmp-report, Qopenmp-report................................942
openmp-stubs, Qopenmp-stubs..................................943
openmp-threadprivate, Qopenmp-threadprivate...........944
opt-block-factor, Qopt-block-factor..............................946
opt-jump-tables, Qopt-jump-tables.............................947
opt-loadpair, Qopt-loadpair..948
opt-mem-bandwidth, Qopt-mem-bandwidth.................949
opt-mod-versioning, Qopt-mod-versioning...................951
opt-multi-version-aggressive,

Qopt-multi-version-aggressive...............................952
opt-prefetch, Qopt-prefetch.......................................953
opt-prefetch-initial-values,

Qopt-prefetch-initial-values....................................955
opt-prefetch-issue-excl-hint,

Qopt-prefetch-issue-excl-hint.................................956
opt-prefetch-next-iteration,

Qopt-prefetch-next-iteration..................................957
opt-ra-region-strategy, Qopt-ra-region-strategy............959
opt-report, Qopt-report...960
opt-report-file, Qopt-report-file..................................962
opt-report-help, Qopt-report-help...............................963
opt-report-phase, Qopt-report-phase..........................964
opt-report-routine, Qopt-report-routine.......................965
opt-streaming-stores, Qopt-streaming-stores...............966
opt-subscript-in-range, Qopt-subscript-in-range...........968
Qoption...969
qp..971
pad, Qpad...971
pad-source, Qpad-source...972

22

Intel® Fortran Compiler User and Reference Guides

Qpar-adjust-stack...974
par-affinity, Qpar-affinity...975
par-num-threads, Qpar-num-threads..........................977
par-report, Qpar-report...978
par-runtime-control, Qpar-runtime-control...................979
par-schedule, Qpar-schedule......................................980
par-threshold, Qpar-threshold....................................984
parallel, Qparallel...986
pc, Qpc...987
mp1, Qprec...989
prec-div, Qprec-div...990
prec-sqrt, Qprec-sqrt..991
prof-data-order, Qprof-data-order...............................992
prof-dir, Qprof-dir...994
prof-file, Qprof-file..995
prof-func-order, Qprof-func-order...............................996
prof-gen, Qprof-gen..998
prof-genx, Qprof-genx...1000
prof-hotness-threshold, Qprof-hotness-threshold........1000
prof-src-dir, Qprof-src-dir...1001
prof-src-root, Qprof-src-root....................................1003
prof-src-root-cwd, Qprof-src-root-cwd.......................1005
prof-use, Qprof-use..1006
rcd, Qrcd...1008
rct, Qrct..1009
safe-cray-ptr, Qsafe-cray-ptr....................................1010
save, Qsave...1012
save-temps, Qsave-temps.......................................1013
scalar-rep, Qscalar-rep..1015
Qsfalign...1016
sox, Qsox..1017
tcheck, Qtcheck..1019

23

Contents

tcollect, Qtcollect..1020
tcollect-filter, Qtcollect-filter.....................................1021
tprofile, Qtprofile..1023
ftrapuv, Qtrapuv...1024
unroll, Qunroll..1026
unroll-aggressive, Qunroll-aggressive........................1027
uppercase, Quppercase...1028
use-asm, Quse-asm..1028
Quse-msasm-symbols...1029
Quse-vcdebug..1030
Qvc...1031
vec, Qvec..1032
vec-guard-write, Qvec-guard-write............................1033
vec-report, Qvec-report...1034
vec-threshold, Qvec-threshold..................................1036
x, Qx..1038
zero, Qzero..1042

R
r8, r16..1044
rcd, Qrcd...1044
rct, Qrct..1045
real-size..1046
recursive...1047
reentrancy...1049
RTCu...1050

S
S..1050
safe-cray-ptr, Qsafe-cray-ptr....................................1051
save, Qsave...1053
save-temps, Qsave-temps.......................................1054
scalar-rep, Qscalar-rep..1056
shared..1057

24

Intel® Fortran Compiler User and Reference Guides

shared-intel...1058
shared-libgcc...1060
source...1061
sox, Qsox..1062
stand..1063
static..1065
staticlib...1066
static-intel...1068
static-libgcc...1069
std, std90, std95, std03..1070
std, std90, std95, std03..1070
std, std90, std95, std03..1070
std, std90, std95, std03..1070
syntax-only..1070

T
T..1071
tcheck, Qtcheck..1072
tcollect, Qtcollect..1073
tcollect-filter, Qtcollect-filter.....................................1075
Tf...1077
threads...1077
tprofile, Qtprofile..1078
traceback..1080
tune..1081

U
u (Linux* and Mac OS* X).......................................1083
u (Windows*)...1083
U..1084
undefine..1085
unroll, Qunroll..1085
unroll-aggressive, Qunroll-aggressive........................1086
uppercase, Quppercase...1088

25

Contents

us...1088
use-asm, Quse-asm..1088

V
v..1089
V (Linux* and Mac OS* X).......................................1090
V (Windows*)..1090
vec, Qvec..1090
vec-guard-write, Qvec-guard-write............................1091
vec-report, Qvec-report...1092
vec-threshold, Qvec-threshold..................................1094
vms..1095

W
w..1098
W0, W1...1098
W0, W1...1098
Wa..1098
warn...1099
watch..1105
WB...1106
what...1107
winapp..1108
Winline..1109
Wl..1110
Wp...1111

X
x, Qx..1112
X..1116
Xlinker..1118

Y
y..1119

Z
g, Zi, Z7..1119

26

Intel® Fortran Compiler User and Reference Guides

Zd..1121
zero, Qzero..1121
g, Zi, Z7..1122
Zl...1124
Zp..1124
Zs..1124
Zx..1124

Chapter 21: Quick Reference Guides and Cross
References

Windows* OS Quick Reference Guide and Cross Reference...1127
Linux* OS and Mac OS* X Quick Reference Guide and Cross

Reference..1178

Chapter 22: Related Options
Linking Tools and Options...1229
Fortran Preprocessor Options..1232

Part III: Optimizing Applications

Chapter 23: Intel(R) Fortran Optimizing Applications
Overview: Optimizing Applications.....................................1239
Optimizing with the Intel® Compiler...................................1239
Optimizing for Performance..1241
Overview of Parallelism Method...1242
Quick Reference Lists..1244
Other Resources...1245

Chapter 24: Evaluating Performance
Performance Analysis..1247
Using a Performance Enhancement Methodology.................1247
Intel® Performance Analysis Tools and Libraries...................1250
Performance Enhancement Strategies................................1251

27

Contents

Using Compiler Reports..1258
Compiler Reports Overview......................................1258
Compiler Reports Quick Reference.............................1258
Generating Reports...1260
Interprocedural Optimizations (IPO) Report................1263
Profile-guided Optimization (PGO) Report...................1269
High-level Optimization (HLO) Report........................1273
High Performance Optimizer (HPO) Report.................1286
Parallelism Report...1287
Software Pipelining (SWP) Report (Linux* and

Windows*)...1288
Vectorization Report..1294
OpenMP* Report...1299

Chapter 25: Using Compiler Optimizations
Automatic Optimizations Overview....................................1301
Enabling Automatic Optimizations.....................................1302
Targeting IA-32 and Intel(R) 64 Architecture Processors

Automatically...1306
Targeting Multiple IA-32 and Intel(R) 64 Architecture Processors

for Run-time Performance..1310
Targeting IA-64 Architecture Processors Automatically.........1313
Restricting Optimizations..1314

Chapter 26: Using Parallelism: OpenMP* Support
OpenMP* Support Overview...1317
OpenMP* Options Quick Reference....................................1318
OpenMP* Source Compatibility and Interoperability with Other

Compilers..1321
Using OpenMP*..1323
Parallel Processing Model...1326
Verifying OpenMP* Using Parallel Lint................................1331
OpenMP* Clauses"..1342

28

Intel® Fortran Compiler User and Reference Guides

Data Scope Attribute Clauses Overview......................1342
Specifying Schedule Type and Chunk Size..................1342
COPYIN Clause...1344
DEFAULT Clause..1345
PRIVATE, FIRSTPRIVATE, and LASTPRIVATE Clauses....1346
REDUCTION Clause...1348
SHARED Clause..1351

OpenMP* Directives..1352
Programming with OpenMP*....................................1352
Combined Parallel and Worksharing Constructs...........1359
Parallel Region Directives...1360
Synchronization Constructs......................................1364
THREADPRIVATEthreadprivate Directive.....................1370
Worksharing Construct Directives..............................1371
Tasking Directives...1374

OpenMP* Advanced Issues...1375
OpenMP* Examples...1379
Libraries, Directives, Clauses, and Environmental Variables...1383

OpenMP* Environment Variables...............................1383
OpenMP* Directives and Clauses Summary................1392
OpenMP* Library Support..1398

Chapter 27: Using Parallelism: Automatic Parallelization
Auto-parallelization Overview...1447
Auto-Parallelization Options Quick Reference.......................1450
Auto-parallelization: Enabling, Options, Directives, and

Environment Variables...1451
Programming with Auto-parallelization...............................1453
Programming for Multithread Platform Consistency..............1454

Chapter 28: Using Parallelism: Automatic Vectorization
Automatic Vectorization Overview.....................................1459
Automatic Vectorization Options Quick Reference................1459

29

Contents

Programming Guidelines for Vectorization...........................1461
Vectorization and Loops...1462
Loop Constructs..1466
Absence of Loop-carried Memory Dependency with IVDEP

Directive..1474
Vectorization Examples..1475

Chapter 29: Using Parallelism: Multi-Threaded
Applications

Creating Multithread Applications Overview........................1479
Basic Concepts of Multithreading.......................................1479
Developing Multithread Applications...................................1480

Writing a Multithread Program Overview....................1480
Modules for Multithread Programs.............................1481
Starting and Stopping Threads.................................1481
Thread Routine Format..1484
Sharing Resources..1488
Thread Local Storage..1491
Synchronizing Threads..1491
Handling Errors in Multithread Programs....................1492
Table of Multithread Routines....................................1492
Working with Multiple Processes................................1495

Chapter 30: Using Interprocedural Optimization (IPO)
Interprocedural Optimization (IPO) Overview......................1497
Interprocedural Optimization (IPO) Quick Reference............1500
Using IPO..1501
IPO-Related Performance Issues.......................................1504
IPO for Large Programs..1504
Understanding Code Layout and Multi-Object IPO................1506
Creating a Library from IPO Objects..................................1508
Requesting Compiler Reports with the xi* Tools...................1510
Inline Expansion of Functions...1511

30

Intel® Fortran Compiler User and Reference Guides

Inline Function Expansion..1511
Compiler Directed Inline Expansion of User Functions...1512
Developer Directed Inline Expansion of User

Functions...1514

Chapter 31: Using Profile-Guided Optimization (PGO)
Profile-Guided Optimizations Overview...............................1519
Profile-Guided Optimization (PGO) Quick Reference.............1520
Profile an Application...1530
PGO Tools..1532

PGO Tools Overview..1532
code coverage Tool...1532
test prioritization Tool..1552
profmerge and proforder Tools..................................1561
Using Function Order Lists, Function Grouping, Function

Ordering, and Data Ordering Optimizations............1566
Comparison of Function Order Lists and IPO Code

Layout...1573
PGO API Support..1573

API Support Overview...1573
PGO Environment Variables......................................1574
Dumping Profile Information....................................1576
Interval Profile Dumping..1578
Resetting the Dynamic Profile Counters......................1579
Dumping and Resetting Profile Information.................1579

Chapter 32: Using High-Level Optimization (HLO)
High-Level Optimizations (HLO) Overview..........................1581
Loop Unrolling..1583
Loop Independence...1584
Prefetching with Options..1589

Chapter 33: Optimization Support Features

31

Contents

Optimization Support Features Overview............................1591
Loop Support..1591
Loop Unrolling Support..1595
Vectorization Support..1596
Prefetching Support...1602
Software Pipelining Support (IA-64 Architecture).................1605
About Register Allocation...1606

Chapter 34: Programming Guidelines
Coding Guidelines for Intel® Architectures...........................1611
Setting Data Type and Alignment......................................1613
Using Arrays Efficiently..1623
Improving I/O Performance..1630
Improving Run-time Efficiency..1636
Using Fortran Intrinsics..1638
Understanding Run-time Performance................................1638
Understanding Data Alignment..1642
Timing Your Application..1643
Applying Optimization Strategies.......................................1647
Optimizing the Compilation Process...................................1658

Optimizing the Compilation Process Overview.............1658
Efficient Compilation...1658
Stacks: Automatic Allocation and Checking.................1660
Little-endian-to-Big-endian Conversion (IA-32

Architecture)..1664
Symbol Visibility Attribute Options (Linux* and Mac OS*

X)...1669
Data Alignment Options...1671

Part IV: Floating-point Operations

Chapter 35: Overview: Floating-point Operations

32

Intel® Fortran Compiler User and Reference Guides

Chapter 36: Floating-point Options Quick Reference

Chapter 37: Understanding Floating-point Operations
Programming Tradeoffs in Floating-point Applications...........1681
Floating-point Optimizations...1682
Using the -fp-model (/fp) Option.......................................1684
Denormal Numbers...1688
Floating-point Environment..1688
Setting the FTZ and DAZ Flags..1689
Checking the Floating-point Stack State.............................1691

Chapter 38: Tuning Performance
Overview: Tuning Performance..1693
Avoiding Exact Floating-point Comparison..........................1693
Handling Floating-point Array Operations in a Loop Body......1694
Reducing the Impact of Denormal Exceptions......................1694
Avoiding Mixed Data Type Arithmetic Expressions................1696
Using Efficient Data Types..1698

Chapter 39: Handling Floating-point Exceptions
Overview: Controlling Floating-point Exceptions..................1699
Handling Floating-point Exceptions....................................1700
File fordef.for and Its Usage...1703
Setting and Retrieving Floating-point Status and Control Words

(IA-32)..1706
Overview: Setting and Retrieving Floating-point Status

and Control Word..1706
Understanding Floating-point Status Word..................1709
Floating-point Control Word Overview........................1710
Using Exception, Precision, and Rounding Parameters...1711

Handling Floating-point Exceptions with the -fpe or /fpe
Compiler Option..1714

33

Contents

Using the -fpe or /fpe Compiler Options.....................1714
Understanding the Impact of Application Types...........1717

Chapter 40: Understanding IEEE Floating-point
Operations

Overview: Understanding IEEE Floating-point Standard........1721
Floating-point Formats...1721
Limitations of Numeric Conversion.....................................1721
Special Values..1722
Representing Floating-point Numbers................................1724

Floating-point Representation...................................1724
Retrieving Parameters of Numeric Representations......1725
ULPs, Relative Error, and Machine Epsilon...................1727
Native IEEE Floating-point Representation..................1728

Handling Exceptions and Errors...1732
Loss of Precision Errors..1732
Rounding Errors..1733

Part V: Language Reference

Chapter 41: Overview: Language Reference
New Language Features...1739

Chapter 42: Conformance, Compatibility, and Fortran
2003 Features

Language Standards Conformance....................................1741
Language Compatibility..1741
Fortran 2003 Features...1741

Chapter 43: Program Structure, Characters, and Source
Forms

Program Structure..1745
Statements..1746

34

Intel® Fortran Compiler User and Reference Guides

Names..1748
Keywords..1750

Character Sets..1750
Source Forms...1752

Free Source Form...1754
Fixed and Tab Source Forms.....................................1757
Source Code Useable for All Source Forms.................1761

Chapter 44: Data Types, Constants, and Variables
Intrinsic Data Types...1763

Integer Data Types...1765
Real Data Types..1769

Complex Data Types..1774
General Rules for Complex Constants........................1775
COMPLEX(4) Constants..1775
COMPLEX(8) or DOUBLE COMPLEX Constants.............1776
COMPLEX(16) Constants..1777

Logical Data Types..1778
Logical Constants..1779

Character Data Type..1779
Character Constants..1780
C Strings in Character Constants...............................1781
Character Substrings...1783

Derived Data Types...1784
Derived-Type Definition...1785
Default Initialization..1785
Structure Components...1786
Structure Constructors..1790

Binary, Octal, Hexadecimal, and Hollerith Constants............1792
Binary Constants..1792
Octal Constants..1793
Hexadecimal Constants...1793

35

Contents

Hollerith Constants...1794
Determining the Data Type of Nondecimal Constants...1795

Variables..1798
Data Types of Scalar Variables..................................1799
Arrays...1800

Chapter 45: Expressions and Assignment Statements
Expressions..1817

Numeric Expressions...1818
Character Expressions...1823
Relational Expressions...1823
Logical Expressions...1825
Defined Operations...1827
Summary of Operator Precedence.............................1827
Initialization and Specification Expressions.................1828

Assignment Statements...1833
Intrinsic Assignments..1833
Defined Assignments...1839
Pointer Assignments..1840
WHERE Statement and Construct Overview................1843
FORALL Statement and Construct Overview................1843

Chapter 46: Specification Statements
Type Declaration Statements..1846

Declaration Statements for Noncharacter Types..........1847
Declaration Statements for Character Types...............1849
Declaration Statements for Derived Types..................1852
Declaration Statements for Arrays.............................1853

ALLOCATABLE Attribute and Statement Overview................1862
ASYNCHRONOUS Attribute and Statement Overview............1862
AUTOMATIC and STATIC Attributes and Statements

Overview...1862
BIND Attribute and Statement Overview............................1862

36

Intel® Fortran Compiler User and Reference Guides

COMMON Statement Overview..1862
DATA Statement Overview..1863
DIMENSION Attribute and Statement Overview...................1863
EQUIVALENCE Statement Overview...................................1863

Making Arrays Equivalent...1863
Making Substrings Equivalent...................................1865
EQUIVALENCE and COMMON Interaction....................1870

EXTERNAL Attribute and Statement Overview.....................1872
IMPLICIT Statement Overview..1872
INTENT Attribute and Statement Overview.........................1872
INTRINSIC Attribute and Statement Overview.....................1872
NAMELIST Statement Overview...1873
OPTIONAL Attribute and Statement Overview.....................1873
PARAMETER Attribute and Statement Overview...................1873
POINTER Attribute and Statement Overview.......................1873
PROTECTED Attribute and Statement Overview...................1873
PUBLIC and PRIVATE Attributes and Statements Overview....1873
SAVE Attribute and Statement Overview............................1873
TARGET Attribute and Statement Overview.........................1874
VALUE Attribute and Statement Overview...........................1874
VOLATILE Attribute and Statement Overview......................1874

Chapter 47: Dynamic Allocation
ALLOCATE Statement Overview...1875

Allocation of Allocatable Arrays.................................1876
Allocation of Pointer Targets.....................................1877

DEALLOCATE Statement Overview.....................................1878
Deallocation of Allocatable Arrays.............................1878
Deallocation of Pointer Targets..................................1880

NULLIFY Statement Overview...1881

Chapter 48: Execution Control
Branch Statements..1883

37

Contents

Unconditional GO TO Statement Overview..................1884
Computed GO TO Statement Overview......................1884
The ASSIGN and Assigned GO TO Statements

Overview...1884
Arithmetic IF Statement Overview.............................1885

CALL Statement Overview..1885
CASE Constructs Overview...1885
CONTINUE Statement Overview..1885
DO Constructs Overview..1885

Forms for DO Constructs..1886
Execution of DO Constructs......................................1886
DO WHILE Statement Overview................................1894
CYCLE Statement Overview......................................1894
EXIT Statement Overview..1894

END Statement Overview...1894
IF Construct and Statement Overview................................1894

IF Construct Overview...1894
IF Statement Overview..1894

PAUSE Statement Overview..1894
RETURN Statement Overview...1895
STOP Statement Overview...1895

Chapter 49: Program Units and Procedures
Main Program...1898
Modules and Module Procedures..1898

Module References..1899
USE Statement...1899

Intrinsic Modules...1900
ISO_C_BINDING...1901
ISO_FORTRAN_ENV..1904
IEEE Intrinsic Modules and Procedures.......................1906

Block Data Program Units...1914

38

Intel® Fortran Compiler User and Reference Guides

Functions, Subroutines, and Statement Functions................1914
General Rules for Function and Subroutine

Subprograms...1915
Functions...1916
Subroutines...1918
Statement Functions...1918

External Procedures..1918
Internal Procedures...1918
Argument Association..1920

Optional Arguments..1923
Array Arguments..1924
Pointer Arguments..1925
Assumed-Length Character Arguments......................1926
Character Constant and Hollerith Arguments..............1927
Alternate Return Arguments.....................................1928
Dummy Procedure Arguments..................................1929
References to Generic Procedures.............................1930
References to Non-Fortran Procedures.......................1935

Procedure Interfaces...1935
Determining When Procedures Require Explicit

Interfaces..1937
Defining Explicit Interfaces.......................................1938
Defining Generic Names for Procedures.....................1938
Defining Generic Operators......................................1940
Defining Generic Assignment....................................1942

CONTAINS Statement Overview..1944
ENTRY Statement Overview..1944

ENTRY Statements in Function Subprograms..............1944
ENTRY Statements in Subroutine Subprograms...........1945

IMPORT Statement Overview..1946

Chapter 50: Intrinsic Procedures

39

Contents

Argument Keywords in Intrinsic Procedures........................1949
Overview of Bit Functions...1951
Categories and Lists of Intrinsic Procedures........................1953

Categories of Intrinsic Functions...............................1953
Intrinsic Subroutines...1975

Chapter 51: Data Transfer I/O Statements
Records and Files..1979
Components of Data Transfer Statements...........................1980

I/O Control List..1981
I/O Lists..1990

READ Statements..1997
Forms for Sequential READ Statements.....................1998
Forms for Direct-Access READ Statements.................2012
Forms for Stream READ Statements..........................2014
Forms and Rules for Internal READ Statements...........2014

ACCEPT Statement Overview..2017
WRITE Statements..2017

Forms for Sequential WRITE Statements....................2017
Forms for Direct-Access WRITE Statements................2026
Forms for Stream WRITE Statements........................2027
Forms and Rules for Internal WRITE Statements.........2027

PRINT and TYPE Statements Overview...............................2028
REWRITE Statement Overview..2029

Chapter 52: I/O Formatting
Format Specifications..2031
Data Edit Descriptors...2039

Forms for Data Edit Descriptors................................2040
General Rules for Numeric Editing.............................2042
Integer Editing...2044
Real and Complex Editing..2049
Logical Editing (L)...2061

40

Intel® Fortran Compiler User and Reference Guides

Character Editing (A)...2062
Default Widths for Data Edit Descriptors....................2065
Terminating Short Fields of Input Data.......................2066

Control Edit Descriptors...2068
Forms for Control Edit Descriptors.............................2068
Positional Editing..2070
Sign Editing...2071
Blank Editing..2073
Scale-Factor Editing (P)...2074
Slash Editing (/)...2077
Colon Editing (:)...2079
Dollar-Sign ($) and Backslash (\) Editing.................2079
Character Count Editing (Q).....................................2080

Character String Edit Descriptors......................................2083
Character Constant Editing.......................................2083
H Editing...2084

Nested and Group Repeat Specifications.............................2086
Variable Format Expressions...2086
Printing of Formatted Records...2089
Interaction Between Format Specifications and I/O Lists.......2090

Chapter 53: File Operation I/O Statements
BACKSPACE Statement Overview......................................2103
CLOSE Statement Overview..2103
DELETE Statement Overview..2103
ENDFILE Statement Overview...2103
FLUSH Statement Overview..2103
INQUIRE Statement Overview...2103

ACCESS Specifier..2104
ACTION Specifier..2104
ASYNCHRONOUS Specifier.......................................2105
BINARY Specifier (W*32, W*64)...............................2105

41

Contents

BLANK Specifier..2106
BLOCKSIZE Specifier...2106
BUFFERED Specifier..2106
CARRIAGECONTROL Specifier...................................2107
CONVERT Specifier..2107
DELIM Specifier..2108
DIRECT Specifier..2109
EXIST Specifier...2109
FORM Specifier...2110
FORMATTED Specifier..2110
ID Specifier..2111
IOFOCUS Specifier (W*32, W*64).............................2111
MODE Specifier...2112
NAME Specifier...2112
NAMED Specifier...2112
NEXTREC Specifier..2113
NUMBER Specifier...2113
OPENED Specifier...2113
ORGANIZATION Specifier...2114
PAD Specifier...2114
PENDING Specifier..2114
POS Specifier...2115
POSITION Specifier...2116
READ Specifier...2116
READWRITE Specifier..2117
RECL Specifier..2117
RECORDTYPE Specifier..2117
SEQUENTIAL Specifier...2118
SHARE Specifier...2119
UNFORMATTED Specifier..2120
WRITE Specifier..2120

OPEN Statement Overview...2120

42

Intel® Fortran Compiler User and Reference Guides

ACCESS Specifier..2125
ACTION Specifier..2125
ASSOCIATEVARIABLE Specifier.................................2126
ASYNCHRONOUS Specifier.......................................2126
BLANK Specifier..2127
BLOCKSIZE Specifier...2127
BUFFERCOUNT Specifier..2128
BUFFERED Specifier..2128
CARRIAGECONTROL Specifier...................................2129
CONVERT Specifier..2130
DEFAULTFILE Specifier...2133
DELIM Specifier..2133
DISPOSE Specifier..2134
FILE Specifier...2134
FORM Specifier...2136
IOFOCUS Specifier (W*32, W*64).............................2137
MAXREC Specifier...2138
MODE Specifier...2138
NAME Specifier...2138
NOSHARED Specifier...2138
ORGANIZATION Specifier...2138
PAD Specifier...2139
POSITION Specifier...2139
READONLY Specifier..2140
RECL Specifier..2141
RECORDSIZE Specifier..2143
RECORDTYPE Specifier..2143
SHARE Specifier...2144
SHARED Specifier...2146
STATUS Specifier..2146
TITLE Specifier (W*32, W*64)..................................2147
TYPE Specifier..2148

43

Contents

USEROPEN Specifier..2148
REWIND Statement Overview...2155
WAIT Statement Overview...2155

Chapter 54: Compilation Control Lines and Statements

Chapter 55: Directive Enhanced Compilation
Syntax Rules for Compiler Directives.................................2159
General Compiler Directives..2160

Rules for General Directives that Affect DO Loops........2162
Rules for Loop Directives that Affect Array Assignment

Statements..2163
OpenMP* Fortran Compiler Directives................................2164

Data Scope Attribute Clauses...................................2166
Conditional Compilation Rules...................................2167
Nesting and Binding Rules..2168

Chapter 56: Scope and Association
Scope..2171
Unambiguous Generic Procedure References.......................2175
Resolving Procedure References..2175

References to Generic Names...................................2176
References to Specific Names...................................2179
References to Nonestablished Names.........................2180

Association...2181
Name Association...2183
Pointer Association..2185
Storage Association...2186

Chapter 57: Deleted and Obsolescent Language Features
Deleted Language Features in Fortran 95...........................2191
Obsolescent Language Features in Fortran 95.....................2191
Obsolescent Language Features in Fortran 90.....................2193

44

Intel® Fortran Compiler User and Reference Guides

Chapter 58: Additional Language Features
FORTRAN 66 Interpretation of the EXTERNAL Statement......2195
Alternative Syntax for the PARAMETER Statement...............2198
Alternative Syntax for Binary, Octal, and Hexadecimal

Constants..2199
Alternative Syntax for a Record Specifier............................2200
Alternative Syntax for the DELETE Statement.....................2200
Alternative Form for Namelist External Records...................2200
Record Structures...2201

Structure Declarations...2203
References to Record Fields......................................2204
Aggregate Assignment...2209

Chapter 59: Additional Character Sets
Character and Key Code Charts for Windows* OS................2211

ASCII Character Codes for Windows* Systems............2211
ANSI Character Codes for Windows* Systems.............2214
Key Codes for Windows* Systems.............................2216

ASCII Character Set for Linux* OS and Mac OS* X..............2219

Chapter 60: Data Representation Models
Model for Integer Data...2224
Model for Real Data...2225
Model for Bit Data...2227

Chapter 61: Run-Time Library Routines
Module Routines...2229
OpenMP* Fortran Routines...2230

Chapter 62: Summary of Language Extensions
Source Forms...2233
Names...2234

45

Contents

Character Sets..2234
Intrinsic Data Types...2234
Constants..2235
Expressions and Assignment...2235
Specification Statements..2235
Execution Control..2235
Program Units and Procedures..2236
Compilation Control Lines and Statements..........................2236
Built-In Functions..2236
I/O Statements...2236
I/O Formatting...2237
File Operation Statements..2237
Compiler Directives...2239
Intrinsic Procedures...2240
Additional Language Features...2244
Run-Time Library Routines...2245

Chapter 63: A to Z Reference
Language Summary Tables...2248

Statements for Program Unit Calls and Definitions.......2249
Statements Affecting Variables.................................2250
Statements for Input and Output..............................2252
Compiler Directives...2253
Program Control Statements and Procedures..............2258
Inquiry Intrinsic Functions..2260
Random Number Intrinsic Procedures........................2262
Date and Time Intrinsic Subroutines..........................2263
Keyboard and Speaker Library Routines.....................2264
Statements and Intrinsic Procedures for Memory

Allocation and Deallocation..................................2264
Intrinsic Functions for Arrays....................................2265
Intrinsic Functions for Numeric and Type Conversion...2267

46

Intel® Fortran Compiler User and Reference Guides

Trigonometric, Exponential, Root, and Logarithmic
Intrinsic Procedures..2269

Intrinsic Functions for Floating-Point Inquiry and
Control..2273

Character Intrinsic Functions....................................2275
Intrinsic Procedures for Bit Operation and

Representation...2277
QuickWin Library Routines (W*32, W*64)..................2279
Graphics Library Routines (W*32, W*64)...................2282
Portability Library Routines.......................................2288
National Language Support Library Routines (W*32,

W*64)...2301
POSIX* Library Procedures.......................................2304
Dialog Library Routines (W*32, W*64)......................2312
COM and Automation Library Routines (W*32,

W*64))...2314
Miscellaneous Run-Time Library Routines...................2317
Intrinsic Functions Not Allowed as Actual Arguments...2319

A to B..2319
ABORT..2319
ABOUTBOXQQ (W*32, W*64)...................................2320
ABS..2321
ACCEPT...2323
ACCESS...2324
ACHAR..2325
ACOS..2326
ACOSD..2327
ACOSH..2328
ADJUSTL...2328
ADJUSTR...2329
AIMAG..2330
AINT...2331

47

Contents

ALARM..2333
ALIAS...2334
ALL...2335
ALLOCATABLE...2337
ALLOCATE..2338
ALLOCATED..2340
AND..2342
ANINT...2342
ANY..2344
APPENDMENUQQ (W*32, W*64)...............................2345
ARC, ARC_W (W*32, W*64).....................................2348
ASIN...2350
ASIND...2351
ASINH...2352
ASSIGN - Label Assignment.....................................2352
Assignment(=) - Defined Assignment........................2354
Assignment - Intrinsic...2357
ASSOCIATED..2360
ASSUME_ALIGNED..2362
ASYNCHRONOUS..2363
ATAN...2365
ATAN2...2365
ATAN2D...2367
ATAND..2368
ATANH...2368
ATOMIC...2369
ATTRIBUTES..2371
AUTOAddArg (W*32, W*64).....................................2395
AUTOAllocateInvokeArgs (W*32, W*64)....................2397
AUTODeallocateInvokeArgs (W*32, W*64).................2397
AUTOGetExceptInfo (W*32, W*64)...........................2398
AUTOGetProperty (W*32, W*64)..............................2398

48

Intel® Fortran Compiler User and Reference Guides

AUTOGetPropertyByID (W*32, W*64).......................2400
AUTOGetPropertyInvokeArgs (W*32, W*64)...............2400
AUTOInvoke (W*32, W*64).....................................2401
AUTOMATIC...2402
AUTOSetProperty (W*32, W*64)..............................2405
AUTOSetPropertyByID (W*32, W*64)........................2406
AUTOSetPropertyInvokeArgs (W*32, W*64)...............2407
BACKSPACE...2407
BADDRESS..2409
BARRIER...2409
BEEPQQ..2410
BESJ0, BESJ1, BESJN, BESY0, BESY1, BESYN.............2411
BIC, BIS..2412
BIND...2414
BIT...2416
BIT_SIZE...2416
BLOCK DATA..2417
BSEARCHQQ..2420
BTEST...2422
BYTE...2424

C to D...2424
C_ASSOCIATED..2424
C_F_POINTER..2425
C_F_PROCPOINTER...2426
C_FUNLOC...2427
C_LOC...2427
CACHESIZE..2429
CALL...2429
CASE..2433
CDFLOAT...2440
CEILING..2441
CHANGEDIRQQ..2442

49

Contents

CHANGEDRIVEQQ...2443
CHAR..2444
CHARACTER...2445
CHDIR...2446
CHMOD...2449
CLEARSCREEN (W*32, W*64)..................................2451
CLEARSTATUSFPQQ...2452
CLICKMENUQQ (W*32, W*64)..................................2455
CLOCK..2456
CLOCKX..2457
CLOSE...2457
CMPLX..2459
COMAddObjectReference (W*32, W*64)....................2460
COMCLSIDFromProgID (W*32, W*64).......................2461
COMCLSIDFromString (W*32, W*64)........................2461
COMCreateObjectByGUID (W*32, W*64)...................2462
COMCreateObjectByProgID (W*32, W*64).................2463
COMGetActiveObjectByGUID (W*32, W*64)...............2463
COMGetActiveObjectByProgID (W*32, W*64).............2464
COMGetFileObject (W*32, W*64).............................2465
COMInitialize (W*32, W*64)....................................2465
COMIsEqualGUID (W*32, W*64)..............................2468
COMMAND_ARGUMENT_COUNT................................2468
COMMITQQ..2471
COMMON...2473
COMPLEX...2478
COMPLINT, COMPLREAL, COMPLLOG..........................2479
COMQueryInterface (W*32, W*64)...........................2479
COMReleaseObject (W*32, W*64)............................2480
COMStringFromGUID (W*32, W*64).........................2481
COMUninitialize (W*32, W*64).................................2482
CONJG..2482

50

Intel® Fortran Compiler User and Reference Guides

CONTAINS...2483
CONTINUE...2484
COPYIN...2485
COPYPRIVATE...2485
COS..2486
COSD..2487
COSH..2488
COTAN..2488
COTAND..2489
COUNT..2490
CPU_TIME..2492
CRITICAL...2492
CSHIFT...2494
CSMG..2497
CTIME...2497
CYCLE...2498
DATA...2500
DATE Intrinsic Procedure...2505
DATE Portability Routine..2507
DATE4...2508
DATE_AND_TIME..2509
DBESJ0, DBESJ1, DBESJN, DBESY0, DBESY1,

DBESYN..2511
DBLE...2513
DCLOCK..2515
DCMPLX..2516
DEALLOCATE..2517
DECLARE and NODECLARE.......................................2518
DECODE..2519
DEFAULT..2521
DEFINE...2522
DEFINE FILE..2523

51

Contents

DELDIRQQ...2525
DELETE...2526
DELETEMENUQQ (W*32, W*64)...............................2527
DELFILESQQ..2528
Derived Type (TYPE)..2530
DFLOAT...2536
DFLOATI, DFLOATJ, DFLOATK...................................2537
DIGITS..2538
DIM..2539
DIMENSION...2540
DISPLAYCURSOR..2543
DISTRIBUTE POINT...2544
DLGEXIT..2546
DLGFLUSH...2547
DLGGET, DLGGETINT, DLGGETLOG, DLGGETCHAR.......2549
DLGINIT, DLGINITWITHRESOURCEHANDLE................2551
DLGISDLGMESSAGE..2552
DLGMODAL, DLGMODALWITHPARENT........................2555
DLGMODELESS...2557
DLGSENDCTRLMESSAGE..2561
DLGSET, DLGSETINT, DLGSETLOG, DLGSETCHAR........2562
DLGSETCTRLEVENTHANDLER...................................2565
DLGSETRETURN...2567
DLGSETSUB...2568
DLGSETTITLE...2572
DLGUNINIT..2573
DNUM...2574
DO..2575
DO Directive..2579
DO WHILE...2584
DOT_PRODUCT...2586
DOUBLE COMPLEX..2587

52

Intel® Fortran Compiler User and Reference Guides

DOUBLE PRECISION..2588
DPROD..2589
DRAND, DRANDM...2590
DRANSET...2592
DREAL...2593
DSHIFTL..2594
DSHIFTR...2594
DTIME...2595

E to F..2596
ELEMENTAL..2596
ELLIPSE, ELLIPSE_W (W*32, W*64)..........................2597
ELSE...2600
ELSE Directive..2600
ELSEIF Directive...2600
ELSE IF...2600
ELSE WHERE..2600
ENCODE..2601
END..2603
END DO...2604
ENDIF Directive..2605
END IF..2605
ENDFILE..2605
END FORALL..2608
END INTERFACE...2608
END MAP...2608
END SELECT..2609
END STRUCTURE..2609
Derived Type (TYPE)..2617
END UNION...2623
END WHERE...2626
ENTRY...2627
EOF..2629

53

Contents

EOSHIFT...2632
EPSILON..2635
EQUIVALENCE..2636
ERF...2640
ERFC...2641
ERRSNS..2642
ETIME...2643
EXIT Statement..2645
EXIT Subroutine...2646
EXP...2647
EXPONENT...2649
EXTERNAL...2650
FDATE...2652
FGETC...2653
FIND...2654
FINDFILEQQ...2656
FIRSTPRIVATE..2657
FIXEDFORMLINESIZE..2657
FLOAT...2658
FLOODFILL, FLOODFILL_W (W*32, W*64).................2658
FLOODFILLRGB, FLOODFILLRGB_W (W*32, W*64).....2661
FLOOR..2663
FLUSH Directive..2664
FLUSH Statement...2666
FLUSH Subroutine...2666
FOCUSQQ (W*32, W*64)...2667
FOR_DESCRIPTOR_ASSIGN (W*32, W*64)................2668
FOR_GET_FPE..2672
FOR_RTL_FINISH_..2673
FOR_RTL_INIT_..2674
FOR_SET_FPE..2674
FOR_SET_REENTRANCY...2681

54

Intel® Fortran Compiler User and Reference Guides

FORALL...2682
FORMAT..2685
FP_CLASS..2691
FPUTC...2692
FRACTION...2693
FREE...2694
FREEFORM...2695
FSEEK...2696
FSTAT...2697
FTELL, FTELLI8...2702
FULLPATHQQ..2703
FUNCTION...2705

G..2712
GERROR..2712
GETACTIVEQQ (W*32, W*64)..................................2714
GETARCINFO (W*32, W*64)....................................2714
GETARG..2716
GETBKCOLOR (W*32, W*64)...................................2718
GETBKCOLORRGB (W*32, W*64).............................2719
GETC..2722
GETCHARQQ..2723
GETCOLOR (W*32, W*64).......................................2725
GETCOLORRGB (W*32, W*64).................................2727
GET_COMMAND..2730
GET_COMMAND_ARGUMENT....................................2731
GETCONTROLFPQQ...2732
GETCURRENTPOSITION, GETCURRENTPOSITION_W

(W*32, W*64)...2735
GETCWD..2737
GETDAT...2738
GETDRIVEDIRQQ..2740
GETDRIVESIZEQQ..2741

55

Contents

GETDRIVESQQ...2744
GETENV...2745
GET_ENVIRONMENT_VARIABLE................................2745
GETENVQQ..2748
GETEXCEPTIONPTRSQQ (i32, i64em)........................2751
GETEXITQQ (W*32, W*64)......................................2753
GETFILEINFOQQ...2754
GETFILLMASK (W*32, W*64)...................................2759
GETFONTINFO (W*32, W*64)..................................2762
GETGID...2764
GETGTEXTEXTENT (W*32, W*64).............................2764
GETGTEXTROTATION (W*32, W*64).........................2766
GETHWNDQQ (W*32, W*64)....................................2767
GETIMAGE, GETIMAGE_W..2768
GETLASTERROR..2769
GETLASTERRORQQ...2770
GETLINESTYLE (W*32, W*64)..................................2772
GETLOG..2774
GETPHYSCOORD (W*32, W*64)...............................2775
GETPID...2777
GETPIXEL, GETPIXEL_W (W*32, W*64).....................2777
GETPIXELRGB, GETPIXELRGB_W (W*32, W*64).........2779
GETPIXELS (W*32, W*64).......................................2781
GETPIXELSRGB (W*32, W*64).................................2782
GETPOS, GETPOSI8..2785
GETSTATUSFPQQ..2785
GETSTRQQ..2787
GETTEXTCOLOR (W*32, W*64)................................2789
GETTEXTCOLORRGB (W*32, W*64)..........................2790
GETTEXTPOSITION (W*32, W*64)............................2792
GETTEXTWINDOW (W*32, W*64).............................2793
GETTIM...2795

56

Intel® Fortran Compiler User and Reference Guides

GETTIMEOFDAY..2796
GETUID...2796
GETUNITQQ (W*32, W*64)......................................2797
GETVIEWCOORD, GETVIEWCOORD_W (W*32, W*64)..2798
GETWINDOWCONFIG (W*32, W*64).........................2799
GETWINDOWCOORD (W*32, W*64)..........................2804
GETWRITEMODE (W*32, W*64)...............................2805
GETWSIZEQQ (W*32, W*64)...................................2806
GMTIME..2808
GOTO - Assigned..2810
GOTO - Computed..2811
GOTO - Unconditional..2813
GRSTATUS (W*32, W*64)..2814

H to I..2819
HOSTNAM..2819
HUGE..2820
IACHAR...2820
IAND...2821
IARGC...2823
IBCHNG...2824
IBCLR...2825
IBITS..2826
IBSET...2827
ICHAR...2829
IDATE Intrinsic Procedure..2830
IDATE Portability Routine...2831
IDATE4..2832
IDENT...2833
IDFLOAT..2833
IEEE_CLASS...2834
IEEE_COPY_SIGN...2835
IEEE_GET_FLAG...2835

57

Contents

IEEE_GET_HALTING_MODE......................................2836
IEEE_GET_ROUNDING_MODE...................................2837
IEEE_GET_STATUS..2838
IEEE_GET_UNDERFLOW_MODE................................2839
IEEE_IS_FINITE...2839
IEEE_IS_NAN...2840
IEEE_IS_NEGATIVE...2841
IEEE_IS_NORMAL...2841
IEEE_LOGB..2842
IEEE_NEXT_AFTER..2843
IEEE_REM..2844
IEEE_RINT...2844
IEEE_SCALB...2845
IEEE_SELECTED_REAL_KIND...................................2846
IEEE_SET_FLAG...2847
IEEE_SET_HALTING_MODE......................................2847
IEEE_SET_ROUNDING_MODE...................................2848
IEEE_SET_STATUS..2849
IEEE_SET_UNDERFLOW_MODE.................................2850
IEEE_SUPPORT_DATATYPE.......................................2851
IEEE_SUPPORT_DENORMAL.....................................2852
IEEE_SUPPORT_DIVIDE...2852
IEEE_SUPPORT_FLAG..2853
IEEE_SUPPORT_HALTING...2854
IEEE_SUPPORT_INF..2854
IEEE_SUPPORT_IO..2855
IEEE_SUPPORT_NAN...2856
IEEE_SUPPORT_ROUNDING.....................................2856
IEEE_SUPPORT_SQRT...2857
IEEE_SUPPORT_STANDARD......................................2858
IEEE_SUPPORT_UNDERFLOW_CONTROL....................2859
IEEE_UNORDERED..2860

58

Intel® Fortran Compiler User and Reference Guides

IEEE_VALUE...2860
IEEE_FLAGS...2861
IEEE_HANDLER..2867
IEOR...2870
IERRNO...2871
IF - Arithmetic..2873
IF - Logical..2875
IF Construct...2876
IF Directive Construct..2884
IF DEFINED Directive..2887
IFIX..2887
IFLOATI, IFLOATJ..2887
ILEN...2888
IMAGESIZE, IMAGESIZE_W (W*32, W*64)................2888
IMPLICIT...2889
IMPORT...2891
INCHARQQ (W*32, W*64).......................................2892
INCLUDE...2895
INDEX...2898
INITIALIZEFONTS (W*32, W*64)..............................2899
INITIALSETTINGS (W*32, W*64)..............................2900
INMAX...2901
INQFOCUSQQ (W*32, W*64)...................................2902
INQUIRE..2903
INSERTMENUQQ (W*32, W*64)................................2907
INT...2910
INTC...2913
INT_PTR_KIND...2914
INTEGER...2915
INTEGER Directive..2916
INTEGERTORGB (W*32, W*64)................................2917
INTENT...2919

59

Contents

INTERFACE..2923
INTERFACE TO...2926
INTRINSIC...2927
INUM..2929
IOR...2929
IPXFARGC..2931
IPXFCONST..2932
IPXFLENTRIM...2932
IPXFWEXITSTATUS (L*X, M*X).................................2933
IPXFWSTOPSIG (L*X, M*X)......................................2935
IPXFWTERMSIG (L*X, M*X).....................................2936
IRAND, IRANDM...2936
IRANGET...2938
IRANSET...2938
ISATTY..2939
IS_IOSTAT_END...2939
IS_IOSTAT_EOR...2940
ISHA...2941
ISHC...2942
ISHFT...2943
ISHFTC..2945
ISHL...2947
ISNAN...2948
ITIME..2948
IVDEP...2949
IXOR...2951

J to L...2951
JABS...2951
JDATE...2952
JDATE4..2953
JNUM..2953
KILL..2954

60

Intel® Fortran Compiler User and Reference Guides

KIND...2955
KNUM..2956
LASTPRIVATE...2957
LBOUND..2958
LCWRQQ...2959
LEADZ...2960
LEN..2961
LEN_TRIM..2962
LGE..2963
LGT..2964
LINETO, LINETO_W (W*32, W*64)...........................2966
LINETOAR (W*32, W*64)..2968
LINETOAREX (W*32, W*64).....................................2970
LLE...2973
LLT...2974
LNBLNK...2975
LOADIMAGE, LOADIMAGE_W (W*32, W*64)..............2976
LOC..2977
%LOC...2978
LOG..2979
LOG10...2980
LOGICAL..2982
LOGICAL Function...2983
LONG..2983
LOOP COUNT...2984
LSHIFT..2986
LSTAT...2986
LTIME..2987

M to N...2989
MAKEDIRQQ..2989
MALLOC..2990
END MAP...2992

61

Contents

MASTER..2992
MATMUL..2993
MAX..2995
MAXEXPONENT...2997
MAXLOC..2998
MAXVAL...3002
MBCharLen..3004
MBConvertMBToUnicode...3005
MBConvertUnicodeToMB...3007
MBCurMax...3008
MBINCHARQQ..3009
MBINDEX...3010
MBJISToJMS, MBJMSToJIS..3011
MBLead...3012
MBLen...3013
MBLen_Trim...3014
MBLGE, MBLGT, MBLLE, MBLLT, MBLEQ, MBLNE...........3015
MBNext...3017
MBPrev..3018
MBSCAN..3019
MBStrLead...3020
MBVERIFY..3021
MCLOCK..3022
MEMORYTOUCH (i64 only).......................................3022
MEMREF_CONTROL (i64 only)..................................3023
MERGE..3024
MESSAGE..3026
MESSAGEBOXQQ (W*32, W*64)...............................3026
MIN..3028
MINEXPONENT...3030
MINLOC...3031
MINVAL...3035

62

Intel® Fortran Compiler User and Reference Guides

MM_PREFETCH...3037
MOD...3040
MODIFYMENUFLAGSQQ (W*32, W*64)......................3042
MODIFYMENUROUTINEQQ (W*32, W*64)..................3043
MODIFYMENUSTRINGQQ (W*32, W*64)....................3045
MODULE..3047
MODULE PROCEDURE..3053
MODULO..3054
MOVE_ALLOC...3055
MOVETO, MOVETO_W (W*32, W*64)........................3058
MULT_HIGH (i64 only)...3060
MULT_HIGH_SIGNED (i64 only)................................3061
MVBITS...3062
NAMELIST..3064
NARGS..3066
NEAREST...3069
NEW_LINE...3070
NINT...3071
NLSEnumCodepages...3072
NLSEnumLocales..3073
NLSFormatCurrency..3074
NLSFormatDate..3076
NLSFormatNumber..3078
NLSFormatTime..3079
NLSGetEnvironmentCodepage..................................3081
NLSGetLocale...3082
NLSGetLocaleInfo...3083
NLSSetEnvironmentCodepage...................................3095
NLSSetLocale...3096
FREEFORM...3098
NOOPTIMIZE..3099
NOPREFETCH...3100

63

Contents

NOSTRICT...3103
NOSWP (i64 only)...3105
NOT..3106
NOUNROLL..3108
NOVECTOR..3109
NULL...3110
NULLIFY..3112

O to P..3114
OBJCOMMENT..3114
OPEN..3115
OPTIONAL...3118
OPTIONS Statement..3122
NOOPTIMIZE..3123
OPTIONS Directive..3124
OR..3128
ORDERED..3129
OUTGTEXT (W*32, W*64).......................................3130
OUTTEXT (W*32, W*64)..3133
PACK Function..3134
PACK Directive...3136
PACKTIMEQQ...3138
PARALLEL..3139
PARALLEL ALWAYS..3142
PARALLEL ALWAYS..3143
PARALLEL DO...3145
PARALLEL SECTIONS...3146
PARALLEL WORKSHARE...3147
PARAMETER...3148
PASSDIRKEYSQQ (W*32, W*64)..............................3150
PAUSE...3156
PEEKCHARQQ...3158
PERROR..3159

64

Intel® Fortran Compiler User and Reference Guides

PIE, PIE_W (W*32, W*64).......................................3160
POINTER - Fortran 95/90...3163
POINTER - Integer..3166
POLYBEZIER, POLYBEZIER_W (W*32, W*64)..............3169
POLYBEZIERTO, POLYBEZIERTO_W (W*32, W*64)......3175
POLYGON, POLYGON_W (W*32, W*64)......................3181
POLYLINEQQ (W*32, W*64).....................................3185
POPCNT...3187
POPPAR...3188
PRECISION..3189
NOPREFETCH...3189
PRESENT...3192
PRINT...3194
PRIVATE Statement...3196
PRIVATE Clause..3200
PRODUCT..3201
PROGRAM..3203
PROTECTED...3205
PSECT...3207
PUBLIC..3208
PURE..3212
PUTC...3215
PUTIMAGE, PUTIMAGE_W (W*32, W*64)...................3216
PXF(type)GET...3220
PXF(type)SET...3221
PXFA(type)GET...3223
PXFA(type)SET...3224
PXFACCESS..3226
PXFALARM...3227
PXFCALLSUBHANDLE...3228
PXFCFGETISPEED (L*X, M*X)...................................3229
PXFCFGETOSPEED (L*X, M*X)..................................3229

65

Contents

PXFCFSETISPEED (L*X, M*X)...................................3230
PXFCFSETOSPEED (L*X, M*X)..................................3231
PXFCHDIR...3231
PXFCHMOD..3232
PXFCHOWN (L*X, M*X)...3233
PXFCLEARENV..3233
PXFCLOSE...3234
PXFCLOSEDIR..3234
PXFCONST...3235
PXFCREAT..3236
PXFCTERMID..3237
PXFDUP, PXFDUP2...3237
PXFE(type)GET...3238
PXFE(type)SET...3239
PXFEXECV..3241
PXFEXECVE..3242
PXFEXECVP..3243
PXFEXIT, PXFFASTEXIT..3244
PXFFCNTL (L*X, M*X)...3245
PXFFDOPEN...3248
PXFFFLUSH..3250
PXFFGETC..3250
PXFFILENO..3251
PXFFORK (L*X, M*X)...3252
PXFFPATHCONF..3254
PXFFPUTC..3256
PXFFSEEK..3257
PXFFSTAT..3258
PXFFTELL...3258
PXFGETARG...3259
PXFGETATTY...3260
PXFGETC...3260

66

Intel® Fortran Compiler User and Reference Guides

PXFGETCWD..3261
PXFGETEGID (L*X, M*X)...3261
PXFGETENV...3262
PXFGETEUID (L*X, M*X)..3263
PXFGETGID (L*X, M*X)...3263
PXFGETGRGID (L*X, M*X).......................................3264
PXFGETGRNAM (L*X, M*X)......................................3264
PXFGETGROUPS (L*X, M*X).....................................3265
PXFGETLOGIN..3268
PXFGETPGRP (L*X, M*X)...3269
PXFGETPID..3269
PXFGETPPID...3271
PXFGETPWNAM (L*X, M*X)......................................3272
PXFGETPWUID (L*X, M*X).......................................3273
PXFGETSUBHANDLE..3274
PXFGETUID (L*X, M*X)...3275
PXFISBLK..3275
PXFISCHR..3276
PXFISCONST..3276
PXFISDIR..3277
PXFISFIFO...3278
PXFISREG..3278
PXFKILL...3279
PXFLINK..3280
PXFLOCALTIME...3281
PXFLSEEK..3282
PXFMKDIR...3283
PXFMKFIFO (L*X, M*X)...3284
PXFOPEN...3284
PXFOPENDIR..3288
PXFPATHCONF..3289
PXFPAUSE..3291

67

Contents

PXFPIPE..3292
PXFPOSIXIO...3292
PXFPUTC...3293
PXFREAD...3294
PXFREADDIR..3295
PXFRENAME...3295
PXFREWINDDIR..3296
PXFRMDIR...3297
PXFSETENV..3297
PXFSETGID (L*X, M*X)...3299
PXFSETPGID (L*X, M*X)..3300
PXFSETSID (L*X, M*X)..3301
PXFSETUID (L*X, M*X)..3301
PXFSIGACTION...3302
PXFSIGADDSET (L*X, M*X)......................................3303
PXFSIGDELSET (L*X, M*X)......................................3304
PXFSIGEMPTYSET (L*X, M*X)...................................3305
PXFSIGFILLSET (L*X, M*X)......................................3306
PXFSIGISMEMBER (L*X, M*X)..................................3306
PXFSIGPENDING (L*X, M*X)....................................3307
PXFSIGPROCMASK (L*X, M*X).................................3308
PXFSIGSUSPEND (L*X, M*X)....................................3309
PXFSLEEP..3310
PXFSTAT..3310
PXFSTRUCTCOPY..3311
PXFSTRUCTCREATE...3312
PXFSTRUCTFREE...3318
PXFSYSCONF...3319
PXFTCDRAIN (L*X, M*X)...3322
PXFTCFLOW (L*X, M*X)...3322
PXFTCFLUSH (L*X, M*X)...3323
PXFTCGETATTR (L*X, M*X)......................................3324

68

Intel® Fortran Compiler User and Reference Guides

PXFTCGETPGRP (L*X, M*X)......................................3325
PXFTCSENDBREAK (L*X, M*X).................................3326
PXFTCSETATTR (L*X, M*X)......................................3326
PXFTCSETPGRP (L*X, M*X)......................................3327
PXFTIME..3328
PXFTIMES..3329
PXFTTYNAM (L*X, M*X)...3333
PXFUCOMPARE...3333
PXFUMASK...3334
PXFUNAME...3334
PXFUNLINK..3335
PXFUTIME..3335
PXFWAIT (L*X, M*X)...3336
PXFWAITPID (L*X, M*X)..3338
PXFWIFEXITED (L*X, M*X)......................................3340
PXFWIFSIGNALED (L*X, M*X)..................................3342
PXFWIFSTOPPED (L*X, M*X)....................................3342
PXFWRITE...3343

Q to R...3344
QCMPLX..3344
QEXT..3345
QFLOAT...3346
QNUM...3347
QRANSET..3347
QREAL...3348
QSORT..3348
RADIX...3350
RAISEQQ...3351
RAN..3352
RAND, RANDOM...3353
RANDOM...3355
RANDOM_NUMBER..3357

69

Contents

RANDOM_SEED..3360
RANDU..3362
RANF..3363
RANGE..3363
RANGET..3364
RANSET...3364
READ..3365
REAL Statement...3368
REAL Directive..3370
REAL Function..3371
RECORD..3373
RECTANGLE, RECTANGLE_W (W*32, W*64)...............3374
RECURSIVE..3377
REDUCTION...3378
%REF..3381
REGISTERMOUSEEVENT (W*32, W*64).....................3383
REMAPALLPALETTERGB, REMAPPALETTERGB (W*32,

W*64)...3384
RENAME..3387
RENAMEFILEQQ..3388
REPEAT...3390
RESHAPE...3390
RESULT...3392
RETURN..3394
REWIND..3397
REWRITE...3398
RGBTOINTEGER (W*32, W*64)................................3399
RINDEX...3401
RNUM..3402
RRSPACING...3402
RSHIFT...3403
RTC..3403

70

Intel® Fortran Compiler User and Reference Guides

RUNQQ...3404
S..3405

SAVE...3405
SAVEIMAGE, SAVEIMAGE_W (W*32, W*64)...............3408
SCALE...3409
SCAN..3410
SCANENV..3412
SCROLLTEXTWINDOW (W*32, W*64)........................3412
SCWRQQ...3415
SECNDS Intrinsic Procedure.....................................3416
SECNDS Portability Routine......................................3417
SECTIONS...3418
SEED..3420
END SELECT..3421
SELECTED_CHAR_KIND...3422
SELECTED_INT_KIND..3422
SELECTED_REAL_KIND..3423
SEQUENCE...3425
SETACTIVEQQ (W*32, W*64)...................................3427
SETBKCOLOR (W*32, W*64)....................................3428
SETBKCOLORRGB (W*32, W*64)..............................3429
SETCLIPRGN (W*32, W*64).....................................3431
SETCOLOR (W*32, W*64).......................................3434
SETCOLORRGB (W*32, W*64)..................................3436
SETCONTROLFPQQ..3438
SETDAT...3441
SETENVQQ..3442
SETERRORMODEQQ..3444
SETEXITQQ..3445
SET_EXPONENT..3448
SETFILEACCESSQQ...3448
SETFILETIMEQQ...3450

71

Contents

SETFILLMASK (W*32, W*64)...................................3451
SETFONT (W*32, W*64)..3455
SETGTEXTROTATION (W*32, W*64)..........................3460
SETLINESTYLE (W*32, W*64)..................................3462
SETMESSAGEQQ (W*32, W*64)...............................3464
SETMOUSECURSOR (W*32, W*64)...........................3466
SETPIXEL, SETPIXEL_W (W*32, W*64).....................3469
SETPIXELRGB, SETPIXELRGB_W (W*32, W*64)..........3470
SETPIXELS (W*32, W*64).......................................3473
SETPIXELSRGB (W*32, W*64).................................3474
SETTEXTCOLOR (W*32, W*64).................................3477
SETTEXTCOLORRGB (W*32, W*64)...........................3478
SETTEXTCURSOR (W*32, W*64)..............................3480
SETTEXTPOSITION (W*32, W*64)............................3483
SETTEXTWINDOW (W*32, W*64).............................3484
SETTIM...3485
SETVIEWORG (W*32, W*64)...................................3487
SETVIEWPORT..3488
SETWINDOW (W*32, W*64)....................................3489
SETWINDOWCONFIG (W*32, W*64).........................3491
SETWINDOWMENUQQ (W*32, W*64)........................3497
SETWRITEMODE (W*32, W*64)................................3498
SETWSIZEQQ (W*32, W*64)...................................3502
SHAPE...3504
SHARED..3507
SHIFTL..3507
SHIFTR...3508
SHORT..3508
SIGN...3509
SIN...3511
SIND...3512
SINH...3513

72

Intel® Fortran Compiler User and Reference Guides

SIGNAL...3513
SIGNALQQ...3516
SINGLE...3520
SIZE...3521
SIZEOF...3522
SLEEP...3523
SLEEPQQ...3524
SNGL..3525
SORTQQ..3525
SPACING...3527
SPLITPATHQQ..3528
SPORT_CANCEL_IO...3530
SPORT_CONNECT...3531
SPORT_CONNECT_EX..3533
SPORT_GET_HANDLE..3535
SPORT_GET_STATE...3536
SPORT_GET_STATE_EX..3537
SPORT_GET_TIMEOUTS...3540
SPORT_PEEK_DATA...3542
SPORT_PEEK_LINE..3543
SPORT_PURGE...3544
SPORT_READ_DATA..3545
SPORT_READ_LINE...3546
SPORT_RELEASE..3548
SPORT_SET_STATE...3549
SPORT_SET_STATE_EX..3550
SPORT_SET_TIMEOUTS...3553
SPORT_SHOW_STATE..3554
SPORT_SPECIAL_FUNC..3556
SPORT_WRITE_DATA...3557
SPORT_WRITE_LINE...3558
SPREAD...3559

73

Contents

SQRT..3561
SRAND..3562
SSWRQQ...3564
STAT...3564
Statement Function...3569
STATIC..3572
STOP..3575
NOSTRICT...3577
END STRUCTURE..3579
SUBROUTINE...3586
SUM..3590
NOSWP (i64 only)...3592
SYSTEM...3593
SYSTEM_CLOCK...3595
SYSTEMQQ..3596

T to Z..3598
TAN..3598
TAND..3599
TANH..3599
TARGET...3600
TASK...3602
TASKWAIT...3606
THREADPRIVATE...3607
TIME Intrinsic Procedure..3608
TIME Portability Routine...3609
TIMEF...3611
TINY...3612
TRACEBACKQQ...3612
TRAILZ..3615
TRANSFER...3616
TRANSPOSE...3618
TRIM...3619

74

Intel® Fortran Compiler User and Reference Guides

TTYNAM...3620
Derived Type (TYPE)..3620
Type Declarations...3626
DEFINE...3632
END UNION...3634
UNLINK...3637
UNPACK..3638
UNPACKTIMEQQ...3640
UNREGISTERMOUSEEVENT (W*32, W*64).................3641
NOUNROLL..3643
UNROLL_AND_JAM..3644
USE..3645
%VAL..3651
VALUE...3653
VECTOR ALIGNED...3654
NOVECTOR..3655
VECTOR TEMPORAL and VECTOR NONTEMPORAL (i32,

i64em)..3657
VECTOR TEMPORAL and VECTOR NONTEMPORAL (i32,

i64em)..3658
VECTOR ALIGNED...3659
VERIFY..3660
VIRTUAL..3661
VOLATILE..3661
WAIT..3663
WAITONMOUSEEVENT (W*32, W*64)........................3664
WHERE..3666
WORKSHARE..3670
WRAPON (W*32, W*64)..3671
WRITE...3673
XOR..3676
ZEXT...3676

75

Contents

Chapter 64: Glossary
Glossary A...3679
Glossary B...3682
Glossary C...3683
Glossary D...3685
Glossary E...3689
Glossary F..3690
Glossary G...3692
Glossary H...3692
Glossary I..3693
Glossary K...3695
Glossary L..3695
Glossary M...3697
Glossary N...3698
Glossary O...3699
Glossary P..3700
Glossary Q...3702
Glossary R...3702
Glossary S...3704
Glossary T..3708
Glossary U...3709
Glossary V...3710
Glossary W...3710
Glossary Z...3711

76

Intel® Fortran Compiler User and Reference Guides

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R) PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED
NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD
CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.
Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. The information
here is subject to change without notice. Do not finalize a design with this information.
The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before
placing your product order.
Copies of documents which have an order number and are referenced in this document, or other
Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features
within each processor family, not across different processor families. See
http://www.intel.com/products/processor_number for details.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino
Inside, Centrino logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486,
IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, Intel Inside
logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel NetStructure,
Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium,
Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound
Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon Inside are trademarks
of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright (C) 1996-2009, Intel Corporation. All rights reserved.

Portions Copyright (C) 2001, Hewlett-Packard Development Company, L.P.

77

Getting Help and Support
The Intel® Fortran Compiler lets you build and optimize Fortran applications for the Linux* OS
(operating system).

For more information about the compiler features and other components, see your Release Notes.

This documentation assumes that you are familiar with the Fortran programming language and with
your processor's architecture. You should also be familiar with the host computer's operating system.

Product Website and Support

For general information on support for Intel software products, visit the Intel web site
http://www.intel.com/software/products/

At this site, you will find comprehensive product information, including:

• Links to each product, where you will find technical information such as white papers and articles

• Links to user forums

• Links to news and events

To find technical support information, to register your product, or to contact Intel, please visit:
http://www.intel.com/software/products/support/

For additional information, see the Technical Support section of your Release Notes.

System Requirements

For detailed information on system requirements, see the Release Notes.

79

1Introduction

Introducing the Intel® Fortran Compiler
The Intel® Fortran Compiler can generate code for IA-32, Intel® 64, or IA-64 architecture applications
on any Intel®-based Linux* system. IA-32 architecture applications (32-bit) can run on all Intel®-based
Linux systems. Intel® 64 architecture applications and IA-64 architecture applications can run only
on Intel® 64 architecture-based or IA-64 architecture-based Linux systems. You can use the compiler
on the command line.

You can find further information in the following documents:

• Building Applications

• Compiler Options

• Optimizing Applications

• Floating-point Operations

• Language Reference

Notational Conventions
Information in this documentation applies to all supported operating systems and architectures
unless otherwise specified.

This documentation uses the following conventions:

• Notational Conventions

• Platform Labels

Notational Conventions

Indicates statements, data types, directives,
and other language keywords. Examples of
statement keywords are WRITE, INTEGER, DO,
and OPEN.

THIS TYPE

81

Indicates command-line or option arguments,
new terms, or emphasized text. Most new
terms are defined in the Glossary.

this type

Indicates a code example.This type

Indicates what you type as input.This type

Indicates menu names, menu items, button
names, dialog window names, and other
user-interface items.

This type

Menu names and menu items joined by a
greater than (>) sign indicate a sequence of
actions. For example, "Click File>Open"
indicates that in the File menu, click Open
to perform this action.

File>Open

Indicates a choice of items or values. You can
usually only choose one of the values in the
braces.

{value | value}

Indicates items that are optional. Brackets
are also used in code examples to show
arrays.

[item]

Indicates that the item preceding the ellipsis
(three dots) can be repeated. In some code
examples, a horizontal ellipsis means that
not all of the statements are shown.

item [, item]...

These terms refer to all supported Microsoft*
Windows* operating systems.

Windows* OS

Windows operating system

These terms refer to all supported Linux*
operating systems.

Linux* OS

Linux operating system

These terms refer to Intel®-based systems
running the Mac OS* X operating system.

Mac OS* X

Mac OS X operating system

82

1 Intel® Fortran Compiler User and Reference Guides

An asterisk at the end of a word or name
indicates it is a third-party product
trademark.

Microsoft Windows XP*

This term refers to Windows* OS options,
Linux* OS options, or MAC OS* X options
that can be used on the compiler command
line.

compiler option

Conventions Used in Compiler Options

A slash before an option name indicates the
option is available on Windows OS. A dash
before an option name indicates the option
is available on Linux OS* and Mac OS* X
systems. For example:
Windows option: /fast
Linux and Mac OS X option: -fast
Note: If an option is available on Windows*
OS, Linux* OS, and Mac OS* X systems, no
slash or dash appears in the general

/option or
-option

description of the option. The slash and dash
will only appear where the option syntax is
described.

Indicates that an option requires a argument
(parameter). For example, you must specify
an argument for the following options:
Windows OS option: /Qdiag-error-limit:n
Linux OS and Mac OS X option: -diag-er-
ror-limit n

/option:argument or
-option argument

Indicates that an option requires one of the
keyword values.

/option:keyword or
-option keyword

Indicates that the option can be used alone
or with an optional keyword.

/option[:keyword] or
-option [keyword]

83

Introduction 1

Indicates that the option can be used alone
or with an optional value; for example, in
/Qfnalign[:n] and -falign-func-
tions[=n], the n can be omitted or a valid
value can be specified for n.

option[n] or option[:n] or option[=n]

Indicates that a trailing hyphen disables the
option; for example, /Qglobal_hoist-
disables the Windows OS option /Qglob-
al_hoist.

option[-]

Indicates that "no" or "no-" preceding an
option disables the option. For example:
In the Windows OS option /[no]traceback,
/traceback enables the option, while /no-
traceback disables it.
In the Linux OS and Mac OS X option -[no-
]global_hoist, -global_hoist enables
the option, while -no-global_hoist disables
it.
In some options, the "no" appears later in
the option name; for example, -fno-alias
disables the -falias option.

[no]option or
[no-]option

Conventions Used in Language Reference

Indicates extensions to the Fortran 95
Standard. These extensions may or may not
be implemented by other compilers that
conform to the language standard.

This color

This term refers to the name of the common
compiler language supported by the Intel®

Fortran Compiler.

Intel Fortran

This term refers to language information that
is common to ANSI FORTRAN 77, ANSI/ISO
Fortran 95 and 90, and Intel Fortran.

Fortran

84

1 Intel® Fortran Compiler User and Reference Guides

This term refers to language information that
is common to ANSI FORTRAN 77, ANSI/ISO
Fortran 95, ANSI/ISO Fortran 90, and Intel
Fortran.

Fortran 95/90

This term refers to language features specific
to ANSI/ISO Fortran 95.

Fortran 95

This term refers to the INTEGER(KIND=1),
INTEGER(KIND=2), INTEGER
(INTEGER(KIND=4)), and INTEGER(KIND=8)
data types as a group.

integer

This term refers to the REAL
(REAL(KIND=4)), DOUBLE PRECISION
(REAL(KIND=8)), and REAL(KIND=16) data
types as a group.

real

This term refers to the default data type of
objects declared to be REAL. REAL is
equivalent to REAL(KIND=4), unless a
compiler option specifies otherwise.

REAL

This term refers to the COMPLEX
(COMPLEX(KIND=4)), DOUBLE COMPLEX
(COMPLEX(KIND=8)), and
COMPLEX(KIND=16) data types as a group.

complex

This term refers to the LOGICAL(KIND=1),
LOGICAL(KIND=2), LOGICAL
(LOGICAL(KIND=4)), and LOGICAL(KIND=8)
data types as a group.

logical

This term introduces a list of the projects or
libraries that are compatible with the library
routine.

Compatibility

This symbol indicates a nonprinting tab
character.

< Tab>

85

Introduction 1

This symbol indicates a nonprinting blank
character.

^

Platform Labels

A platform is a combination of operating system and central processing unit (CPU) that provides
a distinct environment in which to use a product (in this case, a computer language). An example
of a platform is Microsoft* Windows* XP on processors using IA-32 architecture.

In this documentation, information applies to all supported platforms unless it is otherwise
labeled for a specific platform (or platforms).

These labels may be used to identify specific platforms:

Applies to Linux* OS on processors using
IA-32 architecture, Intel® 64 architecture,
and IA-64 architecture.

L*X

Applies to Linux* OS on processors using
IA-32 architecture and Intel® 64 architecture.

L*X32

Applies to Linux OS on processors using IA-64
architecture.

L*X64

Applies to Apple* Mac OS* X on processors
using IA-32 architecture and Intel® 64
architecture.

M*X

Applies to Apple* Mac OS* X on processors
using IA-32 architecture.

M*X32

Applies to Apple* Mac OS* X on processors
using Intel® 64 architecture.

M*X64

Applies to Microsoft Windows* 2000, Windows
XP, and Windows Server 2003 on processors
using IA-32 architecture and Intel® 64
architecture.
For a complete list of supported Windows*
operating systems, see your Release Notes.

W*32

86

1 Intel® Fortran Compiler User and Reference Guides

Applies to Microsoft Windows* XP operating
systems on IA-64 architecture.

W*64

Applies to 32-bit operating systems on IA-32
architecture.

i32

Applies to 32-bit operating systems on Intel®

64 architecture.
i64em

Applies to 64-bit operating systems on IA-64
architecture.

i64

Related Information

Tutorial information

The following commercially published documents provide reference or tutorial information on
Fortran 2003, Fortran 95, and Fortran 90:

• Introduction to Programming with Fortran with coverage of Fortran 90, 95, 2003 and 77,
by I.D. Chivers and J. Sleightholme; published by Springer, ISBN 9781846280535

• The Fortran 2003 Handbook: The Complete Syntax, Features and Procedures, by Adams,
J.C., Brainerd, W.S., Hendrickson, R.A., Maine, R.E., Martin, J.T., Smith, B.T., published by
Springer Verlag, ISBN: 9781846283789

• Fortran 95/2003 For Scientists and Engineers, by Chapman S.J., published by McGraw- Hill.
ISBN ISBN 0073191574

• Fortran 95/2003 Explained, by Metcalf M., Reid J. and Cohen M., 2004, published by Oxford
University Press. ISBN 0-19-852693-8

• Object Oriented Programming via Fortran 90/95, by Akin E., published by Cambridge
University Press, ISBN 0-521-52408-3

• Introducing Fortran 95, by Chivers I.D., Sleightholme J., published by Springer Verlag, ISBN
185233276X

• Fortran 95 Handbook, by Adams J.C., Brainerd W.S., Martin J.T, Smith B.T., and Wagener
J.L, published by MIT, ISBN 0-262-51096-0

• Fortran 90/95 for Scientists and Engineers, by S. J. Chapman; published by McGraw-Hill,
ISBN 0-07-282575-8

87

Introduction 1

• Fortran 90/95 Explained, by M. Metcalf and J. Reid; published by Oxford University Press,
ISBN 0-19-851888-9

Intel does not endorse these books or recommend them over other books on the same subjects.

Standard and Specification Documents

The following copyrighted standard and specification documents provide descriptions of many
of the features found in Intel® Fortran:

• American National Standard Programming Language FORTRAN, ANSI X3.9-1978

• American National Standard Programming Language Fortran 90, ANSI X3.198-1992
This Standard is equivalent to: International Standards Organization Programming Language
Fortran, ISO/IEC 1539:1991 (E).

• American National Standard Programming Language Fortran 95, ANSI X3J3/96-007
This Standard is equivalent to: International Standards Organization Programming Language
Fortran, ISO/IEC 1539-1:1997 (E).

• International Standards Organization Information Technology - Programming Languages -
Fortran, ISO/IEC 1539-1:2004 (E)
This is the Fortran 2003 Standard.

• High Performance Fortran Language Specification, Version 1.1, Technical Report
CRPC-TR-92225

• OpenMP Fortran Application Program Interface, Version 1.1, November 1999

• OpenMP Fortran Application Program Interface, Version 2.0, November 2000

Associated Intel Documents

The following Intel documents provide additional information about the Intel® Fortran Compiler,
Intel® architecture, Intel® processors, or tools:

• Using the Intel® License Manager for FLEXlm*

• Intel® 64 and IA-32 Architectures Software Developer's Manual Volume 1: Basic Architecture,
Intel Corporation

• Intel® 64 and IA-32 Architectures Software Developer's Manual Volume 2A: Instruction Set
Reference, A-M, Intel Corporation

• Intel® 64 and IA-32 Architectures Software Developer's Manual Volume 2B: Instruction Set
Reference, N-Z, Intel Corporation

88

1 Intel® Fortran Compiler User and Reference Guides

• Intel® 64 and IA-32 Architectures Software Developer's Manual Volume 3A: System
Programming Guide, Intel Corporation

• Intel® 64 and IA-32 Architectures Software Developer's Manual Volume 3B: System
Programming Guide, Intel Corporation

• Intel® 64 and IA-32 Architectures Optimization Reference Manual

• Intel® Itanium® Architecture Software Developer's Manual - Volume 1: Application
Architecture, Revision 2.2

• Intel® Itanium® Architecture Software Developer's Manual - Volume 2: System Architecture,
Revision 2.2

• Intel® Itanium® Architecture Software Developer's Manual - Volume 3: Instruction Set
Reference, Revision 2.2

• Intel® Processor Identification with the CPUID Instruction, Intel Corporation, doc. number
241618

• IA-64 Architecture Assembler User's Guide

• IA-64 Architecture Assembly Language Reference Guide

Most Intel documents can be found at the Intel web site http://www.intel.com/software/products/

Optimization and Vectorization Terminology and Technology

The following documents provide details on basic optimization and vectorization terminology
and technology:

• Intel® Architecture Optimization Reference Manual

• Dependence Analysis, Utpal Banerjee (A Book Series on Loop Transformations for
Restructuring Compilers). Kluwer Academic Publishers. 1997.

• The Structure of Computers and Computation: Volume I, David J. Kuck. John Wiley and
Sons, New York, 1978.

• Loop Transformations for Restructuring Compilers: The Foundations, Utpal Banerjee (A Book
Series on Loop Transformations for Restructuring Compilers). Kluwer Academic Publishers.
1993.

• Loop parallelization, Utpal Banerjee (A Book Series on Loop Transformations for Restructuring
Compilers). Kluwer Academic Publishers. 1994.

• High Performance Compilers for Parallel Computers, Michael J. Wolfe. Addison-Wesley,
Redwood City. 1996.

89

Introduction 1

• Supercompilers for Parallel and Vector Computers, H. Zima. ACM Press, New York, 1990.

• An Auto-vectorizing Compiler for the Intel® Architecture, Aart Bik, Paul Grey, Milind Girkar,
and Xinmin Tian. Submitted for publication

• Efficient Exploitation of Parallelism on Pentium® III and Pentium® 4 Processor-Based Systems,
Aart Bik, Milind Girkar, Paul Grey, and Xinmin Tian.

• The Software Vectorization Handbook. Applying Multimedia Extensions for Maximum
Performance, A.J.C. Bik. Intel Press, June, 2004.

• Multi-Core Programming: Increasing Performance through Software Multithreading, Shameem
Akhter and Jason Roberts. Intel Press, April, 2006.

Additional Training

For additional technical product information including white papers about Intel compilers, open
the page associated with your product at http://www.intel.com/software/products/

90

1 Intel® Fortran Compiler User and Reference Guides

Part

I
Building Applications
Topics:

• Overview: Building Applications

• Introduction: Basic Concepts

• Building Applications from the
Command Line

• Input and Output Files

• Setting Environment Variables

• Using Compiler Options

• Preprocessing

• Using Configuration Files and
Response Files

• Debugging

• Data and I/O

• Structuring Your Program

• Programming with Mixed
Languages

• Using Libraries

• Error Handling

• Portability Considerations

• Troubleshooting

• Reference Information

91

2Overview: Building Applications

Welcome to the Intel® Fortran Compiler.

This Building Applications document explains how to use the Intel® Compiler to build applications on
Linux*, Windows*, and Mac OS* X operating systems. Intel® Fortran provides you with a variety of
alternatives for building applications. Depending on your needs, you can build your source code into
several types of programs and libraries using the command line. Additionally, on Windows systems, you
can use the Microsoft Visual Studio* integrated development environment (IDE) and on Mac OS X operating
systems, you can use the Xcode* IDE to build your application.

The discussions in this document often contain content that applies generally to all supported operating
systems; however, where the expected behavior is significantly different on a specific OS, the appropriate
behavior is listed separately.

In general, the compiler features and options supported on Linux OS using IA-32 architecture or Intel®
64 architecture are also supported on Intel®-based systems running Mac OS X. For more detailed information
about support for specific operating systems, refer to the appropriate option in the Compiler Options
reference or the Release Notes.

93

3Introduction: Basic Concepts

Choosing Your Development Environment

Depending on your operating system, you can build programs from the command line and/or from
an IDE such as Microsoft Visual Studio* (Windows* OS) or Xcode* (Mac OS* X).

An IDE offers a number of ways to simplify the task of compiling and linking programs. It provides
a default text editor. You can also use your favorite text editor outside the integrated development
environment.

Because software development is an iterative process, it is important to be able to move quickly
and efficiently to various locations in your source code. If you use an IDE to build your programs,
you can display both the description of the error message and the relevant source code directly from
the displayed error messages.

When you build programs from the command line, you may have more control of the build tools. If
you choose to, you can customize how your program is built by your selection of compiler and linker
options. Compiler options are described in the Compiler Options Reference.

See Also
• Introduction: Basic Concepts
• Invoking the Intel® Fortran Compiler
• Using the Compiler and Linker from the Command Line

Invoking the Intel® Fortran Compiler

The command to invoke the compiler is ifort.

Requirements Before Using the Command Line

On Linux* and Mac OS* X operating systems, you need to set some environment variables to specify
locations for the various components prior to using the command line. The Intel Fortran Compiler
installation includes a shell script that you can run to set environment variables. For more information,
see Using the ifortvars File to Specify Location of Components.

95

On Windows* operating systems, you typically do not need to set any environment variables
prior to using the command line. Each of the Intel® Fortran Compiler variations has its own
Intel Compiler command-line window, available from the Intel Fortran program folder. This
window has the appropriate environment variables already set for the command-line
environment.

Using the ifort Command from the Command Line

Use the ifort command either on a command line or in a makefile to invoke the Intel Fortran
compiler. The syntax is:

ifort [options]input_file(s)

For a complete listing of compiler options, see the Compiler Options reference.

You can specify more than one input_file, using a space as a delimiter. See Understanding
Input File Extensions.

For more information on ifort syntax, see Syntax for the ifort Command.

NOTE. For Windows and Mac OS* X systems, you can also use the compiler from within
the integrated development environment.

You can use the command-line window to invoke the Intel Fortran Compiler in a number of
ways, detailed below.

Using makefiles from the Command Line

Use makefiles to specify a number of files with various paths and to save this information for
multiple compilations. For more information on using makefiles, see Using Makefiles to Compile
Your Application.

Using the devenv command from the Command Line (Windows only)

Use devenv to set various options for the integrated development environment (IDE) as well
as build, clean, and debug projects from the command line. For more information on the devenv
command, see the devenv description in the Microsoft Visual Studio* documentation.

96

3 Intel® Fortran Compiler User and Reference Guides

Using a .bat file from the Command Line

Use a .bat file to consistently execute the compiler with a desired set of options. This spares
you retyping the command each time you need to recompile.

Default Tools

The default tools are summarized in the table below.

Provided with Intel®
Fortran Compiler?

DefaultTool

NoMASM* (Windows
OS)

Assembler for IA-32 architecture-based
applications and Intel® 64 architecture-based
applications

Nooperating system
assembler, as (Linux
OS and Mac OS X)

YesiasAssembler for IA-64 architecture-based
applications

NoMicrosoft* linker
(Windows OS)

Linker

NoSystem linker, ld(1)
(Linux OS and Mac
OS X)

You can specify alternative tools and locations for preprocessing, compilation, assembly, and
linking.

Assembler

By default, the compiler generates an object file directly without calling the assembler. However,
if you need to use specific assembly input files and then link them with the rest of your project,
you can use an assembler for these files.

97

3

IA-32 architecture-based applications

Use any 32-bit assembler. For Windows, you can use the Microsoft Macro Assembler* (MASM),
version 6.15 or higher, to link assembly language files with the object files generated by the
compiler.

Intel® 64 architecture-based applications

For Windows systems, use the MASM provided on the Microsoft SDK. For Linux OS and Mac OS
X systems, use the operating system assembler, as.

IA-64 architecture-based applications

Use the assembler, ias. The following example compiles a Fortran file to an assembly language
file, which you can modify as desired. The assembler is then used to create an object file.

Use the -S (Linux) or /asmfile:file.asm (Windows) option to generate an assembly code
file.

• The following command line on Linux OS and Mac OS X generates the assembly code file,
file.s:

ifort -S -c file.f

• The following command line on Windows OS generates the assembly code for file.asm:

ifort /asmfile:file /c file.f

To assemble the file just produced, call the IA-64 architecture assembler.

• The following is the Linux OS command line:

ias -Nso -p32 -o file.o file.s

• The following is the Windows OS command line:

ias /Nso /p32 /o file.obj file.asm

where the following assembler options are used:

• Nso suppresses the sign-on message

• p32 enables defining 32-bit elements as relocatable data elements; kept for backward
compatibility

• The file specified by the o option indicates the output object file name

98

3 Intel® Fortran Compiler User and Reference Guides

The above ias command generates an object file, which you can link with the object file of the
project.

Linker

On Linux OS and Mac OS X, the compiler calls the system linker, ld(1), to produce an executable
file from the object file.

On Windows OS, the compiler calls the Microsoft linker, link, to produce an executable file
from the object files. The linker searches the path specified in the environment variable LIB
to find any library files.

Specifying Alternative Tools and Locations

The Intel® Fortran Compiler lets you specify alternatives to default tools and locations for
preprocessing, compilation, assembly, and linking. In addition, you can invoke options specific
to the alternate tools on the command line. This functionality is provided by the -Qlocation
or /Qlocation and -Qoption or /Qoption options.

For more information see the following topics:

• Qlocation compiler option

• Qoption compiler option

Compilation Phases

When invoked, the compiler driver determines which compilation phases to perform based on
the extension of the source filename and on the compilation options specified in the command
line.

The table that follows shows the compilation phases and the software that controls each phase.

Architecture (IA-32, Intel® 64, or IA-64)SoftwarePhase

AllfppPreprocess
(optional)

AllfortcomCompile

99

3

Architecture (IA-32, Intel® 64, or IA-64)SoftwarePhase

IAS for IA-64 architecture based applications;Microsoft Macro
Assembler* (MASM) can be used for IA-32 architecture based
applications. See Default Tools for more information.

IAS or
MASM
(Windows
OS)

Assemble

as for IA-32 architecture-based applications and Intel® 64
architecture-based applications; ias for IA-64 architecture-based
applications

as or ias
(Linux OS)

AllLINK
(Windows
OS)

Link

Allld(1)
(Linux OS
and Mac OS
X)

By default, the compiler driver performs the compile and link phases to produce the executable
file.

The compiler driver passes object files and any unrecognized filename to the linker. The linker
then determines whether the file is an object file or a library. For Linux OS and Mac OS X, the
linker can also determine whether the file is a shared library (.so).

The compiler driver handles all types of input files correctly. Therefore, it can be used to invoke
any phase of compilation.

The compiler processes Fortran language source and generates object files. You decide the
input and output by setting options when you run the compiler.

When invoked, the compiler determines which compilation phases to perform based on the
extension of the source filename and on the compilation options specified in the command line.

Compiling and Linking for Optimization

By default, all Fortran source files are separately compiled into individual object files.

If you want to allow full interprocedural optimizations to occur, you must use the -ipo (Linux
OS and Mac OS X) or /Qipo (Windows OS) option.

100

3 Intel® Fortran Compiler User and Reference Guides

By default, compilation is done with -O2 (Linux OS and Mac OS X) or /O2 (Windows). If you
want to see if your code will benefit from some added optimizations, use O3. These aggressive
optimizations may or may not improve your code speed.

For complete information about optimization, see Compiler Optimizations Overview in Optimizing
Applications.

Compiling and Linking Multithread Programs

To build a multithread application that uses the Fortran run-time libraries, specify the -threads
(Linux* OS and Mac OS* X) or /threads (Windows* OS) compiler option from the command
line. For Windows systems, you can use also use the Microsoft integrated development
environment (IDE), as described later in this topic.

You must also link with the correct library files.

The following applies to Linux OS and Mac OS X:

To create statically linked multithread programs, link with the static library named libifcoremt.a.
To use shared libraries, link your application with libifcoremd.so (Linux OS) or libifcoremd.dylib
(Mac OS X).

The following applies to Windows OS:

To create statically linked multithread programs, link with the re-entrant support library
LIBIFCOREMT.LIB. To use shared libraries, use the shared LIBIFCOREMD.DLL library, which
also re-entrant, and is referenced by linking your application with the LIBIFCOREMD.LIB import
library.

Programs built with LIBIFCOREMT.LIB do not share Fortran run-time library code or data with
any dynamic-link libraries they call. You must link with LIBIFCOREMD.LIB if you plan to call a
DLL.

Additional Notes for Windows OS:

• The /threads compiler option is automatically set when you specify a multithread application
in the visual development environment.

• Specify the compiler options /libs=dll and /threads if you are using both multithreaded
code and DLLs. You can use the /libs=dll and /threads options only with Fortran Console
projects, not QuickWin applications.

To compile and link your multithread program from the command line:

1. Make sure your IA32ROOT or IA64ROOT (Linux OS and Mac OS X) or LIB (Windows)
environment variable points to the directory containing your library files.

2. Compile and link the program with the -threads (Linux OS and Mac OS X) or /threads
(Windows) compiler option.

101

3

For example:

ifort -threads mythread.f90 (Linux OS and Mac OS X)

ifort /threads mythread.f90 (Windows OS)

To compile and link your multithread program using the IDE (Windows OS):

1. Create a new project by clicking File > New > Project.

2. Click Intel Fortran Projects in the left pane to display the Intel Fortran project types.
Choose the project type.

3. Add the file containing the source code to the project.

4. From the Project menu, select Properties.

The Property Pages dialog box appears.

5. Choose the Fortran folder, Libraries category, and set the Runtime Library to Multithreaded
or Multithread DLL (or their debug equivalents).

6. Create the executable file by choosing Build Solution from the Build menu.

What the Compiler Does by Default

By default, the compiler driver generates executable file(s) of the input file(s) and performs
the following actions:

• Displays certain diagnostic messages, warnings, and errors.

• Performs default settings and optimizations, unless these options are overridden by specific
options settings.

• Searches for source files in the current directory or in the directory path explicitly specified
before a file name (for example, looks in "src" when the directory path is src\test.f90).

• Searches for include and module files in:

• The directory path explicitly specified before a file name (for example, looks in "src" when
the including source is specified as src\test.f90)

• The current directory

• The directory specified by using the -module path (Linux* OS and Mac OS* X) or
/module:path (Windows* OS) option (for all module files)

• The directory specified by using the -Idir ((Linux OS and Mac OS X) or /Idir (Windows
OS) option (for module files referenced in USE statements and include files referenced
in INCLUDE statements.)

102

3 Intel® Fortran Compiler User and Reference Guides

• For Windows OS, the include path specified by the INCLUDE environment variable (for
all include or module files)

• Any directory explicitly specified in any INCLUDE within an included file

• Passes options designated for linking as well as user-defined libraries to the linker. The linker
searches for any library files in directories specified by the LIB variable, if they are not found
in the current directory.

For unspecified options, the compiler uses default settings or takes no action.

You may want to use the -assume keyword (Linux OS and Mac OS X) or /assume:keyword
(Windows OS) option to instruct the compiler to make certain assumptions. For example, -as-
sume buffered_io tells the compiler to accumulate records in a buffer. For more information
and the complete list of supported keywords, see the assume option reference page.

NOTE. On operating systems that support characters in Unicode* (multi-byte) format,
the compiler will process file names containing Unicode* characters.

Generating Listing and Map Files

Compiler-generatedassembler output listings and linker-generated map files can help you
understand the effects of compiler optimizations and see how your application is laid out in
memory. They may also help you interpret the information provided in a stack trace at the time
of an error.

How to Generate Assembler Output

When compiling from the command line, specify the -S (Linux* OS and Mac OS* X) or /asmattr
option with one of its keyword (Windows* OS):

ifort -S file.f90 (Linux OS and Mac OS X)
ifort file.f90 /asmattr:all (Windows OS)

On Linux OS and Mac OS X, the resulting assembly file name has a .s suffix. On Windows OS,
the resulting assembly file name has an .asm suffix.

Additionally, on Windows OS, you can use the Visual Studio integrated development environment:

1. Select Project>Properties.

2. Click the Fortran tab.

103

3

3. In the Output Files category, change the Assembler Output settings according to your needs.
You can choose from a number of options such as No Listing, Assembly-only Listing, and
Assembly, Machine Code and Source.

How to Generate a Link Map (.map) File

When compiling from the command line, specify the -Xlinker and -M options (Linux OS and
Mac OS X) or the /map (Windows) option:

ifort file.f90 -Xlinker -M (Linux OS and Mac OS X)
ifort file.f90 /map (Windows)

Additionally, on Windows systems, you can use the Visual Studio integrated development
environment:

1. Select Project>Properties.

2. Click the Linker tab.

3. In the Debug category, select Generate Map File.

Saving Compiler Information in your Executable

If you want to save information about the compiler in your executable, use the -sox (Linux*
OS) or /Qsox (Windows* OS) option. When you use this option, the following information is
saved:

• compiler version number

• compiler options that were used to produce the executable

On Linux OS:

To view the information stored in string format in the object file, use the following command:
strings -a a.out|grep comment:

On Windows OS:

To view the linker directives stored in string format in the object file, use the following command:
link /dump /directives filename.obj

The -?comment linker directive displays the compiler version information.

To search your executable for compiler information, use the following command:
findstr "Compiler" filename.exe

104

3 Intel® Fortran Compiler User and Reference Guides

This searches for any strings that have the substring "Compiler" in them.

105

3

4Building Applications from the
Command Line

Using the Compiler and Linker from the Command Line

The ifort command is used to compile and link your programs from the command line.

You can either compile and link your projects in one step with the ifort command, or compile them
with ifort and then link them as a separate step.

In most cases, you will use a single ifort command to invoke the compiler and linker.

You can use the ifort command in either of two windows:

• Your own terminal window, in which you have set the appropriate environment variables by
executing the file called ifortvars.sh or ifortvars.csh (Linux* OS and Mac OS* X) or
ifortvars.bat (Windows* OS). This file sets the environment variables such as PATH. By
default, the ifortvars file is installed in the \bin directory for your compiler. For more
information, see Using the ifortvars File to Specify Location of Components.

• On Windows operating systems, the supplied Fortran command-line window in the Intel® Fortran
program folder, in which the appropriate environment variables in ifortvars.bat are preset.

The ifort command invokes a driver program that is the actual user interface to the compiler
and linker. It accepts a list of command options and file names and directs processing for each file.

The driver program does the following:

• Calls the Intel® Fortran Compiler to process Fortran files.

• Passes the linker options to the linker.

• Passes object files created by the compiler to the linker.

• Passes libraries to the linker.

• Calls the linker or librarian to create the executable or library file.

You can also use ld (Linux OS and Mac OS X) or link (Windows OS) to build libraries of object
modules. These commands provide syntax instructions at the command line if you request it with
the /? or /help option.

Theifort command automatically references the appropriate Intel Fortran Run-Time Libraries when
it invokes the linker. Therefore, to link one or more object files created by the Intel Fortran compiler,
you should use the ifort command instead of the link command.

107

Because the driver calls other software components, error messages may be returned by these
other components. For instance, the linker may return a message if it cannot resolve a global
reference. The -watch (Linux OS and Mac OS X) or /watch (Windows OS) command-line option
can help clarify which component is generating the error.

NOTE. Windows systems support characters in Unicode* (multibyte) format; the compiler
will process file names containing Unicode* characters.

Syntax for the ifort Command

Use the syntax below to invoke the Intel® Fortran Compiler from the command line:
ifort [options]input_file(s)

An option is specified by one or more letters preceded by a hyphen (-) for Linux and Mac OS*
X operating systems and a slash (/) for the Windows* operating system. (You can use a hyphen
(-) instead of a slash for Windows OS, but this is not the preferred method.)

The following rules apply:

• Some options take arguments in the form of filenames, strings, letters, or numbers. Except
where otherwise noted, you can enter a space between the option and its argument(s) or
you can combine them. For a complete listing of compiler options, see the Compiler Options
reference.

• You can specify more than one input_file , using a space as a delimiter. When a file is not
in your path or working directory, specify the directory path before the file name. The
filename extension specifies the type of file.

NOTE. Options on the command line apply to all files. For example, in the following
command line, the -c and -nowarn options apply to both files x.f and y.f:

ifort -c x.f -nowarn y.f

• You cannot combine options with a single slash or hyphen, but must specify the slash or
hyphen for each option specified. For example, this is correct: /1 /c

But this is not: /1c

• Some compiler options are case-sensitive. For example, c and C are two different options.

• Options can take arguments in the form of filenames, strings, letters, and numbers. If a
string includes spaces, it must be enclosed in quotation marks.

108

4 Intel® Fortran Compiler User and Reference Guides

• All compiler options must precede the -Xlinker (Linux OS and Mac OS X) or /link (Windows
OS) options. Options that appear following -Xlinker or /link are passed directly to the linker.

• Unless you specify certain options, the command line will both compile and link the files you
specify. To compile without linking, specify the -c (Linux OS and Mac OS X) or /c (Windows
OS) option.

• You can abbreviate some option names, entering as many characters as are needed to
uniquely identify the option.

• Compiler options remain in effect for the whole compilation unless overridden by a compiler
directive.

• On Windows OS, certain options accept one or more keyword arguments following the option
name. To specify multiple keywords, you typically specify the option multiple times. However,
some options allow you to use comma-separated keywords. For example:

ifort /warn:usage,declarations test.f90

You can use an equals sign (=) instead of the colon:
ifort /warn=usage,declarations test.f90

Examples of the ifort Command

This topic provides some examples of valid ifort commands. It also shows various ways to
compile and link source files.

Compiling and Linking a Single Source File

The following command compiles x.for, links, and creates an executable file. This command
generates a temporary object file, which is deleted after linking:

ifort x.for

To specify a particular name for the executable file, specify the -o (Linux* OS and Mac OS* X)
or /exe (Windows* OS) option:

ifort x.for -o myprog.out (Linux OS and Mac OS X)
ifort x.for /exe:myprog.exe (Windows OS)

109

4

Compiling, but not Linking, a Source File

The following command compiles x.for and generates the object file x.o (Linux OS and Mac
OS X) or x.obj (Windows OS). The c option prevents linking (it does not link the object file
into an executable file):

ifort -c x.for (Linux OS and Mac OS X)
ifort x.for /c (Windows OS)

The following command links x.o or x.obj into an executable file. This command automatically
links with the default Intel Fortran libraries:

ifort x.o (Linux OS and Mac OS X)
ifort x.obj (Windows OS)

Compiling and Linking Multiple Fortran Source Files

The following command compiles a.for, b.for, and c.for. It creates three temporary object
files, then links the object files into an executable file named a.out (on Linux OS and Mac OS
X) or a.exe (Windows OS):

ifort a.for b.for c.for

When you use modules and compile multiple files, compile the source files that define modules
before the files that reference the modules (in USE statements).

When you use a single ifort command, the order in which files are placed on the command
line is significant. For example, if the free-form source file moddef.f90 defines the modules
referenced by the file projmain.f90, use the following command:

ifort moddef.f90 projmain.f90

Creating, Running, and Debugging an Executable Program

The example below shows a sample Fortran main program using free source form that uses a
module and an external subprogram.

The function CALC_AVERAGE is contained in a separate file and depends on the module
ARRAY_CALCULATOR for its interface block.

The USE statement accesses the module ARRAY_CALCULATOR. This module contains the function
declaration for CALC_AVERAGE.

The 5-element array is passed to the function CALC_AVERAGE, which returns the value to the
variable AVERAGE for printing.

110

4 Intel® Fortran Compiler User and Reference Guides

The example is:
! File: main.f90
! This program calculates the average of five numbers
PROGRAM MAIN
USE ARRAY_CALCULATOR
REAL, DIMENSION(5) :: A = 0
REAL :: AVERAGE
PRINT *, 'Type five numbers: '
READ (*,'(F10.3)') A

AVERAGE = CALC_AVERAGE(A)
PRINT *, 'Average of the five numbers is: ', AVERAGE
END PROGRAM MAIN

The example below shows the module referenced by the main program. This example program
shows more Fortran 95/90 features, including an interface block and an assumed-shape array:
! File: array_calc.f90.
! Module containing various calculations on arrays.
MODULE ARRAY_CALCULATOR
INTERFACE
FUNCTION CALC_AVERAGE(D)
REAL :: CALC_AVERAGE
REAL, INTENT(IN) :: D(:)
END FUNCTION CALC_AVERAGE
END INTERFACE
! Other subprogram interfaces...
END MODULE ARRAY_CALCULATOR

The example below shows the function declaration CALC_AVERAGE referenced by the main
program:
! File: calc_aver.f90.
! External function returning average of array.
FUNCTION CALC_AVERAGE(D)
REAL :: CALC_AVERAGE
REAL, INTENT(IN) :: D(:)
CALC_AVERAGE = SUM(D) / UBOUND(D, DIM = 1)
END FUNCTION CALC_AVERAGE

Commands to Create a Sample Program

During the early stages of program development, the sample program files shown above might
be compiled separately and then linked together, using the following commands:

Linux OS and Mac OS* X example:

1. ifort -c array_calc.f90

2. ifort -c calc_aver.f90

111

4

3. ifort -c main.f90

4. ifort -o calc main.o array_calc.o calc_aver.o

Windows* example:

1. ifort /c array_calc.f90

2. ifort /c calc_aver.f90

3. ifort /c main.f90

4. ifort /exe:calc main.obj array_calc.obj calc_aver.obj

In this sequence of commands:

Line 1: The -c (Linux OS and Mac OS X) or /c (Windows OS) option prevents linking and retains
the object files. This command creates the module file array_calculator.mod and the object
file array_calc.o (Linux OS and Mac OS X) or array_calc.obj (Windows OS). Note that the
name in the MODULE statement determines the name of module file array_calculator.mod.
Module files are written into the current working directory.

Line 2: This command creates the object file calc_aver.o (Linux OS and Mac OS X) or
calc_aver.obj (Windows OS).

Line 3: This command creates the object file main.o (Linux OS and Mac OS X) or main.out
(Windows OS)and uses the module file array_calculator.mod.

Line 4: This command links all object files into the executable program named calc. To link
files, use the ifort command instead of the ld command.

Running the Sample Program

If your path definition includes the directory containing calc, you can run the program by
simply entering its name:

calc

When running the sample program, the PRINT and READ statements in the main program result
in the following dialogue between user and program:

Type five numbers:
55.5
4.5
3.9
9.0
5.6
Average of the five numbers is: 15.70000

112

4 Intel® Fortran Compiler User and Reference Guides

Debugging the Sample Program

To debug a program with the debugger, compile the source files with the -g (Linux OS and
Mac OS X) or /debug:full (Windows OS) option to request additional symbol table information
for source line debugging in the object and executable program files.

The following ifort command lines for Linux OS and Mac OS X systems use the -o option to
name the executable program file calc_debug. The Mac OS X command line also uses the
-save-temps option, which specifies that the object files should be saved; otherwise, they will
be deleted by default.

ifort -g -o calc_debug array_calc.f90 calc_aver.f90 main.f90 (Linux)
ifort -g -save-temps -o calc_debug array_calc.f90 calc_aver.f90 main.f90 (Mac OS X)

The Windows OS equivalent of this command is the following:

ifort /debug:full /exe:calc_debug array_calc.f90 calc_aver.f90 main.f90

See also Debugging Fortran Programs and related sections.

Redirecting Command-Line Output to Files

When using the command line, you can redirect standard output and standard error to a file.
This avoids displaying a lot of text, which will slow down execution; scrolling text in a terminal
window on a workstation can cause an I/O bottleneck (increased elapsed time) and use more
CPU time.

Linux* OS and Mac OS* X:

The following example applies to Linux* OS and Mac OS* X.

To run the program more efficiently, redirect output to a file and then display the program
output:
myprog > results.lis
more results.lis

Windows* OS:

The following examples apply to Windows OS.

To place standard output into file one.out and standard error into file two.out, use the ifort
command as follows:
ifort filenames /options 1>one.out 2>two.out

You can also use a short-cut form (omit the 1):
ifort filenames /options >one.out 2>two.out

113

4

To place standard output and standard error into a single file both.out, enter the ifort
command as follows:
ifort filenames /options 1>both.out 2>&1

You can also use a short-cut form (omit the 1):
ifort filenames /options >both.out 2>&1

Using Makefiles to Compile Your Application

To specify a number of files with various paths and to save this information for multiple
compilations, you can use a makefile.

Linux OS and Mac OS X:

To use a makefile to compile your input files, make sure that /usr/bin and /usr/local/bin are in
your path.

If you use the C shell, you can edit your .cshrc file and add the following:

setenv PATH /usr/bin:/usr/local/bin:yourpath

Then you can compile as:
make -f yourmakefile

where -f is the make command option to specify a particular makefile.

Windows OS:

To use a makefile to compile your input files, use the nmake command. For example, if your
project is your_project.mak:

nmake /f your_project.mak FPP=ifort.exe LINK32=xilink.exe

The arguments of this nmake command are as follows:

A particular makefile./f

A makefile you want to use to generate object and executable files.your_project.mak

The compiler-invoking command you want to use. The name of this macro
might be different for your makefile. This command invokes the preprocessor.

FPP

The linker you want to use.LINK32

The nmake command creates object files (.obj) and executable files (.exe) specified in
your_project.mak file.

114

4 Intel® Fortran Compiler User and Reference Guides

Specifying Memory Models to use with Systems Based on Intel® 64 Architecture

The following applies to Linux* operating systems only.

Applications designed to take advantage of Intel® 64 architecture can be built with one of three
memory models:

• small (-mcmodel=small)

This causes code and data to be restricted to the first 2GB of address space so that all
accesses of code and data can be done with Instruction Pointer (IP)-relative addressing.

• medium (-mcmodel=medium)

This causes code to be restricted to the first 2GB; however, there is no restriction on data.
Code can be addressed with IP-relative addressing, but access of data must use absolute
addressing.

• large (-mcmodel=large)

There are no restrictions on code or data; access to both code and data uses absolute
addressing.

IP-relative addressing requires only 32 bits, whereas absolute addressing requires 64-bits. This
can affect code size and performance. (IP-relative addressing is somewhat faster.)

Additional Notes on Memory Models and on Large Data Objects

• When you specify the medium or large memory models, you must also specify the -shared-
intel compiler option to ensure that the correct dynamic versions of the Intel run-time
libraries are used.

• When you build shared objects (.so), Position-Independent Code (PIC) is specified (that is,
-fpic is added by the compiler driver) so that a single .so can support all three memory
models. However, code that is to be placed in a static library, or linked statically, must be
built with the proper memory model specified. Note that there is a performance impact to
specifying the medium or large memory models.

• The use of the memory model (medium, large) option and the -shared-intel option is
required as a by-product of the code models stipulated in the 64-bit Application Binary
Interface (ABI), which is written specifically for processors with the 64-bit memory extensions.
Both the compiler and the GNU linker (ld) are responsible for generating the proper code
and necessary relocations on this platform according to the chosen memory model.

115

4

• The 2GB restriction on Intel® 64 architecture involves not only arrays greater than 2GB, but
also COMMON blocks and local data with a total size greater than 2GB. The Compiler Options
reference contains additional discussion of the supported memory models and offers details
about the 2GB restrictions for each model. See the -mcmodel options page.

• If, during linking, you fail to use the appropriate memory model and dynamic library options,
an error message in this format occurs:

<some lib.a library>(some .o): In Function <function>:
: relocation truncated to fit: R_X86_64_PC32 <some symbol>

Allocating Common Blocks

Use the -dyncom (Linux OS and Mac OS X) or /Qdyncom (Windows OS) option to dynamically
allocate common blocks at run time.

This option designates a common block to be dynamic. The space for its data is allocated at
run time rather than compile time. On entry to each routine containing a declaration of the
dynamic common block, a check is performed to see whether space for the common block has
been allocated. If the dynamic common block is not yet allocated, space is allocated at the
check time.

The following command-line example specifies the dynamic common option with the names of
the common blocks to be allocated dynamically at run time:
ifort -dyncom "blk1,blk2,blk3" test.f (Linux OS and Mac OS X)
ifort /Qdyncom"BLK1,BLK2,BLK3" test.f (Windows OS)

where BLK1, BLK2, and BLK3are the names of the common blocks to be made dynamic.

Guidelines for Using the dyncom/Qdyncom Option

The following are some limitations that you should be aware of when using the -dyncom (Linux
OS and Mac OS X) or /Qdyncom (Windows OS) option:

• An entity in a dynamic common cannot be initialized in a DATA statement.

• Only named common blocks can be designated as dynamic COMMON.

• An entity in a dynamic common block must not be used in an EQUIVALENCE expression with
an entity in a static common block or a DATA-initialized variable.

For more information, see the following topic:

• -dyncom compiler option

116

4 Intel® Fortran Compiler User and Reference Guides

Why Use a Dynamic Common Block?

A main reason for using dynamic common blocks is to enable you to control the common block
allocation by supplying your own allocation routine. To use your own allocation routine, you
should link it ahead of the Fortran run-time library. This routine must be written in the C
language to generate the correct routine name.

The routine prototype is:

void _FTN_ALLOC(void **mem, int *size, char *name);

where

• mem is the location of the base pointer of the common block which must be set by the routine
to point to the block of memory allocated.

• size is the integer number of bytes of memory that the compiler has determined are
necessary to allocate for the common block as it was declared in the program. You can
ignore this value and use whatever value is necessary for your purpose.

NOTE. You must return the size in bytes of the space you allocate. The library routine
that calls _FTN_ALLOC() ensures that all other occurrences of this common block fit in
the space you allocated. Return the size in bytes of the space you allocate by modifying
size.

• name is the name of the common block being dynamically allocated.

Allocating Memory to Dynamic Common Blocks

The run-time library routine, f90_dyncom, performs memory allocation. The compiler calls this
routine at the beginning of each routine in a program that contains a dynamic common block.
In turn, this library routine calls _FTN_ALLOC() to allocate memory. By default, the compiler
passes the size in bytes of the common block as declared in each routine to f90_dyncom, and
then on to _FTN_ALLOC(). If you use the nonstandard extension having the common block of
the same name declared with different sizes in different routines, you might get a run-time
error depending on the order in which the routines containing the common block declarations
are invoked.

The Fortran run-time library contains a default version of _FTN_ALLOC(), which simply allocates
the requested number of bytes and returns.

117

4

Running Fortran Applications from the Command Line

If you run a program from the command line, the operating system searches directories listed
in the PATH environment variable to find the executable file you have requested.

You can also run your program by specifying the complete path of the executable file. On
Windows* operating systems, any DLLs you are using must be in the same directory as the
executable or in one specified in the path.

Multithreaded Programs

If your program is multithreaded, each thread starts on whichever processor is available at the
time. On a computer with one processor, the threads all run in parallel, but not simultaneously;
the single processor switches among them. On a computer with more than one processor, the
threads can run simultaneously.

Using the fpscomp:filesfromcmd Option

If you specify the -fpscomp filefromcmd (Linux OS and Mac OS X) or /fpscomp:filesfrom-
cmd (Windows OS) option, the command line that executes the program can also include
additional filenames to satisfy OPEN statements in your program in which the filename field
(FILE specifier) has been left blank. The first filename on the command line is used for the first
such OPEN statement executed, the second filename for the second OPEN statement, and so
on. (In the Visual Studio IDE, you can provide these filenames using Project>Properties. Choose
the Debugging category and enter the filenames in the Command Arguments text box.)

Each filename on the command line (or in an IDE dialog box) must be separated from the
names around it by one or more spaces or tab characters. You can enclose each name in
quotation marks ("filename"), but this is not required unless the argument contains spaces
or tabs. A null argument consists of an empty set of quotation marks with no filename enclosed
("").

The following example runs the program MYPROG.EXE from the command line:

MYPROG "" OUTPUT.DAT

Because the first filename argument is null, the first OPEN statement with a blank filename field
produces the following message:

File name missing or blank - please enter file name
UNIT number ?

118

4 Intel® Fortran Compiler User and Reference Guides

The number is the unit number specified in the OPEN statement. The filename OUTPUT.DAT is
used for the second such OPEN statement executed. If additional OPEN statements with blank
filename fields are executed, you will be prompted for more filenames.

Instead of using the -fpscomp filesfromcmd or /fpscomp:filesfromcmd option, you can:

• Call the GETARG library routine to return the specified command-line argument. To execute
the program in the Visual Studio IDE, provide the command-line arguments to be passed
to the program using Project>Properties. Choose the Debugging category and enter the
arguments in the Command Arguments text box .

• On Windows OS, call the GetOpenFileName Windows API routine to request the file name
using a dialog box.

For more information, see the following topic:

• fpscomp compiler option

119

4

5Input and Output Files

Understanding Input File Extensions

The Intel® Fortran compiler interprets the type of each input file by the file name extension.

The file extension determines whether a file gets passed to the compiler or to the linker. The following
types of files are used with the ifort command:

• Files passed to the compiler: .f90, .for, .f, .fpp, .i, .i90, .ftn

Typical Fortran source files have a file extension of .f90, .for, and .f. When editing your source
files, you need to choose the source form, either free-source form or fixed-source form (or a
variant of fixed form called tab form). You can either use a compiler option to specify the source
form used by the source files (see the description for the free or fixed compiler option) or you
can use specific file extensions when creating or renaming your files. For example:

• The compiler assumes that files with an extension of .f90 or .i90 are free-form source files.

• The compiler assumes that files with an extension of .f, .for, .ftn, or .i are fixed-form (or
tab-form) files.

• Files passed to the linker: .a, .lib, .obj, .o, .exe, .res, .rbj, .def, .dll

The most common file extensions and their interpretations are:

ActionInterpretationFilename

Passed to the linker.Object libraryfilename.a (Linux* OS and Mac OS*
X)

filename.lib (Windows* OS)

Compiled by the Intel® Fortran
compiler.

Fortran
fixed-form source

filename.f

filename.for

filename.ftn

filename.i

121

ActionInterpretationFilename

Automatically preprocessed by the
Intel Fortran preprocessor fpp;
then compiled by the Intel Fortran
compiler.

Fortran
fixed-form
source

filename.fpp

and, on Linux, filenames with the
following uppercase extensions:
.FPP, .F, .FOR, .FTN

Compiled by the Intel Fortran
compiler.

Fortran
free-form source

filename.f90

filename.i90

Automatically preprocessed by the
Intel Fortran preprocessor fpp;
then compiled by the Intel Fortran
compiler.

Fortran
free-form source

filename.F90 (Linux OS and Mac
OS X)

Passed to the assembler.Assembly filefilename.s (Linux OS and Mac OS
X)

filename.asm (Windows)

Passed to the linker.Compiled object
file

filename.o (Linux OS and Mac OS
X)

filename.obj (Windows OS)

When you compile from the command line, you can use the compiler configuration file to specify
default directories for input libraries. To specify additional directories for input files, temporary
files, libraries, and for the files used by the assembler and the linker, use compiler options that
specify output file and directory names.

Producing Output Files

The output produced by the ifort command includes:

• An object file, if you specify the -c (Linux OS and Mac OS X) or /c (Windows OS) option
on the command line. An object file is created for each source file.

• An executable file, if you omit the -c or /c option.

• One or more module files (such as datadef.mod), if the source file contains one or more
MODULE statements.

122

5 Intel® Fortran Compiler User and Reference Guides

• A shareable library (such as mylib.so on Linux OS, mylib.dylib on Mac OS X, ormylib.dll
on Windows OS), if you use the -shared (Linux),-dynamiclib (Mac OS X) or /libs:dll
(Windows OS) option.

• Assembly files, if you use the -S (Linux OS and Mac OS X) or /S (Windows OS) option. This
creates an assembly file for each source file.

You control the production of output files by specifying the appropriate compiler options on the
command line or using the appropriate properties in the integrated development environment
for Windows OS and Mac OS X.

For instance, if you do not specify the -c or /c option, the compiler generates a temporary
object file for each source file. It then invokes the linker to link the object files into one
executable program file and causes the temporary object files to be deleted.

If you specify the -c or /c option, object files are created and retained in the current working
directory. You must link the object files later. You can do this by using a separate ifort command;
alternatively, you can call the linker (ld for Linux OS and Mac OS X or link for Windows OS)
directly to link in objects. On Linux OS and Mac OS X systems, you can also call xild or use
the archiver (ar) and xiar to create a library. For Mac OS X, you would use libtool to generate
a library.

If fatal errors are encountered during compilation, or if you specify certain options such as -c
or /c, linking does not occur.

The output files include the following:

How Created on the Command LineExtensionOutput File

Created automatically..o (Linux OS and
Mac OS X)

Object file

.obj (Windows
OS)

Do not specify -c or /c..out (Linux OS
and Mac OS X)

Executable
file

.exe (Windows
OS)

Specify -shared (Linux OS),-dynamiclib (Mac OS X) or
/libs:dll (Windows OS) and do not specify -c or /c .

.so (Linux OS)

.dylib (Mac OS
X)

Shareable
library file

.dll (Windows
OS)

123

5

How Created on the Command LineExtensionOutput File

Created if a source file being compiled defines a Fortran
module (MODULE statement).

.modModule file

Created if you specify the S option. An assembly file for
each source file is created.

.s (Linux OS and
Mac OS* X)

.asm (Windows
OS)

Assembly
file

To allow optimization across all objects in the program, use the -ipo/Qipo option.

To specify a file name for the executable program file (other than the default) use the -o
output (Linux OS and Mac OS X) or /exe:output (Windows OS) option, where output specifies
the file name.

NOTE. You cannot use the c and o options together with multiple source files.

Temporary Files Created by the Compiler or Linker

Temporary files created by the compiler or linker reside in the directory used by the operating
system to store temporary files.

To store temporary files, the driver first checks for the TMP environment variable. If defined,
the directory that TMP points to is used to store temporary files.

If the TMP environment variable is not defined, the driver then checks for the TMPDIR
environment variable. If defined, the directory that TMPDIR points to is used to store temporary
files.

If the TMPDIR environment variable is not defined, the driver then checks for the TEMP
environment variable. If defined, the directory that TEMP points to is used to store temporary
files.

For Windows* OS, if the TEMP environment variable is not defined, the current working directory
is used to store temporary files. For Linux* OS and Mac OS* X, if the TEMP environment variable
is not defined, the /tmp directory is used to store temporary files.

Temporary files are usually deleted. Use the -save-temps (Linux OS and Mac OS X) or /Qsave-
temps (Windows OS) compiler option to save temporary files created by the compiler in the
current working directory. This option only saves intermediate files that are normally created
during compilation.

124

5 Intel® Fortran Compiler User and Reference Guides

For performance reasons, use a local drive (rather than a network drive) to contain temporary
files.

To view the file name and directory where each temporary file is created, use the -watch all
(Linux OS and Mac OS X) or /watch:all (Windows OS) option.

To create object files in your current working directory, use the -c (Linux OS and Mac OS X)
or /c (Windows OS) option.

Any object files that you specify on the command line are retained.

125

5

6Setting Environment Variables

Using the ifortvars File to Specify Location of Components

Before you first invoke the compiler, you need to be sure certain environment variables are set.
These environment variables define the location of the various compiler-related components.

The Intel Fortran Compiler installation includes a file that you can run to set environment variables.

• On Linux* OS and Mac OS* X, the file is a shell script called ifortvars.sh or ifortvars.csh.

• On Windows* OS, the file is a batch file called ifortvars.bat.

The following information is operating system-dependent.

Linux OS and Mac OS X:

Set the environment variables before using the compiler. You can use the source command to
execute the shell script, ifortvars.sh or ifortvars.csh, from the command line to set them.

The script takes an architecture argument:

• ia32: Compiler and libraries for IA-32 architecture only

• intel64: Compiler and libraries for Intel® 64 architecture only

• ia64: Compiler and libraries for IA-64 architectures only (Linux OS)

For example, to execute this script file for the bash shell:

source /opt/intel/Compiler/version_number/package_id/bin/ifortvars.sh ia32

If you use the C shell, use the .csh version of this script file:

source /opt/intel/Compiler/version_number/package_id/bin/ifortvars.csh ia32

If you want ifortvars.sh to run automatically when you start Linux OS or Mac OS X, you can edit
your .bash_profile file and add the line above to the end of your file. For example:

set up environment for Intel compiler
source /opt/intel/fc/version_number/package_id/bin/ifortvars.sh ia32

127

If you compile a program without ensuring the proper environment variables are set, you will
see an error similar to the following when you execute the compiled program:

./a.out: error while loading shared libraries:
libimf.so: cannot open shared object file: No such file or directory

Windows OS:

Under normal circumstances, you do not need to run the ifortvars.bat batch file. The Fortran
command-line window sets these variables for you automatically.

To activate this command-line window, select Fortran Build Environment for applications...
available from the Start>All Programs>Intel(R) Software Development Tools>Intel(R)
Visual Fortran Compiler Professional

NOTE. You will need to run the batch file if you open a command-line window without
using the provided Build Environment for applications... menu item in the Intel Fortran
program folder or if you want to use the compiler from a script of your own.

The batch file inserts the directories used by Intel Fortran at the beginning of the existing paths.
Because these directories appear first, they are searched before any directories in the path
lists provided by Windows OS. This is especially important if the existing path includes directories
with files having the same names as those needed by Intel Fortran.

If needed, you can run ifortvars.bateach time you begin a session on Windows* systems
by specifying it as the initialization file with the PIF Editor.

The batch file takes two arguments:

<install-dir>\bin\ifortvars.bat <arg1> [<arg2>]

<arg1> is one of the following

• ia32: Compiler and libraries for IA-32 architecture only

• ia32_intel64: Compiler running on IA-32 architecture that generates code for Intel® 64
architecture; uses Intel® 64 architecture libraries

• ia32_ia64: Compiler running on IA-32 architecture that generates code for IA-64 architecture;
uses IA-64 architecture libraries

• intel64: Compiler and libraries for Intel® 64 architecture only

• ia64: Compiler and libraries for IA-64 architectures only

<arg2>, if specified, is one of the following:

128

6 Intel® Fortran Compiler User and Reference Guides

• vs2005: Microsoft Visual Studio 2005

• vs2008: Microsoft Visual Studio 2008

If <arg2> is not specified, the script uses the version of Visual Studio that was detected during
the installation procedure.

Setting Compile-Time Environment Variables

The following table shows the compile-time environment variables that affect the Intel® Fortran
Compiler:

DescriptionEnvironment
Variable

Specifies a configuration file that the compiler should use instead of the
default configuration file.

IFORTCFG

By default, the compiler uses the default configuration file (ifort.cfg)
from the same directory where the compiler executable resides.

NOTE. On Windows* operating systems, this environment variable
cannot be set from the IDE.

Specifies the location of the product license file.INTEL_LICENSE_FILE

Specifies the directory path for the compiler executable files.PATH

Specifies the directory in which to store temporary files. See Temporary
Files Created by the Compiler or Linker.

TMP, TMPDIR,
TEMP

NOTE. On Windows operating systems, this environment variable
cannot be set from the IDE.

The path for include and module files.FPATH

(Linux* OS and
Mac OS* X)

129

6

DescriptionEnvironment
Variable

Specifies the location of the gcc binaries. Set this variable only when the
compiler cannot locate the gcc binaries when using the -gcc-name option.

GCCROOT

(Linux OS and
Mac OS X)

The location of the gcc headers. Set this variable to specify the locations
of the GCC installed files when the compiler does not find the needed
values as specified by the use of -gcc-name=directory-name/gcc.

GXX_INCLUDE

(Linux OS and
Mac OS X)

The location of the gcc binaries. Set this variable to specify the locations
of the GCC installed files when the compiler does not find the needed
values as specified by the use of -gcc-name=directory-name/gcc.

GXX_ROOT

(Linux OS and
Mac OS X)

The path for libraries to be used during the link phase.LIBRARY_PATH

(Linux OS and
Mac OS X)

The path for shared (.so) library files.LD_LIBRARY_PATH
(Linux OS)

The path for dynamic libraries.DYLD_LIBRARY_PATH
(Mac OS X)

Specifies the directory path for the include files (files included by an
INCLUDE statement, #include files, RC INCLUDE files, and module files
referenced by a USE statement).

INCLUDE
(Windows OS)

Specifies the directory path for .LIB (library) files, which the linker links
in. If the LIB environment variable is not set, the linker looks for .LIB files
in the current directory.

LIB (Windows
OS)

Additionally, there are a number of run-time environment variables that you can set. For a list
of environment variables recognized at run time and information on setting and viewing
environment variables, see Setting Run-Time Environment Variables.

You can use the SET command at the command prompt to set environment variables. Depending
on your operating system, there are additional ways to set environment variables.

130

6 Intel® Fortran Compiler User and Reference Guides

Setting Environment Variables (Linux OS and Mac OS X)

You can set environment variables by using the ifortvars.csh and ifortvars.sh files to
set several at a time. The files are found in the product's bin directory. See Using the ifortvars
File to Specify Location of Components.

Within the C Shell, use the setenv command to set an environment variable:

setenv FORT9 /usr/users/smith/test.dat

To remove the association of an environment variable and its value within the C shell, use the
unsetenv command.

unsetenv FORT9

Within the Bourne* shell (sh), the Korn shell (ksh), and the bash shell, use the export command
and assignment command to set the environment variable:

export FORT9
FORT9=/usr/users/smith/test.dat

To remove the association of an environment variable and its value within the Bourne* shell,
the Korn shell, or the bash shell, use the unset command:

unset FORT9

Setting Environment Variables (Windows OS)

Certain environment variables specifying path, library, and include directories can be defined
in the IDE on a per user basis using Tools>Options... from the menu bar.

Additionally, you can set the environment variables needed by Intel Fortran using the
ifortvars.bat file. See Using the ifortvars File to Specify Location of Components.

NOTE. If you specify devenv/useenv on the command line to start the IDE, the IDE
uses the PATH, INCLUDE, and LIB environment variables defined for that command line
when performing a build. It uses these values instead of the values defined using
Tool>Options.

For more information on the devenv command, see the devenv description in the Microsoft
Visual Studio* documentation.

During installation, the Intel Fortran compiler may modify certain system-wide environment
variables, depending on your installation choices. (For more information, see the install.htm
file.)

To view or change these environment variable settings, do the following:

131

6

On Windows* 2000, Windows NT* 4, or Windows XP* operating systems:

1. Log into an account with Administrator privilege.

2. Open the Control panel.

3. Click System.

4. On Windows 2000 and Windows XP systems: Click the Advanced tab and then click the
Environment Variables button. On Windows NT 4 systems: Click the Environment tab.

5. View or change the displayed environment variables.

6. To have any environment variable changes take effect immediately, click Apply.

7. Click OK.

NOTE. Changing system-wide environment variables affects command line builds (those
done without IDE involvement), but not builds done through the IDE. IDE builds are
managed by the environment variables set in the IDE Using Tools>Options. An exception
to this is an IDE build (devenv) done from the command line that specifies the /useenv
option. In this case, the IDE uses the PATH, INCLUDE, and LIB environment variables
defined for that command line.

You can set an environment variable from within a program by calling the SETENVQQ routine.
For example:
USE IFPORT
LOGICAL(4) success
success = SETENVQQ("PATH=c:\mydir\tmp")
success = &
SETENVQQ("LIB=c:\mylib\bessel.lib;c:\math\difq.lib")

Setting Run-Time Environment Variables

The Intel® Fortran run-time system recognizes a number of environment variables. These
variables can be used to customize run-time diagnostic error reporting, allow program
continuation under certain conditions, disable the display of certain dialog boxes under certain
conditions, and allow just-in-time debugging. For a list of run-time environment variables used
by OpenMP*, see OpenMP Environment Variables in Optimizing Applications.

For information on setting compile time environment variables, see Setting Compile-Time
Environment Variables.

The run-time environment variables are:

• decfort_dump_flag

132

6 Intel® Fortran Compiler User and Reference Guides

If this variable is set to Y or y, a core dump will be taken when any severe Intel Fortran
run-time error occurs.

• F_UFMTENDIAN

This variable specifies the numbers of the units to be used for little-endian-to-big-endian
conversion purposes. See Environment Variable F_UFMTENDIAN Method.

• FOR_FMT_TERMINATOR

This variable specifies the numbers of the units to have a specific record terminator. See
Record Types.

• FOR_ACCEPT

The ACCEPT statement does not include an explicit logical unit number. Instead, it uses an
implicit internal logical unit number and the FOR_ACCEPT environment variable. If FOR_ACCEPT
is not defined, the code ACCEPT f,iolist reads from CONIN$ (standard input). If
FOR_ACCEPT is defined (as a file name optionally containing a path), the specified file would
be read.

• FOR_DEBUGGER_IS_PRESENT

This variable tells the Fortran run-time library that your program is executing under a
debugger. If set to True, it generates debug exceptions whenever severe or continuous
errors are detected. Under normal conditions you don't need to set this variable on Windows
systems, as this information can be extracted from the operating system. On Linux* OS and
Mac OS* X, you will need to set this variable if you want debug exceptions. Setting this
variable to True when your program is not executing under a debugger will cause
unpredictable behavior.

• FOR_DEFAULT_PRINT_DEVICE (Windows* OS only)

This variable lets you specify the print device other than the default print device PRN (LPT1)
for files closed (CLOSE statement) with the DISPOSE='PRINT' specifier. To specify a different
print device for the file associated with the CLOSE statement DISPOSE='PRINT' specifier,
set FOR_DEFAULT_PRINT_DEVICE to any legal DOS print device before executing the program.

• FOR_DIAGNOSTIC_LOG_FILE

If this variable is set to the name of a file, diagnostic output is written to the specified file.

The Fortran run-time system attempts to open that file (append output) and write the error
information (ASCII text) to the file.

The setting of FOR_DIAGNOSTIC_LOG_FILE is independent of
FOR_DISABLE_DIAGNOSTIC_DISPLAY, so you can disable the screen display of information
but still capture the error information in a file. The text string you assign for the file name
is used literally, so you must specify the full name. If the file open fails, no error is reported
and the run-time system continues diagnostic processing.

133

6

See also Locating Run-Time Errors and Using Traceback Information.

• FOR_DISABLE_DIAGNOSTIC_DISPLAY

This variable disables the display of all error information. This variable is helpful if you just
want to test the error status of your program and do not want the Fortran run-time system
to display any information about an abnormal program termination.

See also Using Traceback Information.

• FOR_DISABLE_STACK_TRACE

This variable disables the call stack trace information that follows the displayed severe error
message text.

The Fortran run-time error message is displayed whether or not FOR_DISABLE_STACK_TRACE
is set to true. If the program is executing under a debugger, the automatic output of the
stack trace information by the Fortran library will be disabled to reduce noise. You should
use the debugger's stack trace facility if you want to view the stack trace.

See also Locating Run-Time Errors and Using Traceback Information.

• FOR_IGNORE_EXCEPTIONS

This variable disables the default run-time exception handling, for example, to allow
just-in-time debugging. The run-time system exception handler returns
EXCEPTION_CONTINUE_SEARCH to the operating system, which looks for other handlers to
service the exception.

• FOR_NOERROR_DIALOGS

This variable disables the display of dialog boxes when certain exceptions or errors occur.
This is useful when running many test programs in batch mode to prevent a failure from
stopping execution of the entire test stream.

• FOR_PRINT

Neither the PRINT statement nor a WRITE statement with an asterisk (*) in place of a unit
number includes an explicit logical unit number. Instead, both use an implicit internal logical
unit number and the FOR_PRINT environment variable. If FOR_PRINT is not defined, the
code PRINT f,iolist or WRITE (*,f) iolist writes to CONOUT$ (standard output). If
FOR_PRINT is defined (as a file name optionally containing a path), the specified file would
be written to.

• FOR_READ

A READ statement that uses an asterisk (*) in place of a unit number does not include an
explicit logical unit number. Instead, it uses an implicit internal logical unit number and the
FOR_READ environment variable. If FOR_READ is not defined, the code READ (*,f) iolist
or READ f,iolist reads from CONIN$ (standard input). If FOR_READ is defined (as a file
name optionally containing a path), the specified file would be read.

134

6 Intel® Fortran Compiler User and Reference Guides

• FOR_TYPE

The TYPE statement does not include an explicit logical unit number. Instead, it uses an
implicit internal logical unit number and the FOR_TYPE environment variable. If FOR_TYPE
is not defined, the code TYPE f,iolist writes to CONOUT$ (standard output). If FOR_TYPE
is defined (as a file name optionally containing a path), the specified file would be written
to.

• FORT_BUFFERED

Lets you request that buffered I/O should be used at run time for output of all Fortran I/O
units, except those with output to the terminal. This provides a run-time mechanism to
support the -assume buffered_io (Linux OS and Mac OS X) or /assume:buffered_io
(Windows OS) compiler option.

• FORT_CONVERTn

Lets you specify the data format for an unformatted file associated with a particular unit
number (n), as described in Methods of Specifying the Data Format.

• FORT_CONVERT.ext and FORT_CONVERT_ext

Lets you specify the data format for unformatted files with a particular file extension suffix
(ext), as described in Methods of Specifying the Data Format.

• FORT_FMT_RECL

Lets you specify the default record length (normally 132 bytes) for formatted files.

• FORT_UFMT_RECL

Lets you specify the default record length (normally 2040 bytes) for unformatted files.

• FORTn

Lets you specify the file name for a particular unit number n, when a file name is not specified
in the OPEN statement or an implicit OPEN is used, and the compiler option -fpscomp
filesfromcmd (Linux OS and Mac OS X) or /fpscomp:filesfromcmd (Windows OS) was
not specified. Preconnected files attached to units 0, 5, and 6 are by default associated with
system standard I/O files.

• NLSPATH (Linux OS and Mac OS X only)

The path for the Intel Fortran run-time error message catalog.

• TBK_ENABLE_VERBOSE_STACK_TRACE

This variable displays more detailed call stack information in the event of an error.

The default brief output is usually sufficient to determine where an error occurred. Brief
output includes up to twenty stack frames, reported one line per stack frame. For each
frame, the image name containing the PC, routine name, line number, and source file are
given.

135

6

The verbose output, if selected, will provide (in addition to the information in brief output)
the exception context record if the error was a machine exception (machine register dump),
and for each frame, the return address, frame pointer and stack pointer and possible
parameters to the routine. This output can be quite long (but limited to 16K bytes) and use
of the environment variable FOR_DIAGNOSTIC_LOG_FILE is recommended if you want to
capture the output accurately. Most situations should not require the use of verbose output.

The variable FOR_ENABLE_VERBOSE_STACK_TRACE is also recognized for compatibility with
Compaq* Visual Fortran.

See also Using Traceback Information.

• TBK_FULL_SRC_FILE_SPEC

By default, the traceback output displays only the file name and extension in the source file
field. To display complete file name information including the path, set the environment
variable TBK_FULL_SRC_FILE_SPEC to true.

The variable FOR_FULL_SRC_FILE_SPEC is also recognized for compatibility with Compaq*
Visual Fortran.

See also Using Traceback Information.

• FORT_TMPDIR, TMP, TMPDIR, and TEMP

Specifies an alternate working directory where scratch files are created.

Setting Environment Variables within a Program

You can set a run-time environment variable from within a program by calling the SETENVQQ
routine. For example:

program ENVVAR
use ifport
LOGICAL(4) res
! Add other data declarations here
! call SETENVQQ as a function
res=SETENVQQ("FOR_IGNORE_EXCEPTIONS=T")

136

6 Intel® Fortran Compiler User and Reference Guides

7Using Compiler Options

Compiler Options Overview

A compiler option (also known as a switch) is an optional string of one or more alphanumeric
characters preceded by a dash (-) (Linux* OS and Mac OS* X) or a forward slash (/) (Windows*OS).

Some options are on by default when you invoke the compiler.

Depending on your operating system, compiler options are typically specified in the following ways:

• On the compiler command line

• In the IDE, either Xcode (Mac OS X) or Microsoft Visual Studio* (Windows OS)

Most compiler options perform their work at compile time, although a few apply to the generation
of extra code used at run time.

For more information about compiler options, see the Compiler Options reference.

For information on the option mapping tool, which shows equivalent options between Windows and
Linux OS, see the Option Mapping Tool.

Getting Help on Options

For help, enter -help [category] (Linux OS and Mac OS X) or /help [category] (Windows) on
the command line, which displays brief information about all the command-line options or a specific
category of compiler options.

The Compiler Options reference provides a complete description of each compiler option, including
the -help option.

NOTE. If there are enabling and disabling versions of options on the command line, or two
versions of the same option, the last one takes precedence.

Using Multiple ifort Commands

If you compile parts of your program by using multiple ifort commands, options that affect the
execution of the program should be used consistently for all compilations, especially if data is shared
or passed between procedures. For example:

137

• The same data alignment needs to be used for data passed or shared by module definitions
(such as user-defined structures) or common blocks. Use the same version of the -align
(Linux OS and Mac OS X) or /align (Windows) option for all compilations.

• The program might contain INTEGER, LOGICAL, REAL, or COMPLEX declarations without a
kind parameter or size specifier that is passed or shared by module definitions or common
blocks. You must consistently use the options that control the size of such numeric data
declarations.

Using the OPTIONS Statement to Override Options

You can override some options specified on the command line by using the OPTIONS statement
in your Fortran source program. The options specified by the OPTIONS statement affect only
the program unit where the statement occurs.

Using the Option Mapping Tool

The Intel compiler's Option Mapping Tool provides an easy method to derive equivalent options
between Windows* and Linux*operating systems. If you are a Windows OS developer who is
developing an application for Linux OS, you may want to know, for example, the Linux OS
equivalent for the /Oy- option. Likewise, the Option Mapping Tool provides Windows OS
equivalents for Intel compiler options supported on Linux OS.

NOTE. The Compiler Option Mapping Tool does not run on Mac OS* X.

Using the Compiler Option Mapping Tool

You can start the Option Mapping Tool from the command line by:

• invoking the compiler and using the -map-opts option

• or, executing the tool directly

NOTE. The Compiler Option Mapping Tool only maps compiler options on the same
architecture. It will not, for example, map an option that is specific to the IA-64
architecture to a like option available on the IA-32 architecture or Intel® 64 architecture.

138

7 Intel® Fortran Compiler User and Reference Guides

Calling the Option Mapping Tool with the Compiler

If you use the compiler to execute the Option Mapping Tool, the following syntax applies:

<compiler command> <map-opts option> <compiler option(s)>

Example: Finding the Windows OS equivalent for -fp

ifort -map-opts -fp
Intel(R) Compiler option mapping tool
mapping Linux OS options to Windows OS for Fortran
'-map-opts' Linux OS option maps to
--> '-Qmap-opts' option on Windows OS
--> '-Qmap_opts' option on Windows OS

'-fp' Linux OS option maps to
--> '-Oy-' option on Windows OS

NOTE. Output from the Option Mapping Tool also includes:

• option mapping information (not shown here) for options included in the compiler
configuration file

• alternate forms of the options that are supported but may not be documented

Calling the Option Mapping Tool Directly

Use the following syntax to execute the Option Mapping Tool directly from a command line
environment where the full path to the map-opts executable is known (compiler bin directory):

map-opts -t<target OS> -l<language> -opts <compiler option(s)>

where values for:

• <target OS> = {l|linux|w|windows}

• <language> = {f|fortran|c}

Example: Finding the Windows equivalent for -fp

map-opts -tw -lf -opts -fp
Intel(R) Compiler option mapping tool
mapping Linux OS options to Windows OS for Fortran
'-fp' Linux OS option maps to
--> '-Oy-' option on Windows OS

139

7

Compiler Directives Related to Options

Some compiler directives and compiler options have the same effect, as shown in the table
below. However, compiler directives can be turned on and off throughout a program, while
compiler options remain in effect for the whole compilation unless overridden by a compiler
directive.

Compiler directives and equivalent command-line compiler options are:

Equivalent Command-Line Compiler OptionCompiler Directive

-warn declarations (Linux* OS and Mac OS* X)DECLARE

/warn:declarations or /4Yd (Windows* OS)

-warn nodeclarations (Linux OS and Mac OS X)NODECLARE

/warn:nodeclarations or /4Nd (Windows OS)

-Dname (Linux OS and Mac OS X)DEFINE symbol

/define:symbol or /Dname (Windows OS)

-extend-source [option] (Linux OS and Mac OS X)FIXEDFORMLINESIZE:option

/extend-source[:n] or /4Ln (Windows OS)

-free or -nofixed (Linux OS and Mac OS X)FREEFORM

/free or /nofixed or /4Yf (Windows OS)

-nofree or -fixed (Linux OS and Mac OS X)NOFREEFORM

/nofree or /fixed or /4Nf (Windows OS)

-integer_size option (Linux OS and Mac OS X)INTEGER:option

/integer_size:option or /4Ioption (Windows OS)

/libdir:user (Windows OS)OBJCOMMENT

-O (Linux OS and Mac OS X) or /O (Windows OS)OPTIMIZE [:n]

n is 0, 1, 2, or 3 for opt levels -O0 through -O3. If n is omitted,
default is 2.

140

7 Intel® Fortran Compiler User and Reference Guides

Equivalent Command-Line Compiler OptionCompiler Directive

-O0 (Linux OS and Mac OS X) or /Od (Windows OS)NOOPTIMIZE

-align [option] (Linux OS and Mac OS X)PACK:option

/align[:n] or /Zpn (Windows OS)

-real-sizeoption (Linux OS and Mac OS X)REAL:option

/real-size: option or /4Roption (Windows)

-warn stderrors with -stand (Linux OS and Mac OS X)STRICT

/warn:stderrors with /stand:f90 or /4Ys (Windows)

-warn nostderrors (Linux OS and Mac OS X)NOSTRICT

/warn:nostderrors or /4Ns (Windows OS)

NOTE. For Windows OS, the compiler directive names above are specified using the
prefix !DEC$ followed by a space; for example: !DEC$ NOSTRICT. The prefix !DEC$
works for both fixed-form and free-form source. You can also use these alternative
prefixes for fixed-form source only: cDEC$, CDEC$, *DEC$, cDIR$, CDIR$, *DIR$, and
!MS$.

For more information on compiler directives, see Directive Enhanced Compilation.

141

7

8Preprocessing

Using the fpp Preprocessor

If you choose to preprocess your source programs, you can use the preprocessor fpp, which is the
preprocessor supplied with the Intel® Fortran Compiler, or the preprocessing directives capability of
the Fortran compiler. It is recommended that you use fpp.

The Fortran preprocessor, fpp, is provided as part of the Intel® Fortran product. When you use a
preprocessor for Intel Fortran source files, the generated output files are used as input source files
by the Compiler.

Preprocessing performs such tasks as preprocessor symbol (macro) substitution, conditional
compilation, and file inclusion. Intel Fortran predefined symbols are described in Predefined
Preprocessor Symbols.

The Compiler Options reference provides syntactical information on fpp. Additionally, it contains a
list of fpp options that are available when fpp is in effect.

Automatic Preprocessing by the Compiler

By default, the preprocessor is not run on files before compilation. However, the Intel Fortran compiler
automatically calls fpp when compiling source files that have a filename extension of .fpp, and, on
Linux* OS and Mac OS* X, file extensions of .F, .F90, .FOR, .FTN, or .FPP. For example, the following
command preprocesses a source file that contains fpp preprocessor directives, then passes the
preprocessed file to the compiler and linker:

ifort source.fpp

If you want to preprocess files that have other Fortran extensions than those listed, you have to
explicitly specify the preprocessor with the -fpp compiler option.

The fpp preprocessor can process both free- and fixed-form Fortran source files. By default, filenames
with the suffix of .F, .f, .for, or .fpp are assumed to be in fixed form. Filenames with a suffix of .F90
or .f90 (or any other suffix not specifically mentioned here) are assumed to be free form. You can
use the -free (Linux OS and Mac OS X) or /free (Windows* OS) option to specify free form and the
-fixed (Linux OS and Mac OS X) or /fixed (Windows OS) option to explicitly specify fixed form.

The fpp preprocessor recognizes tab format in a source line in fixed form.

143

Running fpp to Preprocess Files

You can explicitly run fpp in these ways:

• On the ifort command line, use the ifort command with the -fpp (Linux OS and Mac
OS X) or /fpp (Windows OS) option. By default, the specified files are then compiled and
linked. To retain the intermediate (.i or .i90) file, specify the -save-temps (Linux OS and
Mac OS X) or /Qsave-temps (Windows OS) option.

• On the command line, use the fpp command. In this case, the compiler is not invoked. When
using the fpp command line, you need to specify the input file and the intermediate (.i or
.i90) output file. For more information, type fpp -help (Linux OS and Mac OS X) or fpp
/help (Windows OS) on the command line.

• In the Microsoft Visual Studio* IDE, set the Preprocess Source File option to Yes in the
Fortran Preprocessor Option Category. To retain the intermediate files, add /Qsave-temps
to Additional Options in the Fortran Command Line Category.

fpp has some of the capabilities of the ANSI C preprocessor and supports a similar set of
directives. Directives must begin in column 1 of any Fortran source files.Preprocessor directives
are not part of the Fortran language and not subject to the rules for Fortran statements. Syntax
for directives is based on that of the C preprocessor.

The following lists some common cpp features that are supported by fpp; it also shows common
cpp features that are not supported.

Unsupported cpp features:Supported cpp features:

#pragma, #ident#define, #undef, #ifdef, #ifndef, #if, #elif, #else,
#endif, #include, #error, #warning, #line

spaces or tab characters preceding
the initial "#" character

(stringsize) and ## (concatenation) operators

followed by empty line

\ backslash-newline! as negation operator

Unlike cpp, fpp does not merge continued lines into a single line when possible.

You do not usually need to specify preprocessing for Fortran source programs unless your
program uses fpp preprocessing commands, such as those listed above.

144

8 Intel® Fortran Compiler User and Reference Guides

CAUTION. Using a preprocessor that does not support Fortran can damage your Fortran
code, especially with FORMAT (\\I4) with cpp changes the meaning of the program
because the double backslash "\\" indicates end-of-record with most C/C++
preprocessors.

fpp Source Files

A source file can contain fpp tokens in the form of :

• fpp directive names. For more information on directives, see Using fpp Directives.

• symbolic names including Fortran keywords. fpp permits the same characters in names as
Fortran. For more information on symbolic names, see Using Predefined Preprocessor
Symbols.

• constants. Integer, real, double, and quadruple precision real, binary, octal, hexadecimal
(including alternate notation), character, and Hollerith constants are allowed.

• special characters, space, tab and newline characters

• comments, including:

• Fortran language comments. A fixed form source line containing one of the symbols C,
c, *, d, or D in the first position is considered a comment line. The ! symbol is interpreted
as the beginning of a comment extending to the end of the line except when the "!"
occurs within a constant-expression in a #if or #elif directive. Within such comments,
macro expansions are not performed, but they can be switched on by -f-com=no.

• fpp comments between / and */. They are excluded from the output and macro expansions
are not performed within these symbols. fpp comments can be nested: for each /* there
must be a corresponding */. fpp comments are useful for excluding from the compilation
large portions of source instead of commenting every line with a Fortran comment symbol.

• C++ -like line comments which begin with // (double-slash).

A string that is a token can occupy several lines, but only if its input includes continued line
characters using the Fortran continuation character &. fpp will not merge such lines into one
line.

Identifiers are always placed on one line by fpp. For example, if an input identifier occupies
several lines, it will be merged by fpp into one line.

145

8

fpp Output

Output consists of a modified copy of the input, plus lines of the form:

#line_number file_name

These are inserted to indicate the original source line number and filename of the output line
that follows. Use the fpp option -P (Linux OS and Mac OS X) or /P (Windows OS) to disable
the generation of these lines.

Diagnostics

There are three kinds of fpp diagnostic messages:

• warnings: preprocessing of source code is continued and the fpp return value is 0

• errors: fpp continues preprocessing but sets the return value a nonzero value which is the
number of errors

• fatal errors: fpp stops preprocessing and returns a nonzero return value.

The messages produced by fpp are intended to be self-explanatory. The line number and
filename where the error occurred are displayed along with the diagnostic on stderr.

Using fpp Directives

All fpp directives start with the number sign (#) as the first character on a line. White space
(blank or tab characters) can appear after the initial "#" for indentation.

fpp directives (beginning with the # symbol in the first position of lines) can be placed anywhere
in a source code, in particular before a Fortran continuation line. However, fpp directives within
a macro call may not be divided among several lines by means of continuation symbols.

fpp directives can be grouped according to their purpose.

Directives for string substitution

fpp contains directives that result in substitutions in a user's program:

ResultDirective

replace this string with the input file name (a character string literal)__FILE__

replace this string with the current line number in the input file (an integer constant)__LINE__

146

8 Intel® Fortran Compiler User and Reference Guides

ResultDirective

replace this string with the date that fpp processed the input file (a character string
literal in the form Mmm dd yyyy)

__DATE__

replace this string with the time that fpp processed the input file (a character string
literal in the form hh:mm:ss)

__TIME__

Directive for inclusion of external files

There are two forms of file inclusion:

#include "filename"

#include <filename>

This directive reads in the contents of the named file into this location in the source. The lines
read in from the file are processed by fpp just as if they were part of the current file.

When the <filename> notation is used, filename is only searched for in the standard "include"
directories. See the -I option and also the -Y option for more detail. No additional tokens are
allowed on the directive line after the final '"' or ">".

Files are searched for in the following order:

• for #include "filename":

• in the directory in which the source file resides

• in the directories specified by the -I or -Y option

• in the default directory

• for #include <filename>:

• in the directories specified by the -I or -Y option

• in the default directory

Directive for line control

This directive takes the following form:

#line-number "filename"

147

8

This directive generates line control information for the Fortran compiler. line-number is an
integer constant that is the line number of the next line. "filename" is the name of the file
containing the line. If "filename" is not given, the current filename is assumed.

Directive for fpp variable and macro definitions

The #define directive, used to define both simple string variables and more complicated macros,
takes the two forms.

The first form is the definition of an fpp variable:

#define name token-string

In the above, occurrences of name in the source file will be substituted with token-string.

The second form is the definition of an fpp macro.

#define name(argument[,argument] ...) token-string

In the above, occurrences of the macro name followed by the comma-separated list of actual
arguments within parentheses are replaced by token-string with each occurrence of each
argument in token-string replaced by the token sequence representing the corresponding
"actual" argument in the macro call.

An error is produced if the number of macro call arguments is not the same as the number of
arguments in the corresponding macro definition. For example, consider this macro definition:

#define INTSUB(m, n, o) call mysub(m, n, o)

Any use of the macro INTSUB must have three arguments. In macro definitions, spaces between
the macro name and the open parenthesis "(" are prohibited to prevent the directive from being
interpreted as an fpp variable definition with the rest of the line beginning with the open
parenthesis "(" being interpreted as its token-string.

An fpp variable or macro definition can be of any length and is limited only by the newline
symbol. It can be defined in multiple lines by continuing it to the next line with the insertion
of "\". The occurrence of a newline without a macro-continuation signifies the end of the macro
definition.

Example:

#define long_macro_name(x,\
y) x*y

The scope of a definition begins from the #define and encloses all the source lines (and source
lines from #include files) to the end of the current file, except for:

• files included by Fortran INCLUDE statements

148

8 Intel® Fortran Compiler User and Reference Guides

• fpp and Fortran comments

• Fortran IMPLICIT statements that specify a single letter

• Fortran FORMAT statements

• numeric, typeless, and character constants

Directive for undefining a macro

This directive takes the following form:

#undef name

This directive removes any definition for name (produced by -D options, #define directives, or
by default). No additional tokens are permitted on the directive line after name.

If name has not been defined earlier, then the #undef directive has no effect.

Directive for macro expansion

If, during expansion of a macro, the column width of a line exceeds column 72 (for fixed format)
or column 132 (for free format), fpp inserts appropriate Fortran continuation lines.

For fixed format, there is a limit on macro expansions in label fields (positions 1-5):

• a macro call (together with possible arguments) should not extend beyond column 5

• a macro call whose name begins with one of the Fortran comment symbols is considered to
be part of a comment

• a macro expansion may produce text extending beyond column 5. In this case, a warning
will be issued

In fixed format, when the fpp -Xw option has been specified, an ambiguity may occur if a macro
call occurs in a statement position and a macro name begins or coincides with a Fortran keyword.
For example, consider the following:

#define callp(x) call f(x)
call p(0)

fpp cannot determine how to interpret the "call p" token sequence above. It could be considered
as a macro name. The current implementation does the following:

• the longer identifier is chosen (callp in this case)

• from this identifier the longest macro name or keyword is extracted

149

8

• if a macro name has been extracted a macro expansion is performed. If the name begins
with some keyword, fpp issues an appropriate warning

• the rest of the identifier is considered as a whole identifier

In the previous example, the macro expansion is performed and the following warning is
produced:

warning: possibly incorrect substitution of macro callp

This situation appears only when preprocessing a fixed format source code and when the space
symbol is not interpreted as a token delimiter.

In the following case, a macro name coincides with a beginning of a keyword:

#define INT INTEGER*8
INTEGER k

The INTEGER keyword will be found earlier than the INT macro name. There will be no warning
when preprocessing such a macro definition.

Directives for conditional selection of source text

There are three forms of conditional selection of source text.

Form 1:

#if condition_1
block_1

#elif condition_2
block_2

#elif ...
#else

block_n
#endif

Form 2:

#ifdefname
block_1

#elif condition
block_2

#elif ...
#else

block_n
#endif

150

8 Intel® Fortran Compiler User and Reference Guides

Form 3:

#ifndef name
block_1

#elif condition
block_2

#elif ...
#else

block_n
#endif

The elif and else parts are optional in all three forms. There may be more than one elif
part in each form.

Conditional expressions

condition_1, condition_2, etc. are logical expressions involving fpp constants, macros, and
intrinsic functions. The following items are permitted:

• C language operations: <, >, ==, !=, >=, <=, +, -, /, *, %, <<, >>, &, ~, |, &&, || They
are interpreted by fpp in accordance to the C language semantics (this facility is provided
for compatibility with "old" Fortran programs using cpp)

• Fortran language operations: .AND., .OR., .NEQV., .XOR., .EQV., .NOT., .GT., .LT., .LE.,
.GE., .NE., .EQ., ** (power).

• Fortran logical constants: .TRUE. , .FALSE.

• the fpp intrinsic function "defined": defined(name) or defined name which returns
.TRUE. if name is defined as an fpp variable or a macro or returns .FALSE. if the name is
not defined

#ifdef is a shorthand for #if defined(name) and #ifndef is a shorthand for #if .not.
defined(name).

Only these items, integer constants, and names can be used within a constant-expression. A
name that has not been defined with the -D option, a #define directive, or by default, has a
value of 0. The C operation != (not equal) can be used in #if or #elif directive, but not in
the #define directive, where the symbol ! is considered as the Fortran comment symbol by
default.

Conditional constructs

The following table summarizes conditional constructs.

151

8

ResultConstruct

Subsequent lines up to the matching #else, #elif, or #endif directive appear in
the output only if condition evaluates to .TRUE. .

#if
condition

Subsequent lines up to the matching #else, #elif, or #endif appear in the output
only if name has been defined, either by a #define directive or by the -D option,
with no intervening #undef directive. No additional tokens are permitted on the
directive line after name.

#ifdef
name

Subsequent lines up to the matching #else, #elif, or #endif appear in the output
only if name has not been defined, or if its definition has been removed with an
#undef directive. No additional tokens are permitted on the directive line after
name.

#ifndef
name

Subsequent lines up to the matching #else, #elif, or #endif appear in the output
only if all of the following occur:

#elif
condition

• The condition in the preceding #if directive evaluates to .FALSE. or the name
in the preceding #ifdef directive is not defined, or the name in the preceding
#ifndef directive is defined.

• The conditions in all of the preceding #elif directives evaluate to .FALSE.

• The condition in the current #elif evaluates to .TRUE.

Any condition allowed in an #if directive is allowed in an #elif directive. Any
number of #elif directives may appear between an #if, #ifdef, or #ifndef
directive and a matching #else or #endif directive.

Subsequent lines up to the matching #endif appear in the output only if all of the
following occur:

#else

• The condition in the preceding #if directive evaluates to .FALSE. or the name
in the preceding #ifdef directive is not defined, or the name in the preceding
#ifndef directive is defined.

• The conditions in all of the preceding #elif directives evaluate to .FALSE.

End a section of lines begun by one of the conditional directives #if, #ifdef, or
#ifndef. Each such directive must have a matching #endif.

#endif

152

8 Intel® Fortran Compiler User and Reference Guides

Using Predefined Preprocessor Symbols

Preprocessor symbols (macros) let you substitute values in a program before it is compiled.
The substitution is performed in the preprocessing phase.

Some preprocessor symbols are predefined by the compiler system and are available to compiler
directives and to fpp. If you want to use others, you need to specify them on the command
line.

You can use the -D (Linux* OS and Mac OS* X) or /D (Windows* OS) option to define the
symbol names to be used during preprocessing. This option performs the same function as the
#define preprocessor directive.

For more information, see the following topic:

• D compiler option

Preprocessing with fpp replaces every occurrence of the defined symbol name with the specified
value. Preprocessing compiler directives only allow IF and IF DEFINED.

If you want to disable symbol replacement (also known as macro expansion) during the
preprocessor step, you can specify the following: -fpp:"-macro=no" (Linux OS and Mac OS
X or /fpp:"/macro=no" (Windows OS).

Disabling preprocessor symbol replacement is useful for running fpp to perform conditional
compilation (using #ifdef, etc.) without replacement.

You can use the -U (Linux OS and Mac OS X) or /U (Windows OS) option to suppress an
automatic definition of a preprocessor symbol. This option suppresses any symbol definition
currently in effect for the specified name. This option performs the same function as an #undef
preprocessor directive.

For more information, see the following topic:

• U compiler option

Windows OS:

The following information applies to Windows operating systems.

In addition to specifying preprocessor symbols on the command line, you can also specify them
in the Visual Studio* integrated development environment (IDE). To do this, select
Project>Properties and use the Preprocessor Definitions item in the General Options or
Preprocessor Options category.

The following preprocessor symbols are available:

153

8

Conditions When this Symbol is DefinedPredefined Symbol Name and
Value

Identifies the Intel Fortran compiler__INTEL_COMPILER=1110

Identifies the Intel Fortran compiler build date__INTEL_COMPILER_BUILD_DATE=YYYYMMDD

Only if /libs:dll, /MDs, /MD, /dll, or /LD is
specified, but not when /libs:static is specified

_DLL=1

Only if /threads or /MT is specified_MT=1

Only for systems based on IA-32 architecture; n is the
number specified for /G (for example, _M_IX86=700
for /G7)

_M_IX86=n00

Only for systems based on IA-64 architecture; n is the
number specified for /G (for example, _M_IA64=64200
for /G1)

_M_IA64=64n00

Only for systems based on Intel® 64 architecture. For
use in conditionalizing applications for the Intel® 64
platform.

_M_X64

Only for systems based on Intel® 64 architecture. This
symbol is set by default.

_M_AMD64

Valid when OpenMP processing has been requested
(that is, when /Qopenmp is specified) Takes the form
YYYYMM where YYYY is the year and MM is the month of

_OPENMP=200805

the OpenMP Fortran specification supported. This
symbol can be used in both fpp and the Fortran
compiler conditional compilations.

Defined if /Qprof_gen is specified_PGO_INSTRUMENT

Always defined_WIN32

Only for systems based on Intel® 64 architecture and
systems based on IA-64 architecture

_WIN64

Valid when Compaq* Visual Fortran-compatible compile
commands (df or f90) are used

_VF_VER=1110

154

8 Intel® Fortran Compiler User and Reference Guides

When using the non-native IA-64 architecture based compiler, platform-specific symbols are
set for the target platform of the executable, not for the system in use.

Linux OS and Mac OS X:

The following information applies to Linux OS and Mac OS X systems.

DescriptionArchitecture
(IA-32, Intel®
64, IA-64)

DefaultSymbol Name

Identifies the Intel Fortran CompilerAllOn,
n=1110

__INTEL_COMPILER=n

Identifies the Intel Fortran Compiler
build date

All__INTEL_COMPILER_BUILD_DATE

=YYYYMMDD

Defined at the start of compilationAll__linux__ (Linux
only)

__linux (Linux only)

__gnu_linux__
(Linux only)

linux (Linux only)

__unix__ (Linux
only)

__unix (Linux only)

unix (Linux only)

__ELF__ (Linux only)

Defined at the start of compilationIA-32__APPLE__ (Mac OS
X only)

__MACH__ (Mac OS
X only)

Identifies the architecture for the target
hardware for which programs are being
compiled

IA-32__i386__

__i386

i386

155

8

DescriptionArchitecture
(IA-32, Intel®
64, IA-64)

DefaultSymbol Name

Identifies the architecture for the target
hardware for which programs are being
compiled

IA-64__ia64__ (Linux
only)

__ia64 (Linux only)

Identifies the architecture for the target
hardware for which programs are being
compiled.

Intel® 64__x86_64

__x86_64__

Takes the form YYYYMM, where YYYY is
the year and MM is the month of the
OpenMP Fortran specification supported.

Alln=200805_OPENMP=n

This preprocessor symbol can be used
in both fpp and the Fortran compiler
conditional compilation. It is available
only when -openmp is specified.

Defined when -prof-gen is specified.AllOff_PGO_INSTRUMENT

Set if the code was requested to be
compiled as position independent code.
On Mac OS X, these symbols are always
set.

AllOff
(Linux
OS),

On
(Mac
OS X)

__PIC__

__pic__

156

8 Intel® Fortran Compiler User and Reference Guides

9Using Configuration Files and
Response Files

Configuration Files and Response Files Overview

Configuration files and response files let you enter command-line options in a file. Both types of files
provide the following benefits:

• Decrease the time you spend entering command-line options

• Ensure consistency of often used commands

See these topics:

• Using Configuration Files

• Using Response Files

Using Configuration Files

Configuration files are automatically processed every time you run the compiler. You can insert any
valid command-line options into the configuration file. The compiler processes options in the
configuration file in the order in which they appear, followed by the command-line options that you
specify when you invoke the compiler.

NOTE. Options in the configuration file are executed every time you run the compiler. If you
have varying option requirements for different projects, use response files.

By default, a configuration file named ifort.cfg is used. This file resides in the same directory
where the compiler executable resides. However, if you want the compiler to use another configuration
file in a different location, you can use the IFORTCFG environment variable to assign the directory
and file name for the configuration file.

Sample Configuration Files

Examples that follow illustrate sample configuration files. The pound (#) character indicates that the
rest of the line is a comment.

157

Linux* OS and Mac OS* X Example:

Example ifort.cfg file
##
Define preprocessor macro MY_PROJECT.
-DMY_PROJECT
##
Set extended-length source lines.
-extend_source
##
Set maximum floating-point significand precision.
-pc80
##

Windows* OS Example:

#
Sample ifort.cfg file
Define preprocessor macro MY_PROJECT
/DMY_PROJECT

Set extended-length source lines.
/extend_source
##
Set maximum floating-point significand precision.
/Qpc80
##

Additional directories to be searched for include
files, before the default.

/Ic:\project\include

Use the static, multithreaded run-time library.

/MT

Using Response Files

You can use response files to:

• Specify options used during particular compilations for particular projects

• Save this information in individual files

Unlike configuration files, which are automatically processed every time you run the compiler,
response files must be invoked as an option on the command line. If you create a response file
but do not specify it on the command line, it will not be invoked.

158

9 Intel® Fortran Compiler User and Reference Guides

Options specified in a response file are inserted in the command line at the point where the
response file is invoked.

You can place any number of options or filenames on a line in the response file. Several response
files can be referenced in the same command line.

The syntax for using response files is:
ifort @responsefile1 [@responsefile2 ...]

NOTE. An "at" sign (@) must precede the name of the response file on the command
line.

159

9

10Debugging

Debugging Fortran Programs

Depending on your operating system and your architecture platform, several debuggers may be
available to you.

You can use the debugger provided by your operating system. On Linux* OS and Mac OS* X, this
debugger is gdb. On Windows* OS, the debugger is the Microsoft integrated debugger.

On Linux OS and Mac OS X systems, you can also use the Intel® Debugger to debug Intel® Fortran
programs.

For more information on IDB, see the Intel Debugger online documentation.

NOTE. On Linux OS and Mac OS X systems, use of the IDB debugger is recommended.

Preparing Your Program for Debugging

This section describes preparing your program for debugging.

Preparing for Debugging using the Command Line

To prepare your program for debuggingwhen using the command line (ifort command):

1. Correct any compilation and linker errors.

2. In a command window, (such as the Fortran command window available from the Intel Fortran
program folder), compile and link the program with full debug information and no optimization:

ifort -g file.f90 (Linux OS and Mac OS X)

ifort /debug:full file.f90 (Windows OS)

On Linux OS and Mac OS X, specify the -g compiler option to create unoptimized code and provide
the symbol table and traceback information needed for symbolic debugging. (The -notraceback
option cancels the traceback information.)

161

On Windows OS, specify the /debug:full compiler option to produce full debugging information.
It produces symbol table information needed for full symbolic debugging of unoptimized code
and global symbol information needed for linking.

Preparing for Debugging using Microsoft Visual Studio*

The following applies to Windows* operating systems only.

To prepare your program for debugging when using the integrated development
environment (IDE):

1. Start the IDE (select the appropriate version of Microsoft Visual Studio in the program folder).

2. Open the appropriate solution (using the Solution menu, either Open Solution or Recent
Projects).

3. Open the Solution Explorer View.

4. To view the source file to be debugged, double-click on the file name. The screen resembles
the following:

162

10 Intel® Fortran Compiler User and Reference Guides

163

10

5. In the Build menu, select Configuration Manager and select the Debug configuration.

6. To check your project settings for compiling and linking, select the project name in the
Solution Explorer. Now, in the Project menu, select Properties, then click the Fortran folder
in the left pane. Similarly, to check the debug options set for your project (such as command
arguments or working directory), click the Debugging folder in the Property Pages dialog
box.

7. To build your application, select Build>Build Solution.

8. Eliminate any compiler diagnostic messages using the text editor to resolve problems detected
in the source code and recompile if needed.

9. Set breakpoints in the source file and debug the program.

Locating Unaligned Data

Unaligned data can slow program execution. You should determine the cause of the unaligned
data, fix the source code (if necessary), and recompile and relink the program.

If your program encounters unaligned data at run time, to make it easier to debug the program,
you should recompile and relink with the -g (Linux OS and Mac OS X) or /debug:full (Windows
OS) option to generate sufficient table information and debug unoptimized code.

For more information on data alignment, see the following:

Understanding Data Alignment

Setting Data Type and Alignment

Debugging a Program that Encounters a Signal or Exception

If your program encounters a signal (exception) at run time, you may want to recompile and
relink with certain command-line options before debugging the cause. The following will make
it easier to debug the program:

• Use the -fpen (Linux OS and Mac OS X) or /fpe:n (Windows OS) option to control the
handling of floating point exceptions.

• As with other debugging tasks, use the -g (Linux OS and Mac OS X) or /debug:full
(Windows OS) compiler option to generate sufficient symbol table information and debug
unoptimized code.

164

10 Intel® Fortran Compiler User and Reference Guides

Debugging an Exception in the Microsoft Debugger

The following applies to Windows* operating systems.

You can request that the program always stop when a certain type of exception occurs. Certain
exceptions are caught by default by the Intel Visual Fortran run-time library, so your program
stops in the run-time library code. In most cases, you want the program to stop in your
program's source code instead .

To change how an exception is handled in the Microsoft debugger:

1. In the Debug menu, select Exceptions.

2. View the displayed exceptions.

3. Select Windows Exceptions. Select each type of exception to be changed and change its
handling using the radio buttons.

4. Start program execution using Start in the Debug menu.

5. When the exception occurs, you can now view the source line being executed, examine
current variable values, execute the next instruction, and so on to help you better understand
that part of your program.

6. After you locate the error and correct the program, consider whether you want to reset the
appropriate type of exception to "Use Parent Setting" before you debug the program again.

For machine exceptions, you can use the just-in-time debugging feature to debug your programs
as they run outside of the visual development environment. To do this, set the following items:

• In Tools>Options, select Native in the Debugging Just-In Time category.

• Set the FOR_IGNORE_EXCEPTIONS environment variable to TRUE.

Debugging and Optimizations

This topic describes the relationship between various command-line options that control
debugging and optimizing.

Whenever you enable debugging with -g (Linux* OS and Mac OS* X) or /debug:full
(Windows* OS), you disable optimizations. You can override this behavior by explicitly specifying
compiler options for optimizations on the command line.

The following summarizes commonly used options for debugging and for optimization.

165

10

Disables optimizations so you can debug your program before any
optimization is attempted. This is the default behavior when debugging.

-O0 (Linux OS
and Mac OS X)
or /Od
(Windows* OS)

On Linux OS and Mac OS X, -fno-omit-frame-pointer is set if option
-O0 (or -g) is specified.

For more information, see the following topic:

• -O0 (Linux OS and Mac OS X) or /Od (Windows OS) compiler option

Specifies the code optimization level for applications. If you use any of
these options, it is recommended that you use -debug extended when
debugging.

-O1 or /O1

-O2 or /O2 -O3
or /O3

For more information, see the following topic:

• -O1, -O2, -O3 (Linux OS and Mac OS X) or /O (Windows OS) compiler
option

Generates symbolic debugging information and line numbers in the object
code for use by the source-level debuggers. Turns off -O2 (Linux OS and
Mac OS X) or /O2 (Windows) and makes -O0 (Linux OS and Mac OS X)

-g or /de-
bug:full

or /Od (Windows OS)the default. The exception to this is if -O2, -O1 or
-O3 (Linux OS and Mac OS X) or /O2, /O1 or /O3 (Windows OS) is
explicitly specified in the command line.

For more information, see the following topic:

• -g (Linux OS and Mac OS X) or /debug:full (Windows OS) compiler
option

Specifies settings that enhance debugging.-debug extend-
ed (Linux OS
and Mac OS X)

For more information, see the following topic:

• -debug extended (Linux OS and Mac OS X)

Disables the ebp register in optimizations and sets the ebp register to be
used as the frame pointer.

-fp or /Oy-

(IA-32
architecture
only)

For more information, see the following topic:

• -fp (Linux OS and Mac OS X) or /Oy (Windows OS) compiler option

166

10 Intel® Fortran Compiler User and Reference Guides

Causes the compiler to generate extra information in the object file, which
allows a symbolic stack traceback.

-traceback
(Linux OS and
Mac OS X) or
/traceback
(Windows OS)

For more information, see the following topic:

• -traceback compiler option

Combining Optimization and Debugging

The compiler lets you generate code to support symbolic debugging when one of the O1, O2,
or O3 optimization options is specified on the command line along with -g (Linux OS and Mac
OS X) or /debug:full (Windows OS); this produces symbolic debug information in the object
file.

Note that if you specify an O1, O2, or O3 option with the -g or /debug:full option, some of
the debugging information returned may be inaccurate as a side-effect of optimization. To
counter this on Linux OS and Mac OS X, you should also specify the -debug extended option.

It is best to make your optimization and/or debugging choices explicit:

• If you need to debug your program excluding any optimization effect, use the -O0 (Linux
OS and Mac OS X) or /Od (Windows OS) option, which turns off all the optimizations.

• If you need to debug your program with optimizations enabled, then you can specify the
O1, O2, or O3 option on the command line along with debug extended.

NOTE. When no optimization level is specified, the -g or /debug:full option slows
program execution; this is because this option turns on -O0 or /Od, which causes the
slowdown. However, if, for example, both -O2 (Linux OS and Mac OS X) or /O2 (Windows
OS) and -g (Linux OS and Mac OS X) or /debug:full (Windows OS) are specified, the
code should not experience much of a slowdown.

Refer to the table below for the summary of the effects of using the -g or /debug:full option
with the optimization options.

Produce these resultsThese options

Debugging information produced, -O0 or /Od enabled
(meaning optimizations are disabled). For Linux OS and
Mac OS X, -fp is also enabled for compilations targeted for
IA-32 architecture.

-g (Linux OS and Mac OS X)
or /debug:full (Windows OS)

167

10

Produce these resultsThese options

Debugging information produced, O1 optimizations enabled.-g -O1 (Linux OS and Mac OS
X) or /debug:full /O1
(Windows*)

Debugging information produced, O2 optimizations enabled.-g -O2 (Linux OS and Mac OS
X) or

/debug:full /O2 (Windows
OS)

Debugging information produced, O2 optimizations enabled;
for Windows OS using IA-32 architecture, /Oy disabled.

-g -O2 (Linux OS and Mac OS
X) or

/debug:full /O2 /Oy-
(Windows OS)

Debugging information produced, O3 optimizations enabled;
for Linux OS, -fp enabled for compilations targeted for
IA-32 architecture.

-g -O3 -fp (Linux OS and
Mac OS X) or /debug:full
/O3 (Windows OS)

NOTE. Even the use of debug extended with optimized programs may not allow you
to examine all variables or to set breaks at all lines, due to code movement or removal
during the optimization process

Debugging Multithreaded Programs

The debugging of multithreaded program discussed in this topic applies to both the OpenMP*
Fortran API and the Intel Fortran parallel compiler directives. When a program uses parallel
decomposition directives, you must take into consideration that the bug might be caused either
by an incorrect program statement or it might be caused by an incorrect parallel decomposition
directive. In either case, the program to be debugged can be executed by multiple threads
simultaneously.

To determine the correctness of and debug multithreaded programs, you can use the following:

• For Linux OS and Mac OS X systems, Intel® Debugger (IDB) or GDB

• For Windows operating systems, Microsoft Visual Studio* Debugger

168

10 Intel® Fortran Compiler User and Reference Guides

• Intel Fortran Compiler debugging options and methods; in particular, -debug and -traceback
(Linux OS and Mac OS X) or /debug and /traceback (Windows OS)

169

10

11Data and I/O

Data Representation

Data Representation Overview

Intel® Fortran expects numeric data to be in native little endian order, in which the least-significant,
right-most zero bit (bit 0) or byte has a lower address than the most-significant, left-most bit (or
byte). For information on using nonnative big endian and VAX* floating-point formats, see Supported
Native and Nonnative Numeric Formats.

The symbol :A in any figure specifies the address of the byte containing bit 0, which is the starting
address of the represented data element.

The following table lists the intrinsic data types used by Intel® Fortran, the storage required, and
valid ranges. For information on declaring Fortran intrinsic data types, see Type Declaration
Statements. For example, the declaration INTEGER(4) is the same as INTEGER(KIND=4) and
INTEGER*4.

Table 21: Fortran Data Types and Storage

DescriptionStorageData Type

A BYTE declaration is a signed integer data type equivalent to
INTEGER(1).

1 byte

(8 bits)

BYTE

INTEGER(1)

Signed integer, either INTEGER(2), INTEGER(4), or INTEGER(8).
The size is controlled by the -integer-size (Linux* OS and Mac
OS* X) or /integer-size (Windows* OS) compiler option.

See
INTEGER(2),
INTEGER(4),
and
INTEGER(8)

INTEGER

Signed integer value from -128 to 127.1 byte

(8 bits)

INTEGER(1)

Signed integer value from -32,768 to 32,767.2 bytes

(16 bits)

INTEGER(2)

Signed integer value from -2,147,483,648 to 2,147,483,647.4 bytes

(32 bits)

INTEGER(4)

171

DescriptionStorageData Type

Signed integer value from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

8 bytes

(64 bits)

INTEGER(8)

Real floating-point values, either REAL(4), REAL(8), or REAL(16).
The size is controlled by the -real-size (Linux OS and Mac OS
X) or /real-size (Windows) compiler option.

See
REAL(4),
REAL(8)
and
REAL(16).

REAL

Single-precision real floating-point values in IEEE S_floating
format ranging from 1.17549435E-38 to 3.40282347E38. Values
between 1.17549429E-38 and 1.40129846E-45 are denormalized
(subnormal).

4 bytes

(32 bits)

REAL(4)

Double-precision real floating-point values in IEEE T_floating
format ranging from 2.2250738585072013D-308 to
1.7976931348623158D308. Values between
2.2250738585072008D-308 and 4.94065645841246544D-324
are denormalized (subnormal).

8 bytes

(64 bits)

REAL(8)

Extended-precision real floating-point values in IEEE-style
X_floating format ranging from
6.4751751194380251109244389582276465524996Q-4966 to
1.189731495357231765085759326628007016196477Q4932.

16 bytes
(128 bits)

REAL(16)

Complex floating-point values in a pair of real and imaginary
parts that are either REAL(4), REAL(8), or REAL(16). The size
is controlled by the -real-size (Linux OS and Mac OS X) or
/real-size (Windows OS) compiler option.

See
COMPLEX(4),
COMPLEX(8)
and
COMPLEX(16).

COMPLEX

Single-precision complex floating-point values in a pair of IEEE
S_floating format parts: real and imaginary. The real and
imaginary parts each range from 1.17549435E-38 to
3.40282347E38. Values between 1.17549429E-38 and
1.40129846E-45 are denormalized (subnormal).

8 bytes

(64 bits)

COMPLEX(4)

Double-precision complex floating-point values in a pair of IEEE
T_floating format parts: real and imaginary. The real and
imaginary parts each range from 2.2250738585072013D-308

16 bytes
(128 bits)

COMPLEX(8)

DOUBLE
COMPLEX

172

11 Intel® Fortran Compiler User and Reference Guides

DescriptionStorageData Type

to 1.7976931348623158D308. Values between
2.2250738585072008D-308 and 4.94065645841246544D-324
are denormalized (subnormal).

Extended-precision complex floating-point values in a pair of
IEEE-style X_floating format parts: real and imaginary. The real
and imaginary parts each range from
6.4751751194380251109244389582276465524996Q-4966 to
1.189731495357231765085759326628007016196477Q4932.

32 bytes
(256 bits)

COMPLEX(16)

Logical value, either LOGICAL(2), LOGICAL(4), or LOGICAL(8).
The size is controlled by the -integer-size (Linux OS and Mac
OS X) or /integer-size (Windows OS) compiler option.

See
LOGICAL(2),
LOGICAL(4),
and
LOGICAL(8).

LOGICAL

Logical values .TRUE. or .FALSE.1 byte

(8 bits)

LOGICAL(1)

Logical values .TRUE. or .FALSE.2 bytes

(16 bits)

LOGICAL(2)

Logical values .TRUE. or .FALSE.4 bytes

(32 bits)

LOGICAL(4)

Logical values .TRUE. or .FALSE.8 bytes

(64 bits)

LOGICAL(8)

Character data represented by character code convention.
Character declarations can be in the form CHARACTER(LEN=n)
or CHARACTER*n, where n is the number of bytes or n is (*) to
indicate passed-length format.

1 byte (8
bits) per
character

CHARACTER

Hollerith constants.1 byte (8
bits) per
Hollerith
character

HOLLERITH

In addition, you can define binary (bit) constants.

See these topics:

173

11

See Also
• Data Representation
• Integer Data Representations
• Logical Data Representations
• Character Representation
• Hollerith Representation

Integer Data Representations
Integer Data Representations Overview

The Fortran numeric environment is flexible, which helps make Fortran a strong language for
intensive numerical calculations. The Fortran standard purposely leaves the precision of numeric
quantities and the method of rounding numeric results unspecified. This allows Fortran to
operate efficiently for diverse applications on diverse systems.

The effect of math computations on integers is straightforward:

• Integers of KIND=1 consist of a maximum positive integer (127), a minimum negative
integer (-128), and all integers between them including zero.

• Integers of KIND=2 consist of a maximum positive integer (32,767), a minimum negative
integer (-32,768) , and all integers between them including zero.

• Integers of KIND=4 consist of a maximum positive integer (2,147,483,647), a minimum
negative integer (-2,147,483,648), and all integers between them including zero.

• Integers of KIND=8 consist of a maximum positive integer (9,223,372,036,854,775,807),
a minimum negative integer (-9,223,372,036,854,775,808), and all integers between them
including zero.

Operations on integers usually result in other integers within this range. Integer computations
that produce values too large or too small to be represented in the desired KIND result in the
loss of precision. One arithmetic rule to remember is that integer division results in truncation
(for example, 8/3 evaluates to 2).

Integer data lengths can be 1, 2, 4, or 8 bytes in length.

The default data size used for an INTEGER data declaration is INTEGER(4) (same as
INTEGER(KIND=4), unless the -integer-size 16 (Linux* OS and Mac OS* X) or /integer-
size:16 (Windows*OS) or the -integer-size 64 (Linux OS and Mac OS X) or /integer-
size:64 (Windows OS) option was specified.

Integer data is signed with the sign bit being 0 (zero) for positive numbers and 1 for negative
numbers.

174

11 Intel® Fortran Compiler User and Reference Guides

INTEGER(KIND=1) Representation

INTEGER(1) values range from -128 to 127 and are stored in 1 byte, as shown below.

Figure 1: INTEGER(1) Data Representation

Integers are stored in a two's complement representation. For example:
+22 = 16(hex)-7
= F9(hex)

INTEGER(KIND=2) Representation

INTEGER(2) values range from -32,768 to 32,767 and are stored in 2 contiguous bytes, as
shown below:

Figure 2: INTEGER(2) Data Representation

Integers are stored in a two's complement representation. For example:
+22 = 0016(hex) -7
= FFF9(hex)

175

11

INTEGER(KIND=4) Representation

INTEGER(4) values range from -2,147,483,648 to 2,147,483,647 and are stored in 4 contiguous
bytes, as shown below.

Figure 3: INTEGER(4) Data Representation

Integers are stored in a two's complement representation.

INTEGER(KIND=8) Representation

INTEGER(8) values range from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
and are stored in 8 contiguous bytes, as shown below.

Figure 4: INTEGER(8) Data Representation

Integers are stored in a two's complement representation.

Logical Data Representations

Logical data lengths can be 1, 2, 4, or 8 bytes in length.

The default data size used for a LOGICAL data declaration is LOGICAL(4) (same as
LOGICAL(KIND=4)), unless -integer-size 16 or -integer-size 64 (Linux OS and Mac OS
X) or /integer-size:16 or /integer-size:64 (Windows OS) was specified.

To improve performance on systems using Intel® 64 architecture and IA-64 architecture, use
LOGICAL(4) (or LOGICAL(8)) rather than LOGICAL(2) or LOGICAL(1). On systems using IA-32
architecture, use LOGICAL(4) rather than LOGICAL(8), LOGICAL(2), or LOGICAL(1).

176

11 Intel® Fortran Compiler User and Reference Guides

LOGICAL(KIND=1) values are stored in 1 byte. In addition to having logical values .TRUE. and
.FALSE., LOGICAL(1) data can also have values in the range -128 to 127. Logical variables can
also be interpreted as integer data.

In addition to LOGICAL(1), logical values can also be stored in 2 (LOGICAL(2)), 4 (LOGICAL(4)),
or 8 (LOGICAL(8)) contiguous bytes, starting on an arbitrary byte boundary.

If the -fpscomp nological (Linux OS and Mac OS X) or /fpscomp:nological (Windows
OS) compiler option is set (the default), the low-order bit determines whether the logical value
is true or false. Specify logical instead of nological for Microsoft* Fortran PowerStation
logical values, where 0 (zero) is false and non-zero values are true.

LOGICAL(1), LOGICAL(2), LOGICAL(4), and LOGICAL(8) data representation (when nological
is specified) appears below.

Figure 5: LOGICAL(1), LOGICAL(2), LOGICAL(4), and LOGICAL(8) Data Representations

177

11

Character Representation

A character string is a contiguous sequence of bytes in memory, as shown below.

Figure 6: CHARACTER Data Representation

A character string is specified by two attributes: the address A of the first byte of the string,
and the length L of the string in bytes. For Windows* OS, the length L of a string is in the range
1 through 2,147,483,647 (2**31-1) . For Linux* OS, the length L of a string is in the range 1
through 2,147,483,647 (2**31-1) for systems based on IA-32 architecture and in the range
1 through 9,223,372,036,854,775,807 (2**63-1) for systems based on Intel® 64 architecture
and systems based on IA-64 architecture.

178

11 Intel® Fortran Compiler User and Reference Guides

Hollerith Representation

Hollerith constants are stored internally, one character per byte, as shown below.

179

11

Figure 7: Hollerith Data Representation

180

11 Intel® Fortran Compiler User and Reference Guides

Using Traceback Information

Supported Native and Nonnative Numeric Formats

Data storage in different computers uses a convention of either little endian or big endian
storage. The storage convention generally applies to numeric values that span multiple bytes,
as follows:

Little endian storage occurs when:

• The least significant bit (LSB) value is in the byte with the lowest address.

• The most significant bit (MSB) value is in the byte with the highest address.

• The address of the numeric value is the byte containing the LSB. Subsequent bytes with
higher addresses contain more significant bits.

Big endian storage occurs when:

• The least significant bit (LSB) value is in the byte with the highest address.

• The most significant bit (MSB) value is in the byte with the lowest address.

• The address of the numeric value is the byte containing the MSB. Subsequent bytes with
higher addresses contain less significant bits.

Intel® Fortran expects numeric data to be in native little endian order, in which the
least-significant, right-most zero bit (bit 0) or byte has a lower address than the most-significant,
left-most bit (or byte).

181

11

The following figures show the difference between the two byte-ordering schemes:

Figure 8: Little and Big Endian Storage of an INTEGER Value

182

11 Intel® Fortran Compiler User and Reference Guides

The following figure illustrates the difference between the two conventions for the case of
addressing bytes within words.

Figure 9: Byte Order Within Words: (a) Big Endian, (b) Little Endian

Data types stored as subcomponents (bytes stored in words) end up in different locations within
corresponding words of the two conventions. The following figure illustrates the difference
between the representation of several data types in the two conventions. Letters represent
8-bit character data, while numbers represent the 8-bit partial contribution to 32-bit integer
data.

Character and Integer Data in Words: (a) Big Endian, (b) Little Endian

183

11

If you serially transfer bytes now from the big endian words to the little endian words (BE byte
0 to LE byte 0, BE byte 1 to LE byte 1, ...), the left half of the figure shows how the data ends
up in the little endian words. Note that data of size one byte (characters in this case) is ordered
correctly, but that integer data no longer correctly represents the original binary values. The

184

11 Intel® Fortran Compiler User and Reference Guides

right half of the figure shows that you need to swap bytes around the middle of the word to
reconstitute the correct 32-bit integer values. After swapping bytes, the two preceding figures
are identical.

Figure 10: Data Sent from Big to Little: (a) After Transfer, (b) After Byte Swaps

You can generalize the previous example to include floating-point data types and to include
multiple-word data types.

Moving unformatted data files between big endian and little endian computers requires that
the data be converted.

Intel Fortran provides the capability for programs to read and write unformatted data (originally
written using unformatted I/O statements) in several nonnative floating-point formats and in
big endian INTEGER or floating-point format. Supported nonnative floating-point formats include
Compaq* VAX* little endian floating-point formats supported by Digital* FORTRAN for OpenVMS*
VAX Systems, standard IEEE big endian floating-point format found on most Sun Microsystems*
systems and IBM RISC* System/6000 systems, IBM floating-point formats (associated with
the IBM's System/370 and similar systems), and CRAY* floating-point formats.

Converting unformatted data instead of formatted data is generally faster and is less likely to
lose precision of floating-point numbers.

185

11

The native memory format includes little endian integers and little endian IEEE floating-point
formats, S_floating for REAL(KIND=4) and COMPLEX(KIND=4) declarations, T_floating for
REAL(KIND=8) and COMPLEX(KIND=8) declarations, and X_floating for REAL(KIND=16) and
COMPLEX(KIND=16) declarations.

The keywords for supported nonnative unformatted file formats and their data types are listed
in the following table:

Table 22: Nonnative Numeric Formats, Keywords, and Supported Data Types

DescriptionKeyword

Big endian integer data of the appropriate size (one, two, four, or eight bytes)
and big endian IEEE floating-point formats for REAL and COMPLEX single- and
double- and extended-precision numbers. INTEGER(KIND=1) data is the same
for little endian and big endian.

BIG_ENDIAN

Big endian integer data of the appropriate size (one, two, four, or eight bytes)
and big endian CRAY proprietary floating-point format for REAL and COMPLEX
single- and double-precision numbers.

CRAY

Little endian integer data of the appropriate size (one, two, four, or eight bytes)
and the following little endian proprietary floating-point formats:

FDX

• VAX F_float for REAL (KIND=4) and COMPLEX (KIND=4)

• VAX D_float for REAL (KIND=8) and COMPLEX (KIND=8)

• IEEE style X_float for REAL (KIND=16) and COMPLEX (KIND=16)

Little endian integer data of the appropriate size (one, two, four, or eight bytes)
and and the following little endian proprietary floating-point formats:

FGX

• VAX F_float for REAL (KIND=4) and COMPLEX (KIND=4)

• VAX G_float for REAL (KIND=8) and COMPLEX (KIND=8)

• IEEE style X_float for REAL (KIND=16) and COMPLEX (KIND=16)

Big endian integer data of the appropriate INTEGER size (one, two, or four
bytes) and big endian IBM proprietary (System\370 and similar) floating-point
format for REAL and COMPLEX single- and double-precision numbers.

IBM

Native little endian integers of the appropriate INTEGER size (one, two, four,
or eight bytes) and the following native little endian IEEE floating-point formats:

LITTLE_ENDIAN

• S_float for REAL (KIND=4) and COMPLEX (KIND=4)

• T_float for REAL (KIND=8) and COMPLEX (KIND=8)

186

11 Intel® Fortran Compiler User and Reference Guides

DescriptionKeyword

• IEEE style X_float for REAL (KIND=16) and COMPLEX (KIND=16)

For additional information on supported ranges for these data types, see Native
IEEE Floating-Point Representations.

No conversion occurs between memory and disk. This is the default for
unformatted files.

NATIVE

Native little endian integers of the appropriate INTEGER size (one, two, four,
or eight bytes) and the following little endian VAX proprietary floating-point
formats:

VAXD

• VAX F_float for REAL (KIND=4) and COMPLEX (KIND=4)

• VAX D_float for REAL (KIND=8) and COMPLEX (KIND=8)

• VAX H_float for REAL (KIND=16) and COMPLEX (KIND=16)

Native little endian integers of the appropriate INTEGER size (one, two, four,
or eight bytes) and the following little endian VAX proprietary floating-point
formats:

VAXG

• VAX F_float for REAL (KIND=4) and COMPLEX (KIND=4)

• VAX G_float for REAL (KIND=8) and COMPLEX (KIND=8)

• VAX H_float for REAL (KIND=16) and COMPLEX (KIND=16)

When reading a nonnative format, the nonnative format on disk is converted to native format
in memory. If a converted nonnative value is outside the range of the native data type, a
run-time message is displayed.

See also:

Environment Variable F_UFMTENDIAN Method

Porting Nonnative Data

Keep this information in mind when porting nonnative data:

• When porting source code along with the unformatted data, vendors might use different
units for specifying the record length (RECL specifier) of unformatted files. While formatted
files are specified in units of characters (bytes), unformatted files are specified in longword
units for Intel Fortran (default) and some other vendors.

187

11

To allow you to specify the RECL units (bytes or longwords) for unformatted files without
source file modification, use the -assume byterecl (Linux OS and Mac OS X) or /as-
sume:byterecl (Windows) compiler option. Alternatively, for Windows OS, you can specify
Use Bytes as RECL=Unit for Unformatted Files in the Data Options property page.

The Fortran 95 standard (American National Standard Fortran 95, ANSI X3J3/96-007, and
International Standards Organization standard ISO/IEC 1539-1:1997) states: "If the file is
being connected for unformatted input/output, the length is measured in processor-dependent
units."

• Certain vendors apply different OPEN statement defaults to determine the record type. The
default record type (RECORDTYPE) with Intel Fortran depends on the values for the ACCESS
and FORM specifiers for the OPEN statement.

• Certain vendors use a different identifier for the logical data types, such as hex FF instead
of 01 to denote "true."

• Source code being ported may be coded specifically for big endian use.

Specifying the Data Format
Methods of Specifying the Data Format

There are a number of methods for specifying a nonnative numeric format for unformatted
data:

• Setting an environment variable for a specific unit number before the file is opened. The
environment variable is named FORT_CONVERTn, where n is the unit number. See
Environment Variable FORT_CONVERTn Method.

• Setting an environment variable for a specific file name extension before the file is opened.
The environment variable is named FORT_CONVERT.ext or FORT_CONVERT_ext, where
ext is the file name extension (suffix). See Environment Variable FORT_CONVERT.ext or
FORT_CONVERT_ext Method.

• Setting an environment variable for a set of units before the application is executed. The
environment variable is named F_UFMTENDIAN. See Environment Variable F_UFMTENDIAN
Method.

• Specifying the CONVERT keyword in the OPEN statement for a specific unit number. See
OPEN Statement CONVERT Method.

• Compiling the program with an OPTIONS statement that specifies the CONVERT=keyword
qualifier. This method affects all unit numbers using unformatted data specified by the
program. See OPTIONS Statement Method.

• Compiling the program with the appropriate compiler option, which affects all unit numbers
that use unformatted data specified by the program. Use the -convert keyword option for
Linux* OS and Mac OS* X or, for Windows* OS, the command-line /convert:keyword
option or the IDE equivalent.

188

11 Intel® Fortran Compiler User and Reference Guides

If none of these methods are specified, the native LITTLE_ENDIAN format is assumed (no
conversion occurs between disk and memory).

Any keyword listed in Supported Native and Nonnative Numeric Formats can be used with any
of these methods, except for the Environment Variable F_UFMTENDIAN Method, which supports
only LITTLE_ENDIAN and BIG_ENDIAN.

If you specify more than one method, the order of precedence when you open a file with
unformatted data is to:

1. Check for an environment variable (FORT_CONVERTn) for the specified unit number (applies
to any file opened on a particular unit).

2. Check for an environment variable (FORT_CONVERT.ext is checked before
FORT_CONVERT_ext) for the specified file name extension (applies to all files opened with
the specified file name extension).

3. Check for an environment variable (F_UFMTENDIAN) for the specified unit number (or for
all units).

NOTE. This environment variable is checked only when the application starts executing.

4. Check the OPEN statement CONVERT specifier.

5. Check whether an OPTIONS statement with a CONVERT=keyword qualifier was present
when the program was compiled.

6. Check whether the compiler option -convert keyword (Linux OS and Mac OS X) or /con-
vert:keyword (Windows OS) was present when the program was compiled.

Environment Variable FORT_CONVERT.ext or FORT_CONVERT_ext Method

You can use this method to specify a non-native numeric format for each specified file name
extension (suffix). You specify the numeric format at run time by setting the appropriate
environment variable before an implicit or explicit OPEN to one or more unformatted files. You
can use the format FORT_CONVERT.ext or FORT_CONVERT_ext (where ext is the file extension
or suffix). The FORT_CONVERT.ext environment variable is checked before FORT_CONVERT_ext
environment variable (if ext is the same).

For example, assume you have a previously compiled program that reads numeric data from
one file and writes to another file using unformatted I/O statements. You want the program to
read nonnative big endian (IEEE floating-point) format from a file with a .dat file extension and
write that data in native little endian format to a file with a extension of .data. In this case, the
data is converted from big endian IEEE format to native little endian IEEE memory format

189

11

(S_float and T_float) when read from file.dat, and then written without conversion in native
little endian IEEE format to the file with a suffix of .data, assuming that environment variables
FORT_CONVERT.DATA and FORT_CONVERTn (for that unit number) are not defined.

Without requiring source code modification or recompilation of a program, the following command
sets the appropriate environment variables before running the program:

Linux:
setenv FORT_CONVERT.DAT BIG_ENDIAN

Windows:
set FORT_CONVERT.DAT=BIG_ENDIAN

The FORT_CONVERTn method takes precedence over this method. When the appropriate
environment variable is set when you open the file, the FORT_CONVERT.ext or
FORT_CONVERT_ext environment variable is used if a FORT_CONVERTn environment variable
is not set for the unit number.

The FORT_CONVERTn and the FORT_CONVERT.ext or FORT_CONVERT_ext environment variable
methods take precedence over the other methods. For instance, you might use this method to
specify that a unit number will use a particular format instead of the format specified in the
program (perhaps for a one-time file conversion).

You can set the appropriate environment variable using the format FORT_CONVERT.ext or
FORT_CONVERT_ext. If you also use Intel Fortran on Linux* systems, consider using the
FORT_CONVERT_ext form, because a dot (.) cannot be used for environment variable names
on certain Linux command shells. If you do define both FORT_CONVERT.ext and
FORT_CONVERT_ext for the same extension (ext), the file defined by FORT_CONVERT.ext is
used.

On Windows systems, the file name extension (suffix) is not case-sensitive. The extension must
be part of the file name (not the directory path).

Environment Variable FORT_CONVERTn Method

You can use this method to specify a non-native numeric format for each specified unit number.
You specify the numeric format at run time by setting the appropriate environment variable
before an implicit or explicit OPEN to that unit number.

When the appropriate environment variable is set when you open the file, the environment
variable is always used because this method takes precedence over the other methods. For
instance, you might use this method to specify that a unit number will use a particular format
instead of the format specified in the program (perhaps for a one-time file conversion).

For example, assume you have a previously compiled program that reads numeric data from
unit 28 and writes it to unit 29 using unformatted I/O statements. You want the program to
read nonnative big endian (IEEE floating-point) format from unit 28 and write that data in

190

11 Intel® Fortran Compiler User and Reference Guides

native little endian format to unit 29. In this case, the data is converted from big endian IEEE
format to native little endian IEEE memory format when read from unit 28, and then written
without conversion in native little endian IEEE format to unit 29.

Without requiring source code modification or recompilation of this program, the following
command sequence sets the appropriate environment variables before running a program.

Linux:
setenv FORT_CONVERT28 BIG_ENDIAN
setenv FORT_CONVERT29 NATIVE

Windows:
set FORT_CONVERT28=BIG_ENDIAN
set FORT_CONVERT29=NATIVE

The following figure shows the data formats used on disk and in memory when the program is
run after the environment variables are set.

Figure 11: Sample Unformatted File Conversion

This method takes precedence over other methods.

191

11

Environment Variable F_UFMTENDIAN Method

This little-endian-big-endian conversion feature is intended for Fortran unformatted input/output
operations. It enables the development and processing of files with little-endian and big-endian
data organization.

The F_UFMTENDIAN environment variable is processed once at the beginning of program
execution. Whatever it specifies for specific units or for all units continues for the rest of the
execution.

Specify the numbers of the units to be used for conversion purposes by setting F_UFMTENDIAN.
Then, the READ/WRITE statements that use these unit numbers will perform relevant conversions.
Other READ/WRITE statements will work in the usual way.

General Syntax for F_UFMTENDIAN

In the general case, the variable consists of two parts divided by a semicolon. No spaces are
allowed inside the F_UFMTENDIAN value:

F_UFMTENDIAN=MODE | [MODE;] EXCEPTION

where:

MODE = big | little
EXCEPTION = big:ULIST | little:ULIST | ULIST
ULIST = U | ULIST,U
U = decimal | decimal -decimal

• MODE defines current format of data, represented in the files; it can be omitted.

The keyword little means that the data has little endian format and will not be
converted.This is the default.

The keyword big means that the data has big endian format and will be converted.

• EXCEPTION is intended to define the list of exclusions for MODE.EXCEPTION keyword (little
or big) defines data format in the files that are connected to the units from the EXCEPTION
list. This value overrides MODE value for the units listed.

The EXCEPTION keyword and the colon can be omitted. The default when the keyword is
omitted is big.

• Each list member U is a simple unit number or a number of units. The number of list members
is limited to 64.

• decimal is a non-negative decimal number less than 232.

Converted data should have basic data types, or arrays of basic data types. Derived data types
are disabled.

192

11 Intel® Fortran Compiler User and Reference Guides

Error messages may be issued during the little-endian-to-big-endian conversion. They are all
fatal.

On Linux* systems, the command line for the variable setting in the shell is:

Sh: export F_UFMTENDIAN=MODE;EXCEPTION

NOTE. The environment variable value should be enclosed in quotes if the semicolon is
present.

The environment variable can also have the following syntax:

F_UFMTENDIAN=u[,u] . . .

Examples

1. F_UFMTENDIAN=big

All input/output operations perform conversion from big-endian to little-endian on
READ and from little-endian to big-endian on WRITE.

2. F_UFMTENDIAN="little;big:10,20"

or F_UFMTENDIAN=big:10,20

or F_UFMTENDIAN=10,20

The input/output operations perform big-endian to little endian conversion only on unit
numbers 10 and 20.

3. F_UFMTENDIAN="big;little:8"

No conversion operation occurs on unit number 8. On all other units, the input/output
operations perform big-endian to little-endian conversion.

4. F_UFMTENDIAN=10-20

The input/output operations perform big-endian to little-endian conversion on units 10, 11,
12 , ... 19, 20.

5. Assume you set F_UFMTENDIAN=10,100 and run the following program.

integer*4 cc4
integer*8 cc8
integer*4 c4
integer*8 c8
c4 = 456
c8 = 789

193

11

C prepare a little endian representation of data

open(11,file='lit.tmp',form='unformatted')
write(11) c8
write(11) c4
close(11)

C prepare a big endian representation of data

open(10,file='big.tmp',form='unformatted')
write(10) c8
write(10) c4
close(10)

C read big endian data and operate with them on
C little endian machine.

open(100,file='big.tmp',form='unformatted')
read(100) cc8
read(100) cc4

C Any operation with data, which have been read

C . . .
close(100)
stop
end

Now compare lit.tmp and big.tmp files with the help of the od utility:

> od -t x4 lit.tmp
0000000 00000008 00000315 00000000 00000008
0000020 00000004 000001c8 00000004
0000034
> od -t x4 big.tmp
0000000 08000000 00000000 15030000 08000000
0000020 04000000 c8010000 04000000
0000034

You can see that the byte order is different in these files.

OPEN Statement CONVERT Method

You can use this method to specify a non-native numeric format for each specified unit number.
This method requires an explicit file OPEN statement to specify the numeric format of the file
for that unit number.

194

11 Intel® Fortran Compiler User and Reference Guides

This method takes precedence over the OPTIONS statement and the compiler option -convert
keyword (Linux OS and Mac OS X) or /convert:keyword (Windows OS) method, but has a
lower precedence than the environment variable methods.

For example, the following source code shows how the OPEN statement would be coded to read
unformatted VAXD numeric data from unit 15, which might be processed and possibly written
in native little endian format to unit 20 (the absence of the CONVERT keyword or environment
variables FORT_CONVERT20, FORT_CONVERT.dat, or FORT_CONVERT_dat indicates native little
endian data for unit 20):
OPEN (CONVERT='VAXD', FILE='graph3.dat', FORM='UNFORMATTED', UNIT=15)
.
.
.
OPEN (FILE='graph3_t.dat', FORM='UNFORMATTED', UNIT=20)

A hard-coded OPEN statement CONVERT keyword value cannot be changed after compile time.
However, to allow selection of a particular format at run time, equate the CONVERT keyword
to a variable and provide the user with a menu that allows selection of the appropriate format
(menu choice sets the variable) before the OPEN occurs.

You can also select a particular format at run time for a unit number by using one of the
environment variable methods (FORT_CONVERTn, FORT_CONVERT.ext or FORT_CONVERT_ext,
or F_UFMTENDIAN), which take precedence over the OPEN statement CONVERT keyword method.

OPTIONS Statement Method

You can only specify one numeric file format for all unformatted file unit numbers using this
method unless you also use one of the environment variable methods or OPEN statement
CONVERT keyword method.

You specify the numeric format at compile time and must compile all routines under the same
OPTIONS statement /CONVERT=keyword qualifier. You could use one source program and
compile it using different ifort commands to create multiple executable programs that each
read a certain format.

The environment variable methods and the OPEN statement CONVERT keyword method take
precedence over this method. For instance, you might use the FORT_CONVERTn environment
variable or OPEN CONVERT keyword method to specify each unit number that will use a format
other than that specified using the ifort option method.

This method takes precedence over the ifort -convert keyword (Linux OS and Mac OS X)
or /convert:keyword (Windows OS) compiler option method.

You can use OPTIONS statements to specify the appropriate floating-point formats (in memory
and in unformatted files) instead of using the corresponding ifort command qualifiers. For
example, to use VAX F_floating, G_floating, and X_floating as the unformatted file format,
specify the following OPTIONS statement:
OPTIONS /CONVERT=VAXG

195

11

Because this method affects all unit numbers, you cannot read data in one format and write it
in another format, unless you use it in combination with one of the environment variable
methods or the OPEN statement CONVERT keyword method to specify a different format for a
particular unit number.

For more information, see the OPTIONS statement.

Compiler Option -convert or /convert Method

You can only specify one numeric format for all unformatted file unit numbers using the compiler
option -convert (Linux OS and Mac OS X) or /convert (Windows OS) method unless you
also use one (or more) of the previous methods.

You specify the numeric format at compile time and must compile all routines under the same
-convertkeyword (Linux OS and Mac OS X) or /convert:keyword (Windows OS) compiler
option. You can use the same source program and compile it using different ifort commands
(or the equivalent in the IDE) to create multiple executable programs that each read a certain
format.

If you specify other methods, they take precedence over this method. For instance, you might
use the environment variable or OPEN statement CONVERT keyword method to specify each
unit number that will use a format different than that specified using the -convert keyword
(Linux OS and Mac OS X) or /convert:keyword (Windows OS) compiler option method for all
other unit numbers.

For example, the following command compiles program file.for to use VAX D_floating (and
F_floating) floating-point data for all unit numbers (unless superseded by one of the other
methods). Data is converted between the file format and the little endian memory format (little
endian integers, S_floating, T_floating, and X_floating little endian IEEE* floating-point format).
The created file, vconvert.exe, can then be run:

Linux OS and Mac OS X:
ifort file.for -o vconvert.exe -convert vaxd

Windows OS:
ifort file.for /convert:vaxd /link /out:vconvert.exe

Because this method affects all unformatted file unit numbers, you cannot read data in one
format and write it in another file format using the -convert keyword (Linux OS and Mac OS
X) or /convert:keyword (Windows OS) compiler option method alone. You can if you use it
in combination with the environment variable methods or the OPEN statement CONVERT keyword
method to specify a different format for a particular unit number.

For more information, see the following topic:

• convert compiler option

196

11 Intel® Fortran Compiler User and Reference Guides

Fortran I/O

Devices and Files Overview

In Fortran's I/O system, data is stored and transferred among files. All I/O data sources and
destinations are considered files.

Devices such as the screen, keyboard and printer are external files, as are data files stored on
a device such as a disk.

Variables in memory can also act as a file on a disk, and are typically used to convert ASCII
representations of numbers to binary form. When variables are used in this way, they are called
internal files.

Topics covered in this section include the following:

• Logical Devices

• Types and Forms of I/O Statements

• File Organization, File Access and File Structure

• Internal Files and Scratch Files

• File Records, including Record Types, Length, Access, and Transfer

• Using I/O Statements such as OPEN, INQUIRE, and CLOSE

For information on techniques you can use to improve I/O performance, see Improving I/O
Performance.

Logical Devices

Every file, internal or external, is associated with a logical device. You identify the logical device
associated with a file by a unit specifier (UNIT=). The unit specifier for an internal file is the
name of the character variable associated with it. The unit specifier for an external file is either
a number you assign with the OPEN statement, a number preconnected as a unit specifier to a
device, or an asterisk (*).

The OPEN statement connects a unit number with an external file and allows you to explicitly
specify file attributes and run-time options using OPEN statement specifiers. External unit
specifiers that are preconnected to certain devices do not have to be opened. External units
that you connect are disconnected when program execution terminates or when the unit is
closed by a CLOSE statement.

197

11

A unit must not be connected to more than one file at a time, and a file must not be connected
to more than one unit at a time. You can OPEN an already opened file but only to change some
of the I/O options for the connection, not to connect an already opened file or unit to a different
unit or file.

You must use a unit specifier for all I/O statements, except in the following six cases:

• ACCEPT, which always reads from standard input, unless the FOR_ACCEPT environment
variable is defined.

• INQUIRE by file, which specifies the filename, rather than the unit with which the file is
associated.

• PRINT, which always writes to standard output, unless the FOR_PRINT environment variable
is defined.

• READ statements that contain only an I/O list and format specifier, which read from standard
input (UNIT=5), unless the FOR_READ environment variable is defined.

• WRITE statements that contain only an I/O list and format specifier, which write to standard
output, unless the FOR_PRINT environment variable is defined.

• TYPE, which always writes to standard output, unless the FOR_TYPE environment variable
is defined.

External Files

A unit specifier associated with an external file must be either an integer expression or an
asterisk (*). The integer expression must be in the range 0 (zero) to a maximum value of
2,147,483,640. (The predefined parameters FOR_K_PRINT_UNITNO, FOR_K_TYPE_UNITNO,
FOR_K_ACCEPT_UNITNO, and FOR_K_READ_UNITNO may not be in that range. For more
information, see the Language Reference.)

The following example connects the external file UNDAMP.DAT to unit 10 and writes to it:

OPEN (UNIT = 10, FILE = 'UNDAMP.DAT')
WRITE (10, '(A18,\)') ' Undamped Motion:'

The asterisk (*) unit specifier specifies the keyboard when reading and the screen when writing.
The following example uses the asterisk specifier to write to the screen:

WRITE (*, '(1X, A30,\)') ' Write this to the screen.'

Intel Fortran has four units preconnected to external files (devices), as shown in the following
table.

DescriptionEnvironment
Variable

External Unit
Specifier

198

11 Intel® Fortran Compiler User and Reference Guides

Always represents the keyboard and screen (unless
the appropriate environment variable is defined, such
as FOR_READ).

NoneAsterisk (*)

Initially represents the screen (unless FORT0 is
explicitly defined)

FORT00

Initially represents the keyboard (unless FORT5 is
explicitly defined)

FORT55

Initially represents the screen (unless FORT6 is
explicitly defined)

FORT66

The asterisk (*) specifier is the only unit specifier that cannot be reconnected to another file,
and attempting to close this unit causes a compile-time error. Units 0, 5, and 6, however, can
be connected to any file with the OPEN statement. If you close unit 0, 5, or 6, it is automatically
reconnected to its preconnected device the next time an I/O statement attempts to use that
unit.

Intel® Fortran does not support buffering to stdout or stdin. All I/O to units * and 6 use line
buffering. Therefore, C and Fortran output to stdout should work well as long as the C code is
not performing buffering. In the case of buffering, the C code will have to flush the buffers with
each write. For more information on stdout and stdin, see Assigning Files to Logical Units.

You can change these preconnected files by doing one of the following:

• Using an OPEN statement to open unit 5, 6, or 0. When you explicitly OPEN a file for unit
5, 6, or 0, the OPEN statement keywords specify the file-related information to be used
instead of the preconnected standard I/O file.

• Setting the appropriate environment variable (FORTn) to redirect I/O to an external file.

To redirect input or output from the standard preconnected files at run time, you can set the
appropriate environment variable or use the appropriate shell redirection character in a pipe
(such as > or <).

When you omit the file name in the OPEN statement or use an implicit OPEN, you can define
the environment variable FORTn to specify the file name for a particular unit number n. An
exception to this is when the compiler option -fpscomp filesfromcmd (Linux* OS and Mac
OS* X) or /fpscomp:filesfromcmd (Windows) is specified.

199

11

For example, if you want unit 6 to write to a file instead of standard output, set the environment
variable FORT6 to the path and filename to be used before you run the program. If the
appropriate environment variable is not defined, a default filename is used, in the form fort.n
where n is the logical unit number.

The following example writes to the preconnected unit 6 (the screen), then reconnects unit 6
to an external file and writes to it, and finally reconnects unit 6 to the screen and writes to it:

REAL a, b
! Write to the screen (preconnected unit 6).

WRITE(6, '('' This is unit 6'')')
! Use the OPEN statement to connect unit 6
! to an external file named 'COSINES'.

OPEN (UNIT = 6, FILE = 'COSINES', STATUS = 'NEW')
DO a = 0.1, 6.3, 0.1

b = COS (a)
! Write to the file 'COSINES'.

WRITE (6, 100) a, b
100 FORMAT (F3.1, F5.2)

END DO
! Close it.

CLOSE (6)
! Reconnect unit 6 to the screen, by writing to it.

WRITE(6,' ('' Cosines completed'')')
END

Internal Files

The unit specifier associated with an internal file is a character string or character array. There
are two types of internal files:

• An internal file that is a character variable, character array element, or noncharacter array
element has exactly one record, which is the same length as the variable, array element,
or noncharacter array element.

• An internal file that is a character array, a character derived type, or a noncharacter array
is a sequence of elements, each of which is a record. The order of records is the same as
the order of array elements or type elements, and the record length is the length of one
array element or the length of the derived-type element.

Follow these rules when using internal files:

• Use only formatted I/O, including I/O formatted with a format specification and list-directed
I/O. (List-directed I/O is treated as sequential formatted I/O.) Namelist formatting is not
allowed.

200

11 Intel® Fortran Compiler User and Reference Guides

• If the character variable is an allocatable array or array part of an allocatable array, the
array must be allocated before use as an internal file. If the character variable is a pointer,
it must be associated with a target.

• Use only READ and WRITE statements. You cannot use file connection (OPEN, CLOSE), file
positioning (REWIND, BACKSPACE), or file inquiry (INQUIRE) statements with internal files.

You can read and write internal files with FORMAT I/O statements or list-directed I/O statements
exactly as you can external files. Before an I/O statement is executed, internal files are positioned
at the beginning of the variable, before the first record.

With internal files, you can use the formatting capabilities of the I/O system to convert values
between external character representations and Fortran internal memory representations. That
is, reading from an internal file converts the ASCII representations into numeric, logical, or
character representations, and writing to an internal file converts these representations into
their ASCII representations.

This feature makes it possible to read a string of characters without knowing its exact format,
examine the string, and interpret its contents. It also makes it possible, as in dialog boxes, for
the user to enter a string and for your application to interpret it as a number.

If less than an entire record is written to an internal file, the rest of the record is filled with
blanks.

In the following example, str and fname specify internal files:

CHARACTER(10) str
INTEGER n1, n2, n3
CHARACTER(14) fname
INTEGER i
str = " 1 2 3"

! List-directed READ sets n1 = 1, n2 = 2, n3 = 3.
READ(str, *) n1, n2, n3
i = 4

! Formatted WRITE sets fname = 'FM004.DAT'.
WRITE (fname, 200) i

200 FORMAT ('FM', I3.3, '.DAT')

Types of I/O Statements

The table below lists the Intel Fortran I/O statements:

DescriptionCategory and
statement name

File connection

201

11

DescriptionCategory and
statement name

Connects a unit number with an external file and specifies file connection
characteristics.

OPEN

Disconnects a unit number from an external file.CLOSE

File inquiry

Specifies file characteristics for a direct access relative file and connects
the unit number to the file, similar to an OPEN statement. Provided for
compatibility with compilers older than FORTRAN-77.

DEFINE FILE

Returns information about a named file, a connection to a unit, or the
length of an output item list.

INQUIRE

Record position

Moves the record position to the beginning of the previous record
(sequential access only).

BACKSPACE

Marks the record at the current record position in a relative file as deleted
(direct access only).

DELETE

Writes an end-of-file marker after the current record (sequential access
only).

ENDFILE

Changes the record position in a direct access file. Provided for
compatibility with compilers older than FORTRAN-77.

FIND

Sets the record position to the beginning of the file (sequential access
only).

REWIND

Record input

Transfers data from an external file record or an internal file to internal
storage.

READ

Reads input from stdin. Unlike READ, ACCEPT only provides formatted
sequential input and does not specify a unit number.

ACCEPT

Record output

202

11 Intel® Fortran Compiler User and Reference Guides

DescriptionCategory and
statement name

Transfers data from internal storage to an external file record or to an
internal file.

WRITE

Transfers data from internal storage to an external file record at the
current record position (direct access relative files only).

REWRITE

Writes record output to stdout.TYPE

Transfers data from internal storage to stdout. Unlike WRITE, PRINT only
provides formatted sequential output and does not specify a unit number.

PRINT

Flushes the contents of an external unit's buffer to its associated file.FLUSH

In addition to the READ, WRITE, REWRITE, TYPE, and PRINT statements, other I/O record-related
statements are limited to a specific file organization. For instance:

• The DELETE statement only applies to relative files. (Detecting deleted records is only
available if the -vms option was specified when the program was compiled.)

• The BACKSPACE statement only applies to sequential files open for sequential access.

• The REWIND statement only applies to sequential files open for sequential access and to
direct access files.

• The ENDFILE statement only applies to certain types of sequential files open for sequential
access and to direct access files.

The file-related statements (OPEN, INQUIRE, and CLOSE) apply to any relative or sequential
file.

Forms of I/O Statements

Each type of record I/O statement can be coded in a variety of forms. The form you select
depends on the nature of your data and how you want it treated. When opening a file, specify
the form using the FORM specifier.

The following are the forms of I/O statements:

• Formatted I/O statements contain explicit format specifiers that are used to control the
translation of data from internal (binary) form within a program to external (readable
character) form in the records, or vice versa.

203

11

• List-directed and namelist I/O statements are similar to formatted statements in function.
However, they use different mechanisms to control the translation of data: formatted I/O
statements use explicit format specifiers, and list-directed and namelist I/O statements use
data types.

• Unformatted I/O statements do not contain format specifiers and therefore do not translate
the data being transferred (important when writing data that will be read later).

Formatted, list-directed, and namelist I/O forms require translation of data from internal (binary)
form within a program to external (readable character) form in the records. Consider using
unformatted I/O for the following reasons:

• Unformatted data avoids the translation process, so I/O tends to be faster.

• Unformatted data avoids the loss of precision in floating-point numbers when the output
data will subsequently be used as input data.

• Unformatted data conserves file storage space (stored in binary form).

To write data to a file using formatted, list-directed, or namelist I/O statements, specify FORM=
'FORMATTED' when opening the file. To write data to a file using unformatted I/O statements,
specify FORM= 'UNFORMATTED' when opening the file.

Data written using formatted, list-directed, or namelist I/O statements is referred to as formatted
data; data written using unformatted I/O statements is referred to as unformatted data.

When reading data from a file, you should use the same I/O statement form that was used to
write the data to the file. For instance, if data was written to a file with a formatted I/O
statement, you should read data from that file with a formatted I/O statement.

Although I/O statement form is usually the same for reading and writing data in a file, a program
can read a file containing unformatted data (using unformatted input) and write it to a separate
file containing formatted data (using formatted output). Similarly, a program can read a file
containing formatted data and write it to a different file containing unformatted data.

You can access records in any sequential or relative file using sequential access. For relative
files and certain (fixed-length) sequential files, you can also access records using direct access.

The table below shows the main record I/O statements, by category, that can be used in Intel
Fortran programs.

Available StatementsFile Type, Access, and I/O Form

External file, sequential access

READ, WRITE, PRINT, ACCEPT, TYPE,
REWRITE

Formatted

READ, WRITE, PRINT, ACCEPT, TYPEList-directed

204

11 Intel® Fortran Compiler User and Reference Guides

Available StatementsFile Type, Access, and I/O Form

READ, WRITE, PRINT, ACCEPT, TYPENamelist

READ, WRITE, REWRITEUnformatted

External file, direct access

READ, WRITE, REWRITEFormatted

READ, WRITE, REWRITEUnformatted

External file, stream access

READ, WRITEFormatted

READ, WRITEList-directed

READ, WRITENamelist

READ, WRITEUnformatted

Internal file

READ, WRITEFormatted

READ, WRITEList-directed

NoneUnformatted

NOTE. You can use the REWRITE statement only for relative files, using direct access.

Assigning Files to Logical Units

Most I/O operations involve a disk file, keyboard, or screen display. Other devices can also be
used:

• Sockets can be read from or written to if a USEROPEN routine (usually written in C) is used
to open the socket.

• Pipes opened for read and write access block (wait until data is available) if you issue a
READ to an empty pipe.

205

11

• Pipes opened for read-only access return EOF if you issue a READ to an empty pipe.

You can access the terminal screen or keyboard by using preconnected files listed in Logical
Devices.

You can choose to assign files to logical units by using one of the following methods:

• Using default values, such as a preconnected unit

• Supplying a file name (and possibly a directory) in an OPEN statement

• Using environment variables

Using Default Values

In the following example, the PRINT statement is associated with a preconnected unit (stdout)
by default.

PRINT *,100

The READ statement associates the logical unit 7 with the file fort.7 (because the FILE specifier
was omitted) by default:

OPEN (UNIT=7,STATUS='NEW')
READ (7,100)

Supplying a File Name in an OPEN Statement

The FILE specifier in an OPEN statement typically specifies only a file name (such as filnam)
or contains both a directory and file name (such as /usr/proj/filnam).

For example:

OPEN (UNIT=7, FILE='FILNAM.DAT', STATUS='OLD')

The DEFAULTFILE specifier in an OPEN statement typically specifies a pathname that contains
only a directory (such as /usr/proj/) or both a directory and file name (such as
/usr/proj/testdata).

Implied OPEN

Performing an implied OPEN means that the FILE and DEFAULTFILE specifier values are not
specified and an environment variable is used, if present. Thus, if you used an implied OPEN,
or if the FILE specifier in an OPEN statement did not specify a file name, you can use an
environment variable to specify a file name or a pathname that contains both a directory and
file name.

206

11 Intel® Fortran Compiler User and Reference Guides

Using Environment Variables

You can use shell commands to set the appropriate environment variable to a value that indicates
a directory (if needed) and a file name to associate a unit with an external file.

Intel Fortran recognizes environment variables for each logical I/O unit number in the form of
FORTn, where n is the logical I/O unit number. If a file name is not specified in the OPEN
statement and the corresponding FORTn environment variable is not set for that unit number,
Intel Fortran generates a file name in the form fort.n, where n is the logical unit number.

Implied Intel Fortran Logical Unit Numbers

The ACCEPT, PRINT, and TYPE statements, and the use of an asterisk (*) in place of a unit
number in READ and WRITE statements, do not include an explicit logical unit number.

Each of these Fortran statements uses an implicit internal logical unit number and environment
variable. Each environment variable is in turn associated by default with one of the Fortran file
names that are associated with standard I/O files. The table below shows these relationships:

Standard I/O file nameEnvironment variableIntel Fortran statement

stdinFOR_READREAD (*,f) iolist

stdinFOR_READREAD f,iolist

stdinFOR_ACCEPTACCEPT f,iolist

stdoutFOR_PRINTWRITE (*,f) iolist

stdoutFOR_PRINTPRINT f,iolist

stdoutFOR_TYPETYPE f,iolist

stderrFORT0WRITE(0,f) iolist

stdinFORT5READ(5,f) iolist

stdoutFORT6WRITE(6,f) iolist

You can change the file associated with these Intel Fortran environment variables, as you would
any other environment variable, by means of the environment variable assignment command.
For example:

setenv FOR_READ /usr/users/smith/test.dat

207

11

After executing the preceding command, the environment variable for the READ statement
using an asterisk refers to file test.dat in the specified directory.

NOTE. The association between the logical unit number and the physical file can occur
at run-time. Instead of changing the logical unit numbers specified in the source program,
you can change this association at run time to match the needs of the program and the
available resources. For example, before running the program, a script file can set the
appropriate environment variable or allow the terminal user to type a directory path, file
name, or both.

File Organization

File organization refers to the way records are physically arranged on a storage device. This
topic describes the two main types of file organization.

Related topics describe the following:

• Record type refers to whether records in a file are all the same length, are of varying length,
or use other conventions to define where one record ends and another begins. For more
information on record types, see Record Types.

• Record access refers to the method used to read records from or write records to a file,
regardless of its organization. The way a file is organized does not necessarily imply the
way in which the records within that file will be accessed. For more information on record
access, see File Access and File Structure and Record Access.

Types of File Organization

Fortran supports two types of file organizations:

• Sequential

• Relative

The organization of a file is specified by means of the ORGANIZATION keyword in the OPEN
statement.

The default file organization is always ORGANIZATION= 'SEQUENTIAL' for an OPEN statement.

You can store sequential files on magnetic tape or disk devices, and can use other peripheral
devices, such as terminals, pipes, and line printers as sequential files.

You must store relative files on a disk device.

208

11 Intel® Fortran Compiler User and Reference Guides

Sequential File Organization

A sequentially organized file consists of records arranged in the sequence in which they are
written to the file (the first record written is the first record in the file, the second record written
is the second record in the file, and so on). As a result, records can be added only at the end
of the file. Attempting to add records at some place other than the end of the file will result in
the file begin truncated at the end of the record just written.

Sequential files are usually read sequentially, starting with the first record in the file. Sequential
files with a fixed-length record type that are stored on disk can also be accessed by relative
record number (direct access).

Relative File Organization

Within a relative file are numbered positions, called cells. These cells are of fixed equal length
and are consecutively numbered from 1 to n, where 1 is the first cell, and n is the last available
cell in the file. Each cell either contains a single record or is empty. Records in a relative file
are accessed according to cell number. A cell number is a record's relative record number; its
location relative to the beginning of the file. By specifying relative record numbers, you can
directly retrieve, add, or delete records regardless of their locations. (Detecting deleted records
is only available if you specified the -vms (Linux OS and Mac OS X) or /vms (Windows OS)
option when the program was compiled.)

When creating a relative file, use the RECL value to determine the size of the fixed-length cells.
Within the cells, you can store records of varying length, as long as their size does not exceed
the cell size.

Internal Files and Scratch Files

Intel Fortran supports two other types of files:

• Internal files

• Scratch files

Internal Files

When you use sequential access, you can use an internal file to reference character data in a
buffer. The transfer occurs between internal storage and internal storage (unlike external files),
such as between user variables and a character array.

An internal file consists of any of the following:

209

11

• Character variable

• Character-array element

• Character array

• Character substring

• Character array section without a vector subscript

Instead of specifying a unit number for the READ or WRITE statement, use an internal file
specifier in the form of a character scalar memory reference or a character-array name reference.

An internal file is a designated internal storage space (variable buffer) of characters that is
treated as a sequential file of fixed-length records. To perform internal I/O, use formatted and
list-directed sequential READ and WRITE statements. You cannot use file-related statements
such as OPEN and INQUIRE on an internal file (no unit number is used).

If an internal file is made up of a single character variable, array element, or substring, that
file comprises a single record whose length is the same as the length of the character variable,
array element, or substring it contains. If an internal file is made up of a character array, that
file comprises a sequence of records, with each record consisting of a single array element.
The sequence of records in an internal file is determined by the order of subscript progression.

A record in an internal file can be read only if the character variable, array element, or substring
comprising the record has been defined (a value has been assigned to the record).

Prior to each READ and WRITE statement, an internal file is always positioned at the beginning
of the first record.

Scratch Files

Scratch files are created by specifying STATUS= 'SCRATCH' in an OPEN statement. By default,
these temporary files are created in (and later deleted from) the directory specified in the OPEN
statement DEFAULTFILE (if specified).

File Access and File Structure

Fortran supports three methods of file access:

• Sequential

• Direct

• Stream

Fortran supports three kinds of file structure:

210

11 Intel® Fortran Compiler User and Reference Guides

• Formatted

• Unformatted

• Binary

Sequential-access and direct-access files can have any of the three file structures. Stream-access
files can have a file structure of formatted or unformatted.

Choosing a File Access and File Structure

Each kind of file has advantages and the best choice depends on the application you are
developing:

• Formatted Files

You create a formatted file by opening it with the FORM='FORMATTED' option, or by omitting
the FORM parameter when creating a sequential file. The records of a formatted file are
stored as ASCII characters; numbers that would otherwise be stored in binary form are
converted to ASCII format. Each record ends with the ASCII carriage return (CR) and/or
line feed (LF) characters.

If you need to view a data file's contents, use a formatted file. You can load a formatted file
into a text editor and read its contents directly, that is, the numbers would look like numbers
and the strings like character strings, whereas an unformatted or binary file looks like a set
of hexadecimal characters.

• Unformatted Files

You create an unformatted file by opening it with the FORM='UNFORMATTED' option, or by
omitting the FORM parameter when creating a direct-access file. An unformatted file is a
series of records composed of physical blocks. Each record contains a sequence of values
stored in a representation that is close to that used in program memory. Little conversion
is required during input/output.

The lack of formatting makes these files quicker to access and more compact than files that
store the same information in a formatted form. However, if the files contain numbers, you
will not be able to read them with a text editor.

• Binary Files

You create a binary file by specifying FORM='BINARY'. Binary files are similar to unformatted
files, except binary files have no internal record format associated with them.

• Sequential-Access Files

211

11

Data in sequential files must be accessed in order, one record after the other (unless you
change your position in the file with the REWIND or BACKSPACE statements). Some methods
of I/O are possible only with sequential files, including nonadvancing I/O, list-directed I/O,
and namelist I/O. Internal files also must be sequential files. You must use sequential access
for files associated with sequential devices.

A sequential device is a physical storage device that does not allow explicit motion (other
than reading or writing). The keyboard, screen, and printer are all sequential devices.

• Direct-Access Files

Data in direct-access files can be read or written to in any order. Records are numbered
sequentially, starting with record number 1. All records have the length specified by the
RECL option in the OPEN statement. Data in direct files is accessed by specifying the record
you want within the file. If you need random access I/O, use direct-access files. A common
example of a random-access application is a database.

• Stream-Access Files

Stream access I/O is a method of accessing a file without reference to a record structure.
With stream access, a file is seen as a continuous sequence of bytes and is addressed by a
positive integer starting from 1.

To enable stream access, specify ACCESS='STREAM' in the OPEN statement for the file. You
can use the STREAM= specifier in the INQUIRE statement to determine if STREAM is listed
in the set of possible access methods for the file. A value of YES, NO, or UNKNOWN is
returned.

A file enabled for stream access is positioned by file storage units (normally bytes) starting
at position 1. To determine the current position, use the POS= specifier in an INQUIRE
statement for the unit. You can indicate a required position in a read or write statement
with a POS= specifier.

Stream access can be either formatted or unformatted.

When connected for formatted stream access, an external file has the following
characteristics:

• The first file storage unit in the file is at position 1. The relationship between positions
of successive file storage units is processor dependent; not all positive integers need to
correspond to valid positions.

• Some file storage units may contain record markers; this imposes a record structure on
the file in addition to its stream structure. If there is no record marker at the end of the
file, the final record is incomplete. Writing an empty record with no record marker has
no effect.

212

11 Intel® Fortran Compiler User and Reference Guides

When connected for unformatted stream access, an external file has the following
characteristics:

• The first file storage unit in the file is at position 1. The position of each subsequent file
storage unit is one greater than that of the preceding file storage unit.

• If it is possible to position the file, the file storage units do not need to be read or written
in order of their position. For example, you may be able to write the file storage unit at
position 2, even though the file storage unit at position 1 has not been written.

• Any file storage unit may be read from the file while it is connected to a unit, provided
that the file storage unit has been written since the file was created, and a READ statement
for this connection is allowed.

• You cannot use BACKSPACE in an unformatted stream.

File Records

Files may be composed of records. Each record is one entry in the file. It can be a line from a
terminal or a logical record on a magnetic tape or disk file. All records within one file are of the
same type.

In Fortran, the number of bytes transferred to a record must be less than or equal to the record
length. One record is transferred for each unformatted READWRITE or READ statement. A
formatted WRITE or statement can transfer more than one record using the slash (/) edit
descriptor.

For binary files, a single READ or WRITE statement reads or writes as many records as needed
to accommodate the number of bytes being transferred. On output, incomplete formatted
records are padded with spaces. Incomplete unformatted and binary records are padded with
undefined bytes (zeros).

Record Types

An I/O record is a collection of data items, called fields, that are logically related and are
processed as a unit. The record type refers to the convention for storing fields in records.

The record type of the data within a file is not maintained as an attribute of the file. The results
of using a record type other than the one used to create the file are indeterminate.

A number of record types are available, as shown in the following table. The table also lists the
record overhead. This refers to bytes associated with each record that are used internally by
the file system and are not available when a record is read or written. Knowing the record
overhead helps when estimating the storage requirements for an application. Although the
overhead bytes exist on the storage media, do not include them when specifying the record
length with the RECL specifier in an OPEN statement.

213

11

Record OverheadAvailable File Organizations and Portability
Considerations

Record
Type

None for sequential
or for relative if the
-vms (Linux OS and

Relative or sequential file organizations.Fixed-length

Mac OS X) or /vms
(Windows OS) option
was omitted. One
byte for relative if the
vms option was
specified.

Eight bytes per
record.

Sequential file organization only. The variable-length
record type is generally the most portable record type
across multi-vendor platforms.

Variable-length

Four bytes per
record. One
additional padding

Sequential file organization only and only for
unformatted sequential access. The segmented record
type is unique to Intel Fortran and should not be used

Segmented

byte (space) is addedfor portability with programs written in languages other
if the specified record
size is an odd
number.

than Fortran or for places where Intel Fortran is not
used. However, because the segmented record type is
unique to Intel Fortran products, formatted data in
segmented files can be ported across Intel Fortran
platforms.

None required.Sequential file organization only.Stream

(uses no
record
terminator)

One byte per record.Sequential file organization only.Stream_CR

(uses CR as
record
terminator)

One byte per record.Sequential file organization only.Stream_LF

(uses LF as
record
terminator)

214

11 Intel® Fortran Compiler User and Reference Guides

Record OverheadAvailable File Organizations and Portability
Considerations

Record
Type

Two bytes per
record.

Sequential file organization only.Stream_CRLF
(uses CR
and LF as
record
terminator)

Fixed-Length Records

When you specify fixed-length records, you are specifying that all records in the file contain
the same number of bytes. When you open a file that is to contain fixed-length records, you
must specify the record size using the RECL keyword. A sequentially organized opened file for
direct access must contain fixed-length records, to allow the record position in the file to be
computed correctly.

For relative files, the layout and overhead of fixed-length records depends upon whether the
program accessing the file was compiled using the -vms (Linux OS and Mac OS X) or /vms
(Windows OS) option:

• For relative files where the vms option was omitted (the default), each record has no control
information.

• For relative files where the vms option was specified, each record has one byte of control
information at the beginning of the record.

The following figures show the record layout of fixed-length records. The first is for all sequential
and relative files where the vms option was omitted. The second is for relative files where the
vms option was specified.

215

11

Variable-Length Records

Variable-length records can contain any number of bytes up to a specified maximum record
length, and apply only to sequential files.

Variable-length records are prefixed and suffixed by 4 bytes of control information containing
length fields. The trailing length field allows a BACKSPACE request to skip back over records
efficiently. The 4-byte integer value stored in each length field indicates the number of data
bytes (excluding overhead bytes) in that particular variable-length record.

The character count field of a variable-length record is available when you read the record by
issuing a READ statement with a Q format descriptor. You can then use the count field
information to determine how many bytes should be in an I/O list.

The record layout of variable-length records that are less than 2 gigabytes is shown below:

216

11 Intel® Fortran Compiler User and Reference Guides

For a record length greater than 2,147,483,639 bytes, the record is divided into subrecords.
The subrecord can be of any length from 1 to 2,147,483,639, inclusive.

The sign bit of the leading length field indicates whether the record is continued or not. The
sign bit of the trailing length field indicates the presence of a preceding subrecord. The position
of the sign bit is determined by the endian format of the file.

A subrecord that is continued has a leading length field with a sign bit value of 1. The last
subrecord that makes up a record has a leading length field with a sign bit value of 0. A
subrecord that has a preceding subrecord has a trailing length field with a sign bit value of 1.
The first subrecord that makes up a record has a trailing length field with a sign bit value of 0.
If the value of the sign bit is 1, the length of the record is stored in twos-complement notation.

The record layout of variable-length records that are greater than 2 gigabytes is shown below:

217

11

Files written with variable-length records by Intel Fortran programs usually cannot be accessed
as text files. Instead, use the Stream_LF record format for text files with records of varying
length.

Segmented Records

A segmented record is a single logical record consisting of one or more variable-length,
unformatted records in a sequentially organized disk file. Unformatted data written to sequentially
organized files using sequential access is stored as segmented records by default.

Segmented records are useful when you want to write exceptionally long records but cannot
or do not wish to define one long variable-length record, perhaps because virtual memory
limitations can prevent program execution. By using smaller, segmented records, you reduce
the chance of problems caused by virtual memory limitations on systems on which the program
may execute.

218

11 Intel® Fortran Compiler User and Reference Guides

For disk files, the segmented record is a single logical record that consists of one or more
segments. Each segment is a physical record. A segmented (logical) record can exceed the
absolute maximum record length (2.14 billion bytes), but each segment (physical record)
individually cannot exceed the maximum record length.

To access an unformatted sequential file that contains segmented records, specify
FORM='UNFORMATTED' and RECORDTYPE='SEGMENTED' when you open the file.

As shown below, the layout of segmented records consists of 4 bytes of control information
followed by the user data.

The control information consists of a 2-byte integer record length count (includes the 2 bytes
used by the segment identifier), followed by a 2-byte integer segment identifier that identifies
this segment as one of the following:

Segment IdentifiedIdentifier Value

One of the segments between the first and last segments0

First segment1

Last segment2

Only segment3

If the specified record length is an odd number, the user data will be padded with a single blank
(one byte), but this extra byte is not added to the 2-byte integer record size count.

Avoid the segmented record type when the application requires that the same file be used for
programs written in languages other than Intel Fortran and for non-Intel platforms.

219

11

Stream File Data

A stream file is not grouped into records and contains no control information. Stream files are
used with CARRIAGECONTROL='NONE' and contain character or binary data that is read or
written only to the extent of the variables specified on the input or output statement.

The layout of a stream file appears below.

Stream_CR, Stream_LF and Stream_CRLF Records

Stream_CR, Stream_LF, and Stream_CRLF records are variable-length records whose length
is indicated by explicit record terminators embedded in the data, not by a count. These
terminators are automatically added when you write records to a stream-type file and are
removed when you read records.

Each variety uses either a different 1-byte or 2-byte record terminator:

• Stream_CR files use only a carriage-return as the terminator, so Stream_CR files must not
contain embedded carriage-return characters.

• Stream_LF files use only a line-feed (new line) as the terminator, so Stream_LF files must
not contain embedded line-feed (new line) characters. This is the usual operating system
text file record type on Linux* OS and Mac OS* X systems.

• Stream_CRLF files use a carriage return/line-feed (new line) pair as the terminator, so
Stream_CRLF files must not contain embedded carriage returns or line-feed (new line)
characters. This is the usual operating system text file record type on Windows* systems.

Guidelines for Choosing a Record Type

Before you choose a record type, consider whether your application will use formatted or
unformatted data. If you are using formatted data, you can choose any record type except
segmented. If you are using unformatted data, avoid the Stream, Stream_CR, Stream_LF and
Stream_CRLF record types.

220

11 Intel® Fortran Compiler User and Reference Guides

The segmented record type can only be used for unformatted sequential access with sequential
files. You should not use segmented records for files that are read by programs written in
languages other than Intel Fortran.

The Stream, Stream_CR, Stream_LF, Stream_CRLF and segmented record types can be used
only with sequential files.

The default record type (RECORDTYPE) depends on the values for the ACCESS and FORM
specifiers for the OPEN statement. (The RECORDTYPE= specifier is ignored for stream access.)

The record type of the file is not maintained as an attribute of the file. The results of using a
record type other than the one used to create the file are indeterminate.

An I/O record is a collection of fields (data items) that are logically related and are usually
processed as a unit.

Unless you specify nonadvancing I/O (ADVANCE specifier), each Intel Fortran I/O statement
transfers at least one record.

Specifying the Line Terminator for Formatted Files

Use the FOR_FMT_TERMINATOR environment variable to specify the line terminator value used
for Fortran formatted files with no explicit RECORDTYPE= specifier.

The FOR_FMT_TERMINATOR environment variable is processed once at the beginning of program
execution. Whatever it specifies for specific units continues for the rest of the execution.

You can specify the numbers of the units to have a specific record terminator. The READ/WRITE
statements that use these unit numbers will now use the specified record terminators. Other
READ/WRITE statements will work in the usual way.

A RECORDTYPE=specifier on an OPEN statement overrides the value set by
FOR_FMT_TERMINATOR. The FOR_FMT_TERMINATOR value is ignored for ACCESS='STREAM'
files.

General Syntax for FOR_FMT_TERMINATOR

The syntax for this environment variable is as follows:

FOR_FMT_TERMINATOR=MODE[:ULIST][;MODE[:ULIST]]

where:

MODE=CR | LF | CRLF
ULIST = U | ULIST,U
U = decimal | decimal - decimal

221

11

• MODE specifies the record terminator to be used. The keyword CR means to terminate records
with a carriage return. The keyword LF means to terminate records with a line feed; this is
the default on Linux OS and Mac OS X systems. The keyword CRLF means to terminate
records with a carriage return/line feed pair; this is the default on Windows systems.

• Each list member U is a simple unit number or a number of units as a range. The number
of list members is limited to 64.

• decimal is a non-negative decimal number less than 232.

No spaces are allowed inside the FOR_FMT_TERMINATOR value.

On Linux* systems, the command line for the variable setting in the shell is:

Sh: export FOR_FMT_TERMINATOR=MODE:ULIST

NOTE. The environment variable value should be enclosed in quotes if the semicolon is
present.

Example:

The following specifies that all input/output operations on unit numbers 10, 11, and 12 have
records terminated with a carriage return/line feed pair:

FOR_FMT_TERMINATOR=CRLF:10-12

Record Length

Use the RECL specifier to specify the record length.

The units used for specifying record length depend on the form of the data:

• Formatted files (FORM= 'FORMATTED'): Specify the record length in bytes.

• Unformatted files (FORM= 'UNFORMATTED'): Specify the record length in 4-byte units,
unless you specify the -assume byterecl (Linux OS and Mac OS X) or /assume:byterecl
(Windows OS) option to request 1-byte units.

For all but variable-length sequential records on 64-bit addressable systems, the maximum
record length is 2.147 billion bytes (2,147,483,647 minus the bytes for record overhead). For
variable-length sequential records on 64-bit addressable systems, the theoretical maximum
record length is about 17,000 gigabytes. When considering very large record sizes, also consider
limiting factors such as system virtual memory.

222

11 Intel® Fortran Compiler User and Reference Guides

NOTE. The RECL specifier is ignored for stream access.

Record Access

Record access refers to how records will be read from or written to a file, regardless of the file's
organization. Record access is specified each time you open a file; it can be different each time.
The type of record access permitted is determined by the combination of file organization and
record type.

For instance, you can:

• Add records to a sequential file with ORGANIZATION= 'SEQUENTIAL' and POSITION=
'APPEND' (or use ACCESS= 'APPEND').

• Add records sequentially by using multiple WRITE statements, close the file, and then open
it again with ORGANIZATION= 'SEQUENTIAL' and ACCESS= 'SEQUENTIAL' (or ACCESS=
'DIRECT' if the sequential file has fixed-length records).

Sequential Access

Sequential access transfers records sequentially to or from files or I/O devices such as terminals.
You can use sequential I/O with any type of supported file organization and record type.

If you select sequential access mode for files with sequential or relative organization, records
are written to or read from the file starting at the beginning of the file and continuing through
it, one record after another. A particular record can be retrieved only after all of the records
preceding it have been read; new records can be written only at the end of the file.

Direct Access

Direct access transfers records selected by record number to and from either sequential files
stored on disk with a fixed-length record type or relative organization files.

If you select direct access mode, you can determine the order in which records are read or
written. Each READ or WRITE statement must include the relative record number, indicating
the record to be read or written.

223

11

You can directly access a sequential disk file only if it contains fixed-length records. Because
direct access uses cell numbers to find records, you can enter successive READ or WRITE
statements requesting records that either precede or follow previously requested records. For
example, the first of the following statements reads record 24; the second reads record 10:

READ (12,REC=24) I
READ (12,REC=10) J

Stream Access

Stream access transfers bytes from records sequentially until a record terminator is found or
a specified number of bytes have been read or written. Formatted stream records are terminated
with a new line character; unformatted stream data contains no record terminators. Bytes can
be read from or written to a file by byte position, where the first byte of the file is position 1.
An example follows:

OPEN (UNIT=12, ACCESS=’STREAM’)
READ (12) I, J, K ! start at the first byte of the file
READ (12, POS=200) X, Y ! then read staring at byte 200
READ (12) A, B ! then read starting where the previous READ stopped

The POS= specifier on INQUIRE can be used to determine the current byte position in the file.

NOTE. The RECORDTYPE= specifier is ignored for stream access.

Limitations of Record Access by File Organization and Record Type

You can use sequential and direct access modes on sequential and relative files. However, direct
access to a sequential organization file can only be done if the file resides on disk and contains
fixed-length records.

The table below summarizes the types of access permitted for the various combinations of file
organizations and record types.

Direct Access?Sequential Access?Record Type

Sequential file organization

YesYesFixed

NoYesVariable

NoYesSegmented

224

11 Intel® Fortran Compiler User and Reference Guides

Direct Access?Sequential Access?Record Type

NoYesStream

NoYesStream_CR

NoYesStream_LF

NoYesStream_CRLF

Relative file organization

YesYesFixed

NOTE. Direct access and relative files require that the file resides on a disk device.

Record Transfer

I/O statements transfer all data as records. The amount of data that a record can contain
depends on the following circumstances:

• With formatted I/O (except for fixed-length records), the number of items in the I/O
statement and its associated format specifier jointly determine the amount of data to be
transferred.

• With namelist and list-directed output, the items listed in the NAMELIST statement or I/O
statement list (in conjunction with the NAMELIST or list-directed formatting rules) determine
the amount of data to be transferred.

• With unformatted I/O (except for fixed-length records), the I/O statement alone specifies
the amount of data to be transferred.

• When you specify fixed-length records (RECORDTYPE= 'FIXED'), all records are the same
size. If the size of an I/O record being written is less than the record length (RECL), extra
bytes are added (padding).

Typically, the data transferred by an I/O statement is read from or written to a single record.
It is possible, however, for a single I/O statement to transfer data from or to more than one
record, depending on the form of I/O used.

225

11

Input Record Transfer

When using advancing I/O, if an input statement specifies fewer data fields (less data) than
the record contains, the remaining fields are ignored.

If an input statement specifies more data fields than the record contains, one of the following
occurs:

• For formatted input using advancing I/O, if the file was opened with PAD='YES', additional
fields are read as spaces. If the file is opened with PAD='NO', an error occurs (the input
statement should not specify more data fields than the record contains).

• For formatted input using nonadvancing I/O (ADVANCE='NO'), an end-of-record (EOR)
condition is returned. If the file was opened with PAD='YES', additional fields are read as
spaces.

• For list-directed input, another record is read.

• For NAMELIST input, another record is read.

• For unformatted input, an error occurs.

Output Record Transfer

If an output statement specifies fewer data fields than the record contains (less data than
required to fill a record), the following occurs:

• With fixed-length records (RECORDTYPE= 'FIXED'), all records are the same size. If the size
of an I/O record being written is less than the record length (RECL), extra bytes are added
(padding) in the form of spaces (for a formatted record) or zeros (for an unformatted record).

• With other record types, the fields present are written and those omitted are not written
(might result in a short record).

If the output statement specifies more data than the record can contain, an error occurs, as
follows:

• With formatted or unformatted output using fixed-length records, if the items in the output
statement and its associated format specifier result in a number of bytes that exceeds the
maximum record length (RECL), an error occurs.

• With formatted or unformatted output not using fixed-length records, if the items in the
output statement and its associated format specifier result in a number of bytes that exceeds
the maximum record length (RECL), the Intel Fortran RTL attempts to increase the RECL
value and write the longer record. To obtain the RECL value, use an INQUIRE statement.

226

11 Intel® Fortran Compiler User and Reference Guides

• For list-directed output and namelist output, if the data specified exceeds the maximum
record length (RECL), another record is written.

Specifying Default Pathnames and File Names

Intel Fortran provides a number of ways of specifying all or part of a file specification (directory
and file name). The following list uses the Linux* pathname /usr/proj/testdata as an
example:

• The FILE specifier in an OPEN statement typically specifies only a file name (such as testdata)
or contains both a directory and file name (such as /usr/proj/testdata).

• The DEFAULTFILE specifier in an OPEN statement typically specifies a pathname that contains
only a directory (such as /usr/proj/) or both a directory and file name (such as
/usr/proj/testdata).

• If you used an implied OPEN or if the FILE specifier in an OPEN statement did not specify a
file name, you can use an environment variable to specify a file name or a pathname that
contains both a directory and file name.

Examples of Applying Default Pathnames and File Names

For example, for an implied OPEN of unit number 3, Intel Fortran will check the environment
variable FORT3. If the environment variable FORT3 is set, its value is used. If it is not set, the
system supplies the file name fort.3.

In the following table, assume the current directory is /usr/smith and the I/O uses unit 1, as
in the statement READ (1,100).

Resulting
pathname

FORT1 environment
variable value

OPEN DEFAULTFILE
value

OPEN FILE
value

/usr/smith/fort.1not specifiednot specifiednot specified

/usr/smith/test.dattest.datnot specifiednot specified

/usr/tmp/t.dat/usr/tmp/t.datnot checkednot specified

/tmp/fort.1not specified/tmpnot specified

/tmp/testdatatestdata/tmpnot specified

/usr/lib/testdatalib/testdata/usrnot specified

227

11

Resulting
pathname

FORT1 environment
variable value

OPEN DEFAULTFILE
value

OPEN FILE
value

/usr/group/file.datnot checked/usr/groupfile.dat

/tmp/file.datnot checkednot checked/tmp/file.dat

/usr/smith/file.datnot checkednot specifiedfile.dat

When the resulting file pathname begins with a tilde character (~), C-shell-style pathname
substitution is used (regardless of what shell is being used), such as a top-level directory (below
the root). For additional information on tilde pathname substitution, see csh(1).

Rules for Applying Default Pathnames and File Names

Intel Fortran determines the file name and the directory path based on certain rules. It
determines a file name string as follows:

• If the FILE specifier is present, its value is used.

• If the FILE specifier is not present, Intel Fortran examines the corresponding environment
variable. If the corresponding environment variable is set, that value is used. If the
corresponding environment variable is not set, a file name in the form fort. n is used.

Once Intel Fortran determines the resulting file name string, it determines the directory (which
optionally precedes the file name) as follows:

• If the resulting file name string contains an absolute pathname, it is used and the
DEFAULTFILE specifier, environment variable, and current directory values are ignored.

• If the resulting file name string does not contain an absolute pathname, Intel Fortran
examines the DEFAULTFILE specifier and current directory value: If the corresponding
environment variable is set and specifies an absolute pathname, that value is used. Otherwise,
the DEFAULTFILE specifier value, if present, is used. If the DEFAULTFILE specifier is not
present, Intel Fortran uses the current directory as an absolute pathname.

Opening Files: OPEN Statement

To open a file, you can use a preconnected file (such as for terminal output) or can open a file
with an OPEN statement. The OPEN statement lets you specify the file connection characteristics
and other information.

228

11 Intel® Fortran Compiler User and Reference Guides

OPEN Statement Specifiers

The OPEN statement connects a unit number with an external file and allows you to explicitly
specify file attributes and run-time options using OPEN statement specifiers. Once you open a
file, you should close it before opening it again unless it is a preconnected file.

If you open a unit number that was opened previously (without being closed), one of the
following occurs:

• If you specify a file specification that does not match the one specified for the original open,
the Intel Fortran run-time system closes the original file and then opens the second file.
This resets the current record position for the second file.

• If you specify a file specification that matches the one specified for the original open, the
file is reconnected without the internal equivalent of the CLOSE and OPEN. This lets you
change one or more OPEN statement run-time specifiers while maintaining the record position
context.

You can use the INQUIRE statement to obtain information about whether or not a file is opened
by your program.

Especially when creating a new file using the OPEN statement, examine the defaults (see the
description of the OPEN statement in the Intel Fortran Language Reference Manual) or explicitly
specify file attributes with the appropriate OPEN statement specifiers.

Specifiers for File and Unit Information

These specifiers identify file and unit information:

• UNIT specifies the logical unit number.

• FILE (or NAME) and DEFAULTFILE specify the directory and/or file name of an external file.

• STATUS or TYPE indicates whether to create a new file, overwrite an existing file, open an
existing file, or use a scratch file.

• STATUS or DISPOSE specifies the file existence status after CLOSE.

Specifiers for File and Record Characteristics

These specifiers identify file and record characteristics:

• ORGANIZATION indicates the file organization (sequential or relative).

• RECORDTYPE indicates which record type to use.

229

11

• FORM indicates whether records are formatted or unformatted.

• CARRIAGECONTROL indicates the terminal control type.

• RECL or RECORDSIZE specifies the record size.

Specifier for Special File Open Routine

USEROPEN names the routine that will open the file to establish special context that changes
the effect of subsequent Intel Fortran I/O statements.

Specifiers for File Access, Processing, and Position

These specifiers identify file access, processing, and position:

• ACCESS indicates the access mode (direct, sequential, or stream).

• SHARED sets file locking for shared access. Indicates that other users can access the same
file.

• NOSHARED sets file locking for exclusive access. Indicates that other users who use file
locking mechanisms cannot access the same file.

• SHARE specifies shared or exclusive access; for example, SHARE='DENYNONE' or
SHARE='DENYRW'.

• POSITION indicates whether to position the file at the beginning of file, before the end-of-file
record, or leave it as is (unchanged).

• ACTION or READONLY indicates whether statements will be used to only read records, only
write records, or both read and write records.

• MAXREC specifies the maximum record number for direct access.

• ASSOCIATEVARIABLE specifies the variable containing the next record number for direct
access.

• ASYNCHRONOUS specifies whether input/output should be performed asynchronously.

Specifiers for Record Transfer Characteristics

These specifiers identify record transfer characteristics:

• BLANK indicates whether to ignore blanks in numeric fields.

• DELIM specifies the delimiter character for character constants in list-directed or namelist
output.

230

11 Intel® Fortran Compiler User and Reference Guides

• PAD, when reading formatted records, indicates whether padding characters should be added
if the item list and format specification require more data than the record contains.

• BUFFERED indicates whether buffered or non-buffered I/O should be used.

• BLOCKSIZE specifies the block physical I/O buffer size.

• BUFFERCOUNT specifies the number of physical I/O buffers.

• CONVERT specifies the format of unformatted numeric data.

Specifiers for Error-Handling Capabilities

These specifiers are used for error handling:

• ERR specifies a label to branch to if an error occurs.

• IOSTAT specifies the integer variable to receive the error (IOSTAT) number if an error occurs.

Specifier for File Close Action

DISPOSE identifies the action to take when the file is closed.

Specifying File Locations in an OPEN Statement

You can use the FILE and DEFAULTFILE specifiers of the OPEN statement to specify the complete
definition of a particular file to be opened on a logical unit. (The Language Reference Manual
describes the OPEN statement in greater detail.)

For example:

OPEN (UNIT=4, FILE='/usr/users/smith/test.dat', STATUS='OLD')

The file test.dat in directory /usr/users/smith is opened on logical unit 4. No defaults are
applied, because both the directory and file name were specified. The value of the FILE specifier
can be a character constant, variable, or expression.

In the following interactive example, the user supplies the file name and the DEFAULTFILE
specifier supplies the default values for the full pathname string. The file to be opened is located
in /usr/users/smith and is concatenated with the file name typed by the user into the variable
DOC:

CHARACTER(LEN=9) DOC
WRITE (6,*) 'Type file name '
READ (5,*) DOC
OPEN (UNIT=2, FILE=DOC, DEFAULTFILE='/usr/users/smith',STATUS='OLD')

231

11

A slash (backslash on Windows systems) is appended to the end of the default file string if it
does not have one.

Obtaining File Information: INQUIRE Statement

The INQUIRE statement returns information about a file and has the following forms:

• Inquiry by unit

• Inquiry by file name

• Inquiry by output item list

• Inquiry by directory

Inquiry by Unit

An inquiry by unit is usually done for an opened (connected) file. An inquiry by unit causes the
Intel Fortran RTL to check whether the specified unit is connected or not. One of the following
occurs, depending on whether the unit is connected or not:

If the unit is connected:

• The EXIST and OPENED specifier variables indicate a true value.

• The pathname and file name are returned in the NAME specifier variable (if the file is named).

• Other information requested on the previously connected file is returned.

• Default values are usually returned for the INQUIRE specifiers also associated with the OPEN
statement.

• The RECL value unit for connected formatted files is always 1-byte units. For unformatted
files, the RECL unit is 4-byte units, unless you specify the -assume byterecl option to
request 1-byte units.

If the unit is not connected:

• The OPENED specifier indicates a false value.

• The unit NUMBER specifier variable is returned as a value of -1.

• Any other information returned will be undefined or default values for the various specifiers.

232

11 Intel® Fortran Compiler User and Reference Guides

For example, the following INQUIRE statement shows whether unit 3 has a file connected
(OPENED specifier) in logical variable I_OPENED, the name (case-sensitive) in character variable
I_NAME, and whether the file is opened for READ, WRITE, or READWRITE access in character
variable I_ACTION:

INQUIRE (3, OPENED=I_OPENED, NAME=I_NAME, ACTION=I_ACTION)

Inquiry by File Name

An inquiry by name causes the Intel Fortran RTL to scan its list of open files for a matching file
name. One of the following occurs, depending on whether a match occurs or not:

If a match occurs:

• The EXIST and OPENED specifier variables indicate a true value.

• The pathname and file name are returned in the NAME specifier variable.

• The UNIT number is returned in the NUMBER specifier variable.

• Other information requested on the previously connected file is returned.

• Default values are usually returned for the INQUIRE specifiers also associated with the OPEN
statement.

• The RECL value unit for connected formatted files is always 1-byte units. For unformatted
files, the RECL unit is 4-byte units, unless you specify the -assume byterecl option to
request 1-byte units.

If no match occurs:

• The OPENED specifier variable indicates a false value.

• The unit NUMBER specifier variable is returned as a value of -1.

• The EXIST specifier variable indicates (true or false) whether the named file exists on the
device or not.

• If the file does exist, the NAME specifier variable contains the pathname and file name.

• Any other information returned will be default values for the various specifiers, based on
any information specified when calling INQUIRE.

The following INQUIRE statement returns whether the file named log_file is connected in logical
variable I_OPEN, whether the file exists in logical variable I_EXIST, and the unit number in
integer variable I_NUMBER:

INQUIRE (FILE='log_file', OPENED=I_OPEN, EXIST=I_EXIST, NUMBER=I_NUMBER)

233

11

Inquiry by Output Item List

Unlike inquiry by unit or inquiry by name, inquiry by output item list does not attempt to access
any external file. It returns the length of a record for a list of variables that would be used for
unformatted WRITE, READ, and REWRITE statements. The following INQUIRE statement returns
the maximum record length of the variable list in variable I_RECLENGTH. This variable is then
used to specify the RECL value in the OPEN statement:

INQUIRE (IOLENGTH=I_RECLENGTH) A, B, H
OPEN (FILE='test.dat', FORM='UNFORMATTED', RECL=I_RECLENGTH, UNIT=9)

For an unformatted file, the IOLENGTH value is returned using 4-byte units, unless you specify
the -assume byterecl option to request 1-byte units.

Inquiry by Directory

An inquiry by directory verifies that a directory exists.

If the directory exists:

• The EXIST specifier variable indicates a true value.

• The full directory pathname is returned in the DIRSPEC specifier variable.

If the directory does not exist:

• The EXIST specified variable indicates a false value.

• The value of the DIRSPEC specifier variable is unchanged.

For example, the following INQUIRE statement returns the full directory pathname:

LOGICAL ::L_EXISTS
CHARACTER (255)::C_DIRSPEC
INQUIRE (DIRECTORY=".", DIRSPEC=C_DIRSPEC, EXIST=L_EXISTS)

The following INQUIRE statement verifies that a directory does not exist:

INQUIRE (DIRECTORY="I-DO-NOT-EXIST",
EXIST=L_EXISTS)

Closing Files: CLOSE Statement

Usually, any external file opened should be closed by the same program before it completes.
The CLOSE statement disconnects the unit and its external file. You must specify the unit
number (UNIT specifier) to be closed.

You can also specify:

234

11 Intel® Fortran Compiler User and Reference Guides

• Whether the file should be deleted or kept (STATUS specifier)

• Error handling information (ERR and IOSTAT specifiers)

To delete a file when closing it:

• In the OPEN statement, specify the ACTION keyword (such as ACTION='READ'). Avoid using
the READONLY keyword, because a file opened using the READONLY keyword cannot be
deleted when it is closed.

• In the CLOSE statement, specify the keyword STATUS='DELETE'.

If you opened an external file and did an inquire by unit, but do not like the default value for
the ACCESS specifier, you can close the file and then reopen it, explicitly specifying the ACCESS
desired.

There usually is no need to close preconnected units. Internal files are neither opened nor
closed.

Record I/O Statement Specifiers

After you open a file or use a preconnected file, you can use the following statements:

• READ, WRITE, ACCEPT, and PRINT to perform record I/O.

• BACKSPACE, ENDFILE, and REWIND to set record position within the file.

• DELETE, REWRITE, TYPE, and FIND to perform various operations.

The record I/O statement must use the appropriate record I/O form (formatted, list-directed,
namelist, or unformatted).

You can use the following specifiers with the READ and WRITE record I/O statements:

• UNIT specifies the unit number to or from which input or output will occur.

• END specifies a label to branch to if end-of-file occurs; only applies to input statements on
sequential files.

• ERR specifies a label to branch to if an error occurs.

• IOSTAT specifies an integer variable to contain the error number if an error occurs.

• FMT specifies a label of a FORMAT statement or character data specifying a FORMAT.

• NML specifies the name of a NAMELIST.

• REC specifies a record number for direct access.

When using nonadvancing I/O, use the ADVANCE, EOR, and SIZE specifiers.

When using the REWRITE statement, you can use the UNIT, FMT, ERR, and IOSTAT specifiers.

235

11

File Sharing on Linux* OS and Mac OS* X Systems

Depending on the value specified by the ACTION (or READONLY) specifier in the OPEN statement,
the file will be opened by your program for reading, writing, or both reading and writing records.
This simply checks that the program itself executes the type of statements intended.

File locking mechanisms allow users to enable or restrict access to a particular file when that
file is being accessed by another process.

Intel® Fortran file locking features provide three file access modes:

• Implicit Shared mode, which occurs when no mode is specified. This is also called No Locking.

• Explicit Shared mode, when all cooperating processes have access to a file. This mode is
set in the OPEN statement by the SHARED specifier or the SHARE='DENYNONE' specifier.

• Exclusive mode, when only one process has access to a file. This mode is set in the OPEN
statement by the NOSHARED specifier or the SHARE='DENYRW' specifier.

The file locking mechanism looks for explicit setting of the corresponding specifier in the OPEN
statement. Otherwise, the Fortran run time does not perform any setting or checking for file
locking and the process can access the file regardless of the fact that other processes have
already opened or locked the file.

Example 1: Implicit Shared Mode (No Locking)

Process 1 opens the file without a specifier, resulting in no locking.

Process 2 now tries to open the file:

• It gains access regardless of the mode it is using.

Example 2: Explicit Shared Mode

Process 1 opens the file with Explicit Shared mode.

Process 2 now tries to open the file:

• If process 2 opens the file with Explicit Shared mode or Implicit Shared (No Locking) mode,
it gets access to the file.

• If process 2 opens the file with Exclusive mode, it receives an error.

Example 3: Exclusive Mode

Process 1 opens the file with Exclusive mode.

236

11 Intel® Fortran Compiler User and Reference Guides

Process 2 now tries to open the file:

• If process 2 opens the file with Implicit Shared (No Locking) mode, it gets access to the file.

• If process 2 opens the file with Explicit Shared or Exclusive mode, it receives an error.

The Fortran runtime does not coordinate file entry updates during cooperative access. The user
needs to coordinate access times among cooperating processes to handle the possibility of
simultaneous WRITE and REWRITE statements on the same record positions.

Specifying the Initial Record Position

When you open a disk file, you can use the OPEN statement POSITION specifier to request one
of the following initial record positions within the file:

• The initial position before the first record (POSITION='REWIND'). A sequential access READ
or WRITE statement will read or write the first record in the file.

• A point beyond the last record in the file (POSITION='APPEND'), just before the end-of-file
record, if one exists. For a new file, this is the initial position before the first record (same
as 'REWIND'). You might specify 'APPEND' before you write records to an existing sequential
file using sequential access.

• The current position (POSITION='ASIS') . This is usually used only to maintain the current
record position when reconnecting a file. The second OPEN specifies the same unit number
and specifies the same file name (or omits it), which leaves the file open, retaining the
current record position. However, if the second OPEN specifies a different file name for the
same unit number, the current file will be closed and the different file will be opened.

The following I/O statements allow you to change the current record position:

• REWIND sets the record position to the initial position before the first record. A sequential
access READ or WRITE statement would read or write the first record in the file.

• BACKSPACE sets the record position to the previous record in a file. Using sequential access,
if you wrote record 5, issued a BACKSPACE to that unit, and then read from that unit, you
would read record 5.

• ENDFILE writes an end-of-file marker. This is typically done after writing records using
sequential access just before you close the file.

Unless you use nonadvancing I/O, reading and writing records usually advances the current
record position by one record. More than one record might be transferred using a single record
I/O statement.

237

11

Advancing and Nonadvancing Record I/O

After you open a file, if you omit the ADVANCE specifier (or specify ADVANCE= 'YES') in READ
and WRITE statements, advancing I/O (normal Fortran I/O) will be used for record access.
When using advancing I/O:

• Record I/O statements transfer one entire record (or multiple records).

• Record I/O statements advance the current record position to a position before the next
record.

You can request nonadvancing I/O for the file by specifying the ADVANCE= 'NO' specifier in a
READ and WRITE statement. You can use nonadvancing I/O only for sequential access to
external files using formatted I/O (not list-directed or namelist).

When you use nonadvancing I/O, the current record position does not change, and part of the
record might be transferred, unlike advancing I/O where one or more entire records are always
transferred.

You can alternate between advancing and nonadvancing I/O by specifying different values for
the ADVANCE specifier ('YES' and 'NO') in the READ and WRITE record I/O statements.

When reading records with either advancing or nonadvancing I/O, you can use the END
specifier to branch to a specified label when the end of the file is read.

Because nonadvancing I/O might not read an entire record, it also supports an EOR specifier
to branch to a specified label when the end of the record is read. If you omit the EOR and the
IOSTAT specifiers when using nonadvancing I/O, an error results when the end-of-record is
read.

When using nonadvancing input, you can use the SIZE specifier to return the number of
characters read. For example, in the following READ statement, SIZE=X (where variable X is
an integer) returns the number of characters read in X and an end-of-record condition causes
a branch to label 700:
150 FORMAT (F10.2, F10.2, I6)

READ (UNIT=20, FMT=150, SIZE=X, ADVANCE='NO', EOR=700) A, F, I

User-Supplied OPEN Procedures: USEROPEN Specifier

You can use the USEROPEN specifier in an Intel Fortran OPEN statement to pass control to a
routine that directly opens a file. The called routine can use system calls or library routines to
open the file and establish special context that changes the effect of subsequent Intel Fortran
I/O statements.

238

11 Intel® Fortran Compiler User and Reference Guides

The Intel Fortran RTL I/O support routines call the USEROPEN function in place of the system
calls usually used when the file is first opened for I/O. The USEROPEN specifier in an OPEN
statement specifies the name of a function to receive control. The called function must open
the file (or pipe) and return the file descriptor of the file when it returns control to the RTL.

When opening the file, the called function usually specifies options different from those provided
by a normal OPEN statement.

You can obtain the file descriptor from the Intel Fortran RTL for a specific unit number with the
getfd routine.

Although the called function can be written in other languages (such as Fortran), C is usually
the best choice for making system calls, such as open or create.

Syntax and Behavior of the USEROPEN Specifier

The USEROPEN specifier for the OPEN statement has the form:

USEROPEN = function-name

function-name represents the name of an external function. In the calling program, the function
must be declared in an EXTERNAL statement. For example, the following Intel Fortran code
might be used to call the USEROPEN procedure UOPEN (known to the linker as uopen_):

EXTERNAL UOPEN
INTEGER UOPEN
.
.
.
OPEN (UNIT=10, FILE='/usr/test/data', STATUS='NEW', USEROPEN=UOPEN)

During the OPEN statement, the uopen_function receives control. The function opens the file,
may perform other operations, and subsequently returns control (with the file descriptor) to
the RTL.

If the USEROPEN function is written in C, declare it as a C function that returns a 4-byte integer
(int) result to contain the file descriptor. For example:

int uopen_ ((1)
char *file_name, (2)
int *open_flags, (3)
int *create_mode, (4)
int *lun, (5)
int file_length); (6)

The function definition and the arguments passed from the Intel Fortran RTL are as follows:

1. The function must be declared as a 4-byte integer (int).

2. The first argument is the pathname (includes the file name) to be opened.

239

11

3. The open flags are described in the header file /usr/include/sys/file.h or open(2).

4. The create mode (protection needed when creating a Linux* OS-style file) is described in
open(2).

5. The fourth argument is the logical unit number.

6. The fifth (last) argument is the pathname length (hidden length argument of the pathname).

Of the arguments, the open system call (see open(2)) requires the passed pathname, the open
flags (that define the type access needed, whether the file exists, and so on), and the create
mode. The logical unit number specified in the OPEN statement is passed in case the USEROPEN
function needs it. The hidden length of the pathname is also passed.

When creating a new file, the create system call might be used in place of open (see create(2)).
You can usually use other appropriate system calls or library routines within the USEROPEN
function.

In most cases, the USEROPEN function modifies the open flags argument passed by the Intel
Fortran RTL or uses a new value before the open (or create) system call. After the function
opens the file, it must return control to the RTL.

If the USEROPEN function is written in Fortran, declare it as a FUNCTION with an INTEGER
(KIND=4) result, perhaps with an interface block. In any case, the called function must return
the file descriptor as a 4-byte integer to the RTL.

If your application requires that you use C to perform the file open and close, as well as all
record operations, call the appropriate C procedure from the Intel Fortran program without
using the Fortran OPEN statement.

Restrictions of Called USEROPEN Functions

The Intel Fortran RTL uses exactly one file descriptor per logical unit, which must be returned
by the called function. Because of this, only certain system calls or library routines can be used
to open the file.

System calls and library routines that do not return a file descriptor include mknod (see
mknod(2)) and fopen (see fopen(3)). For example, the fopen routine returns a file pointer
instead of a file descriptor.

240

11 Intel® Fortran Compiler User and Reference Guides

Example USEROPEN Program and Function

The following Intel Fortran code calls the USEROPEN function named UOPEN:

EXTERNAL UOPEN
INTEGER UOPEN
.
.
.
OPEN (UNIT=1,FILE='ex1.dat',STATUS='NEW',USEROPEN=UOPEN,
ERR=9,IOSTAT=errnum)

If UOPEN is a Fortran function, its name is decorated appropriately for Fortran.

Likewise, if UOPEN is a C function, its name is decorated appropriately for C, as long as the
following line is included in the above code:

!DEC$ATTRIBUTES C::UOPEN

Compiling and Linking the C and Intel Fortran Programs

Use the icc or icl command to compile the called uopen C function uopen.c and the ifort
command to compile the Intel Fortran calling program ex1.f. The same ifort command also
links both object files by using the appropriate libraries:

icc -c uopen.c (Linux* OS)
icl -c uopen.c (Windows* OS)
ifort ex1.f uopen.o

Example Source Code
program UserOpenSample

!DEC$ FREEFORM
IMPLICIT NONE
EXTERNAL UOPEN
INTEGER(4) UOPEN
CHARACTER*10 :: FileName="UOPEN.DAT"
INTEGER*4 :: IOS
Character*255 :: InqFullName
Character*100 :: InqFileName
Integer :: InqLun
Character*30 :: WriteOutBuffer="Write_One_Record_to_the_File. "
Character*30 :: ReadInBuffer ="??????????????????????????????"

110 FORMAT(X,A, ": Created (iostat=",I0,")")
115 FORMAT(X,A, ": Creation Failed (iostat=",I0,")")
120 FORMAT(X,A, ": ERROR: INQUIRE Returned Wrong FileName")
130 FORMAT(X,A, ": ERROR: ReadIn and WriteOut Buffers Do Not Match")
190 FORMAT(X,A, ": Completed.")

WRITE(*,'(X,"Test the USEROPEN Facility of Open")')
OPEN(UNIT=10,FILE='UOPEN.DAT',STATUS='REPLACE',USEROPEN=UOPEN, &

241

11

IOSTAT=ios, ACTION='READWRITE')

! When the OPEN statement is executed,
! the UOPEN function receives control.
! The function opens the file by calling CreateFile(),
! performs whatever operations were specified, and subsequently
! returns control (with the handle returned by CreateFile())
! to the calling Fortran program.

IF (IOS .EQ. 0) THEN
WRITE(*,110) TRIM(FileName), IOS
INQUIRE(10, NAME=InqFullName)
CALL ParseForFileName(InqFullName,InqFileName)
IF (InqFileName .NE. FileName) THEN

WRITE(*,120) TRIM(FileName)
END IF

ELSE
WRITE(*,115) TRIM(FileName), IOS
GOTO 9999

END IF
WRITE(10,*) WriteOutBuffer
REWIND(10)
READ(10,*)

ReadInBuffer
IF (ReadinBuffer .NE. WriteOutbuffer) THEN

WRITE(*,130) TRIM(FileName)
END IF
CLOSE(10, DISPOSE='DELETE')
WRITE(*,190) TRIM(FileName)
WRITE(*,'(X,"Test of USEROPEN Completed")')

9999 CONTINUE
END

!DEC$ IF DEFINED(_WIN32)
!+++
! Here is the UOPEN function for WIN32:
!
! The UOPEN function is declared to use the cdecl calling convention,
! so it matches the Fortran rtl declaration of a useropen routine.
!
! The following function definition and arguments are passed from the Intel
! Fortran Run-time Library to the function named in USEROPEN:
!
! The first 7 arguments correspond to the CreateFile() api arguments.
! The value of these arguments is set according the caller's OPEN()
! arguments:
!
! FILENAME
! Is the address of a null terminated character string that
! is the name of the file.
! DESIRED_ACCESS
! Is the desired access (read-write) mode passed by reference.
! SHARE_MODE

242

11 Intel® Fortran Compiler User and Reference Guides

! Is the file sharing mode passed by reference.
! A_NULL
! Is always null. The Fortran runtime library always passes a NULL
! for the pointer to a SECURITY_ATTRIBUTES structure in its
! CreateFile() call.
! CREATE_DISP
! Is the creation disposition specifying what action to take on files
! that exist, and what action to take on files
! that do not exist. It is passed by reference.
! FLAGS_ATTR
! Specifies the file attributes and flags for the file. It is passed
! by reference.
! B_NULL
! Is always null. The Fortran runtime library always passes a NULL
! for the handle to a template file in it's CreateFile() call.
! The last 2 arguments are the Fortran unit number and length of the
! file name:
! UNIT
! Is the Fortran unit number on which this OPEN is being done. It is
! passed by reference.
! FLEN
! Is the length of the file name, not counting the terminating null,
! and passed by value.
!+++

INTEGER(4) FUNCTION UOPEN(FILENAME, &
DESIRED_ACCESS, &
SHARE_MODE, &
A_NULL, &
CREATE_DISP, &
FLAGS_ATTR, &
B_NULL, &
UNIT, &
FLEN)

!DEC$ ATTRIBUTES C, DECORATE, ALIAS:'UOPEN' :: UOPEN
!DEC$ATTRIBUTES REFERENCE :: FILENAME
!DEC$ATTRIBUTES REFERENCE :: DESIRED_ACCESS
!DEC$ATTRIBUTES REFERENCE :: SHARE_MODE
!DEC$ATTRIBUTES REFERENCE :: CREATE_DISP
!DEC$ATTRIBUTES REFERENCE :: FLAGS_ATTR
!DEC$ATTRIBUTES REFERENCE :: UNIT
USE KERNEL32
IMPLICIT NONE
INTEGER*4 DESIRED_ACCESS
INTEGER*4 SHARE_MODE
INTEGER*4 A_NULL
INTEGER*4 CREATE_DISP
INTEGER*4 FLAGS_ATTR
INTEGER*4 B_NULL
INTEGER*4 UNIT
INTEGER*4 FLEN
CHARACTER*(FLEN) FILENAME

243

11

INTEGER(4) ISTAT
TYPE(T_SECURITY_ATTRIBUTES), POINTER :: NULL_SEC_ATTR

140 FORMAT(X, "ERROR: USEROPEN Passed Wrong Unit Number",I)
! Sanity check

IF (UNIT .NE. 10) THEN
WRITE(*,140) UNIT

END IF
!! WRITE(*,*) "FILENAME=",FILENAME !! prints the full path of the filename

! Set the FILE_FLAG_WRITE_THROUGH bit in the flag attributes to CreateFile()
! (for whatever reason)
! FLAGS_ATTR = FLAGS_ATTR + FILE_FLAG_WRITE_THROUGH
! Do the CreateFile() call and return the status to the Fortran rtl

ISTAT = CreateFile(FILENAME, &
DESIRED_ACCESS, &
SHARE_MODE, &
NULL_SEC_ATTR, &
CREATE_DISP, &
FLAGS_ATTR, &
0)

if (ISTAT == INVALID_HANDLE_VALUE) then
write(*,*) "Could not open file (error ", GetLastError(),")"

endif
UOPEN = ISTAT
RETURN
END

!DEC$ ELSE ! LINUX OS or MAC OS X
!+++
! Here is the UOPEN function for Linux OS/Mac OS X:
!
! The UOPEN function is declared to use the cdecl calling convention,
! so it matches the Fortran rtl declaration of a useropen routine.
!
! The following function definition and arguments are passed from the
! Intel Fortran Run-time Library to the function named in USEROPEN:
!
! FILENAME
! Is the address of a null terminated character string that
! is the name of the file.
! OPEN_FLAGS
! read-write flags (see file.h or open(2)).
! CREATE_MODE
! set if new file (to be created).
! UNIT
! Is the Fortran unit number on which this OPEN is being done. It is
! passed by reference.
! FLEN
! Is the length of the file name, not counting the terminating null,
! and passed by value.
!+++

INTEGER FUNCTION UOPEN(FILENAME, &
OPEN_FLAGS, &

244

11 Intel® Fortran Compiler User and Reference Guides

CREATE_MODE, &
UNIT, &
FLEN)

!DEC$ATTRIBUTES C, DECORATE, ALIAS:'uopen' :: UOPEN
!DEC$ATTRIBUTES REFERENCE :: FILENAME
!DEC$ATTRIBUTES REFERENCE :: OPEN_FLAGS
!DEC$ATTRIBUTES REFERENCE :: CREATE_MODE
!DEC$ATTRIBUTES REFERENCE :: UNIT
IMPLICIT NONE
INTEGER*4 OPEN_FLAGS
INTEGER*4 CREATE_MODE
INTEGER*4 UNIT
INTEGER*4 FLEN
CHARACTER*(FLEN) FILENAME
INTEGER*4 ISTAT
!DEC$ATTRIBUTES C, DECORATE, ALIAS:'open' :: OPEN
external OPEN
integer*4 OPEN

140 FORMAT(X, "ERROR: USEROPEN Passed Wrong Unit Number",I)
! Sanity check

IF (UNIT .NE. 10) THEN
WRITE(*,140) UNIT

END IF
! Call the system OPEN routine

ISTAT = OPEN (%ref(FILENAME), &
OPEN_FLAGS, &
CREATE_MODE)

UOPEN = ISTAT
RETURN
END

!DEC$ ENDIF ! End of UOPEN Function
!---
! SUBROUTINE: ParseForFileName
! Takes a full pathname and retuns the filename
! with its extension.
!---

SUBROUTINE ParseForFileName(FullName,FileName)
Character*255 :: FullName
Character*100 :: FileName
Integer :: P

!DEC$ IF DEFINED(_WIN32)
P = INDEX(FullName,'\',.TRUE.)
FileName = FullName(P+1:)

!DEC$ ELSE ! LINUX OS/MAC OS X
P = INDEX(FullName,'/',.TRUE.)
FileName = FullName(P+1:)

!DEC$ ENDIF
END

245

11

Microsoft Fortran PowerStation Compatible Files

When using the -fpscomp (Linux OS and Mac OS X) or /fpscomp (Windows OS) options for
Microsoft* Fortran PowerStation compatibility, the following types of files are possible:

• Formatted Sequential

• Formatted Direct

• Unformatted Sequential

• Unformatted Direct

• Binary Sequential

• Binary Direct

Formatted Sequential Files

A formatted sequential file is a series of formatted records written sequentially and read in the
order in which they appear in the file. Records can vary in length and can be empty. They are
separated by carriage return (0D) and line feed (0A) characters as shown in the following figure.

Figure 12: Formatted Records in a Formatted Sequential File

An example of a program writing three records to a formatted sequential file is given below.
The resulting file is shown in the following figure.

OPEN (3, FILE='FSEQ')
! FSEQ is a formatted sequential file by default.
WRITE (3, '(A, I3)') 'RECORD', 1
WRITE (3, '()')

246

11 Intel® Fortran Compiler User and Reference Guides

WRITE (3, '(A11)') 'The 3rd One'
CLOSE (3)
END

Figure 13: Formatted Sequential File

Formatted Direct Files

In a formatted direct file, all of the records are the same length and can be written or read in
any order. The record size is specified with the RECL option in an OPEN statement and should
be equal to or greater than the number of bytes in the longest record.

The carriage return (CR) and line feed (LF) characters are record separators and are not included
in the RECL value. Once a direct-access record has been written, you cannot delete it, but you
can rewrite it.

During output to a formatted direct file, if data does not completely fill a record, the compiler
pads the remaining portion of the record with blank spaces. The blanks ensure that the file
contains only completely filled records, all of the same length. During input, the compiler by
default also adds filler bytes (blanks) to the input record if the input list and format require
more data than the record contains.

You can override the default blank padding on input by setting PAD='NO' in the OPEN statement
for the file. If PAD='NO', the input record must contain the amount of data indicated by the
input list and format specification. Otherwise, an error occurs. PAD='NO' has no effect on output.

247

11

An example of a program writing two records, record one and record three, to a formatted
direct file is given below. The result is shown in the following figure.

OPEN (3,FILE='FDIR', FORM='FORMATTED', ACCESS='DIRECT',RECL=10)
WRITE (3, '(A10)', REC=1) 'RECORD ONE'
WRITE (3, '(I5)', REC=3) 30303
CLOSE (3)
END

Figure 14: Formatted Direct File

Unformatted Sequential Files

Unformatted sequential files are organized slightly differently on different platforms. This section
describes unformatted sequential files created by Intel Fortran when the -fpscomp (Linux OS
and Mac OS X) or /fpscomp (Windows OS) option is specified.

The records in an unformatted sequential file can vary in length. Unformatted sequential files
are organized in chunks of 130 bytes or less called physical blocks. Each physical block
consists of the data you send to the file (up to 128 bytes) plus two 1-byte "length bytes" inserted
by the compiler. The length bytes indicate where each record begins and ends.

A logical record refers to an unformatted record that contains one or more physical blocks.
(See the following figure.) Logical records can be as big as you want; the compiler will use as
many physical blocks as necessary.

248

11 Intel® Fortran Compiler User and Reference Guides

When you create a logical record consisting of more than one physical block, the compiler sets
the length byte to 129 to indicate that the data in the current physical block continues on into
the next physical block. For example, if you write 140 bytes of data, the logical record has the
structure shown in the following figure.

Figure 15: Logical Record in Unformatted Sequential File

The first and last bytes in an unformatted sequential file are reserved; the first contains a value
of 75, and the last holds a value of 130. Fortran uses these bytes for error checking and
end-of-file references.

The following program creates the unformatted sequential file shown in the following figure:

! Note: The file is sequential by default
! -1 is FF FF FF FF hexadecimal.
!
CHARACTER xyz(3)
INTEGER(4) idata(35)
DATA idata /35 * -1/, xyz /'x', 'y', 'z'/

!
! Open the file and write out a 140-byte record:
! 128 bytes (block) + 12 bytes = 140 for IDATA, then 3 bytes for XYZ.
OPEN (3, FILE='UFSEQ',FORM='UNFORMATTED')
WRITE (3) idata

249

11

WRITE (3) xyz
CLOSE (3)
END

Figure 16: Unformatted Sequential File

Unformatted Direct Files

An unformatted direct file is a series of unformatted records. You can write or read the records
in any order you choose. All records have the same length, given by the RECL specifier in an
OPEN statement. No delimiting bytes separate records or otherwise indicate record structure.

You can write a partial record to an unformatted direct file. Intel Fortran pads these records to
the fixed record length with ASCII NULL characters. Unwritten records in the file contain
undefined data.

The following program creates the sample unformatted direct file shown in the following figure:

OPEN (3, FILE='UFDIR', RECL=10,&
& FORM = 'UNFORMATTED', ACCESS = 'DIRECT')

WRITE (3, REC=3) .TRUE., 'abcdef'

250

11 Intel® Fortran Compiler User and Reference Guides

WRITE (3, REC=1) 2049
CLOSE (3)
END

Figure 17: Unformatted Direct File

Binary Sequential Files

A binary sequential file is a series of values written and read in the same order and stored as
binary numbers. No record boundaries exist, and no special bytes indicate file structure. Data
is read and written without changes in form or length. For any I/O data item, the sequence of
bytes in memory is the sequence of bytes in the file.

The next program creates the binary sequential file shown in the following figure:

! NOTE: 07 is the bell character
! Sequential is assumed by default.
!
INTEGER(1) bells(4)
CHARACTER(4) wys(3)
CHARACTER(4) cvar
DATA bells /4*7/
DATA cvar /' is '/,wys /'What',' you',' see'/
OPEN (3, FILE='BSEQ',FORM='BINARY')
WRITE (3) wys, cvar
WRITE (3) 'what ', 'you get!'

251

11

WRITE (3) bells
CLOSE (3)
END

Figure 18: Binary Sequential File

Binary Direct Files

A binary direct file stores records as a series of binary numbers, accessible in any order. Each
record in the file has the same length, as specified by the RECL argument to the OPEN statement.
You can write partial records to binary direct files; any unused portion of the record will contain
undefined data.

A single read or write operation can transfer more data than a record contains by continuing
the operation into the next records of the file. Performing such an operation on an unformatted
direct file would cause an error. Valid I/O operations for unformatted direct files produce identical
results when they are performed on binary direct files, provided the operations do not depend
on zero padding in partial records.

252

11 Intel® Fortran Compiler User and Reference Guides

The following program creates the binary direct file shown in the following figure:

OPEN (3, FILE='BDIR',RECL=10,FORM='BINARY',ACCESS='DIRECT')
WRITE (3, REC=1) 'abcdefghijklmno'
WRITE (3) 4,5
WRITE (3, REC=4) 'pq'
CLOSE (3) END

Figure 19: Binary Direct File

Using Asynchronous I/O

For external files, you can specify that I/O should be asynchronous. By doing this, you allow
other statements to execute while an I/O statement is executing.

NOTE. In order to execute a program that uses asynchronous I/O on Linux* OS or Mac
OS* X systems, you must explicitly include one of the following compiler command line
options when you compile and link your program:

• -threads

• -reentrancy threaded

• -openmp

On Windows* OS systems, no extra options are needed to execute a program that uses
asynchronous I/O.

253

11

Using the ASYNCHRONOUS Specifier

Asynchronous I/O is supported for all READ and WRITE operations to external files. However,
if you specify asynchronous I/O, you cannot use variable format expressions in formatted I/O
operations.

To allow asynchronous I/O for a file, first specify ASYNCHRONOUS='YES' in its OPEN statement,
then do the same for each READ or WRITE statement that you want to execute in this manner.

Execution of an asynchronous I/O statement initiates a "pending" I/O operation, which can be
terminated in the following ways:

• by an explicit WAIT (initno) statement, which performs a wait operation for the specified
pending asynchronous data transfer operation

• by a CLOSE statement for the file

• by a file-positioning statement such as REWIND or BACKSPACE

• by an INQUIRE statement for the file

Use the WAIT statement to ensure that the objects used in the asynchronous data transfer
statements are not prematurely deallocated. (This is especially important for local stack objects
and allocatable objects which may be deallocated before completion of the pending operation.)
If you do not specify the wait operation, the program may terminate with an Access violation
error. The following example shows use of the WAIT statement:

module mod
real, allocatable :: X(:)

end module mod
subroutine sbr()
use mod
integer :: Y(500)

!X and Y initialization
allocate (X(500))
call foo1(X, Y)
!asynchronous writing
open(1, asynchronous='yes')
write(1, asynchronous='yes') X, Y
!some computation
call foo2()
!wait operation
wait(1)
!X deallocation
deallocate(X)
!stack allocated object Y will be deallocated when the routine returns

end subroutine sbr

254

11 Intel® Fortran Compiler User and Reference Guides

You can use the INQUIRE statement with the keyword of ASYNCHRONOUS
(ASYNCHRONOUS=specifier) to determine whether asynchronous I/O is allowed. If it is allowed,
a value of YES is returned.

Additionally, you can use the INQUIRE statement with the keyword of PENDING (PENDING=
specifier) to determine whether previously pending asynchronous data transfers are complete.

If an ID= specifier appears and the specified data transfer operation is complete, the variable
specified by PENDING is assigned the value False and the INQUIRE statement performs a wait
operation for the specified data transfer.

If the ID= specifier is omitted and all previously pending data transfer operations for the
specified unit are complete, the variable specified by PENDING is assigned the value False and
the INQUIRE statement performs wait operations for all previously pending data transfers for
the specified unit.

Otherwise, the variable specified by PENDING is assigned the value True and no wait operations
are performed. Previously pending data transfers remain pending.

Using the ASYNCHRONOUS Attribute

A data attribute called ASYNCHRONOUS specifies that a variable may be subject to asynchronous
input/output. Assigning this attribute to a variable allows certain optimizations to occur.

For more information, see the following topics in the Language Reference:

Asynchronous Specifier

Open: ASYNCHRONOUS Specifier

INQUIRE: ASYNCHRONOUS Specifier

ASYNCHRONOUS Statement and Attributes

255

11

12Structuring Your Program

Structuring Your Program Overview

There are several ways to organize your projects and the applications that you build with Intel®
Fortran. This section introduces several of these options and offers suggestions for when you might
want to use them.

See Also
• Structuring Your Program
• Creating Fortran Executables
• Using Module (.mod) Files
• Using Include Files
• Advantages of Internal Procedures
• Storing Object Code in Static Libraries
• Storing Routines in Shareable Libraries

Creating Fortran Executables

The simplest way to build an application is to compile all of your Intel® Fortran source files and then
link the resulting object files into a single executable file. You can build single-file executables using
the ifort command from the command line. For Windows* OS, you can also use the visual development
environment.

The executable file you build with this method contains all of the code needed to execute the program,
including the run-time library. Because the program resides in a single file, it is easy to copy or
install. However, the project contains all of the source and object files for the routines that you used
to build the application. If you need to use some of these routines in other projects, you must link
all of them again.

Exceptions to this are as follows:

• If you are using shared libraries, all code will not be contained in the executable file.

• On Mac OS* X, the object files contain debug information and would need to be copied along
with the executable.

257

Using Module (.mod) Files

One way to reduce potential confusion when you use the same source code in several projects
is to organize the routines into modules. A module (.mod file) is a type of program unit that
contains specifications of such entities as data objects, parameters, structures, procedures,
and operators. These precompiled specifications and definitions can be used by one or more
program units. Partial or complete access to the module entities is provided by the a program's
USE statement. Typical applications of modules are the specification of global data or the
specification of a derived type and its associated operations.

Modules are excellent ways to organize programs. You can set up separate modules for:

• Commonly used routines

• Data definitions specific to certain operating systems

• System-dependent language extensions

Some programs require modules located in multiple directories. You can use the -I (Linux*
OS and Mac OS* X) or /I compiler (Windows* OS) option when you compile the program to
specify the location of the .mod files that should be included in the program.

You can use the -module path (Linux OS and Mac OS X) or /module:path (Windows OS)
option to specify the directory in which to create the module files. If you don't use this option,
module files are created in the current directory.

Directories are searched for .mod files in this order:

1. Directory of the source file that contains the USE statement

2. Directories specified by the -module path (Linux OS and Mac OS X) or /module:path
(Windows OS) option

3. Current working directory

4. Directories specified by the -Idir (Linux OS and Mac OS X) or /include (Windows OS)
option

5. Directories specified with the FPATH (Linux OS and Mac OS X) or INCLUDE (Windows OS)
environment variable

6. Standard system directories

You need to make sure that the module files are created before they are referenced by another
program or subprogram.

258

12 Intel® Fortran Compiler User and Reference Guides

Compiling Programs with Modules

If a file being compiled has one or more modules defined in it, the compiler generates one or
more .mod files.

For example, a file a.f90 contains modules defined as follows:

module test
integer:: a
contains
subroutine f()
end subroutine

end module test
module payroll
.
.
.
end module payroll

This compiler command:

ifort -ca.f90

generates the following files:

• test.mod

• payroll.mod

• a.o (Linux OS and Mac OS X) or a.obj (Windows OS)

The .mod files contain the necessary information regarding the modules that have been defined
in the program a.f90.

The following example uses the program program mod_def.f90 which contains a module defined
as follows:

file: mod_def.f90
module definedmod
.
.
.
end module

Compile the program as follows:

ifort -c mod_def.f90

This produces the object files mod_def.o (Linux OS and Mac OS X) or mod_def.obj (Windows
OS) and also the .mod file definedmod.mod, all in the current directory.

259

12

If you need to use the .mod file in another directory, do the following:

file: use_mod_def.f90
program usemod
use definedmod
.
.
.
end program

To compile the above program, use the -I (Linux OS) or /I (Windows OS) option to specify
the path to search and locate the definedmod.mod file.

Using Include Files

Include files are brought into a program with the #include preprocessor directive or a Fortran
INCLUDE statement.

Directories are searched for include files in this order:

1. Directory of the source file that contains the include

2. Current working directory

3. Directories specified by the -I (Linux OS and Mac OS X) or /I (Windows OS) option

4. Directory specified by the -isystem option (Linux OS and Mac OS X systems only)

5. Directories specified with the FPATH (Linux OS and Mac OS X) or INCLUDE (Windows OS)
environment variable

6. Standard system directories

The locations of directories to be searched are known as the include file path. More than one
directory can be specified in the include file path.

Specifying and Removing an Include File Path

You can use the -I (Linux OS and Mac OS X) or /I (Windows OS) option to indicate the location
of include files (and also module files).

To prevent the compiler from searching the default path specified by the FPATH or the INCLUDE
environment variable, use the -X or /noinclude option.

You can specify these options in the configuration file, ifort.cfg, or on the command line.

260

12 Intel® Fortran Compiler User and Reference Guides

For example, to direct the compiler to search a specified path instead of the default path, use
the following command line:

ifort -X -I/alt/include newmain.f (Linux OS and Mac OS X)
ifort /noinclude /IC:/Project2/include newmain.f (Windows OS)

For more information, see the following topic:

• I compiler option

Advantages of Internal Procedures

Functions or subroutines that are used in only one program can be organized as internal
procedures, following the CONTAINS statement of a program or module.

Internal procedures have the advantage of host association, that is, variables declared and
used in the main program are also available to any internal procedure it may contain. For more
information on procedures and host association, see Program Units and Procedures.

Internal procedures, like modules, provide a means of encapsulation. Where modules can be
used to store routines commonly used by many programs, internal procedures separate functions
and subroutines whose use is limited or temporary.

Storing Object Code in Static Libraries

Another way to organize source code used by several projects is to build a static library (for
Windows* OS, .lib and for Linux* OS and Mac OS* X, .a) containing the object files for the
reused procedures. You can create a static library by doing the following:

• From the Microsoft Visual Studio* integrated development environment (IDE), create and
build a Fortran Static Library project type.

• From the command line, use the ar command (on Linux OS and Mac OS X) or the LIB
command (on Windows OS).

After you have created a static library, you can use it as input to other types of Intel Fortran
projects.

Storing Routines in Shareable Libraries

You can organize the code in your application by storing the executable code for certain routines
in a shareable library (.dll for Windows* OS, .so for Linux* OS, .dylib for Mac OS* X). You
can then build your applications so that they call these routines from the shareable library.

261

12

When routines in a shareable library are called, the routines are loaded into memory at run-time
as they are needed. This is most useful when several applications use a common group of
routines. By storing these common routines in a shareable library, you reduce the size of each
application that calls the library. In addition, you can update the routines in the library without
having to rebuild any of the applications that call the library.

262

12 Intel® Fortran Compiler User and Reference Guides

13Programming with Mixed
Languages

Programming with Mixed Languages Overview

Mixed-language programming is the process of building programs in which the source code is written
in two or more languages. It allows you to:

• Call existing code that is written in another language

• Use procedures that may be difficult to implement in a particular language

• Gain advantages in processing speeds

Mixed-language programming is possible between Intel® Fortran and other languages. Although
other languages (such as assembly language) are discussed, the primary focus of this section is
programming using Intel Fortran and C/C++ . Mixed language programming between these two
languages is relatively straightforwardbecause each language implements functions, subroutines,
and procedures in approximately the same way.

Calling Subprograms from the Main Program

Calls from the Main Program

The Intel® Fortran main program can call Intel Fortran subprograms, including subprograms in static
and shared libraries.

For mixed-language applications, the Intel Fortran main program can call subprograms written in
C/C++ if the appropriate calling conventions are used (see Calling C Procedures from a Fortran
program).

Intel Fortran subprograms can be called by C/C++ main programs. If the main program is C/C++,
you need to use the -nofor_main compiler option to indicate this.

Calls to the Subprogram

You can use subprograms in static libraries if the main program is written in Intel Fortran or C/C++.

You can use subprograms in shared libraries in mixed-language applications if the main program is
written in Intel Fortran or C/C++.

263

Summary of Mixed-Language Issues

Mixed-language programming involves a call from a routine written in one language to a function,
procedure, or subroutine written in another language. For example, a Fortran main program
may need to execute a specific task that you want to program separately in an
assembly-language procedure, or you may need to call an existing shared library or system
procedure.

Mixed-language programming is possible with Intel® Fortran, Visual C/C++*, and Intel® C++,
because each language implements functions, subroutines, and procedures in approximately
the same way.

Intel Fortran includes several Fortran 2003 features that provide interoperability with C. An
entity is considered interoperable if equivalent declarations can be made for it in both languages.
Interoperability is provided for variables, derived types, and procedures.

The following features are supported:

• BIND attribute and statement, which specifies that an object is interoperable with C and
has external linkage.

• language binding in FUNCTION and SUBROUTINE statements

• language binding in derived-type statements

For more information, see Interoperability with C.

Programming with Fortran and C/C++ Considerations

A summary of major Fortran and C/C++ mixed-language issues follows:

• Fortran and C implement functions and routines differently. For example, a C main program
could call an external void function, which is actually implemented as a Fortran subroutine:

Table 32: Language Equivalents for Calls to Routines

Call with No Return ValueCall with Return ValueLanguage

SUBROUTINEFUNCTIONFortran

(void) functionfunctionC and C++

• Generally, Fortran/C programs are mixed to allow one to use existing code written in the
other language. Either Fortran or C can call the other, so the main routine can be in either
language. On Linux OS and Mac OS X systems, if Fortran is not the main routine, the -nofor-
main compiler option must be specified on the command line.

264

13 Intel® Fortran Compiler User and Reference Guides

• To use the same Microsoft* visual development environment for multiple languages, you
must have the same version of the visual development environment for your languages.

• Fortran adds an underscore to external names; C does not.

• Fortran changes the case of external names to lowercase; C leaves them in their original
case.

• Fortran passes numeric data by reference; C passes by value.

NOTE. You can override some default Fortran behavior by using ATTRIBUTES and ALIAS.
ATTRIBUTES C causes Fortran to act like C in external names and the passing of numeric
data. ALIAS causes Fortran to use external names in their original case.

• Fortran subroutines are equivalent to C void routines.

• Fortran requires that the length of strings be passed; C is able to calculate the length based
on the presence of a trailing null. Therefore, if Fortran is passing a string to a C routine,
that string needs to be terminated by a null; for example:

"mystring"c or StringVar // CHAR(0)

• For the following data types, Fortran adds a hidden first argument to contain function return
values: COMPLEX, REAL*16, CHARACTER, and derived types.

• On Linux* systems, the -fexceptions option enables C++ exception handling table
generation, preventing Fortran routines in mixed-language applications from interfering with
exception handling between C++ routines.

For more information on mixed language programming using Intel Fortran and C, see the
following:

• Compiling and Linking Intel Fortran/C Programs

• Calling C Procedures from an Intel Fortran Program

Programming with Fortran and Assembly-Language Considerations

A summary of Fortran/assembly language issues follows:

• Assembly-language routines can be small and can execute quickly because they do not
require initialization as do high-level languages like Fortran and C.

265

13

• Assembly-language routines allow access to hardware instructions unavailable to the
high-level language user. In a Fortran/assembly-language program, compiling the main
routine in Fortran gives the assembly code access to Fortran high-level procedures and
library functions, yet allows freedom to tune the assembly-language routines for maximum
speed and efficiency. The main program can also be an assembly-language program.

Other Mixed-Language Programming Considerations

There are other important differences in languages; for instance, argument passing, naming
conventions, and other interface issues must be thoughtfully and consistently reconciled between
any two languages to prevent program failure and indeterminate results. However, the
advantages of mixed-language programming often make the extra effort worthwhile. The
remainder of this section provides an explanation of the techniques you can use to reconcile
differences between Fortran and other languages.

Adjusting calling conventions, adjusting naming conventions and writing interface procedures
are discussed in the following topics:

• Adjusting Calling Conventions in Mixed-Language Programming

• Adjusting Naming Conventions in Mixed-Language Programming

• Prototyping a Procedure in Fortran

After establishing a consistent interface between mixed-language procedures, you then need
to reconcile any differences in the treatment of individual data types (strings, arrays, and so
on). This is discussed in Exchanging and Accessing Data in Mixed-Language Programming. You
also need to be concerned with data types, because each language handles them differently.
This is discussed in Handling Data Types in Mixed-Language Programming.

NOTE. This section uses the term "routine" in a generic way, to refer to functions,
subroutines, and procedures from different languages.

Adjusting Calling Conventions in Mixed-Language Programming

Adjusting Calling Conventions in Mixed-Language Programming Overview

The calling convention determines how a program makes a call to a routine, how the arguments
are passed, and how the routines are named.

266

13 Intel® Fortran Compiler User and Reference Guides

A calling convention includes:

• Stack considerations

• Does a routine receive a varying or fixed number of arguments?

• Which routine clears the stack after a call?

• Naming conventions

• Is lowercase or uppercase significant or not significant?

• Are external names altered?

• Argument passing protocol

• Are arguments passed by value or by reference?

• What are the equivalent data types and data structures among languages?

In a single-language program, calling conventions are nearly always correct, because there is
one default for all routines and because header files or Fortran module files with interface blocks
enforce consistency between the caller and the called routine.

In a mixed-language program, different languages cannot share the same header files. If you
link Fortran and C routines that use different calling conventions, the error is not apparent until
the bad call is made at run time. During execution, the bad call causes indeterminate results
and/or a fatal error. The error, caused by memory or stack corruption due to calling errors,
often occurs in a seemingly arbitrary place in the program.

The discussion of calling conventions between languages applies only to external procedures.
You cannot call internal procedures from outside the program unit that contains them.

A calling convention affects programming in a number of ways:

1. The caller routine uses a calling convention to determine the order in which to pass arguments
to another routine; the called routine uses a calling convention to determine the order in
which to receive the arguments passed to it. In Fortran, you can specify these conventions
in a mixed-language interface with the INTERFACE statement or in a data or function
declaration. C/C++ and Fortran both pass arguments in order from left to right.

2. The caller routine and the called routine use a calling convention to select the option of
passing a variable number of arguments.

3. The caller routine and the called routine use a calling convention to pass arguments by value
(values passed) or by reference (addresses passed). Individual Fortran arguments can also
be designated with ATTRIBUTES option VALUE or REFERENCE.

267

13

4. The caller routine and the called routine use a calling convention to establish naming
conventions for procedure names. You can establish any procedure name you want, regardless
of its Fortran name, with the ALIAS directive (or ATTRIBUTES option ALIAS). This is useful
because C is case sensitive, while Fortran is not.

ATTRIBUTES Properties and Calling Conventions

The ATTRIBUTES properties (also known as options) C, STDCALL (Windows* OS only),
REFERENCE, VALUE, and VARYING affect the calling convention of routines. You can specify:

• The C, STDCALL, REFERENCE, and VARYING properties for an entire routine.

• The VALUE and REFERENCE properties for individual arguments.

By default, Fortran passes all data by reference (except the hidden length argument of strings,
which is passed by value). If the C (or, for Windows OS, STDCALL) option is used, the default
changes to passing almost all data except arrays by value. However, in addition to the
calling-convention options C and STDCALL, you can specify argument options, VALUE and
REFERENCE, to pass arguments by value or by reference, regardless of the calling convention
option. Arrays can only be passed by reference.

Different Fortran calling conventions can be specified by declaring the Fortran procedure to
have certain attributes.

It is advisable to use the DECORATE option in combination with the ALIAS option to ensure
appropriate name decoration regardless of operating system or architecture. The DECORATE
option indicates that the external name specified in ALIAS should have the correct prefix and
postfix decorations for the calling mechanism in effect.

Naming conventions are as follows:

• leading (prefix) underscore for Windows operating systems based on IA-32 architecture;
no underscores for Windows operating systems based on Intel® 64 architecture and Windows
systems based on IA-64 architecture.

• trailing (postfix) underscore for all Linux operating systems

• leading and trailing underscores for all Mac OS* X operating systems

For example:
INTERFACE

SUBROUTINE MY_SUB (I)
!DEC$ ATTRIBUTES C, DECORATE, ALIAS:'My_Sub'

:: MY_SUB
INTEGER I

END SUBROUTINE MY_SUB
END INTERFACE

268

13 Intel® Fortran Compiler User and Reference Guides

This code declares a subroutine named MY_SUB with the C property. The external name will be
appropriately decorated for the operating system and platform.

The following table summarizes the effect of the most common Fortran calling-convention
directives.

Table 33: Calling Conventions for ATTRIBUTES Options

STDCALL,
REFERENCE

(Windows
OS IA-32
architecture)

STDCALL

(Windows
OS IA-32
architecture)

C, REFERENCECDefaultArgument

ReferenceValueReferenceValueReferenceScalar

ValueValueValueValueValueScalar
[value]

ReferenceReferenceReferenceReferenceReferenceScalar
[reference]

String(1:1)String(1:1)Reference,
either Len:End
or Len:Mixed

String(1:1)Reference,
either Len:End
or Len:Mixed

String

String(1:1)String(1:1)String(1:1)String(1:1)ErrorString
[value]

Reference,
No Len

Reference,
No Len

Reference, No
Len

Reference, No
Len

Reference,
either No Len or
Len:Mixed

String
[reference]

ReferenceReferenceReferenceReferenceReferenceArray

ErrorErrorErrorErrorErrorArray
[value]

ReferenceReferenceReferenceReferenceReferenceArray
[reference]

ReferenceValue, size
dependent

ReferenceValue, size
dependent

ReferenceDerived
Type

269

13

STDCALL,
REFERENCE

(Windows
OS IA-32
architecture)

STDCALL

(Windows
OS IA-32
architecture)

C, REFERENCECDefaultArgument

Value, size
dependent

Value, size
dependent

Value, size
dependent

Value, size
dependent

Value, size
dependent

Derived
Type
[value]

ReferenceReferenceReferenceReferenceReferenceDerived
Type
[reference]

DescriptorDescriptorDescriptorDescriptorDescriptorF90
Pointer

ErrorErrorErrorErrorErrorF90
Pointer
[value]

DescriptorDescriptorDescriptorDescriptorDescriptorF90
Pointer
[reference]

Naming Conventions

___ (Windows
operating
systems using

_ (Windows
operating
systems using

_ (Windows
operating
systems using

Prefix

IA-32IA-32IA-32
architecture,architecture,architecture,
Mac OS X
operating
systems)

Mac OS X
operating
systems)

Mac OS X
operating
systems)

none for all
others

none for all
others

none for all
others

@n@nnonenonenone (Windows
OS)

Suffix

_ (Linux OS,
Mac OS X)

270

13 Intel® Fortran Compiler User and Reference Guides

STDCALL,
REFERENCE

(Windows
OS IA-32
architecture)

STDCALL

(Windows
OS IA-32
architecture)

C, REFERENCECDefaultArgument

Lower CaseLower CaseLower CaseLower CaseUpper CaseCase

CalleeCalleeCallerCallerCallerStack
Cleanup

The terms in the above table mean the following:

Argument assigned the VALUE attribute.[value]

Argument assigned the REFERENCE attribute.[reference]

The argument value is pushed on the stack. All values are padded to the next
4-byte boundary.

Value

On systems using IA-32 architecture, the 4-byte argument address is pushed
on the stack.

Reference

On systems using Intel® 64 and IA-64 architectures, the 8-byte argument
address is pushed on the stack.

For certain string arguments:Len:End or
Len:Mixed

• Len:End applies when -nomixed-str-len-arg (Linux OS and Mac OS X) or
/iface:nomixed_str_len_arg (Windows) is set. The length of the string is
pushed (by value) on the stack after all of the other arguments. This is the
default.

• Len:Mixed applies when -mixed-str-len-arg (Linux OS and Mac OS X) or
/iface:mixed_str_len_arg (Windows) is set. The length of the string is
pushed (by value) on the stack immediately after the address of the
beginning of the string.

For certain string arguments:No Len or
Len:Mixed

• No Len applies when nomixed-str-len-arg (Linux OS and Mac OS X) or
/iface:nomixed_str_len_arg (Windows) is set. The length of the string is
not available to the called procedure. This is the default.

271

13

• Len:Mixed applies when mixed-str-len-arg (Linux OS and Mac OS X) or
/iface:mixed_str_len_arg (Windows) is set. The length of the string is
pushed (by value) on the stack immediately after the address of the
beginning of the string.

For string arguments, the length of the string is not available to the called
procedure.

No Len

For string arguments, the first character is converted to INTEGER(4) as in
ICHAR(string(1:1)) and pushed on the stack by value.

String(1:1)

Produces a compiler error.Error

On systems using IA-32 architecture, the 4-byte address of the array descriptor.Descriptor

On systems using Intel® 64 architecture and systems using IA-64 architecture,
the 8-byte address of the array descriptor.

On systems using IA-32 architecture, the at sign (@) followed by the number
of bytes (in decimal) required for the argument list.

@n

On systems using IA-32 architecture, derived-type arguments specified by
value are passed as follows:

Size
dependent

• Arguments from 1 to 4 bytes are passed by value.

• Arguments from 5 to 8 bytes are passed by value in two registers (two
arguments).

• Arguments more than 8 bytes provide value semantics by passing a
temporary storage address by reference.

Procedure name in all uppercase.Upper Case

Procedure name in all lowercase.Lower Case

The procedure being called is responsible for removing arguments from the
stack before returning to the caller.

Callee

The procedure doing the call is responsible for removing arguments from the
stack after the call is over.

Caller

The following table shows which Fortran ATTRIBUTES options match other language calling
conventions.

272

13 Intel® Fortran Compiler User and Reference Guides

Table 35: Matching Calling Conventions

Matching ATTRIBUTES
Option

Other Language Calling Convention

CC/C++ cdecl (default)

STDCALLC/C++ __stdcall (Windows OS only)

CMASM C (in PROTO and PROC declarations) (Windows OS only)

STDCALLMASM STDCALL (in PROTO and PROC declarations) (Windows
OS only)

CAssembly (Linux OS only)

The ALIAS option can be used with any other Fortran calling-convention option to preserve
mixed-case names. You can also use the DECORATE option in combination with the ALIAS
option to specify that the external name specified in ALIAS should have the correct prefix and
postfix decorations for the calling mechanism in effect.

For Windows operating systems, the compiler option /iface also establishes some default
argument passing conventions. The /iface option has the following choices:

Varargs
support?

Who
cleans
up
stack?

Append @n to names on systems using
IA-32 architecture?

How are
arguments
passed?

Option

YesCallerNoBy reference/iface:cref

NoCalleeYesBy reference/iface:stdref

YesCallerNoBy reference/iface:default

YesCallerNoBy value/iface:c

NoCalleeYesBy value/iface:stdcall

NoCalleeYesBy reference/iface:cvf

273

13

Adjusting Naming Conventions in Mixed-Language Programming

Adjusting Naming Conventions in Mixed-Language Programming Overview

The ATTRIBUTES options C and, for Windows* OS, STDCALL, determine naming conventions
as well as calling conventions.

Calling conventions specify how arguments are moved and stored; naming conventions specify
how symbol names are altered when placed in an .OBJ file. Names are an issue for external
data symbols shared among parts of the same program as well as among external routines.
Symbol names (such as the name of a subroutine) identify a memory location that must be
consistent among all calling routines.

Parameter names (names given in a procedure definition to variables that are passed to it) are
never affected.

Names are altered because of case sensitivity (in C and MASM), lack of case sensitivity (in
Fortran), name decoration (in C++), or other issues. If naming conventions are not reconciled,
the program cannot successfully link and you will receive an "unresolved external" error.

C/C++ Naming Conventions

C and C++ preserve case sensitivity in their symbol tables while Fortran by default does not;
this is a difference that requires attention. Fortunately, you can use the Fortran directive AT-
TRIBUTES ALIAS option to resolve discrepancies between names, to preserve mixed-case
names, or to override the automatic case conversion of names by Fortran.

C++ uses the same calling convention and argument-passing techniques as C, but naming
conventions differ because of C++ decoration of external symbols. When the C++ code resides
in a .cpp file (created when you select C/C++ file from the integrated development
environment), C++ name decoration semantics are applied to external names, often resulting
in linker errors. The extern "C" syntax makes it possible for a C++ module to share data and
routines with other languages by causing C++ to drop name decoration.

The following example declares prn as an external function using the C naming convention.
This declaration appears in C++ source code:
extern "C" { void prn(); }

To call functions written in Fortran, declare the function as you would in C and use a "C" linkage
specification. For example, to call the Fortran function FACT from C++, declare it as follows:
extern "C" { int fact(int* n); }

The extern "C" syntax can be used to adjust a call from C++ to other languages, or to change
the naming convention of C++ routines called from other languages. However, extern "C" can
only be used from within C++. If the C++ code does not use extern "C" and cannot be changed,

274

13 Intel® Fortran Compiler User and Reference Guides

you can call C++ routines only by determining the name decoration and generating it from the
other language. Such an approach should only be used as a last resort, because the decoration
scheme is not guaranteed to remain the same between versions.

Use of extern "C" has some restrictions:

• You cannot declare a member function with extern "C".

• You can specify extern "C" for only one instance of an overloaded function; all other instances
of an overloaded function have C++ linkage.

Procedure Names for Fortran, C, C++, and MASM

The following table summarizes how Fortran, C/C++ and, for Windows, MASM handle procedure
names. Note that for MASM, the table does not apply if the CASEMAP: ALL option is used.

Table 37: Naming Conventions in Fortran, C, Visual C++, and MASM

Case of Name in
.OBJ File

Name Translated AsAttributesLanguage

All lowercasename (Linux* OS)

_name (Windows* OS)

cDEC$ ATTRIBUTES CFortran

_name (Mac OS* X)

All lowercase_name@ncDEC$ ATTRIBUTES
STDCALL

Fortran

(Windows OS)

All uppercasename_ (Linux OS)

_name (Windows OS)

defaultFortran

name (Mac OS X)

Mixed case
preserved

name (Linux OS)

_name (Windows OS)

cdecl (default)C

_name (Mac OS X)

Mixed case
preserved

_name@n__stdcallC (Windows OS
only)

275

13

Case of Name in
.OBJ File

Name Translated AsAttributesLanguage

Mixed case
preserved

name@@decoration
(Linux OS)

_name@@decoration
(Windows OS)

DefaultC++

__decorationnamedecoration
(Mac OS X)

Mixed case
preserved

name (Linux OS)

_name (Mac OS X)

DefaultLinux OS, Mac
OS X Assembly

Mixed case
preserved

_nameC (in PROTO and PROC
declarations)

MASM

(Windows OS)

Mixed case
preserved

_name@nSTDCALL (in PROTO and
PROC declarations)

MASM

(Windows OS)

In the preceding table:

• The leading underscore (such as _name) is used on Windows operating systems based on
IA-32 architecture only.

• @n represents the stack space, in decimal notation, occupied by parameters on Windows
operating systems based on IA-32 architecture only.

For example, assume a function is declared in C as:
extern int __stdcall Sum_Up(int a, int b, int c);

Each integer occupies 4 bytes, so the symbol name placed in the .OBJ file on systems based
on IA-32 architecture is:
_Sum_Up@12

On systems based on Intel® 64 architecture and those based on IA-64 architecture, the symbol
name placed in the .OBJ file is:
Sum_Up

Reconciling the Case of Names

The following summarizes how to reconcile names between languages:

276

13 Intel® Fortran Compiler User and Reference Guides

• All-Uppercase Names (default on Windows OS)

If you call a Fortran routine that uses Fortran defaults and cannot recompile the Fortran
code, then in C,you must use an all-uppercase name to make the call. In MASM you must
either use an all-uppercase name or set the OPTION CASEMAP directive to ALL, which
translates all identifiers to uppercase. Use of the __stdcall convention in C code or STDCALL
in MASM PROTO and PROC declarations is not enough, because __stdcall and STDCALL
always preserve case in these languages. Fortran generates all-uppercase names by default
and the C or MASM code must match it.

For example, these prototypes establish the Fortran function FFARCTAN(angle) where the
argument angle has the ATTRIBUTES VALUE property:

• In C:
extern float FFARCTAN(float angle);

• In MASM:
.MODEL FLAT
FFARCTAN PROTO, angle: REAL4
...
FFARCTAN PROC, angle: REAL4

• All-Lowercase Names (default on Linux OS and Mac OS X)

If the name of the routine appears as all lowercase in C or assembly, then naming conventions
are automatically correct. Any case may be used in the Fortran source code, including mixed
case since the name is changed to all lowercase.

In Linux OS/Mac OS X Assembly, the following establishes the Fortran function ffarctan:

#--Begin ffarctan_
.globl ffarctan_

• Mixed-Case Names

If the name of a routine appears as mixed-case in C or MASM and you need to preserve the
case, use the Fortran ATTRIBUTES ALIAS option.

To use the ALIAS option, place the name in quotation marks exactly as it is to appear in the
object file.

The following is an example for referring to the C function My_Proc:
!DEC$ ATTRIBUTES DECORATE,ALIAS:'My_Proc'
:: My_Proc

This example uses DECORATE to automatically reconcile the external name for the target
platform.

277

13

Fortran Module Names and ATTRIBUTES

Fortran module entities (data and procedures) have external names that differ from other
external entities. Module names use the convention:
modulename_mp_entity_(Linux OS and Mac OS X)
_MODULENAME_mp_ENTITY [@stacksize] (Windows OS)

modulename is the name of the module. For Windows* operating systems, the name is uppercase
by default.

entity is the name of the module procedure or module data contained within MODULENAME.
For Windows* operating systems, ENTITY is uppercase by default.

mp is the separator between the module and entity names and is always lowercase.

For example:
MODULE mymod
INTEGER a

CONTAINS
SUBROUTINE b (j)

INTEGER j
END SUBROUTINE

END MODULE

This results in the following symbols being defined in the compiled object file on Linux operating
systems (On Mac OS X operating systems, the symbols would begin with an underscore)::
mymod_mp_a_
mymod_mp_b_

The following symbols are defined in the compiled object file on Windows operating systems
based on IA-32 architecture:
_MYMOD_mp_A
_MYMOD_mp_B

Compiler options can affect the naming of module data and procedures.

NOTE. Except for ALIAS, ATTRIBUTES options do not affect the module name.

The following table shows how each ATTRIBUTES option affects the subroutine in the previous
example module.

278

13 Intel® Fortran Compiler User and Reference Guides

Table 38: Effect of ATTRIBUTES options on Fortran Module Names

Procedure Name in .OBJ file on Systems
Using Intel® 64 Architecture and IA-64
Architecture

Procedure Name in .OBJ
file on Systems Using
IA-32 Architecture

ATTRIBUTES
Option Given to
Routine 'b'

mymod_mp_b_ (Linux OS)mymod_mp_b_ (Linux OS)None

_mymod_mp_b_ (Mac OS X)_mymod_mp_b_ (Mac OS
X) MYMOD_mp_B (Windows OS)
_MYMOD_mp_B (Windows
OS)

mymod_mp_b (Linux OS)mymod_mp_b_ (Linux OS)C

_mymod_mp_b (Mac OS X)_mymod_mp_b_ (Mac OS
X) MYMOD_mp_b (Windows OS)
MYMOD_mp_b (Windows
OS)

MYMOD_mp_b_MYMOD_mp_b@4STDCALL
(Windows OS
only)

Overrides all others, name as given in the
alias

Overrides all others, name
as given in the alias

ALIAS

No effect on nameNo effect on nameVARYING

You can write code to call Fortran modules or access module data from other languages. As
with other naming and calling conventions, the module name must match between the two
languages. Generally, this means using the C or STDCALL convention in Fortran, and if defining
a module in another language, using the ALIAS option to match the name within Fortran. For
examples, see Using Modules in Mixed-Language Programming.

Prototyping a Procedure in Fortran

You define a prototype (interface block) in your Fortran source code to tell the Fortran compiler
which language conventions you want to use for an external reference. The interface block is
introduced by the INTERFACE statement. See Program Units and Procedures for a more detailed
description of the INTERFACE statement.

279

13

The general form for the INTERFACE statement is:

INTERFACE
routine statement
[routine ATTRIBUTE options]
[argument ATTRIBUTE options]
formal argument declarations
END routine name
END INTERFACE

The routine statement defines either a FUNCTION or a SUBROUTINE, where the choice depends
on whether a value is returned or not, respectively. The optional routine ATTRIBUTE options
(such as C, and, for Windows, STDCALL) determine the calling, naming, and argument-passing
conventions for the routine in the prototype statement. The optional argument ATTRIBUTE
options (such as VALUE and REFERENCE) are properties attached to individual arguments. The
formal argument declarations are Fortran data type declarations. Note that the same
INTERFACE block can specify more than one procedure.

For example, suppose you are calling a C function that has the following prototype:

extern void My_Proc (int i);

The Fortran call to this function should be declared with the following INTERFACE block:

INTERFACE
SUBROUTINE my_Proc (I)
!DEC$ ATTRIBUTES C, DECORATE, ALIAS:'My_Proc' :: my_Proc
INTEGER I
END SUBROUTINE my_Proc

END INTERFACE

Note that, except in the ALIAS string, the case of My_Proc in the Fortran program does not
matter.

Exchanging and Accessing Data in Mixed-Language Programming

Exchanging and Accessing Data in Mixed-Language Programming

You can use several approaches to sharing data between mixed-language routines, which can
be used within the individual languages as well.

Generally, if you have a large number of parameters to work with or you have a large variety
of parameter types, you should consider using modules or external data declarations. This is
true when using any given language, and to an even greater extent when using mixed languages.

See Also
• Exchanging and Accessing Data in Mixed-Language Programming

280

13 Intel® Fortran Compiler User and Reference Guides

• Passing Arguments in Mixed-Language Programming
• Using Modules in Mixed-Language Programming
• Using Common External Data in Mixed-Language Programming

Passing Arguments in Mixed-Language Programming

You can pass data between Fortran and C, C++, and MASM through calling argument lists just
as you can within each language (for example, the argument list a, b and c in CALL
MYSUB(a,b,c)). There are two ways to pass individual arguments:

• By value, which passes the argument's value.

• By reference, which passes the address of the arguments. On systems based on IA-32
architecture, Fortran, C, and C++ use 4-byte addresses. On systems based on Intel® 64
architecture and those based on IA-64 architecture, these languages use 8-byte addresses.

You need to make sure that for every call, the calling program and the called routine agree on
how each argument is passed. Otherwise, the called routine receives bad data.

The Fortran technique for passing arguments changes depending on the calling convention
specified. By default, Fortran passes all data by reference (except the hidden length argument
of strings, which is passed by value).

If the ATTRIBUTES C option or, for Windows OS, the STDCALL option is used, the default
changes to passing all data by value except arrays. If the procedure has the REFERENCE option
as well as the C or STDCALL option, all arguments by default are passed by reference.

You can specify also argument options, VALUE and REFERENCE, to pass arguments by value
or by reference. In mixed-language programming, it is a good idea to specify the passing
technique explicitly rather than relying on defaults.

NOTE. On Windows operating systems, the compiler option /iface also establishes
some default argument passing conventions (such as for hidden length of strings). See
ATTRIBUTES Properties and Calling Conventions.

Examples of passing by reference and value for C and MASM follow. All are interfaces to the
example Fortran subroutine TESTPROC below. The definition of TESTPROC declares how each
argument is passed. The REFERENCE option is not strictly necessary in this example, but using
it makes the argument's passing convention conspicuous.

SUBROUTINE TESTPROC(VALPARM, REFPARM)
!DEC$ ATTRIBUTES VALUE :: VALPARM
!DEC$ ATTRIBUTES REFERENCE :: REFPARM
INTEGER VALPARM
INTEGER REFPARM

END SUBROUTINE

281

13

In C and C++, all arguments are passed by value, except arrays, which are passed by reference
to the address of the first member of the array. Unlike Fortran, C and C++ do not have
calling-convention directives to affect the way individual arguments are passed. To pass
non-array C data by reference, you must pass a pointer to it. To pass a C array by value, you
must declare it as a member of a structure and pass the structure. The following C declaration
sets up a call to the example Fortran TESTPROC subroutine:

For Linux OS:
extern void testproc_(
int ValParm, int *RefParm);

For Windows OS:
extern void TESTPROC(
int ValParm, int *RefParm);

In MASM (Windows OS only), arguments are passed by value by default. Arguments to be
passed by reference are designated with PTR in the PROTO and PROC directives. For example:
TESTPROC PROTO, valparm:
SDWORD, refparm: PTR SDWORD

To use an argument passed by value, use the value of the variable. For example:
mov eax, valparm ; Load value of argument

This statement places the value of valparm into the EAX register.

To use an argument passed by reference, use the address of the variable. For example:
mov ecx, refparm ; Load address of argument
mov eax, [ecx] ; Load value of argument

These statements place the value of refparm into the EAX register.

The following table summarizes how to pass arguments by reference and value. An array name
in C is equated to its starting address because arrays are normally passed by reference. You
can assign the REFERENCE property to a procedure, as well as to individual arguments.

Table 39: Passing Arguments by Reference and Value

To Pass by
Value

To Pass by
Reference

Argument TypeATTRIBUTELanguage

VALUE optionDefaultScalars and
derived types

DefaultFortran

DefaultREFERENCE
option

Scalars and
derived types

C (or, for Windows OS,
STDCALL) option

Cannot pass by
value

DefaultArraysDefault

282

13 Intel® Fortran Compiler User and Reference Guides

To Pass by
Value

To Pass by
Reference

Argument TypeATTRIBUTELanguage

Cannot pass by
value

DefaultArraysC (or, for Windows OS,
STDCALL) option

DefaultPointer
argument_name

Non-arraysC/C++

Struct {type}
array_name

DefaultArrays

DefaultPTRAll typesAssembler MASM (Windows OS
only)

This table does not describe argument passing of strings and Fortran 95/90 pointer arguments
in Intel Fortran, which are constructed differently than other arguments. By default, Fortran
passes strings by reference along with the string length. String length placement depends on
whether the compiler option -mixed-str-len-arg (Linux OS and Mac OS X) or
/iface:mixed_str_len_arg (Windows OS) is set immediately after the address of the
beginning of the string. It also depends on whether -nomixed-str-len-arg (Linux OS and Mac
OS X) or /iface:nomixed_str_len_arg (Windows OS) is set after all arguments.

Fortran 95/90 array pointers and assumed-shape arrays are passed by passing the address of
the array descriptor.

For a discussion of the effect of attributes on passing Fortran 95/90 pointers and strings, see
Handling Fortran Array Pointers and Allocatable Arrays and Handling Character Strings.

See Also
• Exchanging and Accessing Data in Mixed-Language Programming
• Handling Character Strings
• Handling Numeric, Complex, and Logical Data Types

Using Modules in Mixed-Language Programming

Modules are the simplest way to exchange large groups of variables with C, because Intel
Fortran modules are directly accessible from C/C++. The following example declares a module
in Fortran, then accesses its data from C.

The Fortran code:
! F90 Module definition

MODULE EXAMP
REAL A(3)

283

13

INTEGER I1, I2
CHARACTER(80) LINE
TYPE MYDATA

SEQUENCE
INTEGER N
CHARACTER(30) INFO

END TYPE MYDATA
END MODULE EXAMP

The C code:
* C code accessing module data *\
extern float EXAMP_mp_A[3];
extern int EXAMP_mp_I1, EXAMP_mp_I2;
extern char EXAMP_mp_LINE[80];
extern struct {

int N;
char INFO[30];

} EXAMP_mp_MYDATA;

When the C++ code resides in a .cpp file, C++ semantics are applied to external names, often
resulting in linker errors. In this case, use the extern "C" syntax (see C/C++ Naming
Conventions):
* C code accessing module data in .cpp file*\
extern "C" float EXAMP_mp_A[3];
extern "C" int EXAMP_mp_I1, EXAMP_mp_I2;
extern "C" char EXAMP_mp_LINE[80];
extern "C" struct {

int N;
char INFO[30];

} EXAMP_mp_MYDATA;

You can define an interface to a C routine in a module, then use it like you would an interface
to a Fortran routine. The C code is:

The C code:
// C procedure
void pythagoras (float a, float b, float *c)
{

*c = (float) sqrt(a*a + b*b);
}

When the C++ code resides in a .cpp file, use the extern "C" syntax (see C/C++ Naming
Conventions):
// C procedure
extern "C" void pythagoras (float a, float b, float *c)
{

*c = (float) sqrt(a*a + b*b);
}

284

13 Intel® Fortran Compiler User and Reference Guides

The following Fortran code defines the module CPROC:
! Fortran 95/90 Module including procedure
MODULE CPROC

INTERFACE
SUBROUTINE PYTHAGORAS (a, b, res)
!DEC$ ATTRIBUTES C :: PYTHAGORAS
!DEC$ ATTRIBUTES REFERENCE :: res

! res is passed by REFERENCE because its individual attribute
! overrides the subroutine's C attribute

REAL a, b, res
! a and b have the VALUE attribute by default because
! the subroutine has the C attribute

END SUBROUTINE
END INTERFACE

END MODULE

The following Fortran code calls this routine using the module CPROC:
! Fortran 95/90 Module including procedure
USE CPROC

CALL PYTHAGORAS (3.0, 4.0, X)
TYPE *,X

END

Using Common External Data in Mixed-Language Programming

Common external data structures include Fortran common blocks, and C structures and variables
that have been declared global or external. All of these data specifications create external
variables, which are variables available to routines outside the routine that defines them.

This section applies only to Fortran/C and, on Windows, Fortran/MASM mixed-language programs.

External variables are case sensitive, so the cases must be matched between different languages,
as discussed in the section on naming conventions. Common external data exchange is described
in the following sections:

• Using Global Variables

• Using Fortran Common Blocks and C Structures

Using Global Variables in Mixed-Language Programming

A variable can be shared between Fortran and C or MASM by declaring it as global (or COMMON)
in one language and accessing it as an external variable in the other language.

285

13

In Fortran, a variable can access a global parameter by using the EXTERN option for ATTRIBUTES.
For example:

!DEC$ ATTRIBUTES C, EXTERN :: idata
INTEGER idata (20)

EXTERN tells the compiler that the variable is actually defined and declared global in another
source file. If Fortran declares a variable external with EXTERN, the language it shares the
variable with must declare the variable global.

In C, a variable is declared global with the statement:

int idata[20]; // declared as global (outside of any function)

MASM declares a parameter global (PUBLIC) with the syntax:

PUBLIC [langtype] name

where name is the name of the global variable to be referenced, and the optional langtype is
STDCALL or C. The option langtype, if present, overrides the calling convention specified in
the .MODEL directive.

Conversely, Fortran can declare the variable global (COMMON) and other languages can reference
it as external:

! Fortran declaring PI global
REAL PI
COMMON /PI/ PI ! Common Block and variable have the same name

In C, the variable is referenced as an external with the statement:

//C code with external reference to PI
extern float PI;

Note that the global name C references is the name of the Fortran common block, not the name
of a variable within a common block. Thus, you cannot use blank common to make data
accessible between C and Fortran. In the preceding example, the common block and the variable
have the same name, which helps keep track of the variable between the two languages.
Obviously, if a common block contains more than one variable they cannot all have the common
block name. (See Using Fortran Common Blocks and C Structures.)

MASM and Assembly can also access Fortran global (COMMON) parameters with the ATTRIBUTES
EXTERN directive. The syntax is:

EXTERN [langtype] name

where name is the name of the global variable to be referenced, and the optional langtype is
STDCALL or C.

286

13 Intel® Fortran Compiler User and Reference Guides

Using Fortran Common Blocks and C Structures

To reference C structures from Fortran common blocks and vice versa, you must take into
account how common blocks and structures differ in their methods of storing member variables
in memory. Fortran places common block variables into memory in order as close together as
possible, with the following rules:

• A single BYTE, INTEGER(1), LOGICAL(1), or CHARACTER variable in common block list begins
immediately following the previous variable or array in memory.

• All other types of single variables begin at the next even address immediately following the
previous variable or array in memory.

• All arrays of variables begin on the next even address immediately following the previous
variable or array in memory, except for CHARACTER arrays which always follow immediately
after the previous variable or array.

• All common blocks begin on a four-byte aligned address.

Because of these padding rules, you must consider the alignment of C structure elements with
Fortran common block elements and assure matching either by making all variables exactly
equivalent types and kinds in both languages (using only 4-byte and 8-byte data types in both
languages simplifies this) or by using the C pack pragmas in the C code around the C structure
to make C data packing like Fortran data packing. For example:

#pragma pack(2)
struct {

int N;
char INFO[30];

} examp;
#pragma pack()

To restore the original packing, you must add #pragma pack() at the end of the structure.
(Remember: Fortran module data can be shared directly with C structures with appropriate
naming.)

Once you have dealt with alignment and padding, you can give C access to an entire common
block or set of common blocks. Alternatively, you can pass individual members of a Fortran
common block in an argument list, just as you can any other data item. Use of common blocks
for mixed-language data exchange is discussed in the following sections:

• Accessing Common Blocks and C Structures Directly

• Passing the Address of a Common Block

287

13

Accessing Common Blocks and C Structures Directly

You can access Fortran common blocks directly from C by defining an external C structure with
the appropriate fields, and making sure that alignment and padding between Fortran and C are
compatible. The C and ALIAS ATTRIBUTES options can be used with a common block to allow
mixed-case names.

As an example, suppose your Fortran code has a common block named Really, as shown:

!DEC$ ATTRIBUTES ALIAS:'Really' :: Really
REAL(4) x, y, z(6)
REAL(8) ydbl
COMMON / Really / x, y, z(6), ydbl

You can access this data structure from your C code with the following external data structures:

#pragma pack(2)
extern struct {
float x, y, z[6];
double ydbl;
} Really;
#pragma pack()

You can also access C structures from Fortran by creating common blocks that correspond to
those structures. This is the reverse case from that just described. However, the implementation
is the same because after common blocks and structures have been defined and given a common
address (name), and assuming the alignment in memory has been dealt with, both languages
share the same memory locations for the variables.

Passing the Address of a Common Block

To pass the address of a common block, simply pass the address of the first variable in the
block, that is, pass the first variable by reference. The receiving C or C++ module should expect
to receive a structure by reference.

In the following example, the C function initcb receives the address of a common block with
the first variable named n, which it considers to be a pointer to a structure with three fields:

Fortran source code:

!
INTERFACE
SUBROUTINE initcb (BLOCK)
!DEC$ ATTRIBUTES C :: initcb
!DEC$ ATTRIBUTES REFERENCE :: BLOCK
INTEGER BLOCK

END SUBROUTINE
END INTERFACE

288

13 Intel® Fortran Compiler User and Reference Guides

!
INTEGER n
REAL(8) x, y
COMMON /CBLOCK/n, x, y
. . .
CALL initcb(n)

C source code:

//
#pragma pack(2)
struct block_type
{
int n;
double x;
double y;
};
#pragma pack()
//
void initcb(struct block_type *block_hed)
{
block_hed->n = 1;
block_hed->x = 10.0;
block_hed->y = 20.0;

}

Handling Data Types in Mixed-Language Programming

Handling Data Types in Mixed-Language Programming Overview

Even when you have reconciled calling conventions, naming conventions, and methods of data
exchange, you must still be concerned with data types, because each language handles them
differently. The following table lists the equivalent data types among Fortran, C, and MASM:

Table 40: Equivalent Data Types

MASM Data TypeC Data TypeFortran Data Type

REAL4floatREAL(4)

REAL8doubleREAL(8)

------REAL(16)

BYTEunsigned charCHARACTER(1)

See Handling Character StringsCHARACTER*(*)

289

13

MASM Data TypeC Data TypeFortran Data Type

COMPLEX4 STRUCT 4struct complex4 {COMPLEX(4)

real REAL4 0float real, imag;

imag REAL4 0};

COMPLEX4 ENDS

COMPLEX8 STRUCT 8struct complex8 {COMPLEX(8)

real REAL8 0double real, imag;

imag REAL8 0};

COMPLEX8 ENDS

------COMPLEX(16)

Use integer types for C, MASMAll LOGICAL types

.sbytecharINTEGER(1)

.swordshortINTEGER(2)

.sdwordintINTEGER(4)

.qword_int64INTEGER(8)

The following sections describe how to reconcile data types between the different languages:

• Handling Numeric, Complex, and Logical Data Types

• Handling Fortran 90 Array Pointers and Allocatable Arrays

• Handling Integer Pointers

• Handling Arrays and Fortran Array Descriptors

• Handling Character Strings

• Handling User-Defined Types

Handling Numeric, Complex, and Logical Data Types

Normally, passing numeric data does not present a problem. If a C program passes an unsigned
data type to a Fortran routine, the routine can accept the argument as the equivalent signed
data type, but you should be careful that the range of the signed type is not exceeded.

290

13 Intel® Fortran Compiler User and Reference Guides

The table of Equivalent Data Types summarizes equivalent numeric data types for Fortran,
MASM, and C/C++.

C, C++, and MASM do not directly implement the Fortran types COMPLEX(4), COMPLEX(8),
and COMPLEX(16). However, you can write structures that are equivalent. The type COMPLEX(4)
has two fields, both of which are 4-byte floating-point numbers; the first contains the
real-number component, and the second contains the imaginary-number component. The type
COMPLEX is equivalent to the type COMPLEX(4). The types COMPLEX(8) and COMPLEX(16) are
similar except that each field contains an 8-byte or 16-byte floating-point number respectively.

NOTE. On systems based on IA-32 architecture, Fortran functions of type COMPLEX
place a hidden COMPLEX argument at the beginning of the argument list. C functions
that implement such a call from Fortran must declare this hidden argument explicitly,
and use it to return a value. The C return type should be void.

Following are the C/C++ structure definitions for the Fortran COMPLEX types:
struct complex4 {
float real, imag;

};
struct complex8 {
double real, imag;

};

The MASM structure definitions for the Fortran COMPLEX types follow:
COMPLEX4 STRUCT 4
real REAL4 0
imag REAL4 0
COMPLEX4 ENDS
COMPLEX8 STRUCT 8
real REAL8 0
imag REAL8 0
COMPLEX8 ENDS

A Fortran LOGICAL(2) is stored as a 2-byte indicator value (0=false, and the -fpscomp
[no]logicals (Linux* OS and Mac OS* X)or /fpscomp:[no]logicals (Windows* OS)
compiler option determines how true values are handled). A Fortran LOGICAL(4) is stored as
a 4-byte indicator value, and LOGICAL(1) is stored as a single byte. The type LOGICAL is the
same as LOGICAL(4), which is equivalent to type int in C.

You can use a variable of type LOGICAL in an argument list, module, common block, or global
variable in Fortran and type int in C for the same argument. Type LOGICAL(4) is recommended
instead of the shorter variants for use in common blocks.

The C++ class type has the same layout as the corresponding C struct type, unless the class
defines virtual functions or has base classes. Classes that lack those features can be passed in
the same way as C structures.

291

13

Returning Complex Type Data

If a Fortran program expects a procedure to return a COMPLEX or DOUBLE COMPLEX value, the
Fortran compiler adds an additional argument to the beginning of the called procedure argument
list. This additional argument is a pointer to the location where the called procedure must store
its result.

The example below shows the Fortran code for returning a complex data type procedure called
WBAT and the corresponding C routine.

Example of Returning Complex Data Types from C to Fortran

Fortran code

COMPLEX BAT, WBAT
REAL X, Y
BAT = WBAT (X, Y)

Corresponding C Routine

Linux example:

struct _mycomplex { float real;
float imag; };
typedef struct _mycomplex _single_complex;

void wbat_ (_single_complex *location, float *x, float *y){
*location->real = *x;
*location->imag = *y;
return;
}

Windows OS example:

struct _mycomplex { float real, imag };
typedef struct _mycomplex _single_complex;

void WBAT (_single_complex location, float *x, float *y)
{
float realpart;
float imaginarypart;
... program text, producing realpart and
imaginarypart...
*location.real = realpart;
*location.imag = imaginarypart;
}

In the above example, the following restrictions and behaviors apply:

• The argument location does not appear in the Fortran call; it is added by the compiler.

292

13 Intel® Fortran Compiler User and Reference Guides

• The C subroutine must copy the result's real and imaginary parts correctly into location.

• The called procedure is type void.

If the function returned a DOUBLE COMPLEX value, the type float would be replaced by the
type double in the definition of location in WBAT.

Handling Fortran Array Pointers and Allocatable Arrays

The following affects how Fortran 95/90 array pointers and arrays are passed:

• the ATTRIBUTES properties in effect

• the INTERFACE, if any, of the procedure they are passed to>

If the INTERFACE declares the array pointer or array with deferred shape (for example,
ARRAY(:)), its descriptor is passed. This is true for array pointers and all arrays, not just
allocatable arrays. If the INTERFACE declares the array pointer or array with fixed shape, or if
there is no interface, the array pointer or array is passed by base address as a contiguous
array, which is like passing the first element of an array for contiguous array slices.

When a Fortran 95/90 array pointer or array is passed to another language, either its descriptor
or its base address can be passed.

The following shows how allocatable arrays and Fortran 95/90 array pointers are passed with
different attributes in effect:

• If the property of the array pointer or array is not included or is REFERENCE, it is passed
by descriptor, regardless of the property of the passing procedure .

• If the property of the array pointer or array is VALUE, an error is returned, regardless of
the property of the passing procedure.

Note that the VALUE option cannot be used with descriptor-based arrays.

When you pass a Fortran array pointer or an array by descriptor to a non-Fortran routine, that
routine needs to know how to interpret the descriptor. Part of the descriptor is a pointer to
address space, as a C pointer, and part of it is a description of the pointer or array properties,
such as its rank, stride, and bounds.

For information about the Intel Fortran array descriptor format, see Handling Arrays and Fortran
Array Descriptors.

Fortran 95/90 pointers that point to scalar data contain the address of the data and are not
passed by descriptor.

293

13

Handling Integer Pointers

Intel® Fortran integer pointers (also known as Cray*-style pointers) are not the same as Fortran
90 pointers, but are instead like C pointers. On systems based on IA-32 architecture, integer
pointers are 4-byte INTEGER quantities. On systems based on Intel® 64 architecture and those
based on IA-64 architecture, integer pointers are 8-byte INTEGER quantities.

When passing an integer pointer to a routine written in another language:

• The argument should be declared in the non-Fortran routine as a pointer of the appropriate
data type.

• The argument passed from the Fortran routine should be the integer pointer name, not the
pointee name.

Fortran main program:
! Fortran main program.
INTERFACE
SUBROUTINE Ptr_Sub (p)
!DEC$ ATTRIBUTES C, DECORATE, ALIAS:'Ptr_Sub' :: Ptr_Sub
INTEGER (KIND=INT_PTR_KIND()) p
END SUBROUTINE Ptr_Sub
END INTERFACE
REAL A(10), VAR(10)
POINTER (p, VAR) ! VAR is the pointee
! p is the integer pointer
p = LOC(A)
CALL Ptr_Sub (p)
WRITE(*,*) 'A(4) = ', A(4)
END
!

On systems using Intel® 64 architecture and IA-64 architecture, the declaration for p in the
INTERFACE block is equivalent to INTEGER(8) p and on systems using IA-32 architecture, it is
equivalent to INTEGER (4) p.

C subprogram:
//C subprogram

void Ptr_Sub (float *p)
{
p[3] = 23.5;
}

When the main Fortran program and C function are built and executed, the following output
appears:

A(4) = 23.50000

When receiving a pointer from a routine written in another language:

294

13 Intel® Fortran Compiler User and Reference Guides

• The argument should be declared in the non-Fortran routine as a pointer of the appropriate
data type and passed as usual.

• The argument received by the Fortran routine should be declared as an integer pointer name
and the POINTER statement should associate it with a pointee variable of the appropriate
data type (matching the data type of the passing routine). When inside the Fortran routine,
use the pointee variable to set and access what the pointer points to.

Fortran subroutine:
! Fortran subroutine.

SUBROUTINE Iptr_Sub (p)
!DEC$ ATTRIBUTES C, DECORATE, ALIAS:'Iptr_Sub' :: Iptr_Sub
INTEGER (KIND=INT_PTR_KIND()) p
integer VAR(10)
POINTER (p, VAR)
OPEN (8, FILE='STAT.DAT')
READ (8, *) VAR(4) ! Read from file and store the

! fourth element of VAR
END SUBROUTINE Iptr_Sub

!
//C main program
extern void Iptr_Sub(int *p);
main (void)

C Main Program:
//C main program
extern void Iptr_Sub(int *p);
main (void)
{
int a[10];
Iptr_Sub (&a[0]);
printf("a[3] = %i\n", a[3]);
}

When the main C program and Fortran subroutine are built and executed, the following output
appears if the STAT.DAT file contains 4:

a[3] = 4

Handling Arrays and Fortran Array Descriptors

Fortran 95/90 allows arrays to be passed as array elements, as array subsections, or as whole
arrays referenced by array name. Within Fortran, array elements are ordered in column-major
order, meaning the subscripts of the lowest dimensions vary first.

295

13

When using arrays between Fortran and another language, differences in element indexing and
ordering must be taken into account. You must reference the array elements individually and
keep track of them. Array indexing is a source-level consideration and involves no difference
in the underlying data.

Fortran and C arrays differ in two ways:

• The value of the lower array bound is different. By default, Fortran indexes the first element
of an array as 1. C and C++ index it as 0. Fortran subscripts should therefore be one higher.
(Fortran also provides the option of specifying another integer lower bound.)

• In arrays of more than one dimension, Fortran varies the left-most index the fastest, while
C varies the right-most index the fastest. These are sometimes called column-major order
and row-major order, respectively.

In C, the first four elements of an array declared as X[3][3] are:
X[0][0] X[0][1] X[0][2] X[1][0]

In Fortran, the first four elements are:
X(1,1) X(2,1) X(3,1) X(1,2)

The order of indexing extends to any number of dimensions you declare. For example, the C
declaration:
int arr1[2][10][15][20];

is equivalent to the Fortran declaration:
INTEGER arr1(20, 15, 10, 2)

The constants used in a C array declaration represent extents, not upper bounds as they do in
other languages. Therefore, the last element in the C array declared as int arr[5][5] is arr[4][4],
not arr[5][5].

The following table shows equivalencies for array declarations.

Array Reference from FortranArray DeclarationLanguage

x(i, k)DIMENSION x(i, k)

-or-

Fortran

type x(i, k)

x(i -1, k -1)type x[k] [i]C/C++

296

13 Intel® Fortran Compiler User and Reference Guides

Handling Arrays in Visual Basic and MASM

The following information on Visual Basic and MASM applies to Windows operating systems
only.

To pass an array from Visual Basic to Fortran, pass the first element of the array. By default,
Visual Basic passes variables by reference, so passing the first element of the array will give
Fortran the starting location of the array, just as Fortran expects. Visual Basic indexes the first
array element as 0 by default, while Fortran by default indexes it as 1. Visual Basic indexing
can be set to start with 1 using the statement:

Option Base 1

Alternatively, in the array declaration in either language you can set the array lower bound to
any integer in the range -32,768 to 32,767. For example:

' In Basic
Declare Sub FORTARRAY Lib "fortarr.dll" (Barray as Single)
DIM barray (1 to 3, 1 to 7) As Single
Call FORTARRAY(barray (1,1))
! In Fortran
Subroutine FORTARRAY(arr)
REAL arr(1:3,1:7)

In MASM, arrays are one-dimensional and array elements must be referenced byte-by-byte.
The assembler stores elements of the array consecutively in memory, with the first address
referenced by the array name. You then access each element relative to the first, skipping the
total number of bytes of the previous elements. For example:

xarray REAL4 1.1, 2.2, 3.3, 4.4 ; initializes
; a four element array with
; each element 4 bytes

Referencing xarray in MASM refers to the first element, the element containing 1.1. To refer
to the second element, you must refer to the element 4 bytes beyond the first with xarray[4]
or xarray+4. Similarly:

yarray BYTE 256 DUP ; establishes a
; 256 byte buffer, no initialization

zarray SWORD 100 DUP(0) ; establishes 100
; two-byte elements, initialized to 0

Intel Fortran Array Descriptor Format

For cases where Fortran 95/90 needs to keep track of more than a pointer memory address,
the Intel Fortran Compiler uses an array descriptor, which stores the details of how an array
is organized.

297

13

When using an explicit interface (by association or procedure interface block), Intel Fortran
generates a descriptor for the following types of array arguments:

• Pointers to arrays (array pointers)

• Assumed-shape arrays

• Allocatable array

Certain data structure arguments do not use a descriptor, even when an appropriate explicit
interface is provided. For example, explicit-shape and assumed-size arrays do not use a
descriptor. In contrast, array pointers and allocatable arrays use descriptors regardless of
whether they are used as arguments.

When calling between Intel Fortran and a non-Fortran language (such as C), using an implicit
interface allows the array argument to be passed without an Intel Fortran descriptor. However,
for cases where the called routine needs the information in the Intel Fortran descriptor, declare
the routine with an explicit interface and specify the dummy array as either an assumed-shape
array or with the pointer attribute.

You can associate a Fortran 95/90 pointer with any piece of memory, organized in any way
desired (so long as it is "rectangular" in terms of array bounds). You can also pass Fortran
95/90 pointers to other languages, such as C, and have the other language correctly interpret
the descriptor to obtain the information it needs.

However, using array descriptors can increase the opportunity for errors and the corresponding
code is not portable. In particular, be aware of the following:

• If the descriptor is not defined correctly, the program may access the wrong memory address,
possibly causing a General Protection Fault.

• Array descriptor formats are specific to each Fortran compiler. Code that uses array
descriptors is notportable to other compilers or platforms. For example, the current Intel
Fortran array descriptor format differs from the array descriptor format for Intel Fortran
7.0.

• The array descriptor format may change in the future.

• If the descriptor was built by the compiler, it cannot be modified by the user. Changing fields
of existing descriptors is illegal.

The components of the current Intel Fortran array descriptor on systems using IA-32 architecture
are as follows:

• The first longword (bytes 0 to 3) contains the base address. The base address plus the offset
defines the first memory location (start) of the array.

298

13 Intel® Fortran Compiler User and Reference Guides

• The second longword (bytes 4 to 7) contains the size of a single element of the array.

• The third longword (bytes 8 to 11) contains the A0 offset. The A0 offset is added to the base
address to calculate the address for the element with all indices zero, even if that is outside
the bounds of the actual array. This is helpful in computing array element addresses.

• The fourth longword (bytes 12 to 15) contains a set of flags used to store information about
the array. This includes:

• bit 1 (0x01): array is defined -- set if the array has been defined (storage allocated)

• bit 2 (0x02): no deallocation allowed -- set if the array pointed to cannot be deallocated
(that is, it is an explicit array target)

• bit 3 (0x04): array is contiguous -- set if the array pointed to is a contiguous whole array
or slice.

• The fifth longword (bytes 16 to 19) contains the number of dimensions (rank) of the array.

• The sixth longword (bytes 20 to 23) is reserved and should not be explicitly set.

• The remaining longwords (bytes 24 to 107) contain information about each dimension (up
to seven). Each dimension is described by three additional longwords:

• The number of elements (extent)

• The distance between the starting address of two successive elements in this dimension,
in bytes.

• The lower bound

An array of rank one requires three additional longwords for a total of nine longwords (6 +
3*1) and ends at byte 35. An array of rank seven is described in a total of 27 longwords (6 +
3*7) and ends at byte 107.

For example, consider the following declaration:

integer,target :: a(10,10)
integer,pointer :: p(:,:)
p => a(9:1:-2,1:9:3)
call f(p)
.
.
.

The descriptor for actual argument p would contain the following values:

• The first longword (bytes 0 to 3) contains the base address (assigned at run-time).

• The second longword (bytes 4 to 7) is set to 4 (size of a single element).

299

13

• The third longword (bytes 8 to 11) contains the A0 offset of -112.

• The fourth longword (bytes 12 to 15) contains 3 (array is defined and deallocation is not
allowed).

• The fifth longword (bytes 16 to 19) contains 2 (rank).

• The sixth longword (bytes 20-23) is reserved.

• The seventh, eighth, and ninth longwords (bytes 24 to 35) contain information for the first
dimension, as follows:

• 5 (extent)

• -8 (distance between elements)

• 9 (the lower bound)

• For the second dimension, the tenth, eleventh, and twelfth longwords (bytes 36 to 47)
contain:

• 3 (extent)

• 120 (distance between elements)

• 1 (the lower bound)

• Byte 47 is the last byte for this example.

NOTE. The format for the descriptor on systems using Intel® 64 architecture and those
using IA-64 architecture is identical to that on systems using IA-32 architecture, except
that all fields are 8-bytes long, instead of 4-bytes.

Handling Large Arrays

When compiling a program with an array greater than 2GB on systems using Intel® 64
architecture and running Linux OS, you may need to specify certain compiler options. Specifically,
you may need to use either the -mcmodel=medium or -mcmodel=large compiler option and
also the -shared-intel option. For more information, see Specifying Memory Models to use
with Systems Based on Intel® 64 Architecture.

300

13 Intel® Fortran Compiler User and Reference Guides

Handling Character Strings

By default, Intel® Fortran passes a hidden length argument for strings. The hidden length
argument consists of an unsigned 4-byte integer (for systems based on IA-32 architecture) or
unsigned 8-byte integer (for systems based on Intel® 64 architecture and those based on IA-64
architecture), always passed by value, added to the end of the argument list. You can alter the
default way strings are passed by using attributes. The following table shows the effect of
various attributes on passed strings.

Table 42: Effect of ATTRIBUTES Options on Character Strings Passed as Arguments

STDCALL,
REFERENCE

(Windows* OS)

STDCALL

(Windows* OS)

C, REFERENCECDefaultArgument

Passed by
reference, along
with length

First character
converted to
INTEGER(4) and
passed by value

Passed by
reference, along
with length

First
character
converted
to
INTEGER(4)
and passed
by value

Passed by
reference,
along with
length

String

First character
converted to
INTEGER(4) and
passed by value

First character
converted to
INTEGER(4) and
passed by value

First character
converted to
INTEGER(4) and
passed by value

First
character
converted
to
INTEGER(4)
and passed
by value

ErrorString
with
VALUE
option

Passed by
reference, no
length

Passed by
reference, no
length

Passed by
reference, no
length

Passed by
reference,
no length

Passed by
reference,
possibly
along with
length

String
with
REFERENCE
option

The important things to note about the above table are:

• Character strings without the VALUE or REFERENCE attribute that are passed to C or STDCALL
routines are not passed by reference. Instead, only the first character is passed and it is
passed by value.

• Character strings with the VALUE option passed to C or STDCALL routines are not passed
by reference. Instead, only the value of the first character is passed.

301

13

• For string arguments with default ATTRIBUTES, ATTRIBUTES C, REFERENCE, or ATTRIBUTES
STDCALL, REFERENCE:

• When -nomixed-str-len-arg (Linux OS and Mac OS X) or
/iface:nomixed_str_len_arg (Windows OS) is set, the length of the string is pushed
(by value) on the stack after all of the other arguments. This is the default.

• When -mixed-str-len-arg (Linux OS and Mac OS X) or /iface:mixed_str_len_arg
(Windows OS) is set, the length of the string is pushed (by value) on the stack immediately
after the address of the beginning of the string.

• For string arguments passed by reference with default ATTRIBUTES:

• When -nomixed-str-len-arg (Linux OS and Mac OS X) or
/iface:nomixed_str_len_arg is set, the length of the string is not available to the
called procedure. This is the default.

• When -mixed-str-len-arg (Linux OS and Mac OS X) or /iface:mixed_str_len_arg
is set, the length of the string is pushed (by value) on the stack immediately after the
address of the beginning of the string.

Since all strings in C are pointers, C expects strings to be passed by reference, without a string
length. In addition, C strings are null-terminated while Fortran strings are not. There are two
basic ways to pass strings between Fortran and C: convert Fortran strings to C strings, or write
C routines to accept Fortran strings.

To convert a Fortran string to C, choose a combination of attributes that passes the string by
reference without length, and null terminate your strings. For example:

INTERFACE
SUBROUTINE Pass_Str (string)
!DEC$ ATTRIBUTES C, DECORATE,ALIAS:'Pass_Str' :: Pass_Str
CHARACTER*(*) string
!DEC$ ATTRIBUTES REFERENCE :: string

END SUBROUTINE
END INTERFACE
CHARACTER(40) forstring
DATA forstring /'This is a null-terminated string.'C/

The following example shows the extension of using the null-terminator for the string in the
Fortran DATA statement:

DATA forstring /'This is a null-terminated string.'C/

The C interface is:
void Pass_Str (char *string)

302

13 Intel® Fortran Compiler User and Reference Guides

To get your C routines to accept Fortran strings, C must account for the length argument passed
along with the string address. For example:
! Fortran code
INTERFACE
SUBROUTINE Pass_Str (string)
CHARACTER*(*) string

END INTERFACE

The C routine must expect two arguments:
void pass_str (char *string, unsigned int length_arg)

This interface handles the hidden-length argument, but you must still reconcile C strings that
are null-terminated and Fortran strings that are not. In addition, if the data assigned to the
Fortran string is less than the declared length, the Fortran string will be blank padded.

Rather than trying to handle these string differences in your C routines, the best approach in
Fortran/C mixed programming is to adopt C string behavior whenever possible. An added benefit
for using C strings on Windows* operating systems is that Windows API routines and most C
library functions expect null-terminated strings.

Fortran functions that return a character string using the syntax CHARACTER*(*) place a hidden
string argument and the length of the string at the beginning of the argument list.

C functions that implement such a Fortran function call must declare this hidden string argument
explicitly and use it to return a value. The C return type should be void. However, you are more
likely to avoid errors by not using character-string return functions. Use subroutines or place
the strings into modules or global variables whenever possible.

Handling Character Strings in Visual Basic and MASM

The following information on Visual Basic and MASM applies to Windows operating systems
only.

Visual Basic strings must be passed by value to Fortran. Visual Basic strings are actually stored
as structures containing length and location information. Passing by value dereferences the
structure and passes just the string location, as Fortran expects. For example:

! In Basic
Declare Sub forstr Lib "forstr.dll" (ByVal Bstring as String)
DIM bstring As String * 40 Fixed-length string
CALL forstr(bstring)
! End Basic code
! In Fortran
SUBROUTINE forstr(s)
!DEC$ ATTRIBUTES STDCALL :: forstr
!DEC$ ATTRIBUTES REFERENCE :: s

303

13

CHARACTER(40) s
s = 'Hello, Visual Basic!'
END

The Fortran directive !DEC$ ATTRIBUTES STDCALL and the ATTRIBUTES REFERENCE property
on variable arguments together inform Fortran not to expect the hidden length arguments to
be passed from the Visual Basic calling program. The name in the Visual Basic program is
specified as lowercase since STDCALL makes the Fortran name lowercase.

MASM does not add either a string length or a null character to strings by default. To append
the string length, use the syntax:

lenstring BYTE "String with length", LENGTHOF lenstring

To add a null character, append it by hand to the string:

nullstring BYTE "Null-terminated string", 0

Returning Character Data Types

If a Fortran program expects a function to return data of type CHARACTER, the Fortran compiler
adds two additional arguments to the beginning of the called procedure's argument list:

• The first argument is a pointer to the location where the called procedure should store the
result.

• The second is the maximum number of characters that must be returned, padded with blank
spaces if necessary.

The called routine must copy its result through the address specified in the first argument. The
following example shows the Fortran code for a return character function called MAKECHARS
and a corresponding C routine.

Example of Returning Character Types from C to Fortran

Fortran code

CHARACTER*10 CHARS, MAKECHARS
DOUBLE PRECISION X, Y
CHARS = MAKECHARS(X, Y)

Corresponding C Routine

void MAKECHARS (result, length, x, y);
char *result;
int length;
double *x, *y;
{
...program text, producing returnvalue...
for (i = 0; i < length; i++) {

304

13 Intel® Fortran Compiler User and Reference Guides

result[i] = returnvalue[i];
}
}

In the above example, the following restrictions and behaviors apply:

• The function's length and result do not appear in the call statement; they are added by the
compiler.

• The called routine must copy the result string into the location specified by result; it must
not copy more than length characters.

• If fewer than length characters are returned, the return location should be padded on the
right with blanks; Fortran does not use zeros to terminate strings.

• The called procedure is type void.

• On Windows, you must use uppercase names for C routines or Microsoft attributes and
INTERFACE blocks to make the calls using lower case.

Handling User-Defined Types

Fortran 95/90 supports user-defined types (data structures similar to C structures). User-defined
types can be passed in modules and common blocks just as other data types, but the other
language must know the type's structure. For example:

Fortran Code:
TYPE LOTTA_DATA

SEQUENCE
REAL A
INTEGER B
CHARACTER(30) INFO
COMPLEX CX
CHARACTER(80) MOREINFO

END TYPE LOTTA_DATA
TYPE (LOTTA_DATA) D1, D2
COMMON /T_BLOCK/ D1, D2

In the Fortran code above, the SEQUENCE statement preserves the storage order of the
derived-type definition.

C Code:
/* C code accessing D1 and D2 */
extern struct {
struct {

float a;
int b;
char info[30];

305

13

struct {
float real, imag;
} cx;

char moreinfo[80];
} d1, d2;

} T_BLOCK;

Intel(R) Fortran/Visual Basic* Mixed-Language Programs

Interoperability with C

It is often desirable to have a program which contains both Fortran and C code, and in which
routines written in one language are able to call routines written in the other. The Intel® Fortran
compiler supports the Fortran 2003 standardized mechanism for allowing Fortran code to reliably
communicate (or interoperate) with C code. The following describes interoperability
requirements for types, variables, and procedures.

Interoperability of Intrinsic Types

The intrinsic module ISO_C_BINDING contains named constants that hold kind type parameter
values for intrinsic types.

The more commonly used types are included in the following table. The following applies:

• Integer types in Fortran are always signed. In C, integer types may be specified as signed
or unsigned, but are unsigned by default.

• The values of C_LONG, C_SIZE_T, C_LONG_DOUBLE, AND C_LONG_DOUBLE_COMPLEX are
different on different platforms.

Equivalent Fortran typeC typeNamed constant from
ISO_C_BINDING

(kind type parameter if value
is positive)

INTEGER(KIND=2)short intC_SHORT

INTEGER(KIND=4)intC_INT

INTEGER (KIND=4 or 8)long intC_LONG

INTEGER(KIND=8)long long intC_LONG_LONG

306

13 Intel® Fortran Compiler User and Reference Guides

INTEGER(KIND=1)signed char

unsigned char

C_SIGNED_CHAR

INTEGER(KIND=4 or 8)size_tC_SIZE_T

INTEGER(KIND=1)int8_tC_INT8_T

INTEGER(KIND=2)int16_tC_INT16_T

INTEGER(KIND=4)int32_tC_INT32_T

INTEGER(KIND=8)int64_tC_INT64_T

REAL(KIND=4)floatC_FLOAT

REAL(KIND=8)doubleC_DOUBLE

REAL(KIND=8 or 16)long doubleC_LONG_DOUBLE

COMPLEX(KIND=4)float _ComplexC_FLOAT_COMPLEX

COMPLEX(KIND=8)double _ComplexC_DOUBLE_COMPLEX

COMPLEX(KIND=8 or 16)long double _ComplexC_LONG_DOUBLE_COMPLEX

LOGICAL(KIND=1)_BoolC_BOOL

CHARACTER(LEN=1)charC_CHAR

While there are named constants for all possible C types, every type is not necessarily supported
on every processor. Lack of support is indicated by a negative value for the constant in the
module.

For a character type to be interoperable, you must either omit the length type parameter or
specify it using an initialization expression whose value is one.

Interoperability with C Pointers

For interoperating with C pointers, the module ISO_C_BINDING contains the derived types
C_PTR and C_FUNPTR, which are interoperable with C object and function type pointers,
respectively.

307

13

These types, as well as certain procedures in the module, provide the mechanism for passing
dynamic arrays between the two languages. Because its elements need not be contiguous in
memory, a Fortran pointer target or assumed-shape array cannot be passed to C. However,
you can pass an allocated allocatable array to C, and you can associate an array allocated in
C with a Fortran pointer.

Interoperability of Derived Types

For a derived type to be interoperable with C, you must specify the BIND(C) attribute:

TYPE, BIND(C) :: MYTYPE

Additionally, as shown in the examples that follow, each component must have an interoperable
type and interoperable type parameters, must not be a pointer, and must not be allocatable.
This allows Fortran and C types to correspond.

typedef struct {
int m, n;
float r;
} myctype

The above is interoperable with the following:

USE, INTRINSIC :: ISO_C_BINDING
TYPE, BIND(C) :: MYFTYPE
INTEGER(C_INT) :: I, J
REAL(C_FLOAT) :: S
END TYPE MYFTYPE

Interoperability of Variables

A scalar Fortran variable is interoperable if its type and type parameters are interoperable and
it is not a pointer.

An array Fortran variable is interoperable if its type and type parameters are interoperable and
it has an explicit shape or assumed size. It interoperates with a C array of the same type, type
parameters, and shape, but with subscripts reversed.

For example, a Fortran array declared as INTEGER :: A(18, 3:7, *) is interoperable with
a C array declared as int b[][5][18].

Interoperability of Procedures

For a procedure to be interoperable, it must have an explicit interface and be declared with the
BIND attribute, as shown in the following:

FUNCTION FUNC(I, J, K, L, M), BIND(C)

308

13 Intel® Fortran Compiler User and Reference Guides

In the case of a function, the result must be scalar and interoperable.

A procedure has an associated binding label, which is global in scope. This label is the name
by which the C processor knows it and is, by default, the lower-case version of the Fortran
name. For example, the above function has the binding label func. You can specify an alternative
binding label as follows:

FUNCTION FUNC(I, J, K, L, M), BIND(C, NAME=’myC_Func’)

All dummy arguments must be interoperable. Furthermore, you must ensure that either the
Fortran routine uses the VALUE attribute for scalar dummy arguments, or that the C routine
receives these scalar arguments as pointers to the scalar values. Consider the following call to
this C function:

intc_func(int x, int *y);

As shown here, the interface for the Fortran call to c_func must have x passed with the VALUE
attribute, but y should not have the VALUE attribute, since it is received as a pointer:

INTERFACE
INTEGER (C_INT) FUNCTION C_FUNC(X, Y) BIND(C)
USE, INTRINSIC :: ISO_C_BINDING
IMPLICIT NONE
INTEGER (C_INT), VALUE :: X
INTEGER (C_INT) :: Y
END FUNCTION C_FUNC
END INTERFACE

Alternatively, the declaration for y can be specified as a C_PTR passed by value:

TYPE (C_PTR), VALUE :: Y

To pass a scalar Fortran variable of type character, the character length must be one.

Interoperability of Global Data

A module variable or a common block can interoperate with a C global variable if the Fortran
entity uses the BIND attribute and the members of that entity are also interoperable. For
example, consider the entities C_EXTERN, C2, COM and SINGLE in the following module:

MODULE LINK_TO_C_VARS
USE, INTRINSIC :: ISO_C_BINDING
INTEGER(C_INT), BIND(C) :: C_EXTERN
INTEGER(C_LONG) :: C2
BIND(C, NAME=’myVariable’) :: C2
COMMON /COM/ R,S
REAL(C_FLOAT) :: R,S,T
BIND(C) :: /COM/, /SINGLE/
COMMON /SINGLE/ T
END MODULE LINK_TO_C_VARS

309

13

These can interoperate with the following C external variables:

int c_extern;
long myVariable;
struct {float r, s;} com;
float single;

Example of Fortran Calling C

The following example calls a C function.

C Function Prototype:

int C_Library_Function(void* sendbuf, int sendcount, int *recvcounts);

Fortran Modules:

MODULE FTN_C_1
USE, INTRINSIC :: ISO_C_BINDING
END MODULE FTN_C_1

MODULE FTN_C_2
INTERFACE
INTEGER (C_INT) FUNCTION C_LIBRARY_FUNCTION &
(SENDBUF, SENDCOUNT, RECVCOUNTS) &
BIND(C, NAME=’C_Library_Function’)
USE FTN_C_1
IMPLICIT NONE
TYPE (C_PTR), VALUE :: SENDBUF
INTEGER (C_INT), VALUE :: SENDCOUNT
TYPE (C_PTR), VALUE :: RECVCOUNTS
END FUNCTION C_LIBRARY_FUNCTION
END INTERFACE
END MODULE FTN_C_2

Fortran Calling Sequence:

USE, INTRINSIC :: ISO_C_BINDING, ONLY: C_INT, C_FLOAT, C_LOC
USE FTN_C_2
...
REAL (C_FLOAT), TARGET :: SEND(100)
INTEGER (C_INT) :: SENDCOUNT
INTEGER (C_INT), ALLOCATABLE, TARGET :: RECVCOUNTS(100)
...
ALLOCATE(RECVCOUNTS(100))
...
CALL C_LIBRARY_FUNCTION(C_LOC(SEND), SENDCOUNT, &
C_LOC(RECVCOUNTS))
...

310

13 Intel® Fortran Compiler User and Reference Guides

Example of C Calling Fortran

The following example calls a Fortran subroutine called SIMULATION. This subroutine corresponds
to the C void function simulation.

Fortran Code:

SUBROUTINE SIMULATION(ALPHA, BETA, GAMMA, DELTA, ARRAYS) BIND(C)
USE, INTRINSIC :: ISO_C_BINDING
IMPLICIT NONE
INTEGER (C_LONG), VALUE :: ALPHA
REAL (C_DOUBLE), INTENT(INOUT) :: BETA
INTEGER (C_LONG), INTENT(OUT) :: GAMMA
REAL (C_DOUBLE),DIMENSION(*),INTENT(IN) :: DELTA
TYPE, BIND(C) :: PASS
INTEGER (C_INT) :: LENC, LENF
TYPE (C_PTR) :: C, F
END TYPE PASS
TYPE (PASS), INTENT(INOUT) :: ARRAYS
REAL (C_FLOAT), ALLOCATABLE, TARGET, SAVE :: ETA(:)
REAL (C_FLOAT), POINTER :: C_ARRAY(:)
...
! Associate C_ARRAY with an array allocated in C
CALL C_F_POINTER (ARRAYS%C, C_ARRAY, (/ARRAYS%LENC/))
...
! Allocate an array and make it available in C
ARRAYS%LENF = 100
ALLOCATE (ETA(ARRAYS%LENF))
ARRAYS%F = C_LOC(ETA)
...
END SUBROUTINE SIMULATION

C Struct Declaration

struct pass {int lenc, lenf; float *c, *f;};

C Function Prototype:

void simulation(long alpha, double *beta, long *gamma, double delta[], struct pass *arrays);

C Calling Sequence:

simulation(alpha, &beta, &gamma, delta, &arrays);

Compiling and Linking Intel® Fortran/C Programs

Your application can contain both C and Fortran source files. If your main program is a Fortran
source file (myprog.for) that calls a routine written in C (cfunc.c), you can use the following
sequence of commands to build your application.

311

13

Linux* OS and Mac OS* X:
icc -c cfunc.c
ifort -o myprog myprog.for cfunc.o

Windows* OS:
icl /c cfunc.c
ifort myprog.for cfunc.obj
/link /out:myprog.exe

The icc or icl command for Intel® C++ or the cl command (for Microsoft Visual C++*)
compiles cfunc.c. The -c or /c option specifies that the linker is not called. This command
creates cfunc.o (Linux OS and Mac OS X) or cfunc.obj (Windows OS).

The ifort command compiles myprog.for and links cfunc.o (Linux OS and Mac OS X) or
cfunc.obj (Windows OS) with the object file created from myprog.for to create the executable.

Additionally, on Linux OS and Mac OS X, you may need to specify one or more of the following
options:

• Use the -cxxlib compiler option to tell the compiler to link using the C++ run-time libraries
provided by gcc. By default, C++ libraries are not linked with Fortran applications.

• Use the -fexceptions compiler option to enable C++ exception handling table generation
so C++ programs can handle C++ exceptions when there are calls to Fortran routines on
the call stack. This option causes additional information to be added to the object file that
is required during C++ exception handling. By default, mixed Fortran/C++ applications
abort in the Fortran code if a C++ exception is thrown.

• Use the -nofor_main compiler option if your C/C++ program calls an Intel Fortran
subprogram, as shown:

icc -c cmain.c
ifort -nofor_main cmain.o fsub.f90

Calling C Procedures from an Intel® Fortran Program

Naming Conventions

By default, the Fortran compiler converts function and subprogram names to lower case for
Linux OS and Mac OS X and upper case for Windows OS. The C compiler never performs case
conversion. A C procedure called from a Fortran program must, therefore, be named using the
appropriate case. For example, consider the following calls:

The C procedure must be named PROCNAME.CALL PROCNAME()

312

13 Intel® Fortran Compiler User and Reference Guides

The C procedure must be named FNNAMEX=FNNAME()

In the first call, any value returned by PROCNAME is ignored. In the second call to a function,
FNNAME must return a value.

Passing Arguments Between Fortran and C Procedures

By default, Fortran subprograms pass arguments by reference; that is, they pass a pointer to
each actual argument rather than the value of the argument. C programs, however, pass
arguments by value. Consider the following:

• When a Fortran program calls a C function, the C function's formal arguments must be
declared as pointers to the appropriate data type.

• When a C program calls a Fortran subprogram, each actual argument must be specified
explicitly as a pointer.

For Windows systems using IA-32 architecture only, you can alter the default calling convention.
You can use either the /iface:stdcall option (stdcall) or the /iface:cvf option (Compaq*
and Powerstation compatibility) to change the default calling convention, or the VALUE or C
attributes in an explicit interface using the ATTRIBUTES directive. For more information on the
ATTRIBUTES directive, see the Intel® Fortran Language Reference.

Both options cause the routine compiled and routines that it calls to have a @<n> appended
to the external symbol name, where n is the number of bytes of all parameters. Both options
assume that any routine called from a Fortran routine compiled this way will do its own stack
cleanup, "callee pops." /iface:cvf also changes the way that CHARACTER variables are passed.
With /iface:cvf, CHARACTER variables are passed as address/length pairs (that is,
/iface:mixed_str_len_arg).

313

13

14Using Libraries

Supplied Libraries

Libraries are simply an indexed collection of object files that are included as needed in a linked
program. Combining object files into a library makes it easy to distribute your code without disclosing
the source. It also reduces the number of command-line entries needed to compile your project.

Intel® Fortran provides different types of libraries, such as static or DLL, single-threaded or
multi-threaded.

On Linux* OS and Mac OS* X systems, you can use the -shared-intel compiler option on the
command line to specify that you want to use the dynamic versions of all Intel libraries.

The tables below show the libraries provided for the compiler. Except where noted, listed libraries
apply to systems based on IA-32 architecture, systems based on Intel® 64 architecture and systems
based on IA-64 architecture.

The run-time libraries have associated message catalog files, described in Run-Time Library Message
Catalog Location.

The file fredist.txt in the <install-dir> /Documentation folder lists the Intel compiler libraries
that are redistributable.

Table 45: Libraries provided on Windows* OS systems:

DescriptionFile

Fortran interfaces to Automation objectsifauto.lib

Fortran interfaces to COM supportifcom.lib

QuickWin stub supportifconsol.lib

Provides ActiveX* control support to the dialog proceduresifdlg100.dll

Dialog supportiflogm.lib

Intrinsic module supportifmodintr.lib

QuickWin multi-document support libraryifqw_mdi.lib

QuickWin single document support libraryifqw_sdi.lib

315

DescriptionFile

QuickWin support libraryifqwin.lib

Miscellaneous Windows supportifwin.lib

OpenMP* static library for the parallelizer toollibguide.lib

These two libraries make up a dynamic library for the parallelizer
tool

libguide40.lib

libguide40.dll

OpenMP static library for the parallelizer tool with performance
statistics and profile information

libguide_stats.lib

These two libraries make up a dynamic library for the parallelizer
tool with performance statistics and profile information

libguide40_stats.lib

libguide40_stats.dll

Intel-specific Fortran I/O intrinsic support librarylibifcore.lib

...when compiled with /MDlibifcoremd.lib

libifcoremd.dll

...when compiled with /MDdlibifcoremdd.lib

libifcoremdd.dll

...when compiled with /MTlibifcoremt.lib

...when compiled with /MDslibifcorert.lib

libifcorert.dll

...when compiled with /MDsdlibifcorertd.lib

libifcorertd.dll

Portability, POSIX*, and NLS* support librarylibifport.lib

...when compiled with /MDlibifportmd.dll

libifportmd.lib

Intel-specific library (optimizations)libirc.lib

316

14 Intel® Fortran Compiler User and Reference Guides

DescriptionFile

Multithreaded Intel-specific library (optimizations)libircmt.lib

Math librarylibm.lib

These two libraries make up a dynamic library for the
multithreaded math library used when compiling with /MD

libmmd.lib

libmmd.dll

These two libraries make up a debug dynamic library for the
multithreaded math library used when compiling with /MD

libmmdd.lib

libmmdd.dll

Static math library built multithreadlibmmds.lib

Multithreaded math library used when compiling with /MTlibmmt.lib

Library that resolves references to OpenMP* subroutines when
OpenMP is not in use

libompstub.lib

Short-vector math library (used by vectorizer). Not provided on
systems based on IA-64 architecture.

svml_disp.lib

Multithread short-vector math library (used by vectorizer). Not
provided on systems based on IA-64 architecture.

svml_dispmt.lib

Table 46: Libraries provided on Linux* OS and Mac OS* X systems:

DescriptionFile

main routine for Fortran programsfor_main.o

Used for interoperability with the -cxxlib option.libcxaguard.a

libcxaguard.so

(.dylib for Mac OS X)

libcxaguard.so.5 (Linux
IA-32 and Intel® 64
architectures)

libcxaguard.so.6 (Linux
IA-64 architecture)

OpenMP* static library for the parallelizer toollibguide.a

317

14

DescriptionFile

libguide.so

(.dylib for Mac OS X)

Support for parallelizer tool with performance and profile
information

libguide_stats.a

libguide_stats.so

(.dylib for Mac OS X)

Intel-specific Fortran run-time librarylibifcore.a

libifcore.so

(.dylib for Mac OS X)

libifcore.so.5 (Linux OS
IA-32 and Intel® 64
architectures)

libifcore.so.6 (IA-64
architecture)

Intel-specific Fortran static libraries; Linux OS only. These
support position independent code and allow creation of
shared libraries linked to Intel-specific Fortran static
run-time libraries, instead of shared run-time libraries.

libifcore_pic.a

libifcoremt_pic.a

Multithreaded Intel-specific Fortran run-time librarylibifcoremt.a

libifcoremt.so

(.dylib for Mac OS X)

libifcoremt.so.5 (Linux OS
IA-32 and Intel® 64
architectures)

libifcoremt.so.6 (IA-64
architecture)

Portability and POSIX supportlibifport.a

libifport.so

(.dylib for Mac OS X)

318

14 Intel® Fortran Compiler User and Reference Guides

DescriptionFile

libifport.so.5 (Linux OS
IA-32 and Intel® 64
architectures)

libifport.so.6 (IA-64
architecture)

libifportmt.dylib (Mac OS
X only)

Math librarylibimf.a

libimf.so

(.dylib for Mac OS X)

Intel-specific library (optimizations)libirc.a

libirc_s.a

libirc.dylib (Mac OS X)

Dynamic versions of libirclibintlc.so

(.dylib for Mac OS X)

Library that resolves references to OMP subroutines when
OMP is not in use

libompstub.a

Short vector math librarylibsvml.a

libsvml.dylib (Mac OS X)

Creating Static Libraries

Executables generated using static libraries are no different than executables generated from
individual source or object files. Static libraries are not required at runtime, so you do not need
to include them when you distribute your executable. At compile time, linking to a static library
is generally faster than linking to individual source files.

When compiling a static library from the ifort command line, include the -c (Linux OS and Mac
OS X) or /c (Windows OS) compiler option to suppress linking. Without this option, the compiler
generates an error because the library does not contain a main program.

To build a static library (Linux OS):

319

14

1. Use the -c option to generate object files from the source files:
ifort -c my_source1.f90 my_source2.f90 my_source3.f90

2. Use the GNU ar tool to create the library file from the object files:
ar rc my_lib.a my_source1.o my_source2.o my_source3.o

3. Compile and link your project with your new library:
ifort main.f90 my_lib.a

If your library file and source files are in different directories, use the -Ldir option to indicate
where your library is located:
ifort -L/for/libs main.f90 my_lib.a

To build a static library (Mac OS X):

1. Use the following command line to generate object files and create the library file:
ifort -o my_lib.a -staticlib mysource1.f90 mysource2.f90 mysource3.f90

2. Compile and link your project with your new library:
ifort main.f90 my_lib.a

If your library file and source files are in different directories, use the -Ldir option to indicate
where your library is located:
ifort -L/for/libs main.f90 my_lib.a

To build a static library (Windows OS):

To build a static library from the integrated development environment (IDE), select the Fortran
Static Library project type.

To build a static library using the command line:

1. Use the /c option to generate object files from the source files:
ifort /c my_source1.f90 my_source2.f90

2. Use the Microsoft LIB tool to create the library file from the object files:
lib /out:my_lib.lib my_source1.obj my_source2.obj

3. Compile and link your project with your new library:
ifort main.f90 my_lib.lib

320

14 Intel® Fortran Compiler User and Reference Guides

Creating Shared Libraries

Shared libraries, also referred to as dynamic libraries, are linked differently than static libraries.
At compile time, the linker insures that all the necessary symbols are either linked into the
executable, or can be linked at runtime from the shared library. Executables compiled from
shared libraries are smaller, but the shared libraries must be included with the executable to
function correctly. When multiple programs use the same shared library, only one copy of the
library is required in memory.

To create a shared library from a Fortran source file, process the files using the ifort command:

• You must specify the -shared option (Linux* OS) or the -dynamiclib option (Mac OS* X)
to create the .so or .dylib file. On Linux OS and Mac OS X operating systems using either
IA-32 architecture or Intel® 64 architecture, you must also specify -fpic for the compilation
of each object file you want to include in the shared library.

• You can specify the -o output option to name the output file.

• If you omit the -c option, you will create a shared library (.so file) directly from the command
line in a single step.

• If you also omit the -o output option, the file name of the first Fortran file on the command
line is used to create the file name of the .so file. You can specify additional options
associated with shared library creation.

• If you specify the -c option, you will create an object file (.o file) that you can name with
the -o option. To create a shared library, process the .o file with ld , specifying certain
options associated with shared library creation.

Creating a Shared Library

There are several ways to create a shared library.

You can create a shared library file with a single ifort command:

ifort -shared -fpic octagon.f90 (Linux OS)
ifort -dynamiclib octagon.f90 (Mac OS* X)

The -shared or -dynamiclib option is required to create a shared library. The name of the
source file is octagon.f90. You can specify multiple source files and object files.

The -o option was omitted, so the name of the shared library file is octagon.so (Linux OS)
oroctagon.dylib (Mac OS X).

You can use the -static-intel option to force the linker to use the static versions of the
Intel-supplied libraries.

321

14

You can also create a shared library file with a combination of ifort and ld (Linux OS) or libtool
(Mac OS X) commands:

First, create the .o file, such as octagon.o in the following example:

ifort -c -fpic octagon.f90

The file octagon.o is then used as input to the ld (Linux OS) or libtool (Mac OS X) command
to create the shared library. The following example shows the command to create a shared
library named octagon.so on a Linux operating system:

ld -shared octagon.o \
-lifport -lifcoremt -limf -lm -lcxa \
-lpthread -lirc -lunwind -lc -lirc_s

Note the following:

• When you use ld, you need to list all Fortran libraries. It is easier and safer to use the ifort
command. On Mac OS X, you would use libtool.

• The -shared option is required to create a shared library. On Mac OS X, use the -dynami-
clib option, and also specify the following: -arch_only i386, -noall_load,
-weak_references_mismatches non-weak.

• The name of the object file is octagon.o. You can specify multiple object (.o) files.

• The -lifport option and subsequent options are the standard list of libraries that the ifort
command would have otherwise passed to ld or libtool. When you create a shared
library, all symbols must be resolved.

It is probably a good idea to look at the output of the -dryrun command to find the names of
all the libraries used so you can specify them correctly.

If you are using the ifort command to link, you can use the -Qoption command to pass
options to the ld linker. (You cannot use -Qoption on the ld command line.)

For more information on relevant compiler options, see the Compiler Options reference.

See also the ld(1) reference page.

Shared Library Restrictions

When creating a shared library with ld, be aware of the following restrictions:

• Shared libraries must not be linked with archive libraries.

322

14 Intel® Fortran Compiler User and Reference Guides

When creating a shared library, you can only depend on other shared libraries for resolving
external references. If you need to reference a routine that currently resides in an archive
library, either put that routine in a separate shared library or include it in the shared library
being created. You can specify multiple object (.o) files when creating a shared library.

To put a routine in a separate shared library, obtain the source or object file for that routine,
recompile if necessary, and create a separate shared library. You can specify an object file
when recompiling with the ifort command or when creating the shared library with the ld
command.

To include a routine in the shared library being created, put the routine (source or object
file) with other source files that make up the shared library and recompile if necessary.

Now create the shared library, making sure that you specify the file containing that routine
either during recompilation or when creating the shared library. You can specify an object
file when recompiling with the ifort command or when creating the shared library with
the ld or libtool command.

• When creating shared libraries, all symbols must be defined (resolved).

Because all symbols must be defined to ld when you create a shared library, you must
specify the shared libraries on the ld command line, including all standard Intel Fortran
libraries. The list of standard Intel Fortran libraries can be specified by using the -lstring
option.

Installing Shared Libraries

Once the shared library is created, it must be installed for private or system-wide use before
you run a program that refers to it:

• To install a private shared library (when you are testing, for example), set the environment
variable LD_LIBRARY_PATH, as described in ld(1). For Mac OS X, set the environment
variable DYLD_LIBRARY_PATH.

• To install a system-wide shared library, place the shared library file in one of the standard
directory paths used by ld or libtool.

Calling Library Routines

The following table shows the groups of Intel Fortran library routines and the USE statement
required to include the interface definitions for the routines in that group:

323

14

USE statementRoutines

USE IFPORTPortability

USE IFPOSIXPOSIX*

USE IFCOREMiscellaneous Run-Time

The following are Windows only:

USE IFAUTOAutomation (AUTO) (systems using IA-32 architecture only)

USE IFCOMComponent Object Model (COM) (systems using IA-32 architecture only)

USE IFLOGMDialog (systems using IA-32 architecture only)

USE IFQWINGraphics

USE IFNLSNational Language Support

USE IFQWINQuickWin

USE IFPORTSerial port I/O (SPORT)(systems using IA-32 architecture only)

Module Routines lists topics that provide an overview of the different groups of library routines
as well as calling syntax for the routines. For example, add the following USE statement (before
any data declaration statements, such as IMPLICIT NONE or INTEGER):
USE IFPORT

If you want to minimize compile time for source files that use the Intel Fortran library routines,
add the ONLY keyword to the USE statement. For example:
USE IFPORT, only: getenv

Using the ONLY keyword limits the number of interfaces for that group of library routines.

To view the actual interface definitions, view the .f90 file that corresponds to the .mod file.
For example, if a routine requires a USE IFCORE, locate and use a text editor to view the file
ifcore.f90 in the standard INCLUDE directory.

You should avoid copying the actual interface definitions contained in the ifport.f90 (or
ifcore.f90, ...) into your program because future versions of Intel Fortran might change
these interface definitions.

324

14 Intel® Fortran Compiler User and Reference Guides

Similarly, some of the library interface .f90 files contain USE statements for a subgrouping of
routines. However, if you specify a USE statement for such a subgroup, this module name may
change in future version of Intel Fortran. Although this will make compilation times faster, it
might not be compatible with future versions of Intel Fortran.

Portability Considerations

Portability Library Overview

Intel® Fortran includes functions and subroutines that ease porting of code to or from a PC, or
allow you to write code on a PC that is compatible with other platforms.

The portability library is called LIBIFPORT.LIB (Windows* OS) or libifport.a (Linux* OS
and Mac OS* X). Frequently used functions are included in a portability module called IFPORT.

The portability library also contains IEEE* POSIX library functions. These functions are included
in a module called IFPOSIX.

You can use the portability library in one of two ways:

• Add the statement USE IFPORT to your program. This statement includes the IFPORT
module.

• Call portability routines using the correct parameters and return value.

The portability library is passed to the linker by default during linking. To prevent this, specify
the -fpscomp nolibs (Linux OS and Mac OS X) or /fpscomp:nolibs (Windows OS) option.

Using the IFPORT mod file provides interface blocks and parameter definitions for the routines,
as well as compiler verification of calls.

See also:

• Using the IFPORT Portability Module

• Portability Routines

Using the IFPORT Portability Module

Using the IFPORT module provides interface blocks and parameter definitions for the portability
routines, as well as compiler verification of calls.

Some routines in this library can be called with different sets of arguments, and sometimes
even as a function instead of a subroutine. In these cases, the arguments and calling mechanism
determine the meaning of the routine. The IFPORT module contains generic interface blocks
that give procedure definitions for these routines.

325

14

Fortran 95/90 contains intrinsic procedures for many of the portability functions. The portability
routines are extensions to the Fortran 95 standard. When writing new code, use Fortran 95/90
intrinsic procedures whenever possible (for portability and performance reasons).

Portability Routines

This section describes some of the portability routines and how to use them.

Refer to the Portability Routines table as you read through this topic.

Information Retrieval Routines

Information retrieval procedures return information about system commands, command-line
arguments, environment variables, and process or user information.

Group, user, and process ID are INTEGER(4) variables. Login name and host name are character
variables. The functions GETGID and GETUID are provided for portability, but always return 1.

Process Control Routines

Process control routines control the operation of a process or subprocess. You can wait for a
subprocess to complete with either SLEEP or ALARM, monitor its progress and send signals via
KILL, and stop its execution with ABORT.

In spite of its name, KILL does not necessarily stop execution of a program. Rather, the routine
signaled could include a handler routine that examines the signal and takes appropriate action
depending on the code passed.

Note that when you use SYSTEM, commands are run in a separate shell. Defaults set with the
SYSTEM function, such as current working directory or environment variables, do not affect
the environment the calling program runs in.

The portability library does not include the FORK routine. On Linux* OS and Mac OS* X systems,
FORK creates a duplicate image of the parent process. Child and parent processes each have
their own copies of resources, and become independent from one another. On Windows* OS
systems, you can create a child process (called a thread), but both parent and child processes
share the same address space and share system resources.

Numeric Values and Conversion Routines

Numeric values and conversion routines are available for calculating Bessel functions, data type
conversion, and generating random numbers. Some of these functions have equivalents in
standard Fortran 95/90, in which case the standard Fortran routines should be used.

326

14 Intel® Fortran Compiler User and Reference Guides

Data object conversion can be accomplished by using the INT intrinsic function instead of LONG
or SHORT. The intrinsic subroutines RANDOM_NUMBER and RANDOM_SEED perform the same
functions as the random number functions listed in the table showing numeric values and
conversion routines.

Other bit manipulation functions such as AND, XOR, OR, LSHIFT, and RSHIFT are intrinsic
functions. You do not need the IFPORT module to access them. Standard Fortran 95/90 includes
many bit operation routines, which are listed in the Bit Operation and Representation Routines
table.

Input and Output Routines

The portability library contains routines that change file properties, read and write characters
and buffers, and change the offset position in a file. These input and output routines can be
used with standard Fortran input or output statements such as READ or WRITE on the same
files, provided that you take into account the following:

• When used with direct files, after an FSEEK, GETC, or PUTC operation, the record number
is the number of the next whole record. Any subsequent normal Fortran I/O to that unit
occurs at the next whole record. For example, if you seek to absolute location 1 of a file
whose record length is 10, the NEXTREC returned by an INQUIRE would be 2. If you seek
to absolute location 10, NEXTREC would still return 2.

• On units with CARRIAGECONTROL='FORTRAN' (the default), PUTC and FPUTC characters
are treated as carriage control characters if they appear in column 1.

• On sequentially formatted units, the C string "\n"c, which represents the carriage return/line
feed escape sequence, is written as CHAR(13) (carriage return) and CHAR(10) (line feed),
instead of just line feed, or CHAR(10). On input, the sequence 13 followed by 10 is returned
as just 10. (The length of character string "\n"c is 1 character, whose ASCII value, indicated
by ICHAR('\n'c), is 10.)

• Reading and writing is in a raw form for direct files. Separators between records can be read
and overwritten. Therefore, be careful if you continue using the file as a direct file.

I/O errors arising from the use of these routines result in an Intel Fortran run-time error.

Some portability file I/O routines have equivalents in standard Fortran 95/90. For example,
you could use the ACCESS function to check a file specified by name for accessibility according
to mode. It tests a file for read, write, or execute permission, as well as checking to see if the
file exists. It works on the file attributes as they exist on disk, not as a program's OPEN
statement specifies them.

327

14

Instead of ACCESS, you can use the INQUIRE statement with the ACTION specifier to check
for similar information. (The ACCESS function always returns 0 for read permission on FAT files,
meaning that all files have read permission.)

Date and Time Routines

Various date and time routines are available to determine system time, or convert it to local
time, Greenwich Mean Time, arrays of date and time elements, or an ASCII character string.

DATE and TIME are available as either a function or subroutine. Because of the name duplication,
if your programs do not include the USE IFPORT statement, each separately compiled program
unit can use only one of these versions. For example, if a program calls the subroutine TIME
once, it cannot also use TIME as a function.

Standard Fortran 95/90 includes date and time intrinsic subroutines. For more information, see
DATE_AND_TIME.

Error Handling Routines

Error handling routines detect and report errors.

IERRNO error codes are analogous to errno on Linux* OS and Mac OS* X systems. The IFPORT
module provides parameter definitions for many of UNIX's errno names, found typically in
errno.h on UNIX systems.

IERRNO is updated only when an error occurs. For example, if a call to the GETC function results
in an error, but two subsequent calls to PUTC succeed, a call to IERRNO returns the error for
the GETC call. Examine IERRNO immediately after returning from one of the portability library
routines. Other standard Fortran 90 routines might also change the value to an undefined value.

If your application uses multithreading, remember that IERRNO is set on a per-thread basis.

System, Drive, or Directory Control and Inquiry Routines

You can retrieve information about devices, directories, and files with the functions listed below.
File names can be long file names or UNC file names. A forward slash in a path name is treated
as a backslash. All path names can contain drive specifications.

Standard Fortran 90 provides the INQUIRE statement, which returns detailed file information
either by file name or unit number. Use INQUIRE as an equivalent to FSTAT, LSTAT or STAT.
LSTAT and STAT return the same information; STAT is the preferred function.

328

14 Intel® Fortran Compiler User and Reference Guides

Serial Port Routines (Windows only)

The serial port I/O (SPORT_xxx) routines help you perform basic input and output to serial
ports. These routines are available only on systems using IA-32 architecture.

Additional Routines

You can also use portability routines for program call and control, keyboards and speakers, file
management, arrays, floating-point inquiry and control, IEEE* functionality, and other
miscellaneous uses. See the Portability Routines table.

Math Libraries

Intel® Fortran Compiler includes these math libraries:

DescriptionLibrary name

Math libraries provided by Intel. This is in addition to
libm.a, which is the math library provided with gcc*

libimf.a (Linux* OS and Mac OS*
X)

Both of these libraries are linked in by default because
certain math functions supported by the GNU* math
library are not available in the Intel math library. This
linking arrangement allows the GNU users to have all
functions available when using ifort, with Intel
optimized versions available when supported.

libimf.a is linked in before libm.a. If you link in
libm.a first, it will change the versions of the math
functions that are used.

Math Libraries provided by Intel.libm.lib (static library) and
libmmd.dll (the DLL version)
(Windows* OS)

Math library of Fortran routines and functions that
perform a wide variety of operations on vectors and
matrices. The library also includes fast Fourier
transform (fft) functions, as well as vector
mathematical and vector statistical functions.

Intel® Math Kernel Library (Intel®
MKL)

329

14

DescriptionLibrary name

Libraries provided only with certain editions of the
Intel® Visual Fortran product. The IMSL* libraries
provide a large collection of mathematical and
statistical functions accessible from the visual and
command line development environments. .

IMSL* Fortran Numerical Library
(Windows* OS)

330

14 Intel® Fortran Compiler User and Reference Guides

15Error Handling

Handling Compile Time Errors

Understanding Errors During the Build Process

The Intel® Fortran Compiler identifies syntax errors and violations of language rules in the source
program.

Compiler Diagnostic Messages

These messages describe diagnostics that are reported during the processing of the source file.
Compiler diagnostic messages usually provide enough information for you to determine the cause
of an error and correct it. These messages generally have the following format:

filename(linenum:) severity: message

Indicates the name of the source file currently being processed.filename

Indicates the source line where the compiler detects the condition.linenum

Indicates the severity of the diagnostic message: Warning, Error, or Fatal
error.

severity

Describes the problem.message

The following is an example of an error message showing the format and message text:

echar.for(7): Severe: Unclosed DO loop or IF block
DO I=1,5

--------^

The pointer (---^) indicates the exact place on the source program line where the error was found,
in this case where an END DO statement was omitted.

To view the passes as they execute on the command line, specify -watch (Linux* OS and Mac OS*
X) or /watch (Windows* OS).

331

NOTE. You can perform compile-time procedure interface checking between routines
with no explicit interfaces present. To do this, generate a module containing the interface
for each compiled routine using the -gen-interfaces (Linux OS and Mac OS X) or
/gen-interfaces (Windows OS) option and check implicit interfaces using the -warn
interfaces (Linux OS and Mac OS X) or /warn:interfaces (Windows OS) option.

Controlling Compiler Diagnostic Warning and Error Messages

You can use a number of compiler options to control the diagnostic messages issued by the
compiler. For example, the -WB (Linux OS and Mac OS X) or/WB (Windows OS) compiler option
turns compile time bounds errors into warnings. To control compiler diagnostic messages (such
as warning messages), use -warn (Linux OS and Mac OS X) or /warn (Windows OS). The
-warn [keyword] (Linux OS and Mac OS X) or /warn:keyword (Windows OS) option controls
warnings issued by the compiler and supports a wide range of values. Some of these are as
follows:

[no]alignments -- Determines whether warnings occur for data that is not naturally aligned.

[no]declarations -- Determines whether warnings occur for any undeclared symbols.

[no]errors -- Determines whether warnings are changed to errors.

[no]general -- Determines whether warning messages and informational messages are issued
by the compiler.

[no]interfaces -- Determines whether warnings about the interfaces for all called SUBROUTINEs
and invoked FUNCTIONs are issued by the compiler.

[no]stderrors -- Determines whether warnings about Fortran standard violations are changed
to errors.

[no]truncated_source -- Determines whether warnings occur when source exceeds the maximum
column width in fixed-format files.

For more information, see the -warn compiler option.

You can also control the display of diagnostic information with variations of the -diag (Linux
OS and Mac OS X) or /Qdiag (Windows OS) compiler option. This compiler option accepts
numerous arguments and values, allowing you wide control over displayed diagnostic messages
and reports.

Some of the most common variations include the following:

332

15 Intel® Fortran Compiler User and Reference Guides

DescriptionWindows OSLinux OS and Mac OS X

Enables a diagnostic message or a
group of messages

/Qdiag-enable:list-diag-enable list

Disables a diagnostic message or a
group of messages

/Qdiag-disable:list-diag-disable list

Tells the compiler to change
diagnostics to warnings

/Qdiag-warning:list-diag-warning list

Tells the compiler to change
diagnostics to errors

/Qdiag-error:list-diag-erro list

Tells the compiler to change
diagnostics to remarks (comments)

/Qdiag-remark:list-diag-remark list

The list items can be specific diagnostic IDs, one of the keywords warn, remark, or error,
or a keyword specifying a certain group (par, vec, driver, cpu-dispatch, sv). For more
information, see -diag, /Qdiag.

Additionally, you can use the following related options:

DescriptionWindows OSLinux OS and Mac OS X

Tells the compiler to print all
enabled diagnostic messages
and stop compilation

/Qdiag-dump-diag-dump

Causes the results of
diagnostic analysis to be
output to a file

/Qdiag-file[:file]-diag-file[=file]

Causes the results of
diagnostic analysis to be
appended to a file

/Qdiag-file-ap-
pend[:file]

-diag-file-append[=file]

Specifies the maximum
number of errors allowed
before compilation stops.

/Qdiag-error-limit:n-diag-error-limit n

333

15

Linker Diagnostic Errors

If the linker detects any errors while linking object modules, it displays messages about their
cause and severity. If any errors occur, the linker does not produce an executable file. Linker
messages are descriptive, and you do not normally need additional information to determine
the specific error.

To view the libraries being passed to the linker on the command line, specify -watch or /watch.

Error Severity Levels

Comment Messages

These messages indicate valid but inadvisable use of the language being compiled. The compiler
displays comments by default. You can suppress comment messages with the -warn nousage
(Linux OS and Mac OS X) or /warn:nousage (Windows OS) option.

Comment messages do not terminate translation or linking, they do not interfere with any
output files either. Some examples of the comment messages are:

Null CASE construct
The use of a non-integer DO loop variable or expression
Terminating a DO loop with a statement other than CONTINUE or ENDDO

Warning Messages

These messages report valid but questionable use of the language being compiled. The compiler
displays warnings by default. You can suppress warning messages by using the -warn or /warn
option. Warnings do not stop translation or linking. Warnings do not interfere with any output
files. Some representative warning messages are:

constant truncated - precision too great
non-blank characters beyond column 72 ignored
Hollerith size exceeds that required by the context

Error Messages

These messages report syntactic or semantic misuse of Fortran.

334

15 Intel® Fortran Compiler User and Reference Guides

Errors suppress object code for the error containing the error and prevent linking, but they do
not stop from parsing to continue to scan for any other errors. Some typical examples of error
messages are:

line exceeds 132 characters
unbalanced parenthesis
incomplete string

Fatal Errors

Fatal messages indicate environmental problems. Fatal error conditions stop translation,
assembly, and linking. If a fatal error ends compilation, the compiler displays a termination
message on standard error output. Some representative fatal error messages are:

Disk is full, no space to write object file
Incorrect number of intrinsic arguments
Too many segments, object format cannot support this many segments

Using the Command Line

If you are using the command line, messages are written to the standard error output file.

When using the command line:

• Make sure that the appropriate environment variables have been set by executing the
ifortvars.sh (Linux OS and Mac OS X) orIFORTVARS.BAT (Windows OS) file. For example,
this BAT file sets the environment variables for the include and library directory paths. For
Windows OS, these environment variables are preset if you use the Fortran Command Prompt
window in the Intel® Visual Fortran program folder. For a list of environment variables used
by the ifort command during compilation, see Setting Compile-Time Environment Variables.

• Specify the libraries to be linked against using compiler options.

• You can specify libraries (include the path, if needed) as file names on the command line.

Compiler Message Catalog Support

Intel Fortran provides a message catalog that contains various compile-time diagnostic messages.

Use the NLSPATH or %PATH% (Windows OS) environment variable to specify the location of
the compiler message catalog. Note that this environment variable, which can be defined to
point to multiple paths, is also used to specify the location of the run-time catalog. For more
information on run-time library catalogs, see Run-Time Message Display and Format.

335

15

Using Source Code Verification
Source Checker Overview

The Intel® Fortran Compiler Professional product provides the following source code analysis
features:

• source checker analysis

• parallel lint

Source Checker

The source checker is a compiler feature that provides advanced diagnostics based on detailed
analysis of source code. It performs static global analysis to find errors in software that go
undetected by the compiler itself. general source code analysis tool that provides an additional
diagnostic capability to help you debug your programs. You can use source code analysis options
to detect potential errors in your compiled code including:

• incorrect usage of OpenMP* directives

• inconsistent object declarations in different program units

• boundary violations

• uninitialized memory

• memory corruptions

• memory leaks

• incorrect usage of pointers and allocatable arrays

• dead code and redundant executions

• typographical errors or uninitialized variables

• dangerous usage of unchecked input

The source checker can be used to analyze and find issues with source files; these source files
need not form a whole program (for instance, you can check a library source). In such cases,
due to the lack of full information on usage and modification of global objects, calls to routines,
and so forth, analysis will be less exact.

Your code must successfully compile, with no errors, for source code analysis options to take
effect.

The intended output from the source checker are useful diagnostics; no executable is generated.
Object files and library files generated during source checker analysis cannot be used to generate
an executable or a dynamic or static library.

336

15 Intel® Fortran Compiler User and Reference Guides

Source checker analysis performs a general overview check of a program for all possible values
simultaneously. This is in contrast to run-time checking tools that execute a program with a
fixed set of values for input variables; such checking tools cannot easily check all edge effects.
By not using a fixed set of input values, the source checker analysis can check for all possible
corner cases.

Limitations of Source Checker Analysis

Since the source checker does not perform full interpretation of analyzed programs, it can
generate so called false-positive messages. This is a fundamental difference between the
compiler and source checker generated errors; in the case of the source checker, you decide
whether the generated error is legitimate and needs to be fixed.

Example 1: Incorrect message about division by 0

In this example, possible values for parameter x are {6,3}, for parameter y are {3,0}. If x and
y both have the value 3, the expression x-y is equal to 0. The source checker cannot identify
that the value 3 for x and y cannot coexist.

1 #include <stdio.h>

2

3 double foo(int x, int y) {

4 return 1 / (x - y);

5 }

6

7 int main() {

8 printf("%f\n", foo(6, 3));

9 printf("%f\n", foo(3, 0));

10 return 0;

11 }

The source checker issues the following message:

f1.c(4): error #12062: possible division by 0

Example 2: Incorrect message about uninitialization

337

15

This example illustrates how a false positive can appear from conditional statements.

1 #include <stdio.h>

2

3 int main(int n) {

4 int j;

5 if (n != 0) {

6 j = n;

7 }

8 if (n != 0) {

9 printf("%d\n", j);

10 }

11 return 0;

12 }

The source checker issues the following message:

f1.c(9): error #12144: "j" is possibly uninitialized

Parallel Lint

Writing and debugging parallel programs requires specific knowledge and tools. Parallel lint
can help in both the development of parallel applications and the parallelizing of existing serial
applications. Based on source checker algorithms, parallel lint is a source code analysis capability
that performs parallelization analysis of OpenMP* programs. The OpenMP 3.0 standard is
supported. OpenMP provides a variety of ways for expressing parallelization. Parallel lint can
diagnose problems with OpenMP directives and clauses, including:

• nested parallel regions including dynamic extent of parallel regions

• private/shared/reduction variables in parallel regions

• threadprivate variables

• expressions used in OpenMP clauses

In certain cases, an OpenMP program can meet all requirements of the specification but still
have serious semantic issues. Parallel lint can help diagnose:

• some types of deadlocks

338

15 Intel® Fortran Compiler User and Reference Guides

• data races or potential data dependency

• side effects without proper synchronization

Parallel lint also performs interprocedural analysis and can find issues with parallel directives
located in different procedures or files.

Using the Source Code Analysis Options

Source code analysis options include the following:

ResultOption

Enables source checker analysis. The number specifies the
several level of the diagnostics (1=all critical errors, 2=all errors,
and 3=all errors and warnings)

-diag-enable
sc{[1|2|3]} (Linux* OS
and Mac OS* X) /Qdiag-
enable:sc{[1|2|3]}
(Windows* OS)

Disables source checker analysis-diag-disable sc

/Qdiag-disable:sc

Enables parallel lint analysis. The number specifies the several
level of the diagnostics (1=all critical errors, 2=all errors, and
3=all errors and warnings)

-diag-enable sc-paral-
lel{[1|2|3]}

/Qdiag-enable:sc-par-
allel{[1|2|3]}

Disables parallel lint analysis-diag-disable sc-par-
allel

/Qdiag-disable:sc-
parallel

Analyzes include files as well as source files.-diag-enable sc-in-
clude

/Qdiag-enable:sc-in-
clude

Suppresses all warnings, cautions and comments (issues errors
only), including those specific to source code analysis

-diag-disable warn

/Qdiag-disable:warn

339

15

ResultOption

Suppresses messages by number list, where num-list is either
a single message or a list of message numbers separated by
commas and enclosed in parentheses

-diag-disable num-
list

/Qdiag-disable:num-
list

Directs diagnostic results to file with .diag as the default
extension. You need to enable source code analysis diagnostics
before you can send them to a file. If a file name is not specified,
the diagnostics are sent to
name-of-the-first-source-file.diag.

-diag-file [file]

/Qdiag-file[:file]

Appends diagnostic results to file with .diag as the default
extension. You need to enable source code analysis diagnostics
before you can send the results to a file. If you do not specify

-diag-file-ap-
pend[=file]

/Qdiag-file-ap-
pend[:file]

a path, the current working directory will be searched. If the
named file is not found, a new file with that name will be created.
If a file name is not specified, the diagnostics are sent to
name-of-the-first-source-file.diag.

The following notes apply:

• Parallel lint diagnostics are a subset of source checker diagnostics. If both the source checker
and parallel lint options are specified, only source checker options are used.

• When using parallel lint, be sure to specify the OpenMP compiler option. Add the -openmp
(Linux OS and Mac OS X) or /Qopenmp (Windows OS) option to the command line.

• Specify the -diag-enable sc-include (Linux OS and Mac OS X) or
/Qdiag-enable:sc-include (Windows OS) option to analyze both source files and include
files.

Using Source Code Analysis Options with Other Compiler Options

If the -c (Linux OS and Mac OS X) or /c (Windows OS) compiler option is used on the
command line along with a command line option to enable source code analysis, an object file
is created; source code analysis diagnostics are not produced. This object file may be used in

340

15 Intel® Fortran Compiler User and Reference Guides

a further invocation of source code analysis. To receive complete source code diagnostics,
specify source code analysis options for both compilation and linking phases. This feature is
useful when a program consists of files written in different languages (C/C++ and Fortran).

icc -c -diag-enable sc2 file1.c

ifort -c -diag-enable sc2 file2.f90

icc -diag-enable sc2 file1.obj file2.obj

To analyze OpenMP directives, add the -openmp (Linux OS and Mac OS X) or /Qopenmp (Windows
OS) option to the command line.

Using Source Code Analysis within the IDE

When source code analysis support is enabled within the IDE, the customary final build target
(e.g. an executable image) is not created. Therefore, you should create a separate "Source
Code Analysis" configuration.

In the Eclipse* IDE, do the following:

1. Open the property pages for the project and select C/C++ Build .

2. Click the Manage… button.

3. In theManage dialog box, click the New… button to open the Create configuration dialog
box.

4. Supply a name for the new configuration in the Name box; for example, Source Code
Analysis.

5. Supply a Description for the configuration if you want (optional).

6. You can choose to Copy settings from a Default configuration or an Existing
configuration by clicking the appropriate radio button and then selecting a configuration
from the corresponding drop down menu.

7. Click OK to close the Create configuration dialog box.

8. Click OK to close the Manage dialog box (with your new configuration name selected).

The property pages will now display the settings for your new configuration; this becomes the
active build configuration. Navigate to the Intel compiler's Compilation Diagnostics properties.
Use the Level of Source Code Parallelization Analysis, Level of Source Code Analysis,
and Analyze Include Files properties to control source code analysis.

341

15

Source Checker Capabilities

Source checker analysis capabilities include the following:

• Interprocedural Analysis for detecting inconsistent objects declarations in different program
units and for propagation of data (for example, pointer aliases and argument constant
values) using procedure calls

• Local Program Analysis for analyzing each program unit separately and checking for various
kinds of problems that will errors or warnings.

• C/C++ specific Analysis for analyzing C/C++ source code and checking for C/C++ specific
error and warning conditions. Source code analysis also detects improper code style and
flaws in object-oriented design solutions.

• Fortran-specific Analysis for analyzing Fortran source code and checking for Fortran-specific
error and warning conditions.

• OpenMP* Analysis for checking for OpenMP API restrictions.

Interprocedural Analysis

Source code analysis detects inconsistent object declarations in different program units, for
example:

• Different external objects with the same name.

• Inconsistent declarations of a COMMON block (Fortran-specific).

• Mismatched number of arguments.

• Mismatched type, rank, shape, or/and size of an argument.

• Inconsistent declaration of a procedure.

The following examples illustrate interprocedural analysis.

Example 1: Wrong number of arguments

File f1.c contains this function declaration:
1 void Do_hello() {

2 printf("helo everybody!\n");

}

342

15 Intel® Fortran Compiler User and Reference Guides

File f2.c contains a call to the routine:
1 extern void Do_hello(int);

2

3 void foo() {

4 Do_hello (1) ;

5 }

The source checker issues the following message:

f2.c(4): error #12020: number of actual arguments (1) in call of "Do_hello"
doesn't match the number of formal arguments (0); "Do_hello" is defined at
(file:f1.c line:1)

The other goal of interprocedural analysis is to propagate information about program objects
across the program through procedure calls. The following information is propagated :

• Ranges of constant values

• Pointer attributes

• Information about usage and modification of objects

Example 2: Out of Boundaries

This example demonstrates the propagation of pointer A to Arr and the constant value 5 to x:
1 void foo(int* Arr, int x) {

2 for(; 0<=x; x--) {

3 Arr[x] = x;

4 }

5 }

6

7 void bar() {

8 int A[5];

9 foo(A,5);

10 }

The source checker issues the following message:

343

15

f1.c(3): error #12255: Buffer overflow: index is possibly outside the bounds
for array "A" which is passed as actual argument 1 to "foo" at (file:f2.c
line:9); array "A" of size (0:4) can be indexed by value 5

Local Program Analysis

The source checker uses local analysis of each program unit to check for various kinds of errors,
warnings, and/or debatable points in a program. Examples of these errors are:

• Incorrect use or modification of an object

• Problems with memory (for example, leaks, corruptions, uninitialized memory)

• Incorrect use with pointers

• Boundaries violations

• Wrong value of an argument in an intrinsic call

• Dead code and redundant executions

The following examples illustrate local program analysis.

Example 1: Object is smaller than required size
1 #include <stdio.h>

2 #include <string.h>

3

4 int main(void){

5 char string[10];

6

7 strcpy(string, "Hello world from");

8 printf("%s\n",string);

9

10 return 0;

11 }

The following message is issued :

f1.c(7): error #12224: Buffer overflow: size of object "string" (10 bytes)
is less than required size (17 bytes)

Example 2: Memory Leak

344

15 Intel® Fortran Compiler User and Reference Guides

File f1.c contains the following:

1 #include <stdio.h>

2 #include <malloc.h>

3

4 int main(void) {

5 float **ptr;

6

7 ptr = (float **)malloc(8);

8 if (ptr == NULL) exit(1);

9 *ptr = (float*)malloc(sizeof(float));

10 if (*ptr == NULL) exit(1);

11 **ptr = 3.14;

12 printf("%f\n",**ptr);

13 free(ptr);

14 return 0;

15 }

The source checker issues the following message:

f1.c(14): error #12121: memory leak: dynamic memory allocated at (file:f1.c
line:9) is not freed at this point

Fortran-specific Analysis

The source checker is able to detect issues with the following:

• Mismatched type, rank, shape, or/and size of an argument

• Incorrect usage of ALLOCATABLE arrays

• Inconsistency in COMMON blocks

The following example illustrates Fortran-specific analysis.

Example 1: Undefined function result

File f1.f contains the following lines:
1 subroutine foo(m)

2 integer, dimension(2,3) :: m

345

15

3 do i=1,3

4 print *,m(:,i)

5 end do

6 end

7 integer, dimension(3,2) :: n

8 do i=1,2

9 n(:,i) = i

10 end do

11 call foo(n)

12 ! shapes of argument #1 and dummy argument are different.

13 do i=1,2

14 print *,n(:,i)

15 end do

16 end

Source code analysis issues the following message:

f1.f(11): error #12028: shape of actual argument 1 in call of "FOO" doesn't
match the shape of formal argument "M"; "FOO" is defined

C/C++ specific Analysis

Source code analysis examines C/C++ source code and checks for C++ specific errors. It also
points out places of improper code style and flaws in object-oriented design solutions.

The source checker detects issues with the following:

• Memory management (leaks, mixing C and C++ memory management routines, smart
pointer usage)

• C++ exception handling (uncaught exception, exception from destructor/operator delete)

• Misuse of operator new/operator delete

• Misuse of virtual functions

346

15 Intel® Fortran Compiler User and Reference Guides

Example 1: Call of virtual function from constructor
1 #include "stdio.h"

2

3 class A {

4 public:

5 A() { destroy(); }

6 void destroy() { clear0();}

7 virtual void clear()=0;

8 void clear0() { clear(); };

9 };

10

11 class B : public A {

12 public:

13 B(){ }

14 virtual void clear(){ printf("overloaded clear"); }

15 virtual ~B() { }

16 };

17

18 int main() {

19 B b;

20 return 0;

21 }

The source checker issues the following message:

f1.cpp(8): warning #12327: pure virtual function "clear" is called from
constructor (file:f1.cpp line:5)

OpenMP* Analysis

The compiler detects some restrictions noted in the OpenMP* API. With OpenMP analysis,
additional checks for misuse of the OpenMP API are performed.

Example 1: Incorrect usage of OpenMP directives

347

15

File f1.c contains the following lines:
1 #include <stdio.h>

2 #include <omp.h>

3

4 void fff(int ii) {

5 #pragma omp barrier

6 printf("Val = %d \n", ii);

7 }

8

9 int main(void) {

10 int i=3;

11 omp_set_num_threads(3);

12 #pragma omp parallel

13 #pragma omp master

14 fff(i);

15 return 0;

16 }

Source code analysis issues the following message:

f1.c(5): error #12200: BARRIER directive is not allowed in the dynamic extent
of MASTER directive (file:f1.c line:13)

Example 2: Incorrect data dependency

348

15 Intel® Fortran Compiler User and Reference Guides

To enable data dependency analysis for a parallel program, enable diagnostics at level 3 .
1 int main(void) {

2 int i,sum = 0;

3 int a[1000];

4

5 #pragma omp parallel for reduction(+:sum)

6 for (i=1; i<999; i++) {

7 a[i] = i;

8 sum = sum + a[i + 1];

9 }

10 }

Source code analysis issues the following message:

f1.c(8): warning #12247: anti data dependence from (file:f1.c line:8) to
(file:f1.c line:7), due to "a" may lead to incorrect program execution in
parallel mode

Example 3: Incorrect synchronization

349

15

File f1.c contains the following lines:
1 #include <stdio.h>

2 #include <omp.h>

3

4 int a[1000];

5 int sum = 0;

6

7 void moo() {

8 int i;

9

10 #pragma omp task

11 for (i=0; i<1000; i++) {

12 a[i] = i;

13 sum = sum + a[i];

14 }

15 }

16

17 void foo() {

18 printf("%d\n",sum);

19 }

20

21 int main(void) {

22 int i;

350

15 Intel® Fortran Compiler User and Reference Guides

23

24 #pragma omp parallel shared(sum)

25 #pragma omp single

26 {

27 moo();

28 foo();

29 }

30 return 0;

31 }

Source code analysis issues the following message:

f1.c(18): error #12365: variable "sum" is defined at (file:f1.c line:13) in
TASK region (file:f1.c line:10) and is used before synchronization

Handling Run-Time Errors

Understanding Run-Time Errors

During execution, your program may encounter errors or exception conditions. These conditions
can result from any of the following:

• Errors that occur during I/O operations

• Invalid input data

• Argument errors in calls to the mathematical library

• Arithmetic errors

• Other system-detected errors

The Intel® Fortran run-time system (Run-Time Library or RTL) generates appropriate messages
and takes action to recover from errors whenever possible.

351

15

For a description of each Intel Fortran run-time error message, see List of Run-Time Error
Messages.

There are a few tools and aids that are helpful when an application fails and you need to diagnose
the error. Compiler-generated machine code listings and linker-generated map files can help
you understand the effects of compiler optimizations and to see how your application is laid
out in memory. They may help you interpret the information provided in a stack trace at the
time of the error. See Generating Listing and Map Files.

Forcing a Core Dump for Severe Errors

You can force a core dump for severe errors that do not usually cause a core file to be created.
Before running the program, set the DECFORT_DUMP_FLAG environment variable to any of the
common TRUE values (Y, y, Yes, yEs, True, and so forth) to cause severe errors to create a
core file. For instance, the following C shell command sets the DECFORT_DUMP_FLAG environment
variable:

setenv decfort_dump_flag y

The core file is written to the current directory and can be examined using a debugger.

NOTE. If you requested a core file to be created on severe errors and you don't get one
when expected, the problem might be that your process limit for the allowable size of a
core file is set too low (or to zero). See the man page for your shell for information on
setting process limits. For example, the C shell command limit (with no arguments) will
report your current settings, and limit coredumpsize unlimited will raise the
allowable limit to your current system maximum.

See Also
• Handling Run-Time Errors
• Run-Time Default Error Processing
• Run-Time Message Display and Format
• Values Returned at Program Termination
• Methods of Handling Errors
• Using the END, EOR, and ERR Branch Specifiers
• Using the IOSTAT Specifier and Fortran Exit Codes
• Locating Run-Time Errors
• List of Run-Time Error Messages
• Signal Handling
• Overriding the Default Run-Time Library Exception Handler

352

15 Intel® Fortran Compiler User and Reference Guides

• Using Traceback Information

Run-Time Default Error Processing

The Intel® Fortran run-time system processes a number of errors that can occur during program
execution. A default action is defined for each error recognized by the Intel Fortran run-time
system. The default actions described throughout this section occur unless overridden by explicit
error-processing methods.

The way in which the Intel Fortran run-time system actually processes errors depends upon
the following factors:

• The severity of the error. For instance, the program usually continues executing when an
error message with a severity level of warning or info (informational) is detected.

• For certain errors associated with I/O statements, whether or not an I/O error-handling
specifier was specified.

• For certain errors, whether or not the default action of an associated signal was changed.

• For certain errors related to arithmetic operations (including floating-point exceptions),
compilation options can determine whether the error is reported and the severity of the
reported error.

How arithmetic exception conditions are reported and handled depends on the cause of the
exception and how the program was compiled. Unless the program was compiled to handle
exceptions, the exception might not be reported until after the instruction that caused the
exception condition.

See Also
• Handling Run-Time Errors
• Run-Time Message Display and Format
• Values Returned at Program Termination
• Locating Run-Time Errors
• Using Traceback Information
• Data Representation

Run-Time Message Display and Format

Fortran run-time messages have the following format:

forrtl: severity (number): message-text

where:

• forrtl

353

15

Identifies the source as the Intel Fortran run-time system (Run-Time Library or RTL).

• severity

The severity levels are: severe.info , or warning,error ,

• number

This is the message number; also the IOSTAT value for I/O statements.

• message-text

Explains the event that caused the message.

The following table explains the severity levels of run-time messages, in the order of greatest
to least severity. The severity of the run-time error message determines whether program
execution continues:

DescriptionSeverity

Must be corrected. The program's execution is terminated when the error is
encountered unless the program's I/O statements use the END, EOR, or ERR branch
specifiers to transfer control, perhaps to a routine that uses the IOSTAT specifier.
(See Using the END, EOR, and ERR Branch Specifiers and Using the IOSTAT Specifier
and Fortran Exit Codes and Methods of Handling Errors.)

severe

For severe errors, stack trace information is produced by default, unless the
environment variable FOR_DISABLE_STACK_TRACE is set. If the command line
option -traceback (Linux* OS and Mac OS* X) or /traceback (Windows* OS) is
specified, the stack trace information contains program counters set to symbolic
information. Otherwise, the information contains merely hexadecimal program
counter information.

In some cases stack trace information is also produced by the compiled code at
run-time to provide details about the creation of array temporaries.

If FOR_DISABLE_STACK_TRACE is set, no stack trace information is produced.

Should be corrected. The program might continue execution, but the output from
this execution might be incorrect.

error

For errors of severity type error, stack trace information is produced by default,
unless the environment variable FOR_DISABLE_STACK_TRACE is set. If the command
line option -traceback (Linux OS and Mac OS X) or /traceback (Windows) is specified,
the stack trace information contains program counters set to symbolic information.
Otherwise, the information contains merely hexadecimal program counter
information.

In some cases stack trace information is also produced by the compiled code at
run-time to provide details about the creation of array temporaries.

354

15 Intel® Fortran Compiler User and Reference Guides

DescriptionSeverity

If FOR_DISABLE_STACK_TRACE is set, no stack trace information is produced.

Should be investigated. The program continues execution, but output from this
execution might be incorrect.

warning

For informational purposes only; the program continues.info

For a description of each Intel Fortran run-time error message, see Run-Time Default Error
Processing and related topics.

The following example applies to Linux OS and Mac OS X:

In some cases, stack trace information is produced by the compiled code at run time to provide
details about the creation of array temporaries.

(If FOR_DISABLE_STACK_TRACE is set, no stack trace information is produced.)

The following program generates an error at line 12:
program ovf
real*4 x(5),y(5)
integer*4 i

x(1) = -1e32
x(2) = 1e38
x(3) = 1e38
x(4) = 1e38
x(5) = -36.0

do i=1,5
y(i) = 100.0*(x(i))
print *, 'x = ', x(i), ' x*100.0 = ',y(i)
end do
end

The following command line produces stack trace information for the program executable.

> ifort -O0 -fpe0 -traceback ovf.f90 -o ovf.exe
> ovf.exe

x = -1.0000000E+32 x*100.0
= -1.0000000E+34
forrtl: error (72): floating overflow
Image PC Routine Line Source
ovf.exe 08049E4A MAIN__ 14 ovf.f90
ovf.exe 08049F08 Unknown Unknown Unknown
ovf.exe 400B3507 Unknown Unknown Unknown
ovf.exe 08049C51 Unknown Unknown Unknown
Abort

355

15

The following suppresses stack trace information because the FOR_DISABLE_STACK_TRACE
environment variable is set.

> setenv FOR_DISABLE_STACK_TRACE true
> ovf.exe

x = -1.0000000E+32 x*100.0 = -1.0000000E+34
forrtl: error (72): floating overflow
Abort

Run-Time Library Message Catalog File Location

The libifcore, libirc, and libm run-time libraries ship message catalogs. When a message by one
of these libraries is to be displayed, the library searches for its message catalog in a directory
specified by either the NLSPATH (Linux OS and Mac OS X), or %PATH% (Windows OS) environment
variable. If the message catalog cannot be found, the message is displayed in English.

The names of the three message catalogs are as follows:

ifcore_msg.catLinux OS and Mac OS Xlibifcore message catalogs and related text
message files ifcore_msg.msg

ifcore_msg.dllWindows OS

ifcore_msg.mc

irc_msg.catLinux OS and Mac OS Xlibirc message catalogs and related text message
files irc_msg.msg

irc_msg.dllWindows OS

irc_msg.mc

libm.catLinux OS and Mac OS Xlibm message catalogs and related text message
files libm.msg

libmUI.dllWindows OS

libmUI.mc

Values Returned at Program Termination

An Intel Fortran program can terminate in a number of ways. On Linux OS and Mac OS X,
values are returned to the shell.

356

15 Intel® Fortran Compiler User and Reference Guides

• The program runs to normal completion. A value of zero is returned.

• The program stops with a STOP statement. If an integer stop-code is specified, a status
equal to the code is returned; if no stop-code is specified, a status of zero is returned.

• The program stops because of a signal that is caught but does not allow the program to
continue. A value of 1 is returned.

• The program stops because of a severe run-time error. The error number for that run-time
error is returned. See Understanding Run-Time Errors and related topics.

• The program stops with a CALL EXIT statement. The value passed to EXIT is returned.

• The program stops with a CALL ABORT statement. A value of 134 is returned.

Methods of Handling Errors

Whenever possible, the Intel® Fortran RTL does certain error handling, such as generating
appropriate messages and taking necessary action to recover from errors. You can explicitly
supplement or override default actions by using the following methods:

• To transfer control to error-handling code within the program, use the END, EOR, and ERR
branch specifiers in I/O statements. See Using the END, EOR, and ERR Branch Specifiers.

• To identify Fortran-specific I/O errors based on the value of Intel Fortran RTL error codes,
use the I/O status specifier (IOSTAT) in I/O statements (or call the ERRSNS subroutine).
See Using the IOSTAT Specifier and Fortran Exit Codes.

• Obtain system-level error codes by using the appropriate library routines.

• For certain error conditions, use the signal handling facility to change the default action to
be taken.

Using the END, EOR, and ERR Branch Specifiers

When a severe error occurs during Intel® Fortran program execution, the default action is to
display an error message and terminate the program. To override this default action, there are
three branch specifiers you can use in I/O statements to transfer control to a specified point
in the program:

• The END branch specifier handles an end-of-file condition.

• The EOR branch specifier handles an end-of-record condition for nonadvancing reads.

• The ERR branch specifier handles all error conditions.

If you use the END, EOR, or ERR branch specifiers, no error message is displayed and execution
continues at the designated statement, usually an error-handling routine.

357

15

You might encounter an unexpected error that the error-handling routine cannot handle. In
this case, do one of the following:

• Modify the error-handling routine to display the error message number.

• Remove the END, EOR, or ERR branch specifiers from the I/O statement that causes the
error.

After you modify the source code, compile, link, and run the program to display the error
message. For example:

READ (8,50,ERR=400)

If any severe error occurs during execution of this statement, the Intel Visual Fortran RTL
transfers control to the statement at label 400. Similarly, you can use the END specifier to
handle an end-of-file condition that might otherwise be treated as an error. For example:

READ (12,70,END=550)

When using nonadvancing I/O, use the EOR specifier to handle the end-of-record condition.
For example:
150 FORMAT (F10.2, F10.2, I6)

READ (UNIT=20, FMT=150, SIZE=X, ADVANCE='NO', EOR=700) A, F, I

You can also use ERR as a specifier in an OPEN, CLOSE, or INQUIRE statement. For example:
OPEN (UNIT=10, FILE='FILNAM', STATUS='OLD', ERR=999)

If an error is detected during execution of this OPEN statement, control transfers to the statement
at label 999.

Using the IOSTAT Specifier and Fortran Exit Codes

You can use the IOSTAT specifier to continue program execution after an I/O error and to return
information about I/O operations. Certain errors are not returned in IOSTAT.

The IOSTAT specifier can supplement or replace the END, EOR, and ERR branch transfers.

Execution of an I/O statement containing the IOSTAT specifier suppresses the display of an
error message and defines the specified integer variable, array element, or scalar field reference
as one of the following, which is returned as an exit code if the program terminates:

• A value of -2 if an end-of-record condition occurs with nonadvancing reads.

• A value of -1 if an end-of-file condition occurs.

• A value of 0 for normal completion (not an error condition, end-of-file, or end-of-record
condition).

• A positive integer value if an error condition occurs. (This value is one of the Fortran-specific
IOSTAT numbers listed in the run-time error message. See List of Run-Time Error Messages,
which lists the messages.)

358

15 Intel® Fortran Compiler User and Reference Guides

Following the execution of the I/O statement and assignment of an IOSTAT value, control
transfers to the END, EOR, or ERR statement label, if any. If there is no control transfer, normal
execution continues.

You can include the for_iosdef.for file in your program to obtain symbolic definitions for
the values of IOSTAT.

The following example uses the IOSTAT specifier and the for_iosdef.for file to handle an
OPEN statement error (in the FILE specifier).

Error Handling OPEN Statement File Name
CHARACTER(LEN=40) :: FILNM
INCLUDE 'for_iosdef.for'
DO I=1,4 FILNM = ''
WRITE (6,*) 'Type file name '
READ (5,*) FILNM
OPEN (UNIT=1, FILE=FILNM, STATUS='OLD', IOSTAT=IERR, ERR=100)
WRITE (6,*) 'Opening file: ', FILNM

! (process the input file)
CLOSE (UNIT=1)
STOP

100 IF (IERR .EQ. FOR$IOS_FILNOTFOU) THEN
WRITE (6,*) 'File: ', FILNM, ' does not exist '

ELSE IF (IERR .EQ. FOR$IOS_FILNAMSPE) THEN
WRITE (6,*) 'File: ', FILNM, ' was bad, enter new file name'

ELSE
PRINT *, 'Unrecoverable error, code =', IERR
STOP

END IF
END DO
WRITE (6,*) 'File not found. Locate correct file with Explorer and run again'

END PROGRAM

Another way to obtain information about an error is the ERRSNS subroutine, which allows you
to obtain the last I/O system error code associated with an Intel Fortran RTL error (see the
Intel® Fortran Language Reference).

Locating Run-Time Errors

This topic provides some guidelines for locating the cause of exceptions and run-time errors.
Intel Fortran run-time error messages do not usually indicate the exact source location causing
the error. The following compiler options are related to handling errors and exceptions:

• The -check [keyword] (Linux OS Mac OS X) or /check[:keyword] (Windows OS) option
generates extra code to catch certain conditions at run time. For example, if you specify the
keyword of bounds, the debugger will catch and stop at array or character string bounds
errors. You can specify the keyword of bounds to generate code to perform compile-time
and run-time checks on array subscript and character substring expressions. An error is

359

15

reported if the expression is outside the dimension of the array or the length of the string.
The keyword of uninit generates code for dynamic checks of uninitialized variables. If a
variable is read before written, a run-time error routine will be called. The noformat and
nooutput_conversion keywords reduce the severity level of the associated run-time error
to allow program continuation. The pointers keyword generates code to test for
disassociated pointers and unallocatable arrays.

The following -check pointers (Linux OS and Mac OS X) or /check:pointers (Windows
OS) examples result in various output messages.

Example 1: Allocatable variable not allocated
real, allocatable:: a(:)

! allocate(a(4)) ! if a is unallocated, the next statement gets an error with
"check pointers"

a=17
print *,a
end

Output 1:
forrtl: severe (408): fort: (8): Attempt to fetch from allocatable variable A when it
is not allocated

Example 2: Pointer not associated
real, pointer:: a(:)
allocate(a(5))
a=17
print *,a
deallocate(a) ! once a is deallocated, the next statement gets an error with

"check pointers"
a=20
print *,a
end

Output 2:
17.00000 17.00000 17.00000 17.00000 17.00000

forrtl: severe (408): fort: (7): Attempt to use pointer A when it is not associated with
a target

Example 3: Cray pointer with zero value
pointer(p,a)
real, target:: b

! p=loc(b) ! if integer pointer p has no address assigned to it,
! ! the next statement gets an error with "check pointers"

b=17.
print *,a
end

Output 3:
forrtl: severe (408): fort: (9): Attempt to use pointee A when its corresponding integer
pointer P has the value zero

360

15 Intel® Fortran Compiler User and Reference Guides

• The -ftrapuv (Linux OS and Mac OS X) or /Qtrapuv (Windows OS) option is useful in
detecting uninitialized variables. It sets uninitialized local variables that are allocated on the
stack to a value that is typically interpreted as a very large integer or an invalid address.
References to these variables, which are not properly initialized by the application, are likely
to cause run-time errors that can help you detect coding errors.

• The -traceback (Linux OS and Mac OS X) or /traceback (Windows OS) option generates
extra information in the object file to provide source file traceback information when a severe
error occurs at run time. This simplifies the task of locating the cause of severe run-time
errors. Without traceback, you could try to locate the cause of the error using a map file
and the hexadecimal addresses of the stack displayed when a severe error occurs.Certain
traceback-related information accompanies severe run-time errors, as described in Using
Traceback Information.

• The -fpe (Linux OS and Mac OS X) or /fpe (Windows OS) option controls the handling of
floating-point arithmetic exceptions (IEEE arithmetic) at run time. If you specify the -fpe3
(Linux OS and Mac OS X) or /fpe:3 (Windows OS) compiler option, all floating-point
exceptions are disabled, allowing IEEE exceptional values and program continuation. In
contrast, specifying -fpe0 or /fpe:0 stops execution when an exceptional value (such as
a NaN) is generated or when attempting to use a denormalized number, which usually allows
you to localize the cause of the error.

• The -warn and -nowarn (Linux OS and Mac OS X) or /warn and /nowarn (Windows OS)
options control compile-time warning messages, which, in some circumstances, can help
determine the cause of a run-time error.

• On Linux OS and Mac OS X, the -fexceptions option enables C++ exception handling
table generation, preventing Fortran routines in mixed-language applications from interfering
with exception handling between C++ routines.

• On Windows OS, the Compilation Diagnostics Options in the IDE control compile-time
diagnostic messages, which, in some circumstances can help determine the cause of a
run-time error.

See Also
• Handling Run-Time Errors
• Understanding Run-Time Errors

List of Run-Time Error Messages

This section lists the errors processed by the Intel Fortran run-time library (RTL). For each
error, the table provides the error number, the severity code, error message text, condition
symbol name, and a detailed description of the error.

361

15

To define the condition symbol values (PARAMETER statements) in your program, include the
following file:
for_iosdef.for

As described in the table, the severity of the message determines which of the following occurs:

• with info and warning, program execution continues

• with error, the results may be incorrect

• with severe, program execution stops (unless a recovery method is specified)

In the last case, to prevent program termination, you must include either an appropriate I/O
error-handling specifier and recompile or, for certain errors, change the default action of a
signal before you run the program again.

In the following table, the first column lists error numbers returned to IOSTAT variables when
an I/O error is detected.

The first line of the second column provides the message as it is displayed (following forrtl:),
including the severity level, message number, and the message text. The following lines of the
second column contain the status condition symbol (such as FOR$IOS_INCRECTYP) and an
explanation of the message.

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

severe (1): Not a Fortran-specific error11

FOR$IOS_NOTFORSPE. An error in the user program or in the RTL was not an Intel
Fortran-specific error and was not reportable through any other Intel Fortran
run-time messages.

severe (8): Internal consistency check failure8

FOR$IOS_BUG_CHECK. Internal error. Please check that the program is correct.
Recompile if an error existed in the program. If this error persists, submit a problem
report.

severe (9): Permission to access file denied9

FOR$IOS_PERACCFIL. Check the permissions of the specified file and whether the
network device is mapped and available. Make sure the correct file and device was
being accessed. Change the protection, specific file, or process used before rerunning
the program.

severe (10): Cannot overwrite existing file10

362

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_CANOVEEXI. Specified file xxx already exists when OPEN statement
specified STATUS='NEW' (create new file) using I/O unit x. Make sure correct file
name, directory path, unit, and so forth were specified in the source program.
Decide whether to:

• Rename or remove the existing file before rerunning the program.

• Modify the source file to specify different file specification, I/O unit, or OPEN
statement STATUS.

info (11): Unit not connected111

FOR$IOS_UNINOTCON. The specified unit was not open at the time of the attempted
I/O operation. Check if correct unit number was specified. If appropriate, use an
OPEN statement to explicitly open the file (connect the file to the unit number).

severe (17): Syntax error in NAMELIST input17

FOR$IOS_SYNERRNAM. The syntax of input to a namelist-directed READ statement
was incorrect.

severe (18): Too many values for NAMELIST variable18

FOR$IOS_TOOMANVAL. An attempt was made to assign too many values to a
variable during a namelist READ statement.

severe (19): Invalid reference to variable in NAMELIST input19

FOR$IOS_INVREFVAR. One of the following conditions occurred:

• The variable was not a member of the namelist group.

• An attempt was made to subscript a scalar variable.

• A subscript of the array variable was out-of-bounds.

• An array variable was specified with too many or too few subscripts for the
variable.

• An attempt was made to specify a substring of a noncharacter variable or array
name.

• A substring specifier of the character variable was out-of-bounds.

• A subscript or substring specifier of the variable was not an integer constant.

• An attempt was made to specify a substring by using an unsubscripted array
variable.

363

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

severe (20): REWIND error20

FOR$IOS_REWERR. One of the following conditions occurred:

• The file was not a sequential file.

• The file was not opened for sequential or append access.

• The Intel Fortran RTL I/O system detected an error condition during execution
of a REWIND statement.

severe (21): Duplicate file specifications21

FOR$IOS_DUPFILSPE. Multiple attempts were made to specify file attributes without
an intervening close operation. A DEFINE FILE statement was followed by another
DEFINE FILE statement or an OPEN statement.

severe (22): Input record too long22

FOR$IOS_INPRECTOO. A record was read that exceeded the explicit or default
record length specified when the file was opened. To read the file, use an OPEN
statement with a RECL= value (record length) of the appropriate size.

severe (23): BACKSPACE error23

FOR$IOS_BACERR. The Intel Fortran RTL I/O system detected an error condition
during execution of a BACKSPACE statement.

severe (24): End-of-file during read241

FOR$IOS_ENDDURREA. One of the following conditions occurred:

• An Intel Fortran RTL I/O system end-of-file condition was encountered during
execution of a READ statement that did not contain an END, ERR, or IOSTAT
specification.

• An end-of-file record written by the ENDFILE statement was encountered during
execution of a READ statement that did not contain an END, ERR, or IOSTAT
specification.

• An attempt was made to read past the end of an internal file character string
or array during execution of a READ statement that did not contain an END,
ERR, or IOSTAT specification.

This error is returned by END and ERRSNS.

severe (25): Record number outside range25

364

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_RECNUMOUT. A direct access READ, WRITE, or FIND statement specified
a record number outside the range specified when the file was opened.

severe (26): OPEN or DEFINE FILE required26

FOR$IOS_OPEDEFREQ. A direct access READ, WRITE, or FIND statement was
attempted for a file when no prior DEFINE FILE or OPEN statement with
ACCESS='DIRECT' was performed for that file.

severe (27): Too many records in I/O statement27

FOR$IOS_TOOMANREC. An attempt was made to do one of the following:

• Read or write more than one record with an ENCODE or DECODE statement.

• Write more records than existed.

severe (28): CLOSE error28

FOR$IOS_CLOERR. An error condition was detected by the Intel Fortran RTL I/O
system during execution of a CLOSE statement.

severe (29): File not found29

FOR$IOS_FILNOTFOU. A file with the specified name could not be found during an
open operation.

severe (30): Open failure30

FOR$IOS_OPEFAI. An error was detected by the Intel Fortran RTL I/O system while
attempting to open a file in an OPEN, INQUIRE, or other I/O statement. This
message is issued when the error condition is not one of the more common
conditions for which specific error messages are provided. It can occur when an
OPEN operation was attempted for one of the following:

• Segmented file that was not on a disk or a raw magnetic tape

• Standard I/O file that had been closed

severe (31): Mixed file access modes31

FOR$IOS_MIXFILACC. An attempt was made to use any of the following
combinations:

• Formatted and unformatted operations on the same unit

• An invalid combination of access modes on a unit, such as direct and sequential

365

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

• An Intel Fortran RTL I/O statement on a logical unit that was opened by a
program coded in another language

severe (32): Invalid logical unit number32

FOR$IOS_INVLOGUNI. A logical unit number greater than 2,147,483,647 or less
than zero was used in an I/O statement.

severe (33): ENDFILE error33

FOR$IOS_ENDFILERR. One of the following conditions occurred:

• The file was not a sequential organization file with variable-length records.

• The file was not opened for sequential, append, or direct access.

• An unformatted file did not contain segmented records.

• The Intel Fortran RTL I/O system detected an error during execution of an
ENDFILE statement.

severe (34): Unit already open34

FOR$IOS_UNIALROPE. A DEFINE FILE statement specified a logical unit that was
already opened.

severe (35): Segmented record format error35

FOR$IOS_SEGRECFOR. An invalid segmented record control data word was detected
in an unformatted sequential file. The file was probably either created with
RECORDTYPE='FIXED' or 'VARIABLE' in effect, or was created by a program written
in a language other than Fortran or Fortran 90.

severe (36): Attempt to access non-existent record36

FOR$IOS_ATTACCNON. A direct-access READ or FIND statement attempted to
access beyond the end of a relative file (or a sequential file on disk with fixed-length
records) or access a record that was previously deleted from a relative file.

severe (37): Inconsistent record length37

FOR$IOS_INCRECLEN. An attempt was made to open a direct access file without
specifying a record length.

severe (38): Error during write38

366

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_ERRDURWRI. The Intel Fortran RTL I/O system detected an error condition
during execution of a WRITE statement.

severe (39): Error during read39

FOR$IOS_ERRDURREA. The Intel Fortran RTL I/O system detected an error condition
during execution of a READ statement.

severe (40): Recursive I/O operation40

FOR$IOS_RECIO_OPE. While processing an I/O statement for a logical unit, another
I/O operation on the same logical unit was attempted, such as a function
subprogram that performs I/O to the same logical unit that was referenced in an
expression in an I/O list or variable format expression.

severe (41): Insufficient virtual memory41

FOR$IOS_INSVIRMEM. The Intel Fortran RTL attempted to exceed its available
virtual memory while dynamically allocating space. To overcome this problem,
investigate increasing the data limit. Before you try to run this program again, wait
until the new system resources take effect.

Note: This error can be returned by STAT in an ALLOCATE or a DEALLOCATE
statement.

severe (42): No such device42

FOR$IOS_NO_SUCDEV. A pathname included an invalid or unknown device name
when an OPEN operation was attempted.

severe (43): File name specification error43

FOR$IOS_FILNAMSPE. A pathname or file name given to an OPEN or INQUIRE
statement was not acceptable to the Intel Fortran RTL I/O system.

severe (44): Inconsistent record type44

FOR$IOS_INCRECTYP. The RECORDTYPE value in an OPEN statement did not match
the record type attribute of the existing file that was opened.

severe (45): Keyword value error in OPEN statement45

FOR$IOS_KEYVALERR. An improper value was specified for an OPEN or CLOSE
statement specifier requiring a value.

severe (46): Inconsistent OPEN/CLOSE parameters46

367

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_INCOPECLO. Specifications in an OPEN or CLOSE statement were
inconsistent. Some invalid combinations follow:

• READONLY or ACTION='READ' with STATUS='NEW' or STATUS='SCRATCH'

• READONLY with STATUS='REPLACE', ACTION='WRITE', or ACTION='READWRITE'

• ACCESS='APPEND' with READONLY, ACTION='READ', STATUS='NEW', or
STATUS='SCRATCH'

• DISPOSE='SAVE', 'PRINT', or 'SUBMIT' with STATUS='SCRATCH'

• DISPOSE='DELETE' with READONLY

• CLOSE statement STATUS='DELETE' with OPEN statement READONLY

• ACCESS='DIRECT' with POSITION='APPEND' or 'ASIS'

severe (47): Write to READONLY file47

FOR$IOS_WRIREAFIL. A write operation was attempted to a file that was declared
ACTION='READ' or READONLY in the OPEN statement that is currently in effect.

severe (48): Invalid argument to Fortran Run-Time Library48

FOR$IOS_INVARGFOR. The compiler passed an invalid or improperly coded argument
to the Intel Fortran RTL. This can occur if the compiler is newer than the RTL in
use.

severe (51): Inconsistent file organization51

FOR$IOS_INCFILORG. The file organization specified in an OPEN statement did not
match the organization of the existing file.

severe (53): No current record53

FOR$IOS_NO_CURREC. Attempted to execute a REWRITE statement to rewrite a
record when the current record was undefined. To define the current record, execute
a successful READ statement. You can optionally perform an INQUIRE statement
on the logical unit after the READ statement and before the REWRITE statement.
No other operations on the logical unit may be performed between the READ and
REWRITE statements.

severe (55): DELETE error55

FOR$IOS_DELERR. An error condition was detected by the Intel Fortran RTL I/O
system during execution of a DELETE statement.

368

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

severe (57): FIND error57

FOR$IOS_FINERR. The Intel Fortran RTL I/O system detected an error condition
during execution of a FIND statement.

info (58): Format syntax error at or near xx581

FOR$IOS_FMTSYN. Check the statement containing xx, a character substring from
the format string, for a format syntax error. For more information, see the FORMAT
statement.

severe (59): List-directed I/O syntax error59

FOR$IOS_LISIO_SYN. The data in a list-directed input record had an invalid format,
or the type of the constant was incompatible with the corresponding variable. The
value of the variable was unchanged.

Note: The ERR transfer is taken after completion of the I/O statement for error
number 59. The resulting file status and record position are the same as if no error
had occurred. However, other I/O errors take the ERR transfer as soon as the error
is detected, so file status and record position are undefined.

severe (60): Infinite format loop60

FOR$IOS_INFFORLOO. The format associated with an I/O statement that included
an I/O list had no field descriptors to use in transferring those values.

severe or info(61): Format/variable-type mismatch61

FOR$IOS_FORVARMIS. An attempt was made either to read or write a real variable
with an integer field descriptor (I, L, O, Z, B), or to read or write an integer or
logical variable with a real field descriptor (D, E, or F). To suppress this error
message, see the description of /check:noformat.

Note: The severity depends on the -check keywords or /check:keywords option
used during the compilation command. The ERR transfer is taken after completion
of the I/O statement for error numbers 61, 63, 64, and 68. The resulting file status
and record position are the same as if no error had occurred. However, other I/O
errors take the ERR transfer as soon as the error is detected, so file status and
record position are undefined.

severe (62): Syntax error in format62

FOR$IOS_SYNERRFOR. A syntax error was encountered while the RTL was
processing a format stored in an array or character variable.

369

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

error or info(63): Output conversion error63

FOR$IOS_OUTCONERR. During a formatted output operation, the value of a
particular number could not be output in the specified field length without loss of
significant digits. When this situation is encountered, the overflowed field is filled
with asterisks to indicate the error in the output record. If no ERR address has been
defined for this error, the program continues after the error message is displayed.
To suppress this error message, see the description of /check:nooutput_conversion.

Note: The severity depends on the -check keywords or /check:keywords option
used during the compilation command. The ERR transfer is taken after completion
of the I/O statement for error numbers 61, 63, 64, and 68. The resulting file status
and record position are the same as if no error had occurred. However, other I/O
errors take the ERR transfer as soon as the error is detected, so file status and
record position are undefined.

severe (64): Input conversion error64

FOR$IOS_INPCONERR. During a formatted input operation, an invalid character
was detected in an input field, or the input value overflowed the range representable
in the input variable. The value of the variable was set to zero.

Note: The ERR transfer is taken after completion of the I/O statement for error
numbers 61, 63, 64, and 68. The resulting file status and record position are the
same as if no error had occurred. However, other I/O errors take the ERR transfer
as soon as the error is detected, so file status and record position are undefined.

error (65): Floating invalid65

FOR$IOS_FLTINV. During an arithmetic operation, the floating-point values used
in a calculation were invalid for the type of operation requested or invalid exceptional
values. For example, the error can occur if you request a log of the floating-point
values 0.0 or a negative number. For certain arithmetic expressions, specifying the
/check:nopower option can suppress this message.

severe (66): Output statement overflows record66

FOR$IOS_OUTSTAOVE. An output statement attempted to transfer more data than
would fit in the maximum record size.

severe (67): Input statement requires too much data67

FOR$IOS_INPSTAREQ. Attempted to read more data than exists in a record with
an unformatted READ statement or with a formatted sequential READ statement
from a file opened with a PAD specifier value of 'NO'.

370

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

severe (68): Variable format expression value error68

FOR$IOS_VFEVALERR. The value of a variable format expression was not within
the range acceptable for its intended use; for example, a field width was less than
or equal to zero. A value of 1 was assumed, except for a P edit descriptor, for which
a value of zero was assumed.

Note: The ERR transfer is taken after completion of the I/O statement for error
numbers 61, 63, 64, and 68. The resulting file status and record position are the
same as if no error had occurred. However, other I/O errors take the ERR transfer
as soon as the error is detected, so file status and record position are undefined.

error (69): Process interrupted (SIGINT)691

FOR$IOS_SIGINT. The process received the signal SIGINT. Determine source of
this interrupt signal (described in signal(3)).

severe (70): Integer overflow701

FOR$IOS_INTOVF. During an arithmetic operation, an integer value exceeded byte,
word, or longword range. The result of the operation was the correct low-order
part. Consider specifying a larger integer data size (modify source program or, for
an INTEGER declaration, possibly use the /integer-size:size option).

severe (71): Integer divide by zero711

FOR$IOS_INTDIV. During an integer arithmetic operation, an attempt was made
to divide by zero. The result of the operation was set to the dividend, which is
equivalent to division by 1.

error (72): Floating overflow721

FOR$IOS_FLTOVF. During an arithmetic operation, a floating-point value exceeded
the largest representable value for that data type. See Data Representation for
ranges of the various data types.

error (73): Floating divide by zero731

FOR$IOS_FLTDIV. During a floating-point arithmetic operation, an attempt was
made to divide by zero.

error (74): Floating underflow741

371

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_FLTUND. During an arithmetic operation, a floating-point value became
less than the smallest finite value for that data type. Depending on the values of
the /fpe:n option, the underflowed result was either set to zero or allowed to
gradually underflow. See the Data Representation for ranges of the various data
types.

error (75): Floating point exception751

FOR$IOS_SIGFPE. A floating-point exception occurred. Possible causes include:

• Division by zero

• Overflow

• An invalid operation, such as subtraction of infinite values, multiplication of zero
by infinity without signs), division of zero by zero or infinity by infinity

• Conversion of floating-point to fixed-point format when an overflow prevents
conversion

error (76): IOT trap signal761

FOR$IOS_SIGIOT. Core dump file created. Examine core dump for possible cause
of this IOT signal.

severe (77): Subscript out of range771

FOR$IOS_SUBRNG. An array reference was detected outside the declared array
bounds.

error (78): Process killed781

FOR$IOS_SIGTERM. The process received a signal requesting termination of this
process. Determine the source of this software termination signal.

error (79): Process quit791

FOR$IOS_SIGQUIT. The process received a signal requesting termination of itself.
Determine the source of this quit signal.

info (95): Floating-point conversion failed951

FOR$IOS_FLOCONFAI. The attempted unformatted read or write of nonnative
floating-point data failed because the floating-point value:

• Exceeded the allowable maximum value for the equivalent native format and
was set equal to infinity (plus or minus)

372

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

• Was infinity (plus or minus) and was set to infinity (plus or minus)

• Was invalid and was set to not a number (NaN)

Very small numbers are set to zero (0). This error could be caused by the specified
nonnative floating-point format not matching the floating-point format found in the
specified file. Check the following:

• The correct file was specified.

• The record layout matches the format Intel Fortran is expecting.

• The ranges for the data being used (see Data Representation).

• The correct nonnative floating-point data format was specified (see Supported
Native and Nonnative Numeric Formats).

info (96): F_UFMTENDIAN environment variable was ignored:erroneous
syntax

96

FOR$IOS_UFMTENDIAN. Syntax for specifying whether little endian or big endian
conversion is performed for a given Fortran unit was incorrect. Even though the
program will run, the results might not be correct if you do not change the value
of F_UFMTENDIAN. For correct syntax, see Environment Variable F_UFMTENDIAN
Method.

Severe (108): Cannot stat file108

FOR$IOS_CANSTAFILE. Make sure correct file and unit were specified.

severe (120): Operation requires seek ability120

FOR$IOS_OPEREQSEE. Attempted an operation on a file that requires the ability
to perform seek operations on that file. Make sure the correct unit, directory path,
and file were specified.

No associated message134

Program was terminated internally through abort().

severe (138): Array index out of bounds1381

FOR$IOS_BRK_RANGE. An array subscript is outside the dimensioned boundaries
of that array. Recompile with the /check:bounds option set.

severe: (139): Array index out of bounds for index nn1391

373

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_BRK_RANGE2. An array subscript is outside the dimensioned boundaries
of that array. Recompile with the /check:bounds option set.

error (140): Floating inexact1401

FOR$IOS_FLTINE. A floating-point arithmetic or conversion operation gave a result
that differs from the mathematically exact result. This trap is reported if the rounded
result of an IEEE operation is not exact.

severe (144): Reserved operand1441

FOR$IOS_ROPRAND. The Intel Fortran RTL encountered a reserved operand while
executing your program. Please report the problem to Intel.

severe (145): Assertion error1451

FOR$IOS_ASSERTERR. The Intel Fortran RTL encountered an assertion error. Please
report the problem to Intel.

severe (146): Null pointer error1461

FOR$IOS_NULPTRERR. Attempted to use a pointer that does not contain an address.
Modify the source program, recompile, and relink.

severe (147): Stack overflow1471

FOR$IOS_STKOVF. The Intel Fortran RTL encountered a stack overflow while
executing your program.

severe (148): String length error1481

FOR$IOS_STRLENERR. During a string operation, an integer value appears in a
context where the value of the integer is outside the permissible string length
range. Recompile with the /check:bounds option.

severe (149): Substring error1491

FOR$IOS_SUBSTRERR. An array subscript is outside the dimensioned boundaries
of an array. Recompile with the /check:bounds option.

severe (150): Range error1501

FOR$IOS_RANGEERR. An integer value appears in a context where the value of
the integer is outside the permissible range.

severe (151): Allocatable array is already allocated1511

374

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_INVREALLOC. An allocatable array must not already be allocated when
you attempt to allocate it. You must deallocate the array before it can again be
allocated.

Note: This error can be returned by STAT in an ALLOCATE statement.

severe (152): Unresolved contention for DEC Fortran RTL global resource1521

FOR$IOS_RESACQFAI. Failed to acquire an Intel Fortran RTL global resource for a
reentrant routine. For a multithreaded program, the requested global resource is
held by a different thread in your program. For a program using asynchronous
handlers, the requested global resource is held by the calling part of the program
(such as main program) and your asynchronous handler attempted to acquire the
same global resource.

severe (153): Allocatable array or pointer is not allocated1531

FOR$IOS_INVDEALLOC. A Fortran 90 allocatable array or pointer must already be
allocated when you attempt to deallocate it. You must allocate the array or pointer
before it can again be deallocated.

Note: This error can be returned by STAT in a DEALLOCATE statement.

severe(154): Array index out of bounds1541

FOR$IOS_RANGE. An array subscript is outside the dimensioned boundaries of that
array. Recompile with the /check:bounds option set.

severe(155): Array index out of bounds for index nn1551

FOR$IOS_RANGE2. An array subscript is outside the dimensioned boundaries of
that array. Recompile with the /check:bounds option set.

severe(156): GENTRAP code = hex dec1561

FOR$IOS_DEF_GENTRAP. The Intel Fortran RTL has detected an unknown GENTRAP
code. The cause is most likely a software problem due to memory corruption, or
software signalling an exception with an incorrect exception code. Try recompiling
with the /check:bounds option set to see if that finds the problem.

severe(157): Program Exception - access violation1571

FOR$IOS_ACCVIO. The program tried to read from or write to a virtual address for
which it does not have the appropriate access. Try recompiling with the
/check:bounds option set, to see if the problem is an out-of-bounds memory
reference or a argument mismatch that causes data to be treated as an address.

375

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

Other causes of this error include:

• Mismatches in C vs. STDCALL calling mechanisms, causing the stack to become
corrupted

• References to unallocated pointers

• Attempting to access a protected (for example, read-only) address

severe(158): Program Exception - datatype misalignment1581

FOR$IOS_DTYPE_MISALIGN. The Intel Fortran RTL has detected data that is not
aligned on a natural boundary for the data type specified. For example, a REAL(8)
data item aligned on natural boundaries has an address that is a multiple of 8. To
ensure naturally aligned data, use the /align option.

This is an operating system error. See your operating system documentation for
more information.

severe(159): Program Exception - breakpoint1591

FOR$IOS_PGM_BPT. The Intel Fortran RTL has encountered a breakpoint in the
program.

This is an operating system error. See your operating system documentation for
more information.

severe(160): Program Exception - single step1601

FOR$IOS_PGM_SS. A trace trap or other single-instruction mechanism has signaled
that one instruction has been executed.

This is an operating system error. See your operating system documentation for
more information.

severe(161): Program Exception - array bounds exceeded1611

FOR$IOS_PGM_BOUNDS. The program tried to access an array element that is
outside the specified boundaries of the array. Recompile with the /check:bounds
option set.

severe(162): Program Exception - denormal floating-point operand1621

FOR$IOS_PGM_DENORM. A floating-point arithmetic or conversion operation has
a denormalized number as an operand. A denormalized number is smaller than the
lowest value in the normal range for the data type specified. See Data
Representation for ranges for floating-point types.

376

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

Either locate and correct the source code causing the denormalized value or, if a
denormalized value is acceptable, specify a different value for the /fpe compiler
option to allow program continuation.

severe(163): Program Exception - floating stack check1631

FOR$IOS_PGM_FLTSTK. During a floating-point operation, the floating-point register
stack on systems using IA-32 architecture overflowed or underflowed. This is a
fatal exception. The most likely cause is calling a REAL function as if it were an
INTEGER function or subroutine, or calling an INTEGER function or subroutine as
if it were a REAL function.

Carefully check that the calling code and routine being called agree as to how the
routine is declared. If you are unable to resolve the issue, please send a problem
report with an example to Intel.

severe(164): Program Exception - integer divide by zero1641

FOR$IOS_PGM_INTDIV. During an integer arithmetic operation, an attempt was
made to divide by zero. Locate and correct the source code causing the integer
divide by zero.

severe(165): Program Exception - integer overflow1651

FOR$IOS_PGM_INTOVF. During an arithmetic operation, an integer value exceeded
the largest representable value for that data type. See Data Representation for
ranges for INTEGER types.

severe(166): Program Exception - privileged instruction1661

FOR$IOS_PGM_PRIVINST. The program tried to execute an instruction whose
operation is not allowed in the current machine mode.

This is an operating system error. See your operating system documentation for
more information.

severe(167): Program Exception - in page error1671

FOR$IOS_PGM_INPGERR. The program tried to access a page that was not present,
so the system was unable to load the page. For example, this error might occur if
a network connection was lost while trying to run a program over the network.

This is an operating system error. See your operating system documentation for
more information.

severe(168): Program Exception - illegal instruction1681

377

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_PGM_ILLINST. The program tried to execute an invalid instruction.

This is an operating system error. See your operating system documentation for
more information.

severe(169): Program Exception - noncontinuable exception1691

FOR$IOS_PGM_NOCONTEXCP. The program tried to continue execution after a
noncontinuable exception occurred.

This is an operating system error. See your operating system documentation for
more information.

severe(170): Program Exception - stack overflow1701

FOR$IOS_PGM_STKOVF. The Intel Fortran RTL has detected a stack overflow while
executing your program. See your Release Notes for information on how to increase
stack size.

severe(171): Program Exception - invalid disposition1711

FOR$IOS_PGM_INVDISP. An exception handler returned an invalid disposition to
the exception dispatcher. Programmers using a high-level language should never
encounter this exception.

This is an operating system error. See your operating system documentation for
more information.

severe(172): Program Exception - exception code = hex dec1721

FOR$IOS_PGM_EXCP_CODE. The Intel Fortran RTL has detected an unknown
exception code.

This is an operating system error. See your operating system documentation for
more information.

severe(173): A pointer passed to DEALLOCATE points to an array that
cannot be deallocated

1731

FOR$IOS_INVDEALLOC2. A pointer that was passed to DEALLOCATE pointed to an
explicit array, an array slice, or some other type of memory that could not be
deallocated in a DEALLOCATE statement. Only whole arrays previous allocated with
an ALLOCATE statement may be validly passed to DEALLOCATE.

Note: This error can be returned by STAT in a DEALLOCATE statement.

severe (174): SIGSEGV, message-text1741

378

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_SIGSEGV. One of two possible messages occurs for this error number:

• severe (174): SIGSEGV, segmentation fault occurred

This message indicates that the program attempted an invalid memory reference.
Check the program for possible errors.

• severe (174): SIGSEGV, possible program stack overflow occurred

The following explanatory text also appears:

Program requirements exceed current stacksize resource limit.

severe(175): DATE argument to DATE_AND_TIME is too short (LEN=n),
required LEN=8

1751

FOR$IOS_SHORTDATEARG. The number of characters associated with the DATE
argument to the DATE_AND_TIME intrinsic was shorter than the required length.
You must increase the number of characters passed in for this argument to be at
least 8 characters in length. Verify that the TIME and ZONE arguments also meet
their minimum lengths.

severe(176): TIME argument to DATE_AND_TIME is too short (LEN=n),
required LEN=10

1761

FOR$IOS_SHORTTIMEARG. The number of characters associated with the TIME
argument to the DATE_AND_TIME intrinsic was shorter than the required length.
You must increase the number of characters passed in for this argument to be at
least 10 characters in length. Verify that the DATE and ZONE arguments also meet
their minimum lengths.

severe(177): ZONE argument to DATE_AND_TIME is too short (LEN=n),
required LEN=5

1771

FOR$IOS_SHORTZONEARG. The number of characters associated with the ZONE
argument to the DATE_AND_TIME intrinsic was shorter than the required length.
You must increase the number of characters passed in for this argument to be at
least 5 characters in length. Verify that the DATE and TIME arguments also meet
their minimum lengths.

severe(178): Divide by zero1781

FOR$IOS_DIV. A floating-point or integer divide-by-zero exception occurred.

severe(179): Cannot allocate array - overflow on array size calculation1791

379

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_ARRSIZEOVF. An attempt to dynamically allocate storage for an array
failed because the required storage size exceeds addressable memory.

Note: This error can be returned by STAT in an ALLOCATE statement.

severe (256): Unformatted I/O to unit open for formatted transfers256

FOR$IOS_UNFIO_FMT. Attempted unformatted I/O to a unit where the OPEN
statement (FORM specifier) indicated the file was formatted. Check that the correct
unit (file) was specified. If the FORM specifier was not present in the OPEN statement
and the file contains unformatted data, specify FORM='UNFORMATTED'in the OPEN
statement. Otherwise, if appropriate, use formatted I/O (such as list-directed or
namelist I/O).

severe (257): Formatted I/O to unit open for unformatted transfers257

FOR$IOS_FMTIO_UNF. Attempted formatted I/O (such as list-directed or namelist
I/O) to a unit where the OPEN statement indicated the file was unformatted (FORM
specifier). Check that the correct unit (file) was specified. If the FORM specifier
was not present in the OPEN statement and the file contains formatted data, specify
FORM='FORMATTED' in the OPEN statement. Otherwise, if appropriate, use
unformatted I/O.

severe (259): Sequential-access I/O to unit open for direct access259

FOR$IOS_SEQIO_DIR. The OPEN statement for this unit number specified direct
access and the I/O statement specifies sequential access. Check the OPEN statement
and make sure the I/O statement uses the correct unit number and type of access.

severe (264): operation requires file to be on disk or tape264

FOR$IOS_OPEREQDIS. Attempted to use a BACKSPACE statement on such devices
as a terminal.

severe (265): operation requires sequential file organization and access265

FOR$IOS_OPEREQSEQ. Attempted to use a BACKSPACE statement on a file whose
organization was not sequential or whose access was not sequential. A BACKSPACE
statement can only be used for sequential files opened for sequential access.

error (266): Fortran abort routine called2661

FOR$IOS_PROABOUSE. The program called the abort routine to terminate itself.

severe (268): End of record during read2681

380

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_ENDRECDUR. An end-of-record condition was encountered during
execution of a nonadvancing I/O READ statement that did not specify the EOR
branch specifier.

info(296): nn floating inexact traps2961

FOR$IOS_FLOINEEXC. The total number of floating-point inexact data traps
encountered during program execution was nn. This summary message appears
at program completion.

info (297): nn floating invalid traps2971

FOR$IOS_FLOINVEXC. The total number of floating-point invalid data traps
encountered during program execution was nn. This summary message appears
at program completion.

info (298): nn floating overflow traps2981

FOR$IOS_FLOOVFEXC. The total number of floating-point overflow traps encountered
during program execution was nn. This summary message appears at program
completion.

info (299): nn floating divide-by-zero traps2991

FOR$IOS_FLODIV0EXC. The total number of floating-point divide-by-zero traps
encountered during program execution was nn. This summary message appears
at program completion.

info (300): nn floating underflow traps3001

FOR$IOS_FLOUNDEXC. The total number of floating-point underflow traps
encountered during program execution was nn. This summary message appears
at program completion.

severe (540): Array or substring subscript expression out of range540

FOR$IOS_F6096. An expression used to index an array was smaller than the lower
dimension bound or larger than the upper dimension bound.

severe (541): CHARACTER substring expression out of range541

FOR$IOS_F6097. An expression used to index a character substring was illegal.

severe (542): Label not found in assigned GOTO list542

381

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_F6098. The label assigned to the integer-variable name was not specified
in the label list of the assigned GOTO statement.

severe (543): INTEGER arithmetic overflow543

FOR$IOS_F6099. This error occurs whenever integer arithmetic results in overflow.

severe (544): INTEGER overflow on input544

FOR$IOS_F6100. An integer item exceeded the legal size limits.

An INTEGER (1) item must be in the range -127 to 128. An INTEGER (2) item must
be in the range -32,767 to 32,768. An INTEGER (4) item must be in the range
-2,147,483,647 to 2,147,483,648.

severe (545): Invalid INTEGER545

FOR$IOS_F6101. Either an illegal character appeared as part of an integer, or a
numeric character larger than the radix was used in an alternate radix specifier.

severe (546): REAL indefinite (uninitialized or previous error)546

FOR$IOS_F6102. An invalid real number was read from a file, an internal variable,
or the console. This can happen if an invalid number is generated by passing an
illegal argument to an intrinsic function -- for example, SQRT(-1) or ASIN(2). If
the invalid result is written and then later read, the error will be generated.

severe (547): Invalid REAL547

FOR$IOS_F103. An illegal character appeared as part of a real number.

severe (548): REAL math overflow548

FOR$IOS_F6104. A real value was too large. Floating-point overflows in either
direct or emulated mode generate NaN (Not-A-Number) exceptions, which appear
in the output field as asterisks (*) or the letters NAN.

severe (550): INTEGER assignment overflow550

FOR$IOS_F6106. This error occurs when assignment to an integer is out of range.

severe (551): Formatted I/O not consistent with OPEN options551

FOR$IOS_F6200. The program tried to perform formatted I/O on a unit opened
with FORM='UNFORMATTED' or FORM='BINARY'.

severe (552): List-directed I/O not consistent with OPEN options552

382

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_F6201. The program tried to perform list-directed I/O on a file that was
not opened with FORM='FORMATTED' and ACCESS='SEQUENTIAL'.

severe (553): Terminal I/O not consistent with OPEN options553

FOR$IOS_F6202. When a special device such as CON, LPT1, or PRN is opened in
an OPEN statement, its access must be sequential and its format must be either
formatted or binary. By default ACCESS='SEQUENTIAL' and FORM='FORMATTED'
in OPEN statements.

To generate this error the device's OPEN statement must contain an option not
appropriate for a terminal device, such as ACCESS='DIRECT' or
FORM='UNFORMATTED'.

severe (554): Direct I/O not consistent with OPEN options554

FOR$IOS_F6203. A REC= option was included in a statement that transferred data
to a file that was opened with the ACCESS='SEQUENTIAL' option.

severe (555): Unformatted I/O not consistent with OPEN options555

FOR$IOS_F6204. If a file is opened with FORM='FORMATTED', unformatted or
binary data transfer is prohibited.

severe (556): A edit descriptor expected for CHARACTER556

FOR$IOS_F6205. The A edit descriptor was not specified when a character data
item was read or written using formatted I/O.

severe (557): E, F, D, or G edit descriptor expected for REAL557

FOR$IOS_F6206. The E, F, D, or G edit descriptor was not specified when a real
data item was read or written using formatted I/O.

severe (558): I edit descriptor expected for INTEGER558

FOR$IOS_F6207. The I edit descriptor was not specified when an integer data item
was read or written using formatted I/O.

severe (559): L edit descriptor expected for LOGICAL559

FOR$IOS_F6208. The L edit descriptor was not specified when a logical data item
was read or written using formatted I/O.

severe (560): File already open: parameter mismatch560

383

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_F6209. An OPEN statement specified a connection between a unit and a
filename that was already in effect. In this case, only the BLANK= option can have
a different setting.

severe (561): Namelist I/O not consistent with OPEN options561

FOR$IOS_F6210. The program tried to perform namelist I/O on a file that was not
opened with FORM='FORMATTED' and ACCESS='SEQUENTIAL.'

severe (562): IOFOCUS option illegal with non-window unit562

FOR$IOS_F6211. IOFOCUS was specified in an OPEN or INQUIRE statement for a
non-window unit. The IOFOCUS option can only be used when the unit opened or
inquired about is a QuickWin child window.

severe (563): IOFOCUS option illegal without QuickWin563

FOR$IOS_F6212. IOFOCUS was specified in an OPEN or INQUIRE statement for a
non-QuickWin application. The IOFOCUS option can only be used when the unit
opened or inquired about is a QuickWin child window.

severe (564): TITLE illegal with non-window unit564

FOR$IOS_F6213. TITLE was specified in an OPEN or INQUIRE statement for a
non-window unit. The TITLE option can only be used when the unit opened or
inquired about is a QuickWin child window.

severe (565): TITLE illegal without QuickWin565

FOR$IOS_F6214. TITLE was specified in an OPEN or INQUIRE statement for a
non-QuickWin application. The TITLE option can only be used when the unit opened
or inquired about is a QuickWin child window.

severe (566): KEEP illegal for scratch file566

FOR$IOS_F6300. STATUS='KEEP' was specified for a scratch file; this is illegal
because scratch files are automatically deleted at program termination.

severe (567): SCRATCH illegal for named file567

FOR$IOS_F6301. STATUS='SCRATCH' should not be used in a statement that
includes a filename.

severe (568): Multiple radix specifiers568

384

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_F6302. More than one alternate radix for numeric I/O was specified.
F6302 can indicate an error in spacing or a mismatched format for data of different
radices.

severe (569): Illegal radix specifier569

FOR$IOS_F6303. A radix specifier was not between 2 and 36, inclusive. Alternate
radix constants must be of the form n#ddd... where n is a radix from 2 to 36
inclusive and ddd... are digits with values less than the radix. For example, 3#12
and 34#7AX are valid constants with valid radix specifiers. 245#7A and 39#12 do
not have valid radix specifiers and generate error 569 if input.

severe (570): Illegal STATUS value570

FOR$IOS_F6304. An illegal value was used with the STATUS option.

STATUS accepts the following values:

• 'KEEP' or 'DELETE' when used with CLOSE statements

• 'OLD', 'NEW', 'SCRATCH', or 'UNKNOWN' when used with OPEN statements

severe (571): Illegal MODE value571

FOR$IOS_F6305. An illegal value was used with the MODE option.

MODE accepts the values 'READ', 'WRITE', or 'READWRITE'.

severe (572): Illegal ACCESS value572

FOR$IOS_F6306. An illegal value was used with the ACCESS option.

ACCESS accepts the values 'SEQUENTIAL' and 'DIRECT'.

severe (573): Illegal BLANK value573

FOR$IOS_F6307. An illegal value was used with the BLANK option.

BLANK accepts the values 'NULL' and 'ZERO'.

severe (574): Illegal FORM value574

FOR$IOS_F6308. An illegal value was used with the FORM option.

FORM accepts the following values: 'FORMATTED', 'UNFORMATTED', and 'BINARY'.

severe (575): Illegal SHARE value575

FOR$IOS_F6309. An illegal value was used with the SHARE option.

385

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

SHARE accepts the values 'COMPAT', 'DENYRW', 'DENYWR', 'DENYRD', and
'DENYNONE'.

severe (577): Illegal record number577

FOR$IOS_F6311. An invalid number was specified as the record number for a
direct-access file.

The first valid record number for direct-access files is 1.

severe (578): No unit number associated with *578

FOR$IOS_F6312. In an INQUIRE statement, the NUMBER option was specified for
the file associated with * (console).

severe (580): Illegal unit number580

FOR$IOS_F6314. An illegal unit number was specified.

Legal unit numbers can range from 0 through 2**31-1, inclusive.

severe (581): Illegal RECL value581

FOR$IOS_F6315. A negative or zero record length was specified for a direct file.

The smallest valid record length for direct files is 1.

severe (582): Array already allocated582

FOR$IOS_F6316. The program attempted to ALLOCATE an already allocated array.

severe (583): Array size zero or negative583

FOR$IOS_F6317. The size specified for an array in an ALLOCATE statement must
be greater than zero.

severe (584): Non-HUGE array exceeds 64K584

FOR$IOS_F6318.

severe (585): Array not allocated585

FOR$IOS_F6319. The program attempted to DEALLOCATE an array that was never
allocated.

severe (586): BACKSPACE illegal on terminal device586

FOR$IOS_F6400. A BACKSPACE statement specified a unit connected to a terminal
device such as a terminal or printer.

386

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

severe (587): EOF illegal on terminal device587

FOR$IOS_F6401. An EOF intrinsic function specified a unit connected to a terminal
device such as a terminal or printer.

severe (588): ENDFILE illegal on terminal device588

FOR$IOS_F6402. An ENDFILE statement specified a unit connected to a terminal
device such as a terminal or printer.

severe (589): REWIND illegal on terminal device589

FOR$IOS_F6403. A REWIND statement specified a unit connected to a terminal
device such as a terminal or printer.

severe (590): DELETE illegal for read-only file590

FOR$IOS_F6404. A CLOSE statement specified STATUS='DELETE' for a read-only
file.

severe (591): External I/O illegal beyond end of file591

FOR$IOS_F6405. The program tried to access a file after executing an ENDFILE
statement or after it encountered the end-of-file record during a read operation.

A BACKSPACE, REWIND, or OPEN statement must be used to reposition the file
before execution of any I/O statement that transfers data.

severe (592): Truncation error: file closed592

FOR$IOS_F6406.

severe (593): Terminal buffer overflow593

FOR$IOS_F6407. More than 131 characters were input to a record of a unit
connected to the terminal (keyboard). Note that the operating system may impose
additional limits on the number of characters that can be input to the terminal in
a single record.

severe (594): Comma delimiter disabled after left repositioning594

FOR$IOS_F6408. If you have record lengths that exceed the buffer size associated
with the record, (for instance, the record is a file with the buffer set by BLOCKSIZE
in the OPEN statement), either you should not do left tabbing within the record, or
you should not use commas as field delimiters. This is because commas are disabled
as input field delimiters if left tabbing leaves the record positioned in a previous
buffer.

387

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

For example, consider you have a file LONG.DAT that is one continuous record with
data fields separated by commas. You then set the buffer associated with the file
to 512 bytes, read more than one buffer size of data, tab left to data in the previous
buffer, and attempt to read further data, as follows:

INTEGER value(300)
OPEN (1, FILE = 'LONG.DAT', BLOCKSIZE = 512)s
READ (1, 100) (value(i), i = 1, 300)s

100 FORMAT (290I2,TL50,10I2)

In this case, error 594 occurs.

severe (599): File already connected to a different unit599

FOR$IOS_F6413. The program tried to connect an already connected file to a new
unit.

A file can be connected to only one unit at a time.

severe (600): Access not allowed600

FOR$IOS_F6414.

This error can be caused by one of the following:

• The filename specified in an OPEN statement was a directory.

• An OPEN statement tried to open a read-only file for writing.

• The file was opened with SHARE='DENYRW' by another process.

severe (601): File already exists601

FOR$IOS_F6415. An OPEN statement specified STATUS='NEW' for a file that already
exists.

severe (602): File not found602

FOR$IOS_F6416. An OPEN statement specified STATUS='OLD' for a specified file
or a directory path that does not exist.

severe (603): Too many open files603

FOR$IOS_F6417. The program exceeded the number of open files the operating
system allows.

severe (604): Too many units connected604

388

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_F6418. The program exceeded the number of units that can be connected
at one time. Units are connected with the OPEN statement.

severe (605): Illegal structure for unformatted file605

FOR$IOS_F6419. The file was opened with FORM='UNFORMATTED' and
ACCESS='SEQUENTIAL', but its internal physical structure was incorrect or
inconsistent. Possible causes: the file was created in another mode or by a
non-Fortran program.

severe (606): Unknown unit number606

FOR$IOS_F6420. A statement such as BACKSPACE or ENDFILE specified a file that
had not yet been opened. (The READ and WRITE statements do not cause this
problem because they prompt you for a file if the file has not been opened yet.)

severe (607): File read-only or locked against writing607

FOR$IOS_F6421. The program tried to transfer data to a file that was opened in
read-only mode or locked against writing.

The error message may indicate a CLOSE error when the fault is actually coming
from WRITE. This is because the error is not discovered until the program tries to
write buffered data when it closes the file.

severe (608): No space left on device608

FOR$IOS_F6422. The program tried to transfer data to a file residing on a device
(such as a hard disk) that was out of storage space.

severe (609): Too many threads609

FOR$IOS_F6423. Too many threads were active simultaneously. At most, 32 threads
can be active at one time. Close any unnecessary processes or child windows within
your application.

severe (610): Invalid argument610

FOR$IOS_F6424.

severe (611): BACKSPACE illegal for SEQUENTIAL write-only files611

FOR$IOS_F6425. The BACKSPACE statement is not allowed in files opened with
MODE='WRITE' (write-only status) because BACKSPACE requires reading the
previous record in the file to provide positioning.

389

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

Resolve the problem by giving the file read access or by avoiding the BACKSPACE
statement. Note that the REWIND statement is valid for files opened as write-only.

severe (612): File not open for reading or file locked612

FOR$IOS_F6500. The program tried to read from a file that was not opened for
reading or was locked.

severe (613): End of file encountered613

FOR$IOS_F6501. The program tried to read more data than the file contains.

severe (614): Positive integer expected in repeat field614

FOR$IOS_F6502. When the i*c form is used in list-directed input, the i must be
a positive integer. For example, consider the following statement:
READ(*,*) a, b

Input 2*56.7 is accepted, but input 2.1*56.7 returns error 614.

severe (615): Multiple repeat field615

FOR$IOS_F6503. In list-directed input of the form i*c, an extra repeat field was
used. For example, consider the following:
READ(*,*) I, J, K

Input of 2*1*3 returns this error. The 2*1 means send two values, each 1; the *3
is an error.

severe (616): Invalid number in input616

FOR$IOS_F6504. Some of the values in a list-directed input record were not
numeric. For example, consider the following:
READ(*,*) I, J

The preceding statement would cause this error if the input were: 123 'abc'.

severe (617): Invalid string in input617

FOR$IOS_F6505. A string item was not enclosed in single quotation marks.

severe (618): Comma missing in COMPLEX input618

FOR$IOS_F6506. When using list-directed input, the real and imaginary components
of a complex number were not separated by a comma.

390

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

severe (619): T or F expected in LOGICAL read619

FOR$IOS_F6507. The wrong format was used for the input field for logical data.

The input field for logical data consists of optional blanks, followed by an optional
decimal point, followed by a T for true or F for false. The T or F may be followed
by additional characters in the field, so that .TRUE. and .FALSE. are acceptable
input forms.

severe (620): Too many bytes read from unformatted record620

FOR$IOS_F6508. The program tried to read more data from an unformatted file
than the current record contained. If the program was reading from an unformatted
direct file, it tried to read more than the fixed record length as specified by the
RECL option. If the program was reading from an unformatted sequential file, it
tried to read more data than was written to the record.

severe (621): H or apostrophe edit descriptor illegal on input621

FOR$IOS_F6509. Hollerith (H) or apostrophe edit descriptors were encountered in
a format used by a READ statement.

severe (622): Illegal character in hexadecimal input622

FOR$IOS_F6510. The input field contained a character that was not hexadecimal.

Legal hexadecimal characters are 0 - 9 and A - F.

severe (623): Variable name not found623

FOR$IOS_F6511. A name encountered on input from a namelist record is not
declared in the corresponding NAMELIST statement.

severe (624): Invalid NAMELIST input format624

FOR$IOS_F6512. The input record is not in the correct form for namelist input.

severe (625): Wrong number of array dimensions625

FOR$IOS_F6513. In namelist input, an array name was qualified with a different
number of subscripts than its declaration, or a non-array name was qualified.

severe (626): Array subscript exceeds allocated area626

FOR$IOS_F6514. A subscript was specified in namelist input which exceeded the
declared dimensions of the array.

391

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

severe (627): Invalid subrange in NAMELIST input627

FOR$IOS_F6515. A character item in namelist input was qualified with a subrange
that did not meet the requirement that 1 <= e1 <= e2 <= len (where "len" is the
length of the character item, "e1" is the leftmost position of the substring, and "e2"
is the rightmost position of the substring).

severe (628): Substring range specified on non-CHARACTER item628

FOR$IOS_F6516. A non-CHARACTER item in namelist input was qualified with a
substring range.

severe (629): Internal file overflow629

FOR$IOS_F6600. The program either overflowed an internal-file record or tried to
write to a record beyond the end of an internal file.

severe (630): Direct record overflow630

FOR$IOS_F6601. The program tried to write more than the number of bytes
specified in the RECL option to an individual record of a direct-access file.

severe (631):Numeric field bigger than record size631

FOR$IOS_F6602. The program tried to write a noncharacter item across a record
boundary in list-directed or namelist output. Only character constants can cross
record boundaries.

severe (632): Heap space limit exceeded632

FOR$IOS_F6700. The program ran out of heap space. The ALLOCATE statement
and various internal functions allocate memory from the heap. This error will be
generated when the last of the heap space is used up.

severe (633): Scratch file name limit exceeded633

FOR$IOS_F6701. The program exhausted the template used to generate unique
scratch-file names. The maximum number of scratch files that can be open at one
time is 26.

severe (634): D field exceeds W field in ES edit descriptor634

FOR$IOS_F6970. The specified decimal length D exceeds the specified total field
width W in an ES edit descriptor.

severe (635): D field exceeds W field in EN edit descriptor635

392

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_F6971. The specified decimal length D exceeds the specified total field
width W in an EN edit descriptor.

severe (636): Exponent of 0 not allowed in format636

FOR$IOS_F6972.

severe (637): Integer expected in format637

FOR$IOS_F6980. An edit descriptor lacked a required integer value. For example,
consider the following:

WRITE(*, 100) I, J
100 FORMAT (I2, TL, I2)

The preceding code will cause this error because an integer is expected after TL.

severe (638): Initial left parenthesis expected in format638

FOR$IOS_F6981. A format did not begin with a left parenthesis (().

severe (639): Positive integer expected in format639

FOR$IOS_F6982. A zero or negative integer value was used in a format.

Negative integer values can appear only with the P edit descriptor. Integer values
of 0 can appear only in the d and m fields of numeric edit descriptors.

severe (640): Repeat count on nonrepeatable descriptor640

FOR$IOS_F6983. One or more BN, BZ, S, SS, SP, T, TL, TR, /, $, :, or apostrophe
(') edit descriptors had repeat counts associated with them.

severe (641): Integer expected preceding H, X, or P edit descriptor641

FOR$IOS_F6984. An integer did not precede a (nonrepeatable) H, X, or P edit
descriptor.

The correct formats for these descriptors are nH, nX, and kP, respectively, where
n is a positive integer and k is an optionally signed integer.

severe (642): N or Z expected after B in format642

FOR$IOS_F6985. To control interpretation of embedded and trailing blanks within
numeric input fields, you must specify BN (to ignore them) or BZ (to interpret them
as zeros).

severe (643): Format nesting limit exceeded643

393

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_F6986. More than 16 sets of parentheses were nested inside the main
level of parentheses in a format.

severe (644): '.' expected in format644

FOR$IOS_F6987. No period appeared between the w and d fields of a D, E, F, or G
edit descriptor.

severe (645): Unexpected end of format645

FOR$IOS_F6988. An incomplete format was used.

Improperly matched parentheses, an unfinished Hollerith (H) descriptor, or another
incomplete descriptor specification can cause this error.

severe (646): Unexpected character in format646

FOR$IOS_F6989. A character that cannot be interpreted as part of a valid edit
descriptor was used in a format. For example, consider the following:

WRITE(*, 100) I, J
100 FORMAT (I2, TL4.5, I2)

The code will generate this error because TL4.5 is not a valid edit descriptor. An
integer must follow TL.

severe (647): M field exceeds W field in I edit descriptor647

FOR$IOS_F6990. In syntax Iw.m, the value of m cannot exceed the value of w.

severe (648): Integer out of range in format648

FOR$IOS_F6991. An integer value specified in an edit descriptor was too large to
represent as a 4-byte integer.

severe (649): format not set by ASSIGN649

FOR$IOS_F6992. The format specifier in a READ, WRITE, or PRINT statement was
an integer variable, but an ASSIGN statement did not properly assign it the
statement label of a FORMAT statement in the same program unit.

severe (650): Separator expected in format650

FOR$IOS_F6993. Within format specifications, edit descriptors must be separated
by commas or slashes (/).

severe (651): %c or $: nonstandard edit descriptor in format651

394

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_F6994.

severe (652): Z: nonstandard edit descriptor in format652

FOR$IOS_F6995. Z is not a standard edit descriptor in format.

If you want to transfer hexadecimal values, you must use the edit descriptor form
Zw[.m], where w is the field width and m is the minimum number of digits that must
be in the field (including leading zeros).

severe (653): DOS graphics not supported under Windows NT653

FOR$IOS_F6996.

severe (654): Graphics error654

FOR$IOS_F6997. An OPEN statement in which IOFOCUS was TRUE, either explicitly
or by default, failed because the new window could not receive focus. The window
handle may be invalid, or closed, or there may be a memory resource problem.

severe (655): Using QuickWin is illegal in console application655

FOR$IOS_F6998. A call to QuickWin from a console application was encountered
during execution.

severe (656): Illegal 'ADVANCE' value656

FOR$IOS_F6999. The ADVANCE option can only take the values 'YES' and 'NO'.
ADVANCE='YES' is the default. ADVANCE is a READ statement option.

severe (657): DIM argument to SIZE out of range657

FOR$IOS_F6702. The argument specified for DIM must be greater than or equal
to 1, and less than or equal to the number of dimensions in the specified array.
Consider the following:
i = SIZE (array, DIM = dim)

In this case, 1 <= dim <= n, where n is the number of dimensions in array.

severe (657): Undefined POINTER used as argument to ASSOCIATED
function

658

FOR$IOS_F6703. A POINTER used as an argument to the ASSOCIATED function
must be defined; that is, assigned to a target, allocated, or nullified.

severe (659): Reference to uninitialized POINTER659

395

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_F6704. Except in an assignment statement, a pointer must not be
referenced until it has been initialized: assigned to a target, allocated or nullified.

severe (660): Reference to POINTER which is not associated660

FOR$IOS_F6705. Except in an assignment statement and certain procedure
references, a pointer must not be referenced until it has been associated: either
assigned to a target or allocated.

severe (661): Reference to uninitialized POINTER 'pointer'661

FOR$IOS_F6706. Except in an assignment statement, a pointer must not be
referenced until it has been initialized: assigned to a target, allocated or nullified.

severe (662): reference to POINTER 'pointer' which is not associated662

FOR$IOS_F6707. Except in an assignment statement and certain procedure
references, a pointer must not be referenced until it has been associated: either
assigned to a target or allocated.

severe (663): Out of range: substring starting position 'pos' is less than 1663

FOR$IOS_F6708. A substring starting position must be a positive integer variable
or expression that indicates a position in the string: at least 1 and no greater than
the length of the string.

severe (664): Out of range: substring ending position 'pos' is greater than
string length 'len'

664

FOR$IOS_F6709. A substring ending position must be a positive integer variable
or expression that indicates a position in the string: at least 1 and no greater than
the length of the string.

severe (665): Subscript 'n' of 'str' (value 'val') is out of range ('first:last')665

FOR$IOS_F6710. The subscript for a substring within a string is not a valid string
position: at least 1 and no greater than the length of the string.

severe (666): Subscript 'n' of 'str' (value 'val') is out of range ('first:*')666

FOR$IOS_F6711. The subscript for a substring within a string is not a valid string
position: at least 1 and no greater than the length of the string.

severe (667): VECTOR argument to PACK has incompatible character length667

FOR$IOS_F6712. The character length of elements in the VECTOR argument to
PACK is not the same as the character length of elements in the array to be packed.

396

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

severe (668): VECTOR argument to PACK is too small668

FOR$IOS_F6713. The VECTOR argument to PACK must have at least as many
elements as there are true elements in MASK (the array that controls packing).

severe (669): SOURCE and PAD arguments to RESHAPE have different
character lengths

669

FOR$IOS_F6714. The character length of elements in the SOURCE and PAD
arguments to PACK must be the same.

severe (670): Element 'n' of SHAPE argument to RESHAPE is negative670

FOR$IOS_F6715. The SHAPE vector specifies the shape of the reshaped array.
Since an array cannot have a negative dimension, SHAPE cannot have a negative
element.

severe (671): SOURCE too small for specified SHAPE in RESHAPE, and no
PAD

671

FOR$IOS_F6716. If there is no PAD array, the SOURCE argument to RESHAPE must
have enough elements to make an array of the shape specified by SHAPE.

severe (672): Out of memory672

FOR$IOS_F6717. The system ran out of memory while trying to make the array
specified by RESHAPE. If possible, reset your virtual memory size through the
Windows Control Panel, or close unneccessary applications and deallocate all
allocated arrays that are no longer needed.

severe (673): SHAPE and ORDER arguments to RESHAPE have different
sizes ('size1' and 'size2')

673

FOR$IOS_F6718. ORDER specifies the order of the array dimensions given in SHAPE,
and they must be vectors of the same size.

severe (674): Element 'n' of ORDER argument to RESHAPE is out of range
('range')

674

FOR$IOS_F6719. The ORDER argument specifies the order of the dimensions of
the reshaped array, and it must be a permuted list of (1, 2, ..., n) where n is the
highest dimension in the reshaped array.

severe (675): Value 'val' occurs twice in ORDER argument to RESHAPE675

397

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_F6720. The ORDER vector specifies the order of the dimensions of the
reshaped array, and it must be a permuted list of (1, 2, ..., n) where n is the highest
dimension in the reshaped array. No dimension can occur twice.

severe (676): Impossible nextelt overflow in RESHAPE676

FOR$IOS_F6721.

severe (677): Invalid value 'dim' for argument DIM for SPREAD of rank
'rank' source

677

FOR$IOS_F6722. The argument specified for DIM to SPREAD must be greater than
or equal to 1, and less than or equal to one larger than the number of dimensions
(rank) of SOURCE. Consider the following statement:
result = SPREAD (SOURCE= array, DIM = dim, NCOPIES = k)

In this case, 1 <= dim <= n+ 1, where nis the number of dimensions in array.

severe (678): Complex zero raised to power zero678

FOR$IOS_F6723. Zero of any type (complex, real, or integer) cannot be raised to
zero power.

severe (679): Complex zero raised to negative power679

FOR$IOS_F6724. Zero of any type (complex, real, or integer) cannot be raised to
a negative power. Raising to a negative power inverts the operand.

severe (680): Impossible error in NAMELIST input680

FOR$IOS_F6725.

severe (681):DIM argument to CSHIFT ('dim') is out of range681

FOR$IOS_F6726. The optional argument DIM specifies the dimension along which
to perform the circular shift, and must be greater than or equal to 1 and less than
or equal to the number of dimensions in the array to be shifted. That is, 1 <=DIM
<= n, where nis the number of dimensions in the array to be shifted.

severe (682): DIM argument ('dim') to CSHIFT is out of range (1:'n')682

FOR$IOS_F6727. The optional argument DIM specifies the dimension along which
to perform the circular shift, and must be greater than or equal to 1 and less than
or equal to the number of dimensions in the array to be shifted. That is, 1 <= DIM
<= n, where nis the number of dimensions in the array to be shifted.

398

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

severe (683): Shape mismatch (dimension 'dim') between ARRAY and
SHIFT in CSHIFT

683

FOR$IOS_F6728. The SHIFT argument to CSHIFT must be either scalar or an array
one dimension smaller than the shifted array. If an array, the shape of the SHIFT
must conform to the shape of the array being shifted in every dimension except
the one being shifted along.

severe (684): Internal error - bad arguments to CSHIFT_CA684

FOR$IOS_F6729.

severe (685): Internal error - bad arguments to CSHIFT_CAA685

FOR$IOS_F6730.

severe (686): DATE argument to DATE_AND_TIME is too short (LEN='len')686

FOR$IOS_F6731. The character DATE argument must have a length of at least 8
to contain the complete value.

severe (687): TIME argument to DATE_AND_TIME is too short (LEN='len')687

FOR$IOS_F6732. The character TIME argument must have a length of at least 10
to contain the complete value.

severe (688): ZONE argument to DATE_AND_TIME is too short (LEN='len')688

FOR$IOS_F6733. The character ZONE argument must have a length of at least 5
to contain the complete value.

severe (689): VALUES argument to DATE_AND_TIME is too small ('size'
elements)

689

FOR$IOS_F6734. The integer VALUES argument must be a one-dimensional array
with a size of at least 8 to hold all returned values.

severe (690): Out of range: DIM argument to COUNT has value 'dim'690

FOR$IOS_F6735. The optional argument DIM specifies the dimension along which
to count true elements of MASK, and must be greater than or equal to 1 and less
than or equal to the number of dimensions in MASK. That is, 1 <= DIM <= n, where
n is the number of dimensions in MASK.

severe (691): Out of range: DIM argument to COUNT has value 'dim' with
MASK of rank 'rank'

691

399

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_F6736. The optional argument DIM specifies the dimension along which
to count true elements of MASK, and must be greater than or equal to 1 and less
than or equal to the number of dimensions (rank) in MASK. That is, 1 <= DIM <=
n, where nis the number of dimensions in MASK.

severe (692): Out of range: DIM argument to PRODUCT has value 'dim'692

FOR$IOS_F6737. The optional argument DIM specifies the dimension along which
to compute the product of elements in an array, and must be greater than or equal
to 1 and less than or equal to the number of dimensions in the array. That is, 1
<= DIM <= n, where nis the number of dimensions in array holding the elements
to be multiplied.

severe (693): Out of range: DIM argument to PRODUCT has value 'dim'
with ARRAY of rank 'rank'

693

FOR$IOS_F6738. The optional argument DIM specifies the dimension along which
to compute the product of elements in an array, and must be greater than or equal
to 1 and less than or equal to the number of dimensions (rank) of the array. That
is, 1 <= DIM <= n, where nis the number of dimensions in array holding the
elements to be multiplied.

severe (694): Out of range: DIM argument to SUM has value 'dim' with
ARRAY of rank 'rank'

694

FOR$IOS_F6739. The optional argument DIM specifies the dimension along which
to sum the elements of an array, and must be greater than or equal to 1 and less
than or equal to the number of dimensions (rank) of the array. That is, 1 <= DIM
<= n, where nis the number of dimensions in array holding the elements to be
summed.

severe (695): Real zero raised to zero power695

FOR$IOS_F6740. Zero of any type (real, complex, or integer) cannot be raised to
zero power.

severe (696): Real zero raised to negative power696

FOR$IOS_F6741. Zero of any type (real, complex, or integer) cannot be raised to
a negative power. Raising to a negative power inverts the operand.

severe (697): Out of range: DIM argument to SUM has value 'dim'697

400

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_F6742. The optional argument DIM specifies the dimension along which
to sum the elements of an array, and must be greater than or equal to 1 and less
than or equal to the number of dimensions in the array. That is, 1 <= DIM <= n,
where nis the number of dimensions in array holding the elements to be summed.

severe (698): DIM argument ('dim') to EOSHIFT is out of range (1:'n')698

FOR$IOS_F6743. The optional argument DIM specifies the dimension along which
to perform an end-off shift in an array, and must be greater than or equal to 1 and
less than or equal to the number of dimensions in the array. That is, 1 <= DIM <=
n, where nis the number of dimensions in array holding the elements to be shifted.

severe (699): Shape mismatch (dimension 'dim') between ARRAY and
BOUNDARY in EOSHIFT

699

FOR$IOS_F6744. The BOUNDARY argument to EOSHIFT must be either scalar or
an array one dimension smaller than the shifted array. If an array, the shape of
the BOUNDARY must conform to the shape of the array being shifted in every
dimension except the one being shifted along.

severe (700): DIM argument to EOSHIFT is out of range ('dim')700

FOR$IOS_F6745. The optional argument DIM specifies the dimension along which
to perform an end-off shift in an array, and must be greater than or equal to 1 and
less than or equal to the number of dimensions in the array. That is, 1 <= DIM <=
n, where nis the number of dimensions in array holding the elements to be shifted.

severe (701): Shape mismatch (dimension 'dim') between ARRAY and
SHIFT in EOSHIFT

701

FOR$IOS_F6746. The SHIFT argument to EOSHIFT must be either scalar or an
array one dimension smaller than the shifted array. If an array, the shape of the
SHIFT must conform to the shape of the array being shifted in every dimension
except the one being shifted along.

severe (702): BOUNDARY argument to EOSHIFT has wrong LEN ('len1
instead of len2')

702

FOR$IOS_F6747. The character length of elements in the BOUNDARY argument
and in the array being end-off shifted must be the same.

severe (703): BOUNDARY has LEN 'len' instead of 'len' to EOSHIFT703

FOR$IOS_F6748.

401

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

severe (704): Internal error - bad arguments to EOSHIFT704

FOR$IOS_F6749.

severe (705): GETARG: value of argument 'num' is out of range705

FOR$IOS_F6750. The value used for the number of the command-line argument
to retrieve with GETARG must be 0 or a positive integer. If the number of the
argument to be retrieved is greater than the actual number of arguments, blanks
are returned, but no error occurs.

severe (706): FLUSH: value of LUNIT 'num' is out of range706

FOR$IOS_F6751. The unit number specifying which I/O unit to flush to its associated
file must be an integer between 0 and 2**31-1, inclusive. If the unit number is
valid, but the unit is not opened, error F6752 is generated.

severe (707): FLUSH: Unit 'n' is not connected707

FOR$IOS_F6752. The I/O unit specified to be flushed to its associated file is not
connected to a file.

severe (708): Invalid string length ('len') to ICHAR708

FOR$IOS_F6753. The character argument to ICHAR must have length 1.

severe (709): Invalid string length ('len') to IACHAR709

FOR$IOS_F6754. The character argument to IACHAR must have length 1.

severe (710): Integer zero raised to negative power710

FOR$IOS_F6755. Zero of any type (integer, real, or complex) cannot be raised to
a negative power. Raising to a negative power inverts the operand.

severe (711): INTEGER zero raised to zero power711

FOR$IOS_F6756. Zero of any type (integer, real, or complex) cannot be raised to
zero power.

severe (712): SIZE argument ('size') to ISHFTC intrinsic out of range712

FOR$IOS_F6757. The argument SIZE must be positive and must not exceed the
bit size of the integer being shifted. The bit size of this integer can be determined
with the function BIT_SIZE.

severe (713): SHIFT argument ('shift') to ISHFTC intrinsic out of range713

402

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_F6758. The argument SHIFT to ISHFTC must be an integer whose absolute
value is less than or equal to the number of bits being shifted: either all bits in the
number being shifted or a subset specified by the optional argument SIZE.

severe (714): Out of range: DIM argument to LBOUND has value 'dim'714

FOR$IOS_F6759. The optional argument DIM specifies the dimension whose lower
bound is to be returned, and must be greater than or equal to 1 and less than or
equal to the number of dimensions in the array. That is, 1 <= DIM <= n, where n
is the number of dimensions in array.

severe (715): Out of range: DIM argument ('dim') to LBOUND greater than
ARRAY rank 'rank'

715

FOR$IOS_F6760. The optional argument DIM specifies the dimension whose lower
bound is to be returned, and must be greater than or equal to 1 and less than or
equal to the number of dimensions (rank) in the array. That is, 1 <= DIM <= n,
where nis the number of dimensions in array.

severe (716): Out of range: DIM argument to MAXVAL has value 'dim'716

FOR$IOS_F6761. The optional argument DIM specifies the dimension along which
maximum values are returned, and must be greater than or equal to 1 and less
than or equal to the number of dimensions in the array. That is, 1 <= DIM <= n,
where n is the number of dimensions in array.

severe (717): Out of range: DIM argument to MAXVAL has value 'dim' with
ARRAY of rank 'rank'

717

FOR$IOS_F6762. The optional argument DIM specifies the dimension along which
maximum values are returned, and must be greater than or equal to 1 and less
than or equal to the number of dimensions (rank) in the array. That is, 1 <= DIM
<= n, where nis the number of dimensions in array.

severe (718): Cannot allocate temporary array -- out of memory718

FOR$IOS_F6763. There is not enough memory space to hold a temporary array.

Dynamic memory allocation is limited by several factors, including swap file size
and memory requirements of other applications that are running. If you encounter
an unexpectedly low limit, you might need to reset your virtual memory size through
the Windows Control Panel or redefine the swap file size. Allocated arrays that are
no longer needed should be deallocated.

severe (719): Attempt to DEALLOCATE part of a larger object719

403

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_F6764. An attempt was made to DEALLOCATE a pointer to an array
subsection or an element within a derived type. The whole data object must be
deallocated; parts cannot be deallocated.

severe (720): Pointer in DEALLOCATE is ASSOCIATEDwith an ALLOCATABLE
array

720

FOR$IOS_F6765. Deallocating a pointer associated with an allocatable target is
illegal. Instead, deallocate the target the pointer points to, which frees memory
and disassociates the pointer.

severe (721): Attempt to DEALLOCATE an object which was not allocated721

FOR$IOS_F6766. You cannot deallocate an array unless it has been previously
allocated. You cannot deallocate a pointer whose target was not created by
allocation. The intrinsic function ALLOCATED can be used to determine whether an
allocatable array is currently allocated.

severe (722): Cannot ALLOCATE scalar POINTER -- out of memory722

FOR$IOS_F6767. There is not enough memory space to allocate the pointer.

Dynamic memory allocation is limited by several factors, including swap file size
and memory requirements of other applications that are running. If you encounter
an unexpectedly low limit, you might need to reset your virtual memory size through
the Windows Control Panel or redefine the swap file size. Allocated arrays that are
no longer needed should be deallocated.

severe (723): DEALLOCATE: object not allocated/associated723

FOR$IOS_F6768. You cannot deallocate an array unless it has been previously
allocated. You cannot deallocate a pointer whose target was not created by
allocation, or a pointer that has undefined association status.

The intrinsic function ALLOCATED can be used to determine whether an allocatable
array is currently allocated.

severe (724): Cannot ALLOCATE POINTER array -- out of memory724

FOR$IOS_F6769. There is not enough memory space to allocate the POINTER array.

Dynamic memory allocation is limited by several factors, including swap file size
and memory requirements of other applications that are running. If you encounter
an unexpectedly low limit, you might need to reset your virtual memory size through
the Windows Control Panel or redefine the swap file size. Allocated arrays that are
no longer needed should be deallocated.

404

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

severe (725): DEALLOCATE: Array not allocated725

FOR$IOS_F6770. It is illegal to DEALLOCATE an array that is not allocated. You
can check the allocation status of an array before deallocating with the ALLOCATED
function.

severe (726): DEALLOCATE: Character array not allocated726

FOR$IOS_F6771. It is illegal to DEALLOCATE an array that is not allocated. You
can check the allocation status of an array before deallocating with the ALLOCATED
function.

severe (727): Cannot ALLOCATE allocatable array -- out of memory727

FOR$IOS_F6772. There is not enough memory space to hold the array.

Dynamic memory allocation is limited by several factors, including swap file size
and memory requirements of other applications that are running. If you encounter
an unexpectedly low limit, you might need to reset your virtual memory size through
the Windows Control Panel or redefine the swap file size. Allocated arrays that are
no longer needed should be deallocated.

severe (728): Cannot allocate automatic object -- out of memory728

FOR$IOS_F6773. There is not enough memory space to hold the automatic data
object.

Dynamic memory allocation is limited by several factors, including swap file size
and memory requirements of other applications that are running. If you encounter
an unexpectedly low limit, you might need to reset your virtual memory size through
the Windows Control Panel or redefine the swap file size. Allocated arrays that are
no longer needed should be deallocated.

An automatic data object is an object that is declared in a procedure subprogram
or interface, is not a dummy argument, and depends on a nonconstant expression.
For example:
SUBROUTINE EXAMPLE (N)
DIMENSION A (N, 5), B(10*N)

The arrays A and B in the example are automatic data objects.

severe (729): DEALLOCATE failure: ALLOCATABLE array is not ALLOCATED729

FOR$IOS_F6774. It is illegal to DEALLOCATE an array that is not allocated. You
can check the allocation status of an array before deallocating with the ALLOCATED
function.

405

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

severe (730): Out of range: DIM argument to MINVAL has value 'dim'730

FOR$IOS_F6775. The optional argument DIM specifies the dimension along which
minimum values are returned, and must be greater than or equal to 1 and less
than or equal to the number of dimensions in the array. That is, 1 <= DIM <= n,
where nis the number of dimensions in array.

severe (731): Out of range: DIM argument to MINVAL has value 'dim' with
ARRAY of rank 'rank'

731

FOR$IOS_F6776. The optional argument DIM specifies the dimension along which
minimum values are returned, and must be greater than or equal to 1 and less
than or equal to the number of dimensions (rank) in the array. That is, 1 <= DIM
<= n, where nis the number of dimensions in array.

severe (732): P argument to MOD is double precision zero732

FOR$IOS_F6777. MOD(A,P) is computed as A - INT(A/P) * P. So, P cannot be zero.

severe (733): P argument to MOD is integer zero733

FOR$IOS_F6778. MOD(A,P) is computed as A - INT(A/P) * P. So, P cannot be zero.

severe (734): P argument to MOD is real zero734

FOR$IOS_F6779. MOD(A,P) is computed as A - INT(A/P) * P. So, P cannot be zero.

severe (735): P argument to MODULO is real zero735

FOR$IOS_F6780. >MODULO(A,P) for real numbers is computed as A - FLOOR(A/P)
* P. So, P cannot be zero.

severe (736): P argument to MODULO is zero736

FOR$IOS_F6781. In the function, MODULO(A,P), P cannot be zero.

severe (737): Argument S to NEAREST is zero737

FOR$IOS_F6782. The sign of the S argument to NEAREST(X,S) determines the
direction of the search for the nearest number to X, and cannot be zero.

severe (738): Heap storage exhausted738

FOR$IOS_F6783.

severe (739): PUT argument to RANDOM_SEED is too small739

406

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

FOR$IOS_F6784. The integer array PUT must be greater than or equal to the
number of integers the processor uses to set the seed value. This number can be
determined by calling RANDOM_SEED with the SIZE argument. For example:
INTEGER, ALLOCATABLE SEED
CALL RANDOM_SEED() ! initialize processor
CALL RANDOM_SEED(SIZE = K) ! get size of seed
ALLOCATE SEED(K) ! allocate array
CALL RANDOM_SEED(PUT = SEED) ! set the seed

Note that RANDOM_SEED can be called with at most one argument at a time.

severe (740): GET argument to RANDOM_SEED is too small740

FOR$IOS_F6785. The integer array GET must be greater than or equal to the
number of integers the processor uses to set the seed value. This number can be
determined by calling RANDOM_SEED with the SIZE argument. For example:
INTEGER, ALLOCATABLE SEED
CALL RANDOM_SEED() ! initialize processor
CALL RANDOM_SEED(SIZE = K) ! get size of seed
ALLOCATE SEED(K) ! allocate array
CALL RANDOM_SEED(GET = SEED) ! get the seed

Note that RANDOM_SEED can be called with at most one argument at a time.

severe (741): Recursive I/O reference741

FOR$IOS_F6786.

severe (742): Argument to SHAPE intrinsic is not PRESENT742

FOR$IOS_F6787.

severe (743): Out of range: DIM argument to UBOUND had value 'dim'743

FOR$IOS_F6788. The optional argument DIM specifies the dimension whose upper
bound is to be returned, and must be greater than or equal to 1 and less than or
equal to the number of dimensions in the array. That is, 1 <= DIM <= n, where
nis the number of dimensions in array.

severe (744): DIM argument ('dim') to UBOUND greater than ARRAY rank
'rank'

744

FOR$IOS_F6789. The optional argument DIM specifies the dimension whose upper
bound is to be returned, and must be greater than or equal to 1 and less than or
equal to the number of dimensions (rank) in the array. That is, 1 <= DIM <= n,
where nis the number of dimensions in array.

407

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

severe (745): Out of range: UBOUND of assumed-size array with
DIM==rank ('rank')

745

FOR$IOS_F6790. The optional argument DIM specifies the dimension whose upper
bound is to be returned.

An assumed-size array is a dummy argument in a subroutine or function, and the
upper bound of its last dimension is determined by the size of actual array passed
to it. Assumed-size arrays have no determined shape, and you cannot use UBOUND
to determine the extent of the last dimension. You can use UBOUND to determine
the upper bound of one of the fixed dimensions, in which case you must pass the
dimension number along with the array name.

severe (746): Out of range: DIM argument ('dim') to UBOUND greater than
ARRAY rank

746

FOR$IOS_F6791. The optional argument DIM specifies the dimension whose upper
bound is to be returned, and must be greater than or equal to 1 and less than or
equal to the number of dimensions (rank) in the array. That is, 1 <= DIM <= n,
where nis the number of dimensions in array.

severe (747): Shape mismatch: Dimension 'shape' extents are 'ext1' and
'ext2'

747

FOR$IOS_F6792.

severe (748): Illegal POSITION value748

FOR$IOS_F6793. An illegal value was used with the POSITION specifier.

POSITION accepts the following values:

• 'ASIS' (the default)

• 'REWIND' - on Fortran I/O systems, this is the same as 'ASIS'

• 'APPEND'

severe (749): Illegal ACTION value749

FOR$IOS_F6794. An illegal value was used with the ACTION specifier.

ACTION accepts the following values:

• 'READ'

• 'WRITE'

408

15 Intel® Fortran Compiler User and Reference Guides

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

• 'READWRITE' - the default

severe (750): DELIM= specifier not allowed for an UNFORMATTED file750

FOR$IOS_F6795. The DELIM specifier is only allowed for files connected for
formatted data transfer. It is used to delimit character constants in list-directed an
namelist output.

severe (751): Illegal DELIM value751

FOR$IOS_F6796. An illegal value was used with the DELIM specifier.

DELIM accepts the following values:

• 'APOSTROPHE'

• 'QUOTE'

• 'NONE' - the default

severe (752): PAD= specifier not allowed for an UNFORMATTED file752

FOR$IOS_F6797. The PAD specifier is only allowed for formatted input records. It
indicates whether the formatted input record is padded with blanks when an input
list and format specification requires more data than the record contains.

severe (753): Illegal PAD= value753

FOR$IOS_F6798. An illegal value was used with the PAD specifier.

PAD accepts the following values:

• 'NO'

• 'YES' - the default

severe (754): Illegal CARRIAGECONTROL=value754

FOR$IOS_F6799. An illegal value was used with the CARRIAGECONTROL specifier.

CARRIAGECONTROL accepts the following values:

• 'FORTRAN' - default if the unit is connected to a terminal or console

• 'LIST' - default for formatted files

• 'NONE' - default for unformatted files

409

15

Severity Level, Number, andMessage Text; Condition Symbol and ExplanationNumber

severe (755): SIZE= specifier only allowed with ADVANCE='NO'755

FOR$IOS_F6800. The SIZE specifier can only appear in a formatted, sequential
READ statement that has the specifier ADVANCE='NO' (indicating nonadvancing
input).

severe (756): Illegal character in binary input756

FOR$IOS_F6801.

severe (757): Illegal character in octal input757

FOR$IOS_F6802.

severe (758): End of record encountered758

FOR$IOS_F6803.

severe (759): Illegal subscript in namelist input record759

FOR$IOS_F6804.

Footnotes:
1 Identifies errors not returned by IOSTAT.

Signal Handling (Linux* OS and Mac OS* X only)

A signal is an ab normal event generated by one of various sources, such as:

• A user of a terminal

• Program or hardware error

• Request of another program

• When a process is stopped to allow access to the control terminal

You can optionally set certain events to issue signals, for example:

• When a process resumes after being stopped

• When the status of a child process changes

• When input is ready at the terminal

Some signals terminate the receiving process if no action is taken (optionally creating a core
file), while others are simply ignored unless the process has requested otherwise.

410

15 Intel® Fortran Compiler User and Reference Guides

Except for certain signals, calling the signal or sigaction routine allows specified signals to
be ignored or causes an interrupt (transfer of control) to the location of a user-written signal
handler.

You can establish one of the following actions for a signal with a call to signal:

• Ignore the specified signal (identified by number).

• Use the default action for the specified signal, which can reset a previously established
action.

• Transfer control from the specified signal to a procedure to receive the signal, specified by
name.

Calling the signal routine lets you change the action for a signal, such as intercepting an
operating system signal and preventing the process from being stopped.

The table below shows the signals that the Intel Fortran RTL arranges to catch when a program
is started:

Intel Fortran RTL messageSignal

Floating-point exception (number 75)SIGFPE

Process interrupted (number 69)SIGINT

IOT trap signal (number 76)SIGIOT

Process quit (number 79)SIGQUIT

Segmentation fault (number 174)SIGSEGV

Process killed (number 78)SIGTERM

Calling the signal routine (specifying the numbers for these signals) results in overwriting the
signal-handling facility set up by the Intel Fortran RTL. The only way to restore the default
action is to save the returned value from the first call to signal.

When using a debugger, it may be necessary to enter a command to allow the Intel Fortran
RTL to receive and handle the appropriate signals.

Overriding the Default Run-Time Library Exception Handler

To override the default run-time library exception handler on Linux OS and Mac OS X, your
application must call signal to change the action for the signal of interest.

411

15

For example, assume that you want to change the signal action to cause your application to
call abort() and generate a core file.

The following example adds a function named clear_signal_ to call signal() and change the
action for the SIGABRT signal:
#include <signal.h>
void clear_signal_()
{
signal (SIGABRT, SIG_DFL);
}
int myabort_()
{
abort();
return 0;
}

A call to the clear_signal() local routine must be added to main. Make sure that the call
appears before any call to the local myabort() routine:

program aborts
integer i

call clear_signal()

i = 3
if (i < 5) then
call myabort()
end if
end

Using Traceback Information
Using Traceback Information Overview

When a Fortran program terminates due to a severe error condition, the Fortran run-time
system displays additional diagnostic information after the run-time message.

The Fortran run-time system attempts to walk back up the call chain and produce a report of
the calling sequence leading to the error as part of the default diagnostic message report. This
is known as traceback. The minimum information displayed includes:

• The standard Fortran run-time error message text that explains the error condition.

• A tabular report that contains one line per call stack frame. This information includes at
least the image name and a hexadecimal PC in that image.

The information displayed under the Routine, Line, and Source columns depends on whether
your program was compiled with the -traceback (Linux* OS and Mac OS* X) or /traceback
(Windows* OS) option.

412

15 Intel® Fortran Compiler User and Reference Guides

For example, if -traceback or /traceback is specified, the displayed information might
resemble the following:
forrtl: severe (24): end-of-file during read, unit 10, file E:\USERS\xxx.dat
Image PC Routine Line Source
libifcorert.dll 1000A3B2 Unknown Unknown Unknown
libifcorert.dll 1000A184 Unknown Unknown Unknown
libifcorert.dll 10009324 Unknown Unknown Unknown
libifcorert.dll 10009596 Unknown Unknown Unknown
libifcorert.dll 10024193 Unknown Unknown Unknown
teof.exe 004011A9 AGAIN 21 teof.for
teof.exe 004010DD GO 15 teof.for
teof.exe 004010A7 WE 11 teof.for
teof.exe 00401071 HERE 7 teof.for
teof.exe 00401035 TEOF 3 teof.for
teof.exe 004013D9 Unknown Unknown Unknown
teof.exe 004012DF Unknown Unknown Unknown
KERNEL32.dll 77F1B304 Unknown Unknown Unknown

If the same program is not compiled with the -traceback or /traceback option:

• The Routine name, Line number, and Source file columns would be reported as "Unknown."

• A link map file is usually needed to locate the cause of the error.

The -traceback or /traceback option provides program counter (PC) to source file line
correlation information to appear in the displayed error message information, which simplifies
the task of locating the cause of severe run-time errors.

For Fortran objects generated with -traceback or /traceback, the compiler generates
additional information used by the Fortran run-time system to automatically correlate PC values
to the routine name in which they occur, Fortran source file, and line number in the source file.
This information is displayed in the run-time error diagnostic report.

Automatic PC correlation is only supported for Fortran code. For non-Fortran code, only the
hexadecimal PC locations are reported.

Tradeoffs and Restrictions in Using Traceback

This topic describes tradeoffs and restrictions that apply to using traceback.

Effect on Image Size

Using the -traceback (Linux OS and Mac OS X) or /traceback (Windows OS) option to get
automatic PC correlation increases the size of an image. For any application, the developer
must decide if the increase in image size is worth the benefit of automatic PC correlation or if
manually correlating PCs with a map file is acceptable.

413

15

The approach of providing automatic correlation information in the image was used so that no
run-time penalty is incurred by building the information "on the fly" as your application executes.
No run-time diagnostic code is invoked unless your application is terminating due to a severe
error.

C Compiler Omit Frame Pointer Option on Systems Using IA-32 Architecture

The following routines are used to walk the stack:

• For Windows OS, the Windows API routine StackWalk() in imagehlp.dll

• For Linux OS and Mac OS X, _Unwind_ForcedUnwind(), _Unwind_GetIP(),
_Unwind_GetRegionStart() and _Unwind_GetGr() routines in libunwind.so

In an environment using IA-32 architecture, there are no firm software calling standards
documented. Compiler developers are under no constraints to use machine registers in any
particular way or to hook up procedures in any particular way. The stack walking routines listed
above use a set of heuristics to determine how to walk the call stack. That is, they make a
"best guess" to determine how a program reached a particular point in the call chain. With C
code that has been compiled with Visual C++* using the Omit Frame Pointer option -- either
-fomit-frame-pointer (Linux OS and Mac OS X) or /Oy (Windows OS) -- this "best guess"
is not usually the correct one.

If you are mixing Fortran and C code and you are concerned about stack tracing, consider
disabling the -fomit-frame-pointer or /Oy option in your C compilations. Otherwise, traceback
will most likely not work for you.

Stack Trace Failure

Programs can fail for a number of reasons, often with unpredictable consequences. Memory
corruption by erroneously executing code is one possibility. Stack memory can be corrupted in
such a way that the attempt to trace the call stack will result in access violations or other
undesirable consequences. The stack-tracing run-time code is guarded with a local exception
filter. If the traceback attempt fails due to a hard detectable condition, the run-time will report
this in its diagnostic output message as:

Stack trace terminated abnormally

Be forewarned, however: It is also possible for memory to be corrupted in such a way that a
stack trace can seem to complete successfully with no hint of a problem. The bit patterns it
finds in corrupted memory where the stack used to be, and then uses to access memory, may
constitute perfectly valid memory addresses for the program to be accessing. They just do not

414

15 Intel® Fortran Compiler User and Reference Guides

happen to have any connection to what the stack used to look like. So, if it appears that the
stack walk completed normally, but the reported PCs make no sense to you, then consider
ignoring the stack trace output in diagnosing your problem.

Another condition that will disable the stack trace process is your program exiting because it
has exhausted virtual memory resources.

The stack trace can fail if the run-time system cannot dynamically load libunwind.so (Linux OS
and Mac OS X) or imagehlp.dll (Windows OS) or cannot find the necessary routines from that
library. In this case, you still get the basic run-time diagnostic message; you will not get any
call stack information.

Linker /incremental:no Option on Windows Operating Systems

The following applies to Windows operating systems only.

When incremental linking is enabled, automatic PC correlation does not work. Use of incremental
linking always disables automatic PC correlation even if you specify /traceback during
compilation.

When you use incremental linking, the default hexadecimal (hex) PC values will still appear in
the output. To correlate from the hexadecimal PC values to routine containing the PC addresses
requires use of a linker map file. However, if you request a map file during linking, incremental
linking becomes disabled. Thus to allow any PC values generated for a run-time problem to be
helpful, incremental linking must be disabled.

In the integrated development environment, you can use the Call stack display, so incremental
linking is not a problem.

Sample Programs and Traceback Information

The following sections provide sample programs that show the use of traceback to locate the
cause of the error:

• Example: End-of-File Condition, Program teof

• Example: Machine Exception Condition, Program ovf

• Example: Using Traceback in Mixed Fortran/C Applications, Program FPING and CPONG

Note that the hex PC's and contents of registers displayed in these program outputs are meant
as representative examples of typical output. The PC's will change over time, as the libraries
and other tools used to create an image change.

415

15

Example: End-of-File Condition, Program teof

In the following example, a READ statement creates an End-Of-File error, which the application
has not handled:

program teof
integer*4 i,res
i=here()
end
integer*4 function here()
here = we()
end
integer*4 function we()
we = go()
end
integer*4 function go()
go = again()
end
integer*4 function again()
integer*4 a
open(10,file='xxx.dat',form='unformatted',status='unknown')
read(10) a
again=a
end

The diagnostic output that results when this program is built with traceback enabled and linked
against the single-threaded, shared Fortran run-time library on the IA-32 architecture platform
is similar to the following:

forrtl: severe (24): end-of-file during read, unit 10, file E:\USERS\xxx.dat
Image PC Routine Line Source
libifcorert.dll 1000A3B2 Unknown Unknown Unknown
libifcorert.dll 1000A184 Unknown Unknown Unknown
libifcorert.dll 10009324 Unknown Unknown Unknown
libifcorert.dll 10009596 Unknown Unknown Unknown
libifcorert.dll 10024193 Unknown Unknown Unknown
teof.exe 004011A9 AGAIN 21 teof.for
teof.exe 004010DD GO 15 teof.for
teof.exe 004010A7 WE 11 teof.for
teof.exe 00401071 HERE 7 teof.for
teof.exe 00401035 TEOF 3 teof.for
teof.exe 004013D9 Unknown Unknown Unknown
teof.exe 004012DF Unknown Unknown Unknown
KERNEL32.dll 77F1B304 Unknown Unknown Unknown

The first line of the output is the standard Fortran run-time error message. What follows is the
result of walking the call stack in reverse order to determine where the error originated. Each
line of output represents a call frame on the stack. Since the application was compiled with

416

15 Intel® Fortran Compiler User and Reference Guides

-traceback (Linux OS and Mac OS X) or /traceback (Windows OS), the PCs that fall in
Fortran code are correlated to their matching routine name, line number and source module.
PCs that are not in Fortran code are not correlated and are reported as "Unknown."

The first five frames show the calls to routines in the Fortran run-time library (in reverse order).
Since the application was linked against the single threaded, shared version of the library, the
image name reported is either libifcore.so (Linux OS and Mac OS X) or libifcorert.dll (Windows
OS). These are the run-time routines that were called to do the READ and upon detection of
the EOF condition, were invoked to report the error. In the case of an unhandled I/O
programming error, there will always be a few frames on the call stack down in run-time code
like this.

The stack frame of real interest to the Fortran developer is the first frame in image teof.exe
which shows that the error originated in the routine named AGAIN in source module teof.for
at line 21. Looking in the source code at line 21, you can see the Fortran READ statement that
incurred the end-of-file condition.

The next four frames show the trail of calls in the Fortran user code that led to the routine that
got the error (TEOF->HERE->WE->GO->AGAIN).

Finally, the bottom three frames are routines which handled the startup and initialization of
the program.

If this program had been linked against the single-threaded, static Fortran run-time library,
the output would then look like:

forrtl: severe (24): end-of-file during read, unit 10, file E:\USERS\xxx.dat
Image PC Routine Line Source
teof.exe 004067D2 Unknown Unknown Unknown
teof.exe 0040659F Unknown Unknown Unknown
teof.exe 00405754 Unknown Unknown Unknown
teof.exe 004059C5 Unknown Unknown Unknown
teof.exe 00403543 Unknown Unknown Unknown
teof.exe 004011A9 AGAIN 21 teof.for
teof.exe 004010DD GO 15 teof.for
teof.exe 004010A7 WE 11 teof.for
teof.exe 00401071 HERE 7 teof.for
teof.exe 00401035 TEOF 3 teof.for
teof.exe 004202F9 Unknown Unknown Unknown
teof.exe 00416063 Unknown Unknown Unknown
KERNEL32.dll 77F1B304 Unknown Unknown Unknown

Notice that the initial five stack frames now show routines in image teof.exe, not libifcore.so
(Linux OS and Mac OS X) or libifcorert.dll (Windows OS). The routines are the same five
run-time routines as previously reported for the shared library case but since the application
was linked against the archive library libifcore.a (Linux OS and Mac OS X) or the static Fortran

417

15

run-time library libifcore.lib (Windows OS), the object modules containing these routines
were linked into the application image (teof.exe). You can use a map file to determine the
locations of uncorrelated PCs.

Now suppose the application was compiled without traceback enabled and, once again, linked
against the single-threaded, static Fortran library. The diagnostic output would appear as
follows:

forrtl: severe (24): end-of-file during read, unit 10, file E:\USERS\xxx.dat
Image PC Routine Line Source
teof.exe 00406792 Unknown Unknown Unknown
teof.exe 0040655F Unknown Unknown Unknown
teof.exe 00405714 Unknown Unknown Unknown
teof.exe 00405985 Unknown Unknown Unknown
teof.exe 00403503 Unknown Unknown Unknown
teof.exe 00401169 Unknown Unknown Unknown
teof.exe 004010A8 Unknown Unknown Unknown
teof.exe 00401078 Unknown Unknown Unknown
teof.exe 00401048 Unknown Unknown Unknown
teof.exe 0040102F Unknown Unknown Unknown
teof.exe 004202B9 Unknown Unknown Unknown
teof.exe 00416023 Unknown Unknown Unknown
KERNEL32.dll 77F1B304 Unknown Unknown Unknown

Without the correlation information in the image that -traceback (Linux OS and Mac OS X)
or /traceback (Windows OS) previously supplied, the Fortran run-time system cannot correlate
PC's to routine name, line number, and source file. You can still use the map file to at least
determine the routine names and what modules they are in.

Remember that compiling with -traceback or /traceback increases the size of your
application's image because of the extra PC correlation information included in the image. You
can see if the extra traceback information is included in an image (checking for the presence
of a .trace section) by entering:

objdump -h your_app.exe (Linux OS)
otool -l your_app.exe (Mac OS X)
link -dump -summary your_app.exe (Windows OS)

Build your application with and without traceback and compare the file size of each image.
Check the file size with a simple directory command.

For this simple teof.exe example, the traceback correlation information adds about 512 bytes
to the image size. In a real application, this would probably be much larger. For any application,
the developer must decide if the increase in image size is worth the benefit of automatic PC
correlation or if manually correlating PC's with a map file is acceptable.

If an error occurs when traceback was requested during compilation, the run-time library will
produce the correlated call stack display.

418

15 Intel® Fortran Compiler User and Reference Guides

If an error occurs when traceback was disabled during compilation, the run-time library will
produce the uncorrelated call stack display.

If you do not want to see the call stack information displayed, you can set the environment
variable FOR_DISABLE_STACK_TRACE to true. You will still get the Fortran run-time error
message:

forrtl: severe (24): end-of-file during read, unit 10, file E:\USERS\xxx.dat

Example: Machine Exception Condition, Program ovf

The following program generates a floating-point overflow exception when compiled with -fpe
0 (Linux OS and Mac OS X) or /fpe:0 (Windows OS):

program ovf
real*4 a
a=1e37
do i=1,10
a=hey(a)

end do
print *, 'a= ', a
end
real*4 function hey(b)
real*4 b
hey = watch(b)
end
real*4 function watch(b)
real*4 b
watch = out(b)
end
real*4 function out(b)
real*4 b
out = below(b)
end
real*4 function below(b)
real*4 b
below = b*10.0e0
end

Assume this program is compiled with the following:

• -fpe 0 (Linux OS and Mac OS X) or /fpe:0 (Windows OS)

• -traceback (Linux OS and Mac OS X) or /traceback (Windows OS)

• -O0 (Linux OS and Mac OS X) or /Od (Windows OS)

419

15

On a system based on IA-32 architecture, the traceback output is similar to the following:

forrtl: error (72): floating overflow
Image PC Routine Line Source
ovf.exe 00401161 BELOW 29 ovf.f90
ovf.exe 0040113C OUT 24 ovf.f90
ovf.exe 0040111B WATCH 19 ovf.f90
ovf.exe 004010FA HEY 14 ovf.f90
ovf.exe 0040105B OVF 7 ovf.f90
ovf.exe 00432429 Unknown Unknown Unknown
ovf.exe 00426C74 Unknown Unknown Unknown
KERNEL32.dll 77F1B9EA Unknown Unknown Unknown

Notice that unlike the previous example of an unhandled I/O programming error, the stack
walk can begin right at the point of the exception. There are no run-time routines on the call
stack to dig through. The overflow occurs in routine BELOW at PC 00401161, which is correlated
to line 29 of the source file ovf.f90.

When the program is compiled at a higher optimization level of O2, along with -fpe 0 (Linux
OS and Mac OS X) or /fpe:0 (Windows) and -traceback (Linux OS and Mac OS X) or
/traceback (Windows OS), the traceback output appears as follows:

forrtl: error (72): floating overflow
Image PC Routine Line Source
ovf.exe 00401070 OVF 29 ovf.f90
ovf.exe 004323E9 Unknown Unknown Unknown
ovf.exe 00426C34 Unknown Unknown Unknown
KERNEL32.dll 77F1B9EA Unknown Unknown Unknown

With /O2, the entire program has been inlined.

The main program, OVF, no longer calls routine HEY. While the output is not quite what one
might have expected intuitively, it is still entirely correct. You need to keep in mind the effects
of compiler optimization when you interpret the diagnostic information reported for a failure in
a release image.

If the same image were executed again, this time with the environment variable called
TBK_ENABLE_VERBOSE_STACK_TRACE set to True, you would also see a dump of the exception
context record at the time of the error. Here is an excerpt of how that might appear on a system
using IA-32 architecture:

forrtl: error (72): floating overflow
Hex Dump Of Exception Record Context Information:
Exception Context: Processor Control and Status Registers.
EFlags: 00010212
CS: 0000001B EIP: 00401161 SS: 00000023 ESP: 0012FE38 EBP: 0012FE60
Exception Context: Processor Integer Registers.
EAX: 00444488 EBX: 00000009 ECX: 00444488 EDX: 00000002
ESI: 0012FBBC EDI: F9A70030

420

15 Intel® Fortran Compiler User and Reference Guides

Exception Context: Processor Segment Registers.
DS: 00000023 ES: 00000023 FS: 00000038 GS: 00000000
Exception Context: Floating Point Control and Status Registers.
ControlWord: FFFF0262 ErrorOffset: 0040115E DataOffset: 0012FE5C
StatusWord: FFFFF8A8 ErrorSelector: 015D001B DataSelector: FFFF0023
TagWord: FFFF3FFF Cr0NpxState: 00000000
Exception Context: Floating Point RegisterArea.
RegisterArea[00]: 4080BC143F4000000000 RegisterArea[10]: F7A0FFFFFFFF77F9D860
RegisterArea[20]: 00131EF0000800060012 RegisterArea[30]: 00000012F7C002080006
RegisterArea[40]: 02080006000000000000 RegisterArea[50]: 0000000000000012F7D0
RegisterArea[60]: 00000000000000300000 RegisterArea[70]: FBBC000000300137D9EF
...

Example: Using Traceback in Mixed Fortran/C Applications, Program
FPING and CPONG

Consider the following example that shows how the traceback output might appear in a mixed
Fortran/C application. The main program is a Fortran program named FPING. Program FPING
triggers a chain of function calls which are alternately Fortran and C code. Eventually, the C
routine named Unlucky is called, which produces a floating divide-by-zero error.

Source module FPING.FOR contains the Fortran function definitions, each of which calls a C
routine from source module CPONG.C. The program FPING.FOR is compiled with the following
options:

• -fpe 0 (Linux OS and Mac OS X) or /fpe:0 (Windows OS)

• -traceback (Linux OS and Mac OS X) or /traceback (Windows OS)

• -O0 (Linux OS and Mac OS X) or /Od (Windows OS)

On the IA-32 architecture platform. the program traceback output resembles the following:

forrtl: error (73): floating divide by zero
Image PC Routine Line Source
fping.exe 00401161 Unknown Unknown Unknown
fping.exe 004010DC DOWN4 58 fping.for
fping.exe 0040118F Unknown Unknown Unknown
fping.exe 004010B6 DOWN3 44 fping.for
fping.exe 00401181 Unknown Unknown Unknown
fping.exe 00401094 DOWN2 31 fping.for
fping.exe 00401173 Unknown Unknown Unknown
fping.exe 00401072 DOWN1 18 fping.for
fping.exe 0040104B FPING 5 fping.for
fping.exe 004013B9 Unknown Unknown Unknown
fping.exe 004012AF Unknown Unknown Unknown
KERNEL32.dll 77F1B304 Unknown Unknown Unknown

421

15

Notice that the stack frames contributed by Fortran routines can be correlated to a routine
name, line number, and source module but those frames contributed by C routines cannot be
correlated. Remember, even though the stack can be walked in reverse, and PCs reported, the
information necessary to correlate the PC to a routine name, line number, and so on, is
contributed to the image from the objects generated by the Fortran compiler. The C compiler
does not have this capability. Also remember that you only get the correlation information if
you specify the -traceback or /traceback option for your Fortran compiles.

The top stack frame cannot be correlated to a routine name because it is in C code. You can
examine the map file for the application; if you do so, you will see that the reported PC,
00401161, is greater than the start of routine _Unlucky, but less than the start of routine
_down1_C. This means that the error occurred in routine _Unlucky.

In a similar manner, the other PCs reported as "Unknown" can be correlated to a routine name
using the map file.

When examining traceback output (or any type of diagnostic output, for that matter), it is
important to keep in mind the effects of compiler optimization. The Fortran source module in
the above example was built with optimization turned off. Look at the output when optimizations
are enabled with -O2 (Linux OS and Mac OS X) or /O2 (Windows OS):

forrtl: error (73): floating divide by zero
Image PC Routine Line Source
fping.exe 00401111 Unknown Unknown Unknown
fping.exe 0040109D DOWN4 58 fping.for
fping.exe 0040113F Unknown Unknown Unknown
fping.exe 00401082 DOWN3 44 fping.for
fping.exe 00401131 Unknown Unknown Unknown
fping.exe 0040106B DOWN2 31 fping.for
fping.exe 00401123 Unknown Unknown Unknown
fping.exe 00401032 FPING 18 fping.for
fping.exe 00401369 Unknown Unknown Unknown
fping.exe 0040125F Unknown Unknown Unknown
KERNEL32.dll 77F1B304 Unknown Unknown Unknown

From the traceback output, it would appear that routine DOWN1 was never called. In fact, it
has not been called. At the higher optimization level, the compiler has inlined function DOWN1
so that the call to routine down1_C is now made from FPING. The correlated line number still
points to the correct line in the source code.

Finally, suppose the example Fortran code is redesigned with each of the Fortran routines split
into separate source modules. Here is what the traceback output would look like with the
redesigned code:

forrtl: error (73): floating divide by zero
Image PC Routine Line Source
fpingmain.exe 00401171 Unknown Unknown Unknown

422

15 Intel® Fortran Compiler User and Reference Guides

fpingmain.exe 004010ED DOWN4 12 fping4.for
fpingmain.exe 0040119F Unknown Unknown Unknown
fpingmain.exe 004010C1 DOWN3 11 fping3.for
fpingmain.exe 00401191 Unknown Unknown Unknown
fpingmain.exe 00401099 DOWN2 11 fping2.for
fpingmain.exe 00401183 Unknown Unknown Unknown
fpingmain.exe 00401073 DOWN1 11 fping1.for
fpingmain.exe 0040104B FPING 5 fpingmain.for
fpingmain.exe 004013C9 Unknown Unknown Unknown
fpingmain.exe 004012BF Unknown Unknown Unknown
KERNEL32.dll 77F1B304 Unknown Unknown Unknown

Notice that the line number and source file correlation information has changed to reflect the
new design of the code.

Here are the sources used in the above examples:

FPING.FOR

program fping
real*4 a,b
a=-10.0
b=down1(a)
end
real*4 function down1(b)
real*4 b
!DEC$ IF DEFINED(_X86_)
INTERFACE TO REAL*4 FUNCTION down1_C [C,ALIAS:'_down1_C'] (n)
!DEC$ ELSE
INTERFACE TO REAL*4 FUNCTION down1_C [C,ALIAS:'down1_C'] (n)
!DEC$ ENDIF
REAL*4 n [VALUE]
END
real*4 down1_C
down1 = down1_C(b)
end
real*4 function down2(b)
real*4 b [VALUE]
!DEC$ IF DEFINED(_X86_)
INTERFACE TO REAL*4 FUNCTION down2_C [C,ALIAS:'_down2_C'] (n)
!DEC$ ELSE
INTERFACE TO REAL*4 FUNCTION down2_C [C,ALIAS:'down2_C'] (n)
!DEC$ ENDIF
REAL*4 n [VALUE]
END
real*4 down2_C
down2 = down2_C(b)
end
real*4 function down3(b)
real*4 b [VALUE]

423

15

!DEC$ IF DEFINED(_X86_)
INTERFACE TO REAL*4 FUNCTION down3_C [C,ALIAS:'_down3_C'] (n)
!DEC$ ELSE
INTERFACE TO REAL*4 FUNCTION down3_C [C,ALIAS:'down3_C'] (n)
!DEC$ ENDIF
REAL*4 n [VALUE]
END
real*4 down3_C
down3 = down3_C(b)
end
real*4 function down4(b)
real*4 b [VALUE]
!DEC$ IF DEFINED(_X86_)
INTERFACE TO SUBROUTINE Unlucky [C,ALIAS:'_Unlucky'] (a,c)
!DEC$ ELSE
INTERFACE TO SUBROUTINE Unlucky [C,ALIAS:'Unlucky'] (a,c)
!DEC$ ENDIF
REAL*4 a [VALUE]
REAL*4 c [REFERENCE]
END
real*4 a
call Unlucky(b,a)
down4 = a
end

CPONG.C

#include <math.h>
extern float __stdcall DOWN2 (float n);
extern float __stdcall DOWN3 (float n);
extern float __stdcall DOWN4 (float n);
int Fact(int n)
{

if (n > 1)
return(n * Fact(n - 1));

return 1;
}
void Pythagoras(float a, float b, float *c)
{

*c = sqrt(a * a + b * b);
}
void Unlucky(float a, float *c)
{
float b=0.0;

*c = a/b;
}
float down1_C(float a)
{

return(DOWN2(a));
}
float down2_C(float a)

424

15 Intel® Fortran Compiler User and Reference Guides

{
return(DOWN3(a));

}
float down3_C(float a)
{

return(DOWN4(a));
}

FPINGMAIN.FOR

program fping
real*4 a,b
a=-10.0
b=down1(a)
end

FPING1.FOR

real*4 function down1(b)
real*4 b
!DEC$ IF DEFINED(_X86_)
INTERFACE TO REAL*4 FUNCTION down1_C [C,ALIAS:'_down1_C'] (n)
!DEC$ ELSE
INTERFACE TO REAL*4 FUNCTION down1_C [C,ALIAS:'down1_C'] (n)
!DEC$ ENDIF
REAL*4 n [VALUE]
END
real*4 down1_C
down1 = down1_C(b)
end

FPING2.FOR

real*4 function down2(b)
real*4 b [VALUE]
!DEC$ IF DEFINED(_X86_)
INTERFACE TO REAL*4 FUNCTION down2_C [C,ALIAS:'_down2_C'] (n)
!DEC$ ELSE
INTERFACE TO REAL*4 FUNCTION down2_C [C,ALIAS:'down2_C'] (n)
!DEC$ ENDIF
REAL*4 n [VALUE]
END
real*4 down2_C
down2 = down2_C(b)
end

FPING3.FOR

real*4 function down3(b)
real*4 b [VALUE]
!DEC$ IF DEFINED(_X86_)

425

15

INTERFACE TO REAL*4 FUNCTION down3_C [C,ALIAS:'_down3_C'] (n)
!DEC$ ELSE
INTERFACE TO REAL*4 FUNCTION down3_C [C,ALIAS:'down3_C'] (n)
!DEC$ ENDIF
REAL*4 n [VALUE]
END
real*4 down3_C
down3 = down3_C(b)
end

FPING4.FOR

real*4 function down4(b)
real*4 b [VALUE]
!DEC$ IF DEFINED(_X86_)
INTERFACE TO SUBROUTINE Unlucky [C,ALIAS:'_Unlucky'] (a,c)
!DEC$ ELSE
INTERFACE TO SUBROUTINE Unlucky [C,ALIAS:'Unlucky'] (a,c)
!DEC$ ENDIF
REAL*4 a [VALUE]
REAL*4 c [REFERENCE]
END
real*4 a
call Unlucky(b,a)
down4 = a
end

Obtaining Traceback Information with TRACEBACKQQ

You can obtain traceback information in your application by calling the TRACEBACKQQ routine.

TRACEBACKQQ allows an application to initiate a stack trace. You can use this routine to report
application detected errors, use it for debugging, and so on. It uses the standard stack trace
support in the Intel® Fortran run-time system to produce the same output that the run-time
system produces for unhandled errors and exceptions (severe error message). The TRACEBACKQQ
subroutine generates a stack trace showing the program call stack as it was leading up to the
point of the call to TRACEBACKQQ.

The error message string normally included from the run-time support is replaced with the
user-supplied message text or omitted if no user string is specified. Traceback output is directed
to the target destination appropriate for the application type, just as it is when traceback is
initiated internally by the run-time support.

In the most simple case, a user can generate a stack trace by coding the call to TRACEBACKQQ
with no arguments:
CALL TRACEBACKQQ()

This call causes the run-time library to generate a traceback report with no leading header
message, from wherever the call site is, and terminate execution.

426

15 Intel® Fortran Compiler User and Reference Guides

You can specify arguments that generate a stack trace with the user-supplied string as the
header and instead of terminating execution, return control to the caller to continue execution
of the application. For example:
CALL TRACEBACKQQ(STRING="Done with pass 1",USER_EXIT_CODE=-1)

By specifying a user exit code of -1, control returns to the calling program. Specifying a user
exit code with a positive value requests that specified value be returned to the operating system.
The default value is 0, which causes the application to abort execution.

427

15

16Portability Considerations

Portability Considerations Overview

This section presents topics to help you understand how language standards, operating system
differences, and computing hardware influence your use of Intel® Fortran and the portability of your
programs.

Your program is portable if you can implement it on one hardware-software platform and then move
it to additional systems with a minimum of changes to the source code. Correct results on the first
system should be correct on the additional systems. The number of changes you might have to make
when moving your program varies significantly. You might have no changes at all (strictly portable),
or so many (non-portable customization) that it is more efficient to design or implement a new
program. Most programs in their lifetime will need to be ported from one system to another, and
this section can help you write code that makes this easy.

See also:

• Understanding Fortran Language Standards and related topics

• Minimizing Operating System-Specific Information

• Storing and Representing Data

• Formatting Data for Transportability

• Portability Library Overview

Understanding Fortran Language Standards

Understanding Fortran Language Standards Overview

A language standard specifies the form and establishes the interpretation of programs expressed in
the language. Its primary purpose is to promote, among vendors and users, portability of programs
across a variety of systems.

The vendor-user community has adopted four major Fortran language standards. ANSI (American
National Standards Institute) and ISO (International Standards Organization) are the primary
organizations that develop and publish the standards.

The major Fortran language standards are:

• FORTRAN IV

429

American National Standard Programming Language FORTRAN, ANSI X3.9-1966. This was
the first attempt to standardize the languages called FORTRAN by many vendors.

• FORTRAN 77

American National Standard Programming Language FORTRAN, ANSI X3.9-1978. This
standard added new features based on vendor extensions to FORTRAN IV and addressed
problems associated with large-scale projects, such as improved control structures.

• Fortran 90

American National Standard Programming Language Fortran, ANSI X3.198-1992 and
International Standards Organization, ISO/IEC 1539: 1991, Information technology --
Programming languages -- Fortran. This standard emphasizes modernization of the language
by introducing new developments. For information about differences between Fortran 90
and FORTRAN 77, see the Fortran Language Reference Manual.

• Fortran 95

American National Standard Programming Language Fortran and International Standards
Organization, ISO/IEC 1539-1: 1997(E), Information technology -- Programming languages
-- Fortran. This standard introduces certain language elements and corrections into Fortran
90. Fortran 95 includes Fortran 90 and most features of FORTRAN 77. For information about
differences between Fortran 95 and Fortran 90, see the Fortran Language Reference
Manual.

• Fortran 2003

American National Standard Programming Language Fortran and International Standards
Organization, ISO/IEC 1539-1:2004, Information technology -- Programming languages --
Fortran. This standard introduces extended support for exception handling, object-oriented
programming, and improved interoperability with the C language. For more information on
supported Fortran 2003 features, see the Fortran Language Reference Manual.

Although a language standard seeks to define the form and the interpretation uniquely, a
standard may not cover all areas of interpretation. It may also include some ambiguities. You
need to carefully craft your program in these cases so that you get the answers that you want
when producing a portable program.

Using Standard Features and Extensions

Use standard features to achieve the greatest degree of portability for your Intel Fortran
programs. You can design a robust implementation to improve the portability of your program,
or you can choose to use extensions to the standard to increase the readability, functionality,
and efficiency of your programs. You can ensure your program enforces the Fortran standard
by using the -stand (Linux* OS and Mac OS* X) or /stand (Windows* OS) compiler option
with the appropriate keyword (f90, f95, or f03) to flag extensions. The none keyword turns

430

16 Intel® Fortran Compiler User and Reference Guides

off enforcement of a particular Fortran standard. You can also use the following compiler options
to set the Fortran standard: -std90 or /std90, -std95 or /std95, and -std03 or /std03.
The default is std03, which diagnoses exceptions to the Fortran 2003 standard.

Not all Fortran standard extensions cause problems when porting to other platforms. Many
extensions are supported on a wide range of platforms, and if a system you are porting a
program to supports an extension, there is no reason to avoid using it. There is no guarantee,
however, that the same feature on another system will be implemented in the same way as it
is in Intel Fortran. Only the Fortran standard is guaranteed to coexist uniformly on all platforms.

Intel® Fortran supports many language extensions on multiple platforms, including Windows,
Linux, and Mac OS X operating systems. The Intel® Fortran Language Reference Manual
identifies whether each language element is supported on other platforms.

It is a good programming practice to declare any external procedures either in an EXTERNAL
statement or in a procedure interface block, for the following reasons:

• The Fortran 90 standard added many new intrinsic procedures to the language. Programs
that conformed to the FORTRAN 77 standard may include nonintrinsic functions or subroutines
having the same name as new Fortran 90 procedures.

• Some processors include nonstandard intrinsic procedures that might conflict with procedure
names in your program.

If you do not explicitly declare the external procedures and the name duplicates an intrinsic
procedure, the processor calls the intrinsic procedure, not your external routine. For more
information on how the Fortran compiler resolves name definitions, see Resolving Procedure
References.

Using Compiler Optimizations

Many Fortran compilers perform code-generation optimizations to increase the speed of execution
or to decrease the required amount of memory for the generated code. Although the behaviors
of both the optimized and nonoptimized programs fall within the language standard specification,
different behaviors can occur in areas not covered by the language standard. Compiler
optimization especially can influence floating-point numeric results.

The Intel® Fortran compiler can perform optimizations to increase execution speed and to
improve floating-point numerical consistency.

Floating-point consistency refers to obtaining results consistent with the IEEE binary floating-point
standards. For more information, see the -fltconsistency (Linux OS and Mac OS X) or
/fltconsistency (Windows OS) option.

Unless you properly design your code, you may encounter numerical difficulties when you
optimize for fastest execution. The -nofltconsistency or /nofltconsistency option uses
the floating-point registers, which have a higher precision than stored variables, whenever
possible. This tends to produce results that are inconsistent with the precision of stored variables.

431

16

The -fltconsistency or /fltconsistency option can improve the consistency of generated
code by rounding results of statement evaluations to the precision of the standard data types,
but it does produce slower execution times.

See also Optimizing Applications.

Minimizing Operating System-Specific Information

The operating system influences your program both externally and internally. For increased
portability, you need to minimize the amount of operating-system-specific information required
by your program. The Fortran language standards do not specify this information.

Operating-system-specific information consists of nonintrinsic extensions to the language,
compiler and linker options, and possibly the graphical user interface of Windows. Input and
output operations use devices that may be system-specific, and may involve a file system with
system-specific record and file structures.

The operating system also governs resource management and error handling. You can depend
on default resource management and error handling mechanisms or provide mechanisms of
your own. For information on special library routines to help port your program from one system
to another, see Portability Library Overview and related topics.

The minimal interaction with the operating system is for input/output (I/O) operations and
usually consists of knowing the standard units preconnected for input and output. You can use
default file units with the asterisk (*) unit specifier.

To increase the portability of your programs across operating systems, consider the following:

• Do not assume the use of a particular type of file system.

• Do not embed filenames or paths in the body of your program. Define them as constants
at the beginning of the program or read them from input data.

• Do not assume a particular type of standard I/O device or the "size" of that device (number
of rows and columns).

• Do not assume display attributes for the standard I/O device. Some environments do not
support attributes such as color, underlined text, blinking text, highlighted text, inverse
text, protected text, or dim text.

Storing and Representing Data

The Fortran language standard specifies little about the storage of data types.

This loose specification of storage for data types results from a great diversity of computing
hardware. This diversity poses problems in representing data and especially in transporting
stored data among a multitude of systems. The size (as measured by the number of bits) of a

432

16 Intel® Fortran Compiler User and Reference Guides

storage unit (a word, usually several bytes) varies from machine to machine. In addition, the
ordering of bits within bytes and bytes within words varies from one machine to another.
Furthermore, binary representations of negative integers and floating-point representations of
real and complex numbers take several different forms.

If you are careful, you can avoid most of the problems involving data storage. The simplest
and most reliable means of transferring data between dissimilar systems is in character and
not binary form. Simple programming practices ensure that your data as well as your program
is portable.

See also Supported Native and Nonnative Numeric Formats.

Formatting Data for Transportability

You can achieve the highest transportability of your data by formatting it as 8-bit character
data. Use a standard character set such as the ASCII standard for encoding your character
data. Although this practice is less efficient than using binary data, it will save you from shuffling
and converting your data.

If you are transporting your data by means of a record-structured medium, it is best to use
the Fortran sequential formatted (as character data) form. You can also use the direct formatted
form, but you need to know the record length of your data.

Remember also that some systems use a carriage return/linefeed pair as an end-of-record
indicator, while other systems use linefeed only. If you use either the direct unformatted or
the sequential unformatted form, there might be system-dependent values embedded within
your data that complicate its transport.

Implementing a strictly portable solution requires a careful effort. Maximizing portability may
also mean making compromises to the efficiency and functionality of your solution. If portability
is not your highest priority, you can use some of the techniques that appear in later sections
to ease your task of customizing a solution.

See Also
• Portability Considerations
• Supported Native and Nonnative Numeric Formats
• Porting Nonnative Data
• Methods of Specifying the Data Format

433

16

17Troubleshooting

Troubleshooting Your Application

The following lists some of the most basic problems you can encounter during application development
and gives suggestions for troubleshooting:

• Source code does not compile correctly.

If your source code fails to compile, check for unsupported language extensions. Typically, these
produce a syntax error. The best way to resolve problems of this nature is to rewrite the source
code so it conforms to the supported Fortran standards and does not contain unsupported
extensions.

• Program does not run produce expected results.

Use test scenarios that ensure the output matches your expectations. If a test fails, try compiling
the files using the -O0 (Linux* OS and Mac OS* X) or /Od (Windows* OS) option, which turns
off the optimizer. If the test still fails, it is likely that the source code contains a problem. If your
program runs successfully with -O0 (Linux OS and Mac OS X) or /Od (Windows OS), but fails
with the default -O2 (Linux OS and Mac OS X) or /O2 (Windows OS), you need to determine
which file or files are causing the problem.

• Program runs slowly.

Try to determine where your program spends most of its time. Such an analysis will show you
which lines of your program are using the most execution time. See the Optimizing Applications
book for additional guidelines that will help you optimize performance and gain speed.

435

18Reference Information

Key Compiler Files Summary

The following table lists the key files that are installed for use by the compiler.

\bin Files

DescriptionFile

Executable for the Code-coverage toolcodecov

Executable used by the compilerfortcom

Fortran preprocessorfpp

Assembler for systems using IA-64 architectureias (Linux* OS and Mac OS* X)

Disassembler for systems using IA-64 architectureidis (Windows* OS)

File to set environment variablesifortvars

Configuration file for use from command lineifort.cfg

Intel® Fortran Compilerifort

Executable used by the compilerifortbin (Linux OS and Mac OS X)

Utility used for option translationmap_opts

Utility used for Profile Guided Optimizationsprofmerge

Utility used for Profile Guided Optimizationsproforder

Test prioritization tooltselect

Uninstall utilityuninstall.sh (Linux OS and Mac OS X)

Tool used for Interprocedural Optimizationsxiar (Linux OS)

437

\bin Files

DescriptionFile

xilibtool (Mac OS X)

xilib (Windows OS)

Tool used for Interprocedural Optimizationsxild (Linux OS and Mac OS X)

xilink (Windows OS)

For a list of the files installed in the lib directory, see Supplied Libraries.

Compiler Limits

The amount of data storage, the size of arrays, and the total size of executable programs are
limited only by the amount of process virtual address space available, as determined by system
parameters.

The table below shows the limits to the size and complexity of a single Intel® Fortran program
unit and to individual statements contained within it:

LimitLanguage Element

Limited only by memory constraintsActual number of arguments per CALL or
function reference

255Arguments in a function reference in a
specification expression

7Array dimensions

9,223,372,036,854,775,807 =Array elements per dimension

2**31-1 on systems using IA-32 architecture;

2**63-1 on systems using Intel® 64 and
IA-64 architectures;

plus limited by current memory configuration

7198Constants: character and Hollerith

2048 charactersConstants: characters read in list-directed
I/O

438

18 Intel® Fortran Compiler User and Reference Guides

LimitLanguage Element

Depends on line complexity and the number
of lexical tokens allowed.

Continuation lines - free form

Depends on line complexity and the number
of lexical tokens allowed.

Continuation lines - fixed form

7Data and I/O implied DO nesting

256DO and block IF statement nesting
(combined)

9,223,372,036,854,775,807= 2**63-1DO loop index variable

8Format group nesting

2048 charactersFortran statement length

fixed form: 72 (or 132 if /extend_source is
in effect) characters;

Fortran source line length

free form: 7200 characters

20 levelsINCLUDE file nesting

Limited only by memory constraintsLabels in computed or assigned GOTO list

40000Lexical tokens per statement

Limited only by memory constraintsNamed common blocks

7Nesting of array constructor implied DOs

7Nesting of input/output implied DOs

Limited only by memory constraintsNesting of interface blocks

Limited only by memory constraintsNesting of DO, IF, or CASE constructs

Limited only by memory constraintsNesting of parenthesized formats

Limited only by memory constraintsNumber of arguments to MIN and MAX

Limited by statement lengthNumber of digits in a numeric constant

439

18

LimitLanguage Element

Limited only by memory constraintsParentheses nesting in expressions

30Structure nesting

63 charactersSymbolic name length

2**31 - 1Width field for a numeric edit descriptor

See the product Release Notes for more information on memory limits for large data objects.

440

18 Intel® Fortran Compiler User and Reference Guides

Part

II
Compiler Options
Topics:

• Overview: Compiler Options

• Alphabetical Compiler Options

• Quick Reference Guides and
Cross References

• Related Options

441

19Overview: Compiler Options

This document provides details on all current Linux* OS, Mac OS* X, and Windows* OS compiler options.

It provides the following information:

• New options
This topic lists new compiler options in this release.

• Deprecated
This topic lists deprecated and removed compiler options for this release. Some deprecated options
show suggested replacement options.

• Alphabetical Compiler Options
This topic is the main source in the documentation set for general information on all compiler options.
Options are described in alphabetical order. The Overview describes what information appears in each
compiler option description.

• Quick Reference Guide and Cross Reference
This topic contains tables summarizing compiler options. The tables show the option name, a short
description of the option, the default setting for the option, and the equivalent option on the operating
system, if any.

• Related Options
This topic lists related options that can be used under certain conditions.

In this guide, compiler options are available on all supported operating systems and architectures unless
otherwise identified.

For further information on compiler options, see Building Applications and Optimizing Applications.

Functional Groupings of Compiler Options

To see functional groupings of compiler options, specify a functional category for option help on the
command line. For example, to see a list of options that affect diagnostic messages displayed by the
compiler, enter one of the following commands:

-help diagnostics ! Linux and Mac OS X systems

/help diagnostics ! Windows systems

For details on the categories you can specify, see help.

443

New Options

This topic lists the options that provide new functionality in this release.

Some compiler options are only available on certain systems, as indicated by these labels:

MeaningLabel

The option is available on systems using IA-32 architecture.i32

The option is available on systems using Intel® 64 architecture.i64em

The option is available on systems using IA-64 architecture.i64

If no label appears, the option is available on all supported systems.

If "only" appears in the label, the option is only available on the identified system.

For more details on the options, refer to the Alphabetical Compiler Options section.

For information on conventions used in this table, see Conventions.

New compiler options are listed in tables below:

• The first table lists new options that are available on Windows* systems.

• The second table lists new options that are available on Linux* and Mac OS* X systems. If
an option is only available on one of these operating systems, it is labeled.

DefaultDescriptionWindows* OS
Options

OFFGenerates code that will run on any Pentium or later
processor.

/arch:IA32
(i32 only)

OFFOptimizes for Intel® Streaming SIMD Extensions 3
(Intel® SSE3).

/arch:SSE3
(i32, i64em)

OFFOptimizes for Intel® Supplemental Streaming SIMD
Extensions 3 (Intel® SSSE3).

/arch:SSSE3
(i32, i64em)

OFFOptimizes for Intel® Streaming SIMD Extensions 4
Vectorizing Compiler and Media Accelerators.

/arch:SSE4.1
(i32, i64em)

444

19 Intel® Fortran Compiler User and Reference Guides

DefaultDescriptionWindows* OS
Options

OFFDetermines whether the floating-point exception and
status flags are saved on routine entry and restored
on routine exit.

/as-
sume:[no]ieee_fpe_flags

ONDetermines whether NAMELIST and list-directed input
accept logical values for numeric IO-list items.

/as-
sume:[no]old_log-
ical_ldio

ONDetermines the results of the intrinsics MAXLOC and
MINLOC when given an empty array as an argument.

/as-
sume:[no]old_maxmin-
loc

OFFGenerates parallel debug code instrumentations needed
for the thread data sharing and reentrant call detection
of the Intel® Parallel Debugger Extension.

/de-
bug:[no]paral-
lel(i32, i64em)

/fpe-all:3Allows some control over floating-point exception
handling for each routine in a program at run-time.

/fpe-all:n

/GS-Determines whether the compiler generates code that
detects some buffer overruns.

/GS
(i32, i64em)

OFFTells the compiler to store parameters passed in
registers to the stack.

/homeparams

OFFTells the compiler to prepare a routine for hotpatching/hotpatch
(i32, i64em)

OFFCan generate Intel® SSE2 and SSE instructions for Intel
processors, and it can optimize for Intel® Pentium® 4
processors, Intel® Pentium® M processors, and Intel®

Xeon® processors with Intel® SSE2.

/QaxSSE2
(i32, i64em)

OFFCan generate Intel® SSE3, SSE2, and SSE instructions
for Intel processors and it can optimize for processors
based on Intel® Core™ microarchitecture and Intel
NetBurst® microarchitecture.

/QaxSSE3
(i32, i64em)

445

19

DefaultDescriptionWindows* OS
Options

OFFCan generate Intel® SSSE3, SSE3, SSE2, and SSE
instructions for Intel processors and it can optimize for
the Intel® Core™2 Duo processor family.

/QaxSSSE3
(i32, i64em)

OFFCan generate Intel® SSE4 Vectorizing Compiler and
Media Accelerator instructions for Intel processors. Can
generate Intel® SSSE3, SSE3, SSE2, and SSE
instructions and it can optimize for Intel® 45nm Hi-k
next generation Intel® Core™ microarchitecture.

/QaxSSE4.1
(i32, i64em)

OFFCan generate Intel® SSE4 Efficient Accelerated String
and Text Processing instructions supported by Intel®

Core™ i7 processors. Can generate Intel® SSE4

/QaxSSE4.2
(i32, i64em)

Vectorizing Compiler and Media Accelerator, Intel®

SSSE3, SSE3, SSE2, and SSE instructions and it can
optimize for the Intel® Core™ processor family.

OFFEnables analysis of parallelization in source code
(parallel lint diagnostics).

/Qdiag-en-
able:sc-paral-
lel
(i32, i64em)

n=30Specifies the maximum number of errors allowed before
compilation stops.

/Qdiag-error-
limit:n

OFFTells the compiler to issue one or more diagnostic
messages only once.

/Qdiag-
once:id[,id,...]

n=30Specifies the maximum number of errors allowed before
compilation stops.

/Qdiag-error-
limit:n

OFFTells the compiler to issue one or more diagnostic
messages only once.

/Qdiag-
once:id[,id,...]

OFFEnables the compiler to replace calls to transcendental
functions with faster but less precise implementations.

/Qfast-tran-
scendentals

446

19 Intel® Fortran Compiler User and Reference Guides

DefaultDescriptionWindows* OS
Options

ONEnables the combining of floating-point multiplies and
add/subtract operations.

/Qfma
(i64 only)

OFFEnables use of faster but slightly less accurate code
sequences for math functions.

/Qfp-relaxed
(i64 only)

OFFDetermines whether MOVBE instructions are generated
for Intel processors.

/Qinstruc-
tion:[no]movbe
(i32, i64em)

OFFTells the compiler to link to the IMSL* library./Qimsl

OFFTells the compiler to link to certain parts of the Intel®

Math Kernel Library.
/Qmkl

/Qopenmp-
link:dynamic

Controls whether the compiler links to static or dynamic
OpenMP run-time libraries.

/Qopenmp-
link:library

/Qopenmp-
threadpri-
vate:legacy

Lets you specify an OpenMP* threadprivate
implementation.

/Qopenmp-
threadpri-
vate:type

OFFLets you specify a loop blocking factor./Qopt-block-
factor:n

/Qopt-jump-
tables:de-
fault

Enables or disables generation of jump tables for switch
statements.

/Qopt-jump-
tables:key-
word

/Qopt-load-
pair-

Enables loadpair optimization./Qopt-load-
pair
(i64 only)

/Qopt-mod-
versioning-

Enables versioning of modulo operations for certain
types of operands.

/Qopt-mod-
versioning
(i64 only)

447

19

DefaultDescriptionWindows* OS
Options

/Qopt-
prefetch-ini-
tial-values

Enables or disables prefetches that are issued before
a loop is entered.

/Qopt-
prefetch-ini-
tial-values
(i64 only)

/Qopt-
prefetch-is-
sue-excl-
hint-

Determines whether the compiler issues prefetches for
stores with exclusive hint.

/Qopt-
prefetch-is-
sue-excl-hint
(i64 only)

/Qopt-
prefetch-
next-itera-
tion

Enables or disables prefetches for a memory access in
the next iteration of a loop.

/Qopt-
prefetch-
next-itera-
tion
(i64 only)

/Qopt-sub-
script-in-
range-

Determines whether the compiler assumes no overflows
in the intermediate computation of subscript
expressions in loops.

/Qopt-sub-
script-in-
range
(i32, i64em)

OFFSpecifies thread affinity./Qpar-affini-
ty:[modifi-
er,...]type[,per-
mute][,off-
set]

OFFSpecifies the number of threads to use in a parallel
region.

/Qpar-num-
threads:n

/Qprof-data-
order

Enables or disables data ordering if profiling information
is enabled.

/Qprof-data-
order

/Qprof-func-
order

Enables or disables function ordering if profiling
information is enabled.

/Qprof-func-
order

448

19 Intel® Fortran Compiler User and Reference Guides

DefaultDescriptionWindows* OS
Options

OFFLets you set the hotness threshold for function grouping
and function ordering.

/Qprof-hot-
ness-thresh-
old

/Qprof-src-
dir

Determines whether directory information of the source
file under compilation is considered when looking up
profile data records.

/Qprof-src-
dir

OFFLets you use relative directory paths when looking up
profile data and specifies a directory as the base.

/Qprof-src-
root

OFFLets you use relative directory paths when looking up
profile data and specifies the current working directory
as the base.

/Qprof-src-
root-cwd

OFFLets you enable or disable the instrumentation of
specified functions.

/Qtcollect-
filter

OFFTells the compiler to use a dollar sign ("$") when
producing symbol names.

/Quse-msasm-
symbols
(i32, i64em)

variesSpecifies compatibility with Microsoft* Visual Studio
2008.

/Qvc9
(i32, i64em)

/QvecEnables or disables vectorization and transformations
enabled for vectorization.

/Qvec
(i32, i64em)

/Qvec-thresh-
old100

Sets a threshold for the vectorization of loops./Qvec-thresh-
old
(i32, i64em)

OFFCan generate instructions for the highest instruction
set available on the compilation host processor.

/QxHost
(i32, i64em)

OFFOptimizes for Intel processors that support Intel®

Advanced Vector Extensions (Intel® AVX).
/QxAVX
(i32, i64em)

449

19

DefaultDescriptionWindows* OS
Options

ONCan generate Intel® SSE2 and SSE instructions for Intel
processors, and it can optimize for Intel® Pentium® 4
processors, Intel® Pentium® M processors, and Intel®

Xeon® processors with Intel® SSE2.

/QxSSE2
(i32, i64em)

OFFCan generate Intel® SSE3, SSE2, and SSE instructions
for Intel processors, and it can optimize for processors
based on Intel® Core™ microarchitecture and Intel
NetBurst® microarchitecture.

/QxSSE3
(i32, i64em)

OFFOptimizes for the Intel® Atom™ processor and Intel®

Centrino® Atom™ Processor Technology.
/QxSSE3_ATOM
(i32, i64em)

OFFCan generate Intel® SSSE3, SSE3, SSE2, and SSE
instructions for Intel processors and it can optimize for
the Intel® Core™2 Duo processor family.

/QxSSSE3
(i32, i64em)

OFFCan generate Intel® SSE4 Vectorizing Compiler and
Media Accelerator instructions for Intel processors. Can
generate Intel® SSSE3, SSE3, SSE2, and SSE
instructions and it can optimize for Intel® 45nm Hi-k
next generation Intel® Core™ microarchitecture.

/QxSSE4.1
(i32, i64em)

OFFCan generate Intel® SSE4 Efficient Accelerated String
and Text Processing instructions supported by Intel®

Core™ i7 processors. Can generate Intel® SSE4

/QxSSE4.2
(i32, i64em)

Vectorizing Compiler and Media Accelerator, Intel®

SSSE3, SSE3, SSE2, and SSE instructions and it can
optimize for the Intel® Core™ processor family.

DefaultDescriptionLinux* OS and
Mac OS* X
Options

OFFDetermines whether the floating-point exception and
status flags are saved on routine entry and restored
on routine exit.

-assume
[no]ieee_fpe_flags

450

19 Intel® Fortran Compiler User and Reference Guides

DefaultDescriptionLinux* OS and
Mac OS* X
Options

ONDetermines whether NAMELIST and list-directed input
accept logical values for numeric IO-list items.

-assume
[no]old_logi-
cal_ldio

ONDetermines the results of the intrinsics MAXLOC and
MINLOC when given an empty array as an argument.

-assume
[no]old_maxmin-
loc

OFFCan generate Intel® SSE2 and SSE instructions for Intel
processors, and it can optimize for Intel® Pentium® 4
processors, Intel® Pentium® M processors, and Intel®

Xeon® processors with Intel® SSE2.

-axSSE2
(i32, i64em;
Linux only)

OFFCan generate Intel® SSE3, SSE2, and SSE instructions
for Intel processors, and it can optimize for processors
based on Intel® Core microarchitecture and Intel
NetBurst® microarchitecture. On Mac OS* X systems,
this option is only available on IA-32 architecture.

-axSSE3
(i32, i64em)

OFFCan generate Intel® SSSE3, SSE3, SSE2, and SSE
instructions for Intel processors and it can optimize for
the Intel® Core™2 Duo processor family. On Mac OS*
X systems, this option is only available on Intel® 64
architecture.

-axSSSE3
(i32, i64em)

OFFCan generate Intel® SSE4 Vectorizing Compiler and
Media Accelerator instructions for Intel processors. Can
generate Intel® SSSE3, SSE3, SSE2, and SSE
instructions and it can optimize for Intel® 45nm Hi-k
next generation Intel® Core™ microarchitecture.

-axSSE4.1
(i32, i64em)

OFFCan generate Intel® SSE4 Efficient Accelerated String
and Text Processing instructions supported by Intel®

Core™ i7 processors. Can generate Intel® SSE4

-axSSE4.2
(i32, i64em)

451

19

DefaultDescriptionLinux* OS and
Mac OS* X
Options

Vectorizing Compiler and Media Accelerator, Intel®

SSSE3, SSE3, SSE2, and SSE instructions and it can
optimize for the Intel® Core™ processor family.

OFFEnables analysis of parallelization in source code
(parallel lint diagnostics).

-diag-enable
sc-parallel
(i32, i64em)

n=30Specifies the maximum number of errors allowed before
compilation stops.

-diag-error-
limit n

OFFTells the compiler to issue one or more diagnostic
messages only once.

-diag-once
id[,id,...]

-falign-
stack=default

Tells the compiler the stack alignment to use on entry
to routines.

-falign-stack
(i32 only)

OFFEnables the compiler to replace calls to transcendental
functions with faster but less precise implementation.

-fast-tran-
scendentals

-fno-inlineTells the compiler to inline functions declared with
cDEC$ ATTRIBUTES FORCEINLINE.

-finline

ONEnables the combining of floating-point multiplies and
add/subtract operations.

-fma
(i64 only;
Linux* OS only)

OFFEnables use of faster but slightly less accurate code
sequences for math functions.

-fp-relaxed
(i64 only;
Linux* OS only)

-fpe-all=3Allows some control over floating-point exception
handling for each routine in a program at run-time.

-fpe-all=n

OFFTells the compiler to generate position-independent
code to link into executables.

-fpie
(Linux* OS only)

452

19 Intel® Fortran Compiler User and Reference Guides

DefaultDescriptionLinux* OS and
Mac OS* X
Options

-fno-stack-
protector

Determines whether the compiler generates code that
detects some buffer overruns. Same as option -fs-
tack-security-check.

-fstack-pro-
tector
(i32, i64em)

-fno-stack-
security-
check

Determines whether the compiler generates code that
detects some buffer overruns.

-fstack-secu-
rity-check
(i32, i64em)

OFFTells the compiler to generate code for a specific
architecture.

-m32, -m64
(i32, i64em)

OFFGenerates code that will run on any Pentium or later
processor.

-mia32
(i32 only)

OFFDetermines whether MOVBE instructions are generated
for Intel processors.

-minstruc-
tion=[no]movbe
(i32, i64em)

OFFTells the compiler to link to certain parts of the Intel®

Math Kernel Library.
-mkl

Linux systems:
OFF Mac OS X
systems using
Intel® 64
architecture: ON

Generates code for Intel® Supplemental Streaming
SIMD Extensions 3 (Intel® SSSE3).

-mssse3
(i32, i64em)

OFFGenerates code for Intel® Streaming SIMD Extensions
4 Vectorizing Compiler and Media Accelerators.

-msse4.1
(i32, i64em)

-openmp-link
dynamic

Controls whether the compiler links to static or dynamic
OpenMP run-time libraries.

-openmp-link
library

-openmp-
threadpri-
vate=legacy

Lets you specify an OpenMP* threadprivate
implementation.

-openmp-
threadpri-
vate=type

453

19

DefaultDescriptionLinux* OS and
Mac OS* X
Options

(Linux* OS only)

OFFLets you specify a loop blocking factor.-opt-block-
factor=n

-opt-jump-ta-
bles=default

Enables or disables generation of jump tables for switch
statements.

-opt-jump-ta-
bles=keyword

-no-opt-load-
pair

Enables loadpair optimization.-opt-loadpair
(i64 only;
Linux* OS only)

-no-opt-mod-
versioning

Enables versioning of modulo operations for certain
types of operands.

-opt-mod-ver-
sioning
(i64 only;
Linux* OS only)

-opt-
prefetch-ini-
tial-values

Enables or disables prefetches that are issued before
a loop is entered.

-opt-
prefetch-ini-
tial-values
(i64 only;
Linux* OS only)

-no-opt-
prefetch-is-
sue-excl-hint

Determines whether the compiler issues prefetches for
stores with exclusive hint.

-opt-
prefetch-is-
sue-excl-hint
(i64 only)

-opt-
prefetch-
next-itera-
tion

Enables or disables prefetches for a memory access in
the next iteration of a loop.

-opt-
prefetch-
next-itera-
tion
(i64 only;
Linux* OS only)

454

19 Intel® Fortran Compiler User and Reference Guides

DefaultDescriptionLinux* OS and
Mac OS* X
Options

-no-opt-sub-
script-in-
range

Determines whether the compiler assumes no overflows
in the intermediate computation of subscript
expressions in loops.

-opt-sub-
script-in-
range
(i32, i64em)

OFFSpecifies thread affinity.-par-affini-
ty=[modifi-
er,...]type[,per-
mute][,off-
set]
(Linux* OS only)

OFFSpecifies the number of threads to use in a parallel
region.

-par-num-
threads=n

OFFProduces a position-independent executable on
processors that support it.

-pie
(Linux* OS only)

-no-prof-da-
ta-order

Enables or disables data ordering if profiling information
is enabled.

-prof-data-
order
(Linux* OS only)

-no-prof-
func-groups

Enables or disables function grouping if profiling
information is enabled.

-prof-func-
groups
(i32, i64em;
Linux* OS only)

-no-prof-
func-order

Enables or disables function ordering if profiling
information is enabled.

-prof-func-
order
(Linux* OS only)

OFFLets you set the hotness threshold for function grouping
and function ordering.

-prof-hot-
ness-thresh-
old
(Linux* OS only)

455

19

DefaultDescriptionLinux* OS and
Mac OS* X
Options

OFFLets you use relative directory paths when looking up
profile data and specifies a directory as the base.

-prof-src-
root

OFFLets you use relative directory paths when looking up
profile data and specifies the current working directory
as the base.

-prof-src-
root-cwd

OFFInvokes the libtool command to generate static
libraries.

-staticlib
(i32, i64em;
Mac OS* X only)

OFFLets you enable or disable the instrumentation of
specified functions.

-tcollect-
filter
(Linux* OS only)

-vecEnables or disables vectorization and transformations
enabled for vectorization.

-vec
(i32, i64em)

-vec-thresh-
old100

Sets a threshold for the vectorization of loops.-vec-thresh-
old
(i32, i64em)

OFFCan generate instructions for the highest instruction
set available on the compilation host processor.

-xHost
(i32, i64em)

OFFOptimizes for Intel processors that support Intel®

Advanced Vector Extensions (Intel® AVX).
-xAVX
(i32, i64em)

ONCan generate Intel® SSE2 and SSE instructions for Intel
processors, and it can optimize for Intel® Pentium® 4
processors, Intel® Pentium® M processors, and Intel®

Xeon® processors with Intel® SSE2.

-xSSE2
(i32, i64em;
Linux only)

456

19 Intel® Fortran Compiler User and Reference Guides

DefaultDescriptionLinux* OS and
Mac OS* X
Options

Linux
systems:OFF
Mac OS X

Can generate Intel® SSE3, SSE2, and SSE instructions
for Intel processors and it can optimize for processors
based on Intel® Core™ microarchitecture and Intel
NetBurst® microarchitecture. On Mac OS* X systems,
this option is only available on IA-32 architecture.

-xSSE3
(i32, i64em)

systems using
IA-32
architecture: ON

OFFOptimizes for the Intel® Atom™ processor and Intel®

Centrino® Atom™ Processor Technology.
-xSSE3_ATOM
(i32, i64em)

Linux
systems:OFF
Mac OS X

Can generate Intel® SSSE3, SSE3, SSE2, and SSE
instructions for Intel processors and it can optimize for
the Intel® Core™2 Duo processor family. On Mac OS*
X systems, this option is only available on Intel® 64
architecture.

-xSSSE3
(i32, i64em)

systems using
Intel® 64
architecture: ON

OFFCan generate Intel® SSE4 Vectorizing Compiler and
Media Accelerator instructions for Intel processors. Can
generate Intel® SSSE3, SSE3, SSE2, and SSE
instructions and it can optimize for Intel® 45nm Hi-k
next generation Intel® Core™ microarchitecture.

-xSSE4.1
(i32, i64em)

OFFCan generate Intel® SSE4 Efficient Accelerated String
and Text Processing instructions supported by Intel®

Core™ i7 processors. Can generate Intel® SSE4

-xSSE4.2
(i32, i64em)

Vectorizing Compiler and Media Accelerator, Intel®

SSSE3, SSE3, SSE2, and SSE instructions and it can
optimize for the Intel® Core™ processor family.

Deprecated and Removed Compiler Options

This topic lists deprecated and removed compiler options and suggests replacement options,
if any are available.

457

19

Deprecated Options

Occasionally, compiler options are marked as "deprecated." Deprecated options are still supported
in the current release, but are planned to be unsupported in future releases.

The following options are deprecated in this release of the compiler:

Suggested ReplacementLinux* OS and Mac OS* X Options

None-axK

Linux* OS: -axSSE2
Mac OS* X: None

-axN

Linux* OS: -axSSE3
Mac OS* X on IA-32 architecture: -axSSE3
Mac OS* X on Intel® 64 architecture: None

-axP

-axSSE4.1-axS

Linux* OS: -axSSSE3
Mac OS* X on IA-32 architecture: None
Mac OS* X on Intel® 64 architecture:
-axSSSE3

-axT

-msse2-axW

-diag-<type> sc[<n>]-diag-<type> sv[<n>]

-diag-enable sc-include-diag-enable sv-include

-prof-func-groups-func-groups

-shared-intel-i-dynamic

-static-intel-i-static

-debug-inline-debug-info

-fp-model source-IPF-flt-eval-method0

458

19 Intel® Fortran Compiler User and Reference Guides

Suggested ReplacementLinux* OS and Mac OS* X Options

-fp-model precise
-fp-model fast

-IPF-fltacc
-no-IPF-fltacc

-fma-IPF-fma

-fp-relaxed-IPF-fp-relaxed

None-march=pentiumii

-march=pentium3-march=pentiumiii

-mtune-mcpu

-fp-model-mp

-inline-level-Ob

None-openmp-lib legacy

-openmp-openmpP

-openmp-stubs-openmpS

-opt-prefetch-prefetch

-prof-gen=srcpos-prof-genx

None-use-asm

-pch-use-use-pch

-mia32-xK

Linux* OS: -xSSE2
Mac OS* X: None

-xN

-msse3-xO

459

19

Suggested ReplacementLinux* OS and Mac OS* X Options

Linux* OS: -xSSE3
Mac OS* X on IA-32 architecture: -xSSE3
Mac OS* X on Intel® 64 architecture: None

-xP

-xSSE4.1-xS

Linux* OS: -xSSSE3
Mac OS* X on IA-32 architecture: None
Mac OS* X on Intel® 64 architecture:
-xSSSE3

-xT

-msse2-xW

Suggested ReplacementWindows* OS Options

/check:none/4Nb

/check:all/4Yb

None/debug:partial

/map
/Fm

None/G5

None/G6 (or /GB)

None/G7

/Gs0/Ge

None/ML and/MLd

/fp/Op

None/QaxK

/QaxSSE2/QaxN

460

19 Intel® Fortran Compiler User and Reference Guides

Suggested ReplacementWindows* OS Options

/QaxSSE3/QaxP

/QaxSSE4.1/QaxS

/QaxSSSE3/QaxT

/arch:SSE2/QaxW

/Qdiag-<type> sc[<n>]/Qdiag-<type> sv[<n>]

/Qdiag-enable:sc-include/Qdiag-enable:sv-include

None/Qinline-debug-info

/fp:source/QIPF-flt-eval-method0

/fp:precise
/fp:fast

/QIPF-fltacc
/QIPF-fltacc-

/Qfma/QIPF-fma

/Qfp-relaxed/QIPF-fp-relaxed

None/Qopenmp-lib:legacy

/Qopt-prefetch/Qprefetch

/Qprof-gen=srcpos/Qprof-genx

None/Quse-asm

None/Quse-vcdebug

None/QxK

/QxSSE2/QxN

/arch:SSE3/QxO

461

19

Suggested ReplacementWindows* OS Options

/QxSSE3/QxP

/QxSSE4.1/QxS

/QxSSSE3/QxT

/arch:SSE2/QxW

/debug:minimal
/Zd

Deprecated options are not limited to this list.

Removed Options

Some compiler options are no longer supported and have been removed. If you use one of
these options, the compiler issues a warning, ignores the option, and then proceeds with
compilation.

This version of the compiler no longer supports the following compiler options:

Suggested ReplacementLinux* OS and Mac OS* X Options

-axSSE2-axB

None-axi

None-axM

-cxxlib[=dir]-cxxlib-gcc[=dir]

None-cxxlib-icc

-preprocess-only or -P-F

-fno-omit-frame-pointer-fp

-fp-stack-check-fpstkchk

-fp-speculation-IPF-fp-speculation

462

19 Intel® Fortran Compiler User and Reference Guides

Suggested ReplacementLinux* OS and Mac OS* X Options

None-ipo-obj (and -ipo_obj)

-fpic-Kpic, -KPIC

None-mtune=itanium

-no-bss-init-nobss-init

-opt-report-opt-report-level

None-prof-format-32

None-prof-gen-sampling

-p-qp

-shared-libgcc-shared-libcxa

None-ssp

-static-libgcc-static-libcxa

-syntax-only or -fsyntax-only
-syntax

None-tpp1

-mtune=itanium2-tpp2

None-tpp5

None-tpp6

-mtune=pentium4-tpp7

-xSSE2-xB

None-xi

None-xM

463

19

Suggested ReplacementWindows* OS Options

None/4ccD (and /4ccd)

None/G1

/QaxSSE2/QaxB

None/Qaxi

None/QaxM

/Qfp-stack-check/Qfpstkchk

/Qfp-speculation/QIPF-fp-speculation

None/Qipo-obj (and /Qipo_obj)

/Qopt-report/Qopt-report-level

None/Qprof-format-32

None/Qprof-gen-sampling

None/Qssp

None/Qvc6

None/Qvc7

/QxSSE2/QxB

None/Qxi

None/QxM

Removed options are not limited to these lists.

464

19 Intel® Fortran Compiler User and Reference Guides

20Alphabetical Compiler Options

Compiler Option Descriptions and General Rules

This section describes all the current Linux* OS, Mac OS* X, and Windows* OS compiler options in
alphabetical order.

Option Descriptions

Each option description contains the following information:

• A short description of the option.

• IDE Equivalent
This shows information related to the integrated development environment (IDE) Property Pages
on Windows*, Linux*, and Mac OS* X systems. It shows on which Property Page the option
appears, and under what category it's listed. The Windows IDE is Microsoft* Visual Studio* .NET;
the Linux IDE is Eclipse*; the Mac OS X IDE is Xcode*. If the option has no IDE equivalent, it
will specify "None". Note that in this release, there is no IDE support for Fortran on Linux.

• Architectures
This shows the architectures where the option is valid. Possible architectures are:

• IA-32 architecture

• Intel® 64 architecture

• IA-64 architecture

• Syntax
This shows the syntax on Linux and Mac OS X systems and the syntax on Windows systems. If
the option has no syntax on one of these systems, that is, the option is not valid on a particular
system, it will specify "None".

• Arguments
This shows any arguments (parameters) that are related to the option. If the option has no
arguments, it will specify "None".

• Default
This shows the default setting for the option.

• Description

465

This shows the full description of the option. It may also include further information on any
applicable arguments.

• Alternate Options
These are options that are synonyms of the described option. If there are no alternate
options, it will specify "None".
Many options have an older spelling where underscores ("_") instead of hyphens ("-") connect
the main option names. The older spelling is a valid alternate option name.

Some option descriptions may also have the following:

• Example
This shows a short example that includes the option

• See Also
This shows where you can get further information on the option or related options.

General Rules for Compiler Options

You cannot combine options with a single dash (Linux OS and Mac OS X) or slash (Windows
OS). For example:

• On Linux and Mac OS X systems: This is incorrect: -wc; this is correct: -w -c

• On Windows systems: This is incorrect: /wc; this is correct: /w /c

All Linux OS and Mac OS X compiler options are case sensitive. Many Windows OS options are
case sensitive. Some options have different meanings depending on their case; for example,
option "c" prevents linking, but option "C" checks for certain conditions at run time.

Options specified on the command line apply to all files named on the command line.

Options can take arguments in the form of file names, strings, letters, or numbers. If a string
includes spaces, the string must be enclosed in quotation marks. For example:

• On Linux and Mac OS X systems, -dynamic-linker mylink (file name) or -Umacro3 (string)

• On Windows systems, /Famyfile.s (file name) or /V"version 5.0" (string)

Compiler options can appear in any order.

On Windows systems, all compiler options must precede /link options, if any, on the command
line.

Unless you specify certain options, the command line will both compile and link the files you
specify.

466

20 Intel® Fortran Compiler User and Reference Guides

You can abbreviate some option names, entering as many characters as are needed to uniquely
identify the option.

Certain options accept one or more keyword arguments following the option name. For example,
the arch option accepts several keywords.

To specify multiple keywords, you typically specify the option multiple times. However, there
are exceptions; for example, the following are valid: -axNB (Linux OS) or /QaxNB (Windows
OS).

NOTE. On Windows systems, you can sometimes use a comma to separate keywords.
For example, the following is valid:

ifort /warn:usage,declarations test.f90

On these systems, you can use an equals sign (=) instead of the colon:

ifort /warn=usage,declarations test.f90

Compiler options remain in effect for the whole compilation unless overridden by a compiler
directive.

To disable an option, specify the negative form of the option.

On Windows systems, you can also disable one or more options by specifying option /Od last
on the command line.

NOTE. On Windows systems, the /Od option is part of a mutually-exclusive group of
options that includes /Od, /O1, /O2, /O3, and /Ox. The last of any of these options
specified on the command line will override the previous options from this group.

If there are enabling and disabling versions of an option on the command line, the last one on
the command line takes precedence.

Lists and Functional Groupings of Compiler Options

To see a list of all the compiler options, specify option help on the command line.

467

20

To see functional groupings of compiler options, specify a functional category for option help.
For example, to see a list of options that affect diagnostic messages displayed by the compiler,
enter one of the following commands:

-help diagnostics ! Linux and Mac OS X systems

/help diagnostics ! Windows systems

For details on the categories you can specify, see help.

468

20 Intel® Fortran Compiler User and Reference Guides

1
See onetrip.

4I2, 4I4, 4I8
See integer-size.

4L72, 4L80, 4L132
See extend-source.

4Na, 4Ya
See automatic.

4Naltparam, 4Yaltparam
See altparam.

4Nb,4Yb
See check.

4Nd,4Yd
See warn.

4Nf
See fixed.

4Nportlib, 4Yportlib
Determines whether the compiler links to the
library of portability routines.

IDE Equivalent

Windows: Libraries > Use Portlib Library

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

469

20

Syntax

Linux and Mac OS X:

None

Windows:

/4Nportlib

/4Yportlib

Arguments

None

Default

The library of portability routines is linked during compilation./4Yportlib

Description

Option /4Yportlib causes the compiler to link to the library of portability routines. This also
includes Intel's functions for Microsoft* compatibility.

Option /4Nportlib prevents the compiler from linking to the library of portability routines.

Alternate Options

None

See Also
•
•
Building Applications: Portability Routines

470

20 Intel® Fortran Compiler User and Reference Guides

4Ns,4Ys
See stand.

4R8,4R16
See real-size.

4Yf
See free.

4Nportlib, 4Yportlib
Determines whether the compiler links to the
library of portability routines.

IDE Equivalent

Windows: Libraries > Use Portlib Library

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/4Nportlib

/4Yportlib

Arguments

None

Default

The library of portability routines is linked during compilation./4Yportlib

471

20

Description

Option /4Yportlib causes the compiler to link to the library of portability routines. This also
includes Intel's functions for Microsoft* compatibility.

Option /4Nportlib prevents the compiler from linking to the library of portability routines.

Alternate Options

None

See Also
•
•
Building Applications: Portability Routines

66
See f66.

72,80,132
See extend-source.

align
Tells the compiler how to align certain data items.

IDE Equivalent

Windows: Data > Structure Member Alignment (/align:recnbyte)

Data > Common Element Alignment (/align:[no]commons, /align:[no]dcommons)

Data > SEQUENCE Types Obey Alignment Rules (/align:[no]sequence)

Linux: None

Mac OS X: Data > Structure Member Alignment (-align rec<1,2,4,8,16>byte)

Data > Common Element Alignment (-align [no]commons, /align:[no]dcommons)

Data > SEQUENCE Types Obey Alignment Rules (-align [no]sequence)

Architectures

IA-32, Intel® 64, IA-64 architectures

472

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-align [keyword]

-noalign

Windows:

/align[:keyword]

/noalign

Arguments

Specifies the data items to align. Possible values are:keyword

Prevents padding bytes anywhere in
common blocks and structures.

none

Affects alignment of common block
entities.

[no]commons

Affects alignment of common block
entities.

[no]dcommons

Affects alignment of derived-type
components and fields of record
structures.

[no]records

Specifies a size boundary for derived-type
components and fields of record
structures.

recnbyte

Affects alignment of sequenced
derived-type components.

[no]sequence

Adds padding bytes whenever possible to
data items in common blocks and
structures.

all

Default

Adds no padding bytes for alignment of common blocks.nocommons

Adds no padding bytes for alignment of common blocks.nodcommmons

Aligns derived-type components and record structure fields on
default natural boundaries.

records

473

20

Causes derived-type components declared with the SEQUENCE
statement to be packed, regardless of current alignment rules set
by the user.

nosequence

By default, no padding is added to common blocks but padding is added to structures.

Description

This option specifies the alignment to use for certain data items. The compiler adds padding
bytes to perform the alignment.

DescriptionOption

Tells the compiler not to add padding bytes anywhere in common blocks
or structures. This is the same as specifying noalign.

align none

Aligns all common block entities on natural boundaries up to 4 bytes, by
adding padding bytes as needed.

align commons

The align nocommons option adds no padding to common blocks. In this
case, unaligned data can occur unless the order of data items specified
in the COMMON statement places the largest numeric data item first,
followed by the next largest numeric data (and so on), followed by any
character data.

Aligns all common block entities on natural boundaries up to 8 bytes, by
adding padding bytes as needed.

align dcom-
mons

This option is useful for applications that use common blocks, unless your
application has no unaligned data or, if the application might have
unaligned data, all data items are four bytes or smaller. For applications
that use common blocks where all data items are four bytes or smaller,
you can specify /align:commons instead of /align:dcommons.

The align nodcommons option adds no padding to common blocks.

On Windows systems, if you specify the /stand:f90 or /stand:f95
option, /align:dcommons is ignored.

On Linux and Mac OS X systems, if you specify any -std option or the
-stand f90 or -stand f95 option, -align dcommons is ignored.

Aligns components of derived types and fields within record structures on
arbitrary byte boundaries with no padding.

align
norecords

474

20 Intel® Fortran Compiler User and Reference Guides

DescriptionOption

The align records option requests that multiple data items in record
structures and derived-type structures without the SEQUENCE statement
be naturally aligned, by adding padding as needed.

Aligns components of derived types and fields within record structures on
the smaller of the size boundary specified (n) or the boundary that will
naturally align them. n can be 1, 2, 4, 8, or 16. When you specify this

align
recnbyte

option, each structure member after the first is stored on either the size
of the member type or n-byte boundaries, whichever is smaller. For
example, to specify 2 bytes as the packing boundary (or alignment
constraint) for all structures and unions in the file prog1.f, use the following
command:

ifort {-align rec2byte | /align:rec2byte} prog1.f

This option does not affect whether common blocks are naturally aligned
or packed.

Aligns components of a derived type declared with the SEQUENCE
statement (sequenced components) according to the alignment rules that
are currently in use. The default alignment rules are to align unsequenced
components on natural boundaries.

align se-
quence

The align nosequence option requests that sequenced components be
packed regardless of any other alignment rules. Note that align none
implies align nosequence.

If you specify an option for standards checking, /align:sequence is
ignored.

Tells the compiler to add padding bytes whenever possible to obtain the
natural alignment of data items in common blocks, derived types, and
record structures. Specifies align nocommons, align dcommons,
align records, align nosequence. This is the same as specifying
align with no keyword.

align all

Alternate Options

Linux and Mac OS X: -noalignalign none
Windows: /noalign

475

20

Linux and Mac OS X: -align rec16byte, -Zp16align records
Windows: /align:rec16byte, /Zp16

Linux and Mac OS X: -Zp1, -align rec1bytealign norecords
Windows: /Zp1, /align:rec1byte

Linux and Mac OS X: -Zp{1|2|4|8|16}align recnbyte
Windows: /Zp{1|2|4|8|16}

Linux and Mac OS X: -align commons -align dcommons -align
records -align nosequence

align all

Windows: /align:nocommons,dcommons,records,nosequence

See Also
•
Optimizing Applications: Setting Data Type and Alignment

allow
Determines whether the compiler allows certain
behaviors.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-allow keyword

Windows:

/allow:keyword

Arguments

Specifies the behaviors to allow or disallow. Possible values
are:

keyword

476

20 Intel® Fortran Compiler User and Reference Guides

Determines how the fpp preprocessor
treats Fortran end-of-line comments in
preprocessor directive lines.

[no]fpp_com-
ments

Default

The compiler recognizes Fortran-style end-of-line comments in
preprocessor lines.

fpp_comments

Description

This option determines whether the compiler allows certain behaviors.

DescriptionOption

Tells the compiler to disallow Fortran-style end-of-line
comments on preprocessor lines. Comment indicators have
no special meaning.

allow nofpp_comments

Alternate Options

None

Example

Consider the following:

#define MAX_ELEMENTS 100 ! Maximum number of elements

By default, the compiler recognizes Fortran-style end-of-line comments on preprocessor lines.
Therefore, the line above defines MAX_ELEMENTS to be "100" and the rest of the line is ignored.
If allow nofpp_comments is specified, Fortran comment conventions are not used and the
comment indicator "!" has no special meaning. So, in the above example, "! Maximum number
of elements" is interpreted as part of the value for the MAX_ELEMENTS definition.

Option allow nofpp_comments can be useful when you want to have a Fortran directive as a
define value; for example:

#define dline(routname) !dec$ attributes alias:"__routname":: routname

477

20

altparam
Allows alternate syntax (without parentheses) for
PARAMETER statements.

IDE Equivalent

Windows: Language > Enable Alternate PARAMETER Syntax

Linux: None

Mac OS X: Language > Enable Alternate PARAMETER Syntax

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-altparam

-noaltparam

Windows:

/altparam

/noaltparam

Arguments

None

Default

The alternate syntax for PARAMETER statements is allowed.altparam

Description

This option specifies that the alternate syntax for PARAMETER statements is allowed. The
alternate syntax is:

PARAMETER c = expr [, c = expr] ...

This statement assigns a name to a constant (as does the standard PARAMETER statement),
but there are no parentheses surrounding the assignment list.

478

20 Intel® Fortran Compiler User and Reference Guides

In this alternative statement, the form of the constant, rather than implicit or explicit typing
of the name, determines the data type of the variable.

Alternate Options

Linux and Mac OS X: -dpsaltparam
Windows: /Qdps, /4Yaltparam

Linux and Mac OS X: -nodpsnoaltparam
Windows: /Qdps-, /4Naltparam

ansi-alias, Qansi-alias
Tells the compiler to assume that the program
adheres to Fortran Standard type aliasability rules.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-ansi-alias

-no-ansi-alias

Windows:

Qansi-alias

Qansi-alias-

Arguments

None

Default

Programs adhere to Fortran Standard type aliasability rules.-ansi-alias
or /Qansi-alias

479

20

Description

This option tells the compiler to assume that the program adheres to type aliasability rules
defined in the Fortran Standard.

For example, an object of type real cannot be accessed as an integer. For information on the
rules for data types and data type constants, see "Data Types, Constants, and Variables" in
the Language Reference.

This option directs the compiler to assume the following:

• Arrays are not accessed out of arrays' bounds.

• Pointers are not cast to non-pointer types and vice-versa.

• References to objects of two different scalar types cannot alias. For example, an object of
type integer cannot alias with an object of type real or an object of type real cannot alias
with an object of type double precision.

If your program adheres to the Fortran Standard type aliasability rules, this option enables the
compiler to optimize more aggressively. If it doesn't adhere to these rules, then you should
disable the option with -no-ansi-alias (Linux and Mac OS X) or /Qansi-alias- (Windows)
so the compiler does not generate incorrect code.

Alternate Options

None

arch
Tells the compiler to generate optimized code
specialized for the processor that executes your
program.

IDE Equivalent

Windows: Code Generation > Enable Enhanced Instruction Set

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64 architectures

480

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-archprocessor

Windows:

/arch:processor

Arguments

Is the processor type. Possible values are:processor

Generates code that will run on any
Pentium or later processor. Disables any
default extended instruction settings, and

IA32

any previously set extended instruction
settings. This value is only available on
Linux and Windows systems using IA-32
architecture.

This is the same as specifying IA32.SSE

Generates code for Intel® Streaming SIMD
Extensions 2 (Intel® SSE2). This value is
only available on Linux and Windows
systems.

SSE2

Generates code for Intel® Streaming SIMD
Extensions 3 (Intel® SSE3).

SSE3

Generates code for Intel® Supplemental
Streaming SIMD Extensions 3 (Intel®

SSSE3).

SSSE3

Generates code for Intel® Streaming SIMD
Extensions 4 Vectorizing Compiler and
Media Accelerators.

SSE4.1

Default

For more information on the default values, see Arguments above.Windows and Linux systems:
SSE2
Mac OS X systems using
IA-32 architecture: SSE3

481

20

Mac OS X systems using
Intel® 64 architecture:
SSSE3

Description

This option tells the compiler to generate optimized code specialized for the processor that
executes your program.

Code generated with the values IA32, SSE, SSE2, or SSE3 should execute on any compatible
non-Intel processor with support for the corresponding instruction set.

Options /arch and /Qx are mutually exclusive. If both are specified, the compiler uses the last
one specified and generates a warning.

For compatibility with Compaq* Visual Fortran, the compiler allows the following keyword
values. However, you should use the suggested replacements.

Suggested ReplacementCompatibility
Value

-mia32 or /arch:IA32pn1

-mia32 or /arch:IA32pn2

-mia32 or /arch:IA32pn3

-msse2 or /arch:SSE2pn4

Alternate Options

Linux and Mac OS X: -m

Windows: /architecture

See Also
•
• x, Qx
• ax, Qax
• m

482

20 Intel® Fortran Compiler User and Reference Guides

architecture
See arch.

asmattr
Specifies the contents of an assembly listing file.

IDE Equivalent

Windows: Output > Assembler Output

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/asmattr:keyword

/noasmattr

Arguments

Specifies the contents of the assembly listing file. Possible
values are:

keyword

Produces no assembly listing.none

Produces an assembly listing with
machine code.

machine

Produces an assembly listing with source
code.

source

Produces an assembly listing with
machine code and source code.

all

483

20

Default

No assembly listing is produced./noasmattr

Description

This option specifies what information, in addition to the assembly code, should be generated
in the assembly listing file.

To use this option, you must also specify option /asmfile, which causes an assembly listing
to be generated.

DescriptionOption

Produces no assembly listing. This is the same as specifying /noasmattr./asmattr:none

Produces an assembly listing with machine code./asmattr:ma-
chine The assembly listing file shows the hex machine instructions at the

beginning of each line of assembly code. The file cannot be assembled;
the filename is the name of the source file with an extension of .cod.

Produces an assembly listing with source code./asmat-
tr:source The assembly listing file shows the source code as interspersed comments.

Note that if you use alternate option -fsource-asm, you must also specify
the -S option.

Produces an assembly listing with machine code and source code./asmattr:all

The assembly listing file shows the source code as interspersed comments
and shows the hex machine instructions at the beginning of each line of
assembly code. This file cannot be assembled.

Alternate Options

Linux and Mac OS X: None/asmattr:none
Windows: /noasmattr

Linux and Mac OS X: -fcode-asm/asmattr:machine
Windows: /FAc

Linux and Mac OS X: -fsource-asm/asmattr:source
Windows: /FAs

484

20 Intel® Fortran Compiler User and Reference Guides

Linux and Mac OS X: None/asmattr:all
Windows: /FAcs

See Also
•
• asmfile

asmfile
Specifies that an assembly listing file should be
generated.

IDE Equivalent

Windows: Output > ASM Listing Name

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/asmfile[:file | dir]

/noasmfile

Arguments

Is the name of the assembly listing file.file

Is the directory where the file should be placed. It can
include file.

dir

Default

No assembly listing file is produced./noasmfile

485

20

Description

This option specifies that an assembly listing file should be generated (optionally named file).

If file is not specified, the filename will be the name of the source file with an extension of
.asm; the file is placed in the current directory.

Alternate Options

Linux and Mac OS X: -S

Windows: /Fa

See Also
•
• S

assume
Tells the compiler to make certain assumptions.

IDE Equivalent

Windows: Compatibility > Treat Backslash as Normal Character in Strings (/as-
sume:[no]bscc)

Data>AssumeDummyArguments ShareMemory Locations (/assume:[no]dummy_alias-
es)

Data > Constant Actual Arguments Can Be Changed (/assume:[no]protect_constants)

Data > Use Bytes as RECL=Unit for Unformatted Files (/assume:[no]byterecl)

Floating Point > Enable IEEE Minus Zero Support (/assume:[no]minus0)

Optimization > I/O Buffering (/assume:[no]buffered_io)

Preprocessor > Default Include and Use Path (/assume:[no]source_include)

Preprocessor > OpenMP Conditional Compilation (/assume:[no]cc_omp)

External Procedures > Append Underscore to External Names (/assume:[no]under-
score)

Linux: None

Mac OS X: Optimization > I/O Buffering (-assume [no]buffered_io)

486

20 Intel® Fortran Compiler User and Reference Guides

Preprocessor > OpenMP Conditional Compilation (-assume [no]cc_omp)

Preprocessor > Default Include and Use Path (-assume [no]source_include)

Compatibility > Treat Backslash as Normal Character in Strings (-assume [no]bscc)

Data>AssumeDummyArguments ShareMemory Locations (-assume [no]dummy_alias-
es)

Data > Constant Actual Arguments Can Be Changed (-assume [no]protect_constants)

Data > Use Bytes as RECL=Unit for Unformatted Files (-assume [no]byterecl)

Floating Point > Enable IEEE Minus Zero Support (-assume [no]minus0)

External Procedures > Append Underscore to External Names (-assume [no]under-
score)

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-assume keyword

Windows:

/assume:keyword

Arguments

Specifies the assumptions to be made. Possible values are:keyword

Disables all assume options.none

Determines whether the backslash
character is treated as a C-style control
character syntax in character literals.

[no]bscc

Determines whether data is immediately
written to disk or accumulated in a buffer.

[no]buffered_io

Determines whether units for the OPEN
statement RECL specifier (record length)
value in unformatted files are in bytes or
longwords (four-byte units).

[no]byterecl

487

20

Determines whether conditional
compilation as defined by the OpenMP
Fortran API is enabled or disabled.

[no]cc_omp

Determines whether the compiler
assumes that dummy arguments to
procedures share memory locations with
other dummy arguments or with COMMON
variables that are assigned.

[no]dum-
my_aliases

Determines whether the floating-point
exception and status flags are saved on
routine entry and restored on routine exit.

[no]ieee_fpe_flags

Determines whether the compiler uses
Fortran 95 or Fortran 90/77 standard
semantics in the SIGN intrinsic when
treating -0.0 and +0.0 as 0.0, and how
it writes the value on formatted output.

[no]minus0

Determines whether the binary, octal, and
hexadecimal constant arguments in
intrinsic functions INT, REAL, DBLE, and
CMPLX are treated as signed integer
constants.

[no]old_boz

Determines whether NAMELIST and
list-directed input accept logical values
for numeric IO-list items.

[no]old_logi-
cal_ldio

Determines the results of intrinsics
MAXLOC and MINLOC when given an
empty array as an argument.

[no]old_maxmin-
loc

Determines whether READs or WRITEs to
UNIT=* go to stdin or stdout,
respectively.

[no]old_unit_star

Determines whether .XOR. is defined by
the compiler as an intrinsic operator.

[no]old_xor

Determines whether a constant actual
argument or a copy of it is passed to a
called routine.

[no]pro-
tect_constants

488

20 Intel® Fortran Compiler User and Reference Guides

Determines whether the optimizer honors
parentheses in REAL and COMPLEX
expression evaluations by not
reassociating operations.

[no]pro-
tect_parens

Determines whether allocatable objects
on the left-hand side of an assignment
are treated according to Fortran 95/90
rules or Fortran 2003 rules.

[no]real-
loc_lhs

Determines whether the compiler
searches for USE modules and INCLUDE
files in the default directory or in the
directory where the source file is located.

[no]source_in-
clude

Determines whether the names of module
procedures are allowed to conflict with
user external symbol names.

[no]std_mod_proc_name

Determines whether the compiler appends
an underscore character to external
user-defined names.

[no]underscore

Determines whether the compiler appends
two underscore characters to external
user-defined names.

[no]2under-
scores
(Linux and Mac
OS X)

Determines whether character constants
go into non-read-only memory.

[no]writeable-
strings

Default

The backslash character is treated as a normal character in
character literals.

nobscc

Data in the internal buffer is immediately written (flushed) to disk
(OPEN specifier BUFFERED='NO').

nobuffered_io

If you set the FORT_BUFFERED environment variable to true, the
default is assume buffered_io.

Units for OPEN statement RECL values with unformatted files are
in four-byte (longword) units.

nobyterecl

489

20

Conditional compilation as defined by the OpenMP Fortran API is
disabled unless option -openmp (Linux) or /Qopenmp (Windows)
is specified.

nocc_omp

If compiler option -openmp (Linux and Mac OS X) or /Qopenmp
(Windows) is specified, the default is assume cc_omp.

Dummy arguments to procedures do not share memory locations
with other dummy arguments or with variables shared through
use association, host association, or common block use.

nodummy_aliases

The flags are not saved on routine entry and they are not restored
on routine exit.

noieee_fpe_flags

The compiler uses Fortran 90/77 standard semantics in the SIGN
intrinsic to treat -0.0 and +0.0 as 0.0, and writes a value of 0.0
with no sign on formatted output.

nominus0

The binary, octal, and hexadecimal constant arguments in intrinsic
functions INT, REAL, DBLE, and CMPLX are treated as bit strings
that represent a value of the data type of the intrinsic, that is, the
bits are not converted.

noold_boz

Tells the compiler that NAMELIST and list-directed input cannot
accept logical values (T, F, etc.) for numeric (integer, real, and
complex) IO-list items. If this option is specified and a logical value
is given for a numeric item in NAMELIST and list-directed input, a
runtime error will be produced.

noold_logical_ldio

MAXLOC and MINLOC return 1 when given an empty array as an
argument.

old_maxminloc

The READs or WRITEs to UNIT=* go to stdin or stdout, respectively,
even if UNIT=5 or 6 has been connected to another file.

noold_unit_star

Intrinsic operator .XOR. is defined by the compiler.old_xor

A constant actual argument is passed to a called routine. Any
attempt to modify it results in an error.

protect_constants

The optimizer reorders REAL and COMPLEX expressions without
regard for parentheses if it produces faster executing code.

noprotect_parens

The compiler uses Fortran 95/90 rules when interpreting
assignment statements. The left-hand side is assumed to be
allocated with the correct shape to hold the right-hand side. If it
is not, incorrect behavior will occur.

norealloc_lhs

The compiler searches for USE modules and INCLUDE files in the
directory where the source file is located.

source_include

490

20 Intel® Fortran Compiler User and Reference Guides

The compiler allows the names of module procedures to conflict
with user external symbol names.

nostd_mod_proc_name

On Windows systems, the compiler does not append an underscore
character to external user-defined names. On Linux and Mac OS
X systems, the compiler appends an underscore character to
external user-defined names.

Windows: nounderscore
Linux and Mac OS X: under-
score

The compiler does not append two underscore characters to
external user-defined names that contain an embedded underscore.

no2underscores
(Linux and Mac OS X)

The compiler puts character constants into read-only memory.nowriteable-strings

Description

This option specifies assumptions to be made by the compiler.

DescriptionOption

Disables all the assume options.assume none

Tells the compiler to treat the backslash character (\) as a C-style control
(escape) character syntax in character literals. The "bscc" keyword means
"BackSlashControlCharacters."

assume bscc

Tells the compiler to accumulate records in a buffer. This sets the default
for opening sequential output files to BUFFERED='YES', which also occurs
if the FORT_BUFFERED run-time environment variable is specified.

assume
buffered_io

When this option is specified, the internal buffer is filled, possibly by many
record output statements (WRITE), before it is written to disk by the
Fortran run-time system. If a file is opened for direct access, I/O buffering
is ignored.

Using buffered writes usually makes disk I/O more efficient by writing
larger blocks of data to the disk less often. However, if you request
buffered writes, records not yet written to disk may be lost in the event
of a system failure.

The OPEN statement BUFFERED specifier applies to a specific logical unit.
In contrast, the assume [no]buffered_io option and the
FORT_BUFFERED environment variable apply to all Fortran units.

491

20

DescriptionOption

Specifies that the units for the OPEN statement RECL specifier (record
length) value are in bytes for unformatted data files, not longwords
(four-byte units). For formatted files, the RECL value is always in bytes.

assume
byterecl

If a file is open for unformatted data and assume byterecl is specified,
INQUIRE returns RECL in bytes; otherwise, it returns RECL in longwords.
An INQUIRE returns RECL in bytes if the unit is not open.

Enables conditional compilation as defined by the OpenMP Fortran API.
That is, when "!$space" appears in free-form source or "c$spaces" appears
in column 1 of fixed-form source, the rest of the line is accepted as a
Fortran line.

assume cc_omp

Tells the compiler that dummy (formal) arguments to procedures share
memory locations with other dummy arguments (aliases) or with variables
shared through use association, host association, or common block use.

assume dum-
my_aliases

Specify the option when you compile the called subprogram. The program
semantics involved with dummy aliasing do not strictly obey the Fortran
95/90 standards and they slow performance, so you get better run-time
performance if you do not use this option.

However, if a program depends on dummy aliasing and you do not specify
this option, the run-time behavior of the program will be unpredictable.
In such programs, the results will depend on the exact optimizations that
are performed. In some cases, normal results will occur, but in other
cases, results will differ because the values used in computations involving
the offending aliases will differ.

Tells the compiler to save floating-point exception and status flags on
routine entry and restore them on routine exit.

assume
ieee_fpe_flags

This option can slow runtime performance because it provides extra code
to save and restore the floating-point exception and status flags (and the
rounding mode) on entry to and exit from every routine compiled with
the option.

This option can be used to get the full Fortran Standard behavior of
intrinsic modules IEEE EXCEPTIONS, IEEE ARITHMETIC, and IEEE
FEATURES, which require that if a flag is signaling on routine entry, the

492

20 Intel® Fortran Compiler User and Reference Guides

DescriptionOption

processor will set it to quiet on entry and restore it to signaling on return.
If a flag signals while the routine is executing, it will not be set to quiet
on routine exit.

Options fpe and fpe-all can be used to set the initial state for which
floating-point exceptions will signal.

Tells the compiler to use Fortran 95 standard semantics for the treatment
of the IEEE* floating value -0.0 in the SIGN intrinsic, which distinguishes
the difference between -0.0 and +0.0, and to write a value of -0.0 with
a negative sign on formatted output.

assume minus0

Tells the compiler that the binary, octal, and hexadecimal constant
arguments in intrinsic functions INT, REAL, DBLE, and CMPLX should be
treated as signed integer constants.

assume
old_boz

Logical values are allowed for numeric items.assume
old_logi-
cal_ldio

Tells the compiler that MAXLOC and MINLOC should return 0 when given
an empty array as an argument. Compared to the default setting
(old_maxminloc), this behavior may slow performance because of the
extra code needed to check for an empty array argument.

assume
noold_maxmin-
loc

Tells the compiler that READs or WRITEs to UNIT=* go to whatever file
UNIT=5 or 6 is connected.

assume
old_unit_star

Prevents the compiler from defining .XOR. as an intrinsic operator. This
lets you use .XOR. as a user-defined operator. This is a Fortran 2003
feature.

assume
noold_xor

Tells the compiler to pass a copy of a constant actual argument. This copy
can be modified by the called routine, even though the Fortran standard
prohibits such modification. The calling routine does not see any
modification to the constant.

assume nopro-
tect_con-
stants

493

20

DescriptionOption

Tells the optimizer to honor parentheses in REAL and COMPLEX expression
evaluations by not reassociating operations. For example, (A+B)+C would
not be evaluated as A+(B+C).

assume pro-
tect_parens

If assume noprotect_parens is specified, (A+B)+C would be treated the
same as A+B+C and could be evaluated as A+(B+C) if it produced faster
executing code.

Such reassociation could produce different results depending on the sizes
and precision of the arguments.

For example, in (A+B)+C, if B and C had opposite signs and were very
large in magnitude compared to A, A+B could result in the value as B;
adding C would result in 0.0. With reassociation, B+C would be 0.0; adding
A would result in a non-zero value.

Tells the compiler that when the left-hand side of an assignment is an
allocatable object, it should be reallocated to the shape of the right-hand
side of the assignment before the assignment occurs. This is the Fortran
2003 definition. This feature may cause extra overhead at run time.

assume real-
loc_lhs

Tells the compiler to search the default directory for module files specified
by a USE statement or source files specified by an INCLUDE statement.
This option affects fpp preprocessor behavior and the USE statement.

assume
nosource_in-
clude

Tells the compiler to revise the names of module procedures so they do
not conflict with user external symbol names. For example, procedure
proc in module m would be named m_MP_proc. The Fortran 2003 Standard
requires that module procedure names not conflict with other external
symbols.

assume
std_mod_proc_name

By default, procedure proc in module m would be named m_mp_proc,
which could conflict with a user-defined external name m_mp_proc.

Tells the compiler to append an underscore character to external
user-defined names: the main program name, named common blocks,
BLOCK DATA blocks, global data names in MODULEs, and names implicitly
or explicitly declared EXTERNAL. The name of a blank (unnamed) common
block remains _BLNK__, and Fortran intrinsic names are not affected.

assume under-
score

494

20 Intel® Fortran Compiler User and Reference Guides

DescriptionOption

Tells the compiler to append two underscore characters to external
user-defined names that contain an embedded underscore: the main
program name, named common blocks, BLOCK DATA blocks, global data

assume 2under-
scores
(Linux and Mac
OS X) names in MODULEs, and names implicitly or explicitly declared EXTERNAL.

The name of a blank (unnamed) common block remains _BLNK__, and
Fortran intrinsic names are not affected.

This option does not affect external names that do not contain an
embedded underscore. By default, the compiler only appends one
underscore to those names. For example, if you specify assume 2under-
scores for external names my_program and myprogram, my_program
becomes my_program__, but myprogram becomes myprogram_.

Tells the compiler to put character constants into non-read-only memory.assume write-
able-strings

Alternate Options

Linux and Mac OS X: -nbsassume nobscc
Windows: /nbs

Linux and Mac OS X: -common-argsassume dummy_aliases
Windows: /Qcommon-args

Linux and Mac OS X: -usassume underscore
Windows: /us

Linux and Mac OS X: -nusassume nounderscore
Windows: None

See Also
•
• fpe

• fpe-all

495

20

auto, Qauto
See automatic.

auto-scalar, Qauto-scalar
Causes scalar variables of intrinsic types INTEGER,
REAL, COMPLEX, and LOGICAL that do not have
the SAVE attribute to be allocated to the run-time
stack.

IDE Equivalent

Windows: Data > Local Variable Storage (/Qsave, /Qauto, /Qauto_scalar)

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-auto-scalar

Windows:

/Qauto-scalar

Arguments

None

Default

Scalar variables of intrinsic types INTEGER, REAL, COMPLEX, and
LOGICAL that do not have the SAVE attribute are allocated to the
run-time stack. Note that if option recursive, -openmp (Linux
and Mac OS X), or /Qopenmp (Windows) is specified, the default
is automatic.

-auto-scalar or /Qauto-
scalar

496

20 Intel® Fortran Compiler User and Reference Guides

Description

This option causes allocation of scalar variables of intrinsic types INTEGER, REAL, COMPLEX,
and LOGICAL to the run-time stack. It is as if they were declared with the AUTOMATIC attribute.

It does not affect variables that have the SAVE attribute (which include initialized locals) or
that appear in an EQUIVALENCE statement or in a common block.

This option may provide a performance gain for your program, but if your program depends
on variables having the same value as the last time the routine was invoked, your program
may not function properly. Variables that need to retain their values across subroutine calls
should appear in a SAVE statement.

You cannot specify option save, auto, or automatic with this option.

NOTE. On Windows NT* systems, there is a performance penalty for addressing a stack
frame that is too large. This penalty may be incurred with /automatic, /auto, or
/Qauto because arrays are allocated on the stack along with scalars. However, with
/Qauto-scalar, you would have to have more than 32K bytes of local scalar variables
before you incurred the performance penalty. /Qauto-scalar enables the compiler to
make better choices about which variables should be kept in registers during program
execution.

Alternate Options

None

See Also
•
•
• auto

• save

497

20

autodouble, Qautodouble
See real-size.

automatic
Causes all local, non-SAVEd variables to be
allocated to the run-time stack.

IDE Equivalent

Windows: Data > Local Variable Storage

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-automatic

-noautomatic

Windows:

/automatic

/noautomatic

Arguments

None

Default

Scalar variables of intrinsic types INTEGER, REAL, COMPLEX, and
LOGICAL are allocated to the run-time stack. Note that if one of
the following options are specified, the default is automatic:re-
cursive, -openmp (Linux and Mac OS X), or /Qopenmp (Windows).

-auto-scalar
or /Qauto-scalar

498

20 Intel® Fortran Compiler User and Reference Guides

Description

This option places local variables (scalars and arrays of all types), except those declared as
SAVE, on the run-time stack. It is as if the variables were declared with the AUTOMATIC attribute.

It does not affect variables that have the SAVE attribute or ALLOCATABLE attribute, or variables
that appear in an EQUIVALENCE statement or in a common block.

This option may provide a performance gain for your program, but if your program depends
on variables having the same value as the last time the routine was invoked, your program
may not function properly.

If you want to cause variables to be placed in static memory, specify option -save (Linux and
Mac OS X) or /Qsave (Windows). If you want only scalar variables of certain intrinsic types to
be placed on the run-time stack, specify option auto-scalar.

NOTE. On Windows NT* systems, there is a performance penalty for addressing a stack
frame that is too large. This penalty may be incurred with /automatic, /auto, or
/Qauto because arrays are allocated on the stack along with scalars. However, with
/Qauto-scalar, you would have to have more than 32K bytes of local scalar variables
before you incurred the performance penalty. /Qauto-scalar enables the compiler to
make better choices about which variables should be kept in registers during program
execution.

Alternate Options

Linux and Mac OS X: -autoautomatic
Windows: /auto, /Qauto, /4Ya

Linux and Mac OS X: -save, -noautonoautomatic
Windows: /Qsave, /noauto, /4Na

See Also
•
• auto-scalar

• save, Qsave

499

20

ax, Qax
Tells the compiler to generate multiple,
processor-specific auto-dispatch code paths for
Intel processors if there is a performance benefit.

IDE Equivalent

Windows: Code Generation > Add Processor-Optimized Code Path

Optimization > Generate Alternate Code Paths

Linux: None

Mac OS X: Code Generation > Add Processor-Optimized Code Path

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-axprocessor

Windows:

/Qaxprocessor

Arguments

Indicates the processor for which code is generated. The
following descriptions refer to Intel® Streaming SIMD
Extensions (Intel® SSE) and Supplemental Streaming SIMD
Extensions (Intel® SSSE). Possible values are:

processor

Can generate Intel® SSE4 Efficient
Accelerated String and Text Processing
instructions supported by Intel® Core™ i7

SSE4.2

processors. Can generate Intel® SSE4
Vectorizing Compiler and Media
Accelerator, Intel® SSSE3, SSE3, SSE2,
and SSE instructions and it can optimize
for the Intel® Core™ processor family.

500

20 Intel® Fortran Compiler User and Reference Guides

Can generate Intel® SSE4 Vectorizing
Compiler and Media Accelerator
instructions for Intel processors. Can

SSE4.1

generate Intel® SSSE3, SSE3, SSE2, and
SSE instructions and it can optimize for
Intel® 45nm Hi-k next generation Intel®

Core™ microarchitecture. This replaces
value S, which is deprecated.

Can generate Intel® SSSE3, SSE3, SSE2,
and SSE instructions for Intel processors
and it can optimize for the Intel® Core™2

SSSE3

Duo processor family. For Mac OS* X
systems, this value is only supported on
Intel® 64 architecture. This replaces value
T, which is deprecated.

Can generate Intel® SSE3, SSE2, and SSE
instructions for Intel processors and it can
optimize for processors based on Intel®

SSE3

Core™ microarchitecture and Intel
NetBurst® microarchitecture. For Mac OS*
X systems, this value is only supported
on IA-32 architecture. This replaces value
P, which is deprecated.

Can generate Intel® SSE2 and SSE
instructions for Intel processors, and it
can optimize for Intel® Pentium® 4

SSE2

processors, Intel® Pentium® M processors,
and Intel® Xeon® processors with Intel®

SSE2. This value is not available on Mac
OS* X systems. This replaces value N,
which is deprecated.

Default

No auto-dispatch code is generated. Processor-specific code is
generated and is controlled by the setting of compiler option -m
(Linux), compiler option /arch (Windows), or compiler option -x
(Mac OS* X).

OFF

501

20

Description

This option tells the compiler to generate multiple, processor-specific auto-dispatch code paths
for Intel processors if there is a performance benefit. It also generates a baseline code path.
The baseline code is usually slower than the specialized code.

The baseline code path is determined by the architecture specified by the -x (Linux and Mac
OS X) or /Qx (Windows) option. While there are defaults for the -x or /Qx option that depend
on the operating system being used, you can specify an architecture for the baseline code that
is higher or lower than the default. The specified architecture becomes the effective minimum
architecture for the baseline code path.

If you specify both the -ax and -x options (Linux and Mac OS X) or the /Qax and /Qx options
(Windows), the baseline code will only execute on processors compatible with the processor
type specified by the -x or /Qx option.

This option tells the compiler to find opportunities to generate separate versions of functions
that take advantage of features of the specified Intel® processor.

If the compiler finds such an opportunity, it first checks whether generating a processor-specific
version of a function is likely to result in a performance gain. If this is the case, the compiler
generates both a processor-specific version of a function and a baseline version of the function.
At run time, one of the versions is chosen to execute, depending on the Intel processor in use.
In this way, the program can benefit from performance gains on more advanced Intel processors,
while still working properly on older processors.

You can use more than one of the processor values by combining them. For example, you can
specify -axSSE4.1,SSSE3 (Linux and Mac OS X) or /QaxSSE4.1,SSSE3 (Windows). You cannot
combine the old style, deprecated options and the new options. For example, you cannot specify
-axSSE4.1,T (Linux and Mac OS X) or /QaxSSE4.1,T (Windows).

Previous values W and K are deprecated. The details on replacements are as follows:

• Mac OS X systems: On these systems, there is no exact replacement for W or K. You can
upgrade to the default option -msse3 (IA-32 architecture) or option -mssse3 (Intel® 64
architecture).

• Windows and Linux systems: The replacement for W is -msse2 (Linux) or /arch:SSE2
(Windows). There is no exact replacement for K. However, on Windows systems, /QaxK is
interpreted as /arch:IA32; on Linux systems, -axK is interpreted as -mia32. You can also
do one of the following:

• Upgrade to option -msse2 (Linux) or option /arch:SSE2 (Windows). This will produce
one code path that is specialized for Intel® SSE2. It will not run on earlier processors

502

20 Intel® Fortran Compiler User and Reference Guides

• Specify the two option combination -mia32 -axSSE2 (Linux) or /arch:IA32 /QaxSSE2
(Windows). This combination will produce an executable that runs on any processor with
IA-32 architecture but with an additional specialized Intel® SSE2 code path.

The -ax and /Qax options enable additional optimizations not enabled with option -m or option
/arch.

Alternate Options

None

See Also
•
•
• x, Qx
• m

• arch

B
Specifies a directory that can be used to find
include files, libraries, and executables.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-Bdir

Windows:

None

503

20

Arguments

Is the directory to be used. If necessary, the compiler adds
a directory separator character at the end of dir.

dir

Default

The compiler looks for files in the directories specified in your PATH
environment variable.

OFF

Description

This option specifies a directory that can be used to find include files, libraries, and executables.

The compiler uses dir as a prefix.

For include files, the dir is converted to -I/dir/include. This command is added to the front
of the includes passed to the preprocessor.

For libraries, the dir is converted to -L/dir. This command is added to the front of the standard
-L inclusions before system libraries are added.

For executables, if dir contains the name of a tool, such as ld or as, the compiler will use it
instead of those found in the default directories.

The compiler looks for include files in dir /include while library files are looked for in dir.

Another way to get the behavior of this option is to use the environment variable
GCC_EXEC_PREFIX.

Alternate Options

None

Bdynamic
Enables dynamic linking of libraries at run time.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

504

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux:

-Bdynamic

Mac OS X:

None

Windows:

None

Arguments

None

Default

Limited dynamic linking occurs.OFF

Description

This option enables dynamic linking of libraries at run time. Smaller executables are created
than with static linking.

This option is placed in the linker command line corresponding to its location on the user
command line. It controls the linking behavior of any library that is passed using the command
line.

All libraries on the command line following option -Bdynamic are linked dynamically until the
end of the command line or until a -Bstatic option is encountered. The -Bstatic option
enables static linking of libraries.

Alternate Options

None

See Also
•
• Bstatic

505

20

bigobj
Increases the number of sections that an object
file can contain.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/bigobj

Arguments

None

Default

An object file can hold up to 65,536 (2**16) addressable sections.OFF

Description

This option increases the number of sections that an object file can contain. It increases the
address capacity to 4,294,967,296(2**32).

An .obj file produced with this option can only be effectively passed to a linker that shipped in
Microsoft Visual C++* 2005 or later. Linkers shipped with earlier versions of the product cannot
read .obj files of this size.

This option may be helpful for .obj files that can hold more sections, such as machine generated
code.

Alternate Options

None

506

20 Intel® Fortran Compiler User and Reference Guides

bintext
Places a text string into the object file (.obj) being
generated by the compiler.

IDE Equivalent

Windows: Code Generation > Object Text String

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/bintext:string

/nobintext

Arguments

Is the text string to go into the object file.string

Default

No text string is placed in the object file./nobintext

Description

This option places a text string into the object file (.obj) being generated by the compiler. The
string also gets propagated into the executable file.

For example, this option is useful if you want to place a version number or copyright information
into the object and executable.

If the string contains a space or tab, the string must be enclosed by double quotation marks
("). A backslash (\) must precede any double quotation marks contained within the string.

507

20

If the command line contains multiple /bintext options, the last (rightmost) one is used.

Alternate Options

Linux and Mac OS X: None

Windows: /Vstring

Bstatic
Enables static linking of a user's library.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-Bstatic

Mac OS X:

None

Windows:

None

Arguments

None

Default

Default static linking occurs.OFF

Description

This option enables static linking of a user's library.

This option is placed in the linker command line corresponding to its location on the user
command line. It controls the linking behavior of any library that is passed using the command
line.

508

20 Intel® Fortran Compiler User and Reference Guides

All libraries on the command line following option -Bstatic are linked statically until the end
of the command line or until a -Bdynamic option is encountered. The -Bdynamic option enables
dynamic linking of libraries.

Alternate Options

None

See Also
•
• Bdynamic

c
Prevents linking.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-c

Windows:

/c

Arguments

None

Default

Linking is performed.OFF

509

20

Description

This option prevents linking. Compilation stops after the object file is generated.

The compiler generates an object file for each Fortran source file.

Alternate Options

Linux and Mac OS X: None

Windows: /compile-only, /nolink

C
See check.

CB
See check.

ccdefault
Specifies the type of carriage control used when a
file is displayed at a terminal screen.

IDE Equivalent

Windows: Run-time > Default Output Carriage Control

Linux: None

Mac OS X: Run-time > Default Output Carriage Control

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-ccdefault keyword

Windows:

/ccdefault:keyword

510

20 Intel® Fortran Compiler User and Reference Guides

Arguments

Specifies the carriage-control setting to use. Possible values
are:

keyword

Tells the compiler to use no carriage
control processing.

none

Tells the compiler to use the default
carriage-control setting.

default

Tells the compiler to use normal Fortran
interpretation of the first character. For
example, the character 0 causes output
of a blank line before a record.

fortran

Tells the compiler to output one line feed
between records.

list

Default

The compiler uses the default carriage control setting.ccdefault default

Description

This option specifies the type of carriage control used when a file is displayed at a terminal
screen (units 6 and *). It provides the same functionality as using the CARRIAGECONTROL
specifier in an OPEN statement.

The default carriage-control setting can be affected by the vms option. If vms is specified with
ccdefault default, carriage control defaults to normal Fortran interpretation (ccdefault
fortran) if the file is formatted and the unit is connected to a terminal. If novms (the default)
is specified with ccdefault default, carriage control defaults to list (ccdefault list).

Alternate Options

None

check
Checks for certain conditions at run time.

IDE Equivalent

Windows:

511

20

Run-time > Runtime Error Checking (/nocheck, /check:all, or /xcheck:none)

Run-time > Check Array and String Bounds (/check:[no]bounds)

Run-time > Check Uninitialized Variables (/check:[no]uninit)

Run-time > Check Edit Descriptor Data Type (/check:[no]format)

Run-time > Check Edit Descriptor Data Size (/check:[no]output_conversion)

Run-time > Check For Actual Arguments Using Temporary Storage
(/check:[no]arg_temp_created)

Run-time > Check For Null Pointers and Allocatable Array References
(/check:[no]pointers)

Linux: None

Mac OS X: Run-time > Runtime Error Checking (-check all, -check none)

Run-time > Check Array and String Bounds (-check [no]bounds)

Run-time > Check Edit Descriptor Data Type (-check [no]format)

Run-time > Check Edit Descriptor Data Size (-check [no]output_conversion)

Run-time > Check For Actual Arguments Using Temporary Storage (-check
[no]arg_temp_created)

Run-time > Check for Uninitialized Variables (-check [no]uninit)

Run-time > Check For Null Pointers and Allocatable Array References
(/check:[no]pointers)

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-check [keyword]

-nocheck

Windows:

/check[:keyword]

/nocheck

512

20 Intel® Fortran Compiler User and Reference Guides

Arguments

Specifies the conditions to check. Possible values are:keyword

Disables all check options.none

Determines whether checking occurs for
actual arguments before routine calls.

[no]arg_temp_created

Determines whether checking occurs for
array subscript and character substring
expressions.

[no]bounds

Determines whether checking occurs for
the data type of an item being formatted
for output.

[no]format

Determines whether checking occurs for
the fit of data items within a designated
format descriptor field.

[no]output_conversion

Determines whether checking occurs for
certain disassociated or uninitialized
pointers or unallocated allocatable
objects.

[no]pointers

Determines whether checking occurs for
uninitialized variables.

[no]uninit

Enables all check options.all

Default

No checking is performed for run-time failures. Note that if option
vms is specified, the defaults are check format and check out-
put_conversion.

nocheck

Description

This option checks for certain conditions at run time.

DescriptionOption

Disables all check options (same as nocheck).check none

513

20

DescriptionOption

Enables run-time checking on whether actual arguments are copied into
temporary storage before routine calls. If a copy is made at run-time, an
informative message is displayed.

check
arg_temp_cre-
ated

Enables compile-time and run-time checking for array subscript and
character substring expressions. An error is reported if the expression is
outside the dimension of the array or the length of the string.

check bounds

For array bounds, each individual dimension is checked. Array bounds
checking is not performed for arrays that are dummy arguments in which
the last dimension bound is specified as * or when both upper and lower
dimensions are 1.

Once the program is debugged, omit this option to reduce executable
program size and slightly improve run-time performance.

Issues the run-time FORVARMIS fatal error when the data type of an item
being formatted for output does not match the format descriptor being
used (for example, a REAL*4 item formatted with an I edit descriptor).

check format

With check noformat, the data item is formatted using the specified
descriptor unless the length of the item cannot accommodate the
descriptor (for example, it is still an error to pass an INTEGER*2 item to
an E edit descriptor).

Issues the run-time OUTCONERR continuable error message when a data
item is too large to fit in a designated format descriptor field without loss
of significant digits. Format truncation occurs, the field is filled with
asterisks (*), and execution continues.

check out-
put_conver-
sion

Enables run-time checking for disassociated or uninitialized Fortran
pointers, unallocated allocatable objects, and integer pointers that are
uninitialized.

check point-
ers

Enables run-time checking for uninitialized variables. If a variable is read
before it is written, a run-time error routine will be called. Only local scalar
variables of intrinsic type INTEGER, REAL, COMPLEX, and LOGICAL without
the SAVE attribute are checked.

check uninit

514

20 Intel® Fortran Compiler User and Reference Guides

DescriptionOption

Enables all check options. This is the same as specifying check with no
keyword.

check all

To get more detailed location information about where an error occurred, use option traceback.

Alternate Options

Linux and Mac OS X: -nocheckcheck none
Windows: /nocheck, /4Nb

Linux and Mac OS X: -CBcheck bounds
Windows: /CB

Linux and Mac OS X: -CUcheck uninit
Windows: /RTCu, /CU

Linux and Mac OS X: -check, -Ccheck all
Windows: /check, /4Yb, /C

See Also
•
• traceback

515

20

cm
See warn.

common-args, Qcommon-args
See assume.

compile-only
See c.

complex-limited-range, Qcomplex-limited-range
Determines whether the use of basic algebraic
expansions of some arithmetic operations involving
data of type COMPLEX is enabled.

IDE Equivalent

Windows: Floating point > Limit COMPLEX Range

Linux: None

Mac OS X: Floating point > Limit COMPLEX Range

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-complex-limited-range

-no-complex-limited-range

Windows:

/Qcomplex-limited-range

/Qcomplex-limited-range-

Arguments

None

516

20 Intel® Fortran Compiler User and Reference Guides

Default

Basic algebraic expansions of some arithmetic operations
involving data of type COMPLEX are disabled.

-no-complex-limited-range
or/Qcomplex-limited-range-

Description

This option determines whether the use of basic algebraic expansions of some arithmetic
operations involving data of type COMPLEX is enabled.

When the option is enabled, this can cause performance improvements in programs that use
a lot of COMPLEX arithmetic. However, values at the extremes of the exponent range may not
compute correctly.

Alternate Options

None

convert
Specifies the format of unformatted files containing
numeric data.

IDE Equivalent

Windows: Compatibility > Unformatted File Conversion

Linux: None

Mac OS X: Compatibility > Unformatted File Conversion

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-convert keyword

Windows:

/convert:keyword

517

20

Arguments

Specifies the format for the unformatted numeric data.
Possible values are:

keyword

Specifies that unformatted data should
not be converted.

native

Specifies that the format will be big
endian for integer data and big endian
IEEE floating-point for real and complex
data.

big_endian

Specifies that the format will be big
endian for integer data and CRAY*
floating-point for real and complex data.

cray

Specifies that the format will be little
endian for integer data, and VAX
processor floating-point format F_floating,
D_floating, and X_floating for real and
complex data.

fdx
(Linux, Mac OS
X)

Specifies that the format will be little
endian for integer data, and VAX
processor floating-point format F_floating,
G_floating, and X_floating for real and
complex data.

fgx
(Linux, Mac OS
X)

Specifies that the format will be big
endian for integer data and IBM*
System\370 floating-point format for real
and complex data.

ibm

Specifies that the format will be little
endian for integer data and little endian
IEEE floating-point for real and complex
data.

little_endian

Specifies that the format will be little
endian for integer data, and VAX*
processor floating-point format F_floating,
D_floating, and H_floating for real and
complex data.

vaxd

518

20 Intel® Fortran Compiler User and Reference Guides

Specifies that the format will be little
endian for integer data, and VAX
processor floating-point format F_floating,
G_floating, and H_floating for real and
complex data.

vaxg

Default

No conversion is performed on unformatted files containing numeric
data.

convert native

Description

This option specifies the format of unformatted files containing numeric data.

DescriptionOption

Specifies that unformatted data should not be converted.convert na-
tive

Specifies that the format will be big endian for INTEGER*1, INTEGER*2,
INTEGER*4, or INTEGER*8, and big endian IEEE floating-point for REAL*4,
REAL*8, REAL*16, COMPLEX*8, COMPLEX*16, or COMPLEX*32.

convert
big_endian

Specifies that the format will be big endian for INTEGER*1, INTEGER*2,
INTEGER*4, or INTEGER*8, and CRAY* floating-point for REAL*8 or
COMPLEX*16.

convert cray

Specifies that the format will be little endian for INTEGER*1, INTEGER*2,
INTEGER*4, or INTEGER*8, and VAX processor floating-point format
F_floating for REAL*4 or COMPLEX*8, D_floating for REAL*8 or
COMPLEX*16, and X_floating for REAL*16 or COMPLEX*32.

convert fdx

Specifies that the format will be little endian for INTEGER*1, INTEGER*2,
INTEGER*4, or INTEGER*8, and VAX processor floating-point format
F_floating for REAL*4 or COMPLEX*8, G_floating for REAL*8 or
COMPLEX*16, and X_floating for REAL*16 or COMPLEX*32.

convert fgx

Specifies that the format will be big endian for INTEGER*1, INTEGER*2,
or INTEGER*4, and IBM* System\370 floating-point format for REAL*4
or COMPLEX*8 (IBM short 4) and REAL*8 or COMPLEX*16 (IBM long 8).

convert ibm

519

20

DescriptionOption

Specifies that the format will be little endian for INTEGER*1, INTEGER*2,
INTEGER*4, or INTEGER*8 and little endian IEEE floating-point for REAL*4,
REAL*8, REAL*16, COMPLEX*8, COMPLEX*16, or COMPLEX*32.

convert lit-
tle_endian

Specifies that the format will be little endian for INTEGER*1, INTEGER*2,
INTEGER*4, or INTEGER*8, and VAX processor floating-point format
F_floating for REAL*4 or COMPLEX*8, D_floating for REAL*8 or
COMPLEX*16, and H_floating for REAL*16 or COMPLEX*32.

convert vaxd

Specifies that the format will be little endian for INTEGER*1, INTEGER*2,
INTEGER*4, or INTEGER*8, and VAX processor floating-point format
F_floating for REAL*4 or COMPLEX*8, G_floating for REAL*8 or
COMPLEX*16, and H_floating for REAL*16 or COMPLEX*32.

convert vaxg

Alternate Options

None

cpp, Qcpp
See fpp, Qfpp.

CU
See check.

cxxlib
Determines whether the compile links using the
C++ run-time libraries provided by gcc.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

520

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-cxxlib[=dir]

-cxxlib-nostd

-no-cxxlib

Windows:

None

Arguments

Is an optional top-level location for the gcc binaries and
libraries.

dir

Default

The compiler uses the default run-time libraries and does not link
to any additional C++ run-time libraries.

-no-cxxlib

Description

This option determines whether the compile links using the C++ run-time libraries provided
by gcc.

Option -cxxlib-nostd prevents the compiler from linking with the standard C++ library. It
is only useful for mixed-language applications.

Alternate Options

None

See Also
•

Building Applications: Options for Interoperability

521

20

D
Defines a symbol name that can be associated with
an optional value.

IDE Equivalent

Windows: General > Preprocessor Definitions

Preprocessor> Preprocessor Definitions

Preprocessor > Preprocessor Definitions to FPP only

Linux: None

Mac OS X: Preprocessor > Preprocessor Definitions

Preprocessor > Preprocessor Definitions to FPP only

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-Dname[=value]

Windows:

/Dname[=value]

Arguments

Is the name of the symbol.name

Is an optional integer or an optional character string
delimited by double quotes; for example, Dname=string.

value

Default

Only default symbols or macros are defined.noD

522

20 Intel® Fortran Compiler User and Reference Guides

Description

Defines a symbol name that can be associated with an optional value.
This definition is used during preprocessing.

If a value is not specified, name is defined as "1".

If you want to specify more than one definition, you must use separate D options.

If you specify noD, all preprocessor definitions apply only to fpp and not to Intel® Fortran
conditional compilation directives. To use this option, you must also specify option fpp.

CAUTION. On Linux and Mac OS X systems, if you are not specifying a value, do not
use D for name, because it will conflict with the -DD option.

Alternate Options

Linux and Mac OS X: None
Windows: /define:name[=value]

D

Linux and Mac OS X: -nodefine
Windows: /nodefine

noD

See Also
•

Building Applications: Predefined Preprocessor Symbols

d-lines, Qd-lines
Compiles debug statements.

IDE Equivalent

Windows: Language > Compile Lines With D in Column 1

Linux: None

Mac OS X: Language > Compile Lines With D in Column 1

Architectures

IA-32, Intel® 64, IA-64 architectures

523

20

Syntax

Linux and Mac OS X:

-d-lines

-nod-lines

Windows:

/d-lines

/nod-lines

/Qd-lines

Arguments

None

Default

Debug lines are treated as comment lines.nod-lines

Description

This option compiles debug statements. It specifies that lines in fixed-format files that contain
a D in column 1 (debug statements) should be treated as source code.

Alternate Options

Linux and Mac OS X: -DD

Windows: None

dbglibs
Tells the linker to search for unresolved references
in a debug run-time library.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

524

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

None

Windows:

/dbglibs

/nodbglibs

Arguments

None

Default

The linker does not search for unresolved references in a debug
run-time library.

/nodbglibs

Description

This option tells the linker to search for unresolved references in a debug run-time library.

The following table shows which options to specify for a debug run-time library:

AlternateOptionOptions RequiredType of Library

/MLd (this is a
deprecated
option)

/libs:static

/dbglibs

Debug single-threaded

/MTd/libs:static

/threads

Debug multithreaded

/dbglibs

/MDd/libs:dll

/threads

Multithreaded debug DLLs

/dbglibs

None/libs:qwin

/dbglibs

Debug Fortran QuickWin multi-thread applications

525

20

AlternateOptionOptions RequiredType of Library

None/libs:qwins

/dbglibs

Debug Fortran standard graphics (QuickWin
single-thread) applications

Alternate Options

None

See Also
•
Building Applications: Specifying Consistent Library Types; Programming with Mixed
Languages Overview

DD
See dlines, Qdlines.

debug (Linux* OS and Mac OS* X)
Enables or disables generation of debugging
information.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-debug[keyword]

Windows:

None

526

20 Intel® Fortran Compiler User and Reference Guides

Arguments

Is the type of debugging information to be generated.
Possible values are:

keyword

Disables generation of debugging
information.

none

Generates complete debugging
information.

full or all

Generates line number information for
debugging.

minimal

Determines whether the compiler
generates column number information
for debugging.

[no]emit_column

Determines whether the compiler
generates enhanced debug information
for inlined code.

[no]inline-debug-info

Determines whether the compiler
generates enhanced debug information
useful for breakpoints and stepping.

[no]semantic-stepping

Determines whether the compiler
generates enhanced debug information
useful in finding scalar local variables.

[no]variable-locations

Sets keyword values
semantic-stepping and
variable-locations.

extended

For information on the non-default settings for these keywords, see the Description section.

Default

No debugging information is generated.-debug none

Description

This option enables or disables generation of debugging information.

Note that if you turn debugging on, optimization is turned off.

527

20

Keywords semantic-stepping, inline-debug-info, variable-locations, and extended
can be used in combination with each other. If conflicting keywords are used in combination,
the last one specified on the command line has precedence.

DescriptionOption

Disables generation of debugging information.-debug none

Generates complete debugging information. It is the same as
specifying -debug with no keyword.

-debug full or -debug
all

Generates line number information for debugging.-debug minimal

Generates column number information for debugging.-debug emit_column

Generates enhanced debug information for inlined code. It
provides more information to debuggers for function call
traceback.

-debug inline-debug-
info

Generates enhanced debug information useful for breakpoints
and stepping. It tells the debugger to stop only at machine
instructions that achieve the final effect of a source statement.

-debug semantic-step-
ping

For example, in the case of an assignment statement, this might
be a store instruction that assigns a value to a program variable;
for a function call, it might be the machine instruction that
executes the call. Other instructions generated for those source
statements are not displayed during stepping.

This option has no impact unless optimizations have also been
enabled.

Generates enhanced debug information useful in finding scalar
local variables. It uses a feature of the Dwarf object module
known as "location lists".

-debug variable-loca-
tions

This feature allows the run-time locations of local scalar variables
to be specified more accurately; that is, whether, at a given
position in the code, a variable value is found in memory or a
machine register.

528

20 Intel® Fortran Compiler User and Reference Guides

DescriptionOption

Sets keyword values semantic-stepping and
variable-locations. It also tells the compiler to include
column numbers in the line information.

-debug extended

On Linux* systems, debuggers read debug information from executable images. As a result,
information is written to object files and then added to the executable by the linker. On Mac
OS* X systems, debuggers read debug information from object files. As a result, the executables
don't contain any debug information. Therefore, if you want to be able to debug on these
systems, you must retain the object files.

Alternate Options

Linux and Mac OS X: -gFor debug full, -debug
all, or -debug Windows: /debug:full, /debug:all, or /debug

Linux and Mac OS X: -inline-debug-info (this is a deprecated
option)

For -debug inline-debug-
info

Windows: None

See Also
•
• debug (Windows*)

Building Applications: Debugging Overview

debug (Windows* OS)
Enables or disables generation of debugging
information.

IDE Equivalent

Windows: General > Debug Information Format (/debug:minimal, /debug:full)

Debug > Enable Parallel Debug Checks (/debug:parallel)

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

529

20

Syntax

Linux and Mac OS X:

None

Windows:

/debug[:keyword]

/nodebug

Arguments

Is the type of debugging information to be generated.
Possible values are:

keyword

Generates no symbol table information.none

Generates complete debugging
information.

full or all

Generates line numbers and minimal
debugging information.

minimal

Deprecated. Generates global symbol
table information needed for linking.

partial

Determines whether the compiler
generates parallel debug code
instrumentations useful for thread data

[no]parallel
(i32, i64em)

sharing and reentrant call detection. For
this setting to be effective, option
/Qopenmp must be set.

For information on the non-default settings for these keywords, see the Description section.

Default

This is the default on the command line and for a release
configuration in the IDE.

/debug:none

This is the default for a debug configuration in the IDE./debug:full

Description

This option enables or disables generation of debugging information. It is passed to the linker.

Note that if you turn debugging on, optimization is turned off.

530

20 Intel® Fortran Compiler User and Reference Guides

If conflicting keywords are used in combination, the last one specified on the command line
has precedence.

DescriptionOption

Disables generation of debugging information.
It is the same as specifying /nodebug.

/debug:none

Generates complete debugging information.
It produces symbol table information needed
for full symbolic debugging of unoptimized

/debug:full or /debug:all

code and global symbol information needed
for linking. It is the same as specifying /de-
bug with no keyword. If you specify /de-
bug:full for an application that makes calls
to C library routines and you need to debug
calls into the C library, you should also specify
/dbglibs to request that the appropriate C
debug library be linked against.

Generates line number information for
debugging. It produces global symbol
information needed for linking, but not local
symbol table information needed for
debugging.

/debug:minimal

Generates global symbol table information
needed for linking, but not local symbol table
information needed for debugging. This option
is deprecated and is not available in the IDE.

/debug:partial

Generates parallel debug code
instrumentations needed for the thread data
sharing and reentrant call detection of the

/debug:parallel

Intel® Parallel Debugger Extension. This
option is only available on IA-32 and Intel®

64 architectures.

531

20

Alternate Options

Linux and Mac OS X: None
Windows: /Zd (this is a deprecated option)

For /debug:minimal

Linux and Mac OS X: None
Windows: /Zi, /Z7

For /debug:full or
/debug

See Also
•
• dbglibs

• debug (Linux* and Mac OS* X)
• Debugging Fortran Programs

debug-parameters
Tells the compiler to generate debug information
for PARAMETERs used in a program.

IDE Equivalent

Windows: Debugging > Information for PARAMETER Constants

Linux: None

Mac OS X: Debug > Information for PARAMETER Constants

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-debug-parameters [keyword]

-nodebug-parameters

Windows:

/debug-parameters[:keyword]

/nodebug-parameters

532

20 Intel® Fortran Compiler User and Reference Guides

Arguments

Are the PARAMETERs to generate debug information for.
Possible values are:

keyword

Generates no debug information for any
PARAMETERs used in the program. This
is the same as specifying nodebug-param-
eters.

none

Generates debug information for only
PARAMETERs that have actually been
referenced in the program. This is the
default if you do not specify a keyword.

used

Generates debug information for all
PARAMETERs defined in the program.

all

Default

The compiler generates no debug information for any PARAMETERs
used in the program. This is the same as specifying keyword none.

nodebug-parameters

Description

This option tells the compiler to generate debug information for PARAMETERs used in a program.

Note that if a .mod file contains PARAMETERs, debug information is only generated for the
PARAMETERs that have actually been referenced in the program, even if you specify keyword
all.

Alternate Options

None

define
See D.

diag, Qdiag
Controls the display of diagnostic information.

IDE Equivalent

Windows: Diagnostics > Disable Specific Diagnostics (/Qdiag-disable:id)

533

20

Diagnostics > Level of Source Code Analysis (/Qdiag-enable[:sc1,sc2,sc3])

Linux: None

Mac OS X: Diagnostics > Disable Specific Diagnostics (-diag-disable id)

Diagnostics > Level of Source Code Analysis (-diag-enable [sc1,sc2,sc3])

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-diag-type diag-list

Windows:

/Qdiag-type:diag-list

Arguments

Is an action to perform on diagnostics. Possible values are:type

Enables a diagnostic message or a group
of messages.

enable

Disables a diagnostic message or a group
of messages.

disable

Tells the compiler to change diagnostics
to errors.

error

Tells the compiler to change diagnostics
to warnings.

warning

Tells the compiler to change diagnostics
to remarks (comments).

remark

Is a diagnostic group or ID value. Possible values are:diag-list

Specifies diagnostic messages issued by
the compiler driver.

driver

Specifies diagnostic messages issued by
the vectorizer.

vec

Specifies diagnostic messages issued by
the auto-parallelizer (parallel optimizer).

par

534

20 Intel® Fortran Compiler User and Reference Guides

Specifies diagnostic messages issued by
the OpenMP* parallelizer.

openmp

Specifies diagnostic messages issued by
the Source Checker. n can be any of the
following: 1, 2, 3. For more details on
these values, see below. This value is
equivalent to deprecated value sv[n].

sc[n]

Specifies diagnostic messages that have
a "warning" severity level.

warn

Specifies diagnostic messages that have
an "error" severity level.

error

Specifies diagnostic messages that are
remarks or comments.

remark

Specifies the CPU dispatch remarks for
diagnostic messages. These remarks are
enabled by default. This diagnostic group
is only available on IA-32 architecture and
Intel® 64 architecture.

cpu-dispatch

Specifies the ID number of one or more
messages. If you specify more than one
message number, they must be separated
by commas. There can be no intervening
white space between each id.

id[,id,...]

Specifies the mnemonic name of one or
more messages. If you specify more than
one mnemonic name, they must be

tag[,tag,...]

separated by commas. There can be no
intervening white space between each
tag.

Default

The compiler issues certain diagnostic messages by default.OFF

535

20

Description

This option controls the display of diagnostic information. Diagnostic messages are output to
stderr unless compiler option -diag-file (Linux and Mac OS X) or /Qdiag-file (Windows)
is specified.

When diag-list value "warn" is used with the Source Checker (sc) diagnostics, the following
behavior occurs:

• Option -diag-enable warn (Linux and Mac OS X) and /Qdiag-enable:warn (Windows)
enable all Source Checker diagnostics except those that have an "error" severity level. They
enable all Source Checker warnings, cautions, and remarks.

• Option -diag-disable warn (Linux and Mac OS X) and /Qdiag-disable:warn (Windows)
disable all Source Checker diagnostics except those that have an "error" severity level. They
suppress all Source Checker warnings, cautions, and remarks.

The following table shows more information on values you can specify for diag-list item sc.

Descriptiondiag-list
Item

The value of n for Source Checker messages can be any of the following:sc[n]

Produces the diagnostics with severity level set to all critical errors.
1

Produces the diagnostics with severity level set to all errors. This is the default
if n is not specified.

2

Produces the diagnostics with severity level set to all errors and warnings.
3

To control the diagnostic information reported by the vectorizer, use the -vec-report (Linux
and Mac OS X) or /Qvec-report (Windows) option.

To control the diagnostic information reported by the auto-parallelizer, use the -par-report
(Linux and Mac OS X) or /Qpar-report (Windows) option.

Alternate Options

Linux and Mac OS X: -vec-report
Windows: /Qvec-report

enable vec

Linux and Mac OS X: -vec-report0
Windows: /Qvec-report0

disable vec

536

20 Intel® Fortran Compiler User and Reference Guides

Linux and Mac OS X: -par-report
Windows: /Qpar-report

enable par

Linux and Mac OS X: -par-report0
Windows: /Qpar-report0

disable par

Example

The following example shows how to enable diagnostic IDs 117, 230 and 450:

-diag-enable 117,230,450 ! Linux and Mac OS X systems

/Qdiag-enable:117,230,450 ! Windows systems

The following example shows how to change vectorizer diagnostic messages to warnings:

-diag-enable vec -diag-warning vec ! Linux and Mac OS X systems

/Qdiag-enable:vec /Qdiag-warning:vec ! Windows systems

Note that you need to enable the vectorizer diagnostics before you can change them to warnings.

The following example shows how to disable all auto-parallelizer diagnostic messages:

-diag-disable par ! Linux and Mac OS X systems

/Qdiag-disable:par ! Windows systems

The following example shows how to produce Source Checker diagnostic messages for all critical
errors:

-diag-enable sc1 ! Linux and Mac OS X systems

/Qdiag-enable:sc1 ! Windows system

The following example shows how to cause Source Checker diagnostics (and default diagnostics)
to be sent to a file:

-diag-enable sc -diag-file=stat_ver_msg ! Linux and Mac OS X systems

/Qdiag-enable:sc /Qdiag-file:stat_ver_msg ! Windows systems

Note that you need to enable the Source Checker diagnostics before you can send them to a
file. In this case, the diagnostics are sent to file stat_ver_msg.diag. If a file name is not specified,
the diagnostics are sent to name-of-the-first-source-file.diag.

The following example shows how to change all diagnostic warnings and remarks to errors:

-diag-error warn,remark ! Linux and Mac OS X systems

/Qdiag-error:warn,remark ! Windows systems

537

20

See Also
•
•
•
•
• diag-dump, Qdiag-dump
• diag-id-numbers, Qdiag-id-numbers
• diag-file, Qdiag-file
• par-report, Qpar-report
• vec-report, Qvec-report

diag-dump, Qdiag-dump
Tells the compiler to print all enabled diagnostic
messages and stop compilation.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-diag-dump

Windows:

/Qdiag-dump

Arguments

None

Default

The compiler issues certain diagnostic messages by default.OFF

538

20 Intel® Fortran Compiler User and Reference Guides

Description

This option tells the compiler to print all enabled diagnostic messages and stop compilation.
The diagnostic messages are output to stdout.

This option prints the enabled diagnostics from all possible diagnostics that the compiler can
issue, including any default diagnostics.

If -diag-enable diag-list (Linux and Mac OS X) or /Qdiag-enable diag-list (Windows)
is specified, the print out will include the diag-list diagnostics.

Alternate Options

None

Example

The following example adds vectorizer diagnostic messages to the printout of default diagnostics:

-diag-enable vec -diag-dump ! Linux and Mac OS X systems

/Qdiag-enable:vec /Qdiag-dump ! Windows systems

See Also
•
•
• diag, Qdiag

diag, Qdiag
Controls the display of diagnostic information.

IDE Equivalent

Windows: Diagnostics > Disable Specific Diagnostics (/Qdiag-disable:id)

Diagnostics > Level of Source Code Analysis (/Qdiag-enable[:sc1,sc2,sc3])

Linux: None

Mac OS X: Diagnostics > Disable Specific Diagnostics (-diag-disable id)

Diagnostics > Level of Source Code Analysis (-diag-enable [sc1,sc2,sc3])

Architectures

IA-32, Intel® 64, IA-64 architectures

539

20

Syntax

Linux and Mac OS X:

-diag-type diag-list

Windows:

/Qdiag-type:diag-list

Arguments

Is an action to perform on diagnostics. Possible values are:type

Enables a diagnostic message or a group
of messages.

enable

Disables a diagnostic message or a group
of messages.

disable

Tells the compiler to change diagnostics
to errors.

error

Tells the compiler to change diagnostics
to warnings.

warning

Tells the compiler to change diagnostics
to remarks (comments).

remark

Is a diagnostic group or ID value. Possible values are:diag-list

Specifies diagnostic messages issued by
the compiler driver.

driver

Specifies diagnostic messages issued by
the vectorizer.

vec

Specifies diagnostic messages issued by
the auto-parallelizer (parallel optimizer).

par

Specifies diagnostic messages issued by
the OpenMP* parallelizer.

openmp

Specifies diagnostic messages issued by
the Source Checker. n can be any of the
following: 1, 2, 3. For more details on
these values, see below. This value is
equivalent to deprecated value sv[n].

sc[n]

540

20 Intel® Fortran Compiler User and Reference Guides

Specifies diagnostic messages that have
a "warning" severity level.

warn

Specifies diagnostic messages that have
an "error" severity level.

error

Specifies diagnostic messages that are
remarks or comments.

remark

Specifies the CPU dispatch remarks for
diagnostic messages. These remarks are
enabled by default. This diagnostic group
is only available on IA-32 architecture and
Intel® 64 architecture.

cpu-dispatch

Specifies the ID number of one or more
messages. If you specify more than one
message number, they must be separated
by commas. There can be no intervening
white space between each id.

id[,id,...]

Specifies the mnemonic name of one or
more messages. If you specify more than
one mnemonic name, they must be

tag[,tag,...]

separated by commas. There can be no
intervening white space between each
tag.

Default

The compiler issues certain diagnostic messages by default.OFF

Description

This option controls the display of diagnostic information. Diagnostic messages are output to
stderr unless compiler option -diag-file (Linux and Mac OS X) or /Qdiag-file (Windows)
is specified.

When diag-list value "warn" is used with the Source Checker (sc) diagnostics, the following
behavior occurs:

• Option -diag-enable warn (Linux and Mac OS X) and /Qdiag-enable:warn (Windows)
enable all Source Checker diagnostics except those that have an "error" severity level. They
enable all Source Checker warnings, cautions, and remarks.

541

20

• Option -diag-disable warn (Linux and Mac OS X) and /Qdiag-disable:warn (Windows)
disable all Source Checker diagnostics except those that have an "error" severity level. They
suppress all Source Checker warnings, cautions, and remarks.

The following table shows more information on values you can specify for diag-list item sc.

Descriptiondiag-list
Item

The value of n for Source Checker messages can be any of the following:sc[n]

Produces the diagnostics with severity level set to all critical errors.
1

Produces the diagnostics with severity level set to all errors. This is the default
if n is not specified.

2

Produces the diagnostics with severity level set to all errors and warnings.
3

To control the diagnostic information reported by the vectorizer, use the -vec-report (Linux
and Mac OS X) or /Qvec-report (Windows) option.

To control the diagnostic information reported by the auto-parallelizer, use the -par-report
(Linux and Mac OS X) or /Qpar-report (Windows) option.

Alternate Options

Linux and Mac OS X: -vec-report
Windows: /Qvec-report

enable vec

Linux and Mac OS X: -vec-report0
Windows: /Qvec-report0

disable vec

Linux and Mac OS X: -par-report
Windows: /Qpar-report

enable par

Linux and Mac OS X: -par-report0
Windows: /Qpar-report0

disable par

Example

The following example shows how to enable diagnostic IDs 117, 230 and 450:

-diag-enable 117,230,450 ! Linux and Mac OS X systems

/Qdiag-enable:117,230,450 ! Windows systems

542

20 Intel® Fortran Compiler User and Reference Guides

The following example shows how to change vectorizer diagnostic messages to warnings:

-diag-enable vec -diag-warning vec ! Linux and Mac OS X systems

/Qdiag-enable:vec /Qdiag-warning:vec ! Windows systems

Note that you need to enable the vectorizer diagnostics before you can change them to warnings.

The following example shows how to disable all auto-parallelizer diagnostic messages:

-diag-disable par ! Linux and Mac OS X systems

/Qdiag-disable:par ! Windows systems

The following example shows how to produce Source Checker diagnostic messages for all critical
errors:

-diag-enable sc1 ! Linux and Mac OS X systems

/Qdiag-enable:sc1 ! Windows system

The following example shows how to cause Source Checker diagnostics (and default diagnostics)
to be sent to a file:

-diag-enable sc -diag-file=stat_ver_msg ! Linux and Mac OS X systems

/Qdiag-enable:sc /Qdiag-file:stat_ver_msg ! Windows systems

Note that you need to enable the Source Checker diagnostics before you can send them to a
file. In this case, the diagnostics are sent to file stat_ver_msg.diag. If a file name is not specified,
the diagnostics are sent to name-of-the-first-source-file.diag.

The following example shows how to change all diagnostic warnings and remarks to errors:

-diag-error warn,remark ! Linux and Mac OS X systems

/Qdiag-error:warn,remark ! Windows systems

See Also
•
•
•
•
• diag-dump, Qdiag-dump
• diag-id-numbers, Qdiag-id-numbers
• diag-file, Qdiag-file
• par-report, Qpar-report

543

20

• vec-report, Qvec-report

diag-enable sc-include, Qdiag-enable:sc-include
Tells a source code analyzer to process include files
and source files when issuing diagnostic messages.

IDE Equivalent

Windows: Diagnostics > Analyze Include Files

Linux: None

Mac OS X: Diagnostics > Analyze Include Files

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-diag-enable sc-include

Windows:

/Qdiag-enable:sc-include

Arguments

None

Default

The compiler issues certain diagnostic messages by default. If the
Source Checker is enabled, include files are not analyzed by default.

OFF

Description

This option tells a source code analyzer (Source Checker) to process include files and source
files when issuing diagnostic messages. Normally, when Source Checker diagnostics are enabled,
only source files are analyzed.

544

20 Intel® Fortran Compiler User and Reference Guides

To use this option, you must also specify -diag-enable sc (Linux and Mac OS X) or /Qdiag-
enable:sc (Windows) to enable the Source Checker diagnostics, or -diag-enable sc-par-
allel (Linux and Mac OS X) or /Qdiag-enable:sc-parallel (Windows) to enable parallel
lint.

Alternate Options

Linux and Mac OS X: -diag-enable sv-include (this is a deprecated option)

Windows: /Qdiag-enable:sv-include (this is a deprecated option)

Example

The following example shows how to cause include files to be analyzed as well as source files:

-diag-enable sc -diag-enable sc-include ! Linux and Mac OS systems

/Qdiag-enable:sc /Qdiag-enable:sc-include ! Windows systems

In the above example, the first compiler option enables Source Checker messages. The second
compiler option causes include files referred to by the source file to be analyzed also.

See Also
•
•
• diag-enable sc-parallel, Qdiag-enable:sc-parallel
• diag, Qdiag

diag-enable sc-parallel, Qdiag-enable:sc-parallel
Enables analysis of parallelization in source code
(parallel lint diagnostics).

IDE Equivalent

Windows: Diagnostics > Level of Source Code Parallelization Analysis

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64 architectures

545

20

Syntax

Linux and Mac OS X:

-diag-enable sc-parallel[n]

Windows:

/Qdiag-enable:sc-parallel[n]

Arguments

Is the level of analysis to perform. Possible values are:n

Produces the diagnostics with severity
level set to all critical errors.

1

Tells the compiler to generate a report
with the medium level of detail. Produces
the diagnostics with severity level set to
all errors. This is the default if n is not
specified.

2

Produces the diagnostics with severity
level set to all errors and warnings.

3

Default

The compiler does not analyze parallelization in source code.OFF

Description

This option enables analysis of parallelization in source code (parallel lint diagnostics). Currently,
this analysis uses OpenMP directives, so this option has no effect unless option /Qopenmp
(Windows) or option -openmp (Linux and Mac OS X) is set.

Parallel lint performs interprocedural source code analysis to identify mistakes when using
parallel directives. It reports various problems that are difficult to find, including data dependency
and potential deadlocks.

Source Checker diagnostics (enabled by /Qdiag-enable:sc on Windows* OS or -diag-enable
sc on Linux* OS and Mac OS* X) are a superset of parallel lint diagnostics. Therefore, if Source
Checker diagnostics are enabled, the parallel lint option is not taken into account.

546

20 Intel® Fortran Compiler User and Reference Guides

Alternate Options

None

See Also
•
•
• diag, Qdiag

diag-error-limit, Qdiag-error-limit
Specifies the maximum number of errors allowed
before compilation stops.

IDE Equivalent

Windows: Compilation Diagnostics > Error Limit

Linux: None

Mac OS X: Compiler Diagnostics > Error Limit

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-diag-error-limitn

-no-diag-error-limit

Windows:

/Qdiag-error-limit:n

/Qdiag-error-limit-

Arguments

Is the maximum number of error-level or fatal-level compiler
errors allowed.

n

547

20

Default

A maximum of 30 error-level and fatal-level messages are allowed.30

Description

This option specifies the maximum number of errors allowed before compilation stops. It
indicates the maximum number of error-level or fatal-level compiler errors allowed for a file
specified on the command line.

If you specify -no-diag-error-limit (Linux and Mac OS X) or /Qdiag-error-limit-
(Windows) on the command line, there is no limit on the number of errors that are allowed.

If the maximum number of errors is reached, a warning message is issued and the next file (if
any) on the command line is compiled.

Alternate Options

Linux and Mac OS X: -error-limit and -noerror-limit

Windows: /error-limit and /noerror-limit

diag-file, Qdiag-file
Causes the results of diagnostic analysis to be
output to a file.

IDE Equivalent

Windows: Diagnostics > Diagnostics File

Linux: None

Mac OS X: Diagnostics > Diagnostics File

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-diag-file[=file]

Windows:

/Qdiag-file[:file]

548

20 Intel® Fortran Compiler User and Reference Guides

Arguments

Is the name of the file for output.file

Default

Diagnostic messages are output to stderr.OFF

Description

This option causes the results of diagnostic analysis to be output to a file. The file is placed in
the current working directory.

If file is specified, the name of the file is file.diag. The file can include a file extension; for
example, if file.ext is specified, the name of the file is file.ext.

If file is not specified, the name of the file is name-of-the-first-source-file.diag. This
is also the name of the file if the name specified for file conflicts with a source file name provided
in the command line.

NOTE. If you specify -diag-file (Linux and Mac OS X) or /Qdiag-file (Windows)
and you also specify -diag-file-append (Linux and Mac OS X) or /Qdiag-file-append
(Windows), the last option specified on the command line takes precedence.

Alternate Options

None

Example

The following example shows how to cause diagnostic analysis to be output to a file named
my_diagnostics.diag:

-diag-file=my_diagnostics ! Linux and Mac OS X systems

/Qdiag-file:my_diagnostics ! Windows systems

See Also
•
•
• diag, Qdiag
• diag-file-append, Qdiag-file-append

549

20

diag-file-append, Qdiag-file-append
Causes the results of diagnostic analysis to be
appended to a file.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-diag-file-append[=file]

Windows:

/Qdiag-file-append[:file]

Arguments

Is the name of the file to be appended to. It can include a
path.

file

Default

Diagnostic messages are output to stderr.OFF

Description

This option causes the results of diagnostic analysis to be appended to a file. If you do not
specify a path, the driver will look for file in the current working directory.

If file is not found, then a new file with that name is created in the current working directory.
If the name specified for file conflicts with a source file name provided in the command line.
the name of the file is name-of-the-first-source-file.diag.

NOTE. If you specify -diag-file-append (Linux and Mac OS X) or /Qdiag-file-ap-
pend (Windows) and you also specify -diag-file (Linux and Mac OS X) or /Qdiag-
file (Windows), the last option specified on the command line takes precedence.

550

20 Intel® Fortran Compiler User and Reference Guides

Alternate Options

None

Example

The following example shows how to cause diagnostic analysis to be appended to a file named
my_diagnostics.txt:

-diag-file-append=my_diagnostics.txt ! Linux and Mac OS X systems

/Qdiag-file-append:my_diagnostics.txt ! Windows systems

See Also
•
•
• diag, Qdiag
• diag-file, Qdiag-file

diag-id-numbers, Qdiag-id-numbers
Determines whether the compiler displays
diagnostic messages by using their ID number
values.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-diag-id-numbers

-no-diag-id-numbers

Windows:

/Qdiag-id-numbers

/Qdiag-id-numbers-

551

20

Arguments

None

Default

The compiler displays diagnostic messages by using their ID
number values.

-diag-id-numbers
or/Qdiag-id-numbers

Description

This option determines whether the compiler displays diagnostic messages by using their ID
number values. If you specify -no-diag-id-numbers (Linux and Mac OS X) or /Qdiag-id-
numbers- (Windows), mnemonic names are output for driver diagnostics only.

Alternate Options

None

See Also
•
•
• diag, Qdiag

diag-once, Qdiag-once
Tells the compiler to issue one or more diagnostic
messages only once.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-diag-onceid[,id,...]

552

20 Intel® Fortran Compiler User and Reference Guides

Windows:

/Qdiag-once:id[,id,...]

Arguments

Is the ID number of the diagnostic message. If you specify
more than one message number, they must be separated
by commas. There can be no intervening white space
between each id.

id

Default

The compiler issues certain diagnostic messages by default.OFF

Description

This option tells the compiler to issue one or more diagnostic messages only once.

Alternate Options

None

dll
Specifies that a program should be linked as a
dynamic-link (DLL) library.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/dll

553

20

Arguments

None

Default

The program is not linked as a dynamic-link (DLL) library.OFF

Description

This option specifies that a program should be linked as a dynamic-link (DLL) library instead
of an executable (.exe) file. It overrides any previous specification of run-time routines to be
used and enables the /libs:dll option.

If you use this option with the /libs:qwin or /libs:qwins option, the compiler issues a
warning.

Alternate Options

Linux and Mac OS X: None

Windows: /LD

double-size
Specifies the default KIND for DOUBLE PRECISION
and DOUBLE COMPLEX variables.

IDE Equivalent

Windows: Data > Default Double Precision KIND

Linux: None

Mac OS X: Data > Default Double Precision KIND

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-double-size size

554

20 Intel® Fortran Compiler User and Reference Guides

Windows:

/double-size:size

Arguments

Specifies the default KIND for DOUBLE PRECISION and
DOUBLE COMPLEX declarations, constants, functions, and
intrinsics. Possible values are: 64 (KIND=8) or 128
(KIND=16).

size

Default

DOUBLE PRECISION variables are defined as REAL*8 and DOUBLE
COMPLEX variables are defined as COMPLEX*16.

64

Description

This option defines the default KIND for DOUBLE PRECISION and DOUBLE COMPLEX declarations,
constants, functions, and intrinsics.

DescriptionOption

Defines DOUBLE PRECISION declarations, constants, functions, and
intrinsics as REAL(KIND=8) (REAL*8) and defines DOUBLE COMPLEX
declarations, functions, and intrinsics as COMPLEX(KIND=8)
(COMPLEX*16).

double-size
64

Defines DOUBLE PRECISION declarations, constants, functions, and
intrinsics as REAL(KIND=16) (REAL*16) and defines DOUBLE COMPLEX
declarations, functions, and intrinsics as COMPLEX(KIND=16)
(COMPLEX*32).

double-size
128

Alternate Options

None

555

20

dps, Qdps
See altparam.

dryrun
Specifies that driver tool commands should be
shown but not executed.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-dryrun

Windows:

None

Arguments

None

Default

No tool commands are shown, but they are executed.OFF

Description

This option specifies that driver tool commands should be shown but not executed.

Alternate Options

None

See Also
•
• v

556

20 Intel® Fortran Compiler User and Reference Guides

dumpmachine
Displays the target machine and operating system
configuration.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-dumpmachine

Windows:

None

Arguments

None

Default

The compiler does not display target machine or operating system
information.

OFF

Description

This option displays the target machine and operating system configuration. No compilation is
performed.

Alternate Options

None

557

20

dynamic-linker
Specifies a dynamic linker other than the default.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-dynamic-linker file

Mac OS X:

None

Windows:

None

Arguments

Is the name of the dynamic linker to be used.file

Default

The default dynamic linker is used.OFF

Description

This option lets you specify a dynamic linker other than the default.

Alternate Options

None

558

20 Intel® Fortran Compiler User and Reference Guides

dynamiclib
Invokes the libtool command to generate
dynamic libraries.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux:

None

Mac OS X:

-dynamiclib

Windows:

None

Arguments

None

Default

The compiler produces an executable.OFF

Description

This option invokes the libtool command to generate dynamic libraries.

When passed this option, the compiler uses the libtool command to produce a dynamic library
instead of an executable when linking.

To build static libraries, you should specify option -staticlib or libtool -static <objects>.

Alternate Options

None

559

20

See Also
•
• staticlib

dyncom, Qdyncom
Enables dynamic allocation of common blocks at
run time.

IDE Equivalent

Windows: Data > Dynamic Common Blocks

Linux: None

Mac OS X: Data > Dynamic Common Blocks

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-dyncom "common1,common2,..."

Windows:

/Qdyncom "common1,common2,..."

Arguments

Are the names of the common blocks to be dynamically
allocated. The list of names must be within quotes.

common1,common2,...

Default

Common blocks are not dynamically allocated at run time.OFF

Description

This option enables dynamic allocation of the specified common blocks at run time. For example,
to enable dynamic allocation of common blocks a, b, and c at run time, use this syntax:

/Qdyncom "a,b,c" ! on Windows systems

-dyncom "a,b,c" ! on Linux and Mac OS X systems

560

20 Intel® Fortran Compiler User and Reference Guides

The following are some limitations that you should be aware of when using this option:

• An entity in a dynamic common cannot be initialized in a DATA statement.

• Only named common blocks can be designated as dynamic COMMON.

• An entity in a dynamic common block must not be used in an EQUIVALENCE expression with
an entity in a static common block or a DATA-initialized variable.

Alternate Options

None

See Also
•
•

Building Applications: Allocating Common Blocks

E
Causes the preprocessor to send output to stdout.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-E

Windows:

/E

Arguments

None

561

20

Default

Preprocessed source files are output to the compiler.OFF

Description

This option causes the preprocessor to send output to stdout. Compilation stops when the
files have been preprocessed.

When you specify this option, the compiler's preprocessor expands your source module and
writes the result to stdout. The preprocessed source contains #line directives, which the
compiler uses to determine the source file and line number.

Alternate Options

None

e90, e95, e03
See warn.

EP
Causes the preprocessor to send output to stdout,
omitting #line directives.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-EP

Windows:

/EP

Arguments

None

562

20 Intel® Fortran Compiler User and Reference Guides

Default

Preprocessed source files are output to the compiler.OFF

Description

This option causes the preprocessor to send output to stdout, omitting #line directives.

If you also specify option preprocess-only, option P, or option F, the preprocessor will write
the results (without #line directives) to a file instead of stdout.

Alternate Options

None

error-limit
See diag-error-limit, Qdiag-error-limit.

exe
Specifies the name for a built program or
dynamic-link library.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/exe:{file | dir}

Arguments

Is the name for the built program or dynamic-link library.file

Is the directory where the built program or dynamic-link
library should be placed. It can include file.

dir

563

20

Default

The name of the file is the name of the first source file on the
command line with file extension .exe, so file.f becomes file.exe.

OFF

Description

This option specifies the name for a built program (.EXE) or a dynamic-link library (.DLL).

You can use this option to specify an alternate name for an executable file. This is especially
useful when compiling and linking a set of input files. You can use the option to give the resulting
file a name other than that of the first input file (source or object) on the command line.

You can use this option to specify an alternate name for an executable file. This is especially
useful when compiling and linking a set of input files. You can use the option to give the resulting
file a name other than that of the first input file (source or object) on the command line.

Alternate Options

Linux and Mac OS X: -o

Windows: /Fe

Example

The following example creates a dynamic-link library file named file.dll (note that you can use
/LD in place of /dll):

ifort /dll /exe:file.dll a.f

In the following example (which uses the alternate option /Fe), the command produces an
executable file named outfile.exe as a result of compiling and linking three files: one object file
and two Fortran source files.

prompt>ifort /Feoutfile.exe file1.obj file2.for file3.for

By default, this command produces an executable file named file1.exe.

See Also
•
• o

564

20 Intel® Fortran Compiler User and Reference Guides

extend-source
Specifies the length of the statement field in a
fixed-form source file.

IDE Equivalent

Windows: Language > Fixed Form Line Length

Linux: None

Mac OS X: Language > Fixed Form Line Length

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-extend-source [size]

-noextend-source

Windows:

/extend-source[:size]

/noextend-source

Arguments

Is the length of the statement field in a fixed-form source
file. Possible values are: 72, 80, or 132.

size

Default

If you do not specify this option or you specify noextend-source,
the statement field ends at column 72.

72

If you specify extend_source without size, the statement field
ends at column 132.-

132

565

20

Description

This option specifies the size (column number) of the statement field of a source line in a
fixed-form source file. This option is valid only for fixed-form files; it is ignored for free-form
files.

When size is specified, it is the last column parsed as part of the statement field. Any columns
after that are treated as comments.

If you do not specify size, it is the same as specifying extend_source 132.

DescriptionOption

Specifies that the statement field ends at column 72.extend-source
72

Specifies that the statement field ends at column 80.extend-source
80

Specifies that the statement field ends at column 132.extend-source
132

Alternate Options

Linux and Mac OS X: -72extend-source 72
Windows: /4L72

Linux and Mac OS X: -80extend-source 80
Windows: /4L80

Linux and Mac OS X: -132extend-source 132
Windows: /Qextend-source, /4L132

extfor
Specifies file extensions to be processed by the
compiler as Fortran files.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

566

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

None

Windows:

/extfor:ext

Arguments

Are the file extensions to be processed as a Fortran file.ext

Default

Only the file extensions recognized by the compiler are processed
as Fortran files. For more information, see Building Applications.

OFF

Description

This option specifies file extensions (ext) to be processed by the compiler as Fortran files. It
is useful if your source file has a nonstandard extension.

You can specify one or more file extensions. A leading period before each extension is optional;
for example, /extfor:myf95 and /extfor:.myf95 are equivalent.

Alternate Options

None

See Also
•
• source compiler option

extfpp
Specifies file extensions to be recognized as a file
to be preprocessed by the Fortran preprocessor.

IDE Equivalent

None

567

20

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/extfpp:ext

Arguments

Are the file extensions to be preprocessed by the Fortran
preprocessor.

ext

Default

Only the file extensions recognized by the compiler are
preprocessed by fpp. For more information, see Building
Applications.

OFF

Description

This option specifies file extensions (ext) to be recognized as a file to be preprocessed by the
Fortran preprocessor (fpp). It is useful if your source file has a nonstandard extension.

You can specify one or more file extensions. A leading period before each extension is optional;
for example, /extfpp:myfpp and /extfpp:.myfpp are equivalent.

Alternate Options

None

extlnk
Specifies file extensions to be passed directly to
the linker.

IDE Equivalent

None

568

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/extlnk:ext

Arguments

Are the file extensions to be passed directly to the linker.ext

Default

Only the file extensions recognized by the compiler are passed to
the linker. For more information, see Building Applications.

OFF

Description

This option specifies file extensions (ext) to be passed directly to the linker. It is useful if your
source file has a nonstandard extension.

You can specify one or more file extensions. A leading period before each extension is optional;
for example, /extlnk:myobj and /extlnk:.myobj are equivalent.

Alternate Options

None

F (Windows*)
Specifies the stack reserve amount for the
program.

IDE Equivalent

None

569

20

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/Fn

Arguments

Is the stack reserve amount. It can be specified as a decimal
integer or by using a C-style convention for constants (for
example, /F0x1000).

n

Default

The stack size default is chosen by the operating system.OFF

Description

This option specifies the stack reserve amount for the program. The amount (n) is passed to
the linker.

Note that the linker property pages have their own option to do this.

Alternate Options

None

f66
Tells the compiler to apply FORTRAN 66 semantics.

IDE Equivalent

Windows: Language > Enable FORTRAN 66 Semantics

Linux: None

Mac OS X: Language > Enable FORTRAN 66 Semantics

570

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-f66

Windows:

/f66

Arguments

None

Default

The compiler applies Fortran 95 semantics.OFF

Description

This option tells the compiler to apply FORTRAN 66 semantics when interpreting language
features. This causes the following to occur:

• DO loops are always executed at least once

• FORTRAN 66 EXTERNAL statement syntax and semantics are allowed

• If the OPEN statement STATUS specifier is omitted, the default changes to STATUS='NEW'
instead of STATUS='UNKNOWN'

• If the OPEN statement BLANK specifier is omitted, the default changes to BLANK='ZERO'
instead of BLANK='NULL'

Alternate Options

Linux and Mac OS X: -66

Windows: None

571

20

f77rtl
Tells the compiler to use the run-time behavior of
FORTRAN 77.

IDE Equivalent

Windows: Compatibility > Enable F77 Run-Time Compatibility

Linux: None

Mac OS X: Compatibility > Enable F77 Run-Time Compatibility

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-f77rtl

-nof77rtl

Windows:

/f77rtl

/nof77rtl

Arguments

None

Default

The compiler uses the run-time behavior of Intel® Fortran.nof77rtl

Description

This option tells the compiler to use the run-time behavior of FORTRAN 77.

Specifying this option controls the following run-time behavior:

• When the unit is not connected to a file, some INQUIRE specifiers will return different values:

• NUMBER= returns 0

572

20 Intel® Fortran Compiler User and Reference Guides

• ACCESS= returns 'UNKNOWN'

• BLANK= returns 'UNKNOWN'

• FORM= returns 'UNKNOWN'

• PAD= defaults to 'NO' for formatted input.

• NAMELIST and list-directed input of character strings must be delimited by apostrophes or
quotes.

• When processing NAMELIST input:

• Column 1 of each record is skipped.

• The '$' or '&' that appears prior to the group-name must appear in column 2 of the input
record.

Alternate Options

None

Fa
See asmfile

FA
See asmattr

falias
Determines whether aliasing should be assumed
in the program.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-falias

573

20

-fno-alias

Windows:

None

Arguments

None

Default

Aliasing is assumed in the program.-falias

Description

This option determines whether aliasing should be assumed in the program.

If you do not want aliasing to be assumed in the program, specify -fno-alias.

Alternate Options

Linux and Mac OS X: None

Windows: /Oa[-]

See Also
•
• ffnalias

falign-functions, Qfnalign
Tells the compiler to align functions on an optimal
byte boundary.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

574

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-falign-functions[=n]

-fno-align-functions

Windows:

/Qfnalign[:n]

/Qfnalign-

Arguments

Is the byte boundary for function alignment. Possible values
are 2 or 16.

n

Default

The compiler aligns functions on 2-byte boundaries. This is the
same as specifying -falign-functions=2 (Linux and Mac OS X)
or /Qfnalign:2 (Windows).

-fno-align-functions or
/Qfnalign-

Description

This option tells the compiler to align functions on an optimal byte boundary. If you do not
specify n, the compiler aligns the start of functions on 16-byte boundaries.

Alternate Options

None

falign-stack
Tells the compiler the stack alignment to use on
entry to routines.

IDE Equivalent

None

Architectures

IA-32 architecture

575

20

Syntax

Linux and Mac OS X:

-falign-stack=mode

Windows:

None

Arguments

Is the method to use for stack alignment. Possible values
are:

mode

Tells the compiler to use default heuristics
for stack alignment. If alignment is
required, the compiler dynamically aligns
the stack.

default

Tells the compiler to not assume any
specific stack alignment, but attempt to
maintain alignment in case the stack is

maintain-16-byte

already aligned. If alignment is required,
the compiler dynamically aligns the stack.
This setting is compatible with GCC.

Tells the compiler to assume the stack is
aligned on 16-byte boundaries and
continue to maintain 16-byte alignment.
This setting is compatible with GCC.

assume-16-byte

Default

The compiler uses default heuristics for stack alignment.-falign-stack=default

Description

This option tells the compiler the stack alignment to use on entry to routines.

Alternate Options

None

576

20 Intel® Fortran Compiler User and Reference Guides

fast
Maximizes speed across the entire program.

IDE Equivalent

Windows: None

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fast

Windows:

/fast

Arguments

None

Default

The optimizations that maximize speed are not enabled.OFF

Description

This option maximizes speed across the entire program.

It sets the following options:

• On systems using IA-64 architecture:
Windows: /O3 and /Qipo
Linux: -ipo, -O3, and -static

• On systems using IA-32 architecture and Intel® 64 architecture:
Mac OS X: -ipo, -mdynamic-no-pic, -O3, -no-prec-div, -static, and -xHost
Windows: /O3, /Qipo, /Qprec-div-, and /QxHost
Linux: -ipo, -O3, -no-prec-div, -static, and -xHost

577

20

When option fast is specified on systems using IA-32 architecture or Intel® 64 architecture,
you can override the -xHost or /QxHost setting by specifying a different processor-specific
-x or /Qx option on the command line. However, the last option specified on the command line
takes precedence.

For example, if you specify -fast -xSSE3 (Linux) or /fast /QxSSE3 (Windows), option
-xSSE3 or /QxSSE3 takes effect. However, if you specify -xSSE3 -fast (Linux) or /QxSSE3
/fast (Windows), option -xHost or /QxHost takes effect.

NOTE. The options set by option fast may change from release to release.

Alternate Options

None

See Also
•
• x, Qx

fast-transcendentals, Qfast-transcendentals
Enables the compiler to replace calls to
transcendental functions with faster but less precise
implementations.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fast-transcendentals

-no-fast-transcendentals

578

20 Intel® Fortran Compiler User and Reference Guides

Windows:

/Qfast-transcendentals

/Qfast-transcendentals-

Default

The default depends on the setting of -fp-model (Linux and Mac
OS X) or /fp (Windows).
The default is ON if default setting -fp-model fast or /fp:fast
is in effect. However, if a value-safe option such as -fp-model
precise or /fp:precise is specified, the default is OFF.

-fast-transcendentals
or /Qfast-transcenden-
tals

Description

This option enables the compiler to replace calls to transcendental functions with implementations
that may be faster but less precise.

It tells the compiler to perform certain optimizations on transcendental functions, such as
replacing individual calls to sine in a loop with a single call to a less precise vectorized sine
library routine.

This option has an effect only when specified with one of the following options:

• Windows* OS: /fp:except or /fp:precise

• Linux* OS and Mac OS* X: -fp-model except or -fp-model precise

You cannot use this option with option -fp-model strict (Linux and Mac OS X) or /fp:strict
(Windows).

Alternate Options

None

See Also
•
•
• fp-model, fp

579

20

fcode-asm
Produces an assembly listing with machine code
annotations.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fcode-asm

Windows:

None

Arguments

None

Default

No machine code annotations appear in the assembly listing file,
if one is produced.

OFF

Description

This option produces an assembly listing file with machine code annotations.

The assembly listing file shows the hex machine instructions at the beginning of each line of
assembly code. The file cannot be assembled; the filename is the name of the source file with
an extension of .cod.

To use this option, you must also specify option -S, which causes an assembly listing to be
generated.

Alternate Options

Linux and Mac OS X: None

580

20 Intel® Fortran Compiler User and Reference Guides

Windows: /asmattr:machine

See Also
•
• S

Fe
See exe

fexceptions
Enables exception handling table generation.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fexceptions

-fno-exceptions

Windows:

None

Arguments

None

Default

Exception handling table generation is disabled.-fno-exceptions

Description

This option enables C++ exception handling table generation, preventing Fortran routines in
mixed-language applications from interfering with exception handling between C++ routines.
The -fno-exceptions option disables C++ exception handling table generation, resulting in

581

20

smaller code. When this option is used, any use of C++ exception handling constructs (such
as try blocks and throw statements) when a Fortran routine is in the call chain will produce an
error.

Alternate Options

None

ffnalias
Specifies that aliasing should be assumed within
functions.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-ffnalias

-fno-fnalias

Windows:

None

Arguments

None

Default

Aliasing is assumed within functions.-ffnalias

Description

This option specifies that aliasing should be assumed within functions.

The -fno-fnalias option specifies that aliasing should not be assumed within functions, but
should be assumed across calls.

582

20 Intel® Fortran Compiler User and Reference Guides

Alternate Options

Linux and Mac OS X: None

Windows: /Ow[-]

See Also
•
• falias

FI
See fixed.

finline
Tells the compiler to inline functions declared with
cDEC$ ATTRIBUTES FORCEINLINE.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-finline

-fno-inline

Windows:

None

Arguments

None

Default

The compiler does not inline functions declared with cDEC$
ATTRIBUTES FORCEINLINE.

-fno-inline

583

20

Description

This option tells the compiler to inline functions declared with cDEC$ ATTRIBUTES FORCEINLINE.

Alternate Options

None

finline-functions
Enables function inlining for single file compilation.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-finline-functions

-fno-inline-functions

Windows:

None

Arguments

None

Default

Interprocedural optimizations occur. However, if you specify -O0,
the default is OFF.

-finline-functions

Description

This option enables function inlining for single file compilation.

It enables the compiler to perform inline function expansion for calls to functions defined within
the current source file.

584

20 Intel® Fortran Compiler User and Reference Guides

The compiler applies a heuristic to perform the function expansion. To specify the size of the
function to be expanded, use the -finline-limit option.

Alternate Options

Linux and Mac OS X: -inline-level=2

Windows: /Ob2

See Also
•
• ip, Qip
• finline-limit

• Compiler Directed Inline Expansion of User Functions
• Inline Function Expansion

finline-limit
Lets you specify the maximum size of a function
to be inlined.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-finline-limit=n

Windows:

None

Arguments

Must be an integer greater than or equal to zero. It is the
maximum number of lines the function can have to be
considered for inlining.

n

585

20

Default

The compiler uses default heuristics when inlining functions.OFF

Description

This option lets you specify the maximum size of a function to be inlined. The compiler inlines
smaller functions, but this option lets you inline large functions. For example, to indicate a large
function, you could specify 100 or 1000 for n.

Note that parts of functions cannot be inlined, only whole functions.

This option is a modification of the -finline-functions option, whose behavior occurs by
default.

Alternate Options

None

See Also
•
• finline-functions

finstrument-functions, Qinstrument-functions
Determines whether routine entry and exit points
are instrumented.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-finstrument-functions

-fno-instrument-functions

Windows:

/Qinstrument-functions

586

20 Intel® Fortran Compiler User and Reference Guides

/Qinstrument-functions-

Arguments

None

Default

Routine entry and exit points are not instrumented.-fno-instrument-func-
tions
or/Qinstrument-func-
tions-

Description

This option determines whether routine entry and exit points are instrumented. It may increase
execution time.

The following profiling functions are called with the address of the current routine and the
address of where the routine was called (its "call site"):

• This function is called upon routine entry:

• On IA-32 architecture and Intel® 64 architecture:

void __cyg_profile_func_enter (void *this_fn,

void *call_site);

• On IA-64 architecture:

void __cyg_profile_func_enter (void **this_fn,

void *call_site);

• This function is called upon routine exit:

• On IA-32 architecture and Intel® 64 architecture:

void __cyg_profile_func_exit (void *this_fn,

void *call_site);

• On IA-64 architecture:

void __cyg_profile_func_exit (void **this_fn,

void *call_site);

587

20

On IA-64 architecture, the additional de-reference of the function pointer argument is required
to obtain the routine entry point contained in the first word of the routine descriptor for indirect
routine calls. The descriptor is documented in the Intel® Itanium® Software Conventions and
Runtime Architecture Guide, section 8.4.2. You can find this design guide at web site
http://www.intel.com.

These functions can be used to gather more information, such as profiling information or timing
information. Note that it is the user's responsibility to provide these profiling functions.

If you specify -finstrument-functions (Linux and Mac OS X) or /Qinstrument-functions
(Windows), routine inlining is disabled. If you specify -fno-instrument-functions or /Qin-
strument-functions-, inlining is not disabled.

This option is provided for compatibility with gcc.

Alternate Options

None

fixed
Specifies source files are in fixed format.

IDE Equivalent

Windows: Language > Source File Format (/free, /fixed)

Linux: None

Mac OS X: Language > Source File Format (/free, /fixed)

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fixed

-nofixed

Windows:

/fixed

/nofixed

588

20 Intel® Fortran Compiler User and Reference Guides

Arguments

None

Default

The source file format is determined from the file extension.OFF

Description

This option specifies source files are in fixed format. If this option is not specified, format is
determined as follows:

• Files with an extension of .f90, .F90, or .i90 are free-format source files.

• Files with an extension of .f, .for, .FOR, .ftn, .FTN, .fpp, .FPP, or .i are fixed-format files.

Note that on Linux and Mac OS X systems, file names and file extensions are case sensitive.

Alternate Options

Linux and Mac OS X: -FI

Windows: /nofree, /FI, /4Nf

fkeep-static-consts, Qkeep-static-consts
Tells the compiler to preserve allocation of
variables that are not referenced in the source.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fkeep-static-consts

-fno-keep-static-consts

589

20

Windows:

/Qkeep-static-consts

/Qkeep-static-consts-

Arguments

None

Default

If a variable is never referenced in a routine, the variable is
discarded unless optimizations are disabled by option -O0 (Linux
and Mac OS X) or /Od (Windows).

-fno-keep-static-consts
or /Qkeep-static-con-
sts-

Description

This option tells the compiler to preserve allocation of variables that are not referenced in the
source.

The negated form can be useful when optimizations are enabled to reduce the memory usage
of static data.

Alternate Options

None

fltconsistency
Enables improved floating-point consistency.

IDE Equivalent

Windows: Floating-Point > Floating-Point Consistency

Linux: None

Mac OS X: Floating-Point > Improve Floating-Point Consistency

Architectures

IA-32, Intel® 64, IA-64 architectures

590

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-fltconsistency

-nofltconsistency

Windows:

/fltconsistency

/nofltconsistency

Arguments

None

Default

Improved floating-point consistency is not enabled. This setting
provides better accuracy and run-time performance at the expense
of less consistent floating-point results.

nofltconsistency

Description

This option enables improved floating-point consistency and may slightly reduce execution
speed. It limits floating-point optimizations and maintains declared precision. It also disables
inlining of math library functions.

Floating-point operations are not reordered and the result of each floating-point operation is
stored in the target variable rather than being kept in the floating-point processor for use in a
subsequent calculation.

For example, the compiler can change floating-point division computations into multiplication
by the reciprocal of the denominator. This change can alter the results of floating-point division
computations slightly.

Floating-point intermediate results are kept in full 80 bits internal precision. Additionally, all
spills/reloads of the X87 floating point registers are done using the internal formats; this
prevents accidental loss of precision due to spill/reload behavior over which you have no control.

Specifying this option has the following effects on program compilation:

• On systems using IA-32 architecture or Intel® 64 architecture, floating-point user variables
are not assigned to registers.

591

20

• On systems using IA-64 architecture, floating-point user variables may be assigned to
registers. The expressions are evaluated using precision of source operands. The compiler
will not use the Floating-point Multiply and Add (FMA) function to contract multiply and
add/subtract operations in a single operation. The contractions can be enabled by using
-fma (Linux) or /Qfma (Windows) option. The compiler will not speculate on floating-point
operations that may affect the floating-point state of the machine.

• Floating-point arithmetic comparisons conform to IEEE 754.

• The exact operations specified in the code are performed. For example, division is never
changed to multiplication by the reciprocal.

• The compiler performs floating-point operations in the order specified without reassociation.

• The compiler does not perform constant folding on floating-point values. Constant folding
also eliminates any multiplication by 1, division by 1, and addition or subtraction of 0. For
example, code that adds 0.0 to a number is executed exactly as written. Compile-time
floating-point arithmetic is not performed to ensure that floating-point exceptions are also
maintained.

• Whenever an expression is spilled, it is spilled as 80 bits (extended precision), not 64 bits
(DOUBLE PRECISION). When assignments to type REAL and DOUBLE PRECISION are made,
the precision is rounded from 80 bits down to 32 bits (REAL) or 64 bits (DOUBLE PRECISION).
When you do not specify /Op, the extra bits of precision are not always rounded away before
the variable is reused.

• Even if vectorization is enabled by the -x (Linux and Mac OS X) or /Qx (Windows) options,
the compiler does not vectorize reduction loops (loops computing the dot product) and loops
with mixed precision types. Similarly, the compiler does not enable certain loop
transformations. For example, the compiler does not transform reduction loops to perform
partial summation or loop interchange.

This option causes performance degradation relative to using default floating-point optimization
flags.

On Windows systems, an alternative is to use the /Qprec option, which should provide better
than default floating-point precision while still delivering good floating-point performance.

The recommended method to control the semantics of floating-point calculations is to use option
-fp-model (Linux and Mac OS X) or /fp (Windows).

Alternate Options

Linux and Mac OS X: -mp (this is a deprecated option), -mieee-
fp

fltconsistency

592

20 Intel® Fortran Compiler User and Reference Guides

Windows: /Op (this is a deprecated option)

Linux and Mac OS X: -mno-ieee-fpnofltconsistency
Windows: None

See Also
•
• mp1, Qprec
• fp-model, fp

Building Applications: Using Compiler Optimizations

Fm
This option has been deprecated.
See map.

fma, Qfma
Enables the combining or contraction of
floating-point multiplications and add or subtract
operations.

IDE Equivalent

Windows: Floating Point > Contract Floating-Point Operations

Linux: None

Mac OS X: None

Architectures

IA-64 architecture

Syntax

Linux:

-fma

-no-fma

Mac OS X:

None

593

20

Windows:

/Qfma

/Qfma-

Arguments

None

Default

Floating-point multiplications and add/subtract operations are
combined.

-fma
or/Qfma

However, if you specify -fp-model strict (Linux) or /fp:strict
(Windows), but do not explicitly specify -fma or /Qfma, the default
is -no-fma or /Qfma-.

Description

This option enables the combining or contraction of floating-point multiplications and add or
subtract operations into a single operation.

Alternate Options

Linux: -IPF-fma (this is a deprecated option)

Windows: /QIPF-fma (this is a deprecated option)

See Also
•
•
• fp-model, fp

Floating-point Operations: Floating-point Options Quick Reference

fmath-errno
Tells the compiler that errno can be reliably tested
after calls to standard math library functions.

IDE Equivalent

None

594

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fmath-errno

-fno-math-errno

Windows:

None

Arguments

None

Default

The compiler assumes that the program does not test errno after
calls to standard math library functions.

-fno-math-errno

Description

This option tells the compiler to assume that the program tests errno after calls to math library
functions. This restricts optimization because it causes the compiler to treat most math functions
as having side effects.

Option -fno-math-errno tells the compiler to assume that the program does not test errno
after calls to math library functions. This frequently allows the compiler to generate faster code.
Floating-point code that relies on IEEE exceptions instead of errno to detect errors can safely
use this option to improve performance.

Alternate Options

None

595

20

fminshared
Specifies that a compilation unit is a component
of a main program and should not be linked as part
of a shareable object.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fminshared

Windows:

None

Arguments

None

Default

Source files are compiled together to form a single object file.OFF

Description

This option specifies that a compilation unit is a component of a main program and should not
be linked as part of a shareable object.

This option allows the compiler to optimize references to defined symbols without special
visibility settings. To ensure that external and common symbol references are optimized, you
need to specify visibility hidden or protected by using the -fvisibility, -fvisibility-
hidden, or -fvisibility-protected option.

Also, the compiler does not need to generate position-independent code for the main program.
It can use absolute addressing, which may reduce the size of the global offset table (GOT) and
may reduce memory traffic.

596

20 Intel® Fortran Compiler User and Reference Guides

Alternate Options

None

See Also
•
• fvisibility

fnsplit, Qfnsplit
Enables function splitting.

IDE Equivalent

None

Architectures

/Qfnsplit[-]: IA-32 architecture, Intel® 64 architecture

-[no-]fnsplit: IA-64 architecture

Syntax

Linux:

-fnsplit

-no-fnsplit

Mac OS X:

None

Windows:

/Qfnsplit

/Qfnsplit-

Arguments

None

597

20

Default

Function splitting is not enabled unless -prof-use (Linux) or
/Qprof-use (Windows) is also specified.

-no-fnsplit
or/Qfnsplit-

Description

This option enables function splitting if -prof-use (Linux) or /Qprof-use (Windows) is also
specified. Otherwise, this option has no effect.

It is enabled automatically if you specify -prof-use or /Qprof-use. If you do not specify one
of those options, the default is -no-fnsplit (Linux) or /Qfnsplit- (Windows), which disables
function splitting but leaves function grouping enabled.

To disable function splitting when you use -prof-use or /Qprof-use, specify -no-fnsplit
or /Qfnsplit-.

Alternate Options

None

See Also
•
•
• Profile-Guided Optimization (PGO) Quick Reference
• Profile an Application

fomit-frame-pointer, Oy
Determines whether EBP is used as a
general-purpose register in optimizations.

IDE Equivalent

Windows: Optimization > Omit Frame Pointers

Linux: None

Mac OS X: Optimization > Provide Frame Pointer

Architectures

-f[no-]omit-frame-pointer: IA-32 architecture, Intel® 64 architecture

/Oy[-]: IA-32 architecture

598

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-fomit-frame-pointer

-fno-omit-frame-pointer

Windows:

/Oy

/Oy-

Arguments

None

Default

EBP is used as a general-purpose register in optimizations.
However, on Linux* and Mac OS X systems, the default is -fno-
omit-frame-pointer if option -O0 or -g is specified. On
Windows* systems, the default is /Oy- if option /Od is specified.

-fomit-frame-pointer
or /Oy

Description

These options determine whether EBP is used as a general-purpose register in optimizations.
Options -fomit-frame-pointer and /Oy allow this use. Options -fno-omit-frame-pointer
and /Oy- disallow it.

Some debuggers expect EBP to be used as a stack frame pointer, and cannot produce a stack
backtrace unless this is so. The -fno-omit-frame-pointer and /Oy- options direct the
compiler to generate code that maintains and uses EBP as a stack frame pointer for all functions
so that a debugger can still produce a stack backtrace without doing the following:

• For -fno-omit-frame-pointer: turning off optimizations with -O0

• For /Oy-: turning off /O1, /O2, or /O3 optimizations

The -fno-omit-frame-pointer option is set when you specify option -O0 or the -g option.
The -fomit-frame-pointer option is set when you specify option -O1, -O2, or -O3.

The /Oy option is set when you specify the /O1, /O2, or /O3 option. Option /Oy- is set when
you specify the /Od option.

599

20

Using the -fno-omit-frame-pointer or /Oy- option reduces the number of available
general-purpose registers by 1, and can result in slightly less efficient code.

Alternate Options

Linux and Mac OS X: -fp (this is a deprecated option)

Windows: None

Fo
See object

fomit-frame-pointer, Oy
Determines whether EBP is used as a
general-purpose register in optimizations.

IDE Equivalent

Windows: Optimization > Omit Frame Pointers

Linux: None

Mac OS X: Optimization > Provide Frame Pointer

Architectures

-f[no-]omit-frame-pointer: IA-32 architecture, Intel® 64 architecture

/Oy[-]: IA-32 architecture

Syntax

Linux and Mac OS X:

-fomit-frame-pointer

-fno-omit-frame-pointer

Windows:

/Oy

/Oy-

Arguments

None

600

20 Intel® Fortran Compiler User and Reference Guides

Default

EBP is used as a general-purpose register in optimizations.
However, on Linux* and Mac OS X systems, the default is -fno-
omit-frame-pointer if option -O0 or -g is specified. On
Windows* systems, the default is /Oy- if option /Od is specified.

-fomit-frame-pointer
or /Oy

Description

These options determine whether EBP is used as a general-purpose register in optimizations.
Options -fomit-frame-pointer and /Oy allow this use. Options -fno-omit-frame-pointer
and /Oy- disallow it.

Some debuggers expect EBP to be used as a stack frame pointer, and cannot produce a stack
backtrace unless this is so. The -fno-omit-frame-pointer and /Oy- options direct the
compiler to generate code that maintains and uses EBP as a stack frame pointer for all functions
so that a debugger can still produce a stack backtrace without doing the following:

• For -fno-omit-frame-pointer: turning off optimizations with -O0

• For /Oy-: turning off /O1, /O2, or /O3 optimizations

The -fno-omit-frame-pointer option is set when you specify option -O0 or the -g option.
The -fomit-frame-pointer option is set when you specify option -O1, -O2, or -O3.

The /Oy option is set when you specify the /O1, /O2, or /O3 option. Option /Oy- is set when
you specify the /Od option.

Using the -fno-omit-frame-pointer or /Oy- option reduces the number of available
general-purpose registers by 1, and can result in slightly less efficient code.

Alternate Options

Linux and Mac OS X: -fp (this is a deprecated option)

Windows: None

fp-model, fp
Controls the semantics of floating-point
calculations.

IDE Equivalent

Windows: Floating Point > Floating Point Model

601

20

Floating Point > Reliable Floating Point Exceptions Model

Linux: None

Mac OS X: Floating Point > Floating Point Model

Floating Point > Reliable Floating Point Exceptions Model

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fp-model keyword

Windows:

/fp:keyword

Arguments

Specifies the semantics to be used. Possible values are:keyword

Enables value-safe optimizations on
floating-point data and rounds
intermediate results to source-defined
precision.

precise

Enables more aggressive optimizations
on floating-point data.

fast[=1|2]

Enables precise and except, disables
contractions, and enables the property
that allows modification of the
floating-point environment.

strict

Rounds intermediate results to
source-defined precision and enables
value-safe optimizations.

source

Determines whether floating-point
exception semantics are used.

[no-]except
(Linux and Mac
OS X) or
except[-]
(Windows)

602

20 Intel® Fortran Compiler User and Reference Guides

Default

The compiler uses more aggressive optimizations on floating-point
calculations.

-fp-model fast=1
or /fp:fast=1

Description

This option controls the semantics of floating-point calculations.

The keywords can be considered in groups:

• Group A: precise, fast, strict

• Group B: source

• Group C: except (or the negative form)

You can use more than one keyword. However, the following rules apply:

• You cannot specify fast and except together in the same compilation. You can specify any
other combination of group A, group B, and group C.
Since fast is the default, you must not specify except without a group A or group B keyword.

• You should specify only one keyword from group A and only one keyword from group B. If
you try to specify more than one keyword from either group A or group B, the last (rightmost)
one takes effect.

• If you specify except more than once, the last (rightmost) one takes effect.

DescriptionOption

Tells the compiler to strictly adhere to
value-safe optimizations when implementing
floating-point calculations. It disables

-fp-model precise or /fp:precise

optimizations that can change the result of
floating-point calculations. These semantics
ensure the accuracy of floating-point
computations, but they may slow
performance.

The compiler assumes the default
floating-point environment; you are not
allowed to modify it.

603

20

DescriptionOption

Floating-point exception semantics are
disabled by default. To enable these
semantics, you must also specify -fp-model
except or /fp:except.

For information on the semantics used to
interpret floating-point calculations in the
source code, see precise in Floating-point
Operations: Using the -fp-model (/fp)
Option.

Tells the compiler to use more aggressive
optimizations when implementing
floating-point calculations. These
optimizations increase speed, but may alter
the accuracy of floating-point computations.

-fp-model fast[=1|2] or /fp:fast[=1|2]

Specifying fast is the same as specifying
fast=1. fast=2 may produce faster and less
accurate results.

Floating-point exception semantics are
disabled by default and they cannot be
enabled because you cannot specify fast and
except together in the same compilation. To
enable exception semantics, you must
explicitly specify another keyword (see other
keyword descriptions for details).

For information on the semantics used to
interpret floating-point calculations in the
source code, see fast in Floating-point
Operations: Using the -fp-model (/fp)
Option.

Tells the compiler to strictly adhere to
value-safe optimizations when implementing
floating-point calculations and enables
floating-point exception semantics. This is
the strictest floating-point model.

-fp-model strict or /fp:strict

604

20 Intel® Fortran Compiler User and Reference Guides

DescriptionOption

The compiler does not assume the default
floating-point environment; you are allowed
to modify it.

Floating-point exception semantics can be
disabled by explicitly specifying -fp-model
no-except or /fp:except-.

For information on the semantics used to
interpret floating-point calculations in the
source code, see strict in Floating-point
Operations: Using the -fp-model (/fp)
Option.

This option causes intermediate results to be
rounded to the precision defined in the source
code. It also implies keyword precise unless
it is overridden by a keyword from Group A.

-fp-model source or /fp:source

The compiler assumes the default
floating-point environment; you are not
allowed to modify it.

For information on the semantics used to
interpret floating-point calculations in the
source code, see source in Floating-point
Operations: Using the -fp-model (/fp)
Option.

NOTE. This option cannot be used to change the default (source) precision for the
calculation of intermediate results.

NOTE. On Windows and Linux operating systems on IA-32 architecture, the compiler,
by default, implements floating-point (FP) arithmetic using SSE2 and SSE instructions.
This can cause differences in floating-point results when compared to previous x87
implementations.

605

20

Alternate Options

None

Example

For examples of how to use this option, see Floating-point Operations: Using the -fp-model
(/fp) Option.

See Also
•
•
• O

• Od

• mp1, Qprec

• Floating-point Environment

The MSDN article Microsoft Visual C++ Floating-Point Optimization, which discusses concepts
that apply to this option.

fp-model, fp
Controls the semantics of floating-point
calculations.

IDE Equivalent

Windows: Floating Point > Floating Point Model

Floating Point > Reliable Floating Point Exceptions Model

Linux: None

Mac OS X: Floating Point > Floating Point Model

Floating Point > Reliable Floating Point Exceptions Model

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fp-model keyword

606

20 Intel® Fortran Compiler User and Reference Guides

Windows:

/fp:keyword

Arguments

Specifies the semantics to be used. Possible values are:keyword

Enables value-safe optimizations on
floating-point data and rounds
intermediate results to source-defined
precision.

precise

Enables more aggressive optimizations
on floating-point data.

fast[=1|2]

Enables precise and except, disables
contractions, and enables the property
that allows modification of the
floating-point environment.

strict

Rounds intermediate results to
source-defined precision and enables
value-safe optimizations.

source

Determines whether floating-point
exception semantics are used.

[no-]except
(Linux and Mac
OS X) or
except[-]
(Windows)

Default

The compiler uses more aggressive optimizations on floating-point
calculations.

-fp-model fast=1
or /fp:fast=1

Description

This option controls the semantics of floating-point calculations.

The keywords can be considered in groups:

• Group A: precise, fast, strict

• Group B: source

• Group C: except (or the negative form)

607

20

You can use more than one keyword. However, the following rules apply:

• You cannot specify fast and except together in the same compilation. You can specify any
other combination of group A, group B, and group C.
Since fast is the default, you must not specify except without a group A or group B keyword.

• You should specify only one keyword from group A and only one keyword from group B. If
you try to specify more than one keyword from either group A or group B, the last (rightmost)
one takes effect.

• If you specify except more than once, the last (rightmost) one takes effect.

DescriptionOption

Tells the compiler to strictly adhere to
value-safe optimizations when implementing
floating-point calculations. It disables

-fp-model precise or /fp:precise

optimizations that can change the result of
floating-point calculations. These semantics
ensure the accuracy of floating-point
computations, but they may slow
performance.

The compiler assumes the default
floating-point environment; you are not
allowed to modify it.

Floating-point exception semantics are
disabled by default. To enable these
semantics, you must also specify -fp-model
except or /fp:except.

For information on the semantics used to
interpret floating-point calculations in the
source code, see precise in Floating-point
Operations: Using the -fp-model (/fp)
Option.

Tells the compiler to use more aggressive
optimizations when implementing
floating-point calculations. These
optimizations increase speed, but may alter
the accuracy of floating-point computations.

-fp-model fast[=1|2] or /fp:fast[=1|2]

608

20 Intel® Fortran Compiler User and Reference Guides

DescriptionOption

Specifying fast is the same as specifying
fast=1. fast=2 may produce faster and less
accurate results.

Floating-point exception semantics are
disabled by default and they cannot be
enabled because you cannot specify fast and
except together in the same compilation. To
enable exception semantics, you must
explicitly specify another keyword (see other
keyword descriptions for details).

For information on the semantics used to
interpret floating-point calculations in the
source code, see fast in Floating-point
Operations: Using the -fp-model (/fp)
Option.

Tells the compiler to strictly adhere to
value-safe optimizations when implementing
floating-point calculations and enables
floating-point exception semantics. This is
the strictest floating-point model.

-fp-model strict or /fp:strict

The compiler does not assume the default
floating-point environment; you are allowed
to modify it.

Floating-point exception semantics can be
disabled by explicitly specifying -fp-model
no-except or /fp:except-.

For information on the semantics used to
interpret floating-point calculations in the
source code, see strict in Floating-point
Operations: Using the -fp-model (/fp)
Option.

609

20

DescriptionOption

This option causes intermediate results to be
rounded to the precision defined in the source
code. It also implies keyword precise unless
it is overridden by a keyword from Group A.

-fp-model source or /fp:source

The compiler assumes the default
floating-point environment; you are not
allowed to modify it.

For information on the semantics used to
interpret floating-point calculations in the
source code, see source in Floating-point
Operations: Using the -fp-model (/fp)
Option.

NOTE. This option cannot be used to change the default (source) precision for the
calculation of intermediate results.

NOTE. On Windows and Linux operating systems on IA-32 architecture, the compiler,
by default, implements floating-point (FP) arithmetic using SSE2 and SSE instructions.
This can cause differences in floating-point results when compared to previous x87
implementations.

Alternate Options

None

Example

For examples of how to use this option, see Floating-point Operations: Using the -fp-model
(/fp) Option.

See Also
•
•
• O

610

20 Intel® Fortran Compiler User and Reference Guides

• Od

• mp1, Qprec

• Floating-point Environment

The MSDN article Microsoft Visual C++ Floating-Point Optimization, which discusses concepts
that apply to this option.

fp-port, Qfp-port
Rounds floating-point results after floating-point
operations.

IDE Equivalent

Windows: Floating-Point > Round Floating-Point Results

Linux: None

Mac OS X: Floating-Point > Round Floating-Point Results

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fp-port

-no-fp-port

Windows:

/Qfp-port

/Qfp-port-

Arguments

None

Default

The default rounding behavior depends on the compiler's code
generation decisions and the precision parameters of the operating
system.

-no-fp-port
or/Qfp-port-

611

20

Description

This option rounds floating-point results after floating-point operations. Rounding to
user-specified precision occurs at assignments and type conversions. This has some impact on
speed.

The default is to keep results of floating-point operations in higher precision. This provides
better performance but less consistent floating-point results.

Alternate Options

None

fp-relaxed, Qfp-relaxed
Enables use of faster but slightly less accurate code
sequences for math functions.

IDE Equivalent

None

Architectures

IA-64 architecture

Syntax

Linux:

-fp-relaxed

-no-fp-relaxed

Mac OS X:

None

Windows:

/Qfp-relaxed

/Qfp-relaxed-

Arguments

None

612

20 Intel® Fortran Compiler User and Reference Guides

Default

Default code sequences are used for math functions.-no-fp-relaxed
or/Qfp-relaxed-

Description

This option enables use of faster but slightly less accurate code sequences for math functions,
such as divide and sqrt. When compared to strict IEEE* precision, this option slightly reduces
the accuracy of floating-point calculations performed by these functions, usually limited to the
least significant digit.

This option also enables the performance of more aggressive floating-point transformations,
which may affect accuracy.

Alternate Options

Linux: -IPF-fp-relaxed (this is a deprecated option)

Windows: /QIPF-fp-relaxed (this is a deprecated option)

See Also
•
•
• fp-model, fp

fp-speculation, Qfp-speculation
Tells the compiler the mode in which to speculate
on floating-point operations.

IDE Equivalent

Windows: Floating Point > Floating-Point Speculation

Linux: None

Mac OS X: Floating Point > Floating-Point Speculation

Architectures

IA-32, Intel® 64, IA-64 architectures

613

20

Syntax

Linux and Mac OS X:

-fp-speculation=mode

Windows:

/Qfp-speculation:mode

Arguments

Is the mode for floating-point operations. Possible values
are:

mode

Tells the compiler to speculate on
floating-point operations.

fast

Tells the compiler to disable speculation
if there is a possibility that the speculation
may cause a floating-point exception.

safe

Tells the compiler to disable speculation
on floating-point operations.

strict

This is the same as specifying strict.off

Default

The compiler speculates on floating-point operations. This is also
the behavior when optimizations are enabled. However, if you
specify no optimizations (-O0 on Linux; /Od on Windows), the
default is -fp-speculation=safe (Linux) or /Qfp-specula-
tion:safe (Windows).

-fp-speculation=fast
or/Qfp-speculation:fast

Description

This option tells the compiler the mode in which to speculate on floating-point operations.

Alternate Options

None

See Also
•
•

614

20 Intel® Fortran Compiler User and Reference Guides

Floating-point Operations: Floating-point Options Quick Reference

fp-stack-check, Qfp-stack-check
Tells the compiler to generate extra code after
every function call to ensure that the floating-point
stack is in the expected state.

IDE Equivalent

Windows: Floating-Point > Check Floating-point Stack

Linux: None

Mac OS X: Floating-Point > Check Floating-point Stack

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-fp-stack-check

Windows:

/Qfp-stack-check

Arguments

None

Default

There is no checking to ensure that the floating-point (FP) stack
is in the expected state.

OFF

Description

This option tells the compiler to generate extra code after every function call to ensure that
the floating-point (FP) stack is in the expected state.

By default, there is no checking. So when the FP stack overflows, a NaN value is put into FP
calculations and the program's results differ. Unfortunately, the overflow point can be far away
from the point of the actual bug. This option places code that causes an access violation
exception immediately after an incorrect call occurs, thus making it easier to locate these issues.

615

20

Alternate Options

None

See Also
•
•
Floating-point Operations:
• Checking the Floating-point Stack State

fpconstant
Tells the compiler that single-precision constants
assigned to double-precision variables should be
evaluated in double precision.

IDE Equivalent

Windows: Floating-Point > Extend Precision of Single-Precision Constants

Linux: None

Mac OS X: Floating-Point > Extend Precision of Single-Precision Constants

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fpconstant

-nofpconstant

Windows:

/fpconstant

/nofpconstant

Arguments

None

616

20 Intel® Fortran Compiler User and Reference Guides

Default

Single-precision constants assigned to double-precision variables
are evaluated in single precision according to Fortran 95/90
Standard rules.

nofpconstant

Description

This option tells the compiler that single-precision constants assigned to double-precision
variables should be evaluated in double precision.

This is extended precision. It does not comply with the Fortran 95/90 standard, which requires
that single-precision constants assigned to double-precision variables be evaluated in single
precision.

It allows compatibility with FORTRAN 77, where such extended precision was allowed. If this
option is not used, certain programs originally created for FORTRAN 77 compilers may show
different floating-point results because they rely on the extended precision for single-precision
constants assigned to double-precision variables.

Alternate Options

None

Example

In the following example, if you specify fpconstant, identical values are assigned to D1 and
D2. If you omit fpconstant, the compiler will obey the Fortran 95/90 Standard and assign a
less precise value to D1:

REAL (KIND=8) D1, D2

DATA D1 /2.71828182846182/ ! REAL (KIND=4) value expanded to double

DATA D2 /2.71828182846182D0/ ! Double value assigned to double

fpe
Allows some control over floating-point exception
handling for the main program at run-time.

IDE Equivalent

Windows: Floating-Point > Floating-Point Exception Handling

Linux: None

617

20

Mac OS X: Floating-Point > Floating-Point Exception Handling

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fpen

Windows:

/fpe:n

Arguments

Specifies the floating-point exception handling level. Possible
values are:

n

Floating-point invalid, divide-by-zero, and
overflow exceptions are enabled. If any
such exceptions occur, execution is

0

aborted. This option sets the -ftz (Linux
and Mac OS X) or /Qftz (Windows)
option; therefore underflow results will
be set to zero unless you explicitly specify
-no-ftz (Linux and Mac OS X) or /Qftz-
(Windows).
On systems using IA-64 architecture,
underflow behavior is equivalent to
specifying option -ftz or /Qftz.
On systems using IA-32 architecture or
Intel® 64 architecture, underflow results
from SSE instructions, as well as x87
instructions, will be set to zero. By
contrast, option -ftz or /Qftz only sets
SSE underflow results to zero.
To get more detailed location information
about where the error occurred, use
option traceback.

618

20 Intel® Fortran Compiler User and Reference Guides

All floating-point exceptions are disabled.
On systems using IA-64 architecture,
underflow behavior is equivalent to

1

specifying option -ftz or /Qftz. On
systems using IA-32 architecture or Intel®

64 architecture, underflow results from
SSE instructions, as well as x87
instructions, will be set to zero.

All floating-point exceptions are disabled.
Floating-point underflow is gradual, unless
you explicitly specify a compiler option

3

that enables flush-to-zero, such as -ftz
or /Qftz, O3, or O2 on systems using
IA-32 architecture or Intel® 64
architecture. This setting provides full
IEEE support.

Default

All floating-point exceptions are disabled. Floating-point underflow
is gradual, unless you explicitly specify a compiler option that
enables flush-to-zero.

-fpe3 or /fpe:3

Description

This option allows some control over floating-point exception handling for the main program
at run-time. This includes whether exceptional floating-point values are allowed and how
precisely run-time exceptions are reported.

The fpe option affects how the following conditions are handled:

• When floating-point calculations result in a divide by zero, overflow, or invalid operation.

• When floating-point calculations result in an underflow.

• When a denormalized number or other exceptional number (positive infinity, negative infinity,
or a NaN) is present in an arithmetic expression.

When enabled exceptions occur, execution is aborted and the cause of the abort reported to
the user. If compiler option traceback is specified at compile time, detailed information about
the location of the abort is also reported.

619

20

This option does not enable underflow exceptions, input denormal exceptions, or inexact
exceptions.

Alternate Options

None

See Also
•
• fpe-all

• ftz, Qftz
• traceback

• Using the -fpe or /fpe Compiler Option

fpe-all
Allows some control over floating-point exception
handling for each routine in a program at run-time.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fpe-all=n

Windows:

/fpe-all:n

Arguments

Specifies the floating-point exception handling level. Possible
values are:

n

Floating-point invalid, divide-by-zero, and
overflow exceptions are enabled. If any
such exceptions occur, execution is

0

620

20 Intel® Fortran Compiler User and Reference Guides

aborted. This option sets the -ftz (Linux
and Mac OS X) or /Qftz (Windows)
option; therefore underflow results will
be set to zero unless you explicitly specify
-no-ftz (Linux and Mac OS X) or /Qftz-
(Windows).
On systems using IA-64 architecture,
underflow behavior is equivalent to
specifying option -ftz or /Qftz.
On systems using IA-32 architecture or
Intel® 64 architecture, underflow results
from SSE instructions, as well as x87
instructions, will be set to zero. By
contrast, option -ftz or /Qftz only sets
SSE underflow results to zero.
To get more detailed location information
about where the error occurred, use
option traceback.

All floating-point exceptions are disabled.
On systems using IA-64 architecture,
underflow behavior is equivalent to

1

specifying option -ftz or /Qftz. On
systems using IA-32 architecture or Intel®

64 architecture, underflow results from
SSE instructions, as well as x87
instructions, will be set to zero.

All floating-point exceptions are disabled.
Floating-point underflow is gradual, unless
you explicitly specify a compiler option

3

that enables flush-to-zero, such as -ftz
or /Qftz, O3, or O2 on systems using
IA-32 architecture or Intel® 64
architecture. This setting provides full
IEEE support.

621

20

Default

All floating-point exceptions are disabled. Floating-point underflow
is gradual, unless you explicitly specify a compiler option that
enables flush-to-zero.

-fpe-all=3 or /fpe-all:3
or the setting of fpe that
the main program was
compiled with

Description

This option allows some control over floating-point exception handling for each routine in a
program at run-time. This includes whether exceptional floating-point values are allowed and
how precisely run-time exceptions are reported.

The fpe-all option affects how the following conditions are handled:

• When floating-point calculations result in a divide by zero, overflow, or invalid operation.

• When floating-point calculations result in an underflow.

• When a denormalized number or other exceptional number (positive infinity, negative infinity,
or a NaN) is present in an arithmetic expression.

The current settings of the floating-point exception and status flags are saved on each routine
entry and restored on each routine exit. This may incur some performance overhead.

When option fpe-all is applied to a main program, it has the same affect as when option fpe
is applied to the main program.

When enabled exceptions occur, execution is aborted and the cause of the abort reported to
the user. If compiler option traceback is specified at compile time, detailed information about
the location of the abort is also reported.

This option does not enable underflow exceptions, input denormal exceptions, or inexact
exceptions.

Option fpe-all sets option assume ieee_fpe_flags.

Alternate Options

None

See Also
•
• assume

• fpe

622

20 Intel® Fortran Compiler User and Reference Guides

• ftz, Qftz
• traceback

• Using the -fpe or /fpe Compiler Option

fpic
Determines whether the compiler generates
position-independent code.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fpic

-fno-pic

Windows:

None

Arguments

None

Default

On systems using IA-32 or Intel® 64 architecture, the compiler
does not generate position-independent code. On systems using
IA-64 architecture, the compiler generates position-independent
code.

-fno-pic or -fpic

Description

This option determines whether the compiler generates position-independent code.

Option -fpic specifies full symbol preemption. Global symbol definitions as well as global
symbol references get default (that is, preemptable) visibility unless explicitly specified otherwise.

623

20

Option -fno-pic is only valid on systems using IA-32 or Intel® 64 architecture.

On systems using IA-32 or Intel® 64 architecture, -fpic must be used when building shared
objects.

This option can also be specified as -fPIC.

Alternate Options

None

fpie
Tells the compiler to generate position-independent
code. The generated code can only be linked into
executables.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-fpie

Mac OS X:

None

Windows:

None

Arguments

None

Default

The compiler does not generate position-independent code for an
executable-only object.

OFF

624

20 Intel® Fortran Compiler User and Reference Guides

Description

This option tells the compiler to generate position-independent code. It is similar to -fpic, but
code generated by -fpie can only be linked into an executable.

Because the object is linked into an executable, this option causes better optimization of some
symbol references.

To ensure that run-time libraries are set up properly for the executable, you should also specify
option -pie to the compiler driver on the link command line.

Option -fpie can also be specified as -fPIE.

Alternate Options

None

See Also
•
• fpic
• pie

fpp, Qfpp
Runs the Fortran preprocessor on source files
before compilation.

IDE Equivalent

Windows: Preprocessor > Preprocess Source File

Linux: None

Mac OS X: Preprocessor > Preprocess Source File

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

fpp[n]

fpp[="option"]

625

20

-nofpp

Windows:

/fpp[n]

/fpp[:"option"]

/nofpp

/Qfpp[n]

/Qfpp[:"option"]

Arguments

Deprecated. Tells the compiler whether to run the
preprocessor or not. Possible values are:

n

Tells the compiler not to run the
preprocessor.

0

Tells the compiler to run the preprocessor.1, 2, or 3

Is a Fortran preprocessor (fpp) option; for example,
"-macro=no", which disables macro expansion. The quotes
are required. For a list of fpp options, see Fortran
Preprocessor Options.

option

Default

The Fortran preprocessor is not run on files before compilation.nofpp

Description

This option runs the Fortran preprocessor on source files before they are compiled.

If the option is specified with no argument, the compiler runs the preprocessor.

If 0 is specified for n, it is equivalent to nofpp.Note that argument n is deprecated.

We recommend you use option Qoption,fpp,"option" to pass fpp options to the Fortran
preprocessor.

Alternate Options

Linux and Mac OS X: -cpp

Windows: /Qcpp

626

20 Intel® Fortran Compiler User and Reference Guides

See Also
•
•
• Fortran Preprocessor Options
• Qoption

fpscomp
Controls whether certain aspects of the run-time
system and semantic language features within the
compiler are compatible with Intel® Fortran or
Microsoft* Fortran PowerStation.

IDE Equivalent

Windows: Compatibility > Use Filenames from Command Line (/fpscomp:[no]files-
fromcmd)

Compatibility > Use PowerStation I/O Format (/fpscomp:[no]ioformat)

Compatibility > Use PowerStation Portability Library (/fpscomp:[no]libs)

Compatibility > Use PowerStation List-Directed I/O Spacing (/fpscomp:[no]ldio_spac-
ing)

Compatibility > Use PowerStation Logical Values (/fpscomp:[no]logicals)

Compatibility > Use Other PowerStation Run-Time Behavior (/fpscomp:[no]general)

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fpscomp [keyword]

-nofpscomp

Windows:

/fpscomp[:keyword]

627

20

/nofpscomp

Arguments

Specifies the compatibility that the compiler should follow.
Possible values are:

keyword

Specifies that no options should be used
for compatibility.

none

Determines what compatibility is used
when the OPEN statement FILE= specifier
is blank.

[no]filesfromcmd

Determines what compatibility is used
when semantics differences exist between
Fortran PowerStation and Intel® Fortran.

[no]general

Determines what compatibility is used for
list-directed formatted and unformatted
I/O.

[no]ioformat

Determines whether the portability library
is passed to the linker.

[no]libs

Determines whether a blank is inserted
at run-time after a numeric value before
a character value.

[no]ldio_spacing

Determines what compatibility is used for
representation of LOGICAL values.

[no]logicals

Specifies that all options should be used
for compatibility.

all

Default

The portability library is passed to the linker.fpscomp libs

Description

This option controls whether certain aspects of the run-time system and semantic language
features within the compiler are compatible with Intel Fortran or Microsoft* Fortran PowerStation.

If you experience problems when porting applications from Fortran PowerStation, specify fp-
scomp (or fpscomp all). When porting applications from Intel Fortran, use fpscomp none or
fpscomp libs (the default).

628

20 Intel® Fortran Compiler User and Reference Guides

DescriptionOption

Specifies that no options should be used for compatibility with Fortran
PowerStation. This is the same as specifying nofpscomp.Option fpscomp
none enables full Intel® Fortran compatibility. If you omit fpscomp, the
default is fpscomp libs. You cannot use the fpscomp and vms options
in the same command.

fpscomp none

Specifies Fortran PowerStation behavior when the OPEN statement FILE=
specifier is blank (FILE=' '). It causes the following actions to be taken at
run-time:

fpscomp
filesfromcmd

• The program reads a filename from the list of arguments (if any) in
the command line that invoked the program. If any of the
command-line arguments contain a null string (''), the program asks
the user for the corresponding filename. Each additional OPEN
statement with a blank FILE= specifier reads the next command-line
argument.

• If there are more nameless OPEN statements than command-line
arguments, the program prompts for additional file names.

• In a QuickWin application, a File Select dialog box appears to request
file names.

To prevent the run-time system from using the filename specified on the
command line when the OPEN statement FILE specifier is omitted, specify
fpscomp nofilesfromcmd. This allows the application of Intel Fortran
defaults, such as the FORTn environment variable and the FORT.n file
name (where n is the unit number).

The fpscomp filesfromcmd option affects the following Fortran features:

• The OPEN statement FILE specifier

For example, assume a program OPENTEST contains the following
statements:

OPEN(UNIT = 2, FILE = ' ')

OPEN(UNIT = 3, FILE = ' ')

OPEN(UNIT = 4, FILE = ' ')

629

20

DescriptionOption

The following command line assigns the file TEST.DAT to unit 2,
prompts the user for a filename to associate with unit 3, then prompts
again for a filename to associate with unit 4:

opentest test.dat '' ''

• Implicit file open statements such as the WRITE, READ, and ENDFILE
statements Unopened files referred to in READ or WRITE statements
are opened implicitly as if there had been an OPEN statement with a
name specified as all blanks. The name is read from the command
line.

Specifies that Fortran PowerStation semantics should be used when a
difference exists between Intel Fortran and Fortran PowerStation. The
fpscomp general option affects the following Fortran features:

fpscomp gener-
al

• The BACKSPACE statement:

• It allows files opened with ACCESS='APPEND' to be used with the
BACKSPACE statement.

• It allows files opened with ACCESS='DIRECT' to be used with the
BACKSPACE statement.

Note: Allowing files that are not opened with sequential access (such
as ACCESS='DIRECT') to be used with the BACKSPACE statement
violates the Fortran 95 standard and may be removed in the future.

• The READ statement:

• It causes a READ from a formatted file opened for direct access to
read records that have the same record type format as Fortran
PowerStation. This consists of accounting for the trailing Carriage

•

Return/Line Feed pair (<CR><LF>) that is part of the record. It
allows sequential reads from a formatted file opened for direct
access.

Note: Allowing files that are not opened with sequential access
(such as ACCESS='DIRECT') to be used with the sequential READ
statement violates the Fortran 95 standard and may be removed
in the future.

630

20 Intel® Fortran Compiler User and Reference Guides

DescriptionOption

• It allows the last record in a file opened with FORM='FORMATTED'
and a record type of STREAM_LF or STREAM_CR that does not end
with a proper record terminator (<line feed> or <carriage return>)
to be read without producing an error.

• It allows sequential reads from an unformatted file opened for direct
access.

• Note: Allowing files that are not opened with sequential access
(such as ACCESS='DIRECT') to be read with the sequential READ
statement violates the Fortran 95 standard and may be removed
in the future.

• The INQUIRE statement:

• The CARRIAGECONTROL specifier returns the value "UNDEFINED"
instead of "UNKNOWN" when the carriage control is not known.

•

• The NAME specifier returns the file name "UNKNOWN" instead of
filling the file name with spaces when the file name is not known.

• The SEQUENTIAL specifier returns the value "YES" instead of "NO"
for a direct access formatted file.

• The UNFORMATTED specifier returns the value "NO" instead of
"UNKNOWN" when it is not known whether unformatted I/O can be
performed to the file.

Note: Returning the value "NO" instead of "UNKNOWN" for this
specifier violates the Fortran 95 standard and may be removed in
the future.

• The OPEN statement:

• If a file is opened with an unspecified STATUS keyword value, and
is not named (no FILE specifier), the file is opened as a scratch file.

•

For example:

OPEN (UNIT = 4)

• In contrast, when fpscomp nogeneral is in effect with an unspecified
STATUS value with no FILE specifier, the FORTn environment
variable and the FORT.n file name are used (where n is the unit
number).

631

20

DescriptionOption

• If the STATUS value was not specified and if the name of the file
is "USER", the file is marked for deletion when it is closed.

• It allows a file to be opened with the APPEND and READONLY
characteristics.

• If the default for the CARRIAGECONTROL specifier is assumed, it
gives "LIST" carriage control to direct access formatted files instead
of "NONE".

• If the default for the CARRIAGECONTROL specifier is assumed and
the device type is a terminal file, the file is given the default carriage
control value of "FORTRAN" instead of "LIST".

• It gives an opened file the additional default of write sharing.

• It gives the file a default block size of 1024 instead of 8192.

• If the default for the MODE and ACTION specifier is assumed and
there was an error opening the file, try opening the file as read
only, then write only.

• If a file that is being re-opened has a different file type than the
current existing file, an error is returned.

• It gives direct access formatted files the same record type as Fortran
PowerStation. This means accounting for the trailing Carriage
Return/Line Feed pair (<CR><LF>) that is part of the record.

• The STOP statement: It writes the Fortran PowerStation output string
and/or returns the same exit condition values.

• The WRITE statement:

• Writing to formatted direct files•

When writing to a formatted file opened for direct access, records
are written in the same record type format as Fortran PowerStation.
This consists of adding the trailing Carriage Return/Line Feed pair
<CR><LF>) that is part of the record.

It ignores the CARRIAGECONTROL specifier setting when writing
to a formatted direct access file.

• Interpreting Fortran carriage control characters

632

20 Intel® Fortran Compiler User and Reference Guides

DescriptionOption

When interpreting Fortran carriage control characters during
formatted I/O, carriage control sequences are written that are the
same as Fortran PowerStation. This is true for the "Space, 0, 1 and
+ " characters.

• Performing non-advancing I/O to the terminal

When performing non-advancing I/O to the terminal, output is
written in the same format as Fortran PowerStation.

• Interpreting the backslash (\) and dollar ($) edit descriptors

When interpreting backslash and dollar edit descriptors during
formatted I/O, sequences are written the same as Fortran
PowerStation.

• Performing sequential writes

It allows sequential writes from an unformatted file opened for
direct access.

Note: Allowing files that are not opened with sequential access
(such as ACCESS='DIRECT') to be read with the sequential WRITE
statement violates the Fortran 95 standard and may be removed
in the future.

Specifying fpscomp general sets fpscomp ldio_spacing.

Specifies that Fortran PowerStation semantic conventions and record
formats should be used for list-directed formatted and unformatted I/O.
The fpscomp ioformat option affects the following Fortran features:

fpscomp iofor-
mat

• The WRITE statement:

• For formatted list-directed WRITE statements, formatted internal
list-directed WRITE statements, and formatted namelist WRITE
statements, the output line, field width values, and the list-directed
data type semantics are determined according to the following
sample for real constants (N below):

•

For 1 <= N < 10**7, use F15.6 for single precision or F24.15 for
double.

633

20

DescriptionOption

For N < 1 or N >= 10**7, use E15.6E2 for single precision or
E24.15E3 for double.

See the Fortran PowerStation documentation for more detailed
information about the other data types affected.

• For unformatted WRITE statements, the unformatted file semantics
are dictated according to the Fortran PowerStation documentation;
these semantics are different from the Intel Fortran file format. See
the Fortran PowerStation documentation for more detailed
information.

The following table summarizes the default output formats for
list-directed output with the intrinsic data types:

Output Format with
fpscomp ioformat

Output Format with
fpscomp noioformat

Data Type

I12I5BYTE

L2L2LOGICAL
(all)

I12I5INTEGER(1)

I12I7INTEGER(2)

I12I12INTEGER(4)

I22I22INTEGER(8)

1PG16.6E21PG15.7E2REAL(4)

1PG25.15E31PG24.15E3REAL(8)

'(',1PG16.6E2, ',
',1PG16.6E2, ') '

'(',1PG14.7E2, ',
',1PG14.7E2, ') '

COMPLEX(4)

'(',1PG25.15E3, ',
',1PG25.15E3, ') '

'(',1PG23.15E3, ',
',1PG23.15E3, ') '

COMPLEX(8)

634

20 Intel® Fortran Compiler User and Reference Guides

DescriptionOption

Output Format with
fpscomp ioformat

Output Format with
fpscomp noioformat

Data Type

AwAwCHARACTER

• The READ statement:

• For formatted list-directed READ statements, formatted internal
list-directed READ statements, and formatted namelist READ
statements, the field width values and the list-directed semantics are
dictated according to the following sample for real constants (N below):

For 1 <= N < 10**7, use F15.6 for single precision or F24.15 for
double.

For N < 1 or N >= 10**7, use E15.6E2 for single precision or E24.15E3
for double.

See the Fortran PowerStation documentation for more detailed
information about the other data types affected.

• For unformatted READ statements, the unformatted file semantics are
dictated according to the Fortran PowerStation documentation; these
semantics are different from the Intel Fortran file format. See the
Fortran PowerStation documentation for more detailed information.

Prevents the portability library from being passed to the linker.fpscomp no-
libs

Specifies that at run time a blank should not be inserted after a numeric
value before a character value (undelimited character string). This
representation is used by Intel Fortran releases before Version 8.0 and
by Fortran PowerStation. If you specify fpscomp general, it sets fpscomp
ldio_spacing.

fpscomp
ldio_spacing

Specifies that integers with a non-zero value are treated as true, integers
with a zero value are treated as false. The literal constant .TRUE. has an
integer value of 1, and the literal constant .FALSE. has an integer value

fpscomp logi-
cals

of 0. This representation is used by Intel Fortran releases before Version

635

20

DescriptionOption

8.0 and by Fortran PowerStation. The default is fpscomp nologicals,
which specifies that odd integer values (low bit one) are treated as true
and even integer values (low bit zero) are treated as false. The literal
constant .TRUE. has an integer value of -1, and the literal constant .FALSE.
has an integer value of 0. This representation is used by Compaq* Visual
Fortran. The internal representation of LOGICAL values is not specified
by the Fortran standard. Programs which use integer values in LOGICAL
contexts, or which pass LOGICAL values to procedures written in other
languages, are non-portable and may not execute correctly. Intel
recommends that you avoid coding practices that depend on the internal
representation of LOGICAL values. The fpscomp logical option affects
the results of all logical expressions and affects the return value for the
following Fortran features:

• The INQUIRE statement specifiers OPENED, IOFOCUS, EXISTS, and
NAMED

• The EOF intrinsic function

• The BTEST intrinsic function

• The lexical intrinsic functions LLT, LLE, LGT, and LGE

Specifies that all options should be used for compatibility with Fortran
PowerStation. This is the same as specifying fpscomp with no keyword.
Option fpscomp all enables full compatibility with Fortran PowerStation.

fpscomp all

Alternate Options

None

See Also
•
Building Applications: Microsoft Fortran PowerStation Compatible Files

636

20 Intel® Fortran Compiler User and Reference Guides

FR
See free.

fr32
Disables the use of the high floating-point registers.

IDE Equivalent

None

Architectures

IA-64 architecture

Syntax

Linux:

-fr32

Mac OS X:

None

Windows:

None

Arguments

None

Default

The use of the high floating-point registers is enabled.OFF

Description

This option disables the use of the high floating-point registers. Only the lower 32 floating-point
registers are used.

Alternate Options

None

637

20

free
Specifies source files are in free format.

IDE Equivalent

Windows: Language > Source File Format (/free, /fixed)

Linux: None

Mac OS X: Language > Source File Format (/free, /fixed)

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-free

-nofree

Windows:

/free

/nofree

Arguments

None

Default

The source file format is determined from the file extension.OFF

Description

This option specifies source files are in free format. If this option is not specified, format is
determined as follows:

• Files with an extension of .f90, .F90, or .i90 are free-format source files.

• Files with an extension of .f, .for, .FOR, .ftn, or .i are fixed-format files.

638

20 Intel® Fortran Compiler User and Reference Guides

Alternate Options

Linux and Mac OS X: -FR

Windows: /nofixed, /FR, /4Yf

See Also
•
• fixed

fsource-asm
Produces an assembly listing with source code
annotations.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fsource-asm

Windows:

None

Arguments

None

Default

No source code annotations appear in the assembly listing file, if
one is produced.

OFF

Description

This option produces an assembly listing file with source code annotations. The assembly listing
file shows the source code as interspersed comments.

639

20

To use this option, you must also specify option -S, which causes an assembly listing to be
generated.

Alternate Options

Linux and Mac OS X: None

Windows: /asmattr:source, /FAs

See Also
•
• S

fstack-security-check, GS
Determines whether the compiler generates code
that detects some buffer overruns.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-fstack-security-check

-fno-stack-security-check

Windows:

/GS

/GS-

Arguments

None

Default

The compiler does not detect buffer overruns.-fno-stack-security-check

640

20 Intel® Fortran Compiler User and Reference Guides

or /GS-

Description

This option determines whether the compiler generates code that detects some buffer overruns
that overwrite the return address. This is a common technique for exploiting code that does
not enforce buffer size restrictions.

The /GS option is supported with Microsoft Visual Studio .NET 2003* and Microsoft Visual Studio
2005*.

Alternate Options

Linux and Mac OS X: -f[no-]stack-protector

Windows: None

fstack-security-check, GS
Determines whether the compiler generates code
that detects some buffer overruns.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-fstack-security-check

-fno-stack-security-check

Windows:

/GS

/GS-

Arguments

None

641

20

Default

The compiler does not detect buffer overruns.-fno-stack-security-check
or /GS-

Description

This option determines whether the compiler generates code that detects some buffer overruns
that overwrite the return address. This is a common technique for exploiting code that does
not enforce buffer size restrictions.

The /GS option is supported with Microsoft Visual Studio .NET 2003* and Microsoft Visual Studio
2005*.

Alternate Options

Linux and Mac OS X: -f[no-]stack-protector

Windows: None

fsyntax-only
See syntax-only.

ftrapuv, Qtrapuv
Initializes stack local variables to an unusual value
to aid error detection.

IDE Equivalent

Windows: Data > Initialize stack variables to an unusual value

Linux: None

Mac OS X: Run-Time > Initialize Stack Variables to an Unusual Value

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-ftrapuv

642

20 Intel® Fortran Compiler User and Reference Guides

Windows:

/Qtrapuv

Arguments

None

Default

The compiler does not initialize local variables.OFF

Description

This option initializes stack local variables to an unusual value to aid error detection. Normally,
these local variables should be initialized in the application.

The option sets any uninitialized local variables that are allocated on the stack to a value that
is typically interpreted as a very large integer or an invalid address. References to these variables
are then likely to cause run-time errors that can help you detect coding errors.

This option sets option -g (Linux and Mac OS X) and /Zi or /Z7 (Windows).

Alternate Options

None

See Also
•
•
• g, Zi, Z7

ftz, Qftz
Flushes denormal results to zero.

IDE Equivalent

Windows: (IA-32 and IA-64 architectures): Floating Point > Flush Denormal Results to
Zero

(Intel® 64 architecture): None

Linux: None

Mac OS X: Floating Point > Flush Denormal Results to Zero

643

20

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-ftz

-no-ftz

Windows:

/Qftz

/Qftz-

Arguments

None

Default

On systems using IA-64 architecture, the compiler lets results
gradually underflow. On systems using IA-32 architecture and
Intel® 64 architecture, denormal results are flushed to zero.

Systems using IA-64
architecture: -no-ftz or
/Qftz-
Systems using IA-32
architecture and Intel® 64
architecture: -ftz or /Qftz

Description

This option flushes denormal results to zero when the application is in the gradual underflow
mode. It may improve performance if the denormal values are not critical to your application's
behavior.

This option sets or resets the FTZ and the DAZ hardware flags. If FTZ is ON, denormal results
from floating-point calculations will be set to the value zero. If FTZ is OFF, denormal results
remain as is. If DAZ is ON, denormal values used as input to floating-point instructions will be
treated as zero. If DAZ is OFF, denormal instruction inputs remain as is. Systems using IA-64
architecture have FTZ but not DAZ. Systems using Intel® 64 architecture have both FTZ and
DAZ. FTZ and DAZ are not supported on all IA-32 architectures.

644

20 Intel® Fortran Compiler User and Reference Guides

When -ftz (Linux and Mac OS X) or /Qftz (Windows) is used in combination with an
SSE-enabling option on systems using IA-32 architecture (for example, xN or QxN), the compiler
will insert code in the main routine to set FTZ and DAZ. When -ftz or /Qftz is used without
such an option, the compiler will insert code to conditionally set FTZ/DAZ based on a run-time
processor check. -no-ftz (Linux and Mac OS X) or /Qftz- (Windows) will prevent the compiler
from inserting any code that might set FTZ or DAZ.

This option only has an effect when the main program is being compiled. It sets the FTZ/DAZ
mode for the process. The initial thread and any threads subsequently created by that process
will operate in FTZ/DAZ mode.

Options -fpe0 and -fpe1 (Linux and Mac OS X) set -ftz. Options /fpe:0 and /fpe:1
(Windows) set /Qftz.

On systems using IA-64 architecture, optimization option O3 sets -ftz and /Qftz; optimization
option O2 sets -no-ftz (Linux) and /Qftz- (Windows). On systems using IA-32 architecture
and Intel® 64 architecture, every optimization option O level, except O0, sets -ftz and /Qftz.

If this option produces undesirable results of the numerical behavior of your program, you can
turn the FTZ/DAZ mode off by using -no-ftz or /Qftz- in the command line while still
benefiting from the O3 optimizations.

NOTE. Options -ftz and /Qftz are performance options. Setting these options does
not guarantee that all denormals in a program are flushed to zero. They only cause
denormals generated at run time to be flushed to zero.

Alternate Options

None

See Also
•
•
• x, Qx

Floating-point Operations: Using the -fpe or /fpe Compiler Option

645

20

func-groups
This is a deprecated option. See prof-func-groups.

funroll-loops
See unroll, Qunroll.

fverbose-asm
Produces an assembly listing with compiler
comments, including options and version
information.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fverbose-asm

-fno-verbose-asm

Windows:

None

Arguments

None

Default

No source code annotations appear in the assembly listing file, if
one is produced.

-fno-verbose-asm

Description

This option produces an assembly listing file with compiler comments, including options and
version information.

646

20 Intel® Fortran Compiler User and Reference Guides

To use this option, you must also specify -S, which sets -fverbose-asm.

If you do not want this default when you specify -S, specify -fno-verbose-asm.

Alternate Options

None

See Also
•
• S

fvisibility
Specifies the default visibility for global symbols
or the visibility for symbols in a file.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fvisibility=keyword

-fvisibility-keyword=file

Windows:

None

Arguments

Specifies the visibility setting. Possible values are:keyword

Sets visibility to default.default

Sets visibility to extern.extern

Sets visibility to hidden.hidden

Sets visibility to internal.internal

647

20

Sets visibility to protected.protected

Is the pathname of a file containing the list of symbols
whose visibility you want to set. The symbols must be
separated by whitespace (spaces, tabs, or newlines).

file

Default

The compiler sets visibility of symbols to default.-fvisibility=default

Description

This option specifies the default visibility for global symbols (syntax -fvisibility=keyword)
or the visibility for symbols in a file (syntax -fvisibility-keyword=file).

Visibility specified by -fvisibility-keyword=file overrides visibility specified by -fvisibil-
ity=keyword for symbols specified in a file.

DescriptionOption

Sets visibility of symbols to default. This
means other components can reference the
symbol, and the symbol definition can be
overridden (preempted) by a definition of the
same name in another component.

-fvisibility=default
-fvisibility-default=file

Sets visibility of symbols to extern. This
means the symbol is treated as though it is
defined in another component. It also means

-fvisibility=extern
-fvisibility-extern=file

that the symbol can be overridden by a
definition of the same name in another
component.

Sets visibility of symbols to hidden. This
means that other components cannot directly
reference the symbol. However, its address
may be passed to other components
indirectly.

-fvisibility=hidden
-fvisibility-hidden=file

648

20 Intel® Fortran Compiler User and Reference Guides

DescriptionOption

Sets visibility of symbols to internal. This
means the symbol cannot be referenced
outside its defining component, either directly
or indirectly.

-fvisibility=internal
-fvisibility-internal=file

CELL_TEXT-fvisibility=protected
-fvisibility-protected=file

If an -fvisibility option is specified more than once on the command line, the last
specification takes precedence over any others.

If a symbol appears in more than one visibility file, the setting with the least visibility takes
precedence.

The following shows the precedence of the visibility settings (from greatest to least visibility):

• extern

• default

• protected

• hidden

• internal

Note that extern visibility only applies to functions. If a variable symbol is specified as extern,
it is assumed to be default.

Alternate Options

None

Example

A file named prot.txt contains symbols a, b, c, d, and e. Consider the following:

-fvisibility-protected=prot.txt

This option sets protected visibility for all the symbols in the file. It has the same effect as
specifying fvisibility=protected in the declaration for each of the symbols.

See Also
•

649

20

• Symbol Visibility Attribute Options (Linux* and Mac OS* X)

g, Zi, Z7
Tells the compiler to generate full debugging
information in the object file.

IDE Equivalent

Windows: General > Debug Information Format (/Z7, /Zd, /Zi)

Linux: None

Mac OS X: General > Generate Debug Information (-g)

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-g

Windows:

/Zi

/Z7

Arguments

None

Default

No debugging information is produced in the object file.OFF

Description

This option tells the compiler to generate symbolic debugging information in the object file for
use by debuggers.

650

20 Intel® Fortran Compiler User and Reference Guides

The compiler does not support the generation of debugging information in assemblable files.
If you specify this option, the resulting object file will contain debugging information, but the
assemblable file will not.

This option turns off O2 and makes O0 (Linux and Mac OS X) or Od (Windows) the default unless
O2 (or another O option) is explicitly specified in the same command line.

On Linux systems using Intel® 64 architecture and Linux and Mac OS X systems using IA-32
architecture, specifying the -g or -O0 option sets the -fno-omit-frame-pointer option.

For more information on Zi and Z7, see keyword full in debug (Windows*).

Alternate Options

Linux and Mac OS X: None

Windows: /debug:full (or /debug)

See Also
•
•
•
• Zd

G2, G2-p9000
Optimizes application performance for systems
using IA-64 architecture.

IDE Equivalent

Windows: Optimization > Optimize For Intel® Processor

Linux: None

Mac OS X: None

Architectures

IA-64 architecture

Syntax

Linux and Mac OS X:

None

651

20

Windows:

/G2

/G2-p9000

Arguments

None

Default

Performance is optimized for Dual-Core Intel® Itanium® 2 processor
9000 series.

/G2-p9000

Description

These options optimize application performance for a particular Intel® processor or family of
processors. The compiler generates code that takes advantage of features of IA-64 architecture.

DescriptionOption

Optimizes for Intel® Itanium® 2 processors.G2

Optimizes for Dual-Core Intel® Itanium® 2
processor 9000 series. This option affects the
order of the generated instructions, but the

G2-p9000

generated instructions are limited to Intel®

Itanium® 2 processor instructions unless the
program specifies and executes intrinsics
specific to the Dual-Core Intel® Itanium® 2
processor 9000 series.

The resulting executable is backwards compatible and generated code is optimized for specific
processors. For example, code generated with /G2-p9000 will run correctly on single-core
Itanium® 2 processors, but it might not run as fast as if it had been generated using /G2.

Alternate Options

Linux: -mtune=itanium2
Mac OS X: None
Windows: None

/G2

652

20 Intel® Fortran Compiler User and Reference Guides

Linux: -mtune=itanium2-p9000, -mcpu=itanium2-p9000
(-mcpu is a deprecated option)
Mac OS X: None
Windows: None

/G2-p9000

Example

In the following example, the compiled binary of the source program prog.f is optimized for
the Dual-Core Intel® Itanium® 2 processor 9000 series by default. The same binary will also
run on single-core Itanium® 2 processors (unless the program specifies and executes intrinsics
specific to the Dual-Core Intel® Itanium® 2 processor 9000 series). All lines in the code example
are equivalent.

ifort prog.f

ifort /G2-p9000 prog.f

In the following example, the compiled binary is optimized for single-core Itanium® 2 processors:

ifort /G2 prog.f

See Also
•
• mtune

G5, G6, G7
Optimize application performance for systems using
IA-32 architecture and Intel® 64 architecture. These
are deprecated options.

IDE Equivalent

Windows: Optimization > Optimize For Intel(R) Processor (/GB, /G5, /G6, /G7)

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64 architectures

653

20

Syntax

Linux and Mac OS X:

None

Windows:

/G5

/G6

/G7

Arguments

None

Default

On systems using IA-32 architecture and Intel® 64 architecture,
performance is optimized for Intel® Pentium® 4 processors, Intel®

Xeon® processors, Intel® Pentium® M processors, and Intel®

Pentium® 4 processors with Streaming SIMD Extensions 3 (SSE3)
instruction support.

/G7

Description

These options optimize application performance for a particular Intel® processor or family of
processors. The compiler generates code that takes advantage of features of the specified
processor.

DescriptionOption

Optimizes for Intel® Pentium® and Pentium® with MMX™ technology processors.G5

Optimizes for Intel® Pentium® Pro, Pentium® II and Pentium® III processors.G6

Optimizes for Intel® Core™ Duo processors, Intel® Core™ Solo processors, Intel®

Pentium® 4 processors, Intel® Xeon® processors based on the Intel® Core
microarchitecture, Intel® Pentium® M processors, and Intel® Pentium® 4 processors
with Streaming SIMD Extensions 3 (SSE3) instruction support.

G7

On systems using Intel® 64 architecture, only option G7 is valid.

654

20 Intel® Fortran Compiler User and Reference Guides

These options always generate code that is backwards compatible with Intel processors of the
same architecture. For example, code generated with the G7 option runs correctly on Pentium
III processors, although performance may be faster on Pentium III processors when compiled
using or G6.

Alternate Options

Windows: /GB (an alternate for /G6; this option is also deprecated)

Linux: None

Example

In the following example, the compiled binary of the source program prog.f is optimized, by
default, for Intel® Pentium® 4 processors, Intel® Xeon® processors, Intel® Pentium® M processors,
and Intel® Pentium® 4 processors with Streaming SIMD Extensions 3 (SSE3). The same binary
will also run on Pentium, Pentium Pro, Pentium II, and Pentium III processors. All lines in the
code example are equivalent.

ifort prog.f

ifort /G7 prog.f

In the following example, the compiled binary is optimized for Pentium processors and Pentium
processors with MMX technology:

ifort /G5 prog.f

icl /G5 prog.c

See Also
•
• mtune

gdwarf-2
Enables generation of debug information using the
DWARF2 format.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

655

20

Syntax

Linux and Mac OS X:

-gdwarf-2

Windows:

None

Arguments

None

Default

No debug information is generated. However, if compiler option
-g is specified, debug information is generated in the latest DWARF
format, which is currently DWARF2.

OFF

Description

This option enables generation of debug information using the DWARF2 format. This is currently
the default when compiler option -g is specified.

Alternate Options

None

See Also
•
• g

Ge
Enables stack-checking for all functions.
This option has been deprecated.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

656

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

None

Windows:

/Ge

Arguments

None

Default

Stack-checking for all functions is disabled.OFF

Description

This option enables stack-checking for all functions.

Alternate Options

None

gen-interfaces
Tells the compiler to generate an interface block
for each routine in a source file.

IDE Equivalent

Windows: Diagnostics > Generate Interface Blocks

Linux: None

Mac OS X: Diagnostics > Generate Interface Blocks

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-gen-interfaces [[no]source]

657

20

-nogen-interfaces

Windows:

/gen-interfaces[:[no]source]

/nogen-interfaces

Arguments

None

Default

The compiler does not generate interface blocks for routines in a
source file.

nogen-interfaces

Description

This option tells the compiler to generate an interface block for each routine (that is, for each
SUBROUTINE and FUNCTION statement) defined in the source file. The compiler generates two
files for each routine, a .mod file and a .f90 file, and places them in the current directory or in
the directory specified by the include (-I) or -module option. The .f90 file is the text of the
interface block; the .mod file is the interface block compiled into binary form.

If source is specified, the compiler creates the *_mod.f90 as well as the *_mod.mod files. If
nosource is specified, the compiler creates the *_mod.mod but not the *_mod.f90 files. If
neither is specified, it is the same as specifying -gen-interfaces source (Linux and Mac OS
X) or /gen-interfaces:source (Windows).

Alternate Options

None

global-hoist, Qglobal-hoist
Enables certain optimizations that can move
memory loads to a point earlier in the program
execution than where they appear in the source.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

658

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-global-hoist

-no-global-hoist

Windows:

/Qglobal-hoist

/Qglobal-hoist-

Arguments

None

Default

Certain optimizations are enabled that can move memory loads.-global-hoist
or/Qglobal-hoist

Description

This option enables certain optimizations that can move memory loads to a point earlier in the
program execution than where they appear in the source. In most cases, these optimizations
are safe and can improve performance.

The -no-global-hoist (Linux and Mac OS X) or /Qglobal-hoist- (Windows) option is useful
for some applications, such as those that use shared or dynamically mapped memory, which
can fail if a load is moved too early in the execution stream (for example, before the memory
is mapped).

Alternate Options

None

659

20

Gm
See keyword cvf in iface.

Gs
Disables stack-checking for routines with more
than a specified number of bytes of local variables
and compiler temporaries.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/Gs[n]

Arguments

Is the number of bytes of local variables and compiler
temporaries.

n

Default

Stack checking is disabled for routines with more than 4KB of stack
space allocated.

4096

Description

This option disables stack-checking for routines with n or more bytes of local variables and
compiler temporaries. If you do not specify n, you get the default of 4096.

Alternate Options

None

660

20 Intel® Fortran Compiler User and Reference Guides

fstack-security-check, GS
Determines whether the compiler generates code
that detects some buffer overruns.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-fstack-security-check

-fno-stack-security-check

Windows:

/GS

/GS-

Arguments

None

Default

The compiler does not detect buffer overruns.-fno-stack-security-check
or /GS-

Description

This option determines whether the compiler generates code that detects some buffer overruns
that overwrite the return address. This is a common technique for exploiting code that does
not enforce buffer size restrictions.

The /GS option is supported with Microsoft Visual Studio .NET 2003* and Microsoft Visual Studio
2005*.

661

20

Alternate Options

Linux and Mac OS X: -f[no-]stack-protector

Windows: None

Gz
See keyword stdcall in iface

heap-arrays
Puts automatic arrays and arrays created for
temporary computations on the heap instead of
the stack.

IDE Equivalent

Windows: Optimization > Heap Arrays

Linux: None

Mac OS X: Optimization > Heap Arrays

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-heap-arrays [size]

-no-heap-arrays

Windows:

/heap-arrays[:size]

/heap-arrays-

662

20 Intel® Fortran Compiler User and Reference Guides

Arguments

Is an integer value representing the size of the arrays in
kilobytes. Any arrays known at compile-time to be larger
than size are allocated on the heap instead of the stack.

size

Default

The compiler puts automatic arrays and arrays created for
temporary computations in temporary storage in the stack storage
area.

-no-heap-arrays or
/heap-arrays-

Description

This option puts automatic arrays and arrays created for temporary computations on the heap
instead of the stack.

If heap-arrays is specified and size is omitted, all automatic and temporary arrays are put
on the heap. If 10 is specified for size, all automatic and temporary arrays larger than 10 KB
are put on the heap.

Alternate Options

None

Example

In Fortran, an automatic array gets it size from a run-time expression. For example:

RECURSIVE SUBROUTINE F(N)

INTEGER :: N

REAL :: X (N) ! an automatic array

REAL :: Y (1000) ! an explicit-shape local array on the stack

Array X in the example above is affected by the heap-array option. Array Y is not.

help
Displays all available compiler options or a category
of compiler options.

IDE Equivalent

None

663

20

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-help[category]

Windows:

/help[category]

Arguments

Is a category or class of options to display. Possible values
are:

category

Displays advanced optimization options
that allow fine tuning of compilation or
allow control over advanced features of
the compiler.

advanced

Displays Code Generation options.codegen

Displays options affecting language
compatibility.

compatibility

Displays options for component control.component

Displays options related to interpretation
of data in programs or the storage of
data.

data

Displays options that have been
deprecated.

deprecated

Displays options that affect diagnostic
messages displayed by the compiler.

diagnostics

Displays options that affect floating-point
operations.

float

Displays all the available help categories.help

Displays options that affect inlining.inline

Displays Interprocedural Optimization
(IPO) options

ipo

664

20 Intel® Fortran Compiler User and Reference Guides

Displays options affecting the behavior of
the compiler language features.

language

Displays linking or linker options.link

Displays miscellaneous options that do
not fit within other categories.

misc

Displays OpenMP and parallel processing
options.

openmp

Displays options that help you optimize
code.

opt

Displays options that provide control over
compiler output.

output

Displays Profile Guided Optimization
(PGO) options.

pgo

Displays options that affect preprocessing
operations.

preproc

Displays options for optimization reports.reports

Default

No list is displayed unless this compiler option is specified.OFF

Description

This option displays all available compiler options or a category of compiler options. If category
is not specified, all available compiler options are displayed.

Alternate Options

Linux and Mac OS X: None

Windows: /?

homeparams
Tells the compiler to store parameters passed in
registers to the stack.

IDE Equivalent

None

665

20

Architectures

IA-64 architecture

Syntax

Linux and Mac OS X:

None

Windows:

/homeparams

Arguments

None

Default

Register parameters are not written to the stack.OFF

Description

This option tells the compiler to store parameters passed in registers to the stack.

Alternate Options

None

hotpatch
Tells the compiler to prepare a routine for
hotpatching.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

None

666

20 Intel® Fortran Compiler User and Reference Guides

Windows:

/hotpatch[:n]

Arguments

An integer specifying the number of bytes the compiler
should add before the function entry point.

n

Default

The compiler does not prepare routines for hotpatching.OFF

Description

This option tells the compiler to prepare a routine for hotpatching. The compiler inserts nop
padding around function entry points so that the resulting image is hot patchable.

Specifically, the compiler adds nop bytes after each function entry point and enough nop bytes
before the function entry point to fit a direct jump instruction on the target architecture.

If n is specified, it overrides the default number of bytes that the compiler adds before the
function entry point.

Alternate Options

None

I
Specifies an additional directory for the include
path.

IDE Equivalent

Windows: General > Additional Include Directories (/include)

Preprocessor > Additional Include Directories (/include)

Linux: None

Mac OS X: Preprocessor > Additional Include Directories (/include)

Architectures

IA-32, Intel® 64, IA-64 architectures

667

20

Syntax

Linux and Mac OS X:

-Idir

Windows:

/Idir

Arguments

Is the directory to add to the include path.dir

Default

The default include path is used.OFF

Description

This option specifies an additional directory for the include path, which is searched for module
files referenced in USE statements and include files referenced in INCLUDE statements. To
specify multiple directories on the command line, repeat the option for each directory you want
to add.

For all USE statements and for those INCLUDE statements whose file name does not begin with
a device or directory name, the directories are searched in this order:

1. The directory containing the first source file.

Note that if assume nosource_include is specified, this directory will not be searched.

2. The current working directory where the compilation is taking place (if different from the
above directory).

3. Any directory or directories specified using the I option. If multiple directories are specified,
they are searched in the order specified on the command line, from left to right.

4. On Linux and Mac OS X systems, any directories indicated using environment variable FPATH.
On Windows systems, any directories indicated using environment variable INCLUDE.

This option affects fpp preprocessor behavior and the USE statement.

Alternate Options

Linux and Mac OS X: None

Windows: /include

668

20 Intel® Fortran Compiler User and Reference Guides

See Also
•
• X

• assume

i-dynamic
This is a deprecated option. See shared-intel.

i-static
This is a deprecated option. See static-intel.

i2, i4, i8
See integer-size.

idirafter
Adds a directory to the second include file search
path.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-idirafterdir

Windows:

None

Arguments

Is the name of the directory to add.dir

669

20

Default

Include file search paths include certain default directories.OFF

Description

This option adds a directory to the second include file search path (after -I).

Alternate Options

None

iface
Specifies the default calling convention and
argument-passing convention for an application.

IDE Equivalent

Windows: External Procedures > Calling Convention (/iface:{cref|stdref|std-
call|cvf|default})

External Procedures > String Length Argument Passing
(/iface:[no]mixed_str_len_arg)

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/iface:keyword

Arguments

Specifies the calling convention or the argument-passing
convention. Possible values are:

keyword

670

20 Intel® Fortran Compiler User and Reference Guides

Tells the compiler to use the default
calling conventions.

default

Tells the compiler to use calling
conventions C, REFERENCE.

cref

Tells the compiler to use calling
conventions compatible with Compaq
Visual Fortran*.

cvf

Determines the argument-passing
convention for hidden-length character
arguments.

[no]mixed_str_len_arg

Tells the compiler to use calling
convention STDCALL.

stdcall

Tells the compiler to use calling
conventions STDCALL, REFERENCE.

stdref

Default

The default calling convention is used./iface:default

Description

This option specifies the default calling convention and argument-passing convention for an
application.

The aspects of calling and argument passing controlled by this option are as follows:

• The calling mechanism (C or STDCALL): On IA-32 architecture, these mechanisms differ in
how the stack register is adjusted when a procedure call returns. On Intel® 64 and IA-64
architectures, the only calling mechanism available is C; requests for the STDCALL mechanism
are ignored.

• The argument passing mechanism (by value or by reference)

• Character-length argument passing (at the end of the argument list or after the argument
address)

• The case of external names (uppercase or lowercase)

• The name decoration (prefix and suffix)

You can also use the ATTRIBUTES compiler directive to modify these conventions on an individual
basis. Note that the effects of the ATTRIBUTES directive do not always match that of the iface
option of the same name.

671

20

DescriptionOption

Tells the compiler to use the default calling conventions. These conventions
are as follows:

/iface:de-
fault

• The calling mechanism: C

• The argument passing mechanism: by reference

• Character-length argument passing: at end of argument list

• The external name case: uppercase

• The name decoration: Underscore prefix on IA-32 architecture, no
prefix on Intel® 64 or IA-64 architecture; no suffix

Tells the compiler to use the same conventions as /iface:default except
that external names are lowercase.

/iface:cref

Tells the compiler to use calling conventions compatible with Compaq
Visual Fortran* and Microsoft Fortran PowerStation. These conventions
are as follows:

/iface:cvf

• The calling mechanism: STDCALL

• The argument passing mechanism: by reference

• Character-length argument passing: following the argument address

• The external name case: uppercase

• The name decoration: Underscore prefix on IA-32 architecture, no
prefix on Intel® 64 or IA-64 architecture. On Windows* systems using
IA-32 architecture, @n suffix where n is the number of bytes to be
removed from the stack on exit from the procedure. No suffix on other
systems.

Specifies argument-passing conventions for hidden-length character
arguments. This option tells the compiler that the hidden length passed
for a character argument is to be placed immediately after its
corresponding character argument in the argument list.

/iface:mixed_str_len_arg

672

20 Intel® Fortran Compiler User and Reference Guides

DescriptionOption

This is the method used by Compaq Visual Fortran*. When porting
mixed-language programs that pass character arguments, either this
option must be specified correctly or the order of hidden length arguments
must be changed in the source code. This option can be used in addition
to other /iface options.

Tells the compiler to use the following conventions:/iface:std-
call

• The calling mechanism: STDCALL

• The argument passing mechanism: by value

• Character-length argument passing: at the end of the argument list

• The external name case: uppercase

• The name decoration: Underscore prefix on IA-32 architecture, no
prefix on Intel® 64 or IA-64 architecture. On Windows* systems using
IA-32 architecture, @n suffix where n is the number of bytes to be
removed from the stack on exit from the procedure. No suffix on other
systems.

Tells the compiler to use the same conventions as /iface:stdcall except
that argument passing is by reference.

/iface:stdref

CAUTION. On Windows systems, if you specify option /iface:cref, it overrides the
default for external names and causes them to be lowercase. It is as if you specified
"!dec$ attributes c, reference" for the external name.

If you specify option /iface:cref and want external names to be uppercase, you must
explicitly specify option /names:uppercase.

CAUTION. On systems using IA-32 architecture, there must be agreement between
the calling program and the called procedure as to which calling mechanism (C or
STDCALL) is used or unpredictable errors may occur. If you change the default mechanism
to STDCALL, you must use the ATTRIBUTES DEFAULT directive to reset the calling
conventions for routines specified with the USEROPEN keyword in an OPEN statement
and for comparison routines passed to the QSORT library routine.

673

20

Alternate Options

Linux and Mac OS X: None/iface:cvf
Windows: /Gm

Linux and Mac OS X: -mixed-str-len-arg/iface:mixed_str_len_arg
Windows: None

Linux and Mac OS X: -nomixed-str-len-arg/iface:nomixed_str_len_arg
Windows: None

Linux and Mac OS X: None/iface:stdcall
Windows: /Gz

See Also
•

Building Applications: Programming with Mixed Languages Overview

Language Reference: ATTRIBUTES

implicitnone
See warn.

include
See I.

inline
Specifies the level of inline function expansion.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

674

20 Intel® Fortran Compiler User and Reference Guides

Windows:

/inline[:keyword]

Arguments

Is the level of inline function expansion. Possible values are:keyword

Disables inlining of user-defined functions.
This is the same as specifying manual.

none

Disables inlining of user-defined functions.
Fortran statement functions are always
inlined.

manual

Enables inlining of any function. However,
the compiler decides which functions are
inlined.

size

This option enables interprocedural
optimizations and most speed
optimizations.

Enables inlining of any function. This is
the same as specifying all.

speed

Enables inlining of any function. However,
the compiler decides which functions are
inlined.

all

This option enables interprocedural
optimizations and all speed optimizations.
This is the same as specifying inline
with no keyword.

Default

The compiler inlines certain functions by default.OFF

Description

This option specifies the level of inline function expansion.

Alternate Options

Linux and Mac OS X: Noneinline all or inline
speed Windows: /Ob2 /Ot

675

20

Linux and Mac OS X: Noneinline size
Windows: /Ob2 /Os

Linux and Mac OS X: Noneinline manual
Windows: /Ob0

Linux and Mac OS X: Noneinline none
Windows: /Ob0

See Also
•
• finline-functions

inline-debug-info, Qinline-debug-info
Produces enhanced source position information for
inlined code. This is a deprecated option.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-inline-debug-info

Windows:

/Qinline-debug-info

Arguments

None

Default

No enhanced source position information is produced for inlined
code.

OFF

676

20 Intel® Fortran Compiler User and Reference Guides

Description

This option produces enhanced source position information for inlined code. This leads to greater
accuracy when reporting the source location of any instruction. It also provides enhanced debug
information useful for function call traceback.

To use this option for debugging, you must also specify a debug enabling option, such as -g
(Linux) or /debug (Windows).

Alternate Options

Linux and Mac OS X: -debug inline-debug-info

Windows: None

inline-factor, Qinline-factor
Specifies the percentage multiplier that should be
applied to all inlining options that define upper
limits.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-inline-factor=n

-no-inline-factor

Windows:

/Qinline-factor=n

/Qinline-factor-

Arguments

Is a positive integer specifying the percentage value. The
default value is 100 (a factor of 1).

n

677

20

Default

The compiler uses default heuristics for inline routine expansion.-no-inline-factor
or/Qinline-factor-

Description

This option specifies the percentage multiplier that should be applied to all inlining options that
define upper limits:

• -inline-max-size and /Qinline-max-size

• -inline-max-total-size and /Qinline-max-total-size

• -inline-max-per-routine and /Qinline-max-per-routine

• -inline-max-per-compile and /Qinline-max-per-compile

This option takes the default value for each of the above options and multiplies it by n divided
by 100. For example, if 200 is specified, all inlining options that define upper limits are multiplied
by a factor of 2. This option is useful if you do not want to individually increase each option
limit.

If you specify -no-inline-factor (Linux and Mac OS X) or /Qinline-factor- (Windows),
the following occurs:

• Every function is considered to be a small or medium function; there are no large functions.

• There is no limit to the size a routine may grow when inline expansion is performed.

• There is no limit to the number of times some routine may be inlined into a particular routine.

• There is no limit to the number of times inlining can be applied to a compilation unit.

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS X) or /Qopt-report (Windows).

CAUTION. When you use this option to increase default limits, the compiler may do so
much additional inlining that it runs out of memory and terminates with an "out of
memory" message.

Alternate Options

None

678

20 Intel® Fortran Compiler User and Reference Guides

See Also
•
•
• inline-max-size, Qinline-max-size
• inline-max-total-size, Qinline-max-total-size
• inline-max-per-routine, Qinline-max-per-routine
• inline-max-per-compile, Qinline-max-per-compile
• opt-report, Qopt-report
• Developer Directed Inline Expansion of User Functions
• Compiler Directed Inline Expansion of User Functions

inline-forceinline, Qinline-forceinline
Specifies that an inline routine should be inlined
whenever the compiler can do so.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-inline-forceinline

Windows:

/Qinline-forceinline

Default

The compiler uses default heuristics for inline routine expansion.OFF

Description

This option specifies that a inline routine should be inlined whenever the compiler can do so.
This causes the routines marked with an inline keyword or directive to be treated as if they
were "forceinline".

679

20

NOTE. Because C++ member functions whose definitions are included in the class
declaration are considered inline functions by default, using this option will also make
these member functions "forceinline" functions.

The "forceinline" condition can also be specified by using the directive cDEC$ ATTRIBUTES
FORCEINLINE.

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS) or /Qopt-report (Windows).

CAUTION. When you use this option to change the meaning of inline to "forceinline",
the compiler may do so much additional inlining that it runs out of memory and terminates
with an "out of memory" message.

Alternate Options

None

See Also
•
•
• opt-report, Qopt-report
• Developer Directed Inline Expansion of User Functions
• Compiler Directed Inline Expansion of User Functions

inline-level, Ob
Specifies the level of inline function expansion.

IDE Equivalent

Windows: Optimization > Inline Function Expansion

Linux: None

Mac OS X: Optimization > Inline Function Expansion

Architectures

IA-32, Intel® 64, IA-64 architectures

680

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-inline-level=n

Windows:

/Obn

Arguments

Is the inline function expansion level. Possible values are
0, 1, and 2.

n

Default

This is the default if option O2 is specified or is in effect by default.
On Windows systems, this is also the default if option O3 is
specified.

-inline-level=2 or /Ob2

This is the default if option -O0 (Linux and Mac OS) or /Od
(Windows) is specified.

-inline-level=0 or /Ob0

Description

This option specifies the level of inline function expansion. Inlining procedures can greatly
improve the run-time performance of certain programs.

DescriptionOption

Disables inlining of user-defined functions. Note that statement
functions are always inlined.

-inline-level=0 or
Ob0

Enables inlining when an inline keyword or an inline directive is
specified.

-inline-level=1 or
Ob1

Enables inlining of any function at the compiler's discretion.-inline-level=2 or
Ob2

Alternate Options

Linux: -Ob (this is a deprecated option)

Mac OS X: None

681

20

Windows: None

See Also
•
•
• inline

inline-max-per-compile, Qinline-max-per-compile
Specifies the maximum number of times inlining
may be applied to an entire compilation unit.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-inline-max-per-compile=n

-no-inline-max-per-compile

Windows:

/Qinline-max-per-compile=n

/Qinline-max-per-compile-

Arguments

Is a positive integer that specifies the number of times
inlining may be applied.

n

Default

The compiler uses default heuristics for inline routine
expansion.

-no-inline-max-per-compile
or/Qinline-max-per-compile-

682

20 Intel® Fortran Compiler User and Reference Guides

Description

This option the maximum number of times inlining may be applied to an entire compilation
unit. It limits the number of times that inlining can be applied.

For compilations using Interprocedural Optimizations (IPO), the entire compilation is a
compilation unit. For other compilations, a compilation unit is a file.

If you specify -no-inline-max-per-compile (Linux and Mac OS X) or /Qinline-max-per-
compile- (Windows), there is no limit to the number of times inlining may be applied to a
compilation unit.

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS X) or /Qopt-report (Windows).

CAUTION. When you use this option to increase the default limit, the compiler may do
so much additional inlining that it runs out of memory and terminates with an "out of
memory" message.

Alternate Options

None

See Also
•
•
• inline-factor, Qinline-factor
• opt-report, Qopt-report
• Developer Directed Inline Expansion of User Functions
• Compiler Directed Inline Expansion of User Functions

inline-max-per-routine, Qinline-max-per-routine
Specifies the maximum number of times the inliner
may inline into a particular routine.

IDE Equivalent

None

683

20

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-inline-max-per-routine=n

-no-inline-max-per-routine

Windows:

/Qinline-max-per-routine=n

/Qinline-max-per-routine-

Arguments

Is a positive integer that specifies the maximum number of
times the inliner may inline into a particular routine.

n

Default

The compiler uses default heuristics for inline routine
expansion.

-no-inline-max-per-routine
or/Qinline-max-per-routine-

Description

This option specifies the maximum number of times the inliner may inline into a particular
routine. It limits the number of times that inlining can be applied to any routine.

If you specify -no-inline-max-per-routine (Linux and Mac OS X) or /Qinline-max-per-
routine- (Windows), there is no limit to the number of times some routine may be inlined
into a particular routine.

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS X) or /Qopt-report (Windows).

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS X) or /Qopt-report (Windows).

684

20 Intel® Fortran Compiler User and Reference Guides

CAUTION. When you use this option to increase the default limit, the compiler may do
so much additional inlining that it runs out of memory and terminates with an "out of
memory" message.

Alternate Options

None

See Also
•
•
• inline-factor, Qinline-factor
• opt-report, Qopt-report
• Developer Directed Inline Expansion of User Functions
• Compiler Directed Inline Expansion of User Functions

inline-max-size, Qinline-max-size
Specifies the lower limit for the size of what the
inliner considers to be a large routine.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-inline-max-size=n

-no-inline-max-size

Windows:

/Qinline-max-size=n

/Qinline-max-size-

685

20

Arguments

Is a positive integer that specifies the minimum size of what
the inliner considers to be a large routine.

n

Default

The compiler uses default heuristics for inline routine
expansion.

-no-inline-max-size
or/Qinline-max-size-

Description

This option specifies the lower limit for the size of what the inliner considers to be a large routine
(a function or subroutine). The inliner classifies routines as small, medium, or large. This option
specifies the boundary between what the inliner considers to be medium and large-size routines.

The inliner prefers to inline small routines. It has a preference against inlining large routines.
So, any large routine is highly unlikely to be inlined.

If you specify -no-inline-max-size (Linux and Mac OS X) or /Qinline-max-size-
(Windows), there are no large routines. Every routine is either a small or medium routine.

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS X) or /Qopt-report (Windows).

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS X) or /Qopt-report (Windows).

CAUTION. When you use this option to increase the default limit, the compiler may do
so much additional inlining that it runs out of memory and terminates with an "out of
memory" message.

Alternate Options

None

See Also
•
•
• inline-min-size, Qinline-min-size
• inline-factor, Qinline-factor

686

20 Intel® Fortran Compiler User and Reference Guides

• opt-report, Qopt-report
• Developer Directed Inline Expansion of User Functions
• Compiler Directed Inline Expansion of User Functions

inline-max-total-size, Qinline-max-total-size
Specifies how much larger a routine can normally
grow when inline expansion is performed.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-inline-max-total-size=n

-no-inline-max-total-size

Windows:

/Qinline-max-total-size=n

/Qinline-max-total-size-

Arguments

Is a positive integer that specifies the permitted increase
in the routine's size when inline expansion is performed.

n

Default

The compiler uses default heuristics for inline routine
expansion.

-no-inline-max-total-size
or/Qinline-max-total-size-

Description

This option specifies how much larger a routine can normally grow when inline expansion is
performed. It limits the potential size of the routine. For example, if 2000 is specified for n, the
size of any routine will normally not increase by more than 2000.

687

20

If you specify -no-inline-max-total-size (Linux and Mac OS X) or /Qinline-max-total-
size- (Windows), there is no limit to the size a routine may grow when inline expansion is
performed.

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS X) or /Qopt-report (Windows).

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS X) or /Qopt-report (Windows).

CAUTION. When you use this option to increase the default limit, the compiler may do
so much additional inlining that it runs out of memory and terminates with an "out of
memory" message.

Alternate Options

None

See Also
•
•
• inline-factor, Qinline-factor
• opt-report, Qopt-report
• Developer Directed Inline Expansion of User Functions
• Compiler Directed Inline Expansion of User Functions

inline-min-size, Qinline-min-size
Specifies the upper limit for the size of what the
inliner considers to be a small routine.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

688

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-inline-min-size=n

-no-inline-min-size

Windows:

/Qinline-min-size=n

/Qinline-min-size-

Arguments

Is a positive integer that specifies the maximum size of what
the inliner considers to be a small routine.

n

Default

The compiler uses default heuristics for inline routine
expansion.

-no-inline-min-size
or/Qinline-min-size-

Description

This option specifies the upper limit for the size of what the inliner considers to be a small
routine (a function or subroutine). The inliner classifies routines as small, medium, or large.
This option specifies the boundary between what the inliner considers to be small and
medium-size routines.

The inliner has a preference to inline small routines. So, when a routine is smaller than or equal
to the specified size, it is very likely to be inlined.

If you specify -no-inline-min-size (Linux and Mac OS X) or /Qinline-min-size-
(Windows), there is no limit to the size of small routines. Every routine is a small routine; there
are no medium or large routines.

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS X) or /Qopt-report (Windows).

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS X) or /Qopt-report (Windows).

689

20

CAUTION. When you use this option to increase the default limit, the compiler may do
so much additional inlining that it runs out of memory and terminates with an "out of
memory" message.

Alternate Options

None

See Also
•
•
• inline-min-size, Qinline-min-size
• opt-report, Qopt-report
• Developer Directed Inline Expansion of User Functions
• Compiler Directed Inline Expansion of User Functions

intconstant
Tells the compiler to use FORTRAN 77 semantics
to determine the kind parameter for integer
constants.

IDE Equivalent

Windows: Compatibility > Use F77 Integer Constants

Linux: None

Mac OS X: Compatibility > Use F77 Integer Constants

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-intconstant

-nointconstant

690

20 Intel® Fortran Compiler User and Reference Guides

Windows:

/intconstant

/nointconstant

Arguments

None

Default

The compiler uses the Fortran 95/90 default INTEGER type.nointconstant

Description

This option tells the compiler to use FORTRAN 77 semantics to determine the kind parameter
for integer constants.

With FORTRAN 77 semantics, the kind is determined by the value of the constant. All constants
are kept internally by the compiler in the highest precision possible. For example, if you specify
option intconstant, the compiler stores an integer constant of 14 internally as
INTEGER(KIND=8) and converts the constant upon reference to the corresponding proper size.
Fortran 95/90 specifies that integer constants with no explicit KIND are kept internally in the
default INTEGER kind (KIND=4 by default).

Note that the internal precision for floating-point constants is controlled by option fpconstant.

Alternate Options

None

integer-size
Specifies the default KIND for integer and logical
variables.

IDE Equivalent

Windows: Data > Default Integer KIND

Linux: None

Mac OS X: Data > Default Integer KIND

691

20

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-integer-size size

Windows:

/integer-size:size

Arguments

Is the size for integer and logical variables. Possible values
are: 16, 32, or 64.

size

Default

Integer and logical variables are 4 bytes long (INTEGER(KIND=4)
and LOGICAL(KIND=4)).

integer-size 32

Description

This option specifies the default size (in bits) for integer and logical variables.

DescriptionOption

Makes default integer and logical variables 2 bytes long. INTEGER and
LOGICAL declarations are treated as (KIND=2).

integer-size
16

Makes default integer and logical variables 4 bytes long. INTEGER and
LOGICAL declarations are treated as (KIND=4).

integer-size
32

Makes default integer and logical variables 8 bytes long. INTEGER and
LOGICAL declarations are treated as (KIND=8).

integer-size
64

Alternate Options

Linux and Mac OS X: -i2integer-size 16
Windows: /4I2

Linux and Mac OS X: -i4integer-size 32

692

20 Intel® Fortran Compiler User and Reference Guides

Windows: /4I4

Linux and Mac OS X: -i8integer-size 64
Windows: /4I8

ip, Qip
Determines whether additional interprocedural
optimizations for single-file compilation are
enabled.

IDE Equivalent

Windows: Optimization > Interprocedural Optimization

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-ip

-no-ip

Windows:

/Qip

/Qip-

Arguments

None

Default

Some limited interprocedural optimizations occur, including inline
function expansion for calls to functions defined within the current
source file. These optimizations are a subset of full intra-file
interprocedural optimizations. Note that this setting is not the
same as -no-ip (Linux and Mac OS X) or /Qip- (Windows).

OFF

693

20

Description

This option determines whether additional interprocedural optimizations for single-file compilation
are enabled.

Options -ip (Linux and Mac OS X) and /Qip (Windows) enable additional interprocedural
optimizations for single-file compilation.

Options -no-ip (Linux and Mac OS X) and /Qip- (Windows) may not disable inlining. To ensure
that inlining of user-defined functions is disabled, specify -inline-level=0or -fno-inline
(Linux and Mac OS X), or specify /Ob0 (Windows).

Alternate Options

None

See Also
•
•
• finline-functions

ip-no-inlining, Qip-no-inlining
Disables full and partial inlining enabled by
interprocedural optimization options.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-ip-no-inlining

Windows:

/Qip-no-inlining

694

20 Intel® Fortran Compiler User and Reference Guides

Arguments

None

Default

Inlining enabled by interprocedural optimization options is
performed.

OFF

Description

This option disables full and partial inlining enabled by the following interprocedural optimization
options:

• On Linux and Mac OS X systems: -ip or -ipo

• On Windows systems: /Qip, /Qipo, or /Ob2

It has no effect on other interprocedural optimizations.

On Windows systems, this option also has no effect on user-directed inlining specified by option
/Ob1.

Alternate Options

None

ip-no-pinlining, Qip-no-pinlining
Disables partial inlining enabled by interprocedural
optimization options.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-ip-no-pinlining

695

20

Windows:

/Qip-no-pinlining

Arguments

None

Default

Inlining enabled by interprocedural optimization options is
performed.

OFF

Description

This option disables partial inlining enabled by the following interprocedural optimization options:

• On Linux and Mac OS X systems: -ip or -ipo

• On Windows systems: /Qip or /Qipo

It has no effect on other interprocedural optimizations.

Alternate Options

None

IPF-flt-eval-method0, QIPF-flt-eval-method0
Tells the compiler to evaluate the expressions
involving floating-point operands in the precision
indicated by the variable types declared in the
program. This is a deprecated option.

IDE Equivalent

None

Architectures

IA-64 architecture

Syntax

Linux:

-IPF-flt-eval-method0

696

20 Intel® Fortran Compiler User and Reference Guides

Mac OS X:

None

Windows:

/QIPF-flt-eval-method0

Arguments

None

Default

Expressions involving floating-point operands are evaluated by
default rules.

OFF

Description

This option tells the compiler to evaluate the expressions involving floating-point operands in
the precision indicated by the variable types declared in the program.

By default, intermediate floating-point expressions are maintained in higher precision.

The recommended method to control the semantics of floating-point calculations is to use option
-fp-model (Linux) or /fp (Windows).

Instead of using -IPF-flt-eval-method0 (Linux) or /QIPF-flt-eval-method0 (Windows),
you can use -fp-model source (Linux) or /fp:source (Windows).

Alternate Options

None

See Also
•
•
• fp-model, fp

697

20

IPF-fltacc, QIPF-fltacc
Disables optimizations that affect floating-point
accuracy. This is a deprecated option.

IDE Equivalent

Windows: Floating Point > Floating-Point Accuracy

Linux: None

Mac OS X: None

Architectures

IA-64 architecture

Syntax

Linux:

-IPF-fltacc

-no-IPF-fltacc

Mac OS X:

None

Windows:

/QIPF-fltacc

/QIPF-fltacc-

Arguments

None

Default

Optimizations are enabled that affect floating-point accuracy.-no-IPF-fltacc
or/QIPF-fltacc-

Description

This option disables optimizations that affect floating-point accuracy.

698

20 Intel® Fortran Compiler User and Reference Guides

If the default setting is used, the compiler may apply optimizations that reduce floating-point
accuracy.

You can use this option to improve floating-point accuracy, but at the cost of disabling some
optimizations.

The recommended method to control the semantics of floating-point calculations is to use option
-fp-model (Linux) or /fp (Windows).

Instead of using -IPF-fltacc (Linux) or /QIPF-fltacc (Windows), you can use -fp-model
precise (Linux) or /fp:precise (Windows).

Instead of using -no-IPF-fltacc (Linux) or /QIPF-fltacc- (Windows), you can use -fp-
model fast (Linux) or /fp:fast (Windows).

Alternate Options

None

See Also
•
•
• fp-model, fp

IPF-fma, QIPF-fma
See fma, Qfma.

IPF-fp-relaxed, QIPF-fp-relaxed
See fp-relaxed, Qfp-relaxed.

ipo, Qipo
Enables interprocedural optimization between files.

IDE Equivalent

Windows: Optimization > Interprocedural Optimization

General > Whole Program Optimization

Linux: None

Mac OS X: None

699

20

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-ipo[n]

Windows:

/Qipo[n]

Arguments

Is an optional integer that specifies the number of object
files the compiler should create. The integer must be greater
than or equal to 0.

n

Default

Multifile interprocedural optimization is not enabled.OFF

Description

This option enables interprocedural optimization between files. This is also called multifile
interprocedural optimization (multifile IPO) or Whole Program Optimization (WPO).

When you specify this option, the compiler performs inline function expansion for calls to
functions defined in separate files.

You cannot specify the names for the files that are created.

If n is 0, the compiler decides whether to create one or more object files based on an estimate
of the size of the application. It generates one object file for small applications, and two or
more object files for large applications.

If n is greater than 0, the compiler generates n object files, unless n exceeds the number of
source files (m), in which case the compiler generates only m object files.

If you do not specify n, the default is 0.

Alternate Options

None

700

20 Intel® Fortran Compiler User and Reference Guides

See Also
•
•

Optimizing Applications:

Interprocedural Optimization (IPO) Quick Reference

Interprocedural Optimization (IPO) Overview

Using IPO

ipo-c, Qipo-c
Tells the compiler to optimize across multiple files
and generate a single object file.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-ipo-c

Windows:

/Qipo-c

Arguments

None

Default

The compiler does not generate a multifile object file.OFF

Description

This option tells the compiler to optimize across multiple files and generate a single object file
(named ipo_out.o on Linux and Mac OS X systems; ipo_out.obj on Windows systems).

701

20

It performs the same optimizations as -ipo (Linux and Mac OS X) or /Qipo (Windows), but
compilation stops before the final link stage, leaving an optimized object file that can be used
in further link steps.

Alternate Options

None

See Also
•
•
• ipo, Qipo

ipo-jobs, Qipo-jobs
Specifies the number of commands (jobs) to be
executed simultaneously during the link phase of
Interprocedural Optimization (IPO).

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-ipo-jobsn

Windows:

/Qipo-jobs:n

Arguments

Is the number of commands (jobs) to run simultaneously.
The number must be greater than or equal to 1.

n

702

20 Intel® Fortran Compiler User and Reference Guides

Default

One command (job) is executed in an interprocedural optimization
parallel build.

-ipo-jobs1
or/Qipo-jobs:1

Description

This option specifies the number of commands (jobs) to be executed simultaneously during the
link phase of Interprocedural Optimization (IPO). It should only be used if the link-time
compilation is generating more than one object. In this case, each object is generated by a
separate compilation, which can be done in parallel.

This option can be affected by the following compiler options:

• -ipo (Linux and Mac OS X) or /Qipo (Windows) when applications are large enough that
the compiler decides to generate multiple object files.

• -ipon (Linux and Mac OS X) or /Qipon (Windows) when n is greater than 1.

• -ipo-separate (Linux) or /Qipo-separate (Windows)

CAUTION. Be careful when using this option. On a multi-processor system with lots of
memory, it can speed application build time. However, if n is greater than the number
of processors, or if there is not enough memory to avoid thrashing, this option can
increase application build time.

Alternate Options

None

See Also
•
•
• ipo, Qipo
• ipo-separate, Qipo-separate

703

20

ipo-S, Qipo-S
Tells the compiler to optimize across multiple files
and generate a single assembly file.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-ipo-S

Windows:

/Qipo-S

Arguments

None

Default

The compiler does not generate a multifile assembly file.OFF

Description

This option tells the compiler to optimize across multiple files and generate a single assembly
file (named ipo_out.s on Linux and Mac OS X systems; ipo_out.asm on Windows systems).

It performs the same optimizations as -ipo (Linux and Mac OS X) or /Qipo (Windows), but
compilation stops before the final link stage, leaving an optimized assembly file that can be
used in further link steps.

Alternate Options

None

See Also
•

704

20 Intel® Fortran Compiler User and Reference Guides

•
• ipo, Qipo

ipo-separate, Qipo-separate
Tells the compiler to generate one object file for
every source file.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-ipo-separate

Mac OS X:

None

Windows:

/Qipo-separate

Arguments

None

Default

The compiler decides whether to create one or more object files.OFF

Description

This option tells the compiler to generate one object file for every source file. It overrides any
-ipo (Linux) or /Qipo (Windows) specification.

Alternate Options

None

705

20

See Also
•
•
• ipo, Qipo

isystem
Specifies a directory to add to the start of the
system include path.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-isystemdir

Windows:

None

Arguments

Is the directory to add to the system include path.dir

Default

The default system include path is used.OFF

Description

This option specifies a directory to add to the system include path. The compiler searches the
specified directory for include files after it searches all directories specified by the -I compiler
option but before it searches the standard system directories. This option is provided for
compatibility with gcc.

706

20 Intel® Fortran Compiler User and Reference Guides

Alternate Options

None

ivdep-parallel, Qivdep-parallel
Tells the compiler that there is no loop-carried
memory dependency in the loop following an IVDEP
directive.

IDE Equivalent

Windows: Optimization > IVDEP Directive Memory Dependency

Linux: None

Mac OS X: None

Architectures

IA-64 architecture

Syntax

Linux:

-ivdep-parallel

Mac OS X:

None

Windows:

/Qivdep-parallel

Arguments

None

Default

There may be loop-carried memory dependency in a loop that
follows an IVDEP directive.

OFF

707

20

Description

This option tells the compiler that there is no loop-carried memory dependency in the loop
following an IVDEP There may be loop-carried memory dependency in a loop that follows an
IVDEP directive.
This has the same effect as specifying the IVDEP:LOOP directive.

Alternate Options

None

See Also
•
•

Optimizing Applications: Absence of Loop-carried Memory Dependency with IVDEP Directive

l
Tells the linker to search for a specified library
when linking.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-lstring

Windows:

None

Arguments

Specifies the library (libstring) that the linker should
search.

string

708

20 Intel® Fortran Compiler User and Reference Guides

Default

The linker searches for standard libraries in standard directories.OFF

Description

This option tells the linker to search for a specified library when linking.

When resolving references, the linker normally searches for libraries in several standard
directories, in directories specified by the L option, then in the library specified by the l option.

The linker searches and processes libraries and object files in the order they are specified. So,
you should specify this option following the last object file it applies to.

Alternate Options

None

See Also
•
• L

L
Tells the linker to search for libraries in a specified
directory before searching the standard directories.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-Ldir

Windows:

None

709

20

Arguments

Is the name of the directory to search for libraries.dir

Default

The linker searches the standard directories for libraries.OFF

Description

This option tells the linker to search for libraries in a specified directory before searching for
them in the standard directories.

Alternate Options

None

See Also
•
• l

LD
See dll.

libdir
Controls whether linker options for search libraries
are included in object files generated by the
compiler.

IDE Equivalent

Windows: Libraries > Disable Default Library Search Rules (/libdir:[no]automatic)

Libraries > Disable OBJCOMMENT Library Name in Object (/libdir:[no]user)

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

710

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

None

Windows:

/libdir[:keyword]

/nolibdir

Arguments

Specifies the linker search options. Possible values are:keyword

Prevents any linker search options from
being included into the object file. This is
the same as specifying /nolibdir.

none

Determines whether linker search options
for libraries automatically determined by
the ifort command driver (default
libraries) are included in the object file.

[no]automatic

Determines whether linker search options
for libraries specified by the OBJCOMMENT
source directives are included in the
object file.

[no]user

Causes linker search options for the
following libraries:

all

• Libraries automatically determined by
the ifort command driver (default
libraries)

• Libraries specified by the
OBJCOMMENT directive to be included
in the object file

This is the same as specifying /libdir.

711

20

Default

Linker search options for libraries automatically determined by the
ifort command driver (default libraries) and libraries specified
by the OBJCOMMENT directive are included in the object file.

/libdir:all

Description

This option controls whether linker options for search libraries (/DEFAULTLIB:library) are
included in object files generated by the compiler.

The linker option /DEFAULTLIB:library adds one library to the list of libraries that the linker
searches when resolving references. A library specified with /DEFAULTLIB:library is searched
after libraries specified on the command line and before default libraries named in .obj files.

Alternate Options

Linux and Mac OS X: None/libdir:none
Windows: /Zl

libs
Tells the compiler which type of run-time library
to link to.

IDE Equivalent

Windows: Libraries > Runtime Library (/libs:{static|dll|qwin|qwins}, /threads,
/dbglibs)

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/libs[:keyword]

712

20 Intel® Fortran Compiler User and Reference Guides

Arguments

Specifies the type of run-time library to link to. Possible
values are:

keyword

Specifies a single-threaded, static library
(same as specifying /libs).

static

Specifies a single-threaded, dynamic-link
(DLL) library.

dll

Specifies the Fortran QuickWin library.qwin

Specifies the Fortran Standard Graphics
library.

qwins

Default

The compiler links to a single-threaded, static run-time library./libs:static or /libs

Description

This option tells the compiler which type of run-time library to link to.

The library can be statically or dynamically loaded, multithreaded (/threads) or single-threaded,
or debug (/dbglibs) or nondebug.

If you use the /libs:dll option and an unresolved reference is found in the DLL, it gets
resolved when the program is executed, during program loading, reducing executable program
size.

If you use the /libs:qwin or /libs:qwins option with the /dll option, the compiler issues
a warning.

You cannot use the /libs:qwin option and options /libs:dll /threads.

The following table shows which options to specify for different run-time libraries:

AlternateOptionOptions
Required

Type of Library

/ML/libs:static
or

Single-threaded, static

/libs or

/static

713

20

AlternateOptionOptions
Required

Type of Library

/MT/libs:static

/threads

Multithreaded

/MLd/libs:static

/dbglibs

Debug single-threaded

/MTd/libs:static

/threads

Debug multithreaded

/dbglibs

/MDs/libs:dllSingle-threaded, dynamic-link libraries (DLLs)

/MDsd/libs:dll

/dbglibs

Debug single-threaded, dynamic-link libraries (DLLs)

/MD/libs:dll

/threads

Multithreaded DLLs

/MDd/libs:dll

/threads

Multithreaded debug DLLs

/dbglibs

/MW/libs:qwinFortran QuickWin multi-doc applications

/MWs/libs:qwinsFortran standard graphics (QuickWin single-doc)
applications

None/libs:qwin

/dbglibs

Debug Fortran QuickWin multi-doc applications

None/libs:qwins

/dbglibs

Debug Fortran standard graphics (QuickWin single-doc)
applications

714

20 Intel® Fortran Compiler User and Reference Guides

Alternate Options

Linux and Mac OS X:None/libs:dll
Windows: /MDs

Linux and Mac OS X: None/libs:static
Windows: /ML

Linux and Mac OS X: None/libs:qwin
Windows: /MW

Linux and Mac OS X: None/libs:qwins
Windows: /MWs

link
Passes user-specified options directly to the linker
at compile time.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/link

Arguments

None

Default

No user-specified options are passed directly to the linker.OFF

Description

This option passes user-specified options directly to the linker at compile time.

715

20

All options that appear following /link are passed directly to the linker.

Alternate Options

None

See Also
•
• Xlinker

logo
Displays the compiler version information.

IDE Equivalent

Windows: General > Suppress Startup Banner (/nologo)

Linux: None

Mac OS X: General > Show Startup Banner (-V)

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-logo

-nologo

Windows:

/logo

/nologo

Arguments

None

716

20 Intel® Fortran Compiler User and Reference Guides

Default

The compiler version information is not displayed.Linux and Mac OS X: nolo-
go

The compiler version information is displayed.Windows: logo

Description

This option displays the startup banner, which contains the following compiler version
information:

• ID: unique identification number for the compiler

• x.y.z: version of the compiler

• years: years for which the software is copyrighted

This option can be placed anywhere on the command line.

Alternate Options

Linux and Mac OS X: -V

Windows: None

lowercase, Qlowercase
See names.

m
Tells the compiler to generate optimized code
specialized for the processor that executes your
program.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

717

20

Syntax

Linux and Mac OS X:

-m[processor]

Windows:

None

Arguments

Indicates the processor for which code is generated. Possible
values are:

processor

Generates code that will run on any
Pentium or later processor. Disables any
default extended instruction settings, and

ia32

any previously set extended instruction
settings. This value is only available on
Linux systems using IA-32 architecture.

This is the same as specifying ia32.sse

Generates code for Intel® Streaming SIMD
Extensions 2 (Intel® SSE2). This value is
only available on Linux systems.

sse2

Generates code for Intel® Streaming SIMD
Extensions 3 (Intel® SSE3).

sse3

Generates code for Intel® Supplemental
Streaming SIMD Extensions 3 (Intel®

SSSE3).

ssse3

Generates code for Intel® Streaming SIMD
Extensions 4 Vectorizing Compiler and
Media Accelerators.

sse4.1

Default

For more information on the default values, see Arguments above.Linux systems: -msse2
Mac OS X systems using
IA-32 architecture: -msse3

718

20 Intel® Fortran Compiler User and Reference Guides

Mac OS X systems using
Intel® 64 architecture:
-mssse3

Description

This option tells the compiler to generate optimized code specialized for the processor that
executes your program.

Code generated with the values ia32, sse, sse2, or sse3 should execute on any compatible
non-Intel processor with support for the corresponding instruction set.

Options -x and -m are mutually exclusive. If both are specified, the compiler uses the last one
specified and generates a warning.

Alternate Options

Linux and Mac OS X: None

Windows: /arch

See Also
•
• x, Qx
• ax, Qax
• arch

m32, m64
Tells the compiler to generate code for a specific
architecture.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-m32

719

20

-m64

Windows:

None

Arguments

None

Default

The compiler's behavior depends on the host system.OFF

Description

These options tell the compiler to generate code for a specific architecture.

DescriptionOption

Tells the compiler to generate code for IA-32
architecture.

-m32

Tells the compiler to generate code for Intel®

64 architecture.
-m64

The -m32 and -m64 options are the same as Mac OS* X options -arch i386 and -arch x86_64,
respectively. Note that these options are provided for compatibility with gcc. They are not
related to the Intel® Fortran compiler option arch.

Alternate Options

None

map
Tells the linker to generate a link map file.

IDE Equivalent

Windows: Linker > Debug > Generate Map File

Linux: None

Mac OS X: None

720

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/map[:file]

/nomap

Arguments

Is the name for the link map file. It can be a file name or a
directory name.

file

Default

No link map is generated./nomap

Description

This option tells the linker to generate a link map file.

Alternate Options

None

map-opts, Qmap-opts
Maps one or more compiler options to their
equivalent on a different operating system.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

721

20

Syntax

Linux:

-map-opts

Mac OS X:

None

Windows:

/Qmap-opts

Arguments

None

Default

No platform mappings are performed.OFF

Description

This option maps one or more compiler options to their equivalent on a different operating
system. The result is output to stdout.

On Windows systems, the options you provide are presumed to be Windows options, so the
options that are output to stdout will be Linux equivalents.
On Linux systems, the options you provide are presumed to be Linux options, so the options
that are output to stdout will be Windows equivalents.

The tool can be invoked from the compiler command line or it can be used directly.

No compilation is performed when the option mapping tool is used.

This option is useful if you have both compilers and want to convert scripts or makefiles.

NOTE. Compiler options are mapped to their equivalent on the architecture you are
using.
For example, if you are using a processor with IA-32 architecture, you will only see
equivalent options that are available on processors with IA-32 architecture.

722

20 Intel® Fortran Compiler User and Reference Guides

Alternate Options

None

Example

The following command line invokes the option mapping tool, which maps the Linux options to
Windows-based options, and then outputs the results to stdout:

ifort -map-opts -xP -O2

The following command line invokes the option mapping tool, which maps the Windows options
to Linux-based options, and then outputs the results to stdout:

ifort /Qmap-opts /QxP /O2

See Also
•
•

Building Applications: Using the Option Mapping Tool

march
Tells the compiler to generate code for a specified
processor.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux:

-march=processor

Mac OS X:

None

Windows:

None

723

20

Arguments

Is the processor for which the compiler should generate
code. Possible values are:

processor

Generates code for Intel® Pentium® III
processors.

pentium3

Generates code for Intel® Pentium® 4
processors.

pentium4

Generates code for the Intel® Core 2™
processor family.

core2

Default

On IA-32 architecture, the compiler does not generate
processor-specific code unless it is told to do so. On systems using
Intel® 64 architecture, the compiler generates code for Intel
Pentium 4 processors.

OFF or
-march=pentium4

Description

This option tells the compiler to generate code for a specified processor.

Specifying -march=pentium4 sets -mtune=pentium4.

For compatibility, a number of historical processor values are also supported, but the generated
code will not differ from the default.

Alternate Options

None

mcmodel
Tells the compiler to use a specific memory model
to generate code and store data.

IDE Equivalent

None

Architectures

Intel® 64 architecture

724

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux:

-mcmodel=mem_model

Mac OS X:

None

Windows:

None

Arguments

Is the memory model to use. Possible values are:mem_model

Tells the compiler to restrict code and
data to the first 2GB of address space. All
accesses of code and data can be done
with Instruction Pointer (IP)-relative
addressing.

small

Tells the compiler to restrict code to the
first 2GB; it places no memory restriction
on data. Accesses of code can be done

medium

with IP-relative addressing, but accesses
of data must be done with absolute
addressing.

Places no memory restriction on code or
data. All accesses of code and data must
be done with absolute addressing.

large

Default

On systems using Intel® 64 architecture, the compiler restricts
code and data to the first 2GB of address space. Instruction Pointer
(IP)-relative addressing can be used to access code and data.

-mcmodel=small

725

20

Description

This option tells the compiler to use a specific memory model to generate code and store data.
It can affect code size and performance. If your program has COMMON blocks and local data
with a total size smaller than 2GB, -mcmodel=small is sufficient. COMMONs larger than 2GB
require -mcmodel=medium or -mcmodel=large. Allocation of memory larger than 2GB can be
done with any setting of -mcmodel.

IP-relative addressing requires only 32 bits, whereas absolute addressing requires 64-bits.
IP-relative addressing is somewhat faster. So, the small memory model has the least impact
on performance.

NOTE. When you specify -mcmodel=medium or -mcmodel=large, you must also specify
compiler option -shared-intel to ensure that the correct dynamic versions of the Intel
run-time libraries are used.

Alternate Options

None

Example

The following example shows how to compile using -mcmodel:

ifort -shared-intel -mcmodel=medium -o prog prog.f

See Also
•
• shared-intel

• fpic

mcpu
This is a deprecated option. See mtune.

MD
Tells the linker to search for unresolved references
in a multithreaded, dynamic-link run-time library.

IDE Equivalent

None

726

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/MD

/MDd

Arguments

None

Default

The linker searches for unresolved references in a single-threaded,
static run-time library.

OFF

Description

This option tells the linker to search for unresolved references in a multithreaded, dynamic-link
(DLL) run-time library. This is the same as specifying options /libs:dll /threads /dbglibs.
You can also specify /MDd, where d indicates a debug version.

Alternate Options

None

See Also
•
• libs

• threads

727

20

MDs
Tells the linker to search for unresolved references
in a single-threaded, dynamic-link run-time library.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/MDs

/MDsd

Arguments

None

Default

The linker searches for unresolved references in a single-threaded,
static run-time library.

OFF

Description

This option tells the linker to search for unresolved references in a single-threaded, dynamic-link
(DLL) run-time library.

You can also specify /MDsd, where d indicates a debug version.

Alternate Options

Linux and Mac OS X: None/MDs
Windows: /libs:dll

728

20 Intel® Fortran Compiler User and Reference Guides

See Also
•
• libs

mdynamic-no-pic
Generates code that is not position-independent
but has position-independent external references.

IDE Equivalent

None

Architectures

IA-32 architecture

Syntax

Linux:

None

Mac OS X:

-mdynamic-no-pic

Windows:

None

Arguments

None

Default

All references are generated as position independent.OFF

Description

This option generates code that is not position-independent but has position-independent
external references.

The generated code is suitable for building executables, but it is not suitable for building shared
libraries.

729

20

This option may reduce code size and produce more efficient code. It overrides the -fpic
compiler option.

Alternate Options

None

See Also
•
• fpic

MG
See winapp.

mieee-fp
See fltconsistency.

minstruction, Qinstruction
Determines whether MOVBE instructions are
generated for Intel processors.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-minstruction=[no]movbe

Windows:

/Qinstruction:[no]movbe

Arguments

None

730

20 Intel® Fortran Compiler User and Reference Guides

Default

The compiler does not generate MOVBE instructions for Intel®

Atom™ processors.
–minstruction=nomovbe
or/Qinstruction:nomovbe

Description

This option determines whether MOVBE instructions are generated for Intel processors. To use
this option, you must also specify -xSSE3_ATOM (Linux and Mac OS X) or /QxSSE3_ATOM
(Windows).

If -minstruction=movbe or /Qinstruction:movbe is specified, the following occurs:

• MOVBE instructions are generated that are specific to the Intel® Atom™ processor.

• The options are ON by default when -xSSE3_ATOM or /QxSSE3_ATOM is specified.

• Generated executables can only be run on Intel® Atom™ processors or processors that
support Intel® Streaming SIMD Extensions 3 (Intel® SSE3) and MOVBE.

If -minstruction=nomovbe or /Qinstruction:nomovbe is specified, the following occurs:

• The compiler optimizes code for the Intel® Atom™ processor, but it does not generate MOVBE
instructions.

• Generated executables can be run on non-Intel® Atom™ processors that support Intel® SSE3.

Alternate Options

None

See Also
•
•
• x, Qx

731

20

mixed-str-len-arg
See iface.

mkl, Qmkl
Tells the compiler to link to certain parts of the
Intel® Math Kernel Library (Intel® MKL).

IDE Equivalent

Windows: Libraries > Use Intel(R) Math Kernel Library

Linux: None

Mac OS X: Libraries > Use Inte(R)l Math Kernel Library

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-mkl[=lib]

Windows:

/Qmkl[:lib]

Arguments

Indicates the part of the library that the compiler should
link to. Possible values are:

lib

Tells the compiler to link using the
threaded part of the Intel® MKL. This is
the default if the option is specified with
no lib.

parallel

Tells the compiler to link using the
non-threaded part of the Intel® MKL.

sequential

Tells the compiler to link using the cluster
part and the sequential part of the Intel®

MKL.

cluster

732

20 Intel® Fortran Compiler User and Reference Guides

Default

The compiler does not link to the Intel® MKL.OFF

Description

This option tells the compiler to link to certain parts of the Intel® Math Kernel Library (Intel®

MKL).

Alternate Options

None

ML
Tells the linker to search for unresolved references
in a single-threaded, static run-time library.
This option has been deprecated.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/ML

/MLd

Arguments

None

733

20

Default

If Microsoft* Visual Studio* 2003 is being used, the linker searches
for unresolved references in a single-threaded, static run-time
library.

Systems using Microsoft
Visual Studio 2003: /ML

If Microsoft* Visual Studio* 2005 or greater is being used, or
Microsoft* Visual Studio* Premier Partner Edition (VSPPE) has
been installed, the linker searches for unresolved references in a
multithreaded, static run-time library.

Systems using Microsoft
Visual Studio 2005 or later:
OFF

Description

This option tells the linker to search for unresolved references in a single-threaded, static
run-time library. It is only valid with Microsoft Visual Studio 2003, and is deprecated with later
versions.

You can also specify /MLd, where d indicates a debug version.

Alternate Options

Linux: None

Mac OS X: None

Windows: /libs:static

See Also
•
• libs

module
Specifies the directory where module files should
be placed when created and where they should be
searched for.

IDE Equivalent

Windows: Output > Module Path

Linux: None

Mac OS X: Output Files > Module Path

734

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-module path

Windows:

/module:path

Arguments

Is the directory for module files.path

Default

The compiler places module files in the current directory.OFF

Description

This option specifies the directory (path) where module (.mod) files should be placed when
created and where they should be searched for (USE statement).

Alternate Options

None

mp
See fltconsistency

multiple-processes, MP
Creates multiple processes that can be used to
compile large numbers of source files at the same
time.

IDE Equivalent

None

735

20

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-multiple-processes[=n]

Windows:

/MP[:n]

Arguments

Is the maximum number of processes that the compiler
should create.

n

Default

A single process is used to compile source files.OFF

Description

This option creates multiple processes that can be used to compile large numbers of source
files at the same time. It can improve performance by reducing the time it takes to compile
source files on the command line.

This option causes the compiler to create one or more copies of itself, each in a separate process.
These copies simultaneously compile the source files.

If n is not specified for this option, the default value is as follows:

• On Windows OS, the value is based on the setting of the NUMBER_OF_PROCESSORS
environment variable.

• On Linux OS and Mac OS X, the value is 2.

This option applies to compilations, but not to linking or link-time code generation.

Alternate Options

None

736

20 Intel® Fortran Compiler User and Reference Guides

mp1, Qprec
Improves floating-point precision and consistency.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-mp1

Windows:

/Qprec

Arguments

None

Default

The compiler provides good accuracy and run-time performance
at the expense of less consistent floating-point results.

OFF

Description

This option improves floating-point consistency. It ensures the out-of-range check of operands
of transcendental functions and improves the accuracy of floating-point compares.

This option prevents the compiler from performing optimizations that change NaN comparison
semantics and causes all values to be truncated to declared precision before they are used in
comparisons. It also causes the compiler to use library routines that give better precision results
compared to the X87 transcendental instructions.

This option disables fewer optimizations and has less impact on performance than option flt-
consistency or mp.

Alternate Options

None

737

20

See Also
•
•
• fltconsistency

• mp

mrelax
Tells the compiler to pass linker option -relax to
the linker.

IDE Equivalent

None

Architectures

IA-64 architecture

Syntax

Linux and Mac OS X:

-mrelax

-mno-relax

Mac OS X:

None

Windows:

None

Arguments

None

Default

The compiler does not pass -relax to the linker.-mno-relax

Description

This option tells the compiler to pass linker option -relax to the linker.

738

20 Intel® Fortran Compiler User and Reference Guides

Alternate Options

None

MT
Tells the linker to search for unresolved references
in a multithreaded, static run-time library.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/MT

/MTd

Arguments

None

Default

On systems using Intel® 64 architecture, the linker searches for
unresolved references in a multithreaded, static run-time library.
On systems using IA-32 architecture and IA-64 architecture, the

Systems using Intel® 64
architecture: /MT /noreen-
trancy
IA-32 architecture and IA-64
architecture: OFF

linker searches for unresolved references in a single-threaded,
static run-time library. However, on systems using IA-32
architecture, if option Qvc8 is in effect, the linker searches for
unresolved references in threaded libraries.

739

20

Description

This option tells the linker to search for unresolved references in a multithreaded, static run-time
library. This is the same as specifying options /libs:static /threads /noreentrancy. You
can also specify /MTd, where d indicates a debug version.

Alternate Options

None

See Also
•
• Qvc

• libs

• threads

• reentrancy

mtune
Performs optimizations for specific processors.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-mtune=processor

Windows:

None

Arguments

Is the processor for which the compiler should perform
optimizations. Possible values are:

processor

740

20 Intel® Fortran Compiler User and Reference Guides

Generates code for the compiler's default
behavior.

generic

Optimizes for the Intel® Core™ 2
processor family, including support for
MMX™, Intel® SSE, SSE2, SSE3 and
SSSE3 instruction sets.

core2

Optimizes for Intel® Pentium® processors.pentium

Optimizes for Intel® Pentium® with MMX
technology.

pentium-mmx

Optimizes for Intel® Pentium® Pro, Intel
Pentium II, and Intel Pentium III
processors.

pentiumpro

Optimizes for Intel® Pentium® 4
processors.

pentium4

Optimizes for Intel® Pentium® 4
processors with MMX technology.

pentium4m

Optimizes for Intel® Itanium® 2
processors.

itanium2

Optimizes for the Dual-Core Intel®

Itanium® 2 processor 9000 series. This
option affects the order of the generated

itanium2-p9000

instructions, but the generated
instructions are limited to Intel® Itanium®

2 processor instructions unless the
program uses (executes) intrinsics specific
to the Dual-Core Intel® Itanium® 2
processor 9000 series.

Default

On systems using IA-32 and Intel® 64 architectures, code is
generated for the compiler's default behavior.

generic

On systems using IA-64 architecture, the compiler optimizes for
the Dual-Core Intel® Itanium® 2 processor 9000 series.

itanium2-p9000

Description

This option performs optimizations for specific processors.

741

20

The resulting executable is backwards compatible and generated code is optimized for specific
processors. For example, code generated with -mtune=itanium2-p9000 will run correctly on
single-core Itanium® 2 processors, but it might not run as fast as if it had been generated using
-mtune=itanium2.

The following table shows on which architecture you can use each value.

Architecture

IA-64 architectureIntel® 64
architecture

IA-32 architectureprocessor Value

XXXgeneric

XXcore2

Xpentium

Xpentium-mmx

Xpentiumpro

Xpentium4

Xpentium4m

Xitanium2

Xitanium2-p9000

Alternate Options

Linux: -mcpu (this is a deprecated option)
Mac OS X: None
Windows: None

-mtune

Linux: -mcpu=itanium2 (-mcpu is a deprecated option)
Mac OS X: None
Windows: /G2

-mtune=itanium2

Linux: -mcpu=itanium2-p9000 (-mcpu is a deprecated option)
Mac OS X: None
Windows: /G2-p9000

-mtune=itanium2-p9000

742

20 Intel® Fortran Compiler User and Reference Guides

multiple-processes, MP
Creates multiple processes that can be used to
compile large numbers of source files at the same
time.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-multiple-processes[=n]

Windows:

/MP[:n]

Arguments

Is the maximum number of processes that the compiler
should create.

n

Default

A single process is used to compile source files.OFF

Description

This option creates multiple processes that can be used to compile large numbers of source
files at the same time. It can improve performance by reducing the time it takes to compile
source files on the command line.

This option causes the compiler to create one or more copies of itself, each in a separate process.
These copies simultaneously compile the source files.

If n is not specified for this option, the default value is as follows:

• On Windows OS, the value is based on the setting of the NUMBER_OF_PROCESSORS
environment variable.

743

20

• On Linux OS and Mac OS X, the value is 2.

This option applies to compilations, but not to linking or link-time code generation.

Alternate Options

None

MW
See libs.

MWs
See libs.

names
Specifies how source code identifiers and external
names are interpreted.

IDE Equivalent

Windows: External Procedures > Name Case Interpretation

Linux: None

Mac OS X: External Procedures > Name Case Interpretation

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-names keyword

Windows:

/names:keyword

744

20 Intel® Fortran Compiler User and Reference Guides

Arguments

Specifies how to interpret the identifiers and external names
in source code. Possible values are:

keyword

Causes the compiler to ignore case
differences in identifiers and to convert
external names to lowercase.

lowercase

Causes the compiler to ignore case
differences in identifiers and to convert
external names to uppercase.

uppercase

Causes the compiler to distinguish case
differences in identifiers and to preserve
the case of external names.

as_is

Default

This is the default on Linux and Mac OS X systems. The compiler
ignores case differences in identifiers and converts external names
to lowercase.

lowercase

This is the default on Windows systems. The compiler ignores case
differences in identifiers and converts external names to uppercase.

uppercase

Description

This option specifies how source code identifiers and external names are interpreted. It can be
useful in mixed-language programming.

This naming convention applies whether names are being defined or referenced.

You can use the ALIAS directive to specify an alternate external name to be used when referring
to external subprograms.

CAUTION. On Windows systems, if you specify option /iface:cref, it overrides the
default for external names and causes them to be lowercase. It is as if you specified
"!dec$ attributes c, reference" for the external name.

If you specify option /iface:cref and want external names to be uppercase, you must
explicitly specify option /names:uppercase.

745

20

Alternate Options

Linux and Mac OS X: -lowercasenames lowercase
Windows: /Qlowercase

Linux and Mac OS X: -uppercasenames uppercase
Windows: /Quppercase

See Also
•
• iface

• ALIAS Directive

nbs
See assume.

no-bss-init, Qnobss-init
Tells the compiler to place in the DATA section any
variables explicitly initialized with zeros.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-no-bss-init

Windows:

/Qnobss-init

Arguments

None

746

20 Intel® Fortran Compiler User and Reference Guides

Default

Variables explicitly initialized with zeros are placed in the BSS
section.

OFF

Description

This option tells the compiler to place in the DATA section any variables explicitly initialized
with zeros.

Alternate Options

Linux and Mac OS X: -nobss-init (this is a deprecated option)

Windows: None

nodefaultlibs
Prevents the compiler from using standard libraries
when linking.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-nodefaultlibs

Windows:

None

Arguments

None

Default

The standard libraries are linked.OFF

747

20

Description

This option prevents the compiler from using standard libraries when linking.

Alternate Options

None

See Also
•
• nostdlib

nodefine
See D.

nofor-main
Specifies that the main program is not written in
Fortran.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-nofor-main

Windows:

None

Arguments

None

Default

The compiler assumes the main program is written in Fortran.OFF

748

20 Intel® Fortran Compiler User and Reference Guides

Description

This option specifies that the main program is not written in Fortran. It is a link-time option
that prevents the compiler from linking for_main.o into applications.

For example, if the main program is written in C and calls a Fortran subprogram, specify -nofor-
main when compiling the program with the ifort command.

If you omit this option, the main program must be a Fortran program.

Alternate Options

None

noinclude
See X.

nolib-inline
Disables inline expansion of standard library or
intrinsic functions.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-nolib-inline

Windows:

None

Arguments

None

Default

The compiler inlines many standard library and intrinsic functions.OFF

749

20

Description

This option disables inline expansion of standard library or intrinsic functions. It prevents the
unexpected results that can arise from inline expansion of these functions.

Alternate Options

None

nostartfiles
Prevents the compiler from using standard startup
files when linking.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-nostartfiles

Windows:

None

Arguments

None

Default

The compiler uses standard startup files when linking.OFF

Description

This option prevents the compiler from using standard startup files when linking.

Alternate Options

None

750

20 Intel® Fortran Compiler User and Reference Guides

See Also
•
• nostdlib

nostdinc
See X.

nostdlib
Prevents the compiler from using standard libraries
and startup files when linking.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-nostdlib

Windows:

None

Arguments

None

Default

The compiler uses standard startup files and standard libraries
when linking.

OFF

Description

This option prevents the compiler from using standard libraries and startup files when linking.

Alternate Options

None

751

20

See Also
•
• nodefaultlibs

• nostartfiles

nus
See assume.

o
Specifies the name for an output file.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-ofile

Windows:

None

Arguments

Is the name for the output file. The space before file is
optional.

file

Default

The compiler uses the default file name for an output file.OFF

Description

This option specifies the name for an output file as follows:

752

20 Intel® Fortran Compiler User and Reference Guides

• If -c is specified, it specifies the name of the generated object file.

• If -S is specified, it specifies the name of the generated assembly listing file.

• If -preprocess-only or -P is specified, it specifies the name of the generated preprocessor
file.

Otherwise, it specifies the name of the executable file.

NOTE. If you misspell a compiler option beginning with "o", such as -openmp, -opt-
report, etc., the compiler interprets the misspelled option as an -o file option. For
example, say you misspell "-opt-report" as " -opt-reprt"; in this case, the compiler
interprets the misspelled option as "-o pt-reprt", where pt-reprt is the output file name.

Alternate Options

Linux and Mac OS X: None

Windows: /Fe, /exe

See Also
•
• Fe

• object

O
Specifies the code optimization for applications.

IDE Equivalent

Windows: General > Optimization (/Od, /O1, /O2, /O3, /fast)

Optimization > Optimization (/Od, /O1, /O2, /O3, /fast)

Linux: None

Mac OS X: General > Optimization Level (-O)

Architectures

IA-32, Intel® 64, IA-64 architectures

753

20

Syntax

Linux and Mac OS X:

-O[n]

Windows:

/O[n]

Arguments

Is the optimization level. Possible values are 1, 2, or 3. On
Linux and Mac OS X systems, you can also specify 0.

n

Default

Optimizes for code speed. This default may change depending on
which other compiler options are specified. For details, see below.

O2

Description

This option specifies the code optimization for applications.

DescriptionOption

This is the same as specifying O2.O (Linux and Mac OS X)

Disables all optimizations. On systems using IA-32 architecture
and Intel® 64 architecture, this option sets option -fno-omit-
frame-pointer and option -fmath-errno.

O0 (Linux and Mac OS X)

This option causes certain warn options to be ignored. This is
the default if you specify option -debug (with no keyword).

Enables optimizations for speed and disables some optimizations
that increase code size and affect speed.
To limit code size, this option:

O1

• Enables global optimization; this includes data-flow analysis,
code motion, strength reduction and test replacement,
split-lifetime analysis, and instruction scheduling.

• On systems using IA-64 architecture, it disables software
pipelining, loop unrolling, and global code scheduling.

754

20 Intel® Fortran Compiler User and Reference Guides

DescriptionOption

On systems using IA-64 architecture, this option also enables
optimizations for server applications (straight-line and branch-like
code with a flat profile). The O1 option sets the following options:

• On Linux and Mac OS X systems:
-funroll-loops0, -nofltconsistency (same as -mno-
ieee-fp), -fomit-frame-pointer, -ftz

• On Windows systems using IA-32 architecture:
/Qunroll0, /nofltconsistency (same as /Op-), /Oy, /Os,
/Ob2, /Qftz

• On Windows systems using Intel® 64 architecture and IA-64
architecture:
/Qunroll0, /nofltconsistency (same as /Op-), /Os,
/Ob2, /Qftz

The O1 option may improve performance for applications with
very large code size, many branches, and execution time not
dominated by code within loops.

Enables optimizations for speed. This is the generally
recommended optimization level.
Vectorization is enabled at O2 and higher levels.
On systems using IA-64 architecture, this option enables
optimizations for speed, including global code scheduling,
software pipelining, predication, and speculation.
This option also enables:

O2

• Inlining of intrinsics

• Intra-file interprocedural optimization, which includes:

• inlining

• constant propagation

• forward substitution

• routine attribute propagation

• variable address-taken analysis

• dead static function elimination

755

20

DescriptionOption

• removal of unreferenced variables

• The following capabilities for performance gain:

• constant propagation

• copy propagation

• dead-code elimination

• global register allocation

• global instruction scheduling and control speculation

• loop unrolling

• optimized code selection

• partial redundancy elimination

• strength reduction/induction variable simplification

• variable renaming

• exception handling optimizations

• tail recursions

• peephole optimizations

• structure assignment lowering and optimizations

• dead store elimination

On Windows systems, this option is the same as the Ox option.

The O2 option sets the following options:

• On Windows systems using IA-32 architecture:
/Og, /Ot, /Oy, /Ob2, /Gs, and /Qftz

• On Windows systems using Intel® 64 architecture:
/Og, /Ot, /Ob2, /Gs, and /Qftz

On Linux and Mac OS X systems, if -g is specified, O2 is turned
off and O0 is the default unless O2 (or O1 or O3) is explicitly
specified in the command line together with -g.

756

20 Intel® Fortran Compiler User and Reference Guides

DescriptionOption

This option sets other options that optimize for code speed. The
options set are determined by the compiler depending on which
architecture and operating system you are using.

Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum
speed, such as:

O3

• Loop unrolling, including instruction scheduling

• Code replication to eliminate branches

• Padding the size of certain power-of-two arrays to allow more
efficient cache use.

On Windows systems, the O3 option sets the /Ob2 option.

On Linux and Mac OS X systems, the O3 option sets option
-fomit-frame-pointer.

On systems using IA-32 architecture or Intel® 64 architecture,
when O3 is used with options -ax or -x (Linux) or with options
/Qax or /Qx (Windows), the compiler performs more aggressive
data dependency analysis than for O2, which may result in longer
compilation times.
On systems using IA-64 architecture, the O3 option enables
optimizations for technical computing applications (loop-intensive
code): loop optimizations and data prefetch.

The O3 optimizations may not cause higher performance unless
loop and memory access transformations take place. The
optimizations may slow down code in some cases compared to
O2 optimizations.
The O3 option is recommended for applications that have loops
that heavily use floating-point calculations and process large
data sets.

The last O option specified on the command line takes precedence over any others.

757

20

NOTE. The options set by the O option may change from release to release.

Alternate Options

Linux and Mac OS X: None
Windows: /Od, /optimize:0, /nooptimize

O1

Linux and Mac OS X: None
Windows: /optimize:1, /optimize:2

O2

Linux and Mac OS X: None
Windows: /Ox, /optimize:3, /optimize:4

O3

Linux and Mac OS X: None
Windows: /optimize:5

O4

See Also
•
• Od

• Op
• fast

Optimizing Applications:

Compiler Optimizations Overview

Optimization Options Summary

Efficient Compilation

inline-level, Ob
Specifies the level of inline function expansion.

IDE Equivalent

Windows: Optimization > Inline Function Expansion

Linux: None

Mac OS X: Optimization > Inline Function Expansion

Architectures

IA-32, Intel® 64, IA-64 architectures

758

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-inline-level=n

Windows:

/Obn

Arguments

Is the inline function expansion level. Possible values are
0, 1, and 2.

n

Default

This is the default if option O2 is specified or is in effect by default.
On Windows systems, this is also the default if option O3 is
specified.

-inline-level=2 or /Ob2

This is the default if option -O0 (Linux and Mac OS) or /Od
(Windows) is specified.

-inline-level=0 or /Ob0

Description

This option specifies the level of inline function expansion. Inlining procedures can greatly
improve the run-time performance of certain programs.

DescriptionOption

Disables inlining of user-defined functions. Note that statement
functions are always inlined.

-inline-level=0 or
Ob0

Enables inlining when an inline keyword or an inline directive is
specified.

-inline-level=1 or
Ob1

Enables inlining of any function at the compiler's discretion.-inline-level=2 or
Ob2

Alternate Options

Linux: -Ob (this is a deprecated option)

Mac OS X: None

759

20

Windows: None

See Also
•
•
• inline

object
Specifies the name for an object file.

IDE Equivalent

Windows: Output Files > Object File Name

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/object:file

Arguments

Is the name for the object file. It can be a file or directory
name. A directory name must be followed by a backslash
(\). If a special character appears within the file name or

file

directory name, the file name or directory name must appear
within quotes. To be safe, you should consider any
non-ASCII numeric character to be a special character.

760

20 Intel® Fortran Compiler User and Reference Guides

Default

An object file has the same name as the name of the first source
file and a file extension of .obj.

OFF

Description

This option specifies the name for an object file.

If you specify this option and you omit /c or /compile-only, the /object option gives the
object file its name.

On Linux and Mac OS X systems, this option is equivalent to specifying option -ofile -c.

Alternate Options

Linux and Mac OS X: None

Windows: /Fo

Example

The following command shows how to specify a directory:

ifort /object:directorya\ end.f

If you do not add the backslash following a directory name, an executable is created. For
example, the following command causes the compiler to create directorya.exe:

ifort /object:directorya end.f

The following commands show how to specify a subdirectory that contains a special character:

ifort /object:"blank subdirectory"\ end.f

ifort /object:"c:\my_directory"\ end.f

See Also
•
• o

Od
Disables all optimizations.

IDE Equivalent

None

761

20

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/Od

Arguments

None

Default

The compiler performs default optimizations.OFF

Description

This option disables all optimizations. It can be used for selective optimizations, such as a
combination of /Od and /Og (disables all optimizations except global optimizations), or /Od
and /Ob1 (disables all optimizations, but enables inlining).

This option also causes certain /warn options to be ignored.

On IA-32 architecture, this option sets the /Oy- option.

Alternate Options

Linux and Mac OS X: -O0

Windows: /optimize:0

See Also
•
• O

762

20 Intel® Fortran Compiler User and Reference Guides

Og
Enables global optimizations.

IDE Equivalent

Windows: Optimization > Global Optimizations

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/Og

/Og-

Arguments

None

Default

Global optimizations are enabled unless /Od is specified./Og

Description

This option enables global optimizations.

Alternate Options

None

763

20

onetrip, Qonetrip
Tells the compiler to follow the FORTRAN 66
Standard and execute DO loops at least once.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-onetrip

Windows:

/Qonetrip

Arguments

None

Default

The compiler applies the current Fortran Standard semantics, which
allows zero-trip DO loops.

OFF

Description

This option tells the compiler to follow the FORTRAN 66 Standard and execute DO loops at least
once.

Alternate Options

Linux and Mac OS X: -1

Windows: /1

764

20 Intel® Fortran Compiler User and Reference Guides

Op
This is a deprecated option. See fltconsistency.

openmp, Qopenmp
Enables the parallelizer to generate multi-threaded
code based on the OpenMP* directives.

IDE Equivalent

Windows: Language > Process OpenMP Directives

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-openmp

Windows:

/Qopenmp

Arguments

None

Default

No OpenMP multi-threaded code is generated by the compiler.OFF

Description

This option enables the parallelizer to generate multi-threaded code based on the OpenMP*
directives. The code can be executed in parallel on both uniprocessor and multiprocessor
systems.

If you use this option, multithreaded libraries are used, but option fpp is not automatically
invoked.

765

20

This option sets option automatic.

This option works with any optimization level. Specifying no optimization (-O0 on Linux or /Od
on Windows) helps to debug OpenMP applications.

NOTE. On Mac OS X systems, when you enable OpenMP*, you must also set the
DYLD_LIBRARY_PATH environment variable within Xcode or an error will be displayed.

Alternate Options

None

See Also
•
•
• openmp-stubs, Qopenmp-stubs

openmp-lib, Qopenmp-lib
Lets you specify an OpenMP* run-time library to
use for linking.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-openmp-lib type

Mac OS X:

None

Windows:

/Qopenmp-lib:type

766

20 Intel® Fortran Compiler User and Reference Guides

Arguments

Specifies the type of library to use; it implies compatibility
levels. Possible values are:

type

Tells the compiler to use the legacy
OpenMP* run-time library (libguide). This
setting does not provide compatibility with
object files created using other compilers.
This is a deprecated option.

legacy

Tells the compiler to use the compatibility
OpenMP* run-time library (libiomp). This
setting provides compatibility with object
files created using Microsoft* and GNU*
compilers.

compat

Default

The compiler uses the compatibility OpenMP* run-time
library (libiomp).

-openmp-lib compat
or/Qopenmp-lib:compat

Description

This option lets you specify an OpenMP* run-time library to use for linking.

The legacy OpenMP run-time library is not compatible with object files created using OpenMP
run-time libraries supported in other compilers.

The compatibility OpenMP run-time library is compatible with object files created using the
Microsoft* OpenMP run-time library (vcomp) and GNU OpenMP run-time library (libgomp).

To use the compatibility OpenMP run-time library, compile and link your application using the
-openmp-lib compat (Linux) or /Qopenmp-lib:compat (Windows) option. To use this option,
you must also specify one of the following compiler options:

• Linux OS: -openmp, -openmp-profile, or -openmp-stubs

• Windows OS: /Qopenmp, /Qopenmp-profile, or /Qopenmp-stubs

On Windows* systems, the compatibility OpenMP* run-time library lets you combine OpenMP*
object files compiled with the Microsoft* C/C++ compiler with OpenMP* object files compiled
with the Intel C/C++ or Fortran compilers. The linking phase results in a single, coherent copy
of the run-time library.

767

20

On Linux* systems, the compatibility Intel OpenMP* run-time library lets you combine OpenMP*
object files compiled with the GNU* gcc or gfortran compilers with similar OpenMP* object files
compiled with the Intel C/C++ or Fortran compilers. The linking phase results in a single,
coherent copy of the run-time library.

You cannot link object files generated by the Intel® Fortran compiler to object files compiled
by the GNU Fortran compiler, regardless of the presence or absence of the -openmp (Linux) or
/Qopenmp (Windows) compiler option. This is because the Fortran run-time libraries are
incompatible.

NOTE. The compatibility OpenMP run-time library is not compatible with object files
created using versions of the Intel compiler earlier than 10.0.

Alternate Options

None

See Also
•
•
• openmp, Qopenmp
• openmp-stubs, Qopenmp-stubs
• openmp-profile, Qopenmp-profile

openmp-link, Qopenmp-link
Controls whether the compiler links to static or
dynamic OpenMP run-time libraries.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-openmp-link library

768

20 Intel® Fortran Compiler User and Reference Guides

Windows:

/Qopenmp-link:library

Arguments

Specifies the OpenMP library to use. Possible values are:library

Tells the compiler to link to static OpenMP
run-time libraries.

static

Tells the compiler to link to dynamic
OpenMP run-time libraries.

dynamic

Default

The compiler links to dynamic OpenMP run-time libraries.
However, if option static is specified, the compiler links
to static OpenMP run-time libraries.

-openmp-link dynamic or /Qopen-
mp-link:dynamic

Description

This option controls whether the compiler links to static or dynamic OpenMP run-time libraries.

To link to the static OpenMP run-time library (RTL) and create a purely static executable, you
must specify -openmp-link static (Linux and Mac OS X) or /Qopenmp-link:static
(Windows). However, we strongly recommend you use the default setting, -openmp-link
dynamic (Linux and Mac OS X) or /Qopenmp-link:dynamic (Windows).

NOTE. Compiler options -static-intel and -shared-intel (Linux and Mac OS X)
have no effect on which OpenMP run-time library is linked.

Alternate Options

None

769

20

openmp-profile, Qopenmp-profile
Enables analysis of OpenMP* applications if Intel®
Thread Profiler is installed.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-openmp-profile

Mac OS X:

None

Windows:

/Qopenmp-profile

Arguments

None

Default

OpenMP applications are not analyzed.OFF

Description

This option enables analysis of OpenMP* applications. To use this option, you must have
previously installed Intel® Thread Profiler, which is one of the Intel® Threading Analysis Tools.

This option can adversely affect performance because of the additional profiling and error
checking invoked to enable compatibility with the threading tools. Do not use this option unless
you plan to use the Intel® Thread Profiler.

For more information about Intel® Thread Profiler, open the page associated with threading
tools at Intel® Software Development Products.

770

20 Intel® Fortran Compiler User and Reference Guides

Alternate Options

None

openmp-report, Qopenmp-report
Controls the OpenMP* parallelizer's level of
diagnostic messages.

IDE Equivalent

Windows: Compilation Diagnostics > OpenMP Diagnostic Level

Linux: None

Mac OS X: Compiler Diagnostics > OpenMP Report

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-openmp-report[n]

Windows:

/Qopenmp-report[n]

Arguments

Is the level of diagnostic messages to display. Possible
values are:

n

No diagnostic messages are displayed.0

Diagnostic messages are displayed
indicating loops, regions, and sections
successfully parallelized.

1

The same diagnostic messages are
displayed as specified by openmp_report1
plus diagnostic messages indicating

2

successful handling of MASTER constructs,

771

20

SINGLE constructs, CRITICAL constructs,
ORDERED constructs, ATOMIC directives,
and so forth.

Default

If you do not specify n, the compiler displays diagnostic
messages indicating loops, regions, and sections
successfully parallelized. If you do not specify the option
on the command line, the default is to display no
messages.

-openmp-report1
or/Qopenmp-report1

Description

This option controls the OpenMP* parallelizer's level of diagnostic messages. To use this option,
you must also specify -openmp (Linux and Mac OS X) or /Qopenmp (Windows).

If this option is specified on the command line, the report is sent to stdout.

On Windows systems, if this option is specified from within the IDE, the report is included in
the build log if the Generate Build Logs option is selected.

Alternate Options

None

See Also
•
•
• openmp, Qopenmp

Optimizing Applications:

Using Parallelism

OpenMP* Report

openmp-stubs, Qopenmp-stubs
Enables compilation of OpenMP programs in
sequential mode.

IDE Equivalent

Windows: Language > Process OpenMP Directives

772

20 Intel® Fortran Compiler User and Reference Guides

Linux: None

Mac OS X: Language > Process OpenMP Directives

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-openmp-stubs

Windows:

/Qopenmp-stubs

Arguments

None

Default

The library of OpenMP function stubs is not linked.OFF

Description

This option enables compilation of OpenMP programs in sequential mode. The OpenMP directives
are ignored and a stub OpenMP library is linked.

Alternate Options

None

See Also
•
•
• openmp, Qopenmp

773

20

openmp-threadprivate, Qopenmp-threadprivate
Lets you specify an OpenMP* threadprivate
implementation.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-openmp-threadprivate type

Mac OS X:

None

Windows:

/Qopenmp-threadprivate:type

Arguments

Specifies the type of threadprivate implementation. Possible
values are:

type

Tells the compiler to use the legacy
OpenMP* threadprivate implementation
used in the previous releases of the Intel®

legacy

compiler. This setting does not provide
compatibility with the implementation
used by other compilers.

Tells the compiler to use the compatibility
OpenMP* threadprivate implementation
based on applying the thread-local

compat

attribute to each threadprivate variable.
This setting provides compatibility with
the implementation provided by the
Microsoft* and GNU* compilers.

774

20 Intel® Fortran Compiler User and Reference Guides

Default

The compiler uses the legacy OpenMP* threadprivate
implementation used in the previous releases of the Intel®

compiler.

-openmp-threadprivate legacy
or/Qopenmp-threadprivate:legacy

Description

This option lets you specify an OpenMP* threadprivate implementation.

The legacy OpenMP run-time library is not compatible with object files created using OpenMP
run-time libraries supported in other compilers.

To use this option, you must also specify one of the following compiler options:

• Linux OS: -openmp, -openmp-profile, or -openmp-stubs

• Windows OS: /Qopenmp, /Qopenmp-profile, or /Qopenmp-stubs

The value specified for this option is independent of the value used for option -openmp-lib
(Linux) or /Qopenmp-lib (Windows).

Alternate Options

None

opt-block-factor, Qopt-block-factor
Lets you specify a loop blocking factor.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-opt-block-factor=n

Windows:

/Qopt-block-factor:n

775

20

Arguments

Is the blocking factor. It must be an integer. The compiler
may ignore the blocking factor if the value is 0 or 1.

n

Default

The compiler uses default heuristics for loop blocking.OFF

Description

This option lets you specify a loop blocking factor.

Alternate Options

None

opt-jump-tables, Qopt-jump-tables
Enables or disables generation of jump tables for
switch statements.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-opt-jump-tables=keyword

-no-opt-jump-tables

Windows:

/Qopt-jump-tables:keyword

/Qopt-jump-tables-

776

20 Intel® Fortran Compiler User and Reference Guides

Arguments

Is the instruction for generating jump tables. Possible values
are:

keyword

Tells the compiler to never generate jump
tables. All switch statements are
implemented as chains of if-then-elses.

never

This is the same as specifying -no-opt-
jump-tables (Linux and Mac OS) or
/Qopt-jump-tables- (Windows).

The compiler uses default heuristics to
determine when to generate jump tables.

default

Tells the compiler to generate jump tables
up to a certain pre-defined size (64K
entries).

large

Must be an integer. Tells the compiler to
generate jump tables up ton entries in
size.

n

Default

The compiler uses default heuristics to determine when to generate
jump tables for switch statements.

-opt-jump-tables=de-
fault
or/Qopt-jump-tables:de-
fault

Description

This option enables or disables generation of jump tables for switch statements. When the
option is enabled, it may improve performance for programs with large switch statements.

Alternate Options

None

777

20

opt-loadpair, Qopt-loadpair
Enables or disables loadpair optimization.

IDE Equivalent

None

Architectures

IA-64 architecture

Syntax

Linux:

-opt-loadpair

-no-opt-loadpair

Mac OS X:

None

Windows:

/Qopt-loadpair

/Qopt-loadpair-

Arguments

None

Default

Loadpair optimization is disabled unless option O3 is specified.-no-opt-loadpair
or/Qopt-loadpair-

Description

This option enables or disables loadpair optimization.

When -O3 is specified on IA-64 architecture, loadpair optimization is enabled by default. To
disable loadpair generation, specify -no-opt-loadpair (Linux) or /Qopt-loadpair- (Windows).

778

20 Intel® Fortran Compiler User and Reference Guides

Alternate Options

None

opt-malloc-options
Lets you specify an alternate algorithm for
malloc().

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-opt-malloc-options=n

Windows:

None

Arguments

Specifies the algorithm to use for malloc(). Possible values
are:

n

Tells the compiler to use the default
algorithm for malloc(). This is the default.

0

Causes the following adjustments to the
malloc() algorithm: M_MMAP_MAX=2 and
M_TRIM_THRESHOLD=0x10000000.

1

Causes the following adjustments to the
malloc() algorithm: M_MMAP_MAX=2 and
M_TRIM_THRESHOLD=0x40000000.

2

Causes the following adjustments to the
malloc() algorithm: M_MMAP_MAX=0 and
M_TRIM_THRESHOLD=-1.

3

779

20

Causes the following adjustments to
the malloc() algorithm:
M_MMAP_MAX=0,
M_TRIM_THRESHOLD=-1,
M_TOP_PAD=4096.

4

Default

The compiler uses the default algorithm when malloc()
is called. No call is made to mallopt().

-opt-malloc-options=0

Description

This option lets you specify an alternate algorithm for malloc().

If you specify a non-zero value for n, it causes alternate configuration parameters to be set for
how malloc() allocates and frees memory. It tells the compiler to insert calls to mallopt() to
adjust these parameters to malloc() for dynamic memory allocation. This may improve speed.

Alternate Options

None

See Also
•

malloc(3) man page

mallopt function (defined in malloc.h)

opt-mem-bandwidth, Qopt-mem-bandwidth
Enables performance tuning and heuristics that
control memory bandwidth use among processors.

IDE Equivalent

None

Architectures

IA-64 architecture

780

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux:

-opt-mem-bandwidthn

Mac OS X:

None

Windows:

/Qopt-mem-bandwidthn

Arguments

Is the level of optimizing for memory bandwidth usage.
Possible values are:

n

Enables a set of performance tuning and
heuristics in compiler optimizations that
is optimal for serial code.

0

Enables a set of performance tuning and
heuristics in compiler optimizations for
multithreaded code generated by the
compiler.

1

Enables a set of performance tuning and
heuristics in compiler optimizations for
parallel code such as Windows Threads,

2

pthreads, and MPI code, besides
multithreaded code generated by the
compiler.

Default

For serial (non-parallel) compilation, a set of performance tuning
and heuristics in compiler optimizations is enabled that is optimal
for serial code.

-opt-mem-bandwidth0
or/Qopt-mem-bandwidth0

If you specify compiler option -parallel (Linux) or /Qparallel
(Windows), or -openmp (Linux) or /Qopenmp (Windows), a set of
performance tuning and heuristics in compiler optimizations for
multithreaded code generated by the compiler is enabled.

-opt-mem-bandwidth1
or/Qopt-mem-bandwidth1

781

20

Description

This option enables performance tuning and heuristics that control memory bandwidth use
among processors. It allows the compiler to be less aggressive with optimizations that might
consume more bandwidth, so that the bandwidth can be well-shared among multiple processors
for a parallel program.

For values of n greater than 0, the option tells the compiler to enable a set of performance
tuning and heuristics in compiler optimizations such as prefetching, privatization, aggressive
code motion, and so forth, for reducing memory bandwidth pressure and balancing memory
bandwidth traffic among threads.

This option can improve performance for threaded or parallel applications on multiprocessors
or multicore processors, especially when the applications are bounded by memory bandwidth.

Alternate Options

None

See Also
•
•
• parallel, Qparallel
• openmp, Qopenmp

opt-mod-versioning, Qopt-mod-versioning
Enables or disables versioning of modulo operations
for certain types of operands.

IDE Equivalent

None

Architectures

IA-64 architecture

Syntax

Linux:

-opt-mod-versioning

-no-opt-mod-versioning

782

20 Intel® Fortran Compiler User and Reference Guides

Mac OS X:

None

Windows:

/Qopt-mod-versioning

/Qopt-mod-versioning-

Arguments

None

Default

Versioning of modulo operations is disabled.-no-opt-mod-versioning
or/Qopt-mod-versioning-

Description

This option enables or disables versioning of modulo operations for certain types of operands.
It is used for optimization tuning.

Versioning of modulo operations may improve performance for x mod y when modulus y is a
power of 2.

Alternate Options

None

opt-multi-version-aggressive, Qopt-multi-version-aggressive
Tells the compiler to use aggressive
multi-versioning to check for pointer aliasing and
scalar replacement.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

783

20

Syntax

Linux and Mac OS X:

-opt-multi-version-aggressive

-no-opt-multi-version-aggressive

Windows:

/Qopt-multi-version-aggressive

/Qopt-multi-version-aggressive-

Arguments

None

Default

The compiler uses default heuristics when checking for pointer
aliasing and scalar replacement.

-no-opt-multi-version-
aggressive
or/Qopt-multi-version-
aggressive-

Description

This option tells the compiler to use aggressive multi-versioning to check for pointer aliasing
and scalar replacement. This option may improve performance.

Alternate Options

None

opt-prefetch, Qopt-prefetch
Enables or disables prefetch insertion optimization.

IDE Equivalent

Windows: Optimization > Prefetch Insertion

Linux: None

Mac OS X: Optimization > Enable Prefetch Insertion

784

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-opt-prefetch[=n]

-no-opt-prefetch

Windows:

/Qopt-prefetch[:n]

/Qopt-prefetch-

Arguments

Is the level of detail in the report. Possible values are:n

Disables software prefetching. This is the
same as specifying -no-opt-prefetch
(Linux and Mac OS X) or /Qopt-
prefetch- (Windows).

0

Enables different levels of software
prefetching. If you do not specify a value
for n, the default is 2 on IA-32 and Intel®

1 to 4

64 architecture; the default is 3 on IA-64
architecture. Use lower values to reduce
the amount of prefetching.

Default

On IA-64 architecture, prefetch insertion optimization is enabled.IA-64 architecture: -opt-
prefetch
or/Qopt-prefetch

On IA-32 architecture and Intel® 64 architecture, prefetch insertion
optimization is disabled.

IA-32 architecture and Intel®

64 architecture:
-no-opt-prefetch
or/Qopt-prefetch-

785

20

Description

This option enables or disables prefetch insertion optimization. The goal of prefetching is to
reduce cache misses by providing hints to the processor about when data should be loaded
into the cache.

On IA-64 architecture, this option is enabled by default if you specify option O1 or higher. To
disable prefetching at these optimization levels, specify -no-opt-prefetch (Linux and Mac
OS X) or /Qopt-prefetch- (Windows).

On IA-32 architecture and Intel® 64 architecture, this option enables prefetching when higher
optimization levels are specified.

Alternate Options

Linux and Mac OS X: -prefetch (this is a deprecated option)

Windows: /Qprefetch (this is a deprecated option)

opt-prefetch-initial-values, Qopt-prefetch-initial-values
Enables or disables prefetches that are issued
before a loop is entered.

IDE Equivalent

None

Architectures

IA-64 architecture

Syntax

Linux:

-opt-prefetch-initial-values

-no-opt-prefetch-initial-values

Mac OS X:

None

Windows:

/Qopt-prefetch-initial-values

/Qopt-prefetch-initial-values-

786

20 Intel® Fortran Compiler User and Reference Guides

Arguments

None

Default

Prefetches are issued before a loop is entered.-opt-prefetch-initial-
values
or/Qopt-prefetch-ini-
tial-values

Description

This option enables or disables prefetches that are issued before a loop is entered. These
prefetches target the initial iterations of the loop.

When -O1 or higher is specified on IA-64 architecture, prefetches are issued before a loop is
entered. To disable these prefetches, specify -no-opt-prefetch-initial-values (Linux)
or /Qopt-prefetch-initial-values- (Windows).

Alternate Options

None

opt-prefetch-issue-excl-hint, Qopt-prefetch-issue-excl-hint
Determines whether the compiler issues prefetches
for stores with exclusive hint.

IDE Equivalent

None

Architectures

IA-64 architecture

Syntax

Linux:

-opt-prefetch-issue-excl-hint

-no-opt-prefetch-issue-excl-hint

787

20

Mac OS X:

None

Windows:

/Qopt-prefetch-issue-excl-hint

/Qopt-prefetch-issue-excl-hint-

Arguments

None

Default

The compiler does not issue prefetches for stores with exclusive
hint.

-no-opt-prefetch-issue-
excl-hint
or/Qopt-prefetch-issue-
excl-hint-

Description

This option determines whether the compiler issues prefetches for stores with exclusive hint.
If option -opt-prefetch-issue-excl-hint (Linux) or /Qopt-prefetch-issue-excl-hint
(Windows) is specified, the prefetches will be issued if the compiler determines it is beneficial
to do so.

When prefetches are issued for stores with exclusive-hint, the cache-line is in "exclusive-mode".
This saves on cache-coherence traffic when other processors try to access the same cache-line.
This feature can improve performance tuning.

Alternate Options

None

opt-prefetch-next-iteration, Qopt-prefetch-next-iteration
Enables or disables prefetches for a memory access
in the next iteration of a loop.

IDE Equivalent

None

788

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-64 architecture

Syntax

Linux:

-opt-prefetch-next-iteration

-no-opt-prefetch-next-iteration

Mac OS X:

None

Windows:

/Qopt-prefetch-next-iteration

/Qopt-prefetch-next-iteration-

Arguments

None

Default

Prefetches are issued for a memory access in the next iteration of
a loop.

-opt-prefetch-next-iter-
ation
or/Qopt-prefetch-next-
iteration

Description

This option enables or disables prefetches for a memory access in the next iteration of a loop.
It is typically used in a pointer-chasing loop.

When -O1 or higher is specified on IA-64 architecture, prefetches are issued for a memory
access in the next iteration of a loop. To disable these prefetches, specify -no-opt-prefetch-
next-iteration (Linux) or /Qopt-prefetch-next-iteration- (Windows).

Alternate Options

None

789

20

opt-ra-region-strategy, Qopt-ra-region-strategy
Selects the method that the register allocator uses
to partition each routine into regions.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-opt-ra-region-strategy[=keyword]

Windows:

/Qopt-ra-region-strategy[:keyword]

Arguments

Is the method used for partitioning. Possible values are:keyword

Creates a single region for each routine.routine

Partitions each routine into one region
per basic block.

block

Partitions each routine into one region
per trace.

trace

Partitions each routine into one region
per loop.

region

The compiler determines which method
is used for partitioning.

default

Default

The compiler determines which method is used for partitioning.
This is also the default if keyword is not specified.

-opt-ra-region-strate-
gy=default
or/Qopt-ra-region-
strategy:default

790

20 Intel® Fortran Compiler User and Reference Guides

Description

This option selects the method that the register allocator uses to partition each routine into
regions.

When setting default is in effect, the compiler attempts to optimize the tradeoff between
compile-time performance and generated code performance.

This option is only relevant when optimizations are enabled (O1 or higher).

Alternate Options

None

See Also
•
•
• O

opt-report, Qopt-report
Tells the compiler to generate an optimization
report to stderr.

IDE Equivalent

Windows: Diagnostics > Optimization Diagnostics Level

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-opt-report [n]

Windows:

/Qopt-report[:n]

791

20

Arguments

Is the level of detail in the report. On Linux OS and Mac OS
X systems, a space must appear before the n. Possible
values are:

n

Tells the compiler to generate no
optimization report.

0

Tells the compiler to generate a report
with the minimum level of detail.

1

Tells the compiler to generate a report
with the medium level of detail.

2

Tells the compiler to generate a report
with the maximum level of detail.

3

Default

If you do not specify n, the compiler generates a report with
medium detail. If you do not specify the option on the command
line, the compiler does not generate an optimization report.

-opt-report 2 or /Qopt-
report:2

Description

This option tells the compiler to generate an optimization report to stderr.

Alternate Options

None

See Also
•
•
• opt-report-file, Qopt-report-file

Optimizing Applications: Optimizer Report Generation

792

20 Intel® Fortran Compiler User and Reference Guides

opt-report-file, Qopt-report-file
Specifies the name for an optimization report.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-opt-report-file=file

Windows:

/Qopt-report-file:file

Arguments

Is the name for the optimization report.file

Default

No optimization report is generated.OFF

Description

This option specifies the name for an optimization report. If you use this option, you do not
have to specify -opt-report (Linux and Mac OS X) or /Qopt-report (Windows).

Alternate Options

None

See Also
•
•
• opt-report, Qopt-report

Optimizing Applications: Optimizer Report Generation

793

20

opt-report-help, Qopt-report-help
Displays the optimizer phases available for report
generation.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-opt-report-help

Windows:

/Qopt-report-help

Arguments

None

Default

No optimization reports are generated.OFF

Description

This option displays the optimizer phases available for report generation using -opt-report-
phase (Linux and Mac OS X) or /Qopt-report-phase (Windows). No compilation is performed.

Alternate Options

None

See Also
•
•
• opt-report, Qopt-report
• opt-report-phase, Qopt-report-phase

794

20 Intel® Fortran Compiler User and Reference Guides

opt-report-phase, Qopt-report-phase
Specifies an optimizer phase to use when
optimization reports are generated.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-opt-report-phase=phase

Windows:

/Qopt-report-phase:phase

Arguments

Is the phase to generate reports for. Some of the possible
values are:

phase

The Interprocedural Optimizer phaseipo

The High Level Optimizer phasehlo

The High Performance Optimizer phasehpo

The Intermediate Language Scalar
Optimizer phase

ilo

The Code Generator phase (Windows and
Linux systems using IA-64 architecture
only)

ecg

The software pipelining component of the
Code Generator phase (Windows and
Linux systems using IA-64 architecture
only)

ecg_swp

The Profile Guided Optimization phasepgo

All optimizer phasesall

795

20

Default

No optimization reports are generated.OFF

Description

This option specifies an optimizer phase to use when optimization reports are generated. To
use this option, you must also specify -opt-report (Linux and Mac OS X) or /Qopt-report
(Windows).

This option can be used multiple times on the same command line to generate reports for
multiple optimizer phases.

When one of the logical names for optimizer phases is specified for phase, all reports from that
optimizer phase are generated.

To find all phase possibilities, use option -opt-report-help (Linux and Mac OS X) or /Qopt-
report-help (Windows).

Alternate Options

None

See Also
•
•
• opt-report, Qopt-report

opt-report-routine, Qopt-report-routine
Tells the compiler to generate reports on the
routines containing specified text.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

796

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-opt-report-routine=string

Windows:

/Qopt-report-routine:string

Arguments

Is the text (string) to look for.string

Default

No optimization reports are generated.OFF

Description

This option tells the compiler to generate reports on the routines containing specified text as
part of their name.

Alternate Options

None

See Also
•
•
• opt-report, Qopt-report

opt-streaming-stores, Qopt-streaming-stores
Enables generation of streaming stores for
optimization.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

797

20

Syntax

Linux and Mac OS X:

-opt-streaming-stores keyword

Windows:

/Qopt-streaming-stores:keyword

Arguments

Specifies whether streaming stores are generated. Possible
values are:

keyword

Enables generation of streaming stores
for optimization. The compiler optimizes
under the assumption that the application
is memory bound.

always

Disables generation of streaming stores
for optimization. Normal stores are
performed.

never

Lets the compiler decide which
instructions to use.

auto

Default

The compiler decides whether to use streaming stores or normal
stores.

-opt-streaming-stores
auto
or/Qopt-streaming-
stores:auto

Description

This option enables generation of streaming stores for optimization. This method stores data
with instructions that use a non-temporal buffer, which minimizes memory hierarchy pollution.

For this option to be effective, the compiler must be able to generate SSE2 (or higher)
instructions. For more information, see compiler option x or ax.

This option may be useful for applications that can benefit from streaming stores.

798

20 Intel® Fortran Compiler User and Reference Guides

Alternate Options

None

See Also
•
•
• ax, Qax
• x, Qx
• opt-mem-bandwidth, Qopt-mem-bandwidth, Qx

Optimizing Applications: Vectorization Support

opt-subscript-in-range, Qopt-subscript-in-range
Determines whether the compiler assumes no
overflows in the intermediate computation of
subscript expressions in loops.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-opt-subscript-in-range

-no-opt-subscript-in-range

Windows:

/Qopt-subscript-in-range

/Qopt-subscript-in-range-

Arguments

None

799

20

Default

The compiler assumes overflows in the intermediate computation
of subscript expressions in loops.

-no-opt-subscript-in-
range
or/Qopt-subscript-in-
range-

Description

This option determines whether the compiler assumes no overflows in the intermediate
computation of subscript expressions in loops.

If you specify -opt-subscript-in-range (Linux and Mac OS X) or /Qopt-subscript-in-
range (Windows), the compiler ignores any data type conversions used and it assumes no
overflows in the intermediate computation of subscript expressions. This feature can enable
more loop transformations.

Alternate Options

None

Example

The following shows an example where these options can be useful. m is declared as type
integer(kind=8) (64-bits) and all other variables inside the subscript are declared as type
integer(kind=4) (32-bits):

A[i + j + (n + k) * m]

optimize
See O.

Os
Enables optimizations that do not increase code
size and produces smaller code size than O2.

IDE Equivalent

Windows: Optimization > Favor Size or Speed

Linux: None

Mac OS X: None

800

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-Os

Windows:

/Os

Arguments

None

Default

Optimizations are made for code speed. However, if O1 is specified,
Os is the default.

OFF

Description

This option enables optimizations that do not increase code size and produces smaller code
size than O2. It disables some optimizations that increase code size for a small speed benefit.

This option tells the compiler to favor transformations that reduce code size over transformations
that produce maximum performance.

Alternate Options

None

See Also
•
• O

• Ot

801

20

Ot
Enables all speed optimizations.

IDE Equivalent

Windows: Optimization > Favor Size or Speed (/Ot, /Os)

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/Ot

Arguments

None

Default

Optimizations are made for code speed./Ot
If Od is specified, all optimizations are disabled. If O1 is specified,
Os is the default.

Description

This option enables all speed optimizations.

Alternate Options

None

See Also
•

802

20 Intel® Fortran Compiler User and Reference Guides

• O

• Os

Ox
See O.

fomit-frame-pointer, Oy
Determines whether EBP is used as a
general-purpose register in optimizations.

IDE Equivalent

Windows: Optimization > Omit Frame Pointers

Linux: None

Mac OS X: Optimization > Provide Frame Pointer

Architectures

-f[no-]omit-frame-pointer: IA-32 architecture, Intel® 64 architecture

/Oy[-]: IA-32 architecture

Syntax

Linux and Mac OS X:

-fomit-frame-pointer

-fno-omit-frame-pointer

Windows:

/Oy

/Oy-

Arguments

None

803

20

Default

EBP is used as a general-purpose register in optimizations.
However, on Linux* and Mac OS X systems, the default is -fno-
omit-frame-pointer if option -O0 or -g is specified. On
Windows* systems, the default is /Oy- if option /Od is specified.

-fomit-frame-pointer
or /Oy

Description

These options determine whether EBP is used as a general-purpose register in optimizations.
Options -fomit-frame-pointer and /Oy allow this use. Options -fno-omit-frame-pointer
and /Oy- disallow it.

Some debuggers expect EBP to be used as a stack frame pointer, and cannot produce a stack
backtrace unless this is so. The -fno-omit-frame-pointer and /Oy- options direct the
compiler to generate code that maintains and uses EBP as a stack frame pointer for all functions
so that a debugger can still produce a stack backtrace without doing the following:

• For -fno-omit-frame-pointer: turning off optimizations with -O0

• For /Oy-: turning off /O1, /O2, or /O3 optimizations

The -fno-omit-frame-pointer option is set when you specify option -O0 or the -g option.
The -fomit-frame-pointer option is set when you specify option -O1, -O2, or -O3.

The /Oy option is set when you specify the /O1, /O2, or /O3 option. Option /Oy- is set when
you specify the /Od option.

Using the -fno-omit-frame-pointer or /Oy- option reduces the number of available
general-purpose registers by 1, and can result in slightly less efficient code.

Alternate Options

Linux and Mac OS X: -fp (this is a deprecated option)

Windows: None

804

20 Intel® Fortran Compiler User and Reference Guides

p
Compiles and links for function profiling with
gprof(1).

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-p

Windows:

None

Arguments

None

Default

Files are compiled and linked without profiling.OFF

Description

This option compiles and links for function profiling with gprof(1).

Alternate Options

Linux and Mac OS X: -pg (only available on systems using IA-32 architecture or Intel® 64
architecture), -qp (this is a deprecated option)

Windows: None

805

20

P
See preprocess-only.

pad, Qpad
Enables the changing of the variable and array
memory layout.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-pad

-nopad

Windows:

/Qpad

/Qpad-

Arguments

None

Default

Variable and array memory layout is performed by default methods.-nopad or /Qpad-

Description

This option enables the changing of the variable and array memory layout.

This option is effectively not different from the align option when applied to structures and
derived types. However, the scope of pad is greater because it applies also to common blocks,
derived types, sequence types, and structures.

806

20 Intel® Fortran Compiler User and Reference Guides

Alternate Options

None

See Also
•
•
• align

pad-source, Qpad-source
Specifies padding for fixed-form source records.

IDE Equivalent

Windows: Language > Pad Fixed Form Source Lines

Linux: None

Mac OS X: Language > Pad Fixed Form Source Lines

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-pad-source

-nopad-source

Windows:

/pad-source

/nopad-source

/Qpad-source

/Qpad-source-

Arguments

None

807

20

Default

Fixed-form source records are not padded.-nopad-source or /Qpad-
source-

Description

This option specifies padding for fixed-form source records. It tells the compiler that fixed-form
source lines shorter than the statement field width are to be padded with spaces to the end of
the statement field. This affects the interpretation of character and Hollerith literals that are
continued across source records.

The default value setting causes a warning message to be displayed if a character or Hollerith
literal that ends before the statement field ends is continued onto the next source record. To
suppress this warning message, specify option -warn nousage (Linux and Mac OS X) or
/warn:nousage (Windows).

Specifying pad-source or /Qpad-source can prevent warning messages associated with option
-warn usage (Linux and Mac OS X) or /warn:usage (Windows).

Alternate Options

None

See Also
•
•
• warn

par-affinity, Qpar-affinity
Specifies thread affinity.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

808

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux:

-par-affinity=[modifier,...]type[,permute][,offset]

Mac OS X:

None

Windows:

/Qpar-affinity:[modifier,...]type[,permute][,offset]

Arguments

Is one of the following values:
granularity={fine|thread|core}, [no]respect,
[no]verbose, [no]warnings, proclist=proc_list. The

modifier

default is granularity=core, respect, and noverbose.
For information on value proclist, see Thread Affinity
Interface in Optimizing Applications.

Indicates the thread affinity. This argument is required and
must be one of the following values: compact, disabled,
explicit, none, scatter, logical, physical. The default

type

is none. Values logical and physical are deprecated.
Use compact and scatter, respectively, with no permute
value.

Is a positive integer. You cannot use this argument with
type setting explicit, none, or disabled. The default is
0.

permute

Is a positive integer. You cannot use this argument with
type setting explicit, none, or disabled. The default is
0.

offset

Default

The thread affinity is determined by the run-time environment.OFF

Description

This option specifies thread affinity, which binds threads to physical processing units. It has
the same effect as environment variable KMP_AFFINITY.

809

20

This option overrides the environment variable when both are specified.

This option only has an effect if the following is true:

• Linux* OS: You have specified option -parallel or -openmp (or both).

Windows* OS: You have specified option /Qparallel or /Qopenmp (or both).

• You are compiling the main program.

Alternate Options

None

See Also
•
•
• Thread Affinity Interface

par-num-threads, Qpar-num-threads
Specifies the number of threads to use in a parallel
region.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-par-num-threads=n

Windows:

/Qpar-num-threads:n

Arguments

Is the number of threads to use. It must be a positive
integer.

n

810

20 Intel® Fortran Compiler User and Reference Guides

Default

The number of threads to use is determined by the run-time
environment.

OFF

Description

This option specifies the number of threads to use in a parallel region. It has the same effect
as environment variable OMP_NUM_THREADS.

This option overrides the environment variable when both are specified.

This option only has an effect if the following is true:

• Linux* OS and Mac OS* X: You have specified option -parallel or -openmp (or both).

Windows* OS: You have specified option /Qparallel or /Qopenmp (or both).

• You are compiling the main program.

Alternate Options

None

par-report, Qpar-report
Controls the diagnostic information reported by
the auto-parallelizer.

IDE Equivalent

Windows: Compilation Diagnostics > Auto-Parallelizer Diagnostic Level

Linux: None

Mac OS X: Diagnostics > Auto-Parallelizer Report

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-par-report[n]

811

20

Windows:

/Qpar-report[n]

Arguments

Is a value denoting which diagnostic messages to report.
Possible values are:

n

Tells the auto-parallelizer to report no
diagnostic information.

0

Tells the auto-parallelizer to report
diagnostic messages for loops successfully
auto-parallelized. The compiler also issues
a "LOOP AUTO-PARALLELIZED" message
for parallel loops.

1

Tells the auto-parallelizer to report
diagnostic messages for loops successfully
and unsuccessfully auto-parallelized.

2

Tells the auto-parallelizer to report the
same diagnostic messages specified by 2
plus additional information about any

3

proven or assumed dependencies
inhibiting auto-parallelization (reasons for
not parallelizing).

Default

If you do not specify n, the compiler displays diagnostic messages
for loops successfully auto-parallelized. If you do not specify the
option on the command line, the default is to display no messages.

-par-report1
or/Qpar-report1

Description

This option controls the diagnostic information reported by the auto-parallelizer (parallel
optimizer). To use this option, you must also specify -parallel (Linux and Mac OS X) or
/Qparallel (Windows).

If this option is specified on the command line, the report is sent to stdout.

On Windows systems, if this option is specified from within the IDE, the report is included in
the build log if the Generate Build Logs option is selected.

812

20 Intel® Fortran Compiler User and Reference Guides

Alternate Options

None

par-runtime-control, Qpar-runtime-control
Generates code to perform run-time checks for
loops that have symbolic loop bounds.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-par-runtime-control

-no-par-runtime-control

Windows:

/Qpar-runtime-control

/Qpar-runtime-control-

Arguments

None

Default

The compiler uses default heuristics when checking loops.-no-par-runtime-control
or/Qpar-runtime-con-
trol-

Description

This option generates code to perform run-time checks for loops that have symbolic loop bounds.

If the granularity of a loop is greater than the parallelization threshold, the loop will be executed
in parallel.

813

20

If you do not specify this option, the compiler may not parallelize loops with symbolic loop
bounds if the compile-time granularity estimation of a loop can not ensure it is beneficial to
parallelize the loop.

Alternate Options

None

par-schedule, Qpar-schedule
Lets you specify a scheduling algorithm or a tuning
method for loop iterations.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-par-schedule-keyword[=n]

Windows:

/Qpar-schedule-keyword[[:]n]

Arguments

Specifies the scheduling algorithm or tuning method.
Possible values are:

keyword

Lets the compiler or run-time system
determine the scheduling algorithm.

auto

Divides iterations into contiguous pieces.static

Divides iterations into even-sized chunks.static-balanced

Divides iterations into even-sized chunks,
but allows threads to steal parts of chunks
from neighboring threads.

static-steal

Gets a set of iterations dynamically.dynamic

814

20 Intel® Fortran Compiler User and Reference Guides

Specifies a minimum number of iterations.guided

Divides iterations by using exponential
distribution or dynamic distribution.

guided-analytical

Defers the scheduling decision until run
time.

runtime

Is the size of the chunk or the number of iterations for each
chunk. This setting can only be specified for static, dynamic,
and guided. For more information, see the descriptions of
each keyword below.

n

Default

Iterations are divided into even-sized chunks and the chunks are
assigned to the threads in the team in a round-robin fashion in
the order of the thread number.

static-balanced

Description

This option lets you specify a scheduling algorithm or a tuning method for loop iterations. It
specifies how iterations are to be divided among the threads of the team.

This option affects performance tuning and can provide better performance during
auto-parallelization.

DescriptionOption

Lets the compiler or run-time system
determine the scheduling algorithm. Any
possible mapping may occur for iterations to
threads in the team.

-par-schedule-auto or /Qpar-schedule-
auto

Divides iterations into contiguous pieces
(chunks) of size n. The chunks are assigned
to threads in the team in a round-robin

-par-schedule-static or /Qpar-sched-
ule-static

fashion in the order of the thread number.
Note that the last chunk to be assigned may
have a smaller number of iterations.

815

20

DescriptionOption

If no n is specified, the iteration space is
divided into chunks that are approximately
equal in size, and each thread is assigned at
most one chunk.

Divides iterations into even-sized chunks. The
chunks are assigned to the threads in the
team in a round-robin fashion in the order of
the thread number.

-par-schedule-static-balanced or
/Qpar-schedule-static-balanced

Divides iterations into even-sized chunks, but
when a thread completes its chunk, it can
steal parts of chunks assigned to neighboring
threads.

-par-schedule-static-steal or /Qpar-
schedule-static-steal

Each thread keeps track of L and U, which
represent the lower and upper bounds of its
chunks respectively. Iterations are executed
starting from the lower bound, and
simultaneously, L is updated to represent the
new lower bound.

Can be used to get a set of iterations
dynamically. Assigns iterations to threads in
chunks as the threads request them. The

-par-schedule-dynamic or /Qpar-sched-
ule-dynamic

thread executes the chunk of iterations, then
requests another chunk, until no chunks
remain to be assigned.

As each thread finishes a piece of the
iteration space, it dynamically gets the next
set of iterations. Each chunk contains n
iterations, except for the last chunk to be
assigned, which may have fewer iterations.
If no n is specified, the default is 1.

Can be used to specify a minimum number
of iterations. Assigns iterations to threads in
chunks as the threads request them. The

-par-schedule-guided or /Qpar-sched-
ule-guided

816

20 Intel® Fortran Compiler User and Reference Guides

DescriptionOption

thread executes the chunk of iterations, then
requests another chunk, until no chunks
remain to be assigned.

For a chunk of size 1, the size of each chunk
is proportional to the number of unassigned
iterations divided by the number of threads,
decreasing to 1.

For an n with value k (greater than 1), the
size of each chunk is determined in the same
way with the restriction that the chunks do
not contain fewer than k iterations (except
for the last chunk to be assigned, which may
have fewer than k iterations). If no n is
specified, the default is 1.

Divides iterations by using exponential
distribution or dynamic distribution. The
method depends on run-time implementation.

-par-schedule-guided-analytical or
/Qpar-schedule-guided-analytical

Loop bounds are calculated with faster
synchronization and chunks are dynamically
dispatched at run time by threads in the
team.

Defers the scheduling decision until run time.
The scheduling algorithm and chunk size are
then taken from the setting of environment
variable OMP_SCHEDULE.

-par-schedule-runtime or /Qpar-sched-
ule-runtime

Alternate Options

None

817

20

par-threshold, Qpar-threshold
Sets a threshold for the auto-parallelization of
loops.

IDE Equivalent

Windows: Optimization > Threshold For Auto-Parallelization

Linux: None

Mac OS X: Optimization > Threshold For Auto-Parallelization

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-par-threshold[n]

Windows:

/Qpar-threshold[[:]n]

Arguments

Is an integer whose value is the threshold for the
auto-parallelization of loops. Possible values are 0 through
100.

n

If n is 0, loops get auto-parallelized always, regardless of
computation work volume.
If n is 100, loops get auto-parallelized when performance
gains are predicted based on the compiler analysis data.
Loops get auto-parallelized only if profitable parallel
execution is almost certain.
The intermediate 1 to 99 values represent the percentage
probability for profitable speed-up. For example, n=50
directs the compiler to parallelize only if there is a 50%
probability of the code speeding up if executed in parallel.

818

20 Intel® Fortran Compiler User and Reference Guides

Default

Loops get auto-parallelized only if profitable parallel execution is
almost certain. This is also the default if you do not specify n.

-par-threshold100
or/Qpar-threshold100

Description

This option sets a threshold for the auto-parallelization of loops based on the probability of
profitable execution of the loop in parallel. To use this option, you must also specify -parallel
(Linux and Mac OS X) or /Qparallel (Windows).

This option is useful for loops whose computation work volume cannot be determined at
compile-time. The threshold is usually relevant when the loop trip count is unknown at
compile-time.

The compiler applies a heuristic that tries to balance the overhead of creating multiple threads
versus the amount of work available to be shared amongst the threads.

Alternate Options

None

parallel, Qparallel
Tells the auto-parallelizer to generate
multithreaded code for loops that can be safely
executed in parallel.

IDE Equivalent

Windows: Optimization > Parallelization

Linux: None

Mac OS X: Optimization > Parallelization

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-parallel

819

20

Windows:

/Qparallel

Arguments

None

Default

Multithreaded code is not generated for loops that can be safely
executed in parallel.

OFF

Description

This option tells the auto-parallelizer to generate multithreaded code for loops that can be
safely executed in parallel.

To use this option, you must also specify option O2 or O3.

NOTE. On Mac OS X systems, when you enable automatic parallelization, you must also
set the DYLD_LIBRARY_PATH environment variable within Xcode or an error will be
displayed.

Alternate Options

None

See Also
•
•
• par-report, Qpar-report

• par-affinity, Qpar-affinity

• par-num-threads, Qpar-num-threads

• par-runtime-control, Qpar-runtime-control

• par-schedule, Qpar-schedule

• O

820

20 Intel® Fortran Compiler User and Reference Guides

pc, Qpc
Enables control of floating-point significand
precision.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-pcn

Windows:

/Qpcn

Arguments

Is the floating-point significand precision. Possible values
are:

n

Rounds the significand to 24 bits (single
precision).

32

Rounds the significand to 53 bits (double
precision).

64

Rounds the significand to 64 bits
(extended precision).

80

Default

On Linux* and Mac OS* X systems, the floating-point significand
is rounded to 64 bits. On Windows* systems, the floating-point
significand is rounded to 53 bits.

-pc80
or/Qpc64

Description

This option enables control of floating-point significand precision.

821

20

Some floating-point algorithms are sensitive to the accuracy of the significand, or fractional
part of the floating-point value. For example, iterative operations like division and finding the
square root can run faster if you lower the precision with the this option.

Note that a change of the default precision control or rounding mode, for example, by using
the -pc32 (Linux and Mac OS X) or /Qpc32 (Windows) option or by user intervention, may
affect the results returned by some of the mathematical functions.

Alternate Options

None

See Also
•
•

Floating-point Operations: Floating-point Options Quick Reference

pdbfile
Specifies that any debug information generated by
the compiler should be saved to a program
database file.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/pdbfile[:file]

/nopdbfile

822

20 Intel® Fortran Compiler User and Reference Guides

Arguments

Is the name of the program database file.file

Default

Debug information generated by the compiler is not saved to a
program database file.

/nopdbfile

Description

This option specifies that any debug information generated by the compiler should be saved to
a program database file. To use this option, you must also specify /debug:full (or the
equivalent).

If file is not specified, the default file name used is the name of your file with an extension
of .pdb.

The compiler places debug information in the object file if you specify /nopdbfile or omit both
/pdbfile and /debug:full (or the equivalent).

Alternate Options

None

See Also
•
• debug (Windows*)

pg
See p.

pie
Produces a position-independent executable on
processors that support it.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

823

20

Syntax

Linux:

-pie

Mac OS X:

None

Windows:

None

Arguments

None

Default

The driver does not set up special run-time libraries and the linker
does not perform the optimizations on executables.

OFF

Description

This option produces a position-independent executable on processors that support it. It is both
a compiler option and a linker option. When used as a compiler option, this option ensures the
linker sets up run-time libraries correctly.

Normally the object linked has been compiled with option -fpie.

When you specify -pie, it is recommended that you specify the same options that were used
during compilation of the object.

Alternate Options

None

See Also
•
• fpie

824

20 Intel® Fortran Compiler User and Reference Guides

prec-div, Qprec-div
Improves precision of floating-point divides.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-prec-div

-no-prec-div

Windows:

/Qprec-div

/Qprec-div-

Arguments

None

Default

The compiler uses this method for floating-point divides.-prec-div
or/Qprec-div

Description

This option improves precision of floating-point divides. It has a slight impact on speed.

With some optimizations, such as -xSSE2 (Linux) or /QxSSE2 (Windows), the compiler may
change floating-point division computations into multiplication by the reciprocal of the
denominator. For example, A/B is computed as A * (1/B) to improve the speed of the
computation.

825

20

However, sometimes the value produced by this transformation is not as accurate as full IEEE
division. When it is important to have fully precise IEEE division, use this option to disable the
floating-point division-to-multiplication optimization. The result is more accurate, with some
loss of performance.

If you specify -no-prec-div (Linux and Mac OS X) or /Qprec-div- (Windows), it enables
optimizations that give slightly less precise results than full IEEE division.

Alternate Options

None

See Also
•
•

Floating-point Operations: Floating-point Options Quick Reference

prec-sqrt, Qprec-sqrt
Improves precision of square root implementations.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-prec-sqrt

-no-prec-sqrt

Windows:

/Qprec-sqrt

/Qprec-sqrt-

Arguments

None

826

20 Intel® Fortran Compiler User and Reference Guides

Default

The compiler uses a faster but less precise implementation of
square root.

-no-prec-sqrt
or /Qprec-sqrt-

However, the default is -prec-sqrt or /Qprec-sqrt if any of the
following options are specified: /Od, /Op, or /Qprec on Windows
systems; -O0, -mp (or -fltconsistency), or -mp1 on Linux and
Mac OS X systems.

Description

This option improves precision of square root implementations. It has a slight impact on speed.

This option inhibits any optimizations that can adversely affect the precision of a square root
computation. The result is fully precise square root implementations, with some loss of
performance.

Alternate Options

None

preprocess-only
Causes the Fortran preprocessor to send output to
a file.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-preprocess-only

Windows:

/preprocess-only

Arguments

None

827

20

Default

Preprocessed source files are output to the compiler.OFF

Description

This option causes the Fortran preprocessor to send output to a file.

The source file is preprocessed by the Fortran preprocessor, and the result for each source file
is output to a corresponding .i or .i90 file.

Note that the source file is not compiled.

Alternate Options

Linux and Mac OS X: -P

Windows: /P

print-multi-lib
Prints information about where system libraries
should be found.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-print-multi-lib

Windows:

None

Arguments

None

828

20 Intel® Fortran Compiler User and Reference Guides

Default

No information is printed unless the option is specified.OFF

Description

This option prints information about where system libraries should be found, but no compilation
occurs. It is provided for compatibility with gcc.

Alternate Options

None

prof-data-order, Qprof-data-order
Enables or disables data ordering if profiling
information is enabled.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-prof-data-order

-no-prof-data-order

Mac OS X:

None

Windows:

/Qprof-data-order

/Qprof-data-order-

Arguments

None

829

20

Default

Data ordering is disabled.-no-prof-data-order
or/Qprof-data-order-

Description

This option enables or disables data ordering if profiling information is enabled. It controls the
use of profiling information to order static program data items.

For this option to be effective, you must do the following:

• For instrumentation compilation, you must specify -prof-gen=globdata (Linux) or /Qprof-
gen:globdata (Windows).

• For feedback compilation, you must specify -prof-use (Linux) or /Qprof-use (Windows).
You must not use multi-file optimization by specifying options such as option -ipo (Linux)
or /Qipo (Windows), or option -ipo-c (Linux) or /Qipo-c (Windows).

Alternate Options

None

See Also
•
•
• prof-gen, Qprof-gen
• prof-use, Qprof-use
• prof-func-order, Qprof-func-order

prof-dir, Qprof-dir
Specifies a directory for profiling information output
files.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

830

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-prof-dir dir

Windows:

/Qprof-dir dir

Arguments

Is the name of the directory.dir

Default

Profiling output files are placed in the directory where the program
is compiled.

OFF

Description

This option specifies a directory for profiling information output files (*.dyn and *.dpi). The
specified directory must already exist.

You should specify this option using the same directory name for both instrumentation and
feedback compilations. If you move the .dyn files, you need to specify the new path.

Alternate Options

None

See Also
•
•

Floating-point Operations:

Profile-guided Optimization (PGO) Quick Reference

Coding Guidelines for Intel(R) Architectures

831

20

prof-file, Qprof-file
Specifies an alternate file name for the profiling
summary files.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-prof-file file

Windows:

/Qprof-file file

Arguments

Is the name of the profiling summary file.file

Default

The profiling summary files have the file name pgopti.*OFF

Description

This option specifies an alternate file name for the profiling summary files. The file is used
as the base name for files created by different profiling passes.

If you add this option to profmerge, the .dpi file will be named file.dpi instead of pgopti.dpi.

If you specify -prof-genx (Linux and Mac OS X) or /Qprof-genx (Windows) with this option,
the .spi and .spl files will be named file.spi and file.spl instead of pgopti.spi and pgopti.spl.

If you specify -prof-use (Linux and Mac OS X) or /Qprof-use (Windows) with this option,
the .dpi file will be named file.dpi instead of pgopti.dpi.

Alternate Options

None

832

20 Intel® Fortran Compiler User and Reference Guides

See Also
•
•
• prof-gen, Qprof-gen

• prof-use, Qprof-use

Optimizing Applications:

Profile-guided Optimizations Overview

Coding Guidelines for Intel(R) Architectures

Profile an Application

prof-func-groups
Enables or disables function grouping if profiling
information is enabled.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux:

-prof-func-groups

-no-prof-func-groups

Mac OS X:

None

Windows:

None

Arguments

None

833

20

Default

Function grouping is disabled.-no-prof-func-groups

Description

This option enables or disables function grouping if profiling information is enabled.

A "function grouping" is a profiling optimization in which entire routines are placed either in
the cold code section or the hot code section.

If profiling information is enabled by option -prof-use, option -prof-func-groups is set and
function grouping is enabled. However, if you explicitly enable -prof-func-order (Linux) or
/Qprof-func-order (Windows), function ordering is performed instead of function grouping.

If you want to disable function grouping when profiling information is enabled, specify -no-
prof-func-groups.

To set the hotness threshold for function grouping, use option -prof-hotness-threshold
(Linux) or /Qprof-hotness-threshold (Windows).

Alternate Options

-func-groups (this is a deprecated option)

See Also
•
• prof-use, Qprof-use

• prof-func-order, Qprof-func-order

• prof-hotness-threshold, Qprof-hotness-threshold

prof-func-order, Qprof-func-order
Enables or disables function ordering if profiling
information is enabled.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

834

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux:

-prof-func-order

-no-prof-func-order

Mac OS X:

None

Windows:

/Qprof-func-order

/Qprof-func-order-

Arguments

None

Default

Function ordering is disabled.-no-prof-func-order
or/Qprof-func-order-

Description

This option enables or disables function ordering if profiling information is enabled.

For this option to be effective, you must do the following:

• For instrumentation compilation, you must specify -prof-gen=srcpos (Linux) or /Qprof-
gen:srcpos (Windows).

• For feedback compilation, you must specify -prof-use (Linux) or /Qprof-use (Windows).
You must not use multi-file optimization by specifying options such as option -ipo (Linux)
or /Qipo (Windows), or option -ipo-c (Linux) or /Qipo-c (Windows).

If you enable profiling information by specifying option -prof-use (Linux) or /Qprof-use
(Windows), -prof-func-groups (Linux) and /Qprof-func-groups (Windows) are set and
function grouping is enabled. However, if you explicitly enable -prof-func-order (Linux) or
/Qprof-func-order (Windows), function ordering is performed instead of function grouping.

On Linux* systems, this option is only available for Linux linker 2.15.94.0.1, or later.

835

20

To set the hotness threshold for function grouping and function ordering, use option -prof-
hotness-threshold (Linux) or /Qprof-hotness-threshold (Windows).

Alternate Options

None

The following example shows how to use this option on a Windows system:

ifort /Qprof-gen:globdata file1.f90 file2.f90 /exe:instrumented.exe

./instrumented.exe

ifort /Qprof-use /Qprof-func-order file1.f90 file2.f90 /exe:feedback.exe

The following example shows how to use this option on a Linux system:

ifort -prof-gen:globdata file1.f90 file2.f90 -o instrumented

./instrumented.exe

ifort -prof-use -prof-func-order file1.f90 file2.f90 -o feedback

See Also
•
•
• prof-hotness-threshold, Qprof-hotness-threshold

• prof-gen, Qprof-gen
• prof-use, Qprof-use
• prof-data-order, Qprof-data-order
• prof-func-groups

prof-gen, Qprof-gen
Produces an instrumented object file that can be
used in profile-guided optimization.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

836

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-prof-gen[=keyword]

-no-prof-gen

Windows:

/Qprof-gen[:keyword]

/Qprof-gen-

Arguments

Specifies details for the instrumented file. Possible values
are:

keyword

Produces an instrumented object file. This
is the same as specifying -prof-gen
(Linux* and Mac OS* X) or /Qprof-gen
(Windows*) with no keyword.

default

Produces an instrumented object file that
includes extra source position information.
This option is the same as option -prof-
genx (Linux* and Mac OS* X) or /Qprof-
genx (Windows*), which are deprecated.

srcpos

Produces an instrumented object file that
includes information for global data
layout.

globdata

Default

Profile generation is disabled.-no-prof-gen or /Qprof-
gen-

Description

This option produces an instrumented object file that can be used in profile-guided optimization.
It gets the execution count of each basic block.

837

20

If you specify keyword srcpos or globdata, a static profile information file (.spi) is created.
These settings may increase the time needed to do a parallel build using -prof-gen, because
of contention writing the .spi file.

These options are used in phase 1 of the Profile Guided Optimizer (PGO) to instruct the compiler
to produce instrumented code in your object files in preparation for instrumented execution.

Alternate Options

None

See Also
•
•

Optimizing Applications:

Basic PGO Options

Example of Profile-Guided Optimization

prof-genx, Qprof-genx
This is a deprecated option. See prof-gen keyword
srcpos.

prof-hotness-threshold, Qprof-hotness-threshold
Lets you set the hotness threshold for function
grouping and function ordering.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-prof-hotness-threshold=n

Mac OS X:

None

838

20 Intel® Fortran Compiler User and Reference Guides

Windows:

/Qprof-hotness-threshold:n

Arguments

Is the hotness threshold. n is a percentage having a value
between 0 and 100 inclusive. If you specify 0, there will be
no hotness threshold setting in effect for function grouping
and function ordering.

n

Default

The compiler's default hotness threshold setting of 10 percent is
in effect for function grouping and function ordering.

OFF

Description

This option lets you set the hotness threshold for function grouping and function ordering.

The "hotness threshold" is the percentage of functions in the application that should be placed
in the application's hot region. The hot region is the most frequently executed part of the
application. By grouping these functions together into one hot region, they have a greater
probability of remaining resident in the instruction cache. This can enhance the application's
performance.

For this option to take effect, you must specify option -prof-use (Linux) or /Qprof-use
(Windows) and one of the following:

• On Linux systems: -prof-func-groups or -prof-func-order

• On Windows systems: /Qprof-func-order

Alternate Options

None

See Also
•
•
• prof-use, Qprof-use
• prof-func-groups
• prof-func-order, Qprof-func-order

839

20

prof-src-dir, Qprof-src-dir
Determines whether directory information of the
source file under compilation is considered when
looking up profile data records.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-prof-src-dir

-no-prof-src-dir

Windows:

/Qprof-src-dir

/Qprof-src-dir-

Arguments

None

Default

Directory information is used when looking up profile data records
in the .dpi file.

-prof-src-dir
or/Qprof-src-dir

Description

This option determines whether directory information of the source file under compilation is
considered when looking up profile data records in the .dpi file. To use this option, you must
also specify option -prof-use (Linux and Mac OS X) or /Qprof-use (Windows).

If the option is enabled, directory information is considered when looking up the profile data
records within the .dpi file. You can specify directory information by using one of the following
options:

840

20 Intel® Fortran Compiler User and Reference Guides

• Linux and Mac OS X: -prof-src-root or -prof-src-root-cwd

• Windows: /Qprof-src-root or /Qprof-src-root-cwd

If the option is disabled, directory information is ignored and only the name of the file is used
to find the profile data record.

Note that options -prof-src-dir (Linux and Mac OS X) and /Qprof-src-dir (Windows)
control how the names of the user's source files get represented within the .dyn or .dpi files.
Options -prof-dir (Linux and Mac OS X) and /Qprof-dir (Windows) specify the location of
the .dyn or the .dpi files.

Alternate Options

None

See Also
•
•
• prof-use, Qprof-use

• prof-src-root, Qprof-src-root

• prof-src-root-cwd, Qprof-src-root-cwd

prof-src-root, Qprof-src-root
Lets you use relative directory paths when looking
up profile data and specifies a directory as the
base.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-prof-src-root=dir

841

20

Windows:

/Qprof-src-root:dir

Arguments

Is the base for the relative paths.dir

Default

The setting of relevant options determines the path used when
looking up profile data records.

OFF

Description

This option lets you use relative directory paths when looking up profile data in .dpi files. It
lets you specify a directory as the base. The paths are relative to a base directory specified
during the -prof-gen (Linux and Mac OS X) or /Qprof-gen (Windows) compilation phase.

This option is available during the following phases of compilation:

• Linux and Mac OS X: -prof-gen and -prof-use phases

• Windows: /Qprof-gen and /Qprof-use phases

When this option is specified during the -prof-gen or /Qprof-gen phase, it stores information
into the .dyn or .dpi file. Then, when .dyn files are merged together or the .dpi file is loaded,
only the directory information below the root directory is used for forming the lookup key.

When this option is specified during the -prof-use or /Qprof-use phase, it specifies a root
directory that replaces the root directory specified at the -prof-gen or /Qprof-gen phase for
forming the lookup keys.

To be effective, this option or option -prof-src-root-cwd (Linux and Mac OS X) or /Qprof-
src-root-cwd (Windows) must be specified during the -prof-gen or /Qprof-gen phase. In
addition, if one of these options is not specified, absolute paths are used in the .dpi file.

Alternate Options

None

Consider the initial -prof-gen compilation of the source file
c:\user1\feature_foo\myproject\common\glob.f90:

ifort -prof-gen -prof-src-root=c:\user1\feature_foo\myproject -c common\glob.f90

842

20 Intel® Fortran Compiler User and Reference Guides

For the -prof-use phase, the file glob.f90 could be moved into the directory
c:\user2\feature_bar\myproject\common\glob.f90 and profile information would be found from the
.dpi when using the following:

ifort -prof-use -prof-src-root=c:\user2\feature_bar\myproject -c common\glob.f90

If you do not use option -prof-src-root during the -prof-gen phase, by default, the -prof-use
compilation can only find the profile data if the file is compiled in the
c:\user1\feature_foo\my_project\common directory.

See Also
•
•
• prof-gen, Qprof-gen

• prof-use, Qprof-use

• prof-src-dir, Qprof-src-dir

• prof-src-root-cwd, Qprof-src-root-cwd

prof-src-root-cwd, Qprof-src-root-cwd
Lets you use relative directory paths when looking
up profile data and specifies the current working
directory as the base.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-prof-src-root-cwd

Windows:

/Qprof-src-root-cwd

Arguments

None

843

20

Default

The setting of relevant options determines the path used when
looking up profile data records.

OFF

Description

This option lets you use relative directory paths when looking up profile data in .dpi files. It
specifies the current working directory as the base. To use this option, you must also specify
option -prof-use (Linux and Mac OS) or /Qprof-use (Windows).

This option is available during the following phases of compilation:

• Linux and Mac OS X: -prof-gen and -prof-use phases

• Windows: /Qprof-gen and /Qprof-use phases

When this option is specified during the -prof-gen or /Qprof-gen phase, it stores information
into the .dyn or .dpi file. Then, when .dyn files are merged together or the .dpi file is loaded,
only the directory information below the root directory is used for forming the lookup key.

When this option is specified during the -prof-use or /Qprof-use phase, it specifies a root
directory that replaces the root directory specified at the -prof-gen or /Qprof-gen phase for
forming the lookup keys.

To be effective, this option or option -prof-src-root (Linux and Mac OS X) or /Qprof-src-
root (Windows) must be specified during the -prof-gen or /Qprof-gen phase. In addition,
if one of these options is not specified, absolute paths are used in the .dpi file.

Alternate Options

None

See Also
•
•
• prof-gen, Qprof-gen

• prof-use, Qprof-use

• prof-src-dir, Qprof-src-dir

• prof-src-root, Qprof-src-root

844

20 Intel® Fortran Compiler User and Reference Guides

prof-use, Qprof-use
Enables the use of profiling information during
optimization.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-prof-use[=arg]

-no-prof-use

Windows:

/Qprof-use[:arg]

/Qprof-use-

Arguments

Specifies additional instructions. Possible values are:arg

Tells the profmerge utility to apply a
weighting to the .dyn file values when
creating the .dpi file to normalize the data

weighted

counts when the training runs have
differentexecution durations. This
argument only has an effect when the
compiler invokes the profmerge utility to
create the .dpi file. This argument does
not have an effect if the .dpi file was
previously created without weighting.

Enables or disables automatic invocation
of the profmerge utility. The default is
merge. Note that you cannot specify both

[no]merge

845

20

weighted and nomerge. If you try to
specify both values, a warning will be
displayed and nomerge takes precedence.

Enables the use of profiling information
during optimization. The profmerge utility
is invoked by default. This value is the

default

same as specifying -prof-use (Linux and
Mac OS X) or /Qprof-use (Windows)
with no argument.

Default

Profiling information is not used during optimization.-no-prof-use or /Qprof-
use-

Description

This option enables the use of profiling information (including function splitting and function
grouping) during optimization. It enables option -fnsplit (Linux) or /Qfnsplit (Windows).

This option instructs the compiler to produce a profile-optimized executable and it merges
available profiling output files into a pgopti.dpi file.

Note that there is no way to turn off function grouping if you enable it using this option.

To set the hotness threshold for function grouping and function ordering, use option -prof-
hotness-threshold (Linux) or /Qprof-hotness-threshold (Windows).

Alternate Options

None

See Also
•
•
• prof-hotness-threshold, Qprof-hotness-threshold

Optimizing Applications:

Basic PGO Options

Example of Profile-Guided Optimization

846

20 Intel® Fortran Compiler User and Reference Guides

ansi-alias, Qansi-alias
Tells the compiler to assume that the program
adheres to Fortran Standard type aliasability rules.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-ansi-alias

-no-ansi-alias

Windows:

Qansi-alias

Qansi-alias-

Arguments

None

Default

Programs adhere to Fortran Standard type aliasability rules.-ansi-alias
or /Qansi-alias

Description

This option tells the compiler to assume that the program adheres to type aliasability rules
defined in the Fortran Standard.

For example, an object of type real cannot be accessed as an integer. For information on the
rules for data types and data type constants, see "Data Types, Constants, and Variables" in
the Language Reference.

This option directs the compiler to assume the following:

847

20

• Arrays are not accessed out of arrays' bounds.

• Pointers are not cast to non-pointer types and vice-versa.

• References to objects of two different scalar types cannot alias. For example, an object of
type integer cannot alias with an object of type real or an object of type real cannot alias
with an object of type double precision.

If your program adheres to the Fortran Standard type aliasability rules, this option enables the
compiler to optimize more aggressively. If it doesn't adhere to these rules, then you should
disable the option with -no-ansi-alias (Linux and Mac OS X) or /Qansi-alias- (Windows)
so the compiler does not generate incorrect code.

Alternate Options

None

auto, Qauto
See automatic.

auto-scalar, Qauto-scalar
Causes scalar variables of intrinsic types INTEGER,
REAL, COMPLEX, and LOGICAL that do not have
the SAVE attribute to be allocated to the run-time
stack.

IDE Equivalent

Windows: Data > Local Variable Storage (/Qsave, /Qauto, /Qauto_scalar)

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-auto-scalar

848

20 Intel® Fortran Compiler User and Reference Guides

Windows:

/Qauto-scalar

Arguments

None

Default

Scalar variables of intrinsic types INTEGER, REAL, COMPLEX, and
LOGICAL that do not have the SAVE attribute are allocated to the
run-time stack. Note that if option recursive, -openmp (Linux
and Mac OS X), or /Qopenmp (Windows) is specified, the default
is automatic.

-auto-scalar or /Qauto-
scalar

Description

This option causes allocation of scalar variables of intrinsic types INTEGER, REAL, COMPLEX,
and LOGICAL to the run-time stack. It is as if they were declared with the AUTOMATIC attribute.

It does not affect variables that have the SAVE attribute (which include initialized locals) or
that appear in an EQUIVALENCE statement or in a common block.

This option may provide a performance gain for your program, but if your program depends
on variables having the same value as the last time the routine was invoked, your program
may not function properly. Variables that need to retain their values across subroutine calls
should appear in a SAVE statement.

You cannot specify option save, auto, or automatic with this option.

NOTE. On Windows NT* systems, there is a performance penalty for addressing a stack
frame that is too large. This penalty may be incurred with /automatic, /auto, or
/Qauto because arrays are allocated on the stack along with scalars. However, with
/Qauto-scalar, you would have to have more than 32K bytes of local scalar variables
before you incurred the performance penalty. /Qauto-scalar enables the compiler to
make better choices about which variables should be kept in registers during program
execution.

Alternate Options

None

849

20

See Also
•
•
• auto

• save

autodouble, Qautodouble
See real-size.

ax, Qax
Tells the compiler to generate multiple,
processor-specific auto-dispatch code paths for
Intel processors if there is a performance benefit.

IDE Equivalent

Windows: Code Generation > Add Processor-Optimized Code Path

Optimization > Generate Alternate Code Paths

Linux: None

Mac OS X: Code Generation > Add Processor-Optimized Code Path

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-axprocessor

Windows:

/Qaxprocessor

Arguments

Indicates the processor for which code is generated. The
following descriptions refer to Intel® Streaming SIMD
Extensions (Intel® SSE) and Supplemental Streaming SIMD
Extensions (Intel® SSSE). Possible values are:

processor

850

20 Intel® Fortran Compiler User and Reference Guides

Can generate Intel® SSE4 Efficient
Accelerated String and Text Processing
instructions supported by Intel® Core™ i7

SSE4.2

processors. Can generate Intel® SSE4
Vectorizing Compiler and Media
Accelerator, Intel® SSSE3, SSE3, SSE2,
and SSE instructions and it can optimize
for the Intel® Core™ processor family.

Can generate Intel® SSE4 Vectorizing
Compiler and Media Accelerator
instructions for Intel processors. Can

SSE4.1

generate Intel® SSSE3, SSE3, SSE2, and
SSE instructions and it can optimize for
Intel® 45nm Hi-k next generation Intel®

Core™ microarchitecture. This replaces
value S, which is deprecated.

Can generate Intel® SSSE3, SSE3, SSE2,
and SSE instructions for Intel processors
and it can optimize for the Intel® Core™2

SSSE3

Duo processor family. For Mac OS* X
systems, this value is only supported on
Intel® 64 architecture. This replaces value
T, which is deprecated.

Can generate Intel® SSE3, SSE2, and SSE
instructions for Intel processors and it can
optimize for processors based on Intel®

SSE3

Core™ microarchitecture and Intel
NetBurst® microarchitecture. For Mac OS*
X systems, this value is only supported
on IA-32 architecture. This replaces value
P, which is deprecated.

Can generate Intel® SSE2 and SSE
instructions for Intel processors, and it
can optimize for Intel® Pentium® 4

SSE2

processors, Intel® Pentium® M processors,
and Intel® Xeon® processors with Intel®

851

20

SSE2. This value is not available on Mac
OS* X systems. This replaces value N,
which is deprecated.

Default

No auto-dispatch code is generated. Processor-specific code is
generated and is controlled by the setting of compiler option -m
(Linux), compiler option /arch (Windows), or compiler option -x
(Mac OS* X).

OFF

Description

This option tells the compiler to generate multiple, processor-specific auto-dispatch code paths
for Intel processors if there is a performance benefit. It also generates a baseline code path.
The baseline code is usually slower than the specialized code.

The baseline code path is determined by the architecture specified by the -x (Linux and Mac
OS X) or /Qx (Windows) option. While there are defaults for the -x or /Qx option that depend
on the operating system being used, you can specify an architecture for the baseline code that
is higher or lower than the default. The specified architecture becomes the effective minimum
architecture for the baseline code path.

If you specify both the -ax and -x options (Linux and Mac OS X) or the /Qax and /Qx options
(Windows), the baseline code will only execute on processors compatible with the processor
type specified by the -x or /Qx option.

This option tells the compiler to find opportunities to generate separate versions of functions
that take advantage of features of the specified Intel® processor.

If the compiler finds such an opportunity, it first checks whether generating a processor-specific
version of a function is likely to result in a performance gain. If this is the case, the compiler
generates both a processor-specific version of a function and a baseline version of the function.
At run time, one of the versions is chosen to execute, depending on the Intel processor in use.
In this way, the program can benefit from performance gains on more advanced Intel processors,
while still working properly on older processors.

You can use more than one of the processor values by combining them. For example, you can
specify -axSSE4.1,SSSE3 (Linux and Mac OS X) or /QaxSSE4.1,SSSE3 (Windows). You cannot
combine the old style, deprecated options and the new options. For example, you cannot specify
-axSSE4.1,T (Linux and Mac OS X) or /QaxSSE4.1,T (Windows).

Previous values W and K are deprecated. The details on replacements are as follows:

852

20 Intel® Fortran Compiler User and Reference Guides

• Mac OS X systems: On these systems, there is no exact replacement for W or K. You can
upgrade to the default option -msse3 (IA-32 architecture) or option -mssse3 (Intel® 64
architecture).

• Windows and Linux systems: The replacement for W is -msse2 (Linux) or /arch:SSE2
(Windows). There is no exact replacement for K. However, on Windows systems, /QaxK is
interpreted as /arch:IA32; on Linux systems, -axK is interpreted as -mia32. You can also
do one of the following:

• Upgrade to option -msse2 (Linux) or option /arch:SSE2 (Windows). This will produce
one code path that is specialized for Intel® SSE2. It will not run on earlier processors

• Specify the two option combination -mia32 -axSSE2 (Linux) or /arch:IA32 /QaxSSE2
(Windows). This combination will produce an executable that runs on any processor with
IA-32 architecture but with an additional specialized Intel® SSE2 code path.

The -ax and /Qax options enable additional optimizations not enabled with option -m or option
/arch.

Alternate Options

None

See Also
•
•
• x, Qx
• m

• arch

Qchkstk
Enables stack probing when the stack is
dynamically expanded at run-time.

IDE Equivalent

Windows: Run-time > Enable Stack Check Upon Expansion

Linux: None

Mac OS X: None

853

20

Architectures

IA-64 architecture

Syntax

Linux and Mac OS X:

None

Windows:

/Qchkstk

/Qchkstk-

Arguments

None

Default

Stack probing is enabled when the stack is dynamically expanded
at run-time.

/Qchkstk

Description

This option enables stack probing when the stack is dynamically expanded at run-time.

It instructs the compiler to generate a call to _chkstk. The call will probe the requested memory
and detect possible stack overflow.

To cancel the call to _chkstk, specify /Qchkstk-.

Alternate Options

None

854

20 Intel® Fortran Compiler User and Reference Guides

common-args, Qcommon-args
See assume.

complex-limited-range, Qcomplex-limited-range
Determines whether the use of basic algebraic
expansions of some arithmetic operations involving
data of type COMPLEX is enabled.

IDE Equivalent

Windows: Floating point > Limit COMPLEX Range

Linux: None

Mac OS X: Floating point > Limit COMPLEX Range

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-complex-limited-range

-no-complex-limited-range

Windows:

/Qcomplex-limited-range

/Qcomplex-limited-range-

Arguments

None

Default

Basic algebraic expansions of some arithmetic operations
involving data of type COMPLEX are disabled.

-no-complex-limited-range
or/Qcomplex-limited-range-

855

20

Description

This option determines whether the use of basic algebraic expansions of some arithmetic
operations involving data of type COMPLEX is enabled.

When the option is enabled, this can cause performance improvements in programs that use
a lot of COMPLEX arithmetic. However, values at the extremes of the exponent range may not
compute correctly.

Alternate Options

None

cpp, Qcpp
See fpp, Qfpp.

d-lines, Qd-lines
Compiles debug statements.

IDE Equivalent

Windows: Language > Compile Lines With D in Column 1

Linux: None

Mac OS X: Language > Compile Lines With D in Column 1

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-d-lines

-nod-lines

Windows:

/d-lines

/nod-lines

/Qd-lines

856

20 Intel® Fortran Compiler User and Reference Guides

Arguments

None

Default

Debug lines are treated as comment lines.nod-lines

Description

This option compiles debug statements. It specifies that lines in fixed-format files that contain
a D in column 1 (debug statements) should be treated as source code.

Alternate Options

Linux and Mac OS X: -DD

Windows: None

diag, Qdiag
Controls the display of diagnostic information.

IDE Equivalent

Windows: Diagnostics > Disable Specific Diagnostics (/Qdiag-disable:id)

Diagnostics > Level of Source Code Analysis (/Qdiag-enable[:sc1,sc2,sc3])

Linux: None

Mac OS X: Diagnostics > Disable Specific Diagnostics (-diag-disable id)

Diagnostics > Level of Source Code Analysis (-diag-enable [sc1,sc2,sc3])

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-diag-type diag-list

Windows:

/Qdiag-type:diag-list

857

20

Arguments

Is an action to perform on diagnostics. Possible values are:type

Enables a diagnostic message or a group
of messages.

enable

Disables a diagnostic message or a group
of messages.

disable

Tells the compiler to change diagnostics
to errors.

error

Tells the compiler to change diagnostics
to warnings.

warning

Tells the compiler to change diagnostics
to remarks (comments).

remark

Is a diagnostic group or ID value. Possible values are:diag-list

Specifies diagnostic messages issued by
the compiler driver.

driver

Specifies diagnostic messages issued by
the vectorizer.

vec

Specifies diagnostic messages issued by
the auto-parallelizer (parallel optimizer).

par

Specifies diagnostic messages issued by
the OpenMP* parallelizer.

openmp

Specifies diagnostic messages issued by
the Source Checker. n can be any of the
following: 1, 2, 3. For more details on
these values, see below. This value is
equivalent to deprecated value sv[n].

sc[n]

Specifies diagnostic messages that have
a "warning" severity level.

warn

Specifies diagnostic messages that have
an "error" severity level.

error

Specifies diagnostic messages that are
remarks or comments.

remark

858

20 Intel® Fortran Compiler User and Reference Guides

Specifies the CPU dispatch remarks for
diagnostic messages. These remarks are
enabled by default. This diagnostic group
is only available on IA-32 architecture and
Intel® 64 architecture.

cpu-dispatch

Specifies the ID number of one or more
messages. If you specify more than one
message number, they must be separated
by commas. There can be no intervening
white space between each id.

id[,id,...]

Specifies the mnemonic name of one or
more messages. If you specify more than
one mnemonic name, they must be

tag[,tag,...]

separated by commas. There can be no
intervening white space between each
tag.

Default

The compiler issues certain diagnostic messages by default.OFF

Description

This option controls the display of diagnostic information. Diagnostic messages are output to
stderr unless compiler option -diag-file (Linux and Mac OS X) or /Qdiag-file (Windows)
is specified.

When diag-list value "warn" is used with the Source Checker (sc) diagnostics, the following
behavior occurs:

• Option -diag-enable warn (Linux and Mac OS X) and /Qdiag-enable:warn (Windows)
enable all Source Checker diagnostics except those that have an "error" severity level. They
enable all Source Checker warnings, cautions, and remarks.

• Option -diag-disable warn (Linux and Mac OS X) and /Qdiag-disable:warn (Windows)
disable all Source Checker diagnostics except those that have an "error" severity level. They
suppress all Source Checker warnings, cautions, and remarks.

The following table shows more information on values you can specify for diag-list item sc.

859

20

Descriptiondiag-list
Item

The value of n for Source Checker messages can be any of the following:sc[n]

Produces the diagnostics with severity level set to all critical errors.
1

Produces the diagnostics with severity level set to all errors. This is the default
if n is not specified.

2

Produces the diagnostics with severity level set to all errors and warnings.
3

To control the diagnostic information reported by the vectorizer, use the -vec-report (Linux
and Mac OS X) or /Qvec-report (Windows) option.

To control the diagnostic information reported by the auto-parallelizer, use the -par-report
(Linux and Mac OS X) or /Qpar-report (Windows) option.

Alternate Options

Linux and Mac OS X: -vec-report
Windows: /Qvec-report

enable vec

Linux and Mac OS X: -vec-report0
Windows: /Qvec-report0

disable vec

Linux and Mac OS X: -par-report
Windows: /Qpar-report

enable par

Linux and Mac OS X: -par-report0
Windows: /Qpar-report0

disable par

Example

The following example shows how to enable diagnostic IDs 117, 230 and 450:

-diag-enable 117,230,450 ! Linux and Mac OS X systems

/Qdiag-enable:117,230,450 ! Windows systems

The following example shows how to change vectorizer diagnostic messages to warnings:

-diag-enable vec -diag-warning vec ! Linux and Mac OS X systems

/Qdiag-enable:vec /Qdiag-warning:vec ! Windows systems

Note that you need to enable the vectorizer diagnostics before you can change them to warnings.

860

20 Intel® Fortran Compiler User and Reference Guides

The following example shows how to disable all auto-parallelizer diagnostic messages:

-diag-disable par ! Linux and Mac OS X systems

/Qdiag-disable:par ! Windows systems

The following example shows how to produce Source Checker diagnostic messages for all critical
errors:

-diag-enable sc1 ! Linux and Mac OS X systems

/Qdiag-enable:sc1 ! Windows system

The following example shows how to cause Source Checker diagnostics (and default diagnostics)
to be sent to a file:

-diag-enable sc -diag-file=stat_ver_msg ! Linux and Mac OS X systems

/Qdiag-enable:sc /Qdiag-file:stat_ver_msg ! Windows systems

Note that you need to enable the Source Checker diagnostics before you can send them to a
file. In this case, the diagnostics are sent to file stat_ver_msg.diag. If a file name is not specified,
the diagnostics are sent to name-of-the-first-source-file.diag.

The following example shows how to change all diagnostic warnings and remarks to errors:

-diag-error warn,remark ! Linux and Mac OS X systems

/Qdiag-error:warn,remark ! Windows systems

See Also
•
•
•
•
• diag-dump, Qdiag-dump
• diag-id-numbers, Qdiag-id-numbers
• diag-file, Qdiag-file
• par-report, Qpar-report
• vec-report, Qvec-report

861

20

diag-dump, Qdiag-dump
Tells the compiler to print all enabled diagnostic
messages and stop compilation.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-diag-dump

Windows:

/Qdiag-dump

Arguments

None

Default

The compiler issues certain diagnostic messages by default.OFF

Description

This option tells the compiler to print all enabled diagnostic messages and stop compilation.
The diagnostic messages are output to stdout.

This option prints the enabled diagnostics from all possible diagnostics that the compiler can
issue, including any default diagnostics.

If -diag-enable diag-list (Linux and Mac OS X) or /Qdiag-enable diag-list (Windows)
is specified, the print out will include the diag-list diagnostics.

Alternate Options

None

862

20 Intel® Fortran Compiler User and Reference Guides

Example

The following example adds vectorizer diagnostic messages to the printout of default diagnostics:

-diag-enable vec -diag-dump ! Linux and Mac OS X systems

/Qdiag-enable:vec /Qdiag-dump ! Windows systems

See Also
•
•
• diag, Qdiag

diag, Qdiag
Controls the display of diagnostic information.

IDE Equivalent

Windows: Diagnostics > Disable Specific Diagnostics (/Qdiag-disable:id)

Diagnostics > Level of Source Code Analysis (/Qdiag-enable[:sc1,sc2,sc3])

Linux: None

Mac OS X: Diagnostics > Disable Specific Diagnostics (-diag-disable id)

Diagnostics > Level of Source Code Analysis (-diag-enable [sc1,sc2,sc3])

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-diag-type diag-list

Windows:

/Qdiag-type:diag-list

Arguments

Is an action to perform on diagnostics. Possible values are:type

863

20

Enables a diagnostic message or a group
of messages.

enable

Disables a diagnostic message or a group
of messages.

disable

Tells the compiler to change diagnostics
to errors.

error

Tells the compiler to change diagnostics
to warnings.

warning

Tells the compiler to change diagnostics
to remarks (comments).

remark

Is a diagnostic group or ID value. Possible values are:diag-list

Specifies diagnostic messages issued by
the compiler driver.

driver

Specifies diagnostic messages issued by
the vectorizer.

vec

Specifies diagnostic messages issued by
the auto-parallelizer (parallel optimizer).

par

Specifies diagnostic messages issued by
the OpenMP* parallelizer.

openmp

Specifies diagnostic messages issued by
the Source Checker. n can be any of the
following: 1, 2, 3. For more details on
these values, see below. This value is
equivalent to deprecated value sv[n].

sc[n]

Specifies diagnostic messages that have
a "warning" severity level.

warn

Specifies diagnostic messages that have
an "error" severity level.

error

Specifies diagnostic messages that are
remarks or comments.

remark

Specifies the CPU dispatch remarks for
diagnostic messages. These remarks are
enabled by default. This diagnostic group
is only available on IA-32 architecture and
Intel® 64 architecture.

cpu-dispatch

864

20 Intel® Fortran Compiler User and Reference Guides

Specifies the ID number of one or more
messages. If you specify more than one
message number, they must be separated
by commas. There can be no intervening
white space between each id.

id[,id,...]

Specifies the mnemonic name of one or
more messages. If you specify more than
one mnemonic name, they must be

tag[,tag,...]

separated by commas. There can be no
intervening white space between each
tag.

Default

The compiler issues certain diagnostic messages by default.OFF

Description

This option controls the display of diagnostic information. Diagnostic messages are output to
stderr unless compiler option -diag-file (Linux and Mac OS X) or /Qdiag-file (Windows)
is specified.

When diag-list value "warn" is used with the Source Checker (sc) diagnostics, the following
behavior occurs:

• Option -diag-enable warn (Linux and Mac OS X) and /Qdiag-enable:warn (Windows)
enable all Source Checker diagnostics except those that have an "error" severity level. They
enable all Source Checker warnings, cautions, and remarks.

• Option -diag-disable warn (Linux and Mac OS X) and /Qdiag-disable:warn (Windows)
disable all Source Checker diagnostics except those that have an "error" severity level. They
suppress all Source Checker warnings, cautions, and remarks.

The following table shows more information on values you can specify for diag-list item sc.

Descriptiondiag-list
Item

The value of n for Source Checker messages can be any of the following:sc[n]

Produces the diagnostics with severity level set to all critical errors.
1

865

20

Descriptiondiag-list
Item

Produces the diagnostics with severity level set to all errors. This is the default
if n is not specified.

2

Produces the diagnostics with severity level set to all errors and warnings.
3

To control the diagnostic information reported by the vectorizer, use the -vec-report (Linux
and Mac OS X) or /Qvec-report (Windows) option.

To control the diagnostic information reported by the auto-parallelizer, use the -par-report
(Linux and Mac OS X) or /Qpar-report (Windows) option.

Alternate Options

Linux and Mac OS X: -vec-report
Windows: /Qvec-report

enable vec

Linux and Mac OS X: -vec-report0
Windows: /Qvec-report0

disable vec

Linux and Mac OS X: -par-report
Windows: /Qpar-report

enable par

Linux and Mac OS X: -par-report0
Windows: /Qpar-report0

disable par

Example

The following example shows how to enable diagnostic IDs 117, 230 and 450:

-diag-enable 117,230,450 ! Linux and Mac OS X systems

/Qdiag-enable:117,230,450 ! Windows systems

The following example shows how to change vectorizer diagnostic messages to warnings:

-diag-enable vec -diag-warning vec ! Linux and Mac OS X systems

/Qdiag-enable:vec /Qdiag-warning:vec ! Windows systems

Note that you need to enable the vectorizer diagnostics before you can change them to warnings.

The following example shows how to disable all auto-parallelizer diagnostic messages:

-diag-disable par ! Linux and Mac OS X systems

/Qdiag-disable:par ! Windows systems

866

20 Intel® Fortran Compiler User and Reference Guides

The following example shows how to produce Source Checker diagnostic messages for all critical
errors:

-diag-enable sc1 ! Linux and Mac OS X systems

/Qdiag-enable:sc1 ! Windows system

The following example shows how to cause Source Checker diagnostics (and default diagnostics)
to be sent to a file:

-diag-enable sc -diag-file=stat_ver_msg ! Linux and Mac OS X systems

/Qdiag-enable:sc /Qdiag-file:stat_ver_msg ! Windows systems

Note that you need to enable the Source Checker diagnostics before you can send them to a
file. In this case, the diagnostics are sent to file stat_ver_msg.diag. If a file name is not specified,
the diagnostics are sent to name-of-the-first-source-file.diag.

The following example shows how to change all diagnostic warnings and remarks to errors:

-diag-error warn,remark ! Linux and Mac OS X systems

/Qdiag-error:warn,remark ! Windows systems

See Also
•
•
•
•
• diag-dump, Qdiag-dump
• diag-id-numbers, Qdiag-id-numbers
• diag-file, Qdiag-file
• par-report, Qpar-report
• vec-report, Qvec-report

diag-enable sc-include, Qdiag-enable:sc-include
Tells a source code analyzer to process include files
and source files when issuing diagnostic messages.

IDE Equivalent

Windows: Diagnostics > Analyze Include Files

Linux: None

867

20

Mac OS X: Diagnostics > Analyze Include Files

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-diag-enable sc-include

Windows:

/Qdiag-enable:sc-include

Arguments

None

Default

The compiler issues certain diagnostic messages by default. If the
Source Checker is enabled, include files are not analyzed by default.

OFF

Description

This option tells a source code analyzer (Source Checker) to process include files and source
files when issuing diagnostic messages. Normally, when Source Checker diagnostics are enabled,
only source files are analyzed.

To use this option, you must also specify -diag-enable sc (Linux and Mac OS X) or /Qdiag-
enable:sc (Windows) to enable the Source Checker diagnostics, or -diag-enable sc-par-
allel (Linux and Mac OS X) or /Qdiag-enable:sc-parallel (Windows) to enable parallel
lint.

Alternate Options

Linux and Mac OS X: -diag-enable sv-include (this is a deprecated option)

Windows: /Qdiag-enable:sv-include (this is a deprecated option)

868

20 Intel® Fortran Compiler User and Reference Guides

Example

The following example shows how to cause include files to be analyzed as well as source files:

-diag-enable sc -diag-enable sc-include ! Linux and Mac OS systems

/Qdiag-enable:sc /Qdiag-enable:sc-include ! Windows systems

In the above example, the first compiler option enables Source Checker messages. The second
compiler option causes include files referred to by the source file to be analyzed also.

See Also
•
•
• diag-enable sc-parallel, Qdiag-enable:sc-parallel
• diag, Qdiag

diag-enable sc-parallel, Qdiag-enable:sc-parallel
Enables analysis of parallelization in source code
(parallel lint diagnostics).

IDE Equivalent

Windows: Diagnostics > Level of Source Code Parallelization Analysis

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-diag-enable sc-parallel[n]

Windows:

/Qdiag-enable:sc-parallel[n]

Arguments

Is the level of analysis to perform. Possible values are:n

869

20

Produces the diagnostics with severity
level set to all critical errors.

1

Tells the compiler to generate a report
with the medium level of detail. Produces
the diagnostics with severity level set to
all errors. This is the default if n is not
specified.

2

Produces the diagnostics with severity
level set to all errors and warnings.

3

Default

The compiler does not analyze parallelization in source code.OFF

Description

This option enables analysis of parallelization in source code (parallel lint diagnostics). Currently,
this analysis uses OpenMP directives, so this option has no effect unless option /Qopenmp
(Windows) or option -openmp (Linux and Mac OS X) is set.

Parallel lint performs interprocedural source code analysis to identify mistakes when using
parallel directives. It reports various problems that are difficult to find, including data dependency
and potential deadlocks.

Source Checker diagnostics (enabled by /Qdiag-enable:sc on Windows* OS or -diag-enable
sc on Linux* OS and Mac OS* X) are a superset of parallel lint diagnostics. Therefore, if Source
Checker diagnostics are enabled, the parallel lint option is not taken into account.

Alternate Options

None

See Also
•
•
• diag, Qdiag

870

20 Intel® Fortran Compiler User and Reference Guides

diag-error-limit, Qdiag-error-limit
Specifies the maximum number of errors allowed
before compilation stops.

IDE Equivalent

Windows: Compilation Diagnostics > Error Limit

Linux: None

Mac OS X: Compiler Diagnostics > Error Limit

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-diag-error-limitn

-no-diag-error-limit

Windows:

/Qdiag-error-limit:n

/Qdiag-error-limit-

Arguments

Is the maximum number of error-level or fatal-level compiler
errors allowed.

n

Default

A maximum of 30 error-level and fatal-level messages are allowed.30

Description

This option specifies the maximum number of errors allowed before compilation stops. It
indicates the maximum number of error-level or fatal-level compiler errors allowed for a file
specified on the command line.

871

20

If you specify -no-diag-error-limit (Linux and Mac OS X) or /Qdiag-error-limit-
(Windows) on the command line, there is no limit on the number of errors that are allowed.

If the maximum number of errors is reached, a warning message is issued and the next file (if
any) on the command line is compiled.

Alternate Options

Linux and Mac OS X: -error-limit and -noerror-limit

Windows: /error-limit and /noerror-limit

diag-file, Qdiag-file
Causes the results of diagnostic analysis to be
output to a file.

IDE Equivalent

Windows: Diagnostics > Diagnostics File

Linux: None

Mac OS X: Diagnostics > Diagnostics File

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-diag-file[=file]

Windows:

/Qdiag-file[:file]

Arguments

Is the name of the file for output.file

Default

Diagnostic messages are output to stderr.OFF

872

20 Intel® Fortran Compiler User and Reference Guides

Description

This option causes the results of diagnostic analysis to be output to a file. The file is placed in
the current working directory.

If file is specified, the name of the file is file.diag. The file can include a file extension; for
example, if file.ext is specified, the name of the file is file.ext.

If file is not specified, the name of the file is name-of-the-first-source-file.diag. This
is also the name of the file if the name specified for file conflicts with a source file name provided
in the command line.

NOTE. If you specify -diag-file (Linux and Mac OS X) or /Qdiag-file (Windows)
and you also specify -diag-file-append (Linux and Mac OS X) or /Qdiag-file-append
(Windows), the last option specified on the command line takes precedence.

Alternate Options

None

Example

The following example shows how to cause diagnostic analysis to be output to a file named
my_diagnostics.diag:

-diag-file=my_diagnostics ! Linux and Mac OS X systems

/Qdiag-file:my_diagnostics ! Windows systems

See Also
•
•
• diag, Qdiag
• diag-file-append, Qdiag-file-append

diag-file-append, Qdiag-file-append
Causes the results of diagnostic analysis to be
appended to a file.

IDE Equivalent

None

873

20

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-diag-file-append[=file]

Windows:

/Qdiag-file-append[:file]

Arguments

Is the name of the file to be appended to. It can include a
path.

file

Default

Diagnostic messages are output to stderr.OFF

Description

This option causes the results of diagnostic analysis to be appended to a file. If you do not
specify a path, the driver will look for file in the current working directory.

If file is not found, then a new file with that name is created in the current working directory.
If the name specified for file conflicts with a source file name provided in the command line.
the name of the file is name-of-the-first-source-file.diag.

NOTE. If you specify -diag-file-append (Linux and Mac OS X) or /Qdiag-file-ap-
pend (Windows) and you also specify -diag-file (Linux and Mac OS X) or /Qdiag-
file (Windows), the last option specified on the command line takes precedence.

Alternate Options

None

874

20 Intel® Fortran Compiler User and Reference Guides

Example

The following example shows how to cause diagnostic analysis to be appended to a file named
my_diagnostics.txt:

-diag-file-append=my_diagnostics.txt ! Linux and Mac OS X systems

/Qdiag-file-append:my_diagnostics.txt ! Windows systems

See Also
•
•
• diag, Qdiag
• diag-file, Qdiag-file

diag-id-numbers, Qdiag-id-numbers
Determines whether the compiler displays
diagnostic messages by using their ID number
values.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-diag-id-numbers

-no-diag-id-numbers

Windows:

/Qdiag-id-numbers

/Qdiag-id-numbers-

Arguments

None

875

20

Default

The compiler displays diagnostic messages by using their ID
number values.

-diag-id-numbers
or/Qdiag-id-numbers

Description

This option determines whether the compiler displays diagnostic messages by using their ID
number values. If you specify -no-diag-id-numbers (Linux and Mac OS X) or /Qdiag-id-
numbers- (Windows), mnemonic names are output for driver diagnostics only.

Alternate Options

None

See Also
•
•
• diag, Qdiag

diag-once, Qdiag-once
Tells the compiler to issue one or more diagnostic
messages only once.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-diag-onceid[,id,...]

Windows:

/Qdiag-once:id[,id,...]

876

20 Intel® Fortran Compiler User and Reference Guides

Arguments

Is the ID number of the diagnostic message. If you specify
more than one message number, they must be separated
by commas. There can be no intervening white space
between each id.

id

Default

The compiler issues certain diagnostic messages by default.OFF

Description

This option tells the compiler to issue one or more diagnostic messages only once.

Alternate Options

None

dps, Qdps
See altparam.

dyncom, Qdyncom
Enables dynamic allocation of common blocks at
run time.

IDE Equivalent

Windows: Data > Dynamic Common Blocks

Linux: None

Mac OS X: Data > Dynamic Common Blocks

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-dyncom "common1,common2,..."

877

20

Windows:

/Qdyncom "common1,common2,..."

Arguments

Are the names of the common blocks to be dynamically
allocated. The list of names must be within quotes.

common1,common2,...

Default

Common blocks are not dynamically allocated at run time.OFF

Description

This option enables dynamic allocation of the specified common blocks at run time. For example,
to enable dynamic allocation of common blocks a, b, and c at run time, use this syntax:

/Qdyncom "a,b,c" ! on Windows systems

-dyncom "a,b,c" ! on Linux and Mac OS X systems

The following are some limitations that you should be aware of when using this option:

• An entity in a dynamic common cannot be initialized in a DATA statement.

• Only named common blocks can be designated as dynamic COMMON.

• An entity in a dynamic common block must not be used in an EQUIVALENCE expression with
an entity in a static common block or a DATA-initialized variable.

Alternate Options

None

See Also
•
•

Building Applications: Allocating Common Blocks

878

20 Intel® Fortran Compiler User and Reference Guides

Qextend-source
See extend-source.

fast-transcendentals, Qfast-transcendentals
Enables the compiler to replace calls to
transcendental functions with faster but less precise
implementations.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fast-transcendentals

-no-fast-transcendentals

Windows:

/Qfast-transcendentals

/Qfast-transcendentals-

Default

The default depends on the setting of -fp-model (Linux and Mac
OS X) or /fp (Windows).
The default is ON if default setting -fp-model fast or /fp:fast
is in effect. However, if a value-safe option such as -fp-model
precise or /fp:precise is specified, the default is OFF.

-fast-transcendentals
or /Qfast-transcenden-
tals

Description

This option enables the compiler to replace calls to transcendental functions with implementations
that may be faster but less precise.

879

20

It tells the compiler to perform certain optimizations on transcendental functions, such as
replacing individual calls to sine in a loop with a single call to a less precise vectorized sine
library routine.

This option has an effect only when specified with one of the following options:

• Windows* OS: /fp:except or /fp:precise

• Linux* OS and Mac OS* X: -fp-model except or -fp-model precise

You cannot use this option with option -fp-model strict (Linux and Mac OS X) or /fp:strict
(Windows).

Alternate Options

None

See Also
•
•
• fp-model, fp

fma, Qfma
Enables the combining or contraction of
floating-point multiplications and add or subtract
operations.

IDE Equivalent

Windows: Floating Point > Contract Floating-Point Operations

Linux: None

Mac OS X: None

Architectures

IA-64 architecture

Syntax

Linux:

-fma

-no-fma

880

20 Intel® Fortran Compiler User and Reference Guides

Mac OS X:

None

Windows:

/Qfma

/Qfma-

Arguments

None

Default

Floating-point multiplications and add/subtract operations are
combined.

-fma
or/Qfma

However, if you specify -fp-model strict (Linux) or /fp:strict
(Windows), but do not explicitly specify -fma or /Qfma, the default
is -no-fma or /Qfma-.

Description

This option enables the combining or contraction of floating-point multiplications and add or
subtract operations into a single operation.

Alternate Options

Linux: -IPF-fma (this is a deprecated option)

Windows: /QIPF-fma (this is a deprecated option)

See Also
•
•
• fp-model, fp

Floating-point Operations: Floating-point Options Quick Reference

881

20

falign-functions, Qfnalign
Tells the compiler to align functions on an optimal
byte boundary.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-falign-functions[=n]

-fno-align-functions

Windows:

/Qfnalign[:n]

/Qfnalign-

Arguments

Is the byte boundary for function alignment. Possible values
are 2 or 16.

n

Default

The compiler aligns functions on 2-byte boundaries. This is the
same as specifying -falign-functions=2 (Linux and Mac OS X)
or /Qfnalign:2 (Windows).

-fno-align-functions or
/Qfnalign-

Description

This option tells the compiler to align functions on an optimal byte boundary. If you do not
specify n, the compiler aligns the start of functions on 16-byte boundaries.

Alternate Options

None

882

20 Intel® Fortran Compiler User and Reference Guides

fnsplit, Qfnsplit
Enables function splitting.

IDE Equivalent

None

Architectures

/Qfnsplit[-]: IA-32 architecture, Intel® 64 architecture

-[no-]fnsplit: IA-64 architecture

Syntax

Linux:

-fnsplit

-no-fnsplit

Mac OS X:

None

Windows:

/Qfnsplit

/Qfnsplit-

Arguments

None

Default

Function splitting is not enabled unless -prof-use (Linux) or
/Qprof-use (Windows) is also specified.

-no-fnsplit
or/Qfnsplit-

Description

This option enables function splitting if -prof-use (Linux) or /Qprof-use (Windows) is also
specified. Otherwise, this option has no effect.

883

20

It is enabled automatically if you specify -prof-use or /Qprof-use. If you do not specify one
of those options, the default is -no-fnsplit (Linux) or /Qfnsplit- (Windows), which disables
function splitting but leaves function grouping enabled.

To disable function splitting when you use -prof-use or /Qprof-use, specify -no-fnsplit
or /Qfnsplit-.

Alternate Options

None

See Also
•
•
• Profile-Guided Optimization (PGO) Quick Reference
• Profile an Application

fp-port, Qfp-port
Rounds floating-point results after floating-point
operations.

IDE Equivalent

Windows: Floating-Point > Round Floating-Point Results

Linux: None

Mac OS X: Floating-Point > Round Floating-Point Results

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fp-port

-no-fp-port

Windows:

/Qfp-port

/Qfp-port-

884

20 Intel® Fortran Compiler User and Reference Guides

Arguments

None

Default

The default rounding behavior depends on the compiler's code
generation decisions and the precision parameters of the operating
system.

-no-fp-port
or/Qfp-port-

Description

This option rounds floating-point results after floating-point operations. Rounding to
user-specified precision occurs at assignments and type conversions. This has some impact on
speed.

The default is to keep results of floating-point operations in higher precision. This provides
better performance but less consistent floating-point results.

Alternate Options

None

fp-relaxed, Qfp-relaxed
Enables use of faster but slightly less accurate code
sequences for math functions.

IDE Equivalent

None

Architectures

IA-64 architecture

Syntax

Linux:

-fp-relaxed

-no-fp-relaxed

Mac OS X:

None

885

20

Windows:

/Qfp-relaxed

/Qfp-relaxed-

Arguments

None

Default

Default code sequences are used for math functions.-no-fp-relaxed
or/Qfp-relaxed-

Description

This option enables use of faster but slightly less accurate code sequences for math functions,
such as divide and sqrt. When compared to strict IEEE* precision, this option slightly reduces
the accuracy of floating-point calculations performed by these functions, usually limited to the
least significant digit.

This option also enables the performance of more aggressive floating-point transformations,
which may affect accuracy.

Alternate Options

Linux: -IPF-fp-relaxed (this is a deprecated option)

Windows: /QIPF-fp-relaxed (this is a deprecated option)

See Also
•
•
• fp-model, fp

fp-speculation, Qfp-speculation
Tells the compiler the mode in which to speculate
on floating-point operations.

IDE Equivalent

Windows: Floating Point > Floating-Point Speculation

Linux: None

886

20 Intel® Fortran Compiler User and Reference Guides

Mac OS X: Floating Point > Floating-Point Speculation

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fp-speculation=mode

Windows:

/Qfp-speculation:mode

Arguments

Is the mode for floating-point operations. Possible values
are:

mode

Tells the compiler to speculate on
floating-point operations.

fast

Tells the compiler to disable speculation
if there is a possibility that the speculation
may cause a floating-point exception.

safe

Tells the compiler to disable speculation
on floating-point operations.

strict

This is the same as specifying strict.off

Default

The compiler speculates on floating-point operations. This is also
the behavior when optimizations are enabled. However, if you
specify no optimizations (-O0 on Linux; /Od on Windows), the
default is -fp-speculation=safe (Linux) or /Qfp-specula-
tion:safe (Windows).

-fp-speculation=fast
or/Qfp-speculation:fast

Description

This option tells the compiler the mode in which to speculate on floating-point operations.

887

20

Alternate Options

None

See Also
•
•

Floating-point Operations: Floating-point Options Quick Reference

fp-stack-check, Qfp-stack-check
Tells the compiler to generate extra code after
every function call to ensure that the floating-point
stack is in the expected state.

IDE Equivalent

Windows: Floating-Point > Check Floating-point Stack

Linux: None

Mac OS X: Floating-Point > Check Floating-point Stack

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-fp-stack-check

Windows:

/Qfp-stack-check

Arguments

None

Default

There is no checking to ensure that the floating-point (FP) stack
is in the expected state.

OFF

888

20 Intel® Fortran Compiler User and Reference Guides

Description

This option tells the compiler to generate extra code after every function call to ensure that
the floating-point (FP) stack is in the expected state.

By default, there is no checking. So when the FP stack overflows, a NaN value is put into FP
calculations and the program's results differ. Unfortunately, the overflow point can be far away
from the point of the actual bug. This option places code that causes an access violation
exception immediately after an incorrect call occurs, thus making it easier to locate these issues.

Alternate Options

None

See Also
•
•
Floating-point Operations:
• Checking the Floating-point Stack State

fpp, Qfpp
Runs the Fortran preprocessor on source files
before compilation.

IDE Equivalent

Windows: Preprocessor > Preprocess Source File

Linux: None

Mac OS X: Preprocessor > Preprocess Source File

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

fpp[n]

fpp[="option"]

-nofpp

889

20

Windows:

/fpp[n]

/fpp[:"option"]

/nofpp

/Qfpp[n]

/Qfpp[:"option"]

Arguments

Deprecated. Tells the compiler whether to run the
preprocessor or not. Possible values are:

n

Tells the compiler not to run the
preprocessor.

0

Tells the compiler to run the preprocessor.1, 2, or 3

Is a Fortran preprocessor (fpp) option; for example,
"-macro=no", which disables macro expansion. The quotes
are required. For a list of fpp options, see Fortran
Preprocessor Options.

option

Default

The Fortran preprocessor is not run on files before compilation.nofpp

Description

This option runs the Fortran preprocessor on source files before they are compiled.

If the option is specified with no argument, the compiler runs the preprocessor.

If 0 is specified for n, it is equivalent to nofpp.Note that argument n is deprecated.

We recommend you use option Qoption,fpp,"option" to pass fpp options to the Fortran
preprocessor.

Alternate Options

Linux and Mac OS X: -cpp

Windows: /Qcpp

890

20 Intel® Fortran Compiler User and Reference Guides

See Also
•
•
• Fortran Preprocessor Options
• Qoption

ftz, Qftz
Flushes denormal results to zero.

IDE Equivalent

Windows: (IA-32 and IA-64 architectures): Floating Point > Flush Denormal Results to
Zero

(Intel® 64 architecture): None

Linux: None

Mac OS X: Floating Point > Flush Denormal Results to Zero

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-ftz

-no-ftz

Windows:

/Qftz

/Qftz-

Arguments

None

891

20

Default

On systems using IA-64 architecture, the compiler lets results
gradually underflow. On systems using IA-32 architecture and
Intel® 64 architecture, denormal results are flushed to zero.

Systems using IA-64
architecture: -no-ftz or
/Qftz-
Systems using IA-32
architecture and Intel® 64
architecture: -ftz or /Qftz

Description

This option flushes denormal results to zero when the application is in the gradual underflow
mode. It may improve performance if the denormal values are not critical to your application's
behavior.

This option sets or resets the FTZ and the DAZ hardware flags. If FTZ is ON, denormal results
from floating-point calculations will be set to the value zero. If FTZ is OFF, denormal results
remain as is. If DAZ is ON, denormal values used as input to floating-point instructions will be
treated as zero. If DAZ is OFF, denormal instruction inputs remain as is. Systems using IA-64
architecture have FTZ but not DAZ. Systems using Intel® 64 architecture have both FTZ and
DAZ. FTZ and DAZ are not supported on all IA-32 architectures.

When -ftz (Linux and Mac OS X) or /Qftz (Windows) is used in combination with an
SSE-enabling option on systems using IA-32 architecture (for example, xN or QxN), the compiler
will insert code in the main routine to set FTZ and DAZ. When -ftz or /Qftz is used without
such an option, the compiler will insert code to conditionally set FTZ/DAZ based on a run-time
processor check. -no-ftz (Linux and Mac OS X) or /Qftz- (Windows) will prevent the compiler
from inserting any code that might set FTZ or DAZ.

This option only has an effect when the main program is being compiled. It sets the FTZ/DAZ
mode for the process. The initial thread and any threads subsequently created by that process
will operate in FTZ/DAZ mode.

Options -fpe0 and -fpe1 (Linux and Mac OS X) set -ftz. Options /fpe:0 and /fpe:1
(Windows) set /Qftz.

On systems using IA-64 architecture, optimization option O3 sets -ftz and /Qftz; optimization
option O2 sets -no-ftz (Linux) and /Qftz- (Windows). On systems using IA-32 architecture
and Intel® 64 architecture, every optimization option O level, except O0, sets -ftz and /Qftz.

If this option produces undesirable results of the numerical behavior of your program, you can
turn the FTZ/DAZ mode off by using -no-ftz or /Qftz- in the command line while still
benefiting from the O3 optimizations.

892

20 Intel® Fortran Compiler User and Reference Guides

NOTE. Options -ftz and /Qftz are performance options. Setting these options does
not guarantee that all denormals in a program are flushed to zero. They only cause
denormals generated at run time to be flushed to zero.

Alternate Options

None

See Also
•
•
• x, Qx

Floating-point Operations: Using the -fpe or /fpe Compiler Option

global-hoist, Qglobal-hoist
Enables certain optimizations that can move
memory loads to a point earlier in the program
execution than where they appear in the source.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-global-hoist

-no-global-hoist

Windows:

/Qglobal-hoist

/Qglobal-hoist-

893

20

Arguments

None

Default

Certain optimizations are enabled that can move memory loads.-global-hoist
or/Qglobal-hoist

Description

This option enables certain optimizations that can move memory loads to a point earlier in the
program execution than where they appear in the source. In most cases, these optimizations
are safe and can improve performance.

The -no-global-hoist (Linux and Mac OS X) or /Qglobal-hoist- (Windows) option is useful
for some applications, such as those that use shared or dynamically mapped memory, which
can fail if a load is moved too early in the execution stream (for example, before the memory
is mapped).

Alternate Options

None

QIA64-fr32
Disables use of high floating-point registers.

IDE Equivalent

Windows: Floating Point > Disable Use of High Floating-Point Registers

Linux: None

Mac OS X: None

Architectures

IA-64 architecture

Syntax

Linux and Mac OS X:

None

894

20 Intel® Fortran Compiler User and Reference Guides

Windows:

/QIA64-fr32

Arguments

None

Default

Use of high floating-point registers is enabled.OFF

Description

This option disables use of high floating-point registers.

Alternate Options

None

QIfist
See rcd, Qrcd.

Qimsl
Tells the compiler to link to the IMSL* Fortran
Numerical Library*(IMSL* library).

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/Qimsl

895

20

Arguments

None

Default

The compiler does not link to the IMSL* library.OFF

Description

This option tells the compiler to link to the IMSL* Fortran Numerical Library* (IMSL* library).
This option is applicable for users of editions of the Intel® Fortran Compiler product that include
the IMSL* libraries.

Alternate Options

None

inline-debug-info, Qinline-debug-info
Produces enhanced source position information for
inlined code. This is a deprecated option.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-inline-debug-info

Windows:

/Qinline-debug-info

Arguments

None

896

20 Intel® Fortran Compiler User and Reference Guides

Default

No enhanced source position information is produced for inlined
code.

OFF

Description

This option produces enhanced source position information for inlined code. This leads to greater
accuracy when reporting the source location of any instruction. It also provides enhanced debug
information useful for function call traceback.

To use this option for debugging, you must also specify a debug enabling option, such as -g
(Linux) or /debug (Windows).

Alternate Options

Linux and Mac OS X: -debug inline-debug-info

Windows: None

Qinline-dllimport
Determines whether dllimport functions are inlined.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/Qinline-dllimport

/Qinline-dllimport-

Arguments

None

897

20

Default

The dllimport functions are inlined./Qinline-dllimport

Description

This option determines whether dllimport functions are inlined. To disable dllimport functions
from being inlined, specify /Qinline-dllimport-.

Alternate Options

None

inline-factor, Qinline-factor
Specifies the percentage multiplier that should be
applied to all inlining options that define upper
limits.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-inline-factor=n

-no-inline-factor

Windows:

/Qinline-factor=n

/Qinline-factor-

Arguments

Is a positive integer specifying the percentage value. The
default value is 100 (a factor of 1).

n

898

20 Intel® Fortran Compiler User and Reference Guides

Default

The compiler uses default heuristics for inline routine expansion.-no-inline-factor
or/Qinline-factor-

Description

This option specifies the percentage multiplier that should be applied to all inlining options that
define upper limits:

• -inline-max-size and /Qinline-max-size

• -inline-max-total-size and /Qinline-max-total-size

• -inline-max-per-routine and /Qinline-max-per-routine

• -inline-max-per-compile and /Qinline-max-per-compile

This option takes the default value for each of the above options and multiplies it by n divided
by 100. For example, if 200 is specified, all inlining options that define upper limits are multiplied
by a factor of 2. This option is useful if you do not want to individually increase each option
limit.

If you specify -no-inline-factor (Linux and Mac OS X) or /Qinline-factor- (Windows),
the following occurs:

• Every function is considered to be a small or medium function; there are no large functions.

• There is no limit to the size a routine may grow when inline expansion is performed.

• There is no limit to the number of times some routine may be inlined into a particular routine.

• There is no limit to the number of times inlining can be applied to a compilation unit.

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS X) or /Qopt-report (Windows).

CAUTION. When you use this option to increase default limits, the compiler may do so
much additional inlining that it runs out of memory and terminates with an "out of
memory" message.

Alternate Options

None

899

20

See Also
•
•
• inline-max-size, Qinline-max-size
• inline-max-total-size, Qinline-max-total-size
• inline-max-per-routine, Qinline-max-per-routine
• inline-max-per-compile, Qinline-max-per-compile
• opt-report, Qopt-report
• Developer Directed Inline Expansion of User Functions
• Compiler Directed Inline Expansion of User Functions

inline-forceinline, Qinline-forceinline
Specifies that an inline routine should be inlined
whenever the compiler can do so.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-inline-forceinline

Windows:

/Qinline-forceinline

Default

The compiler uses default heuristics for inline routine expansion.OFF

Description

This option specifies that a inline routine should be inlined whenever the compiler can do so.
This causes the routines marked with an inline keyword or directive to be treated as if they
were "forceinline".

900

20 Intel® Fortran Compiler User and Reference Guides

NOTE. Because C++ member functions whose definitions are included in the class
declaration are considered inline functions by default, using this option will also make
these member functions "forceinline" functions.

The "forceinline" condition can also be specified by using the directive cDEC$ ATTRIBUTES
FORCEINLINE.

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS) or /Qopt-report (Windows).

CAUTION. When you use this option to change the meaning of inline to "forceinline",
the compiler may do so much additional inlining that it runs out of memory and terminates
with an "out of memory" message.

Alternate Options

None

See Also
•
•
• opt-report, Qopt-report
• Developer Directed Inline Expansion of User Functions
• Compiler Directed Inline Expansion of User Functions

inline-max-per-compile, Qinline-max-per-compile
Specifies the maximum number of times inlining
may be applied to an entire compilation unit.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

901

20

Syntax

Linux and Mac OS X:

-inline-max-per-compile=n

-no-inline-max-per-compile

Windows:

/Qinline-max-per-compile=n

/Qinline-max-per-compile-

Arguments

Is a positive integer that specifies the number of times
inlining may be applied.

n

Default

The compiler uses default heuristics for inline routine
expansion.

-no-inline-max-per-compile
or/Qinline-max-per-compile-

Description

This option the maximum number of times inlining may be applied to an entire compilation
unit. It limits the number of times that inlining can be applied.

For compilations using Interprocedural Optimizations (IPO), the entire compilation is a
compilation unit. For other compilations, a compilation unit is a file.

If you specify -no-inline-max-per-compile (Linux and Mac OS X) or /Qinline-max-per-
compile- (Windows), there is no limit to the number of times inlining may be applied to a
compilation unit.

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS X) or /Qopt-report (Windows).

CAUTION. When you use this option to increase the default limit, the compiler may do
so much additional inlining that it runs out of memory and terminates with an "out of
memory" message.

902

20 Intel® Fortran Compiler User and Reference Guides

Alternate Options

None

See Also
•
•
• inline-factor, Qinline-factor
• opt-report, Qopt-report
• Developer Directed Inline Expansion of User Functions
• Compiler Directed Inline Expansion of User Functions

inline-max-per-routine, Qinline-max-per-routine
Specifies the maximum number of times the inliner
may inline into a particular routine.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-inline-max-per-routine=n

-no-inline-max-per-routine

Windows:

/Qinline-max-per-routine=n

/Qinline-max-per-routine-

Arguments

Is a positive integer that specifies the maximum number of
times the inliner may inline into a particular routine.

n

903

20

Default

The compiler uses default heuristics for inline routine
expansion.

-no-inline-max-per-routine
or/Qinline-max-per-routine-

Description

This option specifies the maximum number of times the inliner may inline into a particular
routine. It limits the number of times that inlining can be applied to any routine.

If you specify -no-inline-max-per-routine (Linux and Mac OS X) or /Qinline-max-per-
routine- (Windows), there is no limit to the number of times some routine may be inlined
into a particular routine.

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS X) or /Qopt-report (Windows).

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS X) or /Qopt-report (Windows).

CAUTION. When you use this option to increase the default limit, the compiler may do
so much additional inlining that it runs out of memory and terminates with an "out of
memory" message.

Alternate Options

None

See Also
•
•
• inline-factor, Qinline-factor
• opt-report, Qopt-report
• Developer Directed Inline Expansion of User Functions
• Compiler Directed Inline Expansion of User Functions

904

20 Intel® Fortran Compiler User and Reference Guides

inline-max-size, Qinline-max-size
Specifies the lower limit for the size of what the
inliner considers to be a large routine.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-inline-max-size=n

-no-inline-max-size

Windows:

/Qinline-max-size=n

/Qinline-max-size-

Arguments

Is a positive integer that specifies the minimum size of what
the inliner considers to be a large routine.

n

Default

The compiler uses default heuristics for inline routine
expansion.

-no-inline-max-size
or/Qinline-max-size-

Description

This option specifies the lower limit for the size of what the inliner considers to be a large routine
(a function or subroutine). The inliner classifies routines as small, medium, or large. This option
specifies the boundary between what the inliner considers to be medium and large-size routines.

The inliner prefers to inline small routines. It has a preference against inlining large routines.
So, any large routine is highly unlikely to be inlined.

905

20

If you specify -no-inline-max-size (Linux and Mac OS X) or /Qinline-max-size-
(Windows), there are no large routines. Every routine is either a small or medium routine.

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS X) or /Qopt-report (Windows).

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS X) or /Qopt-report (Windows).

CAUTION. When you use this option to increase the default limit, the compiler may do
so much additional inlining that it runs out of memory and terminates with an "out of
memory" message.

Alternate Options

None

See Also
•
•
• inline-min-size, Qinline-min-size
• inline-factor, Qinline-factor
• opt-report, Qopt-report
• Developer Directed Inline Expansion of User Functions
• Compiler Directed Inline Expansion of User Functions

inline-max-total-size, Qinline-max-total-size
Specifies how much larger a routine can normally
grow when inline expansion is performed.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

906

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-inline-max-total-size=n

-no-inline-max-total-size

Windows:

/Qinline-max-total-size=n

/Qinline-max-total-size-

Arguments

Is a positive integer that specifies the permitted increase
in the routine's size when inline expansion is performed.

n

Default

The compiler uses default heuristics for inline routine
expansion.

-no-inline-max-total-size
or/Qinline-max-total-size-

Description

This option specifies how much larger a routine can normally grow when inline expansion is
performed. It limits the potential size of the routine. For example, if 2000 is specified for n, the
size of any routine will normally not increase by more than 2000.

If you specify -no-inline-max-total-size (Linux and Mac OS X) or /Qinline-max-total-
size- (Windows), there is no limit to the size a routine may grow when inline expansion is
performed.

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS X) or /Qopt-report (Windows).

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS X) or /Qopt-report (Windows).

CAUTION. When you use this option to increase the default limit, the compiler may do
so much additional inlining that it runs out of memory and terminates with an "out of
memory" message.

907

20

Alternate Options

None

See Also
•
•
• inline-factor, Qinline-factor
• opt-report, Qopt-report
• Developer Directed Inline Expansion of User Functions
• Compiler Directed Inline Expansion of User Functions

inline-min-size, Qinline-min-size
Specifies the upper limit for the size of what the
inliner considers to be a small routine.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-inline-min-size=n

-no-inline-min-size

Windows:

/Qinline-min-size=n

/Qinline-min-size-

Arguments

Is a positive integer that specifies the maximum size of what
the inliner considers to be a small routine.

n

908

20 Intel® Fortran Compiler User and Reference Guides

Default

The compiler uses default heuristics for inline routine
expansion.

-no-inline-min-size
or/Qinline-min-size-

Description

This option specifies the upper limit for the size of what the inliner considers to be a small
routine (a function or subroutine). The inliner classifies routines as small, medium, or large.
This option specifies the boundary between what the inliner considers to be small and
medium-size routines.

The inliner has a preference to inline small routines. So, when a routine is smaller than or equal
to the specified size, it is very likely to be inlined.

If you specify -no-inline-min-size (Linux and Mac OS X) or /Qinline-min-size-
(Windows), there is no limit to the size of small routines. Every routine is a small routine; there
are no medium or large routines.

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS X) or /Qopt-report (Windows).

To see compiler values for important inlining limits, specify compiler option -opt-report (Linux
and Mac OS X) or /Qopt-report (Windows).

CAUTION. When you use this option to increase the default limit, the compiler may do
so much additional inlining that it runs out of memory and terminates with an "out of
memory" message.

Alternate Options

None

See Also
•
•
• inline-min-size, Qinline-min-size
• opt-report, Qopt-report
• Developer Directed Inline Expansion of User Functions
• Compiler Directed Inline Expansion of User Functions

909

20

Qinstall
Specifies the root directory where the compiler
installation was performed.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-Qinstalldir

Windows:

None

Arguments

Is the root directory where the installation was performed.dir

Default

The default root directory for compiler installation is searched for
the compiler.

OFF

Description

This option specifies the root directory where the compiler installation was performed. It is
useful if you want to use a different compiler or if you did not use the ifortvars shell script to
set your environment variables.

Alternate Options

None

910

20 Intel® Fortran Compiler User and Reference Guides

minstruction, Qinstruction
Determines whether MOVBE instructions are
generated for Intel processors.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-minstruction=[no]movbe

Windows:

/Qinstruction:[no]movbe

Arguments

None

Default

The compiler does not generate MOVBE instructions for Intel®

Atom™ processors.
–minstruction=nomovbe
or/Qinstruction:nomovbe

Description

This option determines whether MOVBE instructions are generated for Intel processors. To use
this option, you must also specify -xSSE3_ATOM (Linux and Mac OS X) or /QxSSE3_ATOM
(Windows).

If -minstruction=movbe or /Qinstruction:movbe is specified, the following occurs:

• MOVBE instructions are generated that are specific to the Intel® Atom™ processor.

• The options are ON by default when -xSSE3_ATOM or /QxSSE3_ATOM is specified.

• Generated executables can only be run on Intel® Atom™ processors or processors that
support Intel® Streaming SIMD Extensions 3 (Intel® SSE3) and MOVBE.

911

20

If -minstruction=nomovbe or /Qinstruction:nomovbe is specified, the following occurs:

• The compiler optimizes code for the Intel® Atom™ processor, but it does not generate MOVBE
instructions.

• Generated executables can be run on non-Intel® Atom™ processors that support Intel® SSE3.

Alternate Options

None

See Also
•
•
• x, Qx

finstrument-functions, Qinstrument-functions
Determines whether routine entry and exit points
are instrumented.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-finstrument-functions

-fno-instrument-functions

Windows:

/Qinstrument-functions

/Qinstrument-functions-

Arguments

None

912

20 Intel® Fortran Compiler User and Reference Guides

Default

Routine entry and exit points are not instrumented.-fno-instrument-func-
tions
or/Qinstrument-func-
tions-

Description

This option determines whether routine entry and exit points are instrumented. It may increase
execution time.

The following profiling functions are called with the address of the current routine and the
address of where the routine was called (its "call site"):

• This function is called upon routine entry:

• On IA-32 architecture and Intel® 64 architecture:

void __cyg_profile_func_enter (void *this_fn,

void *call_site);

• On IA-64 architecture:

void __cyg_profile_func_enter (void **this_fn,

void *call_site);

• This function is called upon routine exit:

• On IA-32 architecture and Intel® 64 architecture:

void __cyg_profile_func_exit (void *this_fn,

void *call_site);

• On IA-64 architecture:

void __cyg_profile_func_exit (void **this_fn,

void *call_site);

On IA-64 architecture, the additional de-reference of the function pointer argument is required
to obtain the routine entry point contained in the first word of the routine descriptor for indirect
routine calls. The descriptor is documented in the Intel® Itanium® Software Conventions and
Runtime Architecture Guide, section 8.4.2. You can find this design guide at web site
http://www.intel.com.

913

20

These functions can be used to gather more information, such as profiling information or timing
information. Note that it is the user's responsibility to provide these profiling functions.

If you specify -finstrument-functions (Linux and Mac OS X) or /Qinstrument-functions
(Windows), routine inlining is disabled. If you specify -fno-instrument-functions or /Qin-
strument-functions-, inlining is not disabled.

This option is provided for compatibility with gcc.

Alternate Options

None

ip, Qip
Determines whether additional interprocedural
optimizations for single-file compilation are
enabled.

IDE Equivalent

Windows: Optimization > Interprocedural Optimization

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-ip

-no-ip

Windows:

/Qip

/Qip-

Arguments

None

914

20 Intel® Fortran Compiler User and Reference Guides

Default

Some limited interprocedural optimizations occur, including inline
function expansion for calls to functions defined within the current
source file. These optimizations are a subset of full intra-file
interprocedural optimizations. Note that this setting is not the
same as -no-ip (Linux and Mac OS X) or /Qip- (Windows).

OFF

Description

This option determines whether additional interprocedural optimizations for single-file compilation
are enabled.

Options -ip (Linux and Mac OS X) and /Qip (Windows) enable additional interprocedural
optimizations for single-file compilation.

Options -no-ip (Linux and Mac OS X) and /Qip- (Windows) may not disable inlining. To ensure
that inlining of user-defined functions is disabled, specify -inline-level=0or -fno-inline
(Linux and Mac OS X), or specify /Ob0 (Windows).

Alternate Options

None

See Also
•
•
• finline-functions

ip-no-inlining, Qip-no-inlining
Disables full and partial inlining enabled by
interprocedural optimization options.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

915

20

Syntax

Linux and Mac OS X:

-ip-no-inlining

Windows:

/Qip-no-inlining

Arguments

None

Default

Inlining enabled by interprocedural optimization options is
performed.

OFF

Description

This option disables full and partial inlining enabled by the following interprocedural optimization
options:

• On Linux and Mac OS X systems: -ip or -ipo

• On Windows systems: /Qip, /Qipo, or /Ob2

It has no effect on other interprocedural optimizations.

On Windows systems, this option also has no effect on user-directed inlining specified by option
/Ob1.

Alternate Options

None

ip-no-pinlining, Qip-no-pinlining
Disables partial inlining enabled by interprocedural
optimization options.

IDE Equivalent

None

916

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-ip-no-pinlining

Windows:

/Qip-no-pinlining

Arguments

None

Default

Inlining enabled by interprocedural optimization options is
performed.

OFF

Description

This option disables partial inlining enabled by the following interprocedural optimization options:

• On Linux and Mac OS X systems: -ip or -ipo

• On Windows systems: /Qip or /Qipo

It has no effect on other interprocedural optimizations.

Alternate Options

None

IPF-flt-eval-method0, QIPF-flt-eval-method0
Tells the compiler to evaluate the expressions
involving floating-point operands in the precision
indicated by the variable types declared in the
program. This is a deprecated option.

IDE Equivalent

None

917

20

Architectures

IA-64 architecture

Syntax

Linux:

-IPF-flt-eval-method0

Mac OS X:

None

Windows:

/QIPF-flt-eval-method0

Arguments

None

Default

Expressions involving floating-point operands are evaluated by
default rules.

OFF

Description

This option tells the compiler to evaluate the expressions involving floating-point operands in
the precision indicated by the variable types declared in the program.

By default, intermediate floating-point expressions are maintained in higher precision.

The recommended method to control the semantics of floating-point calculations is to use option
-fp-model (Linux) or /fp (Windows).

Instead of using -IPF-flt-eval-method0 (Linux) or /QIPF-flt-eval-method0 (Windows),
you can use -fp-model source (Linux) or /fp:source (Windows).

Alternate Options

None

See Also
•
•

918

20 Intel® Fortran Compiler User and Reference Guides

• fp-model, fp

IPF-fltacc, QIPF-fltacc
Disables optimizations that affect floating-point
accuracy. This is a deprecated option.

IDE Equivalent

Windows: Floating Point > Floating-Point Accuracy

Linux: None

Mac OS X: None

Architectures

IA-64 architecture

Syntax

Linux:

-IPF-fltacc

-no-IPF-fltacc

Mac OS X:

None

Windows:

/QIPF-fltacc

/QIPF-fltacc-

Arguments

None

Default

Optimizations are enabled that affect floating-point accuracy.-no-IPF-fltacc
or/QIPF-fltacc-

Description

This option disables optimizations that affect floating-point accuracy.

919

20

If the default setting is used, the compiler may apply optimizations that reduce floating-point
accuracy.

You can use this option to improve floating-point accuracy, but at the cost of disabling some
optimizations.

The recommended method to control the semantics of floating-point calculations is to use option
-fp-model (Linux) or /fp (Windows).

Instead of using -IPF-fltacc (Linux) or /QIPF-fltacc (Windows), you can use -fp-model
precise (Linux) or /fp:precise (Windows).

Instead of using -no-IPF-fltacc (Linux) or /QIPF-fltacc- (Windows), you can use -fp-
model fast (Linux) or /fp:fast (Windows).

Alternate Options

None

See Also
•
•
• fp-model, fp

IPF-fma, QIPF-fma
See fma, Qfma.

IPF-fp-relaxed, QIPF-fp-relaxed
See fp-relaxed, Qfp-relaxed.

ipo, Qipo
Enables interprocedural optimization between files.

IDE Equivalent

Windows: Optimization > Interprocedural Optimization

General > Whole Program Optimization

Linux: None

Mac OS X: None

920

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-ipo[n]

Windows:

/Qipo[n]

Arguments

Is an optional integer that specifies the number of object
files the compiler should create. The integer must be greater
than or equal to 0.

n

Default

Multifile interprocedural optimization is not enabled.OFF

Description

This option enables interprocedural optimization between files. This is also called multifile
interprocedural optimization (multifile IPO) or Whole Program Optimization (WPO).

When you specify this option, the compiler performs inline function expansion for calls to
functions defined in separate files.

You cannot specify the names for the files that are created.

If n is 0, the compiler decides whether to create one or more object files based on an estimate
of the size of the application. It generates one object file for small applications, and two or
more object files for large applications.

If n is greater than 0, the compiler generates n object files, unless n exceeds the number of
source files (m), in which case the compiler generates only m object files.

If you do not specify n, the default is 0.

Alternate Options

None

921

20

See Also
•
•

Optimizing Applications:

Interprocedural Optimization (IPO) Quick Reference

Interprocedural Optimization (IPO) Overview

Using IPO

ipo-c, Qipo-c
Tells the compiler to optimize across multiple files
and generate a single object file.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-ipo-c

Windows:

/Qipo-c

Arguments

None

Default

The compiler does not generate a multifile object file.OFF

Description

This option tells the compiler to optimize across multiple files and generate a single object file
(named ipo_out.o on Linux and Mac OS X systems; ipo_out.obj on Windows systems).

922

20 Intel® Fortran Compiler User and Reference Guides

It performs the same optimizations as -ipo (Linux and Mac OS X) or /Qipo (Windows), but
compilation stops before the final link stage, leaving an optimized object file that can be used
in further link steps.

Alternate Options

None

See Also
•
•
• ipo, Qipo

ipo-jobs, Qipo-jobs
Specifies the number of commands (jobs) to be
executed simultaneously during the link phase of
Interprocedural Optimization (IPO).

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-ipo-jobsn

Windows:

/Qipo-jobs:n

Arguments

Is the number of commands (jobs) to run simultaneously.
The number must be greater than or equal to 1.

n

923

20

Default

One command (job) is executed in an interprocedural optimization
parallel build.

-ipo-jobs1
or/Qipo-jobs:1

Description

This option specifies the number of commands (jobs) to be executed simultaneously during the
link phase of Interprocedural Optimization (IPO). It should only be used if the link-time
compilation is generating more than one object. In this case, each object is generated by a
separate compilation, which can be done in parallel.

This option can be affected by the following compiler options:

• -ipo (Linux and Mac OS X) or /Qipo (Windows) when applications are large enough that
the compiler decides to generate multiple object files.

• -ipon (Linux and Mac OS X) or /Qipon (Windows) when n is greater than 1.

• -ipo-separate (Linux) or /Qipo-separate (Windows)

CAUTION. Be careful when using this option. On a multi-processor system with lots of
memory, it can speed application build time. However, if n is greater than the number
of processors, or if there is not enough memory to avoid thrashing, this option can
increase application build time.

Alternate Options

None

See Also
•
•
• ipo, Qipo
• ipo-separate, Qipo-separate

924

20 Intel® Fortran Compiler User and Reference Guides

ipo-S, Qipo-S
Tells the compiler to optimize across multiple files
and generate a single assembly file.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-ipo-S

Windows:

/Qipo-S

Arguments

None

Default

The compiler does not generate a multifile assembly file.OFF

Description

This option tells the compiler to optimize across multiple files and generate a single assembly
file (named ipo_out.s on Linux and Mac OS X systems; ipo_out.asm on Windows systems).

It performs the same optimizations as -ipo (Linux and Mac OS X) or /Qipo (Windows), but
compilation stops before the final link stage, leaving an optimized assembly file that can be
used in further link steps.

Alternate Options

None

See Also
•

925

20

•
• ipo, Qipo

ipo-separate, Qipo-separate
Tells the compiler to generate one object file for
every source file.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-ipo-separate

Mac OS X:

None

Windows:

/Qipo-separate

Arguments

None

Default

The compiler decides whether to create one or more object files.OFF

Description

This option tells the compiler to generate one object file for every source file. It overrides any
-ipo (Linux) or /Qipo (Windows) specification.

Alternate Options

None

926

20 Intel® Fortran Compiler User and Reference Guides

See Also
•
•
• ipo, Qipo

ivdep-parallel, Qivdep-parallel
Tells the compiler that there is no loop-carried
memory dependency in the loop following an IVDEP
directive.

IDE Equivalent

Windows: Optimization > IVDEP Directive Memory Dependency

Linux: None

Mac OS X: None

Architectures

IA-64 architecture

Syntax

Linux:

-ivdep-parallel

Mac OS X:

None

Windows:

/Qivdep-parallel

Arguments

None

Default

There may be loop-carried memory dependency in a loop that
follows an IVDEP directive.

OFF

927

20

Description

This option tells the compiler that there is no loop-carried memory dependency in the loop
following an IVDEP There may be loop-carried memory dependency in a loop that follows an
IVDEP directive.
This has the same effect as specifying the IVDEP:LOOP directive.

Alternate Options

None

See Also
•
•

Optimizing Applications: Absence of Loop-carried Memory Dependency with IVDEP Directive

fkeep-static-consts, Qkeep-static-consts
Tells the compiler to preserve allocation of
variables that are not referenced in the source.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-fkeep-static-consts

-fno-keep-static-consts

Windows:

/Qkeep-static-consts

/Qkeep-static-consts-

Arguments

None

928

20 Intel® Fortran Compiler User and Reference Guides

Default

If a variable is never referenced in a routine, the variable is
discarded unless optimizations are disabled by option -O0 (Linux
and Mac OS X) or /Od (Windows).

-fno-keep-static-consts
or /Qkeep-static-con-
sts-

Description

This option tells the compiler to preserve allocation of variables that are not referenced in the
source.

The negated form can be useful when optimizations are enabled to reduce the memory usage
of static data.

Alternate Options

None

Qlocation
Specifies the directory for supporting tools.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-Qlocation,string,dir

Windows:

/Qlocation,string,dir

Arguments

Is the name of the tool.string

Is the directory (path) where the tool is located.dir

929

20

Default

The compiler looks for tools in a default area.OFF

Description

This option specifies the directory for supporting tools.

string can be any of the following:

• f - Indicates the Intel Fortran compiler.

• fpp (or cpp) - Indicates the Intel Fortran preprocessor.

• asm - Indicates the assembler.

• link - Indicates the linker.

• prof - Indicates the profiler.

• On Windows systems, the following is also available:

• masm - Indicates the Microsoft assembler.

• On Linux and Mac OS X systems, the following are also available:

• as - Indicates the assembler.

• gas - Indicates the GNU assembler.

• ld - Indicates the loader.

• gld - Indicates the GNU loader.

• lib - Indicates an additional library.

• crt - Indicates the crt%.o files linked into executables to contain the place to start
execution.

Alternate Options

None

Example

The following command provides the path for the fpp tool:

ifort -Qlocation,fpp,/usr/preproc myprog.f

930

20 Intel® Fortran Compiler User and Reference Guides

See Also
•
• Qoption

lowercase, Qlowercase
See names.

map-opts, Qmap-opts
Maps one or more compiler options to their
equivalent on a different operating system.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-map-opts

Mac OS X:

None

Windows:

/Qmap-opts

Arguments

None

Default

No platform mappings are performed.OFF

Description

This option maps one or more compiler options to their equivalent on a different operating
system. The result is output to stdout.

931

20

On Windows systems, the options you provide are presumed to be Windows options, so the
options that are output to stdout will be Linux equivalents.
On Linux systems, the options you provide are presumed to be Linux options, so the options
that are output to stdout will be Windows equivalents.

The tool can be invoked from the compiler command line or it can be used directly.

No compilation is performed when the option mapping tool is used.

This option is useful if you have both compilers and want to convert scripts or makefiles.

NOTE. Compiler options are mapped to their equivalent on the architecture you are
using.
For example, if you are using a processor with IA-32 architecture, you will only see
equivalent options that are available on processors with IA-32 architecture.

Alternate Options

None

Example

The following command line invokes the option mapping tool, which maps the Linux options to
Windows-based options, and then outputs the results to stdout:

ifort -map-opts -xP -O2

The following command line invokes the option mapping tool, which maps the Windows options
to Linux-based options, and then outputs the results to stdout:

ifort /Qmap-opts /QxP /O2

See Also
•
•

Building Applications: Using the Option Mapping Tool

932

20 Intel® Fortran Compiler User and Reference Guides

mkl, Qmkl
Tells the compiler to link to certain parts of the
Intel® Math Kernel Library (Intel® MKL).

IDE Equivalent

Windows: Libraries > Use Intel(R) Math Kernel Library

Linux: None

Mac OS X: Libraries > Use Inte(R)l Math Kernel Library

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-mkl[=lib]

Windows:

/Qmkl[:lib]

Arguments

Indicates the part of the library that the compiler should
link to. Possible values are:

lib

Tells the compiler to link using the
threaded part of the Intel® MKL. This is
the default if the option is specified with
no lib.

parallel

Tells the compiler to link using the
non-threaded part of the Intel® MKL.

sequential

Tells the compiler to link using the cluster
part and the sequential part of the Intel®

MKL.

cluster

Default

The compiler does not link to the Intel® MKL.OFF

933

20

Description

This option tells the compiler to link to certain parts of the Intel® Math Kernel Library (Intel®

MKL).

Alternate Options

None

no-bss-init, Qnobss-init
Tells the compiler to place in the DATA section any
variables explicitly initialized with zeros.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-no-bss-init

Windows:

/Qnobss-init

Arguments

None

Default

Variables explicitly initialized with zeros are placed in the BSS
section.

OFF

Description

This option tells the compiler to place in the DATA section any variables explicitly initialized
with zeros.

934

20 Intel® Fortran Compiler User and Reference Guides

Alternate Options

Linux and Mac OS X: -nobss-init (this is a deprecated option)

Windows: None

onetrip, Qonetrip
Tells the compiler to follow the FORTRAN 66
Standard and execute DO loops at least once.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-onetrip

Windows:

/Qonetrip

Arguments

None

Default

The compiler applies the current Fortran Standard semantics, which
allows zero-trip DO loops.

OFF

Description

This option tells the compiler to follow the FORTRAN 66 Standard and execute DO loops at least
once.

Alternate Options

Linux and Mac OS X: -1

Windows: /1

935

20

openmp, Qopenmp
Enables the parallelizer to generate multi-threaded
code based on the OpenMP* directives.

IDE Equivalent

Windows: Language > Process OpenMP Directives

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-openmp

Windows:

/Qopenmp

Arguments

None

Default

No OpenMP multi-threaded code is generated by the compiler.OFF

Description

This option enables the parallelizer to generate multi-threaded code based on the OpenMP*
directives. The code can be executed in parallel on both uniprocessor and multiprocessor
systems.

If you use this option, multithreaded libraries are used, but option fpp is not automatically
invoked.

This option sets option automatic.

This option works with any optimization level. Specifying no optimization (-O0 on Linux or /Od
on Windows) helps to debug OpenMP applications.

936

20 Intel® Fortran Compiler User and Reference Guides

NOTE. On Mac OS X systems, when you enable OpenMP*, you must also set the
DYLD_LIBRARY_PATH environment variable within Xcode or an error will be displayed.

Alternate Options

None

See Also
•
•
• openmp-stubs, Qopenmp-stubs

openmp-lib, Qopenmp-lib
Lets you specify an OpenMP* run-time library to
use for linking.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-openmp-lib type

Mac OS X:

None

Windows:

/Qopenmp-lib:type

Arguments

Specifies the type of library to use; it implies compatibility
levels. Possible values are:

type

937

20

Tells the compiler to use the legacy
OpenMP* run-time library (libguide). This
setting does not provide compatibility with
object files created using other compilers.
This is a deprecated option.

legacy

Tells the compiler to use the compatibility
OpenMP* run-time library (libiomp). This
setting provides compatibility with object
files created using Microsoft* and GNU*
compilers.

compat

Default

The compiler uses the compatibility OpenMP* run-time
library (libiomp).

-openmp-lib compat
or/Qopenmp-lib:compat

Description

This option lets you specify an OpenMP* run-time library to use for linking.

The legacy OpenMP run-time library is not compatible with object files created using OpenMP
run-time libraries supported in other compilers.

The compatibility OpenMP run-time library is compatible with object files created using the
Microsoft* OpenMP run-time library (vcomp) and GNU OpenMP run-time library (libgomp).

To use the compatibility OpenMP run-time library, compile and link your application using the
-openmp-lib compat (Linux) or /Qopenmp-lib:compat (Windows) option. To use this option,
you must also specify one of the following compiler options:

• Linux OS: -openmp, -openmp-profile, or -openmp-stubs

• Windows OS: /Qopenmp, /Qopenmp-profile, or /Qopenmp-stubs

On Windows* systems, the compatibility OpenMP* run-time library lets you combine OpenMP*
object files compiled with the Microsoft* C/C++ compiler with OpenMP* object files compiled
with the Intel C/C++ or Fortran compilers. The linking phase results in a single, coherent copy
of the run-time library.

On Linux* systems, the compatibility Intel OpenMP* run-time library lets you combine OpenMP*
object files compiled with the GNU* gcc or gfortran compilers with similar OpenMP* object files
compiled with the Intel C/C++ or Fortran compilers. The linking phase results in a single,
coherent copy of the run-time library.

938

20 Intel® Fortran Compiler User and Reference Guides

You cannot link object files generated by the Intel® Fortran compiler to object files compiled
by the GNU Fortran compiler, regardless of the presence or absence of the -openmp (Linux) or
/Qopenmp (Windows) compiler option. This is because the Fortran run-time libraries are
incompatible.

NOTE. The compatibility OpenMP run-time library is not compatible with object files
created using versions of the Intel compiler earlier than 10.0.

Alternate Options

None

See Also
•
•
• openmp, Qopenmp
• openmp-stubs, Qopenmp-stubs
• openmp-profile, Qopenmp-profile

openmp-link, Qopenmp-link
Controls whether the compiler links to static or
dynamic OpenMP run-time libraries.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-openmp-link library

Windows:

/Qopenmp-link:library

939

20

Arguments

Specifies the OpenMP library to use. Possible values are:library

Tells the compiler to link to static OpenMP
run-time libraries.

static

Tells the compiler to link to dynamic
OpenMP run-time libraries.

dynamic

Default

The compiler links to dynamic OpenMP run-time libraries.
However, if option static is specified, the compiler links
to static OpenMP run-time libraries.

-openmp-link dynamic or /Qopen-
mp-link:dynamic

Description

This option controls whether the compiler links to static or dynamic OpenMP run-time libraries.

To link to the static OpenMP run-time library (RTL) and create a purely static executable, you
must specify -openmp-link static (Linux and Mac OS X) or /Qopenmp-link:static
(Windows). However, we strongly recommend you use the default setting, -openmp-link
dynamic (Linux and Mac OS X) or /Qopenmp-link:dynamic (Windows).

NOTE. Compiler options -static-intel and -shared-intel (Linux and Mac OS X)
have no effect on which OpenMP run-time library is linked.

Alternate Options

None

openmp-profile, Qopenmp-profile
Enables analysis of OpenMP* applications if Intel®
Thread Profiler is installed.

IDE Equivalent

None

940

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-openmp-profile

Mac OS X:

None

Windows:

/Qopenmp-profile

Arguments

None

Default

OpenMP applications are not analyzed.OFF

Description

This option enables analysis of OpenMP* applications. To use this option, you must have
previously installed Intel® Thread Profiler, which is one of the Intel® Threading Analysis Tools.

This option can adversely affect performance because of the additional profiling and error
checking invoked to enable compatibility with the threading tools. Do not use this option unless
you plan to use the Intel® Thread Profiler.

For more information about Intel® Thread Profiler, open the page associated with threading
tools at Intel® Software Development Products.

Alternate Options

None

941

20

openmp-report, Qopenmp-report
Controls the OpenMP* parallelizer's level of
diagnostic messages.

IDE Equivalent

Windows: Compilation Diagnostics > OpenMP Diagnostic Level

Linux: None

Mac OS X: Compiler Diagnostics > OpenMP Report

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-openmp-report[n]

Windows:

/Qopenmp-report[n]

Arguments

Is the level of diagnostic messages to display. Possible
values are:

n

No diagnostic messages are displayed.0

Diagnostic messages are displayed
indicating loops, regions, and sections
successfully parallelized.

1

The same diagnostic messages are
displayed as specified by openmp_report1
plus diagnostic messages indicating

2

successful handling of MASTER constructs,
SINGLE constructs, CRITICAL constructs,
ORDERED constructs, ATOMIC directives,
and so forth.

942

20 Intel® Fortran Compiler User and Reference Guides

Default

If you do not specify n, the compiler displays diagnostic
messages indicating loops, regions, and sections
successfully parallelized. If you do not specify the option
on the command line, the default is to display no
messages.

-openmp-report1
or/Qopenmp-report1

Description

This option controls the OpenMP* parallelizer's level of diagnostic messages. To use this option,
you must also specify -openmp (Linux and Mac OS X) or /Qopenmp (Windows).

If this option is specified on the command line, the report is sent to stdout.

On Windows systems, if this option is specified from within the IDE, the report is included in
the build log if the Generate Build Logs option is selected.

Alternate Options

None

See Also
•
•
• openmp, Qopenmp

Optimizing Applications:

Using Parallelism

OpenMP* Report

openmp-stubs, Qopenmp-stubs
Enables compilation of OpenMP programs in
sequential mode.

IDE Equivalent

Windows: Language > Process OpenMP Directives

Linux: None

Mac OS X: Language > Process OpenMP Directives

943

20

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-openmp-stubs

Windows:

/Qopenmp-stubs

Arguments

None

Default

The library of OpenMP function stubs is not linked.OFF

Description

This option enables compilation of OpenMP programs in sequential mode. The OpenMP directives
are ignored and a stub OpenMP library is linked.

Alternate Options

None

See Also
•
•
• openmp, Qopenmp

openmp-threadprivate, Qopenmp-threadprivate
Lets you specify an OpenMP* threadprivate
implementation.

IDE Equivalent

None

944

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-openmp-threadprivate type

Mac OS X:

None

Windows:

/Qopenmp-threadprivate:type

Arguments

Specifies the type of threadprivate implementation. Possible
values are:

type

Tells the compiler to use the legacy
OpenMP* threadprivate implementation
used in the previous releases of the Intel®

legacy

compiler. This setting does not provide
compatibility with the implementation
used by other compilers.

Tells the compiler to use the compatibility
OpenMP* threadprivate implementation
based on applying the thread-local

compat

attribute to each threadprivate variable.
This setting provides compatibility with
the implementation provided by the
Microsoft* and GNU* compilers.

Default

The compiler uses the legacy OpenMP* threadprivate
implementation used in the previous releases of the Intel®

compiler.

-openmp-threadprivate legacy
or/Qopenmp-threadprivate:legacy

945

20

Description

This option lets you specify an OpenMP* threadprivate implementation.

The legacy OpenMP run-time library is not compatible with object files created using OpenMP
run-time libraries supported in other compilers.

To use this option, you must also specify one of the following compiler options:

• Linux OS: -openmp, -openmp-profile, or -openmp-stubs

• Windows OS: /Qopenmp, /Qopenmp-profile, or /Qopenmp-stubs

The value specified for this option is independent of the value used for option -openmp-lib
(Linux) or /Qopenmp-lib (Windows).

Alternate Options

None

opt-block-factor, Qopt-block-factor
Lets you specify a loop blocking factor.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-opt-block-factor=n

Windows:

/Qopt-block-factor:n

Arguments

Is the blocking factor. It must be an integer. The compiler
may ignore the blocking factor if the value is 0 or 1.

n

946

20 Intel® Fortran Compiler User and Reference Guides

Default

The compiler uses default heuristics for loop blocking.OFF

Description

This option lets you specify a loop blocking factor.

Alternate Options

None

opt-jump-tables, Qopt-jump-tables
Enables or disables generation of jump tables for
switch statements.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-opt-jump-tables=keyword

-no-opt-jump-tables

Windows:

/Qopt-jump-tables:keyword

/Qopt-jump-tables-

Arguments

Is the instruction for generating jump tables. Possible values
are:

keyword

Tells the compiler to never generate jump
tables. All switch statements are
implemented as chains of if-then-elses.

never

947

20

This is the same as specifying -no-opt-
jump-tables (Linux and Mac OS) or
/Qopt-jump-tables- (Windows).

The compiler uses default heuristics to
determine when to generate jump tables.

default

Tells the compiler to generate jump tables
up to a certain pre-defined size (64K
entries).

large

Must be an integer. Tells the compiler to
generate jump tables up ton entries in
size.

n

Default

The compiler uses default heuristics to determine when to generate
jump tables for switch statements.

-opt-jump-tables=de-
fault
or/Qopt-jump-tables:de-
fault

Description

This option enables or disables generation of jump tables for switch statements. When the
option is enabled, it may improve performance for programs with large switch statements.

Alternate Options

None

opt-loadpair, Qopt-loadpair
Enables or disables loadpair optimization.

IDE Equivalent

None

Architectures

IA-64 architecture

948

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux:

-opt-loadpair

-no-opt-loadpair

Mac OS X:

None

Windows:

/Qopt-loadpair

/Qopt-loadpair-

Arguments

None

Default

Loadpair optimization is disabled unless option O3 is specified.-no-opt-loadpair
or/Qopt-loadpair-

Description

This option enables or disables loadpair optimization.

When -O3 is specified on IA-64 architecture, loadpair optimization is enabled by default. To
disable loadpair generation, specify -no-opt-loadpair (Linux) or /Qopt-loadpair- (Windows).

Alternate Options

None

opt-mem-bandwidth, Qopt-mem-bandwidth
Enables performance tuning and heuristics that
control memory bandwidth use among processors.

IDE Equivalent

None

949

20

Architectures

IA-64 architecture

Syntax

Linux:

-opt-mem-bandwidthn

Mac OS X:

None

Windows:

/Qopt-mem-bandwidthn

Arguments

Is the level of optimizing for memory bandwidth usage.
Possible values are:

n

Enables a set of performance tuning and
heuristics in compiler optimizations that
is optimal for serial code.

0

Enables a set of performance tuning and
heuristics in compiler optimizations for
multithreaded code generated by the
compiler.

1

Enables a set of performance tuning and
heuristics in compiler optimizations for
parallel code such as Windows Threads,

2

pthreads, and MPI code, besides
multithreaded code generated by the
compiler.

Default

For serial (non-parallel) compilation, a set of performance tuning
and heuristics in compiler optimizations is enabled that is optimal
for serial code.

-opt-mem-bandwidth0
or/Qopt-mem-bandwidth0

950

20 Intel® Fortran Compiler User and Reference Guides

If you specify compiler option -parallel (Linux) or /Qparallel
(Windows), or -openmp (Linux) or /Qopenmp (Windows), a set of
performance tuning and heuristics in compiler optimizations for
multithreaded code generated by the compiler is enabled.

-opt-mem-bandwidth1
or/Qopt-mem-bandwidth1

Description

This option enables performance tuning and heuristics that control memory bandwidth use
among processors. It allows the compiler to be less aggressive with optimizations that might
consume more bandwidth, so that the bandwidth can be well-shared among multiple processors
for a parallel program.

For values of n greater than 0, the option tells the compiler to enable a set of performance
tuning and heuristics in compiler optimizations such as prefetching, privatization, aggressive
code motion, and so forth, for reducing memory bandwidth pressure and balancing memory
bandwidth traffic among threads.

This option can improve performance for threaded or parallel applications on multiprocessors
or multicore processors, especially when the applications are bounded by memory bandwidth.

Alternate Options

None

See Also
•
•
• parallel, Qparallel
• openmp, Qopenmp

opt-mod-versioning, Qopt-mod-versioning
Enables or disables versioning of modulo operations
for certain types of operands.

IDE Equivalent

None

Architectures

IA-64 architecture

951

20

Syntax

Linux:

-opt-mod-versioning

-no-opt-mod-versioning

Mac OS X:

None

Windows:

/Qopt-mod-versioning

/Qopt-mod-versioning-

Arguments

None

Default

Versioning of modulo operations is disabled.-no-opt-mod-versioning
or/Qopt-mod-versioning-

Description

This option enables or disables versioning of modulo operations for certain types of operands.
It is used for optimization tuning.

Versioning of modulo operations may improve performance for x mod y when modulus y is a
power of 2.

Alternate Options

None

opt-multi-version-aggressive, Qopt-multi-version-aggressive
Tells the compiler to use aggressive
multi-versioning to check for pointer aliasing and
scalar replacement.

IDE Equivalent

None

952

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-opt-multi-version-aggressive

-no-opt-multi-version-aggressive

Windows:

/Qopt-multi-version-aggressive

/Qopt-multi-version-aggressive-

Arguments

None

Default

The compiler uses default heuristics when checking for pointer
aliasing and scalar replacement.

-no-opt-multi-version-
aggressive
or/Qopt-multi-version-
aggressive-

Description

This option tells the compiler to use aggressive multi-versioning to check for pointer aliasing
and scalar replacement. This option may improve performance.

Alternate Options

None

opt-prefetch, Qopt-prefetch
Enables or disables prefetch insertion optimization.

IDE Equivalent

Windows: Optimization > Prefetch Insertion

Linux: None

953

20

Mac OS X: Optimization > Enable Prefetch Insertion

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-opt-prefetch[=n]

-no-opt-prefetch

Windows:

/Qopt-prefetch[:n]

/Qopt-prefetch-

Arguments

Is the level of detail in the report. Possible values are:n

Disables software prefetching. This is the
same as specifying -no-opt-prefetch
(Linux and Mac OS X) or /Qopt-
prefetch- (Windows).

0

Enables different levels of software
prefetching. If you do not specify a value
for n, the default is 2 on IA-32 and Intel®

1 to 4

64 architecture; the default is 3 on IA-64
architecture. Use lower values to reduce
the amount of prefetching.

Default

On IA-64 architecture, prefetch insertion optimization is enabled.IA-64 architecture: -opt-
prefetch
or/Qopt-prefetch

On IA-32 architecture and Intel® 64 architecture, prefetch insertion
optimization is disabled.

IA-32 architecture and Intel®

64 architecture:
-no-opt-prefetch
or/Qopt-prefetch-

954

20 Intel® Fortran Compiler User and Reference Guides

Description

This option enables or disables prefetch insertion optimization. The goal of prefetching is to
reduce cache misses by providing hints to the processor about when data should be loaded
into the cache.

On IA-64 architecture, this option is enabled by default if you specify option O1 or higher. To
disable prefetching at these optimization levels, specify -no-opt-prefetch (Linux and Mac
OS X) or /Qopt-prefetch- (Windows).

On IA-32 architecture and Intel® 64 architecture, this option enables prefetching when higher
optimization levels are specified.

Alternate Options

Linux and Mac OS X: -prefetch (this is a deprecated option)

Windows: /Qprefetch (this is a deprecated option)

opt-prefetch-initial-values, Qopt-prefetch-initial-values
Enables or disables prefetches that are issued
before a loop is entered.

IDE Equivalent

None

Architectures

IA-64 architecture

Syntax

Linux:

-opt-prefetch-initial-values

-no-opt-prefetch-initial-values

Mac OS X:

None

Windows:

/Qopt-prefetch-initial-values

/Qopt-prefetch-initial-values-

955

20

Arguments

None

Default

Prefetches are issued before a loop is entered.-opt-prefetch-initial-
values
or/Qopt-prefetch-ini-
tial-values

Description

This option enables or disables prefetches that are issued before a loop is entered. These
prefetches target the initial iterations of the loop.

When -O1 or higher is specified on IA-64 architecture, prefetches are issued before a loop is
entered. To disable these prefetches, specify -no-opt-prefetch-initial-values (Linux)
or /Qopt-prefetch-initial-values- (Windows).

Alternate Options

None

opt-prefetch-issue-excl-hint, Qopt-prefetch-issue-excl-hint
Determines whether the compiler issues prefetches
for stores with exclusive hint.

IDE Equivalent

None

Architectures

IA-64 architecture

Syntax

Linux:

-opt-prefetch-issue-excl-hint

-no-opt-prefetch-issue-excl-hint

956

20 Intel® Fortran Compiler User and Reference Guides

Mac OS X:

None

Windows:

/Qopt-prefetch-issue-excl-hint

/Qopt-prefetch-issue-excl-hint-

Arguments

None

Default

The compiler does not issue prefetches for stores with exclusive
hint.

-no-opt-prefetch-issue-
excl-hint
or/Qopt-prefetch-issue-
excl-hint-

Description

This option determines whether the compiler issues prefetches for stores with exclusive hint.
If option -opt-prefetch-issue-excl-hint (Linux) or /Qopt-prefetch-issue-excl-hint
(Windows) is specified, the prefetches will be issued if the compiler determines it is beneficial
to do so.

When prefetches are issued for stores with exclusive-hint, the cache-line is in "exclusive-mode".
This saves on cache-coherence traffic when other processors try to access the same cache-line.
This feature can improve performance tuning.

Alternate Options

None

opt-prefetch-next-iteration, Qopt-prefetch-next-iteration
Enables or disables prefetches for a memory access
in the next iteration of a loop.

IDE Equivalent

None

957

20

Architectures

IA-64 architecture

Syntax

Linux:

-opt-prefetch-next-iteration

-no-opt-prefetch-next-iteration

Mac OS X:

None

Windows:

/Qopt-prefetch-next-iteration

/Qopt-prefetch-next-iteration-

Arguments

None

Default

Prefetches are issued for a memory access in the next iteration of
a loop.

-opt-prefetch-next-iter-
ation
or/Qopt-prefetch-next-
iteration

Description

This option enables or disables prefetches for a memory access in the next iteration of a loop.
It is typically used in a pointer-chasing loop.

When -O1 or higher is specified on IA-64 architecture, prefetches are issued for a memory
access in the next iteration of a loop. To disable these prefetches, specify -no-opt-prefetch-
next-iteration (Linux) or /Qopt-prefetch-next-iteration- (Windows).

Alternate Options

None

958

20 Intel® Fortran Compiler User and Reference Guides

opt-ra-region-strategy, Qopt-ra-region-strategy
Selects the method that the register allocator uses
to partition each routine into regions.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-opt-ra-region-strategy[=keyword]

Windows:

/Qopt-ra-region-strategy[:keyword]

Arguments

Is the method used for partitioning. Possible values are:keyword

Creates a single region for each routine.routine

Partitions each routine into one region
per basic block.

block

Partitions each routine into one region
per trace.

trace

Partitions each routine into one region
per loop.

region

The compiler determines which method
is used for partitioning.

default

Default

The compiler determines which method is used for partitioning.
This is also the default if keyword is not specified.

-opt-ra-region-strate-
gy=default
or/Qopt-ra-region-
strategy:default

959

20

Description

This option selects the method that the register allocator uses to partition each routine into
regions.

When setting default is in effect, the compiler attempts to optimize the tradeoff between
compile-time performance and generated code performance.

This option is only relevant when optimizations are enabled (O1 or higher).

Alternate Options

None

See Also
•
•
• O

opt-report, Qopt-report
Tells the compiler to generate an optimization
report to stderr.

IDE Equivalent

Windows: Diagnostics > Optimization Diagnostics Level

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-opt-report [n]

Windows:

/Qopt-report[:n]

960

20 Intel® Fortran Compiler User and Reference Guides

Arguments

Is the level of detail in the report. On Linux OS and Mac OS
X systems, a space must appear before the n. Possible
values are:

n

Tells the compiler to generate no
optimization report.

0

Tells the compiler to generate a report
with the minimum level of detail.

1

Tells the compiler to generate a report
with the medium level of detail.

2

Tells the compiler to generate a report
with the maximum level of detail.

3

Default

If you do not specify n, the compiler generates a report with
medium detail. If you do not specify the option on the command
line, the compiler does not generate an optimization report.

-opt-report 2 or /Qopt-
report:2

Description

This option tells the compiler to generate an optimization report to stderr.

Alternate Options

None

See Also
•
•
• opt-report-file, Qopt-report-file

Optimizing Applications: Optimizer Report Generation

961

20

opt-report-file, Qopt-report-file
Specifies the name for an optimization report.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-opt-report-file=file

Windows:

/Qopt-report-file:file

Arguments

Is the name for the optimization report.file

Default

No optimization report is generated.OFF

Description

This option specifies the name for an optimization report. If you use this option, you do not
have to specify -opt-report (Linux and Mac OS X) or /Qopt-report (Windows).

Alternate Options

None

See Also
•
•
• opt-report, Qopt-report

Optimizing Applications: Optimizer Report Generation

962

20 Intel® Fortran Compiler User and Reference Guides

opt-report-help, Qopt-report-help
Displays the optimizer phases available for report
generation.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-opt-report-help

Windows:

/Qopt-report-help

Arguments

None

Default

No optimization reports are generated.OFF

Description

This option displays the optimizer phases available for report generation using -opt-report-
phase (Linux and Mac OS X) or /Qopt-report-phase (Windows). No compilation is performed.

Alternate Options

None

See Also
•
•
• opt-report, Qopt-report
• opt-report-phase, Qopt-report-phase

963

20

opt-report-phase, Qopt-report-phase
Specifies an optimizer phase to use when
optimization reports are generated.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-opt-report-phase=phase

Windows:

/Qopt-report-phase:phase

Arguments

Is the phase to generate reports for. Some of the possible
values are:

phase

The Interprocedural Optimizer phaseipo

The High Level Optimizer phasehlo

The High Performance Optimizer phasehpo

The Intermediate Language Scalar
Optimizer phase

ilo

The Code Generator phase (Windows and
Linux systems using IA-64 architecture
only)

ecg

The software pipelining component of the
Code Generator phase (Windows and
Linux systems using IA-64 architecture
only)

ecg_swp

The Profile Guided Optimization phasepgo

All optimizer phasesall

964

20 Intel® Fortran Compiler User and Reference Guides

Default

No optimization reports are generated.OFF

Description

This option specifies an optimizer phase to use when optimization reports are generated. To
use this option, you must also specify -opt-report (Linux and Mac OS X) or /Qopt-report
(Windows).

This option can be used multiple times on the same command line to generate reports for
multiple optimizer phases.

When one of the logical names for optimizer phases is specified for phase, all reports from that
optimizer phase are generated.

To find all phase possibilities, use option -opt-report-help (Linux and Mac OS X) or /Qopt-
report-help (Windows).

Alternate Options

None

See Also
•
•
• opt-report, Qopt-report

opt-report-routine, Qopt-report-routine
Tells the compiler to generate reports on the
routines containing specified text.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

965

20

Syntax

Linux and Mac OS X:

-opt-report-routine=string

Windows:

/Qopt-report-routine:string

Arguments

Is the text (string) to look for.string

Default

No optimization reports are generated.OFF

Description

This option tells the compiler to generate reports on the routines containing specified text as
part of their name.

Alternate Options

None

See Also
•
•
• opt-report, Qopt-report

opt-streaming-stores, Qopt-streaming-stores
Enables generation of streaming stores for
optimization.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

966

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-opt-streaming-stores keyword

Windows:

/Qopt-streaming-stores:keyword

Arguments

Specifies whether streaming stores are generated. Possible
values are:

keyword

Enables generation of streaming stores
for optimization. The compiler optimizes
under the assumption that the application
is memory bound.

always

Disables generation of streaming stores
for optimization. Normal stores are
performed.

never

Lets the compiler decide which
instructions to use.

auto

Default

The compiler decides whether to use streaming stores or normal
stores.

-opt-streaming-stores
auto
or/Qopt-streaming-
stores:auto

Description

This option enables generation of streaming stores for optimization. This method stores data
with instructions that use a non-temporal buffer, which minimizes memory hierarchy pollution.

For this option to be effective, the compiler must be able to generate SSE2 (or higher)
instructions. For more information, see compiler option x or ax.

This option may be useful for applications that can benefit from streaming stores.

967

20

Alternate Options

None

See Also
•
•
• ax, Qax
• x, Qx
• opt-mem-bandwidth, Qopt-mem-bandwidth, Qx

Optimizing Applications: Vectorization Support

opt-subscript-in-range, Qopt-subscript-in-range
Determines whether the compiler assumes no
overflows in the intermediate computation of
subscript expressions in loops.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-opt-subscript-in-range

-no-opt-subscript-in-range

Windows:

/Qopt-subscript-in-range

/Qopt-subscript-in-range-

Arguments

None

968

20 Intel® Fortran Compiler User and Reference Guides

Default

The compiler assumes overflows in the intermediate computation
of subscript expressions in loops.

-no-opt-subscript-in-
range
or/Qopt-subscript-in-
range-

Description

This option determines whether the compiler assumes no overflows in the intermediate
computation of subscript expressions in loops.

If you specify -opt-subscript-in-range (Linux and Mac OS X) or /Qopt-subscript-in-
range (Windows), the compiler ignores any data type conversions used and it assumes no
overflows in the intermediate computation of subscript expressions. This feature can enable
more loop transformations.

Alternate Options

None

Example

The following shows an example where these options can be useful. m is declared as type
integer(kind=8) (64-bits) and all other variables inside the subscript are declared as type
integer(kind=4) (32-bits):

A[i + j + (n + k) * m]

Qoption
Passes options to a specified tool.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-Qoption,string,options

969

20

Windows:

/Qoption,string,options

Arguments

Is the name of the tool.string

Are one or more comma-separated, valid options for the
designated tool.

options

Default

No options are passed to tools.OFF

Description

This option passes options to a specified tool.

If an argument contains a space or tab character, you must enclose the entire argument in
quotation marks (" "). You must separate multiple arguments with commas.

string can be any of the following:

• fpp (or cpp) - Indicates the Intel Fortran preprocessor.

• asm - Indicates the assembler.

• link - Indicates the linker.

• prof - Indicates the profiler.

• On Windows systems, the following is also available:

• masm - Indicates the Microsoft assembler.

• On Linux and Mac OS X systems, the following are also available:

• as - Indicates the assembler.

• gas - Indicates the GNU assembler.

• ld - Indicates the loader.

• gld - Indicates the GNU loader.

• lib - Indicates an additional library.

• crt - Indicates the crt%.o files linked into executables to contain the place to start
execution.

970

20 Intel® Fortran Compiler User and Reference Guides

Alternate Options

None

Example

On Linux and Mac OS X systems:

The following example directs the linker to link with an alternative library:

ifort -Qoption,link,-L.,-Lmylib prog1.f

The following example passes a compiler option to the assembler to generate a listing file:

ifort -Qoption,as,"-as=myprogram.lst" -use-asm myprogram.f90

On Windows systems:

The following example directs the linker to create a memory map when the compiler produces
the executable file from the source being compiled:

ifort /Qoption,link,/map:prog1.map prog1.f

The following example passes a compiler option to the assembler:

ifort /Quse_asm /Qoption,masm,"/WX" myprogram.f90

See Also
•
• Qlocation

qp
See p.

pad, Qpad
Enables the changing of the variable and array
memory layout.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

971

20

Syntax

Linux and Mac OS X:

-pad

-nopad

Windows:

/Qpad

/Qpad-

Arguments

None

Default

Variable and array memory layout is performed by default methods.-nopad or /Qpad-

Description

This option enables the changing of the variable and array memory layout.

This option is effectively not different from the align option when applied to structures and
derived types. However, the scope of pad is greater because it applies also to common blocks,
derived types, sequence types, and structures.

Alternate Options

None

See Also
•
•
• align

pad-source, Qpad-source
Specifies padding for fixed-form source records.

IDE Equivalent

Windows: Language > Pad Fixed Form Source Lines

972

20 Intel® Fortran Compiler User and Reference Guides

Linux: None

Mac OS X: Language > Pad Fixed Form Source Lines

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-pad-source

-nopad-source

Windows:

/pad-source

/nopad-source

/Qpad-source

/Qpad-source-

Arguments

None

Default

Fixed-form source records are not padded.-nopad-source or /Qpad-
source-

Description

This option specifies padding for fixed-form source records. It tells the compiler that fixed-form
source lines shorter than the statement field width are to be padded with spaces to the end of
the statement field. This affects the interpretation of character and Hollerith literals that are
continued across source records.

The default value setting causes a warning message to be displayed if a character or Hollerith
literal that ends before the statement field ends is continued onto the next source record. To
suppress this warning message, specify option -warn nousage (Linux and Mac OS X) or
/warn:nousage (Windows).

973

20

Specifying pad-source or /Qpad-source can prevent warning messages associated with option
-warn usage (Linux and Mac OS X) or /warn:usage (Windows).

Alternate Options

None

See Also
•
•
• warn

Qpar-adjust-stack
Tells the compiler to generate code to adjust the
stack size for a fiber-based main thread.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/Qpar-adjust-stack:n

Arguments

Is the stack size (in bytes) for the fiber-based main thread.
It must be a number equal to or greater than zero.

n

Default

No adjustment is made to the main thread stack size./Qpar-adjust-stack:0

974

20 Intel® Fortran Compiler User and Reference Guides

Description

This option tells the compiler to generate code to adjust the stack size for a fiber-based main
thread. This can reduce the stack size of threads.

For this option to be effective, you must also specify option /Qparallel.

Alternate Options

None

See Also
•
• parallel, Qparallel

par-affinity, Qpar-affinity
Specifies thread affinity.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-par-affinity=[modifier,...]type[,permute][,offset]

Mac OS X:

None

Windows:

/Qpar-affinity:[modifier,...]type[,permute][,offset]

Arguments

Is one of the following values:
granularity={fine|thread|core}, [no]respect,
[no]verbose, [no]warnings, proclist=proc_list. The

modifier

975

20

default is granularity=core, respect, and noverbose.
For information on value proclist, see Thread Affinity
Interface in Optimizing Applications.

Indicates the thread affinity. This argument is required and
must be one of the following values: compact, disabled,
explicit, none, scatter, logical, physical. The default

type

is none. Values logical and physical are deprecated.
Use compact and scatter, respectively, with no permute
value.

Is a positive integer. You cannot use this argument with
type setting explicit, none, or disabled. The default is
0.

permute

Is a positive integer. You cannot use this argument with
type setting explicit, none, or disabled. The default is
0.

offset

Default

The thread affinity is determined by the run-time environment.OFF

Description

This option specifies thread affinity, which binds threads to physical processing units. It has
the same effect as environment variable KMP_AFFINITY.

This option overrides the environment variable when both are specified.

This option only has an effect if the following is true:

• Linux* OS: You have specified option -parallel or -openmp (or both).

Windows* OS: You have specified option /Qparallel or /Qopenmp (or both).

• You are compiling the main program.

Alternate Options

None

See Also
•
•

976

20 Intel® Fortran Compiler User and Reference Guides

• Thread Affinity Interface

par-num-threads, Qpar-num-threads
Specifies the number of threads to use in a parallel
region.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-par-num-threads=n

Windows:

/Qpar-num-threads:n

Arguments

Is the number of threads to use. It must be a positive
integer.

n

Default

The number of threads to use is determined by the run-time
environment.

OFF

Description

This option specifies the number of threads to use in a parallel region. It has the same effect
as environment variable OMP_NUM_THREADS.

This option overrides the environment variable when both are specified.

This option only has an effect if the following is true:

• Linux* OS and Mac OS* X: You have specified option -parallel or -openmp (or both).

Windows* OS: You have specified option /Qparallel or /Qopenmp (or both).

977

20

• You are compiling the main program.

Alternate Options

None

par-report, Qpar-report
Controls the diagnostic information reported by
the auto-parallelizer.

IDE Equivalent

Windows: Compilation Diagnostics > Auto-Parallelizer Diagnostic Level

Linux: None

Mac OS X: Diagnostics > Auto-Parallelizer Report

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-par-report[n]

Windows:

/Qpar-report[n]

Arguments

Is a value denoting which diagnostic messages to report.
Possible values are:

n

Tells the auto-parallelizer to report no
diagnostic information.

0

Tells the auto-parallelizer to report
diagnostic messages for loops successfully
auto-parallelized. The compiler also issues
a "LOOP AUTO-PARALLELIZED" message
for parallel loops.

1

978

20 Intel® Fortran Compiler User and Reference Guides

Tells the auto-parallelizer to report
diagnostic messages for loops successfully
and unsuccessfully auto-parallelized.

2

Tells the auto-parallelizer to report the
same diagnostic messages specified by 2
plus additional information about any

3

proven or assumed dependencies
inhibiting auto-parallelization (reasons for
not parallelizing).

Default

If you do not specify n, the compiler displays diagnostic messages
for loops successfully auto-parallelized. If you do not specify the
option on the command line, the default is to display no messages.

-par-report1
or/Qpar-report1

Description

This option controls the diagnostic information reported by the auto-parallelizer (parallel
optimizer). To use this option, you must also specify -parallel (Linux and Mac OS X) or
/Qparallel (Windows).

If this option is specified on the command line, the report is sent to stdout.

On Windows systems, if this option is specified from within the IDE, the report is included in
the build log if the Generate Build Logs option is selected.

Alternate Options

None

par-runtime-control, Qpar-runtime-control
Generates code to perform run-time checks for
loops that have symbolic loop bounds.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

979

20

Syntax

Linux and Mac OS X:

-par-runtime-control

-no-par-runtime-control

Windows:

/Qpar-runtime-control

/Qpar-runtime-control-

Arguments

None

Default

The compiler uses default heuristics when checking loops.-no-par-runtime-control
or/Qpar-runtime-con-
trol-

Description

This option generates code to perform run-time checks for loops that have symbolic loop bounds.

If the granularity of a loop is greater than the parallelization threshold, the loop will be executed
in parallel.

If you do not specify this option, the compiler may not parallelize loops with symbolic loop
bounds if the compile-time granularity estimation of a loop can not ensure it is beneficial to
parallelize the loop.

Alternate Options

None

par-schedule, Qpar-schedule
Lets you specify a scheduling algorithm or a tuning
method for loop iterations.

IDE Equivalent

None

980

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-par-schedule-keyword[=n]

Windows:

/Qpar-schedule-keyword[[:]n]

Arguments

Specifies the scheduling algorithm or tuning method.
Possible values are:

keyword

Lets the compiler or run-time system
determine the scheduling algorithm.

auto

Divides iterations into contiguous pieces.static

Divides iterations into even-sized chunks.static-balanced

Divides iterations into even-sized chunks,
but allows threads to steal parts of chunks
from neighboring threads.

static-steal

Gets a set of iterations dynamically.dynamic

Specifies a minimum number of iterations.guided

Divides iterations by using exponential
distribution or dynamic distribution.

guided-analytical

Defers the scheduling decision until run
time.

runtime

Is the size of the chunk or the number of iterations for each
chunk. This setting can only be specified for static, dynamic,
and guided. For more information, see the descriptions of
each keyword below.

n

981

20

Default

Iterations are divided into even-sized chunks and the chunks are
assigned to the threads in the team in a round-robin fashion in
the order of the thread number.

static-balanced

Description

This option lets you specify a scheduling algorithm or a tuning method for loop iterations. It
specifies how iterations are to be divided among the threads of the team.

This option affects performance tuning and can provide better performance during
auto-parallelization.

DescriptionOption

Lets the compiler or run-time system
determine the scheduling algorithm. Any
possible mapping may occur for iterations to
threads in the team.

-par-schedule-auto or /Qpar-schedule-
auto

Divides iterations into contiguous pieces
(chunks) of size n. The chunks are assigned
to threads in the team in a round-robin

-par-schedule-static or /Qpar-sched-
ule-static

fashion in the order of the thread number.
Note that the last chunk to be assigned may
have a smaller number of iterations.

If no n is specified, the iteration space is
divided into chunks that are approximately
equal in size, and each thread is assigned at
most one chunk.

Divides iterations into even-sized chunks. The
chunks are assigned to the threads in the
team in a round-robin fashion in the order of
the thread number.

-par-schedule-static-balanced or
/Qpar-schedule-static-balanced

Divides iterations into even-sized chunks, but
when a thread completes its chunk, it can
steal parts of chunks assigned to neighboring
threads.

-par-schedule-static-steal or /Qpar-
schedule-static-steal

982

20 Intel® Fortran Compiler User and Reference Guides

DescriptionOption

Each thread keeps track of L and U, which
represent the lower and upper bounds of its
chunks respectively. Iterations are executed
starting from the lower bound, and
simultaneously, L is updated to represent the
new lower bound.

Can be used to get a set of iterations
dynamically. Assigns iterations to threads in
chunks as the threads request them. The

-par-schedule-dynamic or /Qpar-sched-
ule-dynamic

thread executes the chunk of iterations, then
requests another chunk, until no chunks
remain to be assigned.

As each thread finishes a piece of the
iteration space, it dynamically gets the next
set of iterations. Each chunk contains n
iterations, except for the last chunk to be
assigned, which may have fewer iterations.
If no n is specified, the default is 1.

Can be used to specify a minimum number
of iterations. Assigns iterations to threads in
chunks as the threads request them. The

-par-schedule-guided or /Qpar-sched-
ule-guided

thread executes the chunk of iterations, then
requests another chunk, until no chunks
remain to be assigned.

For a chunk of size 1, the size of each chunk
is proportional to the number of unassigned
iterations divided by the number of threads,
decreasing to 1.

For an n with value k (greater than 1), the
size of each chunk is determined in the same
way with the restriction that the chunks do
not contain fewer than k iterations (except
for the last chunk to be assigned, which may
have fewer than k iterations). If no n is
specified, the default is 1.

983

20

DescriptionOption

Divides iterations by using exponential
distribution or dynamic distribution. The
method depends on run-time implementation.

-par-schedule-guided-analytical or
/Qpar-schedule-guided-analytical

Loop bounds are calculated with faster
synchronization and chunks are dynamically
dispatched at run time by threads in the
team.

Defers the scheduling decision until run time.
The scheduling algorithm and chunk size are
then taken from the setting of environment
variable OMP_SCHEDULE.

-par-schedule-runtime or /Qpar-sched-
ule-runtime

Alternate Options

None

par-threshold, Qpar-threshold
Sets a threshold for the auto-parallelization of
loops.

IDE Equivalent

Windows: Optimization > Threshold For Auto-Parallelization

Linux: None

Mac OS X: Optimization > Threshold For Auto-Parallelization

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-par-threshold[n]

Windows:

/Qpar-threshold[[:]n]

984

20 Intel® Fortran Compiler User and Reference Guides

Arguments

Is an integer whose value is the threshold for the
auto-parallelization of loops. Possible values are 0 through
100.

n

If n is 0, loops get auto-parallelized always, regardless of
computation work volume.
If n is 100, loops get auto-parallelized when performance
gains are predicted based on the compiler analysis data.
Loops get auto-parallelized only if profitable parallel
execution is almost certain.
The intermediate 1 to 99 values represent the percentage
probability for profitable speed-up. For example, n=50
directs the compiler to parallelize only if there is a 50%
probability of the code speeding up if executed in parallel.

Default

Loops get auto-parallelized only if profitable parallel execution is
almost certain. This is also the default if you do not specify n.

-par-threshold100
or/Qpar-threshold100

Description

This option sets a threshold for the auto-parallelization of loops based on the probability of
profitable execution of the loop in parallel. To use this option, you must also specify -parallel
(Linux and Mac OS X) or /Qparallel (Windows).

This option is useful for loops whose computation work volume cannot be determined at
compile-time. The threshold is usually relevant when the loop trip count is unknown at
compile-time.

The compiler applies a heuristic that tries to balance the overhead of creating multiple threads
versus the amount of work available to be shared amongst the threads.

Alternate Options

None

985

20

parallel, Qparallel
Tells the auto-parallelizer to generate
multithreaded code for loops that can be safely
executed in parallel.

IDE Equivalent

Windows: Optimization > Parallelization

Linux: None

Mac OS X: Optimization > Parallelization

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-parallel

Windows:

/Qparallel

Arguments

None

Default

Multithreaded code is not generated for loops that can be safely
executed in parallel.

OFF

Description

This option tells the auto-parallelizer to generate multithreaded code for loops that can be
safely executed in parallel.

To use this option, you must also specify option O2 or O3.

986

20 Intel® Fortran Compiler User and Reference Guides

NOTE. On Mac OS X systems, when you enable automatic parallelization, you must also
set the DYLD_LIBRARY_PATH environment variable within Xcode or an error will be
displayed.

Alternate Options

None

See Also
•
•
• par-report, Qpar-report

• par-affinity, Qpar-affinity

• par-num-threads, Qpar-num-threads

• par-runtime-control, Qpar-runtime-control

• par-schedule, Qpar-schedule

• O

pc, Qpc
Enables control of floating-point significand
precision.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-pcn

Windows:

/Qpcn

987

20

Arguments

Is the floating-point significand precision. Possible values
are:

n

Rounds the significand to 24 bits (single
precision).

32

Rounds the significand to 53 bits (double
precision).

64

Rounds the significand to 64 bits
(extended precision).

80

Default

On Linux* and Mac OS* X systems, the floating-point significand
is rounded to 64 bits. On Windows* systems, the floating-point
significand is rounded to 53 bits.

-pc80
or/Qpc64

Description

This option enables control of floating-point significand precision.

Some floating-point algorithms are sensitive to the accuracy of the significand, or fractional
part of the floating-point value. For example, iterative operations like division and finding the
square root can run faster if you lower the precision with the this option.

Note that a change of the default precision control or rounding mode, for example, by using
the -pc32 (Linux and Mac OS X) or /Qpc32 (Windows) option or by user intervention, may
affect the results returned by some of the mathematical functions.

Alternate Options

None

See Also
•
•

Floating-point Operations: Floating-point Options Quick Reference

988

20 Intel® Fortran Compiler User and Reference Guides

mp1, Qprec
Improves floating-point precision and consistency.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-mp1

Windows:

/Qprec

Arguments

None

Default

The compiler provides good accuracy and run-time performance
at the expense of less consistent floating-point results.

OFF

Description

This option improves floating-point consistency. It ensures the out-of-range check of operands
of transcendental functions and improves the accuracy of floating-point compares.

This option prevents the compiler from performing optimizations that change NaN comparison
semantics and causes all values to be truncated to declared precision before they are used in
comparisons. It also causes the compiler to use library routines that give better precision results
compared to the X87 transcendental instructions.

This option disables fewer optimizations and has less impact on performance than option flt-
consistency or mp.

Alternate Options

None

989

20

See Also
•
•
• fltconsistency

• mp

prec-div, Qprec-div
Improves precision of floating-point divides.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-prec-div

-no-prec-div

Windows:

/Qprec-div

/Qprec-div-

Arguments

None

Default

The compiler uses this method for floating-point divides.-prec-div
or/Qprec-div

Description

This option improves precision of floating-point divides. It has a slight impact on speed.

990

20 Intel® Fortran Compiler User and Reference Guides

With some optimizations, such as -xSSE2 (Linux) or /QxSSE2 (Windows), the compiler may
change floating-point division computations into multiplication by the reciprocal of the
denominator. For example, A/B is computed as A * (1/B) to improve the speed of the
computation.

However, sometimes the value produced by this transformation is not as accurate as full IEEE
division. When it is important to have fully precise IEEE division, use this option to disable the
floating-point division-to-multiplication optimization. The result is more accurate, with some
loss of performance.

If you specify -no-prec-div (Linux and Mac OS X) or /Qprec-div- (Windows), it enables
optimizations that give slightly less precise results than full IEEE division.

Alternate Options

None

See Also
•
•

Floating-point Operations: Floating-point Options Quick Reference

prec-sqrt, Qprec-sqrt
Improves precision of square root implementations.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-prec-sqrt

-no-prec-sqrt

Windows:

/Qprec-sqrt

991

20

/Qprec-sqrt-

Arguments

None

Default

The compiler uses a faster but less precise implementation of
square root.

-no-prec-sqrt
or /Qprec-sqrt-

However, the default is -prec-sqrt or /Qprec-sqrt if any of the
following options are specified: /Od, /Op, or /Qprec on Windows
systems; -O0, -mp (or -fltconsistency), or -mp1 on Linux and
Mac OS X systems.

Description

This option improves precision of square root implementations. It has a slight impact on speed.

This option inhibits any optimizations that can adversely affect the precision of a square root
computation. The result is fully precise square root implementations, with some loss of
performance.

Alternate Options

None

prof-data-order, Qprof-data-order
Enables or disables data ordering if profiling
information is enabled.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-prof-data-order

992

20 Intel® Fortran Compiler User and Reference Guides

-no-prof-data-order

Mac OS X:

None

Windows:

/Qprof-data-order

/Qprof-data-order-

Arguments

None

Default

Data ordering is disabled.-no-prof-data-order
or/Qprof-data-order-

Description

This option enables or disables data ordering if profiling information is enabled. It controls the
use of profiling information to order static program data items.

For this option to be effective, you must do the following:

• For instrumentation compilation, you must specify -prof-gen=globdata (Linux) or /Qprof-
gen:globdata (Windows).

• For feedback compilation, you must specify -prof-use (Linux) or /Qprof-use (Windows).
You must not use multi-file optimization by specifying options such as option -ipo (Linux)
or /Qipo (Windows), or option -ipo-c (Linux) or /Qipo-c (Windows).

Alternate Options

None

See Also
•
•
• prof-gen, Qprof-gen
• prof-use, Qprof-use
• prof-func-order, Qprof-func-order

993

20

prof-dir, Qprof-dir
Specifies a directory for profiling information output
files.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-prof-dir dir

Windows:

/Qprof-dir dir

Arguments

Is the name of the directory.dir

Default

Profiling output files are placed in the directory where the program
is compiled.

OFF

Description

This option specifies a directory for profiling information output files (*.dyn and *.dpi). The
specified directory must already exist.

You should specify this option using the same directory name for both instrumentation and
feedback compilations. If you move the .dyn files, you need to specify the new path.

Alternate Options

None

See Also
•

994

20 Intel® Fortran Compiler User and Reference Guides

•

Floating-point Operations:

Profile-guided Optimization (PGO) Quick Reference

Coding Guidelines for Intel(R) Architectures

prof-file, Qprof-file
Specifies an alternate file name for the profiling
summary files.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-prof-file file

Windows:

/Qprof-file file

Arguments

Is the name of the profiling summary file.file

Default

The profiling summary files have the file name pgopti.*OFF

Description

This option specifies an alternate file name for the profiling summary files. The file is used
as the base name for files created by different profiling passes.

If you add this option to profmerge, the .dpi file will be named file.dpi instead of pgopti.dpi.

If you specify -prof-genx (Linux and Mac OS X) or /Qprof-genx (Windows) with this option,
the .spi and .spl files will be named file.spi and file.spl instead of pgopti.spi and pgopti.spl.

995

20

If you specify -prof-use (Linux and Mac OS X) or /Qprof-use (Windows) with this option,
the .dpi file will be named file.dpi instead of pgopti.dpi.

Alternate Options

None

See Also
•
•
• prof-gen, Qprof-gen

• prof-use, Qprof-use

Optimizing Applications:

Profile-guided Optimizations Overview

Coding Guidelines for Intel(R) Architectures

Profile an Application

prof-func-order, Qprof-func-order
Enables or disables function ordering if profiling
information is enabled.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-prof-func-order

-no-prof-func-order

Mac OS X:

None

996

20 Intel® Fortran Compiler User and Reference Guides

Windows:

/Qprof-func-order

/Qprof-func-order-

Arguments

None

Default

Function ordering is disabled.-no-prof-func-order
or/Qprof-func-order-

Description

This option enables or disables function ordering if profiling information is enabled.

For this option to be effective, you must do the following:

• For instrumentation compilation, you must specify -prof-gen=srcpos (Linux) or /Qprof-
gen:srcpos (Windows).

• For feedback compilation, you must specify -prof-use (Linux) or /Qprof-use (Windows).
You must not use multi-file optimization by specifying options such as option -ipo (Linux)
or /Qipo (Windows), or option -ipo-c (Linux) or /Qipo-c (Windows).

If you enable profiling information by specifying option -prof-use (Linux) or /Qprof-use
(Windows), -prof-func-groups (Linux) and /Qprof-func-groups (Windows) are set and
function grouping is enabled. However, if you explicitly enable -prof-func-order (Linux) or
/Qprof-func-order (Windows), function ordering is performed instead of function grouping.

On Linux* systems, this option is only available for Linux linker 2.15.94.0.1, or later.

To set the hotness threshold for function grouping and function ordering, use option -prof-
hotness-threshold (Linux) or /Qprof-hotness-threshold (Windows).

Alternate Options

None

997

20

The following example shows how to use this option on a Windows system:

ifort /Qprof-gen:globdata file1.f90 file2.f90 /exe:instrumented.exe

./instrumented.exe

ifort /Qprof-use /Qprof-func-order file1.f90 file2.f90 /exe:feedback.exe

The following example shows how to use this option on a Linux system:

ifort -prof-gen:globdata file1.f90 file2.f90 -o instrumented

./instrumented.exe

ifort -prof-use -prof-func-order file1.f90 file2.f90 -o feedback

See Also
•
•
• prof-hotness-threshold, Qprof-hotness-threshold

• prof-gen, Qprof-gen
• prof-use, Qprof-use
• prof-data-order, Qprof-data-order
• prof-func-groups

prof-gen, Qprof-gen
Produces an instrumented object file that can be
used in profile-guided optimization.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-prof-gen[=keyword]

-no-prof-gen

998

20 Intel® Fortran Compiler User and Reference Guides

Windows:

/Qprof-gen[:keyword]

/Qprof-gen-

Arguments

Specifies details for the instrumented file. Possible values
are:

keyword

Produces an instrumented object file. This
is the same as specifying -prof-gen
(Linux* and Mac OS* X) or /Qprof-gen
(Windows*) with no keyword.

default

Produces an instrumented object file that
includes extra source position information.
This option is the same as option -prof-
genx (Linux* and Mac OS* X) or /Qprof-
genx (Windows*), which are deprecated.

srcpos

Produces an instrumented object file that
includes information for global data
layout.

globdata

Default

Profile generation is disabled.-no-prof-gen or /Qprof-
gen-

Description

This option produces an instrumented object file that can be used in profile-guided optimization.
It gets the execution count of each basic block.

If you specify keyword srcpos or globdata, a static profile information file (.spi) is created.
These settings may increase the time needed to do a parallel build using -prof-gen, because
of contention writing the .spi file.

These options are used in phase 1 of the Profile Guided Optimizer (PGO) to instruct the compiler
to produce instrumented code in your object files in preparation for instrumented execution.

Alternate Options

None

999

20

See Also
•
•

Optimizing Applications:

Basic PGO Options

Example of Profile-Guided Optimization

prof-genx, Qprof-genx
This is a deprecated option. See prof-gen keyword
srcpos.

prof-hotness-threshold, Qprof-hotness-threshold
Lets you set the hotness threshold for function
grouping and function ordering.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-prof-hotness-threshold=n

Mac OS X:

None

Windows:

/Qprof-hotness-threshold:n

Arguments

Is the hotness threshold. n is a percentage having a value
between 0 and 100 inclusive. If you specify 0, there will be
no hotness threshold setting in effect for function grouping
and function ordering.

n

1000

20 Intel® Fortran Compiler User and Reference Guides

Default

The compiler's default hotness threshold setting of 10 percent is
in effect for function grouping and function ordering.

OFF

Description

This option lets you set the hotness threshold for function grouping and function ordering.

The "hotness threshold" is the percentage of functions in the application that should be placed
in the application's hot region. The hot region is the most frequently executed part of the
application. By grouping these functions together into one hot region, they have a greater
probability of remaining resident in the instruction cache. This can enhance the application's
performance.

For this option to take effect, you must specify option -prof-use (Linux) or /Qprof-use
(Windows) and one of the following:

• On Linux systems: -prof-func-groups or -prof-func-order

• On Windows systems: /Qprof-func-order

Alternate Options

None

See Also
•
•
• prof-use, Qprof-use
• prof-func-groups
• prof-func-order, Qprof-func-order

prof-src-dir, Qprof-src-dir
Determines whether directory information of the
source file under compilation is considered when
looking up profile data records.

IDE Equivalent

None

1001

20

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-prof-src-dir

-no-prof-src-dir

Windows:

/Qprof-src-dir

/Qprof-src-dir-

Arguments

None

Default

Directory information is used when looking up profile data records
in the .dpi file.

-prof-src-dir
or/Qprof-src-dir

Description

This option determines whether directory information of the source file under compilation is
considered when looking up profile data records in the .dpi file. To use this option, you must
also specify option -prof-use (Linux and Mac OS X) or /Qprof-use (Windows).

If the option is enabled, directory information is considered when looking up the profile data
records within the .dpi file. You can specify directory information by using one of the following
options:

• Linux and Mac OS X: -prof-src-root or -prof-src-root-cwd

• Windows: /Qprof-src-root or /Qprof-src-root-cwd

If the option is disabled, directory information is ignored and only the name of the file is used
to find the profile data record.

1002

20 Intel® Fortran Compiler User and Reference Guides

Note that options -prof-src-dir (Linux and Mac OS X) and /Qprof-src-dir (Windows)
control how the names of the user's source files get represented within the .dyn or .dpi files.
Options -prof-dir (Linux and Mac OS X) and /Qprof-dir (Windows) specify the location of
the .dyn or the .dpi files.

Alternate Options

None

See Also
•
•
• prof-use, Qprof-use

• prof-src-root, Qprof-src-root

• prof-src-root-cwd, Qprof-src-root-cwd

prof-src-root, Qprof-src-root
Lets you use relative directory paths when looking
up profile data and specifies a directory as the
base.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-prof-src-root=dir

Windows:

/Qprof-src-root:dir

Arguments

Is the base for the relative paths.dir

1003

20

Default

The setting of relevant options determines the path used when
looking up profile data records.

OFF

Description

This option lets you use relative directory paths when looking up profile data in .dpi files. It
lets you specify a directory as the base. The paths are relative to a base directory specified
during the -prof-gen (Linux and Mac OS X) or /Qprof-gen (Windows) compilation phase.

This option is available during the following phases of compilation:

• Linux and Mac OS X: -prof-gen and -prof-use phases

• Windows: /Qprof-gen and /Qprof-use phases

When this option is specified during the -prof-gen or /Qprof-gen phase, it stores information
into the .dyn or .dpi file. Then, when .dyn files are merged together or the .dpi file is loaded,
only the directory information below the root directory is used for forming the lookup key.

When this option is specified during the -prof-use or /Qprof-use phase, it specifies a root
directory that replaces the root directory specified at the -prof-gen or /Qprof-gen phase for
forming the lookup keys.

To be effective, this option or option -prof-src-root-cwd (Linux and Mac OS X) or /Qprof-
src-root-cwd (Windows) must be specified during the -prof-gen or /Qprof-gen phase. In
addition, if one of these options is not specified, absolute paths are used in the .dpi file.

Alternate Options

None

Consider the initial -prof-gen compilation of the source file
c:\user1\feature_foo\myproject\common\glob.f90:

ifort -prof-gen -prof-src-root=c:\user1\feature_foo\myproject -c common\glob.f90

For the -prof-use phase, the file glob.f90 could be moved into the directory
c:\user2\feature_bar\myproject\common\glob.f90 and profile information would be found from the
.dpi when using the following:

ifort -prof-use -prof-src-root=c:\user2\feature_bar\myproject -c common\glob.f90

If you do not use option -prof-src-root during the -prof-gen phase, by default, the -prof-use
compilation can only find the profile data if the file is compiled in the
c:\user1\feature_foo\my_project\common directory.

1004

20 Intel® Fortran Compiler User and Reference Guides

See Also
•
•
• prof-gen, Qprof-gen

• prof-use, Qprof-use

• prof-src-dir, Qprof-src-dir

• prof-src-root-cwd, Qprof-src-root-cwd

prof-src-root-cwd, Qprof-src-root-cwd
Lets you use relative directory paths when looking
up profile data and specifies the current working
directory as the base.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-prof-src-root-cwd

Windows:

/Qprof-src-root-cwd

Arguments

None

Default

The setting of relevant options determines the path used when
looking up profile data records.

OFF

1005

20

Description

This option lets you use relative directory paths when looking up profile data in .dpi files. It
specifies the current working directory as the base. To use this option, you must also specify
option -prof-use (Linux and Mac OS) or /Qprof-use (Windows).

This option is available during the following phases of compilation:

• Linux and Mac OS X: -prof-gen and -prof-use phases

• Windows: /Qprof-gen and /Qprof-use phases

When this option is specified during the -prof-gen or /Qprof-gen phase, it stores information
into the .dyn or .dpi file. Then, when .dyn files are merged together or the .dpi file is loaded,
only the directory information below the root directory is used for forming the lookup key.

When this option is specified during the -prof-use or /Qprof-use phase, it specifies a root
directory that replaces the root directory specified at the -prof-gen or /Qprof-gen phase for
forming the lookup keys.

To be effective, this option or option -prof-src-root (Linux and Mac OS X) or /Qprof-src-
root (Windows) must be specified during the -prof-gen or /Qprof-gen phase. In addition,
if one of these options is not specified, absolute paths are used in the .dpi file.

Alternate Options

None

See Also
•
•
• prof-gen, Qprof-gen

• prof-use, Qprof-use

• prof-src-dir, Qprof-src-dir

• prof-src-root, Qprof-src-root

prof-use, Qprof-use
Enables the use of profiling information during
optimization.

IDE Equivalent

None

1006

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-prof-use[=arg]

-no-prof-use

Windows:

/Qprof-use[:arg]

/Qprof-use-

Arguments

Specifies additional instructions. Possible values are:arg

Tells the profmerge utility to apply a
weighting to the .dyn file values when
creating the .dpi file to normalize the data

weighted

counts when the training runs have
differentexecution durations. This
argument only has an effect when the
compiler invokes the profmerge utility to
create the .dpi file. This argument does
not have an effect if the .dpi file was
previously created without weighting.

Enables or disables automatic invocation
of the profmerge utility. The default is
merge. Note that you cannot specify both

[no]merge

weighted and nomerge. If you try to
specify both values, a warning will be
displayed and nomerge takes precedence.

Enables the use of profiling information
during optimization. The profmerge utility
is invoked by default. This value is the

default

same as specifying -prof-use (Linux and
Mac OS X) or /Qprof-use (Windows)
with no argument.

1007

20

Default

Profiling information is not used during optimization.-no-prof-use or /Qprof-
use-

Description

This option enables the use of profiling information (including function splitting and function
grouping) during optimization. It enables option -fnsplit (Linux) or /Qfnsplit (Windows).

This option instructs the compiler to produce a profile-optimized executable and it merges
available profiling output files into a pgopti.dpi file.

Note that there is no way to turn off function grouping if you enable it using this option.

To set the hotness threshold for function grouping and function ordering, use option -prof-
hotness-threshold (Linux) or /Qprof-hotness-threshold (Windows).

Alternate Options

None

See Also
•
•
• prof-hotness-threshold, Qprof-hotness-threshold

Optimizing Applications:

Basic PGO Options

Example of Profile-Guided Optimization

rcd, Qrcd
Enables fast float-to-integer conversions.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

1008

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-rcd

Windows:

/Qrcd

Arguments

None

Default

Floating-point values are truncated when a conversion to an integer
is involved. On Windows, this is the same as specifying /QIfist-.

OFF

Description

This option enables fast float-to-integer conversions. It can improve the performance of code
that requires floating-point-to-integer conversions.

The system default floating-point rounding mode is round-to-nearest. However, the Fortran
language requires floating-point values to be truncated when a conversion to an integer is
involved. To do this, the compiler must change the rounding mode to truncation before each
floating-point-to-integer conversion and change it back afterwards.

This option disables the change to truncation of the rounding mode for all floating-point
calculations, including floating point-to-integer conversions. This option can improve
performance, but floating-point conversions to integer will not conform to Fortran semantics.

Alternate Options

Linux and Mac OS X: None

Windows: /QIfist

rct, Qrct
Sets the internal FPU rounding control to Truncate.

IDE Equivalent

None

1009

20

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-rct

Windows:

/Qrct

Arguments

None

Default

The compiler uses the default setting for the FPU rounding control.OFF

Description

This option sets the internal FPU rounding control to Truncate.

Alternate Options

Linux and Mac OS X: None

Windows: /rounding-mode:chopped

safe-cray-ptr, Qsafe-cray-ptr
Tells the compiler that Cray* pointers do not alias
other variables.

IDE Equivalent

Windows: Data > Assume Cray Pointers Do Not Share Memory Locations

Linux: None

Mac OS X: Data > Assume Cray Pointers Do Not Share Memory Locations

Architectures

IA-32, Intel® 64, IA-64 architectures

1010

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-safe-cray-ptr

Windows:

/Qsafe-cray-ptr

Arguments

None

Default

The compiler assumes that Cray pointers alias other variables.OFF

Description

This option tells the compiler that Cray pointers do not alias (that is, do not specify sharing
memory with) other variables.

Alternate Options

None

Example

Consider the following:

pointer (pb, b)

pb = getstorage()

do i = 1, n

b(i) = a(i) + 1

enddo

By default, the compiler assumes that b and a are aliased. To prevent such an assumption,
specify the -safe-cray-ptr (Linux and Mac OS X) or /Qsafe-cray-ptr (Windows) option,
and the compiler will treat b(i) and a(i) as independent of each other.

1011

20

However, if the variables are intended to be aliased with Cray pointers, using the option produces
incorrect results. In the following example, you should not use the option:

pointer (pb, b)

pb = loc(a(2))

do i=1, n

b(i) = a(i) +1

enddo

save, Qsave
Causes variables to be placed in static memory.

IDE Equivalent

Windows: Data > Local Variable Storage

Linux: None

Mac OS X: Data > Local Variable Storage

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-save

Windows:

/Qsave

Arguments

None

1012

20 Intel® Fortran Compiler User and Reference Guides

Default

Scalar variables of intrinsic types INTEGER, REAL, COMPLEX, and
LOGICAL are allocated to the run-time stack. Note that if option
recursive, -openmp (Linux and Mac OS X), or /Qopenmp
(Windows) is specified, the default is -automatic (Linux) or
/Qauto (Windows).

-auto-scalar
or /Qauto-scalar

Description

This option saves all variables in static allocation except local variables within a recursive routine
and variables declared as AUTOMATIC.

If you want all local, non-SAVEd variables to be allocated to the run-time stack, specify option
automatic.

Alternate Options

Linux and Mac OS X: -noautomatic, -noauto

Windows: /noautomatic, /noauto, /4Na

See Also
•
•
• automatic

• auto_scalar

save-temps, Qsave-temps
Tells the compiler to save intermediate files created
during compilation.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

1013

20

Syntax

Linux and Mac OS X:

-save-temps

-no-save-temps

Windows:

/Qsave-temps

/Qsave-temps-

Arguments

None

Default

On Linux and Mac OS X systems, the compiler deletes intermediate
files after compilation is completed. On Windows systems, the
compiler saves only intermediate object files after compilation is
completed.

Linux and Mac OS X: -no-
save-temps
Windows: .obj files are
saved

Description

This option tells the compiler to save intermediate files created during compilation. The names
of the files saved are based on the name of the source file; the files are saved in the current
working directory.

If -save-temps or /Qsave-temps is specified, the following occurs:

• The object .o file (Linux and Mac OS X) or .obj file (Windows) is saved.

• The assembler .s file (Linux and Mac OS X) or .asm file (Windows) is saved if you specified
-use-asm (Linux or Mac OS X) or /Quse-asm (Windows).

• The .i or .i90 file is saved if the fpp preprocessor is invoked.

If -no-save-temps is specified on Linux or Mac OS X systems, the following occurs:

• The .o file is put into /tmp and deleted after calling ld.

• The preprocessed file is not saved after it has been used by the compiler.

If /Qsave-temps- is specified on Windows systems, the following occurs:

1014

20 Intel® Fortran Compiler User and Reference Guides

• The .obj file is not saved after the linker step.

• The preprocessed file is not saved after it has been used by the compiler.

NOTE. This option only saves intermediate files that are normally created during
compilation.

Alternate Options

None

Example

If you compile program my_foo.F on a Linux or Mac OS X system and you specify option
-save-temps and option -use-asm, the compilation will produce files my_foo.o, my_foo.s,
and my_foo.i.

If you compile program my_foo.fpp on a Windows system and you specif option /Qsave-
temps and option /Quse-asm, the compilation will produce files my_foo.obj, my_foo.asm,
and my_foo.i.

scalar-rep, Qscalar-rep
Enables scalar replacement performed during loop
transformation.

IDE Equivalent

None

Architectures

IA-32 architecture

Syntax

Linux and Mac OS X:

-scalar-rep

-no-scalar-rep

Windows:

/Qscalar-rep

1015

20

/Qscalar-rep-

Arguments

None

Default

Scalar replacement is not performed during loop transformation.-no-scalar-rep
or/Qscalar-rep-

Description

This option enables scalar replacement performed during loop transformation. To use this
option, you must also specify O3.

Alternate Options

None

See Also
•
•
• O

Qsfalign
Specifies stack alignment for functions.

IDE Equivalent

None

Architectures

IA-32 architecture

Syntax

Linux and Mac OS X:

None

Windows:

/Qsfalign[n]

1016

20 Intel® Fortran Compiler User and Reference Guides

Arguments

Is the byte size of aligned variables. Possible values are:n

Specifies that alignment should occur for
functions with 8-byte aligned variables.
At this setting the compiler aligns the

8

stack to 16 bytes if there is any 16-byte
or 8-byte data on the stack. For 8-byte
data, the compiler only aligns the stack
if the alignment will produce a
performance advantage.

Specifies that alignment should occur for
functions with 16-byte aligned variables.
At this setting, the compiler only aligns
the stack for 16-byte data. No attempt is
made to align for 8-byte data.

16

Default

Alignment occurs for functions with 8-byte aligned variables./Qsfalign8

Description

This option specifies stack alignment for functions. It lets you disable the normal optimization
that aligns a stack for 8-byte data.

If you do not specify n, stack alignment occurs for all functions. If you specify /Qsfalign-, no
stack alignment occurs for any function.

Alternate Options

None

sox, Qsox
Tells the compiler to save the compilation options
and version number in the Linux* OS executable
or the Windows* OS object file.

IDE Equivalent

None

1017

20

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-sox

-no-sox

Mac OS X:

None

Windows:

/Qsox

/Qsox-

Arguments

None

Default

The compiler does not save the compiler options and version
number in the executable.

-no-sox
or/Qsox-

Description

Tells the compiler to save the compilation options and version number in the Linux* OS
executable or the Windows* OS object file.

On Linux systems, the size of the executable on disk is increased slightly by the inclusion of
these infotmation strings.

This option forces the compiler to embed in each object file or assembly output a string that
contains information about the compiler version and compilation options for each source file
that has been compiled.

On Windows systems, the information stays in the object file. On Linux systems, when you link
the object files into an executable file, the linker places each of the information strings into the
header of the executable. It is then possible to use a tool, such as a strings utility, to determine
what options were used to build the executable file.

1018

20 Intel® Fortran Compiler User and Reference Guides

If -no-sox or /Qsox- is specified, this extra information is not put into the object or assembly
output generated by the compiler.

Alternate Options

None

tcheck, Qtcheck
Enables analysis of threaded applications.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-tcheck

Mac OS X:

None

Windows:

/Qtcheck

Arguments

None

Default

Threaded applications are not instrumented by the compiler for
analysis by Intel® Thread Checker.

OFF

Description

This option enables analysis of threaded applications.

1019

20

To use this option, you must have Intel® Thread Checker installed, which is one of the Intel®

Threading Analysis Tools. If you do not have this tool installed, the compilation will fail. Remove
the -tcheck (Linux) or /Qtcheck (Windows) option from the command line and recompile.

For more information about Intel® Thread Checker (including an evaluation copy), open the
page associated with threading tools at Intel® Software Development Products.

Alternate Options

None

tcollect, Qtcollect
Inserts instrumentation probes calling the Intel®
Trace Collector API.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-tcollect[lib]

Mac OS X:

None

Windows:

/Qtcollect[:lib]

Arguments

Is one of the Intel® Trace Collector libraries; for example,
VT, VTcs, VTmc, or VTfs. If you do not specify lib, the
default library is VT.

lib

Default

Instrumentation probes are not inserted into compiled applications.OFF

1020

20 Intel® Fortran Compiler User and Reference Guides

Description

This option inserts instrumentation probes calling the Intel® Trace Collector API. To use this
option, you must have the Intel® Trace Collector installed and set up through one of its set-up
scripts. This tool is a component of the Intel® Trace Analyzer and Collector.

This option provides a flexible and convenient way of instrumenting functions of a compiled
application. For every function, the entry and exit points are instrumented at compile time to
let the Intel® Trace Collector record functions beyond the default MPI calls. For non-MPI
applications (for example, threaded or serial), you must ensure that the Intel® Trace Collector
is properly initialized (VT_initialize/VT_init).

CAUTION. Be careful with full instrumentation because this feature can produce very
large trace files.

For more details, see the Intel® Trace Collector User Guide.

Alternate Options

None

See Also
•
•
• tcollect-filter, Qtcollect-filter

tcollect-filter, Qtcollect-filter
Lets you enable or disable the instrumentation of
specified functions.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

1021

20

Syntax

Linux:

-tcollect-filter file

Mac OS X:

None

Windows:

/Qtcollect-filter:file

Arguments

Is a configuration file that lists filters, one per line. Each
filter consists of a regular expression string and a switch.
Strings with leading or trailing white spaces must be quoted.
Other strings do not have to be quoted. The switch value
can be ON, on, OFF, or off.

file

Default

Functions are not instrumented. However, if option -tcollect
(Linux) or /Qtcollect (Windows) is specified, the filter setting is
".* ON" and all functions get instrumented.

OFF

Description

This option lets you enable or disable the instrumentation of specified functions.

During instrumentation, the regular expressions in the file are matched against the function
names. The switch specifies whether matching functions are to be instrumented or not. Multiple
filters are evaluated from top to bottom with increasing precedence.

The names of the functions to match against are formatted as follows:

• The source file name is followed by a colon-separated function name. Source file names
should contain the full path, if available. For example:

/home/joe/src/file.f:FOO_bar

• Classes and function names are separated by double colons. For example:

/home/joe/src/file.fpp:app::foo::bar

1022

20 Intel® Fortran Compiler User and Reference Guides

You can use option -opt-report (Linux) or /Qopt-report (Windows) to get a full list of file
and function names that the compiler recognizes from the compilation unit. This list can be
used as the basis for filtering in the configuration file.

To use this option, you must have the Intel® Trace Collector installed and set up through one
of its set-up scripts. This tool is a component of the Intel® Trace Analyzer and Collector.

For more details, see the Intel® Trace Collector User Guide.

Alternate Options

None

Consider the following filters in a configuration file:

'.*' OFF '.*vector.*' ON

The above will cause instrumentation of only those functions having the string 'vector' in their names.
No other function will be instrumented. Note that reversing the order of the two lines will prevent
instrumentation of all functions.

To get a list of the file or routine strings that can be matched by the regular expression filters,
generate an optimization report with tcollect information. For example:

Windows OS: ifort /Qtcollect /Qopt-report /Qopt-report-phase tcollect

Linux OS: ifort -tcollect -opt-report -opt-report-phase tcollect

See Also
•
•
• tcollect, Qtcollect

tprofile, Qtprofile
Generates instrumentation to analyze
multi-threading performance.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

1023

20

Syntax

Linux:

-tprofile

Mac OS X:

None

Windows:

/Qtprofile

Arguments

None

Default

Instrumentation is not generated by the compiler for analysis by
Intel® Thread Profiler.

OFF

Description

This option generates instrumentation to analyze multi-threading performance.

To use this option, you must have Intel® Thread Profiler installed, which is one of the Intel®

Threading Analysis Tools. If you do not have this tool installed, the compilation will fail. Remove
the -tprofile (Linux) or /Qtprofile (Windows) option from the command line and recompile.

For more information about Intel® Thread Profiler (including an evaluation copy), open the page
associated with threading tools at Intel® Software Development Products.

Alternate Options

None

ftrapuv, Qtrapuv
Initializes stack local variables to an unusual value
to aid error detection.

IDE Equivalent

Windows: Data > Initialize stack variables to an unusual value

Linux: None

1024

20 Intel® Fortran Compiler User and Reference Guides

Mac OS X: Run-Time > Initialize Stack Variables to an Unusual Value

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-ftrapuv

Windows:

/Qtrapuv

Arguments

None

Default

The compiler does not initialize local variables.OFF

Description

This option initializes stack local variables to an unusual value to aid error detection. Normally,
these local variables should be initialized in the application.

The option sets any uninitialized local variables that are allocated on the stack to a value that
is typically interpreted as a very large integer or an invalid address. References to these variables
are then likely to cause run-time errors that can help you detect coding errors.

This option sets option -g (Linux and Mac OS X) and /Zi or /Z7 (Windows).

Alternate Options

None

See Also
•
•
• g, Zi, Z7

1025

20

unroll, Qunroll
Tells the compiler the maximum number of times
to unroll loops.

IDE Equivalent

Windows: Optimization > Loop Unroll Count

Linux: None

Mac OS X: Optimization > Loop Unroll Count

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-unroll[=n]

Windows:

/Qunroll[:n]

Arguments

Is the maximum number of times a loop can be unrolled.
To disable loop enrolling, specify 0.
On systems using IA-64 architecture, you can only specify
a value of 0.

n

Default

The compiler uses default heuristics when unrolling loops.-unroll
or/Qunroll

Description

This option tells the compiler the maximum number of times to unroll loops.

If you do not specify n, the optimizer determines how many times loops can be unrolled.

1026

20 Intel® Fortran Compiler User and Reference Guides

Alternate Options

Linux and Mac OS X: -funroll-loops

Windows: /unroll

See Also
•
•

Optimizing Applications: Loop Unrolling

unroll-aggressive, Qunroll-aggressive
Determines whether the compiler uses more
aggressive unrolling for certain loops.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-unroll-aggressive

-no-unroll-aggressive

Windows:

/Qunroll-aggressive

/Qunroll-aggressive-

Arguments

None

Default

The compiler uses default heuristics when unrolling loops.-no-unroll-aggressive
or /Qunroll-aggressive-

1027

20

Description

This option determines whether the compiler uses more aggressive unrolling for certain loops.
The positive form of the option may improve performance.

On IA-32 architecture and Intel® 64 architecture, this option enables aggressive, complete
unrolling for loops with small constant trip counts.

On IA-64 architecture, this option enables additional complete unrolling for loops that have
multiple exits or outer loops that have a small constant trip count.

Alternate Options

None

uppercase, Quppercase
See names.

use-asm, Quse-asm
Tells the compiler to produce objects through the
assembler.

IDE Equivalent

None

Architectures

-use-asm: IA-32 architecture, Intel® 64 architecture, IA-64 architecture

/Quse-asm: IA-64 architecture

Syntax

Linux and Mac OS X:

-use-asm

-no-use-asm

Windows:

/Quse-asm

/Quse-asm-

1028

20 Intel® Fortran Compiler User and Reference Guides

Arguments

None

Default

The compiler produces objects directly.-no-use-asm
or/Quse-asm-

Description

This option tells the compiler to produce objects through the assembler.

Alternate Options

None

Quse-msasm-symbols
Tells the compiler to use a dollar sign ("$") when
producing symbol names.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/Quse-msasm-symbols

Arguments

None

Default

The compiler uses a period (".") when producing symbol namesOFF

1029

20

Description

This option tells the compiler to use a dollar sign ("$") when producing symbol names.

Use this option if you require symbols in your .asm files to contain characters that are accepted
by the MS assembler.

Alternate Options

None

Quse-vcdebug
Tells the compiler to issue debug information
compatible with the Visual C++ debugger.

IDE Equivalent

None

Architectures

IA-32 architecture

Syntax

Linux and Mac OS X:

None

Windows:

/Quse-vcdebug

Arguments

None

Default

Debug information is issued that is compatible with Fortran
debuggers.

OFF

1030

20 Intel® Fortran Compiler User and Reference Guides

Description

This option tells the compiler to issue debug information compatible with the Visual C++
debugger. It prevents the compiler from issuing the extended information used by Fortran
debuggers.

Alternate Options

None

Qvc
Specifies compatibility with Microsoft* Visual C++
or Microsoft* Visual Studio.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/Qvc7.1

/Qvc8

/Qvc9

Arguments

None

Default

When the compiler is installed, it detects which version of Visual
Studio is on your system. Qvc defaults to the form of the option
that is compatible with that version. When multiple versions of

varies

1031

20

Visual Studio are installed, the compiler installation lets you select
which version you want to use. In this case, Qvc defaults to the
version you choose.

Description

This option specifies compatibility with Visual C++ or Visual Studio.

DescriptionOption

Specifies compatibility with Microsoft* Visual
Studio .NET 2003.

/Qvc7.1

Specifies compatibility with Microsoft* Visual
Studio 2005.

/Qvc8

Specifies compatibility with Microsoft* Visual
Studio 2008.

/Qvc9

Alternate Options

None

vec, Qvec
Enables or disables vectorization and
transformations enabled for vectorization.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-vec

-no-vec

1032

20 Intel® Fortran Compiler User and Reference Guides

Windows:

/Qvec

/Qvec-

Arguments

None

Default

Vectorization is enabled.-vec
or/Qvec

Description

This option enables or disables vectorization and transformations enabled for vectorization.

To disable vectorization and transformations enabled for vectorization, specify -no-vec (Linux
and Mac OS X) or /Qvec- (Windows).

Alternate Options

None

See Also
•
•
• ax, Qax

• x, Qx

• vec-report, Qvec-report

• vec-guard-write, Qvec-guard-write

• vec-threshold, Qvec-threshold

vec-guard-write, Qvec-guard-write
Tells the compiler to perform a conditional check
in a vectorized loop.

IDE Equivalent

None

1033

20

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-vec-guard-write

-no-vec-guard-write

Windows:

/Qvec-guard-write

/Qvec-guard-write-

Arguments

None

Default

The compiler uses default heuristics when checking
vectorized loops.

-no-vec-guard-write
or/Qvec-guard-write-

Description

This option tells the compiler to perform a conditional check in a vectorized loop. This checking
avoids unnecessary stores and may improve performance.

Alternate Options

None

vec-report, Qvec-report
Controls the diagnostic information reported by
the vectorizer.

IDE Equivalent

Windows: Compilation Diagnostics > Vectorizer Diagnostic Level

Linux: None

Mac OS X: Diagnostics > Vectorizer Diagnostic Report

1034

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-vec-report[n]

Windows:

/Qvec-report[n]

Arguments

Is a value denoting which diagnostic messages to report.
Possible values are:

n

Tells the vectorizer to report no diagnostic
information.

0

Tells the vectorizer to report on vectorized
loops.

1

Tells the vectorizer to report on vectorized
and non-vectorized loops.

2

Tells the vectorizer to report on vectorized
and non-vectorized loops and any proven
or assumed data dependences.

3

Tells the vectorizer to report on
non-vectorized loops.

4

Tells the vectorizer to report on
non-vectorized loops and the reason why
they were not vectorized.

5

Default

If the vectorizer has been enabled and you do not specify n, the
compiler reports diagnostics on vectorized loops. If you do not
specify the option on the command line, the default is to display
no messages.

-vec-report1
or/Qvec-report1

1035

20

Description

This option controls the diagnostic information reported by the vectorizer. The vectorizer report
is sent to stdout.

If you do not specify n, it is the same as specifying -vec-report1 (Linux and Mac OS X) or
/Qvec-report1 (Windows).

The vectorizer is enabled when certain compiler options are specified, such as option -ax or
-x (Linux and Mac OS X), option /Qax or /Qx (Windows), option -arch SSE or -arch SSE2
(Linux and Mac OS X), option /architecture:SSE or /architecture:SSE2 (Windows).

If this option is specified from within the IDE, the report is included in the build log if the
Generate Build Logs option is selected.

Alternate Options

None

vec-threshold, Qvec-threshold
Sets a threshold for the vectorization of loops.

IDE Equivalent

Windows: Optimization > Threshold For Vectorization

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-vec-threshold[n]

Windows:

/Qvec-threshold[[:]n]

1036

20 Intel® Fortran Compiler User and Reference Guides

Arguments

Is an integer whose value is the threshold for the
vectorization of loops. Possible values are 0 through 100.

n

If n is 0, loops get vectorized always, regardless of
computation work volume.
If n is 100, loops get vectorized when performance gains
are predicted based on the compiler analysis data. Loops
get vectorized only if profitable vector-level parallel
execution is almost certain.
The intermediate 1 to 99 values represent the percentage
probability for profitable speed-up. For example, n=50
directs the compiler to vectorize only if there is a 50%
probability of the code speeding up if executed in vector
form.

Default

Loops get vectorized only if profitable vector-level parallel execution
is almost certain. This is also the default if you do not specify n.

-vec-threshold100
or /Qvec-threshold100

Description

This option sets a threshold for the vectorization of loops based on the probability of profitable
execution of the vectorized loop in parallel.

This option is useful for loops whose computation work volume cannot be determined at
compile-time. The threshold is usually relevant when the loop trip count is unknown at
compile-time.

The compiler applies a heuristic that tries to balance the overhead of creating multiple threads
versus the amount of work available to be shared amongst the threads.

Alternate Options

None

1037

20

x, Qx
Tells the compiler to generate optimized code
specialized for the Intel processor that executes
your program.

IDE Equivalent

Windows: Code Generation > Intel Processor-Specific Optimization

Optimization > Use Intel(R) Processor Extensions

Linux: None

Mac OS X: Code Generation > Intel Processor-Specific Optimization

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-xprocessor

Windows:

/Qxprocessor

Arguments

Indicates the processor for which code is generated. Many
of the following descriptions refer to Intel® Streaming SIMD
Extensions (Intel® SSE) and Supplemental Streaming SIMD
Extensions (Intel® SSSE). Possible values are:

processor

Can generate instructions for the highest
instruction set available on the
compilation host processor.

Host

On Intel processors, this may correspond
to the most suitable –x (Linux* and Mac
OS* X) or /Qx (Windows*) option. On
non-Intel processors, this may correspond
to the most suitable –m (Linux and Mac
OS X) or /arch (Windows) option.

1038

20 Intel® Fortran Compiler User and Reference Guides

The resulting executable may not run on
a processor different from the host in the
following cases:

• If the processor does not support all
of the instructions supported by the
host processor.

• If the host is an Intel processor and
the other processor is a non-Intel
processor.

Optimizes for Intel processors that
support Intel® Advanced Vector
Extensions (Intel® AVX).

AVX

Can generate Intel® SSE4 Efficient
Accelerated String and Text Processing
instructions supported by Intel® Core™ i7

SSE4.2

processors. Can generate Intel® SSE4
Vectorizing Compiler and Media
Accelerator, Intel® SSSE3, SSE3, SSE2,
and SSE instructions and it can optimize
for the Intel® Core™ processor family.

Can generate Intel® SSE4 Vectorizing
Compiler and Media Accelerator
instructions for Intel processors. Can

SSE4.1

generate Intel® SSSE3, SSE3, SSE2, and
SSE instructions and it can optimize for
Intel® 45nm Hi-k next generation Intel®

Core™ microarchitecture. This replaces
value S, which is deprecated.

Optimizes for the Intel® Atom™ processor
and Intel® Centrino® Atom™ Processor
Technology. Can generate MOVBE

SSE3_ATOM

instructions, depending on the setting of
option -minstruction (Linux and Mac
OS) or /Qinstruction (Windows).

1039

20

Can generate Intel® SSSE3, SSE3, SSE2,
and SSE instructions for Intel processors
and it can optimize for the Intel® Core™2

SSSE3

Duo processor family. For Mac OS* X
systems, this value is only supported on
Intel® 64 architecture. This replaces value
T, which is deprecated.

Can generate Intel® SSE3, SSE2, and SSE
instructions for Intel processors and it can
optimize for processors based on Intel®

SSE3

Core™ microarchitecture and Intel
NetBurst® microarchitecture. For Mac OS*
X systems, this value is only supported
on IA-32 architecture.This replaces value
P, which is deprecated.

Can generate Intel® SSE2 and SSE
instructions for Intel processors, and it
can optimize for Intel® Pentium® 4

SSE2

processors, Intel® Pentium® M processors,
and Intel® Xeon® processors with Intel®

SSE2. This value is not available on Mac
OS* X systems. This replaces value N,
which is deprecated.

Default

On Windows systems, if neither /Qx nor /arch is specified, the
default is /arch:SSE2.

Windows* systems: None
Linux* systems: None
Mac OS* X systems using
IA-32 architecture: SSE3
Mac OS* X systems using
Intel® 64 architecture:
SSSE3

On Linux systems, if neither -x nor -m is specified, the default is
-msse2.

Description

This option tells the compiler to generate optimized code specialized for the Intel processor
that executes your program. It also enables optimizations in addition to Intel processor-specific
optimizations. The specialized code generated by this option may run only on a subset of Intel
processors.

1040

20 Intel® Fortran Compiler User and Reference Guides

This option can enable optimizations depending on the argument specified. For example, it may
enable Intel® Streaming SIMD Extensions 4 (Intel® SSE4), Intel® Supplemental Streaming SIMD
Extensions 3 (Intel® SSSE3), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), Intel® Streaming
SIMD Extensions 2 (Intel® SSE2), or Intel® Streaming SIMD Extensions (Intel® SSE) instructions.

The binaries produced by these values will run on Intel processors that support all of the features
for the targeted processor. For example, binaries produced with SSE3 will run on an Intel®

Core™ 2 Duo processor, because that processor completely supports all of the capabilities of
the Intel® Pentium® 4 processor, which the SSE3 value targets. Specifying the SSSE3 value has
the potential of using more features and optimizations available to the Intel® Core™ 2 Duo
processor.

Do not use processor values to create binaries that will execute on a processor that is not
compatible with the targeted processor. The resulting program may fail with an illegal instruction
exception or display other unexpected behavior. For example, binaries produced with SSE3
may produce code that will not run on Intel® Pentium® III processors or earlier processors that
do not support SSE3 instructions.

Compiling the main program with any of the processor values produces binaries that display
a fatal run-time error if they are executed on unsupported processors. For more information,
see Optimizing Applications.

If you specify more than one processor value, code is generated for only the highest-performing
processor specified. The highest-performing to lowest-performing processor values are: SSE4.2,
SSE4.1, SSSE3, SSE3, SSE2. Note that processor values AVX and SSE3_ATOM do not fit within
this group.

Compiler options m and arch produce binaries that should run on processors not made by Intel
that implement the same capabilities as the corresponding Intel processors.

Previous value O is deprecated and has been replaced by option -msse3 (Linux and Mac OS X)
and option /arch:SSE3 (Windows).

Previous values W and K are deprecated. The details on replacements are as follows:

• Mac OS X systems: On these systems, there is no exact replacement for W or K. You can
upgrade to the default option -msse3 (IA-32 architecture) or option -mssse3 (Intel® 64
architecture).

• Windows and Linux systems: The replacement for W is -msse2 (Linux) or /arch:SSE2
(Windows). There is no exact replacement for K. However, on Windows systems, /QxK is
interpreted as /arch:IA32; on Linux systems, -xK is interpreted as -mia32. You can also
do one of the following:

1041

20

• Upgrade to option -msse2 (Linux) or option /arch:SSE2 (Windows). This will produce
one code path that is specialized for Intel® SSE2. It will not run on earlier processors

• Specify the two option combination -mia32 -axSSE2 (Linux) or /arch:IA32 /QaxSSE2
(Windows). This combination will produce an executable that runs on any processor with
IA-32 architecture but with an additional specialized Intel® SSE2 code path.

The -x and /Qx options enable additional optimizations not enabled with option -m or option
/arch.

On Windows* systems, options /Qx and /arch are mutually exclusive. If both are specified, the
compiler uses the last one specified and generates a warning. Similarly, on Linux* and Mac
OS* X systems, options -x and -m are mutually exclusive. If both are specified, the compiler
uses the last one specified and generates a warning.

Alternate Options

None

See Also
•
•
• ax, Qax
• m

• arch

• minstruction, Qinstruction

zero, Qzero
Initializes to zero all local scalar variables of
intrinsic type INTEGER, REAL, COMPLEX, or
LOGICAL that are saved but not yet initialized.

IDE Equivalent

Windows: Data > Initialize Local Saved Scalars to Zero

Linux: None

Mac OS X: Data > Initialize Local Saved Scalars to Zero

1042

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-zero

-nozero

Windows:

/Qzero

/Qzero-

Arguments

None

Default

Local scalar variables are not initialized to zero.-nozero or /Qzero-

Description

This option initializes to zero all local scalar variables of intrinsic type INTEGER, REAL, COMPLEX,
or LOGICAL that are saved but not yet initialized.

Use -save (Linux and Mac OS X) or /Qsave (Windows) on the command line to make all local
variables specifically marked as SAVE.

Alternate Options

None

See Also
•
•
• save

1043

20

r8, r16
See real-size.

rcd, Qrcd
Enables fast float-to-integer conversions.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-rcd

Windows:

/Qrcd

Arguments

None

Default

Floating-point values are truncated when a conversion to an integer
is involved. On Windows, this is the same as specifying /QIfist-.

OFF

Description

This option enables fast float-to-integer conversions. It can improve the performance of code
that requires floating-point-to-integer conversions.

The system default floating-point rounding mode is round-to-nearest. However, the Fortran
language requires floating-point values to be truncated when a conversion to an integer is
involved. To do this, the compiler must change the rounding mode to truncation before each
floating-point-to-integer conversion and change it back afterwards.

1044

20 Intel® Fortran Compiler User and Reference Guides

This option disables the change to truncation of the rounding mode for all floating-point
calculations, including floating point-to-integer conversions. This option can improve
performance, but floating-point conversions to integer will not conform to Fortran semantics.

Alternate Options

Linux and Mac OS X: None

Windows: /QIfist

rct, Qrct
Sets the internal FPU rounding control to Truncate.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-rct

Windows:

/Qrct

Arguments

None

Default

The compiler uses the default setting for the FPU rounding control.OFF

Description

This option sets the internal FPU rounding control to Truncate.

Alternate Options

Linux and Mac OS X: None

1045

20

Windows: /rounding-mode:chopped

real-size
Specifies the default KIND for real and complex
variables.

IDE Equivalent

Windows: Data > Default Real KIND

Linux: None

Mac OS X: Data > Default Real KIND

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-real-size size

Windows:

/real-size:size

Arguments

Is the size for real and complex variables. Possible values
are: 32, 64, or 128.

size

Default

Default real and complex variables are 4 bytes long (REAL(KIND=4)
and COMPLEX(KIND=4)).

real-size 32

Description

This option specifies the default size (in bits) for real and complex variables.

1046

20 Intel® Fortran Compiler User and Reference Guides

DescriptionOption

Makes default real and complex variables 4 bytes long. REAL declarations
are treated as single precision REAL (REAL(KIND=4)) and COMPLEX
declarations are treated as COMPLEX (COMPLEX(KIND=4)).

real-size 32

Makes default real and complex variables 8 bytes long. REAL declarations
are treated as DOUBLE PRECISION (REAL(KIND=8)) and COMPLEX
declarations are treated as DOUBLE COMPLEX (COMPLEX(KIND=8)).

real-size 64

Makes default real and complex variables 16 bytes long. REAL declarations
are treated as extended precision REAL (REAL(KIND=16)); COMPLEX and
DOUBLE COMPLEX declarations are treated as extended precision COMPLEX
(COMPLEX(KIND=16)).

real-size 128

These compiler options can affect the result type of intrinsic procedures, such as CMPLX, FLOAT,
REAL, SNGL, and AIMAG, which normally produce single-precision REAL or COMPLEX results.
To prevent this effect, you must explicitly declare the kind type for arguments of such intrinsic
procedures.

For example, if real-size 64 is specified, the CMPLX intrinsic will produce a result of type
DOUBLE COMPLEX (COMPLEX(KIND=8)). To prevent this, you must explicitly declare any real
argument to be REAL(KIND=4), and any complex argument to be COMPLEX(KIND=4).

Alternate Options

Linux and Mac OS X: -r8, -autodoublereal-size 64
Windows: /4R8, /Qautodouble

Linux and Mac OS X: -r16real-size 128
Windows: /4R16

recursive
Tells the compiler that all routines should be
compiled for possible recursive execution.

IDE Equivalent

Windows: Code Generation > Enable Recursive Routines

Linux: None

Mac OS X: Code Generation > Enable Recursive Routines

1047

20

Architectures

IA-32, Intel® 64, IA-64 architectures

Systems: Windows, Linux

Syntax

Linux and Mac OS X:

-recursive

-norecursive

Windows:

/recursive

/norecursive

Arguments

None

Default

Routines are not compiled for possible recursive execution.norecursive

Description

This option tells the compiler that all routines should be compiled for possible recursive execution.
It sets the automatic option.

Alternate Options

None

See Also
•
• automatic

1048

20 Intel® Fortran Compiler User and Reference Guides

reentrancy
Tells the compiler to generate reentrant code to
support a multithreaded application.

IDE Equivalent

Windows: Code Generation > Generate Reentrant Code

Linux: None

Mac OS X: Code Generation > Generate Reentrant Code

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-reentrancy keyword

-noreentrancy

Windows:

/reentrancy:keyword

/noreentrancy

Arguments

Specifies details about the program. Possible values are:keyword

Tells the run-time library (RTL) that the
program does not rely on threaded or
asynchronous reentrancy. The RTL will

none

not guard against such interrupts inside
its own critical regions. This is the same
as specifying noreentrancy.

Tells the run-time library (RTL) that the
program may contain asynchronous (AST)
handlers that could call the RTL. This
causes the RTL to guard against AST
interrupts inside its own critical regions.

async

1049

20

Tells the run-time library (RTL) that the
program is multithreaded, such as
programs using the POSIX threads library.
This causes the RTL to use thread locking
to guard its own critical regions.

threaded

Default

The compiler does not generate reentrant code for applications.noreentrancy

Description

This option tells the compiler to generate reentrant code to support a multithreaded application.

If you do not specify a keyword for reentrancy, it is the same as specifying reentrancy
threaded.

Note that if option threads is specified, it sets option reentrancy threaded, since multithreaded
code must be reentrant.

Alternate Options

None

See Also
•
• threads

RTCu
See check.

S
Causes the compiler to compile to an assembly file
only and not link.

IDE Equivalent

None

1050

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-S

Windows:

/S

Arguments

None

Default

Normal compilation and linking occur.OFF

Description

This option causes the compiler to compile to an assembly file only and not link.

On Linux and Mac OS X systems, the assembly file name has a .s suffix. On Windows systems,
the assembly file name has an .asm suffix.

Alternate Options

Linux and Mac OS X: None

Windows: /Fa, /asmfile

See Also
•
• Fa

safe-cray-ptr, Qsafe-cray-ptr
Tells the compiler that Cray* pointers do not alias
other variables.

IDE Equivalent

Windows: Data > Assume Cray Pointers Do Not Share Memory Locations

1051

20

Linux: None

Mac OS X: Data > Assume Cray Pointers Do Not Share Memory Locations

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-safe-cray-ptr

Windows:

/Qsafe-cray-ptr

Arguments

None

Default

The compiler assumes that Cray pointers alias other variables.OFF

Description

This option tells the compiler that Cray pointers do not alias (that is, do not specify sharing
memory with) other variables.

Alternate Options

None

Example

Consider the following:

pointer (pb, b)

pb = getstorage()

do i = 1, n

b(i) = a(i) + 1

enddo

1052

20 Intel® Fortran Compiler User and Reference Guides

By default, the compiler assumes that b and a are aliased. To prevent such an assumption,
specify the -safe-cray-ptr (Linux and Mac OS X) or /Qsafe-cray-ptr (Windows) option,
and the compiler will treat b(i) and a(i) as independent of each other.

However, if the variables are intended to be aliased with Cray pointers, using the option produces
incorrect results. In the following example, you should not use the option:

pointer (pb, b)

pb = loc(a(2))

do i=1, n

b(i) = a(i) +1

enddo

save, Qsave
Causes variables to be placed in static memory.

IDE Equivalent

Windows: Data > Local Variable Storage

Linux: None

Mac OS X: Data > Local Variable Storage

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-save

Windows:

/Qsave

Arguments

None

1053

20

Default

Scalar variables of intrinsic types INTEGER, REAL, COMPLEX, and
LOGICAL are allocated to the run-time stack. Note that if option
recursive, -openmp (Linux and Mac OS X), or /Qopenmp
(Windows) is specified, the default is -automatic (Linux) or
/Qauto (Windows).

-auto-scalar
or /Qauto-scalar

Description

This option saves all variables in static allocation except local variables within a recursive routine
and variables declared as AUTOMATIC.

If you want all local, non-SAVEd variables to be allocated to the run-time stack, specify option
automatic.

Alternate Options

Linux and Mac OS X: -noautomatic, -noauto

Windows: /noautomatic, /noauto, /4Na

See Also
•
•
• automatic

• auto_scalar

save-temps, Qsave-temps
Tells the compiler to save intermediate files created
during compilation.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

1054

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-save-temps

-no-save-temps

Windows:

/Qsave-temps

/Qsave-temps-

Arguments

None

Default

On Linux and Mac OS X systems, the compiler deletes intermediate
files after compilation is completed. On Windows systems, the
compiler saves only intermediate object files after compilation is
completed.

Linux and Mac OS X: -no-
save-temps
Windows: .obj files are
saved

Description

This option tells the compiler to save intermediate files created during compilation. The names
of the files saved are based on the name of the source file; the files are saved in the current
working directory.

If -save-temps or /Qsave-temps is specified, the following occurs:

• The object .o file (Linux and Mac OS X) or .obj file (Windows) is saved.

• The assembler .s file (Linux and Mac OS X) or .asm file (Windows) is saved if you specified
-use-asm (Linux or Mac OS X) or /Quse-asm (Windows).

• The .i or .i90 file is saved if the fpp preprocessor is invoked.

If -no-save-temps is specified on Linux or Mac OS X systems, the following occurs:

• The .o file is put into /tmp and deleted after calling ld.

• The preprocessed file is not saved after it has been used by the compiler.

If /Qsave-temps- is specified on Windows systems, the following occurs:

1055

20

• The .obj file is not saved after the linker step.

• The preprocessed file is not saved after it has been used by the compiler.

NOTE. This option only saves intermediate files that are normally created during
compilation.

Alternate Options

None

Example

If you compile program my_foo.F on a Linux or Mac OS X system and you specify option
-save-temps and option -use-asm, the compilation will produce files my_foo.o, my_foo.s,
and my_foo.i.

If you compile program my_foo.fpp on a Windows system and you specif option /Qsave-
temps and option /Quse-asm, the compilation will produce files my_foo.obj, my_foo.asm,
and my_foo.i.

scalar-rep, Qscalar-rep
Enables scalar replacement performed during loop
transformation.

IDE Equivalent

None

Architectures

IA-32 architecture

Syntax

Linux and Mac OS X:

-scalar-rep

-no-scalar-rep

Windows:

/Qscalar-rep

1056

20 Intel® Fortran Compiler User and Reference Guides

/Qscalar-rep-

Arguments

None

Default

Scalar replacement is not performed during loop transformation.-no-scalar-rep
or/Qscalar-rep-

Description

This option enables scalar replacement performed during loop transformation. To use this
option, you must also specify O3.

Alternate Options

None

See Also
•
•
• O

shared
Tells the compiler to produce a dynamic shared
object instead of an executable.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-shared

1057

20

Mac OS X:

None

Windows:

None

Arguments

None

Default

The compiler produces an executable.OFF

Description

This option tells the compiler to produce a dynamic shared object (DSO) instead of an executable.
This includes linking in all libraries dynamically and passing -shared to the linker.

On systems using IA-32 architecture and Intel® 64 architecture, you must specify option fpic
for the compilation of each object file you want to include in the shared library.

Alternate Options

None

See Also
•
• dynamiclib

• fpic

• Xlinker

shared-intel
Causes Intel-provided libraries to be linked in
dynamically.

IDE Equivalent

Windows: None

Linux: None

Mac OS X: Run-Time > Intel Runtime Libraries

1058

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-shared-intel

Windows:

None

Arguments

None

Default

Intel libraries are linked in statically, with the exception of libguide
on Linux* and Mac OS* X systems, where it is linked in
dynamically.

OFF

Description

This option causes Intel-provided libraries to be linked in dynamically. It is the opposite of
-static-intel.

NOTE. On Mac OS X systems, when you set "Intel Runtime Libraries" to "Dynamic", you
must also set the DYLD_LIBRARY_PATH environment variable within Xcode or an error
will be displayed.

Alternate Options

Linux and Mac OS X: -i-dynamic (this is a deprecated option)

Windows: None

See Also
•
• static-intel

1059

20

shared-libgcc
Links the GNU libgcc library dynamically.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-shared-libgcc

Mac OS X:

None

Windows:

None

Arguments

None

Default

The compiler links the libgcc library dynamically.-shared-libgcc

Description

This option links the GNU libgcc library dynamically. It is the opposite of option static-
libgcc.

This option is useful when you want to override the default behavior of the static option,
which causes all libraries to be linked statically.

Alternate Options

None

1060

20 Intel® Fortran Compiler User and Reference Guides

See Also
•
• static-libgcc

source
Tells the compiler to compile the file as a Fortran
source file.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/source:file

Arguments

Is the name of the file.file

Default

Files that do not end in standard Fortran file extensions are not
compiled as Fortran files.

OFF

Description

This option tells the compiler to compile the file as a Fortran source file.

This option is useful when you have a Fortran file with a nonstandard file extension (that is,
not one of .F, .FOR, or .F90).

This option assumes the file specified uses fixed source form. If the file uses free source form,
you must also specify option free.

1061

20

Alternate Options

Linux and Mac OS X: -Tf file

Windows: /Tf file

See Also
•
• extfor

• free

sox, Qsox
Tells the compiler to save the compilation options
and version number in the Linux* OS executable
or the Windows* OS object file.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-sox

-no-sox

Mac OS X:

None

Windows:

/Qsox

/Qsox-

Arguments

None

1062

20 Intel® Fortran Compiler User and Reference Guides

Default

The compiler does not save the compiler options and version
number in the executable.

-no-sox
or/Qsox-

Description

Tells the compiler to save the compilation options and version number in the Linux* OS
executable or the Windows* OS object file.

On Linux systems, the size of the executable on disk is increased slightly by the inclusion of
these infotmation strings.

This option forces the compiler to embed in each object file or assembly output a string that
contains information about the compiler version and compilation options for each source file
that has been compiled.

On Windows systems, the information stays in the object file. On Linux systems, when you link
the object files into an executable file, the linker places each of the information strings into the
header of the executable. It is then possible to use a tool, such as a strings utility, to determine
what options were used to build the executable file.

If -no-sox or /Qsox- is specified, this extra information is not put into the object or assembly
output generated by the compiler.

Alternate Options

None

stand
Tells the compiler to issue compile-time messages
for nonstandard language elements.

IDE Equivalent

Windows: Compilation Diagnostics > Warn For Nonstandard Fortran

Linux: None

Mac OS X: Compiler Diagnostics > Warn For Nonstandard Fortran

Architectures

IA-32, Intel® 64, IA-64 architectures

1063

20

Syntax

Linux and Mac OS X:

-stand [keyword]

-nostand

Windows:

/stand[:keyword]

/nostand

Arguments

Specifies the language to use as the standard. Possible
values are:

keyword

Issue no messages for nonstandard
language elements.

none

Issue messages for language elements
that are not standard in Fortran 90.

f90

Issue messages for language elements
that are not standard in Fortran 95.

f95

Issue messages for language elements
that are not standard in Fortran 2003.

f03

Default

The compiler issues no messages for nonstandard language
elements.

nostand

Description

This option tells the compiler to issue compile-time messages for nonstandard language
elements.

If you do not specify a keyword for stand, it is the same as specifying stand f95.

DescriptionOption

Tells the compiler to issue no messages for nonstandard language
elements. This is the same as specifying nostand.

stand none

1064

20 Intel® Fortran Compiler User and Reference Guides

DescriptionOption

Tells the compiler to issue messages for language elements that are not
standard in Fortran 90.

stand f90

Tells the compiler to issue messages for language elements that are not
standard in Fortran 95.

stand f95

Tells the compiler to issue messages for language elements that are not
standard in Fortran 2003. This option is set if you specify warn stder-
rors.

stand f03

Alternate Options

Linux and Mac OS X: -nostandstand none
Windows: /nostand, /4Ns

Linux and Mac OS X: -std90stand f90
Windows: /4Ys

Linux and Mac OS X: -std95stand f95
Windows: None

Linux and Mac OS X: -std03, -stand, -stdstand f03
Windows: /stand

See Also
•
• warn stderrors

static
Prevents linking with shared libraries.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

1065

20

Syntax

Linux:

-static

Mac OS X:

None

Windows:

/static

Arguments

None

Default

The compiler does not link with shared libraries.static

Description

This option prevents linking with shared libraries. It causes the executable to link all libraries
statically.

Alternate Options

None

staticlib
Invokes the libtool command to generate static
libraries.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

1066

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux:

None

Mac OS X:

-staticlib

Windows:

None

Arguments

None

Default

The compiler produces an executable.OFF

Description

This option invokes the libtool command to generate static libraries.

When passed this option, the compiler uses the libtool command to produce a static library
instead of an executable when linking.

To build dynamic libraries, you should specify option -dynamiclib or libtool -dynamic
<objects>.

Alternate Options

None

See Also
•
• dynamiclib

1067

20

static-intel
Causes Intel-provided libraries to be linked in
statically.

IDE Equivalent

Windows: None

Linux: None

Mac OS X: Run-Time > Intel Runtime Libraries

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-static-intel

Windows:

None

Arguments

None

Default

Intel libraries are linked in statically, with the exception of libguide,
which is linked in dynamically.

OFF

Description

This option causes Intel-provided libraries to be linked in statically. It is the opposite of -shared-
intel.

Alternate Options

Linux and Mac OS X: i-static (this is a deprecated option)

Windows: None

1068

20 Intel® Fortran Compiler User and Reference Guides

See Also
•
• shared-intel

static-libgcc
Links the GNU libgcc library statically.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-static-libgcc

Mac OS X:

None

Windows:

None

Arguments

None

Default

DEFAULT_DESCOFF

Description

This option links the GNU libgcc library statically. It is the opposite of option libgcc.

This option is useful when you want to override the default behavior of the libgcc option,
which causes all libraries to be linked statically.

1069

20

Alternate Options

None

See Also
•
• shared-libgcc

std, std90, std95, std03
See stand.

std, std90, std95, std03
See stand.

std, std90, std95, std03
See stand.

std, std90, std95, std03
See stand.

syntax-only
Tells the compiler to check only for correct syntax.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-syntax-only

Windows:

/syntax-only

1070

20 Intel® Fortran Compiler User and Reference Guides

Arguments

None

Default

Normal compilation is performed.OFF

Description

This option tells the compiler to check only for correct syntax. It lets you do a quick syntax
check of your source file.

Compilation stops after the source file has been parsed. No code is generated, no object file is
produced, and some error checking done by the optimizer is bypassed.

Warnings and messages appear on stderr.

Alternate Options

Linux: -y, -fsyntax-only, -syntax (this is a deprecated option)

Mac OS X: -y, -fsyntax-only

Windows: /Zs

T
Tells the linker to read link commands from a file.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-Tfile

1071

20

Mac OS X:

None

Windows:

None

Arguments

Is the name of the file.file

Default

The linker does not read link commands from a file.OFF

Description

This option tells the linker to read link commands from a file.

Alternate Options

None

tcheck, Qtcheck
Enables analysis of threaded applications.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-tcheck

Mac OS X:

None

1072

20 Intel® Fortran Compiler User and Reference Guides

Windows:

/Qtcheck

Arguments

None

Default

Threaded applications are not instrumented by the compiler for
analysis by Intel® Thread Checker.

OFF

Description

This option enables analysis of threaded applications.

To use this option, you must have Intel® Thread Checker installed, which is one of the Intel®

Threading Analysis Tools. If you do not have this tool installed, the compilation will fail. Remove
the -tcheck (Linux) or /Qtcheck (Windows) option from the command line and recompile.

For more information about Intel® Thread Checker (including an evaluation copy), open the
page associated with threading tools at Intel® Software Development Products.

Alternate Options

None

tcollect, Qtcollect
Inserts instrumentation probes calling the Intel®
Trace Collector API.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-tcollect[lib]

1073

20

Mac OS X:

None

Windows:

/Qtcollect[:lib]

Arguments

Is one of the Intel® Trace Collector libraries; for example,
VT, VTcs, VTmc, or VTfs. If you do not specify lib, the
default library is VT.

lib

Default

Instrumentation probes are not inserted into compiled applications.OFF

Description

This option inserts instrumentation probes calling the Intel® Trace Collector API. To use this
option, you must have the Intel® Trace Collector installed and set up through one of its set-up
scripts. This tool is a component of the Intel® Trace Analyzer and Collector.

This option provides a flexible and convenient way of instrumenting functions of a compiled
application. For every function, the entry and exit points are instrumented at compile time to
let the Intel® Trace Collector record functions beyond the default MPI calls. For non-MPI
applications (for example, threaded or serial), you must ensure that the Intel® Trace Collector
is properly initialized (VT_initialize/VT_init).

CAUTION. Be careful with full instrumentation because this feature can produce very
large trace files.

For more details, see the Intel® Trace Collector User Guide.

Alternate Options

None

See Also
•
•

1074

20 Intel® Fortran Compiler User and Reference Guides

• tcollect-filter, Qtcollect-filter

tcollect-filter, Qtcollect-filter
Lets you enable or disable the instrumentation of
specified functions.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-tcollect-filter file

Mac OS X:

None

Windows:

/Qtcollect-filter:file

Arguments

Is a configuration file that lists filters, one per line. Each
filter consists of a regular expression string and a switch.
Strings with leading or trailing white spaces must be quoted.
Other strings do not have to be quoted. The switch value
can be ON, on, OFF, or off.

file

Default

Functions are not instrumented. However, if option -tcollect
(Linux) or /Qtcollect (Windows) is specified, the filter setting is
".* ON" and all functions get instrumented.

OFF

Description

This option lets you enable or disable the instrumentation of specified functions.

1075

20

During instrumentation, the regular expressions in the file are matched against the function
names. The switch specifies whether matching functions are to be instrumented or not. Multiple
filters are evaluated from top to bottom with increasing precedence.

The names of the functions to match against are formatted as follows:

• The source file name is followed by a colon-separated function name. Source file names
should contain the full path, if available. For example:

/home/joe/src/file.f:FOO_bar

• Classes and function names are separated by double colons. For example:

/home/joe/src/file.fpp:app::foo::bar

You can use option -opt-report (Linux) or /Qopt-report (Windows) to get a full list of file
and function names that the compiler recognizes from the compilation unit. This list can be
used as the basis for filtering in the configuration file.

To use this option, you must have the Intel® Trace Collector installed and set up through one
of its set-up scripts. This tool is a component of the Intel® Trace Analyzer and Collector.

For more details, see the Intel® Trace Collector User Guide.

Alternate Options

None

Consider the following filters in a configuration file:

'.*' OFF '.*vector.*' ON

The above will cause instrumentation of only those functions having the string 'vector' in their names.
No other function will be instrumented. Note that reversing the order of the two lines will prevent
instrumentation of all functions.

To get a list of the file or routine strings that can be matched by the regular expression filters,
generate an optimization report with tcollect information. For example:

Windows OS: ifort /Qtcollect /Qopt-report /Qopt-report-phase tcollect

Linux OS: ifort -tcollect -opt-report -opt-report-phase tcollect

See Also
•
•
• tcollect, Qtcollect

1076

20 Intel® Fortran Compiler User and Reference Guides

Tf
See source.

threads
Tells the linker to search for unresolved references
in a multithreaded run-time library.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-threads

-nothreads

Windows:

/threads

/nothreads

Arguments

None

Default

On systems using IA-32 architecture and IA-64 architecture, the
linker does not search for unresolved references in a mutithreaded
run-time library. On systems using Intel® 64 architectures, it does.

Systems using Intel® 64
architecture: threads
Systems using IA-32
architecture and IA-64
architecture: nothreads

Description

This option tells the linker to search for unresolved references in a multithreaded run-time
library.

1077

20

This option sets option reentrancy threaded.

Windows systems: The following table shows which options to specify for a multithreaded
run-time library.

Alternate OptionOptions RequiredType of Library

/MT/libs:static

/threads

Multithreaded

/MTd/libs:static

/threads

Debug multithreaded

/dbglibs

/MD/libs:dll

/threads

Multithreaded DLLs

/MDd/libs:dll

/threads

Multithreaded debug DLLs

/dbglibs

Alternate Options

None

See Also
•
Building Applications: Specifying Consistent Library Types; Programming with Mixed
Languages Overview

tprofile, Qtprofile
Generates instrumentation to analyze
multi-threading performance.

IDE Equivalent

None

1078

20 Intel® Fortran Compiler User and Reference Guides

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux:

-tprofile

Mac OS X:

None

Windows:

/Qtprofile

Arguments

None

Default

Instrumentation is not generated by the compiler for analysis by
Intel® Thread Profiler.

OFF

Description

This option generates instrumentation to analyze multi-threading performance.

To use this option, you must have Intel® Thread Profiler installed, which is one of the Intel®

Threading Analysis Tools. If you do not have this tool installed, the compilation will fail. Remove
the -tprofile (Linux) or /Qtprofile (Windows) option from the command line and recompile.

For more information about Intel® Thread Profiler (including an evaluation copy), open the page
associated with threading tools at Intel® Software Development Products.

Alternate Options

None

1079

20

traceback
Tells the compiler to generate extra information in
the object file to provide source file traceback
information when a severe error occurs at run time.

IDE Equivalent

Windows: Run-time > Generate Traceback Information

Linux: None

Mac OS X: Run-time > Generate Traceback Information

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-traceback

-notraceback

Windows:

/traceback

/notraceback

Arguments

None

Default

No extra information is generated in the object file to produce
traceback information.

notraceback

Description

This option tells the compiler to generate extra information in the object file to provide source
file traceback information when a severe error occurs at run time.

When the severe error occurs, source file, routine name, and line number correlation information
is displayed along with call stack hexadecimal addresses (program counter trace).

1080

20 Intel® Fortran Compiler User and Reference Guides

Note that when a severe error occurs, advanced users can also locate the cause of the error
using a map file and the hexadecimal addresses of the stack displayed when the error occurs.

This option increases the size of the executable program, but has no impact on run-time
execution speeds.

It functions independently of the debug option.

On Windows systems, traceback sets the /Oy- option, which forces the compiler to use EBP
as the stack frame pointer.

On Windows systems, the linker places the traceback information in the executable image, in
a section named ".trace". To see which sections are in an image, use the command:

link -dump -summary your_app_name.exe

To see more detailed information, use the command:

link -dump -headers your_app_name.exe

On Windows systems, when requesting traceback, you must set Enable Incremental Linking in
the VS .NET* IDE Linker Options to No. On systems using IA-32 architecture and Intel® 64
architecture, you must also set Omit Frame Pointers (the /Oy option) in the Optimization Options
to "No."

On Linux systems, to display the section headers in the image (including the header for the
.trace section, if any), use the command:

objdump -h your_app_name.exe

On Mac OS X systems, to display the section headers in the image, use the command:

otool -l your_app_name.exe

Alternate Options

None

tune
Determines the version of the architecture for
which the compiler generates instructions.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

1081

20

Syntax

Linux and Mac OS X:

-tune keyword

Windows:

/tune:keyword

Arguments

Specifies the processor type. Possible values are:keyword

Optimizes for the Intel® Pentium®

processor.
pn1

Optimizes for the Intel® Pentium® Pro,
Intel® Pentium® II, and Intel® Pentium®

III processors.

pn2

Optimizes for the Intel® Pentium® Pro,
Intel® Pentium® II, and Intel® Pentium®

III processors. This is the same as
specifying pn2.

pn3

Optimizes for the Intel® Pentium® 4
processor.

pn4

Default

The compiler optimizes for the Intel® Pentium® 4 processor.pn4

Description

This option determines the version of the architecture for which the compiler generates
instructions.

On systems using Intel® 64 architecture, only keyword pn4 is valid.

Alternate Options

None

1082

20 Intel® Fortran Compiler User and Reference Guides

u (Linux* and Mac OS* X)
See warn.

u (Windows*)
Undefines all previously defined preprocessor
values.

IDE Equivalent

Windows: Preprocessor > Undefine All Preprocessor Definitions

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/u

Arguments

None

Default

Defined preprocessor values are in effect until they are undefined.OFF

Description

This option undefines all previously defined preprocessor values.

To undefine specific preprocessor values, use the /U option.

1083

20

Alternate Options

None

See Also
•
• U

U
Undefines any definition currently in effect for the
specified symbol.

IDE Equivalent

Windows: Preprocessor > Undefine Preprocessor Definitions

Linux: None

Mac OS X: Preprocessor > Undefine Preprocessor Definitions

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-Uname

Windows:

/Uname

Arguments

Is the name of the symbol to be undefined.name

Default

Symbol definitions are in effect until they are undefined.OFF

Description

This option undefines any definition currently in effect for the specified symbol.

1084

20 Intel® Fortran Compiler User and Reference Guides

On Windows systems, use the /u option to undefine all previously defined preprocessor values.

Alternate Options

Linux and Mac OS X: None

Windows: /undefine:name

See Also
•
• u (Windows)

undefine
See U.

unroll, Qunroll
Tells the compiler the maximum number of times
to unroll loops.

IDE Equivalent

Windows: Optimization > Loop Unroll Count

Linux: None

Mac OS X: Optimization > Loop Unroll Count

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-unroll[=n]

Windows:

/Qunroll[:n]

1085

20

Arguments

Is the maximum number of times a loop can be unrolled.
To disable loop enrolling, specify 0.
On systems using IA-64 architecture, you can only specify
a value of 0.

n

Default

The compiler uses default heuristics when unrolling loops.-unroll
or/Qunroll

Description

This option tells the compiler the maximum number of times to unroll loops.

If you do not specify n, the optimizer determines how many times loops can be unrolled.

Alternate Options

Linux and Mac OS X: -funroll-loops

Windows: /unroll

See Also
•
•

Optimizing Applications: Loop Unrolling

unroll-aggressive, Qunroll-aggressive
Determines whether the compiler uses more
aggressive unrolling for certain loops.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

1086

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-unroll-aggressive

-no-unroll-aggressive

Windows:

/Qunroll-aggressive

/Qunroll-aggressive-

Arguments

None

Default

The compiler uses default heuristics when unrolling loops.-no-unroll-aggressive
or /Qunroll-aggressive-

Description

This option determines whether the compiler uses more aggressive unrolling for certain loops.
The positive form of the option may improve performance.

On IA-32 architecture and Intel® 64 architecture, this option enables aggressive, complete
unrolling for loops with small constant trip counts.

On IA-64 architecture, this option enables additional complete unrolling for loops that have
multiple exits or outer loops that have a small constant trip count.

Alternate Options

None

1087

20

uppercase, Quppercase
See names.

us
See assume.

use-asm, Quse-asm
Tells the compiler to produce objects through the
assembler.

IDE Equivalent

None

Architectures

-use-asm: IA-32 architecture, Intel® 64 architecture, IA-64 architecture

/Quse-asm: IA-64 architecture

Syntax

Linux and Mac OS X:

-use-asm

-no-use-asm

Windows:

/Quse-asm

/Quse-asm-

Arguments

None

Default

The compiler produces objects directly.-no-use-asm
or/Quse-asm-

1088

20 Intel® Fortran Compiler User and Reference Guides

Description

This option tells the compiler to produce objects through the assembler.

Alternate Options

None

v
Specifies that driver tool commands should be
displayed and executed.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-v[file]

Windows:

None

Arguments

Is the name of a file.file

Default

No tool commands are shown.OFF

Description

This option specifies that driver tool commands should be displayed and executed.

If you use this option without specifying a file name, the compiler displays only the version of
the compiler.

1089

20

If you want to display processing information (pass information and source file names), specify
option watch:all.

Alternate Options

Linux and Mac OS X: -watch cmd

Windows: /watch:cmd

See Also
•
• dryrun

• watch

V (Linux* and Mac OS* X)
See logo

V (Windows*)
See bintext.

vec, Qvec
Enables or disables vectorization and
transformations enabled for vectorization.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-vec

-no-vec

Windows:

/Qvec

1090

20 Intel® Fortran Compiler User and Reference Guides

/Qvec-

Arguments

None

Default

Vectorization is enabled.-vec
or/Qvec

Description

This option enables or disables vectorization and transformations enabled for vectorization.

To disable vectorization and transformations enabled for vectorization, specify -no-vec (Linux
and Mac OS X) or /Qvec- (Windows).

Alternate Options

None

See Also
•
•
• ax, Qax

• x, Qx

• vec-report, Qvec-report

• vec-guard-write, Qvec-guard-write

• vec-threshold, Qvec-threshold

vec-guard-write, Qvec-guard-write
Tells the compiler to perform a conditional check
in a vectorized loop.

IDE Equivalent

None

Architectures

IA-32, Intel® 64 architectures

1091

20

Syntax

Linux and Mac OS X:

-vec-guard-write

-no-vec-guard-write

Windows:

/Qvec-guard-write

/Qvec-guard-write-

Arguments

None

Default

The compiler uses default heuristics when checking
vectorized loops.

-no-vec-guard-write
or/Qvec-guard-write-

Description

This option tells the compiler to perform a conditional check in a vectorized loop. This checking
avoids unnecessary stores and may improve performance.

Alternate Options

None

vec-report, Qvec-report
Controls the diagnostic information reported by
the vectorizer.

IDE Equivalent

Windows: Compilation Diagnostics > Vectorizer Diagnostic Level

Linux: None

Mac OS X: Diagnostics > Vectorizer Diagnostic Report

Architectures

IA-32, Intel® 64 architectures

1092

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-vec-report[n]

Windows:

/Qvec-report[n]

Arguments

Is a value denoting which diagnostic messages to report.
Possible values are:

n

Tells the vectorizer to report no diagnostic
information.

0

Tells the vectorizer to report on vectorized
loops.

1

Tells the vectorizer to report on vectorized
and non-vectorized loops.

2

Tells the vectorizer to report on vectorized
and non-vectorized loops and any proven
or assumed data dependences.

3

Tells the vectorizer to report on
non-vectorized loops.

4

Tells the vectorizer to report on
non-vectorized loops and the reason why
they were not vectorized.

5

Default

If the vectorizer has been enabled and you do not specify n, the
compiler reports diagnostics on vectorized loops. If you do not
specify the option on the command line, the default is to display
no messages.

-vec-report1
or/Qvec-report1

Description

This option controls the diagnostic information reported by the vectorizer. The vectorizer report
is sent to stdout.

1093

20

If you do not specify n, it is the same as specifying -vec-report1 (Linux and Mac OS X) or
/Qvec-report1 (Windows).

The vectorizer is enabled when certain compiler options are specified, such as option -ax or
-x (Linux and Mac OS X), option /Qax or /Qx (Windows), option -arch SSE or -arch SSE2
(Linux and Mac OS X), option /architecture:SSE or /architecture:SSE2 (Windows).

If this option is specified from within the IDE, the report is included in the build log if the
Generate Build Logs option is selected.

Alternate Options

None

vec-threshold, Qvec-threshold
Sets a threshold for the vectorization of loops.

IDE Equivalent

Windows: Optimization > Threshold For Vectorization

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-vec-threshold[n]

Windows:

/Qvec-threshold[[:]n]

Arguments

Is an integer whose value is the threshold for the
vectorization of loops. Possible values are 0 through 100.

n

If n is 0, loops get vectorized always, regardless of
computation work volume.

1094

20 Intel® Fortran Compiler User and Reference Guides

If n is 100, loops get vectorized when performance gains
are predicted based on the compiler analysis data. Loops
get vectorized only if profitable vector-level parallel
execution is almost certain.
The intermediate 1 to 99 values represent the percentage
probability for profitable speed-up. For example, n=50
directs the compiler to vectorize only if there is a 50%
probability of the code speeding up if executed in vector
form.

Default

Loops get vectorized only if profitable vector-level parallel execution
is almost certain. This is also the default if you do not specify n.

-vec-threshold100
or /Qvec-threshold100

Description

This option sets a threshold for the vectorization of loops based on the probability of profitable
execution of the vectorized loop in parallel.

This option is useful for loops whose computation work volume cannot be determined at
compile-time. The threshold is usually relevant when the loop trip count is unknown at
compile-time.

The compiler applies a heuristic that tries to balance the overhead of creating multiple threads
versus the amount of work available to be shared amongst the threads.

Alternate Options

None

vms
Causes the run-time system to behave like HP*
Fortran on OpenVMS* Alpha systems and VAX*
systems (VAX FORTRAN*).

IDE Equivalent

Windows: Compatibility > Enable VMS Compatibility

Linux: None

Mac OS X: Compatibility > Enable VMS Compatibility

1095

20

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-vms

-novms

Windows:

/vms

/novms

Arguments

None

Default

The run-time system follows default Intel® Fortran behavior.novms

Description

This option causes the run-time system to behave like HP* Fortran on OpenVMS* Alpha systems
and VAX* systems (VAX FORTRAN*).

It affects the following language features:

• Certain defaults

In the absence of other options, vms sets the defaults as check format and check
output_conversion.

• Alignment

Option vms does not affect the alignment of fields in records or items in common blocks.
For compatibility with HP Fortran on OpenVMS systems, use align norecords to pack
fields of records on the next byte boundary.

• Carriage control default

If option vms and option ccdefault default are specified, carriage control defaults to
FORTRAN if the file is formatted and the unit is connected to a terminal.

1096

20 Intel® Fortran Compiler User and Reference Guides

• INCLUDE qualifiers

/LIST and /NOLIST are recognized at the end of the file name in an INCLUDE statement
at compile time. If the file name in the INCLUDE statement does not specify the complete
path, the path used is the current directory. Note that if vms is not specified, the path used
is the directory where the file that contains the INCLUDE statement resides.

• Quotation mark character

A quotation mark (") character is recognized as starting an octal constant ("0..7) instead of
a character literal ("...").

• Deleted records in relative files

When a record in a relative file is deleted, the first byte of that record is set to a known
character (currently '@'). Attempts to read that record later result in ATTACCNON errors.
The rest of the record (the whole record, if vms is not specified) is set to nulls for unformatted
files and spaces for formatted files.

• ENDFILE records

When an ENDFILE is performed on a sequential unit, an actual 1-byte record containing a
Ctrl/Z is written to the file. If vms is not specified, an internal ENDFILE flag is set and the
file is truncated. The vms option does not affect ENDFILE on relative files: these files are
truncated.

• Implied logical unit numbers

The vms option enables Intel Fortran to recognize certain environment variables at run time
for ACCEPT, PRINT, and TYPE statements and for READ and WRITE statements that do not
specify a unit number (such as READ (*,1000)).

• Treatment of blanks in input

The vms option causes the defaults for the keyword BLANK in OPEN statements to become
'NULL' for an explicit OPEN and 'ZERO' for an implicit OPEN of an external or internal file.

• OPEN statement effects

Carriage control defaults to FORTRAN if the file is formatted, and the unit is connected to a
terminal. Otherwise, carriage control defaults to LIST. The vms option affects the record
length for direct access and relative organization files. The buffer size is increased by 1 to
accommodate the deleted record character.

• Reading deleted records and ENDFILE records

1097

20

The run-time direct access READ routine checks the first byte of the retrieved record. If this
byte is '@' or NULL ("\0"), then an ATTACCNON error is returned. The run-time sequential
access READ routine checks to see if the record it just read is one byte long and contains a
Ctrl/Z. If this is true, it returns EOF.

Alternate Options

Linux and Mac OS X: None

Windows: /Qvms

See Also
•
• align

• ccdefault

• check

w
See keywords none and nogeneral in warn

W0, W1
See warn.

W0, W1
See warn.

Wa
Passes options to the assembler for processing.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

1098

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-Wa,option1[,option2,...]

Windows:

None

Arguments

Is an assembler option. This option is not processed by the
driver and is directly passed to the assembler.

option

Default

No options are passed to the assembler.OFF

Description

This option passes one or more options to the assembler for processing. If the assembler is
not invoked, these options are ignored.

Alternate Options

None

warn
Specifies diagnostic messages to be issued by the
compiler.

IDE Equivalent

Windows: General > Compile Time Diagnostics (/warn:all, /warn:none)

Compilation Diagnostics > Treat Warnings as Errors (/warn:[no]errors)

Compilation Diagnostics > Treat Fortran Standard Warnings as Errors
(/warn:[no]stderrors)

Compilation Diagnostics > Compile Time Diagnostics (/warn:all, /warn:none)

Compilation Diagnostics > Warn for Undeclared Symbols (/warn:[no]declarations)

Compilation Diagnostics > Warn for Unused Variables (/warn:[no]unused)

1099

20

Compilation Diagnostics > Warn When Removing %LOC (/warn:[no]ignore_loc)

Compilation Diagnostics > Warn When Truncating Source Line (/warn:[no]truncat-
ed_source)

Compilation Diagnostics > Warn for Unaligned Data (/warn:[no]alignments)

Compilation Diagnostics >Warn for Uncalled Statement Function (/warn:[no]uncalled)

Compilation Diagnostics > Suppress Usage Messages (/warn:[no]usage)

Compilation Diagnostics > Check Routine Interfaces (/warn:[no]interfaces)

Linux: None

Mac OS X: General > Compile Time Diagnostics (-warn all, -warn none)

Compiler Diagnostics > Warn For Unaligned Data (-warn [no]alignments)

Compiler Diagnostics > Warn For Undeclared Symbols (-warn [no]declarations)

Compiler Diagnostics > Treat Warnings as Errors (-warn error)

Compiler Diagnostics > Warn When Removing %LOC (-warn [no]ignore_loc)

Compiler Diagnostics > Check Routine Interfaces (-warn [no]interfaces)

Compiler Diagnostics > Treat Fortran Standard Warnings As Errors (-warn
[no]stderrors)

Compiler Diagnostics > Warn When Truncating Source Line (-warn [no]truncat-
ed_source)

Compiler Diagnostics > Warn For Uncalled Routine (-warn [no]uncalled)

Compiler Diagnostics > Warn For Unused Variables (-warn [no]unused)

Compiler Diagnostics > Suppress Usage Messages (-warn [no]usage)

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-warn [keyword]

-nowarn

1100

20 Intel® Fortran Compiler User and Reference Guides

Windows:

/warn[:keyword]

/nowarn

Arguments

Specifies the diagnostic messages to be issued. Possible
values are:

keyword

Disables all warning messages.none

Determines whether warnings occur for
data that is not naturally aligned.

[no]alignments

Determines whether warnings occur for
any undeclared symbols.

[no]declarations

Determines whether warnings are
changed to errors.

[no]errors

Determines whether warning messages
and informational messages are issued
by the compiler.

[no]general

Determines whether warnings occur when
%LOC is stripped from an actual argument.

[no]ignore_loc

Determines whether the compiler checks
the interfaces of all SUBROUTINEs called
and FUNCTIONs invoked in your
compilation against an external set of
interface blocks.

[no]interfaces

Determines whether warnings about
Fortran standard violations are changed
to errors.

[no]stderrors

Determines whether warnings occur when
source exceeds the maximum column
width in fixed-format files.

[no]truncated_source

Determines whether warnings occur when
a statement function is never called

[no]uncalled

Determines whether warnings occur for
declared variables that are never used.

[no]unused

1101

20

Determines whether warnings occur for
questionable programming practices.

[no]usage

Enables all warning messages except
errors and stderrors.

all

Default

Warnings are issued about data that is not naturally aligned.alignments

All information-level and warning-level messages are enabled.general

Warnings are issued for questionable programming practices.usage

No errors are issued for undeclared symbols.nodeclarations

Warning-level messages are not changed to error-level messages.noerrors

No warnings are issued when %LOC is stripped from an argument.noignore_loc

The compiler does not check interfaces of SUBROUTINEs called
and FUNCTIONs invoked in your compilation against an external
set of interface blocks.

nointerfaces

Warning-level messages about Fortran standards violations are
not changed to error-level messages.

nostderrors

No warnings are issued when source exceeds the maximum column
width in fixed-format files.

notruncated_source

No warnings are issued when a statement function is not called.nouncalled

No warnings are issued for variables that are declared but never
used.

nounused

Description

This option specifies the diagnostic messages to be issued by the compiler.

DescriptionOption

Disables all warning messages. This is the same as specifying nowarn.warn none

Disables warnings about data that is not naturally aligned.warn noalign-
ments

Enables error messages about any undeclared symbols. This option makes
the default data type of a variable undefined (IMPLICIT NONE) rather
than using the implicit Fortran rules.

warn declara-
tions

1102

20 Intel® Fortran Compiler User and Reference Guides

DescriptionOption

Tells the compiler to change all warning-level messages to error-level
messages; this includes warnings about Fortran standards violations.

warn errors

Disables all informational-level and warning-level diagnostic messages.warn nogener-
al

Enables warnings when %LOC is stripped from an actual argument.warn ig-
nore_loc

Tells the compiler to check the interfaces of all SUBROUTINEs called and
FUNCTIONs invoked in your compilation against a set of interface blocks
stored separately from the source being compiled.

warn inter-
faces

The compiler generates a compile-time message if the interface used to
invoke a routine does not match the interface defined in a .mod file
external to the source (that is, in a .mod generated by option gen-inter-
faces as opposed to a .mod file USEd in the source). The compiler looks
for these .mods in the current directory or in the directory specified by
the include (-I) or -module option.

warn interfaces turns on the option gen-interfaces by default. You
can explicitly turn it off with /gen-interfaces- on Windows and -no-
gen-interfaces on Linux and Mac OS X.

Tells the compiler to change all warning-level messages about Fortran
standards violations to error-level messages. This option sets the std03
option (Fortran 2003 standard). If you want Fortran 95 standards violations
to become errors, you must specify options warn stderrors and std95.

warn stder-
rors

Enables warnings when a source line exceeds the maximum column width
in fixed-format source files. The maximum column width for fixed-format
files is 72, 80, or 132, depending on the setting of the extend-source

warn truncat-
ed_source

option. The warn truncated_source option has no effect on truncation;
lines that exceed the maximum column width are always truncated. This
option does not apply to free-format source files.

Enables warnings when a statement function is never called.warn uncalled

Enables warnings for variables that are declared but never used.warn unused

1103

20

DescriptionOption

Disables warnings about questionable programming practices. Questionable
programming practices, although allowed, often are the result of
programming errors; for example: a continued character or Hollerith literal
whose first part ends before the statement field and appears to end with
trailing spaces. Note that the /pad-source option can prevent this error.

warn nousage

This is the same as specifying warn. This option does not set options warn
errors or warn stderrors. To enable all the additional checking to be
performed and force the severity of the diagnostic messages to be severe
enough to not generate an object file, specify warn all warn errors
or warn all warn stderrors.

warn all

On Windows systems: In the Property Pages, Custom means that
diagnostics will be specified on an individual basis.

Alternate Options

Linux and Mac OS X: -nowarn, -w, -W0, -warn nogeneralwarn none
Windows: /nowarn,/w, /W0, /warn:nogeneral

Linux and Mac OS X: -implicitnone, -uwarn declarations
Windows: /4Yd

Linux and Mac OS X: Nonewarn nodeclarations
Windows: /4Nd

Linux and Mac OS X: -W1warn general
Windows: /W1

Linux and Mac OS X: -W0, -w, -nowarn, -warn none
Windows: /W0, /w, /nowarn, /warn:none

warn nogeneral

Linux and Mac OS X: -e90, -e95, -e03warn stderrors
Windows: None

Linux and Mac OS X: -cmwarn nousage
Windows: /cm

Linux and Mac OS X: -warnwarn all
Windows: /warn

1104

20 Intel® Fortran Compiler User and Reference Guides

watch
Tells the compiler to display certain information to
the console output window.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-watch [keyword]

-nowatch

Windows:

/watch[:keyword]

/nowatch

Arguments

Determines what information is displayed. Possible values
are:

keyword

Disables cmd and source.none

Determines whether driver tool
commands are displayed and executed.

[no]cmd

Determines whether the name of the file
being compiled is displayed.

[no]source

Enables cmd and source.all

Default

Pass information and source file names are not displayed to the
console output window.

nowatch

1105

20

Description

Tells the compiler to display processing information (pass information and source file names)
to the console output window.

DescriptionOption

Tells the compiler to not display pass information and source file names
to the console output window. This is the same as specifying nowatch.

watch none

Tells the compiler to display and execute driver tool commands.watch cmd

Tells the compiler to display the name of the file being compiled.watch source

Tells the compiler to display pass information and source file names to
the console output window. This is the same as specifying watch with no
keyword.

watch all

Alternate Options

Linux and Mac OS X: -vwatch cmd
Windows: None

See Also
•
• v

WB
Turns a compile-time bounds check into a warning.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

1106

20 Intel® Fortran Compiler User and Reference Guides

Syntax

Linux and Mac OS X:

-WB

Windows:

/WB

Arguments

None

Default

Compile-time bounds checks are errors.OFF

Description

This option turns a compile-time bounds check into a warning.

Alternate Options

None

what
Tells the compiler to display its detailed version
string.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-what

Windows:

/what

1107

20

Arguments

None

Default

The version strings are not displayed.OFF

Description

This option tells the compiler to display its detailed version string.

Alternate Options

None

winapp
Tells the compiler to create a graphics or Fortran
Windows application and link against the most
commonly used libraries.

IDE Equivalent

Windows: Libraries > Use Common Windows Libraries

Linux: None

Mac OS X: None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

None

Windows:

/winapp

Arguments

None

1108

20 Intel® Fortran Compiler User and Reference Guides

Default

No graphics or Fortran Windows application is created.OFF

Description

This option tells the compiler to create a graphics or Fortran Windows application and link
against the most commonly used libraries.

Alternate Options

Linux and Mac OS X: None

Windows: /MG

Winline
Enables diagnostics about what is inlined and what
is not inlined.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-Winline

Windows:

None

Arguments

None

Default

No diagnostics are produced about what is inlined and what is not
inlined.

OFF

1109

20

Description

This option enables diagnostics about what is inlined and what is not inlined. The diagnostics
depend on what interprocedural functionality is available.

Alternate Options

None

Wl
Passes options to the linker for processing.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-Wl,option1[,option2,...]

Windows:

None

Arguments

Is a linker option. This option is not processed by the driver
and is directly passed to the linker.

option

Default

No options are passed to the linker.OFF

Description

This option passes one or more options to the linker for processing. If the linker is not invoked,
these options are ignored.

This option is equivalent to specifying option -Qoption,link,options.

1110

20 Intel® Fortran Compiler User and Reference Guides

Alternate Options

None

See Also
•
• Qoption

Wp
Passes options to the preprocessor.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-Wp,option1[,option2,...]

Windows:

None

Arguments

Is a preprocessor option. This option is not processed by
the driver and is directly passed to the preprocessor.

option

Default

No options are passed to the preprocessor.OFF

Description

This option passes one or more options to the preprocessor. If the preprocessor is not invoked,
these options are ignored.

This option is equivalent to specifying option -Qoption, fpp, options.

1111

20

Alternate Options

None

See Also
•
• Qoption

x, Qx
Tells the compiler to generate optimized code
specialized for the Intel processor that executes
your program.

IDE Equivalent

Windows: Code Generation > Intel Processor-Specific Optimization

Optimization > Use Intel(R) Processor Extensions

Linux: None

Mac OS X: Code Generation > Intel Processor-Specific Optimization

Architectures

IA-32, Intel® 64 architectures

Syntax

Linux and Mac OS X:

-xprocessor

Windows:

/Qxprocessor

Arguments

Indicates the processor for which code is generated. Many
of the following descriptions refer to Intel® Streaming SIMD
Extensions (Intel® SSE) and Supplemental Streaming SIMD
Extensions (Intel® SSSE). Possible values are:

processor

1112

20 Intel® Fortran Compiler User and Reference Guides

Can generate instructions for the highest
instruction set available on the
compilation host processor.

Host

On Intel processors, this may correspond
to the most suitable –x (Linux* and Mac
OS* X) or /Qx (Windows*) option. On
non-Intel processors, this may correspond
to the most suitable –m (Linux and Mac
OS X) or /arch (Windows) option.
The resulting executable may not run on
a processor different from the host in the
following cases:

• If the processor does not support all
of the instructions supported by the
host processor.

• If the host is an Intel processor and
the other processor is a non-Intel
processor.

Optimizes for Intel processors that
support Intel® Advanced Vector
Extensions (Intel® AVX).

AVX

Can generate Intel® SSE4 Efficient
Accelerated String and Text Processing
instructions supported by Intel® Core™ i7

SSE4.2

processors. Can generate Intel® SSE4
Vectorizing Compiler and Media
Accelerator, Intel® SSSE3, SSE3, SSE2,
and SSE instructions and it can optimize
for the Intel® Core™ processor family.

Can generate Intel® SSE4 Vectorizing
Compiler and Media Accelerator
instructions for Intel processors. Can

SSE4.1

generate Intel® SSSE3, SSE3, SSE2, and
SSE instructions and it can optimize for
Intel® 45nm Hi-k next generation Intel®

Core™ microarchitecture. This replaces
value S, which is deprecated.

1113

20

Optimizes for the Intel® Atom™ processor
and Intel® Centrino® Atom™ Processor
Technology. Can generate MOVBE

SSE3_ATOM

instructions, depending on the setting of
option -minstruction (Linux and Mac
OS) or /Qinstruction (Windows).

Can generate Intel® SSSE3, SSE3, SSE2,
and SSE instructions for Intel processors
and it can optimize for the Intel® Core™2

SSSE3

Duo processor family. For Mac OS* X
systems, this value is only supported on
Intel® 64 architecture. This replaces value
T, which is deprecated.

Can generate Intel® SSE3, SSE2, and SSE
instructions for Intel processors and it can
optimize for processors based on Intel®

SSE3

Core™ microarchitecture and Intel
NetBurst® microarchitecture. For Mac OS*
X systems, this value is only supported
on IA-32 architecture.This replaces value
P, which is deprecated.

Can generate Intel® SSE2 and SSE
instructions for Intel processors, and it
can optimize for Intel® Pentium® 4

SSE2

processors, Intel® Pentium® M processors,
and Intel® Xeon® processors with Intel®

SSE2. This value is not available on Mac
OS* X systems. This replaces value N,
which is deprecated.

Default

On Windows systems, if neither /Qx nor /arch is specified, the
default is /arch:SSE2.

Windows* systems: None
Linux* systems: None
Mac OS* X systems using
IA-32 architecture: SSE3
Mac OS* X systems using
Intel® 64 architecture:
SSSE3

On Linux systems, if neither -x nor -m is specified, the default is
-msse2.

1114

20 Intel® Fortran Compiler User and Reference Guides

Description

This option tells the compiler to generate optimized code specialized for the Intel processor
that executes your program. It also enables optimizations in addition to Intel processor-specific
optimizations. The specialized code generated by this option may run only on a subset of Intel
processors.

This option can enable optimizations depending on the argument specified. For example, it may
enable Intel® Streaming SIMD Extensions 4 (Intel® SSE4), Intel® Supplemental Streaming SIMD
Extensions 3 (Intel® SSSE3), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), Intel® Streaming
SIMD Extensions 2 (Intel® SSE2), or Intel® Streaming SIMD Extensions (Intel® SSE) instructions.

The binaries produced by these values will run on Intel processors that support all of the features
for the targeted processor. For example, binaries produced with SSE3 will run on an Intel®

Core™ 2 Duo processor, because that processor completely supports all of the capabilities of
the Intel® Pentium® 4 processor, which the SSE3 value targets. Specifying the SSSE3 value has
the potential of using more features and optimizations available to the Intel® Core™ 2 Duo
processor.

Do not use processor values to create binaries that will execute on a processor that is not
compatible with the targeted processor. The resulting program may fail with an illegal instruction
exception or display other unexpected behavior. For example, binaries produced with SSE3
may produce code that will not run on Intel® Pentium® III processors or earlier processors that
do not support SSE3 instructions.

Compiling the main program with any of the processor values produces binaries that display
a fatal run-time error if they are executed on unsupported processors. For more information,
see Optimizing Applications.

If you specify more than one processor value, code is generated for only the highest-performing
processor specified. The highest-performing to lowest-performing processor values are: SSE4.2,
SSE4.1, SSSE3, SSE3, SSE2. Note that processor values AVX and SSE3_ATOM do not fit within
this group.

Compiler options m and arch produce binaries that should run on processors not made by Intel
that implement the same capabilities as the corresponding Intel processors.

Previous value O is deprecated and has been replaced by option -msse3 (Linux and Mac OS X)
and option /arch:SSE3 (Windows).

Previous values W and K are deprecated. The details on replacements are as follows:

• Mac OS X systems: On these systems, there is no exact replacement for W or K. You can
upgrade to the default option -msse3 (IA-32 architecture) or option -mssse3 (Intel® 64
architecture).

1115

20

• Windows and Linux systems: The replacement for W is -msse2 (Linux) or /arch:SSE2
(Windows). There is no exact replacement for K. However, on Windows systems, /QxK is
interpreted as /arch:IA32; on Linux systems, -xK is interpreted as -mia32. You can also
do one of the following:

• Upgrade to option -msse2 (Linux) or option /arch:SSE2 (Windows). This will produce
one code path that is specialized for Intel® SSE2. It will not run on earlier processors

• Specify the two option combination -mia32 -axSSE2 (Linux) or /arch:IA32 /QaxSSE2
(Windows). This combination will produce an executable that runs on any processor with
IA-32 architecture but with an additional specialized Intel® SSE2 code path.

The -x and /Qx options enable additional optimizations not enabled with option -m or option
/arch.

On Windows* systems, options /Qx and /arch are mutually exclusive. If both are specified, the
compiler uses the last one specified and generates a warning. Similarly, on Linux* and Mac
OS* X systems, options -x and -m are mutually exclusive. If both are specified, the compiler
uses the last one specified and generates a warning.

Alternate Options

None

See Also
•
•
• ax, Qax
• m

• arch

• minstruction, Qinstruction

X
Removes standard directories from the include file
search path.

IDE Equivalent

Windows: Preprocessor > Ignore Standard Include Path (/noinclude)

Linux: None

1116

20 Intel® Fortran Compiler User and Reference Guides

Mac OS X: Preprocessor > Ignore Standard Include Path (/noinclude)

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-X

Windows:

/X

Arguments

None

Default

Standard directories are in the include file search path.OFF

Description

This option removes standard directories from the include file search path. It prevents the
compiler from searching the default path specified by the FPATH environment variable.

On Linux and Mac OS X systems, specifying -X (or -noinclude) prevents the compiler from
searching in /usr/include for files specified in an INCLUDE statement.

You can use this option with the I option to prevent the compiler from searching the default
path for include files and direct it to use an alternate path.

This option affects fpp preprocessor behavior and the USE statement.

Alternate Options

Linux and Mac OS X: -nostdinc

Windows: /noinclude

See Also
•
• I

1117

20

Xlinker
Passes a linker option directly to the linker.

IDE Equivalent

None

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-Xlinker option

Windows:

None

Arguments

Is a linker option.option

Default

No options are passed directly to the linker.OFF

Description

This option passes a linker option directly to the linker.
If -Xlinker -shared is specified, only -shared is passed to the linker and no special work
is done to ensure proper linkage for generating a shared object. -Xlinker just takes whatever
arguments are supplied and passes them directly to the linker.

If you want to pass compound options to the linker, for example "-L $HOME/lib", you must
use the following method:

-Xlinker -L -Xlinker $HOME/lib

Alternate Options

None

1118

20 Intel® Fortran Compiler User and Reference Guides

See Also
•
• shared

• link

y
See syntax-only.

g, Zi, Z7
Tells the compiler to generate full debugging
information in the object file.

IDE Equivalent

Windows: General > Debug Information Format (/Z7, /Zd, /Zi)

Linux: None

Mac OS X: General > Generate Debug Information (-g)

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-g

Windows:

/Zi

/Z7

Arguments

None

1119

20

Default

No debugging information is produced in the object file.OFF

Description

This option tells the compiler to generate symbolic debugging information in the object file for
use by debuggers.

The compiler does not support the generation of debugging information in assemblable files.
If you specify this option, the resulting object file will contain debugging information, but the
assemblable file will not.

This option turns off O2 and makes O0 (Linux and Mac OS X) or Od (Windows) the default unless
O2 (or another O option) is explicitly specified in the same command line.

On Linux systems using Intel® 64 architecture and Linux and Mac OS X systems using IA-32
architecture, specifying the -g or -O0 option sets the -fno-omit-frame-pointer option.

For more information on Zi and Z7, see keyword full in debug (Windows*).

Alternate Options

Linux and Mac OS X: None

Windows: /debug:full (or /debug)

See Also
•
•
•
• Zd

1120

20 Intel® Fortran Compiler User and Reference Guides

Zd
This option has been deprecated. Use keyword
minimal in debug (Windows*).

zero, Qzero
Initializes to zero all local scalar variables of
intrinsic type INTEGER, REAL, COMPLEX, or
LOGICAL that are saved but not yet initialized.

IDE Equivalent

Windows: Data > Initialize Local Saved Scalars to Zero

Linux: None

Mac OS X: Data > Initialize Local Saved Scalars to Zero

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-zero

-nozero

Windows:

/Qzero

/Qzero-

Arguments

None

Default

Local scalar variables are not initialized to zero.-nozero or /Qzero-

1121

20

Description

This option initializes to zero all local scalar variables of intrinsic type INTEGER, REAL, COMPLEX,
or LOGICAL that are saved but not yet initialized.

Use -save (Linux and Mac OS X) or /Qsave (Windows) on the command line to make all local
variables specifically marked as SAVE.

Alternate Options

None

See Also
•
•
• save

g, Zi, Z7
Tells the compiler to generate full debugging
information in the object file.

IDE Equivalent

Windows: General > Debug Information Format (/Z7, /Zd, /Zi)

Linux: None

Mac OS X: General > Generate Debug Information (-g)

Architectures

IA-32, Intel® 64, IA-64 architectures

Syntax

Linux and Mac OS X:

-g

Windows:

/Zi

/Z7

1122

20 Intel® Fortran Compiler User and Reference Guides

Arguments

None

Default

No debugging information is produced in the object file.OFF

Description

This option tells the compiler to generate symbolic debugging information in the object file for
use by debuggers.

The compiler does not support the generation of debugging information in assemblable files.
If you specify this option, the resulting object file will contain debugging information, but the
assemblable file will not.

This option turns off O2 and makes O0 (Linux and Mac OS X) or Od (Windows) the default unless
O2 (or another O option) is explicitly specified in the same command line.

On Linux systems using Intel® 64 architecture and Linux and Mac OS X systems using IA-32
architecture, specifying the -g or -O0 option sets the -fno-omit-frame-pointer option.

For more information on Zi and Z7, see keyword full in debug (Windows*).

Alternate Options

Linux and Mac OS X: None

Windows: /debug:full (or /debug)

See Also
•
•
•
• Zd

1123

20

Zl
See keyword none in libdir

Zp
See keyword recnbyte in align.

Zs
See syntax-only.

Zx
Disables certain optimizations that make it difficult
to debug optimized code.

IDE Equivalent

None

Architectures

IA-64 architecture

Syntax

Linux and Mac OS X:

None

Windows:

/Zx

Arguments

None

Default

Optimizations are not disabled.OFF

Description

Disables certain optimizations, such as software pipelining and global scheduling, that make it
difficult to debug resultant code because of speculation.

1124

20 Intel® Fortran Compiler User and Reference Guides

Alternate Options

None

1125

20

21Quick Reference Guides and
Cross References

The topic summarizes Intel® Fortran compiler options used on Windows* OS, Linux* OS and Mac OS* X.

If you want to see the summarized Windows* OS options, see this topic.

If you want to see the summarized Linux* OS and Mac OS* X options, see this topic.

Windows* OS Quick Reference Guide and Cross Reference

The table in this section summarizes Intel® Fortran compiler options used on Windows* OS . Each
summary also shows the equivalent compiler options on Linux* OS and Mac OS* X.

If you want to see the summarized Linux* OS and Mac OS* X options, see this table.

Some compiler options are only available on systems using certain architectures, as indicated by
these labels:

MeaningLabel

The option is available on systems using IA-32 architecture.i32

The option is available on systems using Intel® 64 architecture.i64em

The option is available on systems using IA-64 architecture.i64

If "only" appears in the label, the option is only available on the identified system or architecture.

If no label appears, the option is available on all supported systems and architectures.

For more details on the options, refer to the Alphabetical Compiler Options section.

The Intel® Fortran Compiler includes the Intel® Compiler Option Mapping tool. This tool lets you find
equivalent options by specifying compiler option -map-opts (Linux OS and Mac OS X) or /Qmap-
opts (Windows OS).

For information on conventions used in this table, see Conventions.

Quick Reference of Windows* OS Options

The following table summarizes all supported Windows* OS options. It also shows equivalent Linux*
OS and Mac OS* X options, if any.

1127

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-1OFFExecutes at least one
iteration of DO loops.

/1

-i{2|4|8}/4I4Specifies the default
KIND for integer and
logical variables;
same as the /inte-
ger-size option.

/4I{2|4|8}

-72, -80, -132/4L72Treats the statement
field of each
fixed-form source

/4L{72|80|132}

line as ending in
column 72, 80, or
132; same as the
/extend-source
option.

None/4YaDetermines where
local variables are
stored. /4Na is the

/4Na, /4Ya

same as /save. /4Ya
is the same as /auto-
matic.

None/4YaltparamDetermines whether
alternate syntax is
allowed for

/4Naltparam,
/4Yaltparam

PARAMETER
statements; same as
the /altparam
option).

None/4NbDetermines whether
checking is
performed for

/4Nb, /4Yb

1128

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

run-time failures
(same as the /check
option).

-warn nodeclara-
tions,-warn decla-
rations

/4NdDetermines whether
error messages are
issued for undeclared
symbols. /4Nd is the

/4Nd, /4Yd

same as
/warn:nodeclara-
tions. /4Yd is the
same as /warn:dec-
larations.

-fixed, -free/4NfSpecifies the format
for source files. /4Nf
is the same as
/fixed. /4Yf is the
same as /free.

/4Nf, /4Yf

None/4YportlibDetermines whether
the compiler links to
the library of
portability routines.

/4Nportlib,
/4Yportlib

-stand none,
-stand f90

/4NsDetermines whether
the compiler changes
warning messages

/4Ns, /4Ys

about Fortran
standards violations
to error messages.
/4Ns is the same as
/stand:none. /4Ys
is the same as
/stand:f90.

1129

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-real-size 64,
-real-size 128

OFFSpecifies the default
KIND for real and
complex variables.

/4R8, /4R16

/4R8 is the same as
/real-size:64.
/4R16 is the same as
/real-size:128.

-align [keyword]keywords:
nocommons
nodcommons
records
nosequence

Tells the compiler
how to align certain
data items.

/align[:keyword]

/allow keywordkeyword: fpp_com-
ments

Determines how the
fpp preprocessor
treats Fortran

/allow:keyword

end-of-line
comments in
preprocessor
directive lines.

-[no]altparam/altparamAllows alternate
syntax (without
parentheses) for
PARAMETER
statements.

/[no]altparam

-arch processor or
-m processor
(i32, i64em)

varies; see option
description

Tells the compiler to
generate optimized
code specialized for
the processor that

/arch:processor
(i32, i64em)

executes your
program; same as
option /architec-
ture.

1130

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

None/noasmattrSpecifies the
contents of an
assembly listing file.

/asmattr:keyword

None/noasmfileSpecifies that an
assembly listing file
should be generated.

/asmfile[:file |
dir]

-assume keywordkeywords:
[no]bscc
[no]buffered_io
[no]byterecl
[no]cc_omp
[no]dummy_aliases
[no]ieee_fpe_flags
[no]minus0
[no]old_boz
[no]old_logical_ldio
[no]old_maxminloc
[no]old_unit_star
[no]old_xor
[no]protect_constants
[no]protect_parens
[no]realloc_lhs
[no]source_include
[no]std_mod_proc_name
[no]underscore
[no]writeable-strings

Tells the compiler to
make certain
assumptions.

/assume:keyword

-[no]automatic/Qauto-scalarCauses all variables
to be allocated to the
run-time stack; same
as the /auto option.

/[no]automatic

1131

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

NoneOFFIncreases the
number of sections
that an object file can
contain.

/bigobj

NoneOFFPlaces a text string
into the object file
(.obj) being
generated by the
compiler.

/bintext:string

-cOFFPrevents linking./c

-COFFPerforms checking for
all run-time failures;
same as the
/check:all option.

/C

-CBOFFPerforms run-time
checking on array
subscript and

/CB

character substring
expressions; same as
the /check:bounds
option.

-ccdefault
keyword

/ccdefault:de-
fault

Specifies the type of
carriage control used
when a file is
displayed at a
terminal screen.

/ccde-
fault:keyword

-check [keyword]/nocheckChecks for certain
conditions at run
time.

/check[:keyword]

1132

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-cmOFFDisables all messages
about questionable
programming

/cm

practices; same as
specifying option
/warn:nousage.

NoneOFFCauses the compiler
to compile to an
object file only and
not link; same as the
/c option.

/compile-only

-[no-]complex-
limited-range

/Qcomplex-limit-
ed-range-

Enables the use of
basic algebraic
expansions of some

/Qcomplex-limit-
ed-range[-]

arithmetic operations
involving data of type
COMPLEX.

-convert keyword/convert:nativeSpecifies the format
of unformatted files
containing numeric
data.

/convert:keyword

-CUOFFEnables run-time
checking for
uninitialized

/CU

variables. This option
is the same as
/check:uninit and
/RTCu.

1133

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-Dname [=value]/noDDefines a symbol
name that can be
associated with an
optional value.

/Dname [=value]

-[no]d-lines/nod-linesCompiles debugging
statements indicated
by the letter D in
column 1 of the
source code.

/[no]d-lines

None/nodbglibsTells the linker to
search for unresolved
references in a debug
run-time library.

/[no]dbglibs

-debug keyword
Note: the Linux* OS
and Mac OS* X
option takes different
keyword s

/debug:full (IDE)
/debug:none
(command line)

Specifies the type of
debugging
information
generated by the
compiler in the object
file.

/debug:keyword

-debug-parameters
[keyword]

/nodebug-parame-
ters

Tells the compiler to
generate debug
information for
PARAMETERs used in
a program.

/debug-parame-
ters[:keyword]

NoneOFFDefines a symbol
name that can be
associated with an

/define:name
[=value]

optional value; same
as the
/D<name>[=value]
option.

1134

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

NoneOFFSpecifies that a
program should be
linked as a
dynamic-link (DLL)
library.

/dll

-double-size size/double-size:64Defines the default
KIND for DOUBLE
PRECISION and
DOUBLE COMPLEX
variables.

/double-size:size

-EOFFCauses the Fortran
preprocessor to send
output to stdout.

/E

-EPOFFCauses the Fortran
preprocessor to send
output to stdout,
omitting #line
directives.

/EP

-error-limit n/error-limit:30Specifies the
maximum number of
error-level or

/error-limit:n

fatal-level compiler
errors allowed for a
file specified on the
command line.

-oOFFSpecifies the name
for a built program or
dynamic-link library.

/exe:{file | dir}

1135

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-extend-source
[size]

/extend-source:72Specifies the length
of the statement field
in a fixed-form
source file.

/extend-
source[:size]

NoneOFFSpecifies file
extensions to be
processed by the
compiler as Fortran
files.

/extfor:ext

NoneOFFSpecifies file
extensions to be
recognized as a file

/extfpp:ext

to be preprocessed
by the Fortran
preprocessor.

NoneOFFSpecifies file
extensions to be
passed directly to the
linker.

/extlnk:ext

NoneOFFSpecifies the stack
reserve amount for
the program.

/Fn

-f66OFFTells the compiler to
apply FORTRAN 66
semantics.

/f66

-f77rtlOFFTells the compiler to
use the run-time
behavior of FORTRAN
77.

/f77rtl

1136

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-SOFFSpecifies that an
assembly listing file
should be generated;
same as option
/asmfile and /S.

/Fa[:file | dir]

NoneOFFSpecifies the
contents of an
assembly listing file.

/FAc, /FAs, /FAcs

/FAc is the same as
the /asmattr:ma-
chine option. /FAs
is the same as the
/asmattr:source
option. /FAcs is the
same as the /asmat-
tr:all option.

-fastOFFMaximizes speed
across the entire
program.

/fast

-oOFFSpecifies the name
for a built program or
dynamic-link library;
same as the /exe
option.

/Fefile

-FIdetermined by file
suffix

Specifies source files
are in fixed format;
same as the /fixed
option.

/FI

-[no]fixeddetermined by file
suffix

Specifies source files
are in fixed format.

/[no]fixed

1137

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-[no]fltconsisten-
cy

/nofltconsistencyEnables improved
floating-point
consistency.

/[no]fltconsisten-
cy

NoneOFFTells the linker to
generate a link map
file; same as the
/map option.

/Fm[file]

NoneOFFSpecifies the name
for an object file;
same as the /object
option.

/Fofile

-fp-model keyword/fp:fast=1Controls the
semantics of
floating-point
calculations.

/fp:keyword

-[no]fpconstant/nofpconstantTells the compiler
that single-precision
constants assigned to

/[no]fpconstant

double-precision
variables should be
evaluated in double
precision.

-fpen/fpe:3Specifies the
floating-point
exception handling
level for the main
program at run-time.

/fpe:n

1138

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-fpe-all=n/fpe-all:3Specifies the
floating-point
exception handling
level for each routine
at run-time.

/fpe-all:n

- fpp[n]/nofppRuns the Fortran
preprocessor on
source files before
compilation.

/fpp [n]

/fpp[="option"] - fpp[="option"]

-fpscomp
[keyword]

/fpscomp:libsSpecifies
compatibility with
Microsoft* Fortran
PowerStation or
Intel® Fortran.

/fpscomp[:keyword]

-FRdetermined by file
suffix

Specifies source files
are in free format;
same as the /free
option.

/FR

-[no]freedetermined by file
suffix

Specifies source files
are in free format.

/[no]free

NoneOFFOptimizes application
performance for
systems using IA-64
architecture.

/G2
(i64 only)

-mtune itanium2-
p9000

ONOptimizes for
Dual-Core Intel®

Itanium® 2 Processor
9000 series.

/G2-p9000
(i64 only)

1139

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

None/G7Optimizes application
performance for
systems using IA-32

/G{5|6|7}
(i32, i64em)

architecture and
Intel® 64
architecture. These
options have been
deprecated.

NoneOFFOptimizes for Intel®

Pentium® Pro,
Pentium® II and

/GB

Pentium® III
processors; same as
the /G6 option.

NoneOFFEnables
stack-checking for all
functions.
Deprecated.

/Ge

-gen-interfaces
[[no]source]

/nogen-interfacesTells the compiler to
generate an interface
block for each routine
in a source file.

/gen-inter-
faces[:[no]source]

NoneOFFTells the compiler to
use calling
convention CVF;
same as the
/iface:cvf option.

/Gm

None/Gs4096Disables
stack-checking for
routines with a

/Gs[n]

specified number of

1140

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

bytes of local
variables and
compiler
temporaries.

-f[no-]stack-secu-
rity-check

/GS-Determines whether
the compiler
generates code that
detects some buffer
overruns.

/GS[-]

NoneOFFTells the compiler to
use calling
convention STDCALL;

/Gz

same as the
/iface:stdcall
option.

-heap-arrays
[size]

/heap-arrays-Puts automatic
arrays and arrays
created for

/heap-ar-
rays[:size]

temporary
computations on the
heap instead of the
stack.

-helpOFFDisplays all available
compiler options or a
category of compiler
options; same as the
/? option.

/help[category]

NoneOFFTells the compiler to
store parameters
passed in registers to
the stack.

/homeparams

1141

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

NoneOFFTells the compiler to
prepare a routine for
hotpatching.

/hotpatch
(i32, i64em)

-IdirOFFSpecifies a directory
to add to the include
path.

/I:dir

None/iface:defaultSpecifies the default
calling convention
and

/iface:keyword

argument-passing
convention for an
application.

NoneOFFSpecifies a directory
to add to the include
path; same as the /I
option.

/include

NoneOFFSpecifies the level of
inline function
expansion.

/inline[:keyword]

-[no]intconstant/nointconstantTells the compiler to
use FORTRAN 77
semantics to

/[no]intconstant

determine the kind
parameter for integer
constants.

-integer-size
size

/integer-size:32Specifies the default
KIND for integer and
logical variables.

/integer-
size:size

1142

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

NoneOFFSpecifies that a
program should be
linked as a
dynamic-link (DLL)
library.

/LD

None/libdir:allControls whether
linker options for
search libraries are

/libdir[:keyword]

included in object
files generated by the
compiler.

None/libs:staticTells the linker to
search for unresolved
references in a
specific run-time
library.

/libs:keyword

NoneOFFPasses options to the
linker at compile
time.

/link

-[no]logo/logoDisplays the compiler
version information.

/[no]logo

None/nomapTells the linker to
generate a link map
file.

/map[:file]

NoneOFFTells the linker to
search for unresolved
references in a

/MD and /MDd

multithreaded,
debug, dynamic-link
run-time library.

1143

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

NoneOFFTells the linker to
search for unresolved
references in a

/MDs and /MDsd

single-threaded,
dynamic-link
run-time library.

NoneOFFTells the compiler to
create a graphics or
Fortran Windows

/MG

application and link
against the most
commonly used
libraries.

Nonei32, i64: /ML
i64em: OFF

Tells the linker to
search for unresolved
references in a

/ML and /MLd

single-threaded,
static run-time
library.

-module pathOFFSpecifies the
directory where
module files should

/module:path

be placed when
created and where
they should be
searched for.

-multiple-process-
es[:n]

OFFCreates multiple
processes that can be
used to compile large

/MP[:n]

numbers of source
files at the same
time.

1144

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

Nonei32, i64: OFF
i64em: /MT/noreen-
trancy

Tells the linker to
search for unresolved
references in a
multithreaded, static
run-time library.

/MT and /MTd

NoneOFFTells the linker to
search for unresolved
references in a

/MW

Fortran QuickWin
library; same as
/libs:qwin.

NoneOFFTells the linker to
search for unresolved
references in a

/MWs

Fortran standard
graphics library;
same as
/libs:qwins.

-names keyword/names:uppercaseSpecifies how source
code identifiers and
external names are
interpreted.

/names:keyword

-nbs/nbsTells the compiler to
treat the backslash
character (\) as a

/nbs

normal character in
character literals;
same as the /as-
sume:nobscc option.

1145

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

NoneOFFRemoves standard
directories from the
include file search
path; same as the /X
option.

/noinclude

-O[n]/O2Specifies the code
optimization for
applications.

/O[n]

-inline-level=n/Ob2 if /O2 is in
effect or /O3 is
specified
/Ob0 if /Od is
specified

Specifies the level of
inline function
expansion. n = 0, 1,
or 2.

/Obn

NoneOFFSpecifies the name
for an object file.

/object:file

-O0OFFDisables
optimizations.

/Od

None/OgEnables global
optimizations.

/Og

-mpOFFEnables improved
floating-point
consistency.

/Op

-On/optimize:3 or
/optimize:4

Affects optimizations
performed by the
compiler; n = 1, 2, 3,
or 4.

/optimize:n

1146

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-OsOFF (unless /O1 is
specified)

Enables optimizations
that do not increase
code size and
produces smaller
code size than O2.

/Os

None/Ot (unless /O1 is
specified)

Enables all speed
optimizations.

/Ot

-O2/OxSame as the /O2
option.

/Ox

-f[no-]omit-
frame-pointer
(i32, i64em)

/Oy (unless /Od is
specified)

Determines whether
EBP is used as a
general-purpose
register in
optimizations.

/Oy[-]
(i32 only)

-POFFCauses the Fortran
preprocessor to send
output to a file,

/P

which is named by
default; same as the
-preprocess-only
option.

-[no]pad-source/nopad-sourceSpecifies padding for
fixed-form source
records.

/[no]pad-source

None/nopdbfileSpecifies that any
debug information
generated by the

/pdbfile[:file]

compiler should be
saved to a program
database file.

1147

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-preprocess-only/nopreprocess-on-
ly

Causes the Fortran
preprocessor to send
output to a file.

/preprocess-only

-ansi-alias/Qansi-aliasTells the compiler to
assume the program
adheres to the

/Qansi-alias

Fortran Standard
type aliasability
rules.

-auto/Qauto-scalarCauses all variables
to be allocated on the
stack, rather than in
local static storage.

/Qauto

-auto-scalar/Qauto-scalarCauses allocation of
scalar variables of
intrinsic types

/Qauto-scalar

INTEGER, REAL,
COMPLEX, and
LOGICAL to the
run-time stack.

-autodoubleOFFMakes default real
and complex
variables 8 bytes

/Qautodouble

long; same as the
/real-size:64
option.

-axp
(i32, i64em)

OFFTells the compiler to
generate multiple,
processor-specific

/Qaxp
(i32, i64em)

auto-dispatch code
paths for Intel

1148

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

processors if there is
a performance
benefit.

None/QchkstkEnables stack
probing when the
stack is dynamically
expanded at
run-time.

/Qchkstk[-]
(i64 only)

-common-argsOFFTells the compiler
that dummy (formal)
arguments to

/Qcommon-args

procedures share
memory locations
with other dummy
arguments or with
COMMON variables
that are assigned;
same as
/assume:dummy_aliases.

-[no-]complex-
limited-range

/Qcomplex-limit-
ed-range-

Enables the use of
basic algebraic
expansions of some

/Qcomplex-limit-
ed-range[-]

arithmetic operations
involving data of type
COMPLEX.

-cppOFFRuns the Fortran
preprocessor on
source files before
compilation; same as
the /fpp option.

/Qcpp

1149

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-[no]d-linesOFFCompiles debugging
statements indicated
by the letter D in

/Qd-lines[-]

column 1 of the
source code; can also
be specified as /d-
lines.

-diag-type
diag-list

OFFControls the display
of diagnostic
information.

/Qdiag-type:
diag-list

-diag-dumpOFFTells the compiler to
print all enabled
diagnostic messages
and stop compilation.

/Qdiag-dump

-diag-enable sc-
include
(i32, i64em)

OFFTells the Source
Checker to analyze
include files and
source files when

/Qdiag-enable:sc-
include
(i32, i64em)

issuing diagnostic
message. This is
equivalent to
deprecated option
/Qdiag-enable:sv-
include.

-diag-enable sc-
parallel
(i32, i64em)

OFFEnables analysis of
parallelization in
source code (parallel
lint diagnostics).

/Qdiag-enable:sc-
parallel
(i32, i64em)

1150

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-diag-error-lim-
itn

/Qdiag-error-lim-
it:30

Specifies the
maximum number of
errors allowed before
compilation stops.

/Qdiag-error-lim-
it:n

-diag-file[= file]OFFCauses the results of
diagnostic analysis to
be output to a file.

/Qdiag-
file[:file]

-diag-file-ap-
pend[= file]

OFFCauses the results of
diagnostic analysis to
be appended to a file.

/Qdiag-file-ap-
pend[:file]

-[no-]diag-id-
numbers

/Qdiag-id-numbersTells the compiler to
display diagnostic
messages by using
their ID number
values.

/Qdiag-id-num-
bers[-]

-diag-once
id[,id,...]

OFFTells the compiler to
issue one or more
diagnostic messages
only once

/Qdiag-
once:id[,id,...]

-dps/QdpsSpecifies that the
alternate syntax for
PARAMETER

/Qdps

statements is
allowed; same as the
/altparam option.

-dyncom "com-
mon1,common2,..."

OFFEnables dynamic
allocation of common
blocks at run time.

/Qdyncom "com-
mon1,common2,..."

1151

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-extend-source
size

OFFThis is the same as
specifying option
/extend-
source:132.

/Qextend-source

-[no-]fast-tran-
scendentals

/Qfast-transcen-
dentals

Enables the compiler
to replace calls to
transcendental

/Qfast-transcen-
dentals[-]

functions with faster
but less precise
implementations.

-[no-]fma
(i64 only; Linux* OS
only)

/QfmaEnables the
combining of
floating-point
multiplies and
add/subtract
operations.

/Qfma[-]
(i64 only)

-falign-func-
tions[=n]
(i32, i64em)

/Qfnalign-Tells the compiler to
align functions on an
optimal byte
boundary.

/Qfnalign[:n]
(i32, i64em)

-[no-]fnsplit
(i64 only; Linux* OS
only)

/Qfnsplit-Enables function
splitting.

/Qfnsplit[-]
(i32, i64)

-[no-]fp-port
(i32, i64em)

/Qfp-port-Rounds floating-point
results after
floating-point
operations.

/Qfp-port[-]
(i32, i64em)

1152

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-[no-]fp-relaxed
(i64 only; Linux* OS
only)

/Qfp-relaxed-Enables use of faster
but slightly less
accurate code
sequences for math
functions, such as
divide and sqrt.

/Qfp-relaxed[-]
(i64 only)

-fp-specula-
tion=mode

/Qfp-specula-
tion:fast

Tells the compiler the
mode in which to
speculate on
floating-point
operations.

/Qfp-specula-
tion:mode

-fp-stack-check
(i32, i64em)

OFFGenerates extra code
after every function
call to ensure that

/Qfp-stack-check
(i32, i64em)

the FP
(floating-point) stack
is in the expected
state.

-fpp[n]/nofppRuns the Fortran
preprocessor on
source files before
compilation.

/Qfpp[n]

-[no-]ftzi64: /Qftz-
i32, i64em: /Qftz

Flushes denormal
results to zero.

/Qftz[-]

-[no-]global-
hoist

/Qglobal-hoist-Enables certain
optimizations that
can move memory

/Qglobal-hoist[-]

loads to a point
earlier in the

1153

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

program execution
than where they
appear in the source.

NoneOFFDisables use of high
floating-point
registers.

/QIA64-fr32
(i64 only)

NoneOFFEnables fast
float-to-integer
conversions; same as
option /Qrcd.

/QIfist
(i32 only)

NoneOFFTells the compiler to
link to the IMSL*
Fortran Numerical
Library* (IMSL*
library).

/Qimsl

-inline-debug-in-
fo

OFFProduces enhanced
source position
information for
inlined code.

/Qinline-debug-
info

None/Qinline-dl-
limport

Determines whether
dllimport functions
are inlined.

/Qinline-dl-
limport[-]

-inline-factor=n/Qinline-factor-Specifies the
percentage multiplier
that should be

/Qinline-fac-
tor==n

applied to all inlining
options that define
upper limits.

1154

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-inline-forcein-
line

OFFSpecifies that an
inline routine should
be inlined whenever
the compiler can do
so.

/Qinline-forcein-
line

-inline-max-per-
compile=n

/Qinline-max-per-
compile-

Specifies the
maximum number of
times inlining may be
applied to an entire
compilation unit.

/Qinline-max-per-
compile=n

-inline-max-per-
routine=n

/Qinline-max-per-
routine-

Specifies the
maximum number of
times the inliner may
inline into a
particular routine.

/Qinline-max-per-
routine=n

-inline-max-
size=n

/Qinline-max-
size-

Specifies the lower
limit for the size of
what the inliner
considers to be a
large routine.

/Qinline-max-
size=n

-inline-max-to-
tal-size=n

/Qinline-max-to-
tal-size-

Specifies how much
larger a routine can
normally grow when
inline expansion is
performed.

/Qinline-max-to-
tal-size=n

-inline-min-
size=n

/Qinline-min-
size-

Specifies the upper
limit for the size of
what the inliner
considers to be a
small routine.

/Qinline-min-
size=n

1155

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-minstruction=[no]movbe
(i32, i64em)

OFFDetermines whether
MOVBE instructions
are generated for
Intel processors.

/Qinstruc-
tion:[no]movbe
(i32, i64em)

-f[no-]instru-
ment-functions

/Qinstrument-
functions-

Determines whether
function entry and
exit points are
instrumented.

/Qinstrument-
functions[-]

-[no-]ipOFFEnables additional
single-file
interprocedural
optimizations.

/Qip[-]

-ip-no-inliningOFFDisables full and
partial inlining
enabled by -ip.

/Qip-no-inlining

-ip-no-pinlining
(i32, i64em)

OFFDisables partial
inlining.

/Qip-no-pinlining
(i32, i64em)

-[no-]IPF-flt-
eval-method0
(i64 only; Linux* OS
only)

OFFTells the compiler to
evaluate the
expressions involving
floating-point
operands in the

/QIPF-flt-eval-
method0
(i64 only)

precision indicated by
the variable types
declared in the
program.
Deprecated.

1156

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-IPF-fltacc
(i64 only; Linux* OS
only)

/QIPF-fltacc-Tells the compiler to
apply optimizations
that affect
floating-point
accuracy.
Deprecated.

/QIPF-fltacc[-]
(i64 only)

-IPF-fma
(i64 only; Linux* OS
only)

/QIPF-fmaEnables the
combining of
floating-point
multiplies and

/QIPF-fma
(i64 only)

add/subtract
operations.
Deprecated; use
/Qfma.

-IPF-fp-relaxed
(i64 only; Linux* OS
only)

/QIPF-fp-relaxed-Enables use of faster
but slightly less
accurate code
sequences for math

/QIPF-fp-relaxed
(i64 only)

functions, such as
divide and sqrt.
Deprecated; use
/Qfp-relaxed.

-ipo[n]OFFEnables multifile IP
optimizations
between files.

/Qipo[n]

-ipo-cOFFGenerates a multifile
object file that can be
used in further link
steps.

/Qipo-c

1157

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-ipo-jobsn/Qipo-jobs:1Specifies the number
of commands to be
executed

/Qipo-jobs: n

simultaneously
during the link phase
of Interprocedural
Optimization (IPO).

-ipo-SOFFGenerates a multifile
assembly file that
can be used in
further link steps.

/Qipo-S

-ipo-separate
(Linux* OS only)

OFFGenerates one object
file per source file.

/Qipo-separate

-ivdep-parallel
(i64 only; Linux* OS
only)

OFFTells the compiler
that there is no
loop-carried memory
dependency in any
loop following an
IVDEP directive.

/Qivdep-parallel
(i64 only)

-f[no-]keep-stat-
ic-consts

/Qkeep-static-
consts-

Tells the compiler to
preserve allocation of
variables that are not
referenced in the
source.

/Qkeep-static-
consts[-]

-Qloca-
tion,string,dir

OFFSpecifies a directory
as the location of the
specified tool in
string .

/Qloca-
tion,string,dir

1158

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-lowercaseOFFCauses the compiler
to ignore case
differences in

/Qlowercase

identifiers and to
convert external
names to lowercase;
same as the
/names:lowercase
option.

-map-optsOFFMaps one or more
Windows* compiler
options to their

/Qmap-opts

equivalent on a
Linux* OS system (or
vice versa).

-mkl[=libOFFTells the compiler to
link to certain parts
of the Intel® Math
Kernel Library.

/Qmkl[=lib

-no-bss-initOFFPlaces any variables
that are explicitly
initialized with zeros
in the DATA section.

/Qnobss-init

-onetripOFFThis is the same as
specifying option
/onetrip.

/Qonetrip

-openmpOFFEnables the
parallelizer to
generate

/Qopenmp

1159

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

multithreaded code
based on OpenMP*
directives.

-openmp-lib type
(Linux* OS only)

/Qopenmp-
lib:legacy

Lets you specify an
OpenMP* run-time
library to use for
linking.

/Qopenmp-lib:type

-openmp-link
library
(Linux* OS only)

/Qopenmp-
lib:legacy

Lets you specify an
OpenMP* run-time
library to use for
linking.

/Qopenmp-
link:library

-openmp-profile
(Linux* OS only)

OFFEnables analysis of
OpenMP*
applications.

/Qopenmp-profile

-openmp-report[n]/Qopenmp-report1Controls the OpenMP
parallelizer's level of
diagnostic messages.

/Qopenmp-re-
port[n]

-openmp-stubsOFFEnables compilation
of OpenMP programs
in sequential mode.

/Qopenmp-stubs

-openmp-threadpri-
vate type
(Linux* OS only)

/Qopenmp-thread-
private:legacy

Lets you specify an
OpenMP*
threadprivate
implementation.

/Qopenmp-thread-
private:type

-opt-block-fac-
tor=n

OFFLets you specify a
loop blocking factor.

/Qopt-block-fac-
tor:n

1160

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-opt-jump-ta-
bles=keyword

/Qopt-jump-ta-
bles:default

Enables or disables
generation of jump
tables for switch
statements.

/Qopt-jump-ta-
bles:keyword

-[no-]opt-load-
pair
(i64 only; Linux* OS
only)

/Qopt-loadpair-Enables or disables
loadpair optimization.

/Qopt-loadpair[-]
(i64 only)

-opt-mem-band-
widthn
(i64 only; Linux* OS
only)

/Qopt-mem-band-
width0 for serial
compilation; /Qopt-
mem-bandwidth1 for
parallel compilation

Enables performance
tuning and heuristics
that control memory
bandwidth use
among processors.

/Qopt-mem-band-
widthn
(i64 only)

-[no-]opt-mod-
versioning
(i64 only; Linux* OS
only)

/Qopt-mod-version-
ing-

Enables or disables
versioning of modulo
operations for certain
types of operands.

/Qopt-mod-version-
ing[-]
(i64 only)

-[no-]opt-multi-
version-aggres-
sive
(i32, i64em)

/Qopt-multi-ver-
sion-aggressive-

Tells the compiler to
use aggressive
multi-versioning to
check for pointer
aliasing and scalar
replacement.

/Qopt-multi-ver-
sion-aggres-
sive[-]
(i32, i64em)

-opt-prefetch[=n]i64: /Qopt-
prefetch
i32, i64em: /Qopt-
prefetch-

Enables prefetch
insertion
optimization.

/Qopt-prefetch[:n]

1161

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-[no-]opt-
prefetch-initial-
values
(i64 only; Linux* OS
only)

/Qopt-prefetch-
initial-values

Enables or disables
prefetches that are
issued before a loop
is entered.

/Qopt-prefetch-
initial-values[-]
(i64 only)

-[no-]opt-
prefetch-issue-
excl-hint
(i64 only; Linux* OS
only)

/Qopt-prefetch-
issue-excl-hint-

Determines whether
the compiler issues
prefetches for stores
with exclusive hint.

/Qopt-prefetch-
issue-excl-
hint[-]
(i64 only)

/Qopt-prefetch-
next-iteration
(i64 only; Linux* OS
only)

-opt-prefetch-
next-iteration

Enables or disables
prefetches for a
memory access in
the next iteration of
a loop.

/Qopt-prefetch-
next-itera-
tion[-][:n]
(i64 only)

-opt-ra-region-
strate-
gy[=keyword]
(i32, i64em)

/Qopt-ra-region-
strategy:default

Selects the method
that the register
allocator uses to
partition each routine
into regions.

/Qopt-ra-region-
strategy[:keyword]
(i32, i64em)

-opt-report n/Qopt-report:2Tells the compiler to
generate an
optimization report to
stderr.

/Qopt-report:n

-opt-report-
file=file

OFFTells the compiler to
generate an
optimization report
named file.

/Qopt-report-
file:file

1162

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-opt-report-helpOFFDisplays the
optimizer phases
available for report
generation.

/Qopt-report-help

-opt-report-
phase=phase

OFFSpecifies an
optimizer phase to
use when
optimization reports
are generated.

/Qopt-report-
phase:phase

-opt-report-rou-
tine=string

OFFGenerates a report
on all routines or the
routines containing
the specified string.

/Qopt-report-rou-
tine:string

-opt-streaming-
stores keyword
(i32, i64em)

/Qopt-streaming-
stores:auto

Enables generation of
streaming stores for
optimization.

/Qopt-streaming-
stores:keyword
(i32, i64em)

-[no-]opt-sub-
script-in-range
(i32, i64em)

/Qopt-subscript-
in-range-

Determines whether
the compiler assumes
no overflows in the
intermediate

/Qopt-subscript-
in-range[-]
(i32, i64em)

computation of
subscript expressions
in loops.

-Qop-
tion,string,options

OFFPasses options to
the tool specified in
string.

/Qop-
tion,string,options

-pad/Qpad-Enables the changing
of the variable and
array memory layout.

/Qpad

1163

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-pad-source/Qpad-source-This is the same as
specifying option
/pad-source.

/Qpad-source

None/Qpar-adjust-
stack:0

Tells the compiler to
generate code to
adjust the stack size
for a fiber-based
main thread.

/Qpar-adjust-
stack:n
(i32, i64em)

-par-affini-
ty=[modifier,...]type[,permute][,offset]
(Linux* OS only)

OFFSpecifies thread
affinity.

/Qpar-affini-
ty:[modifier,...]
type[,permute]
[,offset]

-par-num-
threads=n

OFFSpecifies the number
of threads to use in a
parallel region.

/Qpar-num-
threads:n

-par-report[n]/Qpar-report1Controls the
diagnostic
information reported
by the
auto-parallelizer.

/Qpar-report[n]

-[no-]par-run-
time-control

/Qpar-runtime-
control-

Generates code to
perform run-time
checks for loops that
have symbolic loop
bounds.

/Qpar-runtime-
control[-]

-par-sched-
ule-keyword[=n]

OFFSpecifies a
scheduling algorithm
for DO loop
iterations.

/Qpar-sched-
ule-keyword [[:]
n]

1164

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-par-threshold[n]/Qpar-thresh-
old:100

Sets a threshold for
the
auto-parallelization
of loops.

/Qpar-thresh-
old[[:]n]

-parallelOFFTells the
auto-parallelizer to
generate

/Qparallel

multithreaded code
for loops that can be
safely executed in
parallel.

-pcn
(i32, i64em)

/Qpc64Enables control of
floating-point
significand precision.

/Qpcn
(i32, i64em)

-mp1OFFImproves
floating-point
precision and
consistency.

/Qprec

-[no-]prec-div/Qprec-div-Improves precision of
floating-point divides.

/Qprec-div[-]

-prec-sqrt
(i32, i64em)

/Qprec-sqrt-Improves precision of
square root
implementations.

/Qprec-sqrt
(i32, i64em)

-prefetchi64: /Qprefetch
i32, i64em:
/Qprefetch-

Enables prefetch
insertion
optimization.
Deprecated; use
/Qopt-prefetch

/Qprefetch

1165

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-[no-]prof-data-
order
(Linux* OS only)

/Qprof-data-or-
der-

Enables or disables
data ordering if
profiling information
is enabled.

/Qprof-data-or-
der[-]

-prof-dir dirOFFSpecifies a directory
for profiling
information output
files.

/Qprof-dir dir

-prof-file fileOFFSpecifies a file name
for the profiling
summary file.

/Qprof-file file

-[no-]prof-func-
order
(Linux* OS only)

/Qprof-func-or-
der-

Enables or disables
function ordering if
profiling information
is enabled.

/Qprof-func-or-
der[-]

-prof-
gen[=keyword]

/Qprof-gen-Produces an
instrumented object
file that can be used
in profile-guided
optimization.

/Qprof-
gen[:keyword]

-prof-genxOFFProduces an
instrumented object
file that includes

/Qprof-genx

extra source position
information.
Deprecated; use
/Qprof-gen:src-
pos.

1166

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-prof-hotness-
threshold=n
(Linux* OS only)

OFFLets you set the
hotness threshold for
function grouping
and function
ordering.

/Qprof-hotness-
threshold:n

-[no-]prof-src-
dir

/Qprof-src-dirDetermines whether
directory information
of the source file

/Qprof-src-dir[-]

under compilation is
considered when
looking up profile
data records.

-prof-src-
root=dir

OFFLets you use relative
directory paths when
looking up profile
data and specifies a
directory as the base.

/Qprof-src-
root:dir

-prof-src-root-
cwd

OFFLets you use relative
directory paths when
looking up profile

/Qprof-src-root-
cwd

data and specifies
the current working
directory as the base.

-prof-use[=arg]OFFEnables the use of
profiling information
during optimization.

/Qprof-use[:arg]

-rcd
(i32, i64em)

OFFEnables fast
float-to-integer
conversions.

/Qrcd
(i32, i64em)

1167

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-rct
(i32, i64em)

OFFSets the internal FPU
rounding control to
Truncate.

/Qrct
(i32, i64em)

-safe-cray-ptrOFFTells the compiler
that Cray* pointers
do not alias other
variables.

/Qsafe-cray-ptr

-save/Qauto-scalarCauses variables to
be placed in static
memory.

/Qsave

-[no-]save-temps.obj files are savedTells the compiler to
save intermediate
files created during
compilation.

/Qsave-temps[-]

-[no-]scalar-rep
(i32 only)

/Qscalar-rep-Enables scalar
replacement
performed during
loop transformation
(requires /O3).

/Qscalar-rep[-]
(i32 only)

None/Qsfalign8Specifies stack
alignment for
functions. n is 8 or
16.

/Qsfalign[n]
(i32 only)

-[no-]sox
(Linux OS only)

/Qsox-Tells the compiler to
save the compilation
options and version

/Qsox[-]

number in the
Windows* OS object
file.

1168

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-tcheck
(Linux* OS only)

OFFEnables analysis of
threaded
applications.

/Qtcheck

-tcollect[= lib]
(Linux* OS only)

OFFInserts
instrumentation
probes calling the
Intel(R) Trace
Collector API.

/Qtcollect[: lib]

-tcollect-filter
[file]
(Linux* OS only)

OFFLets you enable or
disable the
instrumentation of
specified functions.

/Qtcollect-fil-
ter[=file]

-tprofile
(Linux* OS only)

OFFGenerates
instrumentation to
analyze
multi-threading
performance.

/Qtprofile

-ftrapuvOFFInitializes stack local
variables to an
unusual value.

/Qtrapuv

-unroll[=n]/QunrollTells the compiler the
maximum number of
times to unroll loops;
same as the /un-
roll[:n] option.

/Qunroll[:n]

-[no-]unroll-ag-
gressive
(i32, i64em)

/Qunroll-aggres-
sive-

Determines whether
the compiler uses
more aggressive
unrolling for certain
loops.

/Qunroll-aggres-
sive[-]
(i32, i64em)

1169

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-uppercase/QuppercaseCauses the compiler
to ignore case
differences in

/Quppercase

identifiers and to
convert external
names to uppercase;
same as the
/names:uppercase
option.

-[no-]use-asm/Quse-asm-Tells the compiler to
produce objects
through the
assembler.

/Quse-asm[-]
(i64 only)

NoneOFFTells the compiler to
use a dollar sign
("$") when producing
symbol names.

/Quse-msasm-sym-
bols
(i32,i64em)

NoneOFFTells the compiler to
issue debug
information

/Quse-vcdebug
(i32 only)

compatible with the
Visual C++
debugger.

Nonevaries; see option
description

Specifies
compatibility with
Microsoft* Visual
C++ or Microsoft*
Visual Studio.

/Qvc7.1
/Qvc8
/Qvc9
(i32, i64em)

1170

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-[no-]vec
(i32, i64em)

/QvecEnables or disables
vectorization and
transformations
enabled for
vectorization.

/Qvec[-]
(i32, i64em)

-[no-]vec-guard-
write
(i32, i64em)

/Qvec-guard-
write-

Tells the compiler to
perform a conditional
check in a vectorized
loop.

/Qvec-guard-
write[-]
(i32, i64em)

-vec-report[n]
(i32, i64em)

/Qvec-report1Controls the
diagnostic
information reported
by the vectorizer.

/Qvec-report[n]
(i32, i64em)

-vec-threshold[n]
(i32, i64em)

/Qvec-thresh-
old100

Sets a threshold for
the vectorization of
loops.

/Qvec-thresh-
old[[:]n]
(i32, i64em)

-vms/novmsCauses the run-time
system to behave
like HP Fortran for

/Qvms

OpenVMS* Alpha
systems and VAX*
systems (VAX
FORTRAN*) in certain
ways; same as the
/vms option.

-xprocessor
(i32, i64em)

varies; see the option
description

Tells the compiler to
generate optimized
code specialized for

/Qxprocessor
(i32, i64em)

the Intel processor
that executes your
program.

1171

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-[no]zeroOFFInitializes to zero all
local scalar variables
of intrinsic type

/Qzero[-]

INTEGER, REAL,
COMPLEX, or
LOGICAL that are
saved but not yet
initialized.

-real-size size/real-size:32Specifies the default
KIND for real
variables.

/real-size:size

-[no]recursive/norecursiveTells the compiler
that all routines
should be compiled
for possible recursive
execution.

/[no]recursive

-reentrancy
keyword

/noreentrancyTells the compiler to
generate reentrant
code to support a
multithreaded
application.

/reentran-
cy:keyword

-check uninit or
-CU

OFFEnables run-time
checking for
uninitialized

/RTCu

variables; same as
option
/check:uninit.

-SOFFCauses the compiler
to compile to an
assembly file only
and not link.

/S

1172

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

NoneOFFTells the compiler to
compile the file as a
Fortran source file.

/source:file

-stand keyword/nostandTells the compiler to
issue compile-time
messages for
nonstandard
language elements.

/stand:keyword

-static
(Linux* OS only)

/staticPrevents linking with
shared libraries.

/static

-syntax-onlyOFFTells the compiler to
check only for correct
syntax.

/syntax-only

-Tf fileOFFTells the compiler to
compile the file as a
Fortran source file;
same as the /source
option.

/Tf file

-[no]threadsi32, i64: /nothreads
i64em: /threads

Tells the linker to
search for unresolved
references in a
multithreaded
run-time library.

/[no]threads

-[no]traceback/notracebackTells the compiler to
generate extra
information in the

/[no]traceback

object file to provide
source file traceback

1173

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

information when a
severe error occurs
at run time.

-tune keyword
(i32, i64em)

/tune:pn4Determines the
version of the
architecture for which

/tune:keyword
(i32, i64em)

the compiler
generates
instructions.

None
Note: the Linux* OS
and Mac OS* X
option -u is not the
same

OFFUndefines all
previously defined
preprocessor values.

/u

-UnameOFFUndefines any
definition currently in
effect for the

/Uname

specified symbol;
same as the /unde-
fine option.

NoneOFFUndefines any
definition currently in
effect for the
specified symbol;
same as option /U.

/undefine:name

-unroll[=n]/unrollTells the compiler the
maximum number of
times to unroll loops.

/unroll[:n]

This is the same as
/Qunroll, which is
the recommended
option to use.

1174

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-usOFFTells the compiler to
append an
underscore character

/us

to external
user-defined names;
same as the /as-
sume:underscore
option.

NoneOFFPlaces the text string
specified into the
object file (.obj)

/Vstring

being generated by
the compiler; same
as the /bintext
option.

-[no]vms/novmsCauses the run-time
system to behave
like HP* Fortran on

/[no]vms

OpenVMS* Alpha
systems and VAX*
systems (VAX
FORTRAN*).

-wOFFDisables all warning
messages; same as
specifying option
/warn:none or
/warn:nogeneral.

/w

-Wn/W1Disables (n=0) or
enables (n=1) all
warning messages.

/Wn

1175

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-warn keywordkeywords:
alignments
general
usage
nodeclarations
noerrors
noignore_loc
nointerfaces
nostderrors
notruncated_source
nouncalled
nounused

Specifies diagnostic
messages to be
issued by the
compiler.

/warn:keyword

-watch [keyword]/nowatchTells the compiler to
display certain
information to the
console output
window.

/watch[:keyword]

-WBOFFTurns a compile-time
bounds check error
into a warning.

/WB

-whatOFFTells the compiler to
display its detailed
version string.

/what

NoneOFFTells the compiler to
create a graphics or
Fortran Windows

/winapp

application and link
against the most
commonly used
libraries.

1176

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

-XOFFRemoves standard
directories from the
include file search
path.

/X

NoneOFFTells the compiler to
generate line
numbers and minimal

/Zd

debugging
information.
Deprecated; use
option /debug:mini-
mal.

-gOFFTells the compiler to
generate full
debugging

/Zi or /Z7

information in the
object file; same as
the /debug:full or
/debug option.

NoneOFFPrevents any linker
search options from
being included into

/Zl

the object file; same
as the /lib-
dir:none or /nolib-
dir option.

-Zp[n]/Zp16Aligns fields of
records and
components of

/Zp[n]

derived types on the
smaller of the size
boundary specified or

1177

21

Equivalent Option on
Linux* OS and Mac
OS* X

DefaultDescriptionOption

the boundary that
will naturally align
them; same as the
/align:recn byte
option.

NoneOFFTells the compiler to
perform syntax
checking only; same
as the /syntax-on-
ly option.

/Zs

See Also
• Quick Reference Guides and Cross References
• -map-opts, /Qmap-opts

Linux* OS and Mac OS* X Quick Reference Guide and Cross Reference

The table in this section summarizes Intel® Fortran compiler options used on Linux* OS and
Mac OS* X. Each summary also shows the equivalent compiler options on Windows* OS.

If you want to see the summarized Windows* OS options, see this table.

Some compiler options are only available on systems using certain architectures, as indicated
by these labels:

MeaningLabel

The option is available on systems using IA-32 architecture.i32

The option is available on systems using Intel® 64 architecture.i64em

The option is available on systems using IA-64 architecture.i64

If "only" appears in the label, the option is only available on the identified system or architecture.

If no label appears, the option is available on all supported systems and architectures.

For more details on the options, refer to the Alphabetical Compiler Options section.

1178

21 Intel® Fortran Compiler User and Reference Guides

The Intel® Fortran Compiler includes the Intel® Compiler Option Mapping tool. This tool lets you
find equivalent options by specifying compiler option -map-opts (Linux OS and Mac OS X) or
/Qmap-opts (Windows OS).

For information on conventions used in this table, see Conventions.

Quick Reference of Linux OS and Mac OS X Options

The following table summarizes all supported Linux OS and Mac OS X options. It also shows
equivalent Windows OS options, if any.

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/1OFFExecutes at least one
iteration of DO loops.

-1

NoneOFFTells the compiler to
use FORTRAN 66
semantics.

-66

/4L{72|80|132}-72Treats the statement
field of each
fixed-form source

-72, -80, -132

line as ending in
column 72, 80, or
132; same as the
-extend-source
option.

/align[:keyword]keywords:
nocommons
nodcommons
records
nosequence

Tells the compiler
how to align certain
data items.

-align [keyword]

/al-
low:[no]fpp_com-
ments

-allow fpp_com-
ments

Determines how the
fpp preprocessor
treats Fortran
end-of-line

-allow
[no]fpp_comments

1179

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

comments in
preprocessor
directive lines.

/[no]altparam-altparamAllows alternate
syntax (without
parentheses) for
PARAMETER
statements.

-[no]altparam

/Qansi-alias[-]-ansi-aliasTells the compiler to
assume the program
adheres to the

-[no-]ansi-alias

Fortran Standard
type aliasability
rules.

/arch:keyword
(i32, i64em)

varies; see the option
description

Tells the compiler to
generate optimized
code specialized for

-arch keyword
(i32, i64em)

the processor that
executes your
program.

1180

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/assume:keywordkeywords:
[no]bscc
[no]buffered_io
[no]byterecl
[no]cc_omp
[no]dummy_aliases
[no]ieee_fpe_flags
[no]minus0
[no]old_boz
[no]old_logical_ldio
[no]old_maxminloc
[no]old_unit_star
[no]old_xor
[no]protect_constants
[no]protect_parens
[no]realloc_lhs
[no]source_include
[no]std_mod_proc_name
[no]underscore
[no]2underscores
[no]writeable-strings

Tells the compiler to
make certain
assumptions.

-assume keyword

/[no]automatic-auto-scalarCauses all variables
to be allocated to the
run-time stack; same
as the -auto option.

-[no]automatic

/Qauto-scalar-auto-scalarCauses allocation of
scalar variables of
intrinsic types

-auto-scalar

INTEGER, REAL,
COMPLEX, and
LOGICAL to the
run-time stack.

1181

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/QautodoubleOFFMakes default real
and complex
variables 8 bytes

-autodouble

long; same as the
-real-size 64
option.

/Qaxprocessor
(i32, i64em)

OFFTells the compiler to
generate multiple,
processor-specific

-axprocessor
(i32, i64em)

auto-dispatch code
paths for Intel
processors if there is
a performance
benefit.

NoneOFFSpecifies a directory
that can be used to
find include files,
libraries, and
executables.

-Bdir

NoneOFFEnables dynamic
linking of libraries at
run time.

-Bdynamic
(Linux OS only)

NoneOFFEnables static linking
of a user's library.

-Bstatic
(Linux OS only)

/cOFFCauses the compiler
to compile to an
object file only and
not link.

-c

/CBOFFPerforms run-time
checks on whether
array subscript and

-CB

1182

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

substring references
are within declared
bounds; same as the
-check bounds
option.

/ccde-
fault:keyword

-ccdefault de-
fault

Specifies the type of
carriage control used
when a file is
displayed at a
terminal screen.

-ccdefault
keyword

/check[:keyword]-nocheckChecks for certain
conditions at run
time.

-check [keyword]

/cmOFFDisables all messages
about questionable
programming

-cm

practices; same as
specifying option
-warn nousage.

/Qcommon-argsOFFTells the compiler
that dummy (formal)
arguments to

-common-args

procedures share
memory locations
with other dummy
arguments or with
COMMON variables
that are assigned.
This option is the
same as -assume
dummy_aliases.

1183

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/Qcomplex-limit-
ed-range[-]

-no-complex-limit-
ed-range

Enables the use of
basic algebraic
expansions of some

-[no-]complex-
limited-range

arithmetic operations
involving data of type
COMPLEX.

/convert:keyword-convert nativeSpecifies the format
of unformatted files
containing numeric
data.

-convert keyword

/QcppOFFRuns the Fortran
preprocessor on
source files prior to
compilation.

-cpp

/CUOFFEnables run-time
checking for
uninitialized

-CU

variables. This option
is the same as
-check uninit.

None-no-cxxlibTells the compiler to
link using the C++
run-time libraries
provided by gcc.

-cxxlib[=dir]

None-no-cxxlibPrevents the compiler
from linking with the
standard C++
library.

-cxxlib-nostd

1184

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/Dname [=value]-noDDefines a symbol
name that can be
associated with an
optional value.

-Dname [=value]

/[no]d-linesor
/Qd-lines

-nod-linesCompiles debugging
statements indicated
by the letter D in
column 1 of the
source code.

-[no]d-lines

/d-lines-nod-linesCompiles debugging
statements indicated
by the letter D in

-DD

column 1 of the
source code; same as
the -d-lines option.

/debug:keyword
Note: the Windows
option takes different
keyword s

-debug noneSpecifies settings
that enhance
debugging.

-debug keyword

/debug-parame-
ters[:keyword]

-nodebug-parame-
ters

Tells the compiler to
generate debug
information for
PARAMETERs used in
a program.

-debug-parameters
[keyword]

/Qdiag-type :
diag-list

OFFControls the display
of diagnostic
information.

-diag-type
diag-list

/Qdiag-dumpOFFTells the compiler to
print all enabled
diagnostic messages
and stop compilation.

-diag-dump

1185

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/Qdiag-enable:sc-
include
(i32, i64em)

OFFTells the Source
Checker to analyze
include files and
source files when

-diag-enable sc-
include
(i32, i64em)

issuing diagnostic
message. This option
is equivalent to -di-
ag-enable sv-in-
clude.

/Qdiag-enable:sc-
parallel
(i32, i64em)

OFFEnables analysis of
parallelization in
source code (parallel
lint diagnostics).

-diag-enable sc-
parallel
(i32, i64em)

/Qdiag-error-lim-
it:n

-diag-error-limit
30

Specifies the
maximum number of
errors allowed before
compilation stops.

-diag-error-limit
n

/Qdiag-
file[:file]

OFFCauses the results of
diagnostic analysis to
be output to a file.

-diag-file[= file]

/Qdiag-file-ap-
pend[:file]

OFFCauses the results of
diagnostic analysis to
be appended to a file.

-diag-file-ap-
pend[= file]

/Qdiag-id-num-
bers[-]

-diag-id-numbersTells the compiler to
display diagnostic
messages by using
their ID number
values.

-[no-]diag-id-
numbers

1186

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/Qdiag-
once:id[,id,...]

OFFTells the compiler to
issue one or more
diagnostic messages
only once

-diag-once
id[,id,...]

/double-size:size-double-size 64Defines the default
KIND for DOUBLE
PRECISION and
DOUBLE COMPLEX
variables.

-double-size size

/Qdps-dpsSpecifies that the
alternate syntax for
PARAMETER

-dps

statements is
allowed; same as the
-altparam option.

NoneOFFSpecifies that driver
tool commands
should be shown but
not executed.

-dryrun

NoneOFFDisplays the target
machine and
operating system
configuration.

-dumpmachine

NoneOFFSpecifies a dynamic
linker in file other
than the default.

-dynamic-link-
erfile
(Linux OS only)

NoneOFFInvokes the libtool
command to
generate dynamic
libraries.

-dynamiclib
(i32, i64em; Mac OS
X only)

1187

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/Qdyncom "com-
mon1,common2,..."

OFFEnables dynamic
allocation of common
blocks at run time.

-dyncom "com-
mon1,common2,..."

/EOFFCauses the Fortran
preprocessor to send
output to stdout.

-E

NoneOFFCauses the compiler
to issue errors
instead of warnings

-e03, -e95, -e90

for nonstandard
Fortran; same as the
-warn stderrors
option.

/EPOFFCauses the Fortran
preprocessor to send
output to stdout,
omitting #line
directives.

-EP

/error-limit:n-error-limit 30Specifies the
maximum number of
error-level or

-error-limit n

fatal-level compiler
errors allowed for a
file specified on the
command line; same
as -diag-error-
limit.

/extend-
source:size

-extend-source 72Specifies the length
of the statement field
in a fixed-form
source file.

-extend-source
size

1188

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/f66OFFTells the compiler to
use FORTRAN 66
semantics.

-f66

/[no]f77rtlOFFTells the compiler to
use FORTRAN 77
run-time behavior.

-[no]f77rtl

NoneONDetermines whether
aliasing should be
assumed in the
program.

-f[no-]alias

/Qfnalign[:n]
(i32, i64em)

-no-falign-func-
tions

Tells the compiler to
align functions on an
optimal byte
boundary.

-falign-func-
tions[=n]
(i32, i64em)

None-falign-stack=de-
fault

Tells the compiler to
align functions on an
optimal byte
boundary.

-falign-
stack[=mode]
(i32 only)

/fastOFFMaximizes speed
across the entire
program.

-fast

/Qfast-transcen-
dentals[-]

ONEnables the compiler
to replace calls to
transcendental

-[no-]fast-tran-
scendentals

functions with faster
but less precise
implementations.

/FAcOFFProduces an
assembly file with
optional machine
code annotations.

-fcode-asm

1189

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

None-fno-exceptionsEnables exception
handling table
generation.

-f[no-]exceptions

-ffnaliasOFFSpecifies that aliasing
should be assumed
within functions.

-f[no-]fnalias

/FIdetermined by file
suffix

Specifies source files
are in fixed format;
same as the -fixed
option.

-FI

None-fno-inlineTells the compiler to
inline functions
declared with cDEC$
ATTRIBUTES
FORCEINLINE.

-f[no-]inline

/Ob2-finline-func-
tions

Enables function
inlining for single file
compilation.

-f[no-]inline-
functions

NoneOFFLets you specify the
maximum size of a
function to be inlined.

-finline-limit=n

/Qinstrument-
functions[-]

-fno-instrument-
functions

Determines whether
function entry and
exit points are
instrumented.

-f[no-]instru-
ment-functions

/[no]fixeddetermined by file
suffix

Specifies source files
are in fixed format.

-[no]fixed

1190

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/Qkeep-static-
consts[-]

-fno-keep-static-
consts

Tells the compiler to
preserve allocation of
variables that are not
referenced in the
source.

-f[no-]keep-stat-
ic-consts

/[no]fltconsisten-
cy

OFFEnables improved
floating-point
consistency.

-[no]fltconsisten-
cy

/Qfma[-]
(i64 only)

-fmaEnables the
combining of
floating-point

-[no-]fma
(i64 only; Linux OS
only)

multiplies and
add/subtract
operations.

None-fno-math-errnoTells the compiler
that errno can be
reliably tested after

-f[no-]math-errno

calls to standard
math library
functions.

NoneOFFTells the compiler to
treat a compilation
unit as a component

-fminshared

of a main program
and not to link it as a
shareable object.

/Qfnsplit[-]
(i32, i64)

OFFEnables function
splitting.

-[no-]fnsplit
(i64 only; Linux OS
only)

1191

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/Oy[-]
(i32 only)

-fomit-frame-
pointer (unless
option -O0 or -g is
specified)

Determines whether
EBP is used as a
general-purpose
register in
optimizations. This is

-f[no-]omit-
frame-pointer
(i32, i64em)

the same as
specifying option
-fp, which is
deprecated.

/fp:keyword-fp-model fastControls the
semantics of
floating-point
calculations.

-fp-model keyword

/Qfp-port[-]-no-fp-portRounds floating-point
results after
floating-point

-[no-]fp-port

operations, so
rounding to
user-declared
precision happens at
assignments and
type conversions
(some impact on
speed).

/Qfp-relaxed[-]
(i64 only)

-no-fp-relaxedEnables use of faster
but slightly less
accurate code

-[no-]fp-relaxed
(i64 only; Linux OS
only)

sequences for math
functions, such as
divide and sqrt.

1192

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/Qfp-specula-
tion:mode

-fp-specula-
tion=fast

Tells the compiler the
mode in which to
speculate on
floating-point
operations.

-fp-specula-
tion=mode

/Qfp-stack-check
(i32, i64em)

OFFGenerates extra code
after every function
call to ensure that

-fp-stack-check
(i32, i64em)

the FP
(floating-point) stack
is in the expected
state.

/[no]fpconstantOFFTells the compiler
that single-precision
constants assigned to

-[no]fpconstant

double-precision
variables should be
evaluated in double
precision.

/fpe:n-fpe3Specifies the
floating-point
exception handling
level for the main
program at run-time.

-fpen

/fpe-all:n-fpe-all3Specifies the
floating-point
exception handling
level for each routine
at run-time.

-fpe-all=n

None-fno-picGenerates
position-independent
code.

-f[no-]pic, -fPIC

1193

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

NoneOFFTells the compiler to
generate
position-independent
code.

-fpie
(Linux OS only)

/fpp[n] or
/fpp[="option"]

-nofppRuns the Fortran
preprocessor on
source files prior to
compilation.

-fpp[n] or
-fpp[="option"]

/fpscomp[:keyword]-fpscomp libsSpecifies
compatibility with
Microsoft* Fortran
PowerStation or
Intel® Fortran.

-fpscomp
[keyword]

/FRdetermined by file
suffix

Specifies source files
are in free format;
same as the -free
option.

-FR

NoneOFFDisables use of high
floating-point
registers.

-fr32
(i64 only; Linux OS
only)

/[no]freedetermined by file
suffix

Specifies source files
are in free format.

-[no]free

/FAsOFFProduces an
assembly file with
optional source code
annotations.

-fsource-asm

/GS[-]-fno-stack-securi-
ty-check

Determines whether
the compiler
generates code that

-f[no-]stack-secu-
rity-check

detects some buffer

1194

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

overruns; same as
-f[no-]stack-pro-
tector.

NoneOFFSpecifies that the
source file should be
checked only for
correct syntax; same
as -syntax-only.

-fsyntax-only

/QtrapuvOFFInitializes stack local
variables to an
unusual value.

-ftrapuv

/Qftz[-]i64: -no-ftz
i32, i64em: -ftz

Flushes denormal
results to zero.

-[no-]ftz

None-no-func-groupsEnables or disables
function grouping if
profiling information

-[no-]func-groups
(i32, i64em; Linux
OS only)

is enabled. This
option is deprecated,
use -prof-func-
groups.

/Qunroll-funroll-loopsTells the compiler to
unroll user loops
based on the default

-funroll-loops

optimization
heuristics; same as
-unroll, which is
the recommended
option.

1195

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

None-fno-verbose-asmProduces an
assembly file with
compiler comments,
including options and
version information.

-fverbose-asm

None-fvisibility=de-
fault

Specifies the default
visibility for global
symbols; the 2nd
form indicates
symbols in a file.

-fvisibili-
ty=keyword
-fvisibility-
keyword= file

/Zi, /Z7OFFProduces symbolic
debug information in
the object file.

-g

NoneOFFEnables generation of
debug information
using the DWARF2
format.

-gdwarf2

/gen-inter-
faces[:[no]source]

-nogen-interfacesTells the compiler to
generate an interface
block for each routine
in a source file.

-gen-interfaces
[[no]source]

/Qglobal-hoist[-]-global-hoistEnables certain
optimizations that
can move memory

-[no-]global-
hoist

loads to a point
earlier in the
program execution
than where they
appear in the source.

1196

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/heap-ar-
rays[:size]

-no-heap-arraysPuts automatic
arrays and arrays
created for

-heap-arrays
[size]

temporary
computations on the
heap instead of the
stack.

/help [category]OFFDisplays the list of
compiler options.

-help [category]

/IdirOFFSpecifies a directory
to add to the include
path.

-Idir

NoneOFFLinks Intel-provided
libraries dynamically.
This is a deprecated
option; use
-shared-intel.

-i-dynamic

NoneOFFLinks Intel-provided
libraries statically.
This is a deprecated
option; use -stat-
ic-intel.

-i-static

/4I{2|4|8}-i4Specifies the default
KIND for integer and
logical variables;
same as the -inte-
ger-size option.

-i{2|4|8}

NoneOFFAdds a directory to
the second include
file search path.

-idirafterdir

1197

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/4YdOFFSets the default type
of a variable to
undefined; same as
option warn decla-
rations.

-implicitnone

/Qinline-debug-
info

OFFProduces enhanced
source position
information for
inlined code.

-inline-debug-in-
fo

/Qinline-factor=n-no-inline-factorSpecifies the
percentage multiplier
that should be

-inline-factor=n

applied to all inlining
options that define
upper limits.

/Qinline-forcein-
line

OFFSpecifies that an
inline routine should
be inlined whenever
the compiler can do
so.

-inline-forcein-
line

/Obn-inline-level=2 if
-O2 is in effect
-inline-level=0 if
-O0 is specified

Specifies the level of
inline function
expansion. n = 0, 1,
or 2.

-inline-level=n

/Qinline-max-per-
compile=n

-no-inline-max-
per-compile

Specifies the
maximum number of
times inlining may be
applied to an entire
compilation unit.

-inline-max-per-
compile=n

1198

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/Qinline-max-per-
routine=n

-no-inline-max-
per-routine

Specifies the
maximum number of
times the inliner may
inline into a
particular routine.

-inline-max-per-
routine=n

/Qinline-max-
size=n

-no-inline-max-
size

Specifies the lower
limit for the size of
what the inliner
considers to be a
large routine.

-inline-max-
size=n

/Qinline-max-to-
tal-size=n

-no-inline-max-
total-size

Specifies how much
larger a routine can
normally grow when
inline expansion is
performed.

-inline-max-to-
tal-size=n

/Qinline-min-
size=n

-no-inline-min-
size

Specifies the upper
limit for the size of
what the inliner
considers to be a
small routine.

-inline-min-
size=n

/[no]intconstant-nointconstantTells the compiler to
use FORTRAN 77
semantics to
determine the KIND
for integer constants.

-[no]intconstant

/integer-
size:size

-integer-size 32Specifies the default
KIND for integer and
logical variables.

-integer-size
size

1199

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/Qip[-]OFFEnables additional
single-file
interprocedural
optimizations.

-[no-]ip

/Qip-no-inliningOFFDisables full and
partial inlining
enabled by -ip.

-ip-no-inlining

/Qip-no-pinliningOFFDisables partial
inlining.

-ip-no-pinlining

/QIPF-flt-eval-
method0
(i64 only)

OFFTells the compiler to
evaluate the
expressions involving
floating-point

-IPF-flt-eval-
method0
(i64 only; Linux OS
only)

operands in the
precision indicated by
the variable types
declared in the
program.
Deprecated.

/QIPF-fltacc
(i64 only)

-no-IPF-fltaccTells the compiler to
apply optimizations
that affect

-IPF-fltacc
(i64 only; Linux OS
only)

floating-point
accuracy.
Deprecated.

/QIPF-fma
(i64 only)

-IPF-fmaEnables the
combining of
floating-point

-IPF-fma
(i64 only; Linux OS
only)

multiplies and
add/subtract

1200

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

operations.
Deprecated; use
-fma.

/QIPF-fp-relaxed
(i64 only)

-no-IPF-fp-re-
laxed

Enables use of faster
but slightly less
accurate code

-IPF-fp-relaxed
(i64 only; Linux OS
only)

sequences for math
functions, such as
divide and sqrt.
Deprecated; use
-fp-relaxed.

/Qipo[n]OFFEnables multifile IP
optimizations
between files.

-ipo[n]

/Qipo-cOFFGenerates a multifile
object file that can be
used in further link
steps.

-ipo-c

/Qipo-jobs:n-ipo-jobs1Specifies the number
of commands to be
executed

-ipo-jobsn

simultaneously
during the link phase
of Interprocedural
Optimization (IPO).

/Qipo-SOFFGenerates a multifile
assembly file that
can be used in
further link steps.

-ipo-S

/Qipo-separateOFFGenerates one object
file per source file.

-ipo-separate
(Linux OS only)

1201

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

NoneOFFSpecifies a directory
to add to the start of
the system include
path.

-isystemdir

/Qivdep-parallel
(i64 only)

OFFTells the compiler
that there is no
loop-carried memory

-ivdep-parallel
(i64 only; Linux OS
only)

dependency in any
loop following an
IVDEP directive.

NoneOFFTells the linker to
search for a specified
library when linking.

-lstring

NoneOFFTells the linker where
to search for libraries
before searching the
standard directories.

-Ldir

/[no]logo-nologoDisplays compiler
version information.

-[no]logo

/Qlowercase-lowercaseCauses the compiler
to ignore case
differences in

-lowercase

identifiers and to
convert external
names to lowercase;
same as the -names
lowercase option.

/archvaries; see option
description

Tells the compiler to
generate optimized
code specialized for

-m[processor]
(i32, i64em)

1202

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

the processor that
executes your
program.

NoneOFFTells the compiler to
generate code for
IA-32 architecture or

-m32, -m64
(i32, i64em)

Intel® 64
architecture,
respectively.

/Qmap-optsOFFMaps one or more
Linux* OS compiler
options to their

-map-opts
(Linux OS only)

equivalent on a
Windows* system (or
vice versa).

Nonei32: OFF
i64em: -march=pen-
tium4

Tells the compiler to
generate code for a
specified processor.

-march=processor
(i32, i64em; Linux
OS only)

None-mcmodel=smallTells the compiler to
use a specific
memory model to
generate code and
store data.

-mcmod-
el=mem_model
(i64em only; Linux
OS only)

NoneOFFGenerates code that
is not
position-independent

-mdynamic-no-pic
(i32 only; Mac OS X
only)

but has
position-independent
external references.

/fltconsistencyOFFTells the compiler to
use IEEE floating
point comparisons.

-mieee-fp

1203

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

This is the same as
specifying option
-fltconsistency or
-mp.

/Qinstruction:[no]movbe
(i32, i64em)

OFFDetermines whether
MOVBE instructions
are generated for
Intel processors.

-minstruc-
tion=[no]movbe
(i32, i64em)

/iface:mixed_str_len_argOFFTells the compiler
that the hidden
length passed for a

-mixed_str_len_arg

character argument
is to be placed
immediately after its
corresponding
character argument
in the argument list.

/Qmkl[=libOFFTells the compiler to
link to certain parts
of the Intel® Math
Kernel Library.

-mkl[=lib

/module:pathOFFSpecifies the
directory where
module files should

-module path

be placed when
created and where
they should be
searched for.

/OpOFFEnables improved
floating-point
consistency.

-mp

1204

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/QprecOFFImproves
floating-point
precision and
consistency.

-mp1

None-mno-relaxDetermines whether
the compiler passes
linker option -relax
to the linker.

-m[no-]relax
(i64 only)

Nonei32: -mtune=pen-
tium4
i64: -mtune=itani-
um2-p9000

Performs
optimizations for a
particular processor.
-mtune=itanium2 is
equivalent to /G2.

-mtune=processor

/MP: nOFFCreates multiple
processes that can be
used to compile large

-multiple-process-
es= n

numbers of source
files at the same
time.

/names:keyword-names lowercaseSpecifies how source
code identifiers and
external names are
interpreted.

-names keyword

/nbs-nbsTells the compiler to
treat the backslash
character (\) as a

-nbs

normal character in
character literals;
same as the -assume
nobscc option.

1205

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/Qno-bss-initOFFTells the compiler to
place in the DATA
section any variables
explicitly initialized
with zeros.

-no-bss-init

NoneOFFPrevents the compiler
from using standard
libraries when
linking.

-nodefaultlibs

/nodefineOFFSpecifies that all
preprocessor
definitions apply only

-nodefine

to fpp and not to
Intel® Fortran
conditional
compilation
directives.

NoneOFFSpecifies the main
program is not
written in Fortran,

-nofor-main

and prevents the
compiler from linking
for_main.o into
applications.

/noincludeOFFPrevents the compiler
from searching in a
directory previously

-noinclude

added to the include
path for files
specified in an
INCLUDE statement.

1206

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

NoneOFFDisables inline
expansion of
standard library or
intrinsic functions.

-nolib-inline

NoneOFFPrevents the compiler
from using standard
startup files when
linking.

-nostartfiles

NoneOFFRemoves standard
directories from the
include file search
path; same as the -X
option.

-nostdinc

NoneOFFPrevents the compiler
from using standard
libraries and startup
files when linking.

-nostdlib

NoneOFFDisables appending
an underscore to
external user-defined

-nus

names; same as the
-assume nounder-
score option.

NoneOFFSpecifies the name
for an output file.

-ofile

/O[n]-O2Specifies the code
optimization for
applications.

-O[n]

/OdOFFDisables all
optimizations.

-O0

1207

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/onetripOFFExecutes at least one
iteration of DO loops.

-onetrip

/QopenmpOFFEnables the
parallelizer to
generate

-openmp

multithreaded code
based on OpenMP*
directives.

/Qopenmp-lib:type-openmp-lib lega-
cy

Lets you specify an
OpenMP* run-time
library to use for
linking.

-openmp-lib type
(Linux OS only)

/Qopenmp-
link:library

-openmp-link dy-
namic

Controls whether the
compiler links to
static or dynamic
OpenMP run-time
libraries.

-openmp-link
library

/Qopenmp-profileOFFEnables analysis of
OpenMP*
applications.

-openmp-profile
(Linux OS only)

/Qopenmp-re-
port[n]

-openmp-report1Controls the OpenMP
parallelizer's level of
diagnostic messages.

-openmp-report[n]

/Qopenmp-stubsOFFEnables compilation
of OpenMP programs
in sequential mode.

-openmp-stubs

/Qopenmp-thread-
private:type

-openmp-threadpri-
vate legacy

Lets you specify an
OpenMP*
threadprivate
implementation.

-openmp-threadpri-
vate type
(Linux OS only)

1208

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/Qopt-block-fac-
tor:n

OFFLets you specify a
loop blocking factor.

-opt-block-fac-
tor=n

/Qopt-jump-ta-
bles:keyword

-opt-jump-ta-
bles=default

Enables or disables
generation of jump
tables for switch
statements.

-opt-jump-ta-
bles=keyword

/Qopt-loadpair[-]
(i64 only)

-no-opt-loadpairEnables or disables
loadpair optimization.

-[no-]opt-load-
pair
(i64 only; Linux OS
only)

None-opt-malloc-op-
tions=0

Lets you specify an
alternate algorithm
for malloc().

-opt-malloc-op-
tions=n
(i32, i64em)

/Qopt-mem-band-
widthn
(i64 only)

-opt-mem-band-
width0 for serial
compilation; -opt-
mem-bandwidth1 for
parallel compilation

Enables performance
tuning and heuristics
that control memory
bandwidth use
among processors.

-opt-mem-band-
widthn
(i64 only; Linux OS
only)

/Qopt-mod-version-
ing[-]
(i64 only)

-no-opt-mod-ver-
sioning

Enables or disables
versioning of modulo
operations for certain
types of operands.

-[no-]opt-mod-
versioning
(i64 only; Linux OS
only)

/Qopt-multi-ver-
sion-aggres-
sive[-]
(i32, i64em)

-no-opt-multi-
version-aggres-
sive

Tells the compiler to
use aggressive
multi-versioning to
check for pointer
aliasing and scalar
replacement.

-[no-]opt-multi-
version-aggres-
sive
(i32, i64em)

1209

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/Qopt-prefetch[:n]i64: -opt-prefetch
i32, i64em: -no-
opt-prefetch

Enables prefetch
insertion
optimization.

-opt-prefetch[=n]

/Qopt-prefetch-
initial-values[-]
(i64 only)

-opt-prefetch-
initial-values

Enables or disables
prefetches that are
issued before a loop
is entered.

-[no-]opt-
prefetch-initial-
values
(i64 only; Linux OS
only)

/Qopt-prefetch-
issue-excl-
hint[-]
(i64 only)

-no-opt-prefetch-
issue-excl-hint

Determines whether
the compiler issues
prefetches for stores
with exclusive hint.

-[no-]opt-
prefetch-issue-
excl-hint
(i64 only; Linux OS
only)

/Qopt-prefetch-
next-itera-
tion[-][:n]
(i64 only)

-opt-prefetch-
next-iteration

Enables or disables
prefetches for a
memory access in
the next iteration of
a loop.

-[no-]opt-
prefetch-next-it-
eration
(i64 only; Linux OS
only)

/Qopt-ra-region-
strategy[:keyword]
(i32, i64em)

-opt-ra-region-
strategy=default

Selects the method
that the register
allocator uses to
partition each routine
into regions.

-opt-ra-region-
strate-
gy[=keyword]
(i32, i64em)

/Qopt-report[:n]-opt-report 2Tells the compiler to
generate an
optimization report to
stderr.

-opt-report [n]

/Qopt-report-
file:file

OFFSpecifies the name
for an optimization
report.

-opt-report-
file=file

1210

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/Qopt-report-helpOFFDisplays the
optimizer phases
available for report
generation.

-opt-report-help

/Qopt-report-
phase:phase

OFFSpecifies an
optimizer phase to
use when
optimization reports
are generated.

-opt-report-
phase=phase

/Qopt-report-rou-
tine:string

OFFTells the compiler to
generate reports on
the routines
containing specified
text.

-opt-report-rou-
tine=string

/Qopt-streaming-
stores:keyword
(i32, i64em)

-opt-streaming-
stores auto

Enables generation of
streaming stores for
optimization.

-opt-streaming-
stores keyword
(i32, i64em)

/Qopt-subscript-
in-range[-]
(i32, i64em)

-no-opt-sub-
script-in-range

Determines whether
the compiler assumes
no overflows in the
intermediate

-[no-]opt-sub-
script-in-range
(i32, i64em)

computation of
subscript expressions
in loops.

NoneOFFCompiles and links
for function profiling
with gprof(1).

-p

/POFFCauses the Fortran
preprocessor to send
output to a file,

-P

which is named by

1211

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

default; same as the
-preprocess-only
option.

/Qpad[-]OFFEnables the changing
of the variable and
array memory layout.

-[no]pad

/[no]pad-source or
/Qpad-source[-]

OFFSpecifies padding for
fixed-form source
records.

-[no]pad-source

/Qpar-affini-
ty:[modifier,...]
type[,permute][,offset]

OFFSpecifies thread
affinity.

-par-affini-
ty=[modifier,...]
type[,permute]
[,offset]
(Linux* OS only)

/Qpar-num-
threads:n

OFFSpecifies the number
of threads to use in a
parallel region.

-par-num-
threads=n

/Qpar-report[n]-par-report1Controls the
diagnostic
information reported
by the
auto-parallelizer.

-par-report[n]

/Qpar-runtime-
control[-]

-no-par-runtime-
control

Generates code to
perform run-time
checks for loops that
have symbolic loop
bounds.

-[no-]par-run-
time-control

/Qpar-sched-
ule-keyword [[:]n]

OFFSpecifies a
scheduling algorithm
for DO loop
iterations.

-par-sched-
ule-keyword [=n]

1212

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/Qpar-thresh-
old[[:]n]

-par-threshold100Sets a threshold for
the
auto-parallelization
of loops.

-par-threshold[n]

/QparallelOFFTells the
auto-parallelizer to
generate

-parallel

multithreaded code
for loops that can be
safely executed in
parallel.

/Qpcn
(i32, i64em)

-pc80Enables control of
floating-point
significand precision.

-pcn
(i32, i64em)

NoneOFFCompiles and links
for function profiling
with gprof(1); same
as the -p option.

-pg

NoneOFFProduces a
position-independent
executable on
processors that
support it.

-pie

(Linux OS only)

/Qprec-div[-]-prec-divImproves precision of
floating-point divides.

-[no-]prec-div

/Qprec-sqrt[-]
(i32, i64em)

-no-prec-sqrtImproves precision of
square root
implementations.

-[no-]prec-sqrt
(i32, i64em)

1213

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/Qprefetchi64: -prefetch
i32, i64em: -no-
prefetch

Enables prefetch
insertion
optimization.
Deprecated; use
-opt-prefetch.

-prefetch

/preprocess-onlyOFFCauses the Fortran
preprocessor to send
output to a file,

-preprocess-only

which is named by
default; same as the
-P option.

NoneOFFPrints information
about where system
libraries should be
found.

-print-multi-lib

/Qprof-data-or-
der[-]

-no-prof-data-or-
der

Enables or disables
data ordering if
profiling information
is enabled.

-[no-]prof-data-
order
(Linux OS only)

/Qprof-dir dirOFFSpecifies a directory
for profiling
information output
files.

-prof-dir dir

/Qprof-file fileOFFSpecifies a file name
for the profiling
summary file.

-prof-file file

None-no-prof-func-
groups

Enables or disables
function grouping if
profiling information
is enabled.

-[no-]prof-func-
groups
(i32, i64em; Linux
OS only)

1214

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/Qprof-func-or-
der[-]

-no-prof-func-or-
der

Enables or disables
function ordering if
profiling information
is enabled.

-[no-]prof-func-
order
(Linux OS only)

/Qprof-
gen[:keyword

-[no-]prof-genProduces an
instrumented object
file that can be used
in profile-guided
optimization.

-prof-
gen[=keyword]

/Qprof-genxOFFProduces an
instrumented object
file that includes

-prof-genx

extra source position
information.
Deprecated; use
-prof-gen=srcpos.

/Qprof-hotness-
threshold:n

OFFLets you set the
hotness threshold for
function grouping
and function
ordering.

-prof-hotness-
threshold=n
(Linux OS only)

/Qprof-src-dir[-]-prof-src-dirDetermines whether
directory information
of the source file

-[no-]prof-src-
dir

under compilation is
considered when
looking up profile
data records.

1215

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/Qprof-src-
root:dir

OFFLets you use relative
directory paths when
looking up profile
data and specifies a
directory as the base.

-prof-src-
root=dir

/Qprof-src-root-
cwd

OFFLets you use relative
directory paths when
looking up profile

-prof-src-root-
cwd

data and specifies
the current working
directory as the base.

/Qprof-use[:arg]-no-prof-useEnables the use of
profiling information
during optimization.

-prof-use[=arg]

NoneOFFSpecifies the root
directory where the
compiler installation
was performed.

-Qinstall dir

/Qloca-
tion,string,dir

OFFSpecifies a directory
as the location of the
specified tool in
string .

-Qloca-
tion,string,dir

/Qop-
tion,string,options

OFFPasses options to
the specified tool in
string.

-Qop-
tion,string,options

/4R8, /4R16OFFSpecifies the default
KIND for real and
complex variables.

-r8, -r16

-r8 is the same as

1216

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/real-size:64.
-r16 is the same as
/real-size:128.

/Qrcd
(i32, i64em)

OFFEnables fast
float-to-integer
conversions.

-rcd
(i32, i64em)

/Qrct
(i32, i64em)

OFFSets the internal FPU
rounding control to
Truncate.

-rct
(i32, i64em)

/real-size:size-real-size 32Specifies the default
KIND for real
variables.

-real-size size

/recursive-norecursiveTells the compiler
that all routines
should be compiled
for possible recursive
execution.

-recursive

/reentran-
cy:keyword

-noreentrancyTells the compiler to
generate reentrant
code to support a
multithreaded
application.

-reentrancy
keyword

/SOFFCauses the compiler
to compile to an
assembly file (.s)

-S

only and not link;
same as options /Fa
and /asmfile.

1217

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/Qsafe-cray-ptrOFFTells the compiler
that Cray* pointers
do not alias other
variables.

-safe-cray-ptr

/Qsave-auto-scalarCauses variables to
be placed in static
memory.

-save

/Qsave-temps[-]-no-save-tempsTells the compiler to
save intermediate
files created during
compilation.

-[no-]save-temps

/Qscalar-rep[-]
(i32 only)

-no-scalar-repEnables scalar
replacement
performed during
loop transformation
(requires -O3).

-[no-]scalar-rep
(i32 only)

NoneOFFTells the compiler to
produce a dynamic
shared object instead
of an executable.

-shared
(Linux OS only)

NoneOFFLinks Intel-provided
libraries dynamically.

-shared-intel

None-shared-libgccLinks the GNU libgcc
library dynamically.

-shared-libgcc
(Linux OS only)

/Qsox[-]-no-soxTells the compiler to
save the compilation
options and version
number in the Linux
OS executable.

-[no-]sox
(Linux OS only)

1218

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/stand:keyword-nostandCauses the compiler
to issue compile-time
messages for
nonstandard
language elements.

-stand keyword

/static-staticPrevents linking with
shared libraries.

-static
(Linux OS only)

NoneOFFInvokes the libtool
command to
generate static
libraries.

-staticlib
(i32, i64em; Mac OS
X only)

NoneOFFLinks Intel-provided
libraries statically.

-static-intel

NoneOFFLinks the GNU libgcc
library statically.

-static-libgcc
(Linux OS only)

/stand:f90OFFCauses the compiler
to issue messages for
language elements

-std90

that are not standard
in Fortran 90; same
as -stand f90.

/stand:f95OFFCauses the compiler
to issue messages for
language elements

-std95

that are not standard
in Fortran 95; same
as -stand f95.

/stand:f03OFFCauses the compiler
to issue messages for
language elements

-std03

1219

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

that are not standard
in Fortran 2003;
same as -std or
-stand f03.

/syntax-onlyOFFSpecifies that the
source file should be
checked only for
correct syntax.

-syntax-only

NoneOFFTells the linker to
read link commands
from the specified
file.

-T file
(Linux OS only)

/QtcheckOFFEnables analysis of
threaded
applications.

-tcheck
(Linux OS only)

/Qtcollect[=lib]OFFInserts
instrumentation
probes calling the
Intel(R) Trace
Collector API.

-tcollect [lib]
(Linux OS only)

/Qtcollect-fil-
ter[=file]

OFFLets you enable or
disable the
instrumentation of
specified functions.

-tcollect-filter
[file]
(Linux OS only)

/Tf fileOFFTells the compiler to
compile the file as a
Fortran source file.

-Tf file

1220

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/[no]threadsi32, i64: -nothreads
i64em: -threads

Tells the linker to
search for unresolved
references in a
multithreaded
run-time library.

-[no]threads

/QtprofileOFFGenerates
instrumentation to
analyze
multi-threading
performance.

-tprofile
(Linux OS only)

/[no]traceback-notracebackTells the compiler to
generate extra
information in the

-[no]traceback

object file to provide
source file traceback
information when a
severe error occurs
at run time.

/tune:keyword
(i32, i64em)

-tune pn4Determines the
version of the
architecture for which

-tune keyword
(i32, i64em)

the compiler
generates
instructions.

None
Note: the Windows
option /u is not the
same

OFFEnables error
messages about any
undeclared symbols;
same as the -warn
declarations
option.

-u

1221

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/UnameOFFUndefines any
definition currently in
effect for the
specified symbol.

-Uname

/unroll[:n]-unrollTells the compiler the
maximum number of
times to unroll loops.

-unroll[n]

-unroll is the same
as option -funroll-
loops.

/Qunroll-aggres-
sive[-]
(i32, i64em)

-no-unroll-aggres-
sive

Determines whether
the compiler uses
more aggressive
unrolling for certain
loops.

-[no-]unroll-ag-
gressive
(i32, i64em)

/QuppercaseOFFCauses the compiler
to ignore case
differences in

-uppercase

identifiers and to
convert external
names to uppercase;
same as the -names
uppercase option.

/us-usTells the compiler to
append an
underscore character

-us

to external
user-defined names;
same as the -assume
underscore option.

1222

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/Quse-asm[-]
(i32 only)

-no-use-asmTells the compiler to
produce objects
through the
assembler.

-[no-]use-asm

NoneOFFTells the driver that
tool commands
should be shown and
executed.

-v [file]

NoneOFFDisplays the compiler
version information;
same as the -logo
option.

-V

/Qvec[-]
(i32, i64em)

-no-vecEnables or disables
vectorization and
transformations
enabled for
vectorization.

-[no-]vec
(i32, i64em)

/Qvec-guard-
write[-]
(i32, i64em)

-no-vec-guard-
write

Tells the compiler to
perform a conditional
check in a vectorized
loop.

-[no-]vec-guard-
write
(i32, i64em)

/Qvec-report[n]
(i32, i64em)

-vec-report1Controls the
diagnostic
information reported
by the vectorizer.

-vec-report[n]
(i32, i64em)

/Qvec-thresh-
old[[:]n]
(i32, i64em)

-vec-threshold100Sets a threshold for
the vectorization of
loops.

-vec-threshold[n]
(i32, i64em)

1223

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/[no]vms-novmsCauses the run-time
system to behave
like HP* Fortran on

-[no]vms

OpenVMS* Alpha
systems and VAX*
systems (VAX
FORTRAN*).

/wOFFDisables all warning
messages; same as
specifying option
-warn noneor -warn
nogeneral.

-w

/Wn-W1Disables (n=0) or
enables (n=1) all
warning messages.

-Wn

NoneOFFPasses options (
o1,o2, and so forth)
to the assembler for
processing.

-Wa,o1[,o2,...]

/warn[:keyword]keywords:
alignments
nodeclarations
noerrors
general
noignore_loc
nointerfaces
nostderrors
notruncated_source
nouncalled
nounused
usage

Specifies diagnostic
messages to be
issued by the
compiler.

-warn [keyword]

1224

21 Intel® Fortran Compiler User and Reference Guides

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/[no]watch[:keyword]-nowatchTells the compiler to
display certain
information to the
console output
window.

-[no]watch
[keyword]

/WBOFFTurns a compile-time
bounds check error
into a warning.

-WB

/whatOFFTells the compiler to
display its detailed
version string.

-what

NoneOFFEnables diagnostics
about what is inlined
and what is not
inlined.

-Winline

NoneOFFPasses options (o1,
o2, and so forth) to
the linker for
processing.

-Wl,option1 [,op-
tion2,...]

NoneOFFPasses options (o1,
o2, and so forth) to
the preprocessor.

-Wp,option1 [,op-
tion2,...]

/Qxp
(i32, i64em)

varies; see the option
description

Tells the compiler to
generate optimized
code specialized for

-xp
(i32, i64em)

the Intel processor
that executes your
program.

1225

21

Equivalent Option on
Windows* OS

DefaultDescriptionOption

/XOFFRemoves standard
directories from the
include file search
path.

-X

NoneOFFPasses a linker option
directly to the linker

-Xlinker option

/ZsOFFSpecifies that the
source file should be
checked only for

-y

correct syntax; same
as the -syntax-on-
ly option.

/Qzero[-]-nozeroInitializes to zero all
local scalar variables
of intrinsic type

-[no]zero

INTEGER, REAL,
COMPLEX, or
LOGICAL that are
saved but not yet
initialized.

/Zp[n]-Zp16Aligns fields of
records and
components of

-Zp[n]

derived types on the
smaller of the size
boundary specified or
the boundary that
will naturally align
them.

See Also
• Quick Reference Guides and Cross References

1226

21 Intel® Fortran Compiler User and Reference Guides

• -map-opts, /Qmap-opts

1227

21

22Related Options

This topic lists related options that can be used under certain conditions.

Linking Tools and Options

This topic describes how to use the Intel® linking tools, xild (Linux* OS and Mac OS* X) or xilink
(Windows* OS).

The Intel linking tools behave differently on different platforms. The following sections summarizes
the primary differences between the linking behaviors.

Linux OS and Mac OS X Linking Behavior Summary

The linking tool invokes the compiler to perform IPO if objects containing IR (intermediate
representation) are found. (These are mock objects.) It invokes GNU ld to link the application.

The command-line syntax for xild is the same as that of the GNU linker:

xild [<options>] <normal command-line>

where:

• [<options>]: (optional) one or more options supported only by xild.

• <normal command-line>: linker command line containing a set of valid arguments for ld.

To create app using IPO, use the option -ofile as shown in the following example:

xild -qipo_fas -oapp a.o b.o c.o

The linking tool calls the compiler to perform IPO for objects containing IR and creates a new list
of object(s) to be linked. The linker then calls ld to link the object files that are specified in the
new list and produce the application with the name specified by the -o option. The linker supports
the -ipo, -ipoN, and -ipo-separate options.

Windows OS Linking Behavior Summary

The linking tool invokes the Intel compiler to perform multi-file IPO if objects containing IR
(intermediate representation) is found. These are mock objects. It invokes Microsoft* link.exe
to link the application.

1229

Windows OS Linking Behavior Summary

The command-line syntax for the Intel® linker is the same as that of the Microsoft linker:

xilink [<options>] <normal command-line>

where:

• [<options>]: (optional) one or more options supported only by xilink.

• <normal command-line>: linker command line containing a set of valid arguments for
the Microsoft linker.

To place the multifile IPO executable in ipo_file.exe, use the linker option /out:file;
for example:

xilink -qipo_fas /out:ipo_file.exe a.obj b.obj c.obj

The linker calls the compiler to perform IPO for objects containing IR and creates a new list
of object(s) to be linked. The linker calls Microsoft link.exe to link the object files that are
specified in the new list and produce the application with the name specified by the /out:file
linker option.

Using the Linking Tools

You must use the Intel linking tools to link your application if the following conditions apply:

• Your source files were compiled with multifile IPO enabled. Multi-file IPO is enabled by
specifying the -ipo (Linux OS and Mac OS X) or /Qipo (Windows OS) command-line option.

• You normally would invoke either the GNU linker (ld) or the Microsoft linker (link.exe) to
link your application.

The following table lists the available, case-insensitive options supported by the Intel linking
tools and briefly describes the behavior of each option:

DescriptionLinking Tools Option

Lists the available linking tool options. Same
as passing no option.

-qhelp

Disables multi-file IPO compilation.-qnoipo

1230

22 Intel® Fortran Compiler User and Reference Guides

DescriptionLinking Tools Option

Produces assembly listing for the multi-file
IPO compilation. You may specify an optional
name for the listing file, or a directory (with
the backslash) in which to place the file.

-qipo_fa[{file|dir/}]

The default listing name is depends on the
platform:

• Linux OS and Mac OS X: ipo_out.s

• Windows OS: ipo_out.asm

If the Intel linking tool invocation results in
multi-object compilation, either because the
application is big or because the user
explicitly instructed the compiler to generate
multiple objects, the first .s (Linux OS and
Mac OS X) or .asm (Windows OS) file takes
its name from the -qipo_fa option.

The compiler derives the names of
subsequent .s (Linux OS and Mac OS X) or
.asm (Windows OS) files by appending an
incrementing number to the name, for
example, foo.asm and foo1.asm for
ipo_fafoo.asm. The same is true for the
-qipo_fo option (listed below).

Produces object file for the multi-file IPO
compilation. You may specify an optional
name for the object file, or a directory (with

-qipo_fo[{file|dir/}]

the backslash) in which to place the file. The
default object file name is depends on the
platform:

• Linux OS and Mac OS X: ipo_out.o

• Windows OS: ipo_out.obj

Add source lines to assembly listing.-qipo_fas

1231

22

DescriptionLinking Tools Option

Adds code bytes to the assembly listing.-qipo_fac

Add code bytes and source lines to assembly
listing.

-qipo_facs

Disables override of existing PATH, LIB, and
INCLUDE variables.

-quseenv

Invokes librarian instead of linker.-lib

Mac OS X: Invokes libtool to create a
library instead of ld.

-libtool

Displays version information.-qv

See Also
• Related Options
• Using IPO

Fortran Preprocessor Options

The Fortran preprocessor (fpp) may be invoked automatically or by specifying option fpp.

The following options are available if fpp is in effect.

Descriptionfpp Option

Specifies that C++-style comments should
not be recognized.

-B

Specifies that C-style comments should not
be recognized. This is the same as specifying
-c_com=no.

-C

1232

22 Intel® Fortran Compiler User and Reference Guides

Descriptionfpp Option

Determines whether C-style comments are
recognized. If you specify -c_com=no or -C,
C-style comments are not recognized. By
default, C-style comments are recognized;
that is, -c_com=yes.

-c_com={yes|no}

Defines the preprocessor variable name as 1
(one). This is the same as if a -Dname=1
option appeared on the fpp command line,
or as if a

#define name 1

-Dname

line appeared in the source file processed by
fpp.

Defines name as if by a #define directive.
This is the same as if a

#define name def

-Dname=def

line appeared in the source file processed by
fpp. The -D option has lower precedence than
the -U option. That is, if the same name is
used in both a -U option and a -D option, the
name will be undefined regardless of the
order of the options.

Tells the compiler to accept extended source
lines. For fixed format, lines can contain up
to 132 characters. For free format, lines can
contain up to 32768 characters.

-e

Tells the compiler to accept extended source
lines. For fixed format, lines can contain up
to 80 characters.

-e80

Tells the compiler to assume fixed format in
the source file.

-fixed

1233

22

Descriptionfpp Option

Tells the compiler to assume free format in
the source file.

-free

Determines whether Fortran-style end-of-line
comments are recognized or ignored by fpp.
If you specify -f_com=no, Fortran style

-f_com={yes|no}

end-of-line comments are processed as part
of the preprocessor directive. By default,
Fortran style end-of-line comments are
recognized by fpp on preprocessor lines and
are ignored by fpp; that is, -f_com=yes. For
example:

#define max 100 ! max number
do i = 1, max + 1

If you specify -f_com=yes, fpp will output

do i = 1, 100 + 1

If you specify -f_com=no, fpp will output

do i = 1, 100 ! max number + 1

Displays information about fpp options.-help

Inserts directory <dir> into the search path
for #include files with names not beginning
with "/". The <dir> is inserted ahead of the

-I<dir>

standard list of "include" directories so that
#include files with names enclosed in
double-quotes (") are searched for first in the
directory of the file with the #include line,
then in directories named with -I options,
and lastly, in directories from the standard
list. For #include files with names enclosed
in angle-brackets (<>), the directory of the
file with the #include line is not searched.

Expands macros everywhere. This is the same
as -macro=yes.

-m

1234

22 Intel® Fortran Compiler User and Reference Guides

Descriptionfpp Option

Determines the bahavior of macro expansion.
If you specify -macro=no_com, macro
expansion is turned off in comments. If you

macro={yes|no_com|no}

specify -macro=no, no macro expansion
occurs anywhere. By default, macros are
expanded everywhere; that is, -macro=yes.

Specifies that C++-style comments should
be recognized.

-noB

Specifies that C-style comments should be
recognized. This is the same as -c_com=yes.

-noC

Specifies that F90-style comments should be
recognized in a #define line. This is the same
as -f_com=no.

-noJ

Specifies that IDL style format should be
recognized. This option is only for the IDE.
Note that macro arguments in IDL may have

-no-fort-cont

a C-like continuation character "\" which is
different from the Fortran continuation
character "&". Fpp should recognize the C-like
continuation character and process some
other non-Fortran tokens so that the IDL
processor can recognize them.

Tells the compiler that line numbering
directives should not be added to the output
file. This line-numbering directive appears as

#line-number file-name

-P

Removes any initial definition of name, where
name is an fpp variable that is predefined on
a particular preprocessor. Here is a partial

-Uname

list of symbols that may be predefined,
depending upon the architecture of the
system:

1235

22

Descriptionfpp Option

Operating System: __APPLE__, __unix, and
__linux

Hardware: __i386, __ia64, __x86_64

Removes initial definitions for all predefined
symbols.

-undef

Displays the fpp version number.-V

Prevents warnings from being output. By
default, warnings are output to stderr.

-w[0]

Converts uppercase letters to lowercase,
except within character-string constants. The
default is to leave the case as is.

-Xu

Tells the compiler that in fixed-format source
files, the blank or space symbol " " is
insignificant. By default, the space symbol is
the delimiter of tokens for this format.

-Xw

Adds directory <dir> to the end of the system
include paths.

-Y<dir>

For details on how to specify these options on the compiler command line, see fpp, Qfpp.

Floating-Point Environment

The floating-point (FP) environment is a collection of registers that control the behavior of FP
machine instructions and indicate the current FP status. The floating-point environment may
include rounding mode controls, exception masks, flush-to-zero controls, exception status flags,
and other floating-point related features.

1236

22 Intel® Fortran Compiler User and Reference Guides

Part

III
Optimizing Applications
Topics:

• Intel(R) Fortran Optimizing
Applications

• Evaluating Performance

• Using Compiler Optimizations

• Using Parallelism: OpenMP*
Support

• Using Parallelism: Automatic
Parallelization

• Using Parallelism: Automatic
Vectorization

• Using Parallelism:
Multi-Threaded Applications

• Using Interprocedural
Optimization (IPO)

• Using Profile-Guided
Optimization (PGO)

• Using High-Level Optimization
(HLO)

• Optimization Support Features

• Programming Guidelines

1237

23Intel(R) Fortran Optimizing
Applications

Overview: Optimizing Applications

Optimizing Applications explains how to use the Intel® Fortran Compiler to help improve application
performance.

How you use the information presented in this document depends on what you are trying to
accomplish. You can start with the following topics:

• Optimizing with the Intel Compiler

• Optimizing for Performance

• Overview of Parallelism Methods

• Quick Reference Lists

• Other Resources

• Performance Analysis

Where applicable this document explains how compiler options and optimization methods differ on
IA-32, Intel® 64, and IA-64 architectures on Linux* operating systems (OS), Intel®-based systems
running Mac OS* X, and Windows* operating systems.

While the compiler supports Integrated Development Environments (IDE) on several different
operating systems, the concepts and examples included here illustrate using the compiler from the
command line.

In most cases, the compiler features and options supported for IA-32 or Intel® 64 architectures on
Linux OS are also supported on Intel-based systems running Mac OS X. For more detailed information
about support for specific operating systems, refer to the appropriate option in Compiler Options.

Optimizing with the Intel® Compiler

The Intel compiler supports a variety of options and features that allow optimization opportunities;
however, in most cases you will benefit by applying optimization strategies in the order listed below.

1239

Use Automatic Optimizations

Use the automatic optimization options, like -O1, -O2, -O3, or -fast (Linux* and Mac OS* X)
and /O1, /O2, /O3, or /fast (Windows*) to determine what works best for your application.
Use these options and measure the resulting performance after each compilation.

NOTE. The optimizer that integrates parallelization (IA-32, Intel® 64, and IA-64
architectures) and vectorization (IA-32 and Intel® 64 architectures) has been redesigned
to provide performance improvements when specifying the -02 or -O3 (Linux and Mac
OS X) and /02 or /O3 (Windows) options.

You might find specific options to work better on a particular architecture:

• IA-32 and Intel® 64 architectures: start with -O2 (Linux and Mac OS X) or /O2 (Windows).

• IA-64 architecture: start with -O3 (Linux and Mac OS X) or /O3 (Windows).

If you plan to run your application on specific architectures, experiment with combining the
automatic optimizations with compiler options that specifically target processors.

You can combine the -x and -ax (Linux* and Mac OS* X) or /Qx and /Qax (Windows*) options
to generate both code that is optimized for specific Intel processors and generic code that will
run on most processors based on IA-32 and Intel® 64 architectures. See the following topics
for more information about targeting processors:

• Targeting IA-32 and Intel® 64 Architecture Processors Automatically

• Targeting Multiple IA-32 and Intel 64 Architecture Processors Automatically for Run-time
Performance

• Targeting Itanium® Processors Automatically

Attempt to combine the automatic optimizations with the processor-specific options before
applying other optimizations techniques.

Use IPO and PGO

Experiment with Interprocedural Optimization (IPO) and Profile-guided Optimization (PGO).
Measure performance after applying the optimizations to determine whether the application
performance improved.

Use a top-down, iterative method for identifying and resolving performance-hindering code
using performance monitoring tools, like the compiler reports.

1240

23 Intel® Fortran Compiler User and Reference Guides

Use Parallelism

If you are planning to run the application on multi-core or multi-processor systems, start the
parallelism process by using the parallelism options or OpenMP* options.

Compiling for Older Processors

Use automatic optimization options and other processor-independent compiler options to
generate optimized code that do not take advantage of advances in processor design or extension
support. Use the -x (Linux* and Mac OS* X) or /Qx (Windows*) option to generate processor
dispatch for older processors.

Optimizing for Performance

The following table lists possible starting points for your optimization efforts.

Start with these topics or sections.If you are trying to...

use performance analysis to begin the
optimization process

• Optimizing with Intel® Compilers

• Using a Performance Enhancement
Methodology

• Intel® Performance Analysis Tools and
Libraries

• Performance Enhancement Strategies

optimize for speed or a specific architecture • Enabling Automatic Optimizations

• Targeting IA-32 and Intel® 64 Architecture
Processors Automatically

• Targeting Multiple IA-32 and Intel® 64
Architecture Processors for Run-time
Performance

• Targeting IA-64 Architecture Processors
Automatically

create parallel programs or parallelize existing
programs

• Using Parallelism

• Automatic Vectorization Overview

• OpenMP* Support Overview

1241

23

Start with these topics or sections.If you are trying to...

• Auto-parallelization Overview

use Interprocedural Optimization • Using IPO

• IPO for Large Programs

• Interprocedural Optimization (IPO) Quick
Reference

create application profiles to help optimization • Profile an Application

• Profile-Guided Optimization (PGO) Quick
Reference

• profmerge and proforder Tools

• PGO API and environment variables

generate reports on compiler optimizations • Generating Reports

• Compiler Reports Quick Reference

optimize loops, arrays, and data layout • High-level Optimization (HLO) Overview

use programming strategies to improve
performance

• Setting Data Type and Alignment

• Using Arrays Efficiently

• Improving I/O Performance

• Improving Run-time Efficiency

• Using Intrinsics for IA-64 architecture
based Systems

• Coding Guidelines for Intel Architectures

Overview of Parallelism Method

The three major features of parallel programming supported by the Intel® compiler include:

• OpenMP*

• Auto-parallelization

1242

23 Intel® Fortran Compiler User and Reference Guides

• Auto-vectorization

Each of these features contributes to application performance depending on the number of
processors, target architecture (IA-32, Intel® 64, and IA-64 architectures), and the nature of
the application. These features of parallel programming can be combined to contribute to
application performance.

Parallelism defined with the OpenMP* API is based on thread-level and task-level parallelism.
Parallelism defined with auto-parallelization techniques is based on thread-level parallelism
(TLP). Parallelism defined with auto-vectorization techniques is based on instruction-level
parallelism (ILP).

Parallel programming can be explicit, that is, defined by a programmer using the OpenMP*
API and associate options. Parallel programming can also be implicit, that is, detected
automatically by the compiler. Implicit parallelism implements auto-parallelization of outer-most
loops and auto-vectorization of innermost loops (or both).

To enhance the compilation of the code with auto-vectorization, users can also add vectorizer
directives to their program.

NOTE. Software pipelining (SWP), a technique closely related to auto-vectorization, is
available on systems based on IA-64 architecture.

The following table summarizes the different ways in which parallelism can be exploited with
the Intel® Compiler.

Intel provides performance libraries that contain highly optimized, extensively threaded routines,
including the Intel® Math Kernel Library (Intel® MKL).

In addition to these major features supported by the Intel compiler, certain operating systems
support application program interface (API) function calls that provide explicit threading controls.
For example, Windows* operating systems support API calls such as CreateThread, and
multiple operating systems support POSIX* threading APIs.

Supported OnParallelism Method

Implicit (parallelism generated by the compiler and by user-supplied hints)

Auto-parallelization
(Thread-Level Parallelism)

• IA-32 architecture, Intel® 64 architecture, IA-64
architecture based multi-processor systems, and
multi-core processors

• Hyper-Threading Technology-enabled systems

1243

23

Supported OnParallelism Method

Auto-vectorization
(Instruction-Level
Parallelism)

• Pentium®, Pentium with MMX™ Technology, Pentium II,
Pentium III, Pentium 4 processors, Intel® Core™ processor,
and Intel® Core™ 2 processor.

Explicit (parallelism programmed by the user)

OpenMP* (Thread-Level and
Task-Level Parallelism)

• IA-32 architecture, Intel® 64 architecture, IA-64
architecture-based multiprocessor systems, and multi-core
processors

• Hyper-Threading Technology-enabled systems

Threading Resources

For general information about threading an existing serial application or design considerations
for creating new threaded applications, see Other Resources and the web site
http://go-parallel.com.

Quick Reference Lists

There are several quick reference guides in this document. Use these quick reference guides
to quickly familiarize yourself with the compiler options or features available for specific
optimizations.

• Enabling Automatic Optimizations

• Interprocedural Optimization (IPO) Quick Reference

• Profile-guided Optimization (PGO) Quick Reference

• Auto-Vectorization Options Quick Reference

• OpenMP* Options Quick Reference

• Auto-Parallelization Options Quick Reference

• Compiler Reports Quick Reference

• Data Alignment Options

• PGO Environment Variables

• OpenMP* Environment Variables

1244

23 Intel® Fortran Compiler User and Reference Guides

Other Resources

Understanding the capabilities of the specific processors and the underlying architecture on
which your application will run is key to optimization. Intel distributes many hardware and
software development resources that can help better understand how to optimize application
source code for specific architectures.

Processor Information

You can find detailed information about processor numbers, capabilities, and technical
specifications, along with documentation, from the following web sites:

• Intel® Processor Spec Finder (http://processorfinder.intel.com/)

• Intel® Processor Numbers (http://www.intel.com/products/processor_number/)

• Intel® Processor Identification Utility (http://www.intel.com/support/processors/tools/piu/)

Architecture Information

The architecture manuals provide specific details about the basic architecture, supported
instruction sets, programming guidelines for specific operating systems, and performance
monitoring.

The optimization manuals provide insight for developing high-performance applications for
Intel® architectures.

• IA-32 and Intel® 64 architectures:
http://www.intel.com/products/processor/manuals/index.htm

• IA-64 Architecture: http://www.intel.com/design/itanium/documentation.htm

Optimization Strategy Resources

For more information on advanced or specialized optimization strategies, refer to the Resource
Centers for Software Developers, which can be accessed from www.intel.com. Refer to the
articles, community forums, and links to additional resources in the listed areas of the following
Developer Centers:

Tools and Technologies:

• Threading/Multi-core

1245

23

• Intel® Software Products

Intel® Processors:

• Intel® 64 and IA-32 Architectures Software Developer's Manuals

• Itanium® Processor Family

• Pentium® 4 Processor

• Intel® Xeon® Processor

Environments:

• High Performance Computing

1246

23 Intel® Fortran Compiler User and Reference Guides

24Evaluating Performance

Performance Analysis

The high-level information presented in this section discusses methods, tools, and compiler options
used for analyzing runtime performance-related problems and increasing application performance.

The topics in this section discuss performance issues and methods from a general point of view,
focusing primarily on general performance enhancements. The information in this section is separated
in the following topics:

• Using a Performance Enhancement Methodology

• Performance Enhancement Strategies

• Using Intel Performance Analysis Tools

In most cases, other sections and topics in this document contain detailed information about the
options, concepts, and strategies mentioned in this section.

This section also contains information about using the compiler-supporting reports and diagnostics.

Using a Performance Enhancement Methodology

The recommended performance enhancement method for optimizing applications consists of several
phases. When attempting to identify performance issues, move through the following general phases
in the order presented:

• Gather performance data

• Analyze the data

• Generate alternatives

• Implement enhancements

• Test the results

The following figure shows the methodology phases and their relationships, along with some
recommended tools to use in each appropriate phase.

1247

The methodology can be summarized by the following statements:

• Make small changes and measure often.

• If you approach a point of diminishing return and can find no other performance issues, stop
optimizing.

Gather performance data

Use tools to measure where performance bottlenecks occur; do not waste time guessing. Using
the right tools for analysis provides an objective data set and baseline criteria to measure
implementation changes and improvements introduced in the other stages.

1248

24 Intel® Fortran Compiler User and Reference Guides

See Using Intel Performance Analysis Tool and Libraries for more information about some tools
you can use to gather performance data.

Analyze the data

Determine if the data meet your expectations about the application performance. If not, choose
one performance problem at a time for special interest. Limiting the scope of the corrections
is critical in effective optimization.

In most cases, you will get the best results by resolving hotspots first. Since hotspots are often
responsible for excessive activity or delay, concentrating on these areas tends to resolve or
uncover other performance problems that would otherwise be undetectable.

Generate alternatives

As in the analysis phase, limit the focus of the work. Concentrate on generating alternatives
for the one problem area you are addressing. Identify and use tools and strategies to help
resolve the issues. For example, you can use compiler optimizations, use Intel® Performance
Library routines, or use some other optimization (like improved memory access patterns,
reducing or eliminating division or other floating-point operations, rewriting the code to include
intrinsics or assembly code, or other strategies).

See Performance Enhancement Strategies for suggestions.

While optimizing for the compiler and source levels, consider using the following strategies in
the order presented:

1. Use available supported compiler options. This is the most portable, least intrusive
optimization strategy.

2. Use compiler directives embedded in the source. This strategy is not overly intrusive since
the method involves including a single line in code, which can be ignored (optionally) by the
compiler.

3. Attempt manual optimizations.

Implement enhancements

As with the previous phases, limit the focus of the implementation. Make small, incremental
changes. Trying to address too many issues at once can defeat the purpose and reduce your
ability to test the effectiveness of your enhancements.

1249

24

The easiest enhancements will probably involve enabling common compiler optimizations for
easy gains. For applications that can benefit from the libraries, consider implementing Intel®

Performance Library routines that may require some interface coding.

Test the results

If you have limited the scope of the analysis and implementation, you should see measurable
differences in performance in this phase. Have a target performance level in mind so you know
when you have reached an acceptable gain in performance.

Use a consistent, reliable test that reports a quantifiable item, like seconds elapsed, frames
per second, and so forth, to determine if the implementation changes have actually helped
performance.

If you think you can make significant improvement gains or you still have other performance
issues to address, repeat the phases beginning with the first one: gather performance data.

Intel® Performance Analysis Tools and Libraries

Intel Corporation offers a variety of performance analysis tools and libraries that can help you
optimize your application performance.

Performance Analysis Tools

These performance tools can help you analyze your application, find problem areas, and develop
efficient programs. In some cases, these tools are critical to the optimization process.

DescriptionOperating SystemTool

Intel® Threading Analysis
Tools consist of the Intel®

Thread Checker and the
Intel® Thread Profiler.

Linux, Windows
Intel® Threading Analysis
Tools

The Intel® Thread Checker
can help identify shared and
private variable conflicts, and
can isolate threading bugs to
the source code line where
the bug occurs.

1250

24 Intel® Fortran Compiler User and Reference Guides

DescriptionOperating SystemTool

The Intel® Thread Profiler can
show the critical path of an
application as it moves from
thread to thread, and identify
synchronization issues and
excessive blocking time that
cause delays for Win32*,
POSIX* threaded, and
OpenMP* code.

Performance Libraries

These performance libraries can decrease development time and help to increase application
performance.

DescriptionOperating SystemLibrary

Intel® Math Kernel Library
offers highly optimized,
thread-safe math routines for

Linux, Mac OS X, WindowsIntel® Math Kernel Library science, engineering, and
financial applications that
require maximum
performance.

Performance Enhancement Strategies

Improving performance starts with identifying the characteristics of the application you are
attempting to optimize. The following table lists some common application characteristics,
indicates the overall potential performance impact you can expect, and provides suggested
solutions to try. These strategies have been found to be helpful in many cases; experimentation
is key with these strategies.

In the context of this discussion, view the potential impact categories as an indication of the
possible performance increases that might be achieved when using the suggested strategy. It
is possible that application or code design issues will prohibit achieving the indicated increases;
however, the listed impacts are generally true. The impact categories are defined in terms of
the following performance increases, when compared to the initially tested performance:

1251

24

• Significant: more than 50%

• High: up to 50%

• Medium: up to 25%

• Low: up to 10%

The following table is ordered by application characteristics and then by strategy with the most
significant potential impact.

Suggested StrategiesImpactApplication Characteristics

Technnical Applications

Technical applications are
those programs that have
some subset of functions that
consume a majority of total
CPU cycles in loop nests.

HighTechnical applications with
loopy code

Target loop nests using -03
(Linux* and Mac OS* X) or
/O3 (Windows*) to enable
more aggressive loop
transformations and
prefetching.

Use High-Level Optimization
(HLO) reporting to determine
which HLO optimizations the
compiler elected to apply.

See High-Level Optimization
Report.

For -O2 and -O3 (Linux) or
/O2 and /O3 (Windows), use
the swp report to determine

High(same as above)
IA-64 architecture only

if Software Pipelining
occurred on key loops, and if
not, why not.

You might be able to change
the code to allow software
pipelining under the following
conditions:

1252

24 Intel® Fortran Compiler User and Reference Guides

Suggested StrategiesImpactApplication Characteristics

• If recurrences are listed in
the report that you
suspect do not exist,
eliminate aliasing
problems , or use IVDEP
directive on the loop.

• If the loop is too large or
runs out of registers, you
might be able to distribute
the loop into smaller
segments; distribute the
loop manually or by using
the distribute directive.

• If the compiler determines
the Global Acyclic
Scheduler can produce
better results but you
think the loop should still
be pipelined, use the SWP
directive on the loop.

See Vectorization Overview
and the remaining topics in
the Auto-Vectorization
section for applicable options.

High(same as above)
IA-32 and Intel® 64
architectures only

See Vectorization Report for
specific details about when
you can change code.

Use PGO profile to guide
other optimizations.

Medium(same as above)

See Profile-guided
Optimizations Overview.

Experiment with -fp-model
fast=2 (Linux and Mac OS
X) or /fp:fast=2 or -ftz

SignificantApplications with many
denormalized floating-point
value operations

(Linux and Mac OS X) or
/Qftz (Windows). The

1253

24

Suggested StrategiesImpactApplication Characteristics

resulting performance
increases can adversely affect
floating-point calculation
precision and reproducibility.

See Floating-point Operations
for more information about
using the floating point
options supported in the
compiler.

See the suggested strategy
for memory pointer
disambiguation (below).

MediumSparse matrix applications

Use prefetch directive or
prefetch intrinsics.
Experiment with different
prefetching schemes on
indirect arrays.

See HLO Overview or Data
Prefetching starting places for
using prefetching.

Flat profile applications are
those applications where no
single module seems to
consume CPU cycles
inordinately.

MediumServer application with
branch-centric code and a
fairly flat profile

Use PGO to communicate
typical hot paths and
functions to the compiler, so
the Intel® compiler can
arrange code in the optimal
manner.

Use PGO on as much of the
application as is feasible.

See Profile-guided
Optimizations Overview.

1254

24 Intel® Fortran Compiler User and Reference Guides

Suggested StrategiesImpactApplication Characteristics

Use -O1 (Linux and Mac OS
X) or /O1 (Windows) and
PGO to optimize the
application code.

MediumDatabase engines

Other Application Types

Use -ip (Linux and Mac OS
X) or /Qip (Windows) to
enable inter-procedural
inlining within a single source
module.

LowApplications with many small
functions that are called from
multiple locations

Streamlines code execution
for simple functions by
duplicating the code within
the code block that originally
called the function. This will
increase application size.

As a general rule, do not
inline large, complicated
functions.

See Interprocedural
Optimizations Overview.

Use -ipo (Linux and Mac OS
X) or /Qipo (Windows) to
enable inter-procedural

Low(same as above)

inlining both within and
between multiple source
modules. You might
experience an additional
increase over using -ip
(Linux and Mac OS X) or
/Qip (Windows).

Using this option will increase
link time due to the extended
program flow analysis that
occurs.

1255

24

Suggested StrategiesImpactApplication Characteristics

Use Interprocedural
Optimization (IPO) to attempt
to perform whole program
analysis, which can help
memory pointer
disambiguation.

Apart from application-specific suggestions listed above, there are many application-,
OS/Library-, and hardware-specific recommendations that can improve performance as suggested
in the following tables:

Application-specific Recommendations

Suggested StrategiesImpactApplication Area

Use -O3 (Linux and Mac OS
X) or /O3 (Windows) to
enable automatic cache

HighCache Blocking

blocking; use the HLO report
to determine if the compiler
enabled cache blocking
automatically. If not consider
manual cache blocking.

See Cache Blocking.

Ignore vector dependencies.
Use IVDEP and other
directives to increase
application speed.

MediumCompiler directives for better
alias analysis

See Vectorization Support.

Use float intrinsics for single
precision data type, for
example, sqrtf() not
sqrt().

LowMath functions

Call Math Kernel Library
(MKL) instead of user code.

Call F90 intrinsics instead of
user code (to enable
optimizations).

1256

24 Intel® Fortran Compiler User and Reference Guides

Library/OS Recommendations

DescriptionImpactArea

Linux has a less
performance-friendly symbol
preemption model than

LowSymbol preemption

Windows. Linux uses full
preemption, and Windows
uses no preemption. Use
-fminshared -fvisibili-
ty=protected.

See Symbol Visibility
Attribute Options.

Using third-party memory
management libraries can
help improve performance for
applications that require
extensive memory allocation.

LowMemory allocation

Hardware/System Recommendations

DescriptionImpactComponent

Consider using more
advanced hard drive storage
strategies. For example,
consider using SCSI instead
of IDE.

MediumDisk

Consider using the
appropriate RAID level.

Consider increasing the
number hard drives in your
system.

You can experience
performance gains by
distributing memory in a

LowMemory

system. For example, if you
have four open memory slots
and only two slots are

1257

24

DescriptionImpactComponent

populated, populating the
other two slots with memory
will increase performance.

For many applications,
performance scales is directly
affected by processor speed,

Processor

the number of processors,
processor core type, and
cache size.

Using Compiler Reports

Compiler Reports Overview

The Intel® compiler provides several reports that can help identify performance issues.

Some of these compiler reports are architecture-specific, most are more general. Start with
the general reports that are common to all platforms (operating system/architecture), then
use the reports unique to an architecture.

• Generating reports

• Interprocedural Optimizations (IPO) report

• Profile-Guided Optimizations (PGO) report

• High-level Optimizations (HLO) report

• Software-pipelining (SWP) report (IA-64 architecture only)

• Vectorization report

• Parallelism report

• OpenMP* report

Compiler Reports Quick Reference

The Intel® compiler provides the following options to generate and manage optimization reports:

1258

24 Intel® Fortran Compiler User and Reference Guides

DescriptionWindows*Linux* and Mac OS* X

Generates optimization
report, with different levels
of detail, directed to stderr.

/Qopt-report

or

/Qopt-report:N

-opt-report

or

-opt-report N

Valid values for N are 0
through 3. By default, when
you specify this option
without passing a value the
compiler will generate a
report with a medium level
of detail.

Specifies the optimization
phase to use when
generating reports. If you do

/Qopt-report-phase-opt-report-phase

not specify a phase the
compiler defaults to all, which
can adversely affect compile
times.

See Generating Reports for
more information about the
supported phases.

Generates an optimization
report and directs the report
output to the specified file

/Qopt-report-file-opt-report-file
name. If the file is not in the
local directory, supply the full
path to the output file. This
option overrides the opt-re-
port option.

Generates reports from all
routines with names
containing a string as part of

/Qopt-report-routine-opt-report-routine their name; pass the string
as an argument to this
option. If not specified, the
compiler will generate reports
on all routines.

1259

24

DescriptionWindows*Linux* and Mac OS* X

This option is not a compiler
reports option; however, it
controls the diagnostic

/Qdiag-<type>-diag-<type>

message levels generated by
the compiler, and it offers a
means to provide useful
information without needing
to generate reports. <type>
is a placeholder for several
different values or lists.

This quick reference does not list the options for the vectorization, parallelism, or OpenMP*
reports.

Refer to Quick Reference Lists for a complete listing of the quick reference topics.

If you use interprocedural optimization (IPO) options, you can request compiler reports when
using the xi* tools , as described in Requesting Compiler Reports with the xi* Tools.

Generating Reports

Use the options listed in this topic to generate reports on the following optimizers.

• Interprocedural Optimization (IPO)

• Profile-guided Optimization (PGO)

• High Performance Optimizer (HPO)

• High-level Optimization (HLO)

• Intermediate Language Scalar Optimization (ILO)

• Software Pipelining (SWP)

Specify an optimizer phase by passing the phase argument to the -opt-report-phase (Linux*
and Mac OS* X) or /Qopt-report-phase (Windows*) option.

Supported OptimizerOptimizer Phase

Profile-guided Optimizerpgo

Interprocedural Optimizeripo

Intermediate Language Scalar Optimizerilo

1260

24 Intel® Fortran Compiler User and Reference Guides

Supported OptimizerOptimizer Phase

High Performance Optimizerhpo

High-level Optimizerhlo

Itanium® Compiler Code Generatorecg

Mac OS X: This phase is not supported.

The software pipelining component of the
Code Generator phase (Windows and Linux
systems using IA-64 architecture only)

ecg_swp

All optimizers supported on the architecture.
This is not recommended; the resulting
output can be too extensive to be useful.
Experiment with targeted phase reports first.

all

Reports Available by Architecture and Option

IA-32, Intel® 64, and IA-64 architectures:

• ilo and pgo

• hpo and hlo: For IA-32 architecture, supported with -x (Linux and Mac OS X) or /Qx
(Windows) option.

For Intel® 64 architecture, supported with -O2 (Linux and Mac OS X) or /O2 (Windows)
option. For IA-32 and Intel® 64 architectures, a subset of these optimizations are enabled
at default optimization level (O2). For IA-64 architecture, supported with -O3 (Linux and
Mac OS X) or /O3 (Windows) option.

• ipo: Interprocedural optimization is enabled for -O2 (Linux and Mac OS X) or /O2 (Windows)
option or above.

• all: All of the above.

IA-64 architecture only:

• ecg

Running the Reports

Use syntax similar to the following to run the compiler reports.

1261

24

Sample SyntaxOperating System

ifort -c -opt-report 2 -opt-report-phase=all
sample.f90

Linux and Mac OS X

ifort /c /Qopt-report:2
/Qopt-report-phase:all sample.f90

Windows

The sample command instructs the compiler to generate a report and send the results to stderr
and specifies the reports should include information about all available optimizers. In most
cases, specifying all as the phase will generate too much information to be useful.

If you want to capture the report in an output file instead of sending it to stderr, specify -opt-
report-file (Linux and Mac OS X) or /Qopt-report-file (Windows) and indicate an output
file name. If you do not want the compiler to invoke the linker, specify -c (Linux and Mac OS
X) or /c (Windows) >as shown in the sample syntax above; by specifying the option you instruct
the compiler to stop after generating object code and reporting the results.

See Compiler Reports Quick Reference for information about how to use the report related
options.

When you specify a phase name, as shown above, the compiler generates all reports from that
optimizer. The option can be used multiple times on the same command line to generate reports
for multiple optimizers. For example, for if you specified -opt-report-phase ipo -opt-report-
phase hlo (Linux and Mac OS X) or /Qopt-report-phase ipo /Qopt-report-phase hlo
(Windows) the compiler generates reports from the interprocedural optimizer and the high-level
optimizer code generator.

You do not need to fully specify an optimizer name in the command; in many cases, the first
few characters should suffice to generate reports; however, all optimization reports that have
a matching prefix are generated.

Each of the optimizer logical names supports many specific, targeted optimizations within them.
Each of the targeted optimizations have the prefix of the optimizer name. Enter -opt-report-
help (Linux and Mac OS X) or /Qopt-report-help (Windows) to list the names of optimizers
that are supported. The following table lists some examples:

DescriptionOptimizer

Interprocedural Optimizer, inline expansion
of functions

ipo_inl

Interprocedural Optimizer, constant
propagation

ipo_cp

High-level Optimizer, loop unrollinghlo_unroll

1262

24 Intel® Fortran Compiler User and Reference Guides

DescriptionOptimizer

High-level Optimizer, prefetchinghlo_prefetch

Viewing the Optimization Reports Graphically (Linux)

To generate the graphical report display, you must compile the application using the following
optimization reports options, at a minimum: -opt-report-phase and -opt-report-file.

As with the text-based reports, the graphical report information can be generated on all
architectures.

Interprocedural Optimizations (IPO) Report

The IPO report provides information on the functions that have been inlined and can help to
identify the problem loops. The report can help to identify how and where the compiler applied
IPO to the source files.

The following command examples demonstrate how to run the IPO reports with the minimum
output.

Syntax ExamplesOperating System

ifort -opt-report 1
-opt-report-phase=ipo a.f90 b.f90

Linux* and Mac OS* X

ifort /Qopt-report:1
/Qopt-report-phase:ipo a.f90 b.f90

Windows*

where -opt-report (Linux and Mac OS X) or /Qopt-report (Windows) invokes the report
generator, and -opt-report-phase=ipo (Linux and Mac OS X) or /Qopt-report-phase:ipo
(Windows) indicates the phase (ipo) to report.

You can use -opt-report-file (Linux and Mac OS X) or /Qopt-report-file (Windows) to
specify an output file to capture the report results. Specifying a file to capture the results can
help to reduce the time you spend analyzing the results and can provide a baseline for future
testing.

1263

24

Reading the Output

The IPO report details information in two general sections: whole program analysis and inlining.
By default, the report generates a medium level of detail. You can specify an output file to
capture the report results. Running maximum IPO report results can be very extensive and
technical; specifying a file to capture the results can help to reduce analysis time. The following
sample report illustrates the general layout.

Sample IPO Report

<;-1:-1;IPO;;0>

WHOLE PROGRAM (SAFE) [EITHER METHOD]: TRUE

WHOLE PROGRAM (SEEN) [TABLE METHOD]: TRUE

WHOLE PROGRAM (READ) [OBJECT READER METHOD]: TRUE

INLINING OPTION VALUES:

-inline-factor: 100

-inline-min-size: 20

-inline-max-size: 230

-inline-max-total-size: 2000

-inline-max-per-routine: disabled

-inline-max-per-compile: disabled

<ipo_sample_main.f90;29:37;IPO INLINING;MAIN__;0>

INLINING REPORT: (MAIN__) [1/4=25.0%]

-> for_write_seq_lis(EXTERN)

-> INLINE: mysum_(5) (isz = 23) (sz = 30 (13+17))

...

<ipo_sample_init.f90;32:40;IPO CONSTANT PROPAGATION;init_;0>

CONSTANT PROPAGATION: VARS(1)

...

The following table summarizes the common report elements and provides a general description
to help interpret the results.

1264

24 Intel® Fortran Compiler User and Reference Guides

DescriptionReport Element

TRUE or FALSE.

WHOLE PROGRAM (SAFE) [EITHER
METHOD]:

• TRUE: The compiler determined, using
one or both of the whole program analysis
models, that the whole program was
present during compilation.

• FALSE: The compiler determined the
whole program was not present during
compilation. The compiler could not apply
whole program IPO.

See Inteprocedural Optimizations (IPO)
Overview for more information on the whole
program analysis models.

TRUE or FALSE.

WHOLE PROGRAM (SEEN) [TABLE METHOD]:

• TRUE: The compiler resolved all
references, either within the application
code or in the standard table for the
functions within the compiler.

• FALSE: The compiler could not resolve all
references. One or more functions
references could not be found either in the
user code or standard functions table.

TRUE or FALSE.

WHOLE PROGRAM (READ) [OBJECT READER
METHOD]:

• TRUE: The compiler determined that all
conditions were met for linking at a level
equivalent to the -O0 (Linux and Mac OS
X) or /Od (Windows) option.

• FALSE: The compiler could not resolve
one or more references. The linking step
failed.

1265

24

DescriptionReport Element

Displays the compilation values used for the
following developer-directed inline expansion
options:

INLINING OPTION VALUES:

• inline-factor

• inline-min-size

• inline-max-size

• inline-max-total-size

• inline-max-per-routine

• inline-max-per-compile

If you specify the one or more of the
appropriate options, the report lists the
values you specified; if you do not specify an
option and value the compiler uses the
defaults values for the listed options, and the
compiler will list the default values.

The values indicate the same intermediate
language units listed in Compiler Options for
each of these options. See Developer Directed
Expansion of User Functions for more
information about using these options.

Includes a string in the format of the
following

INLINING REPORT:

(<name>) [<current number>/<total
number>=<percent complete>]

where

• <name>: the name of the function being
reported on.

• <current number> is the number of the
function being reported on. Not every
function can be inlined; gaps in the
current number are common.

1266

24 Intel® Fortran Compiler User and Reference Guides

DescriptionReport Element

• <total number> is the total number of
functions being evaluated.

• <percent complete> is a simple
percentage of the functions being inlined.

If a function is inlined, the function line has
the prefix "-> INLINE: _".

INLINE:

The option reports displays the names of the
functions.

The report uses the following general syntax
format:

-> INLINE: _<name>(#) (isz) (sz)

where

• <name> : Indicates the name of the
function Static functions display the
function name with numbered suffix.

• #: Indicates the unique integer specifying
the function number.

• sz: Indicates the function size before
optimization. This is a rough estimate
loosely representative of the number of
original instructions before optimization.

• isz: Indicates the function size after
optimization. This value (isz) will always
be less than or equal to the unoptimized
size (sz).

• exec_cnt: Indicates that Profile-guided
Optimization was specified during
compilation. Indicates the number of times
the function was called from this site.

1267

24

DescriptionReport Element

NOTE. You can make the mangled
names readable by entering the
following:

Linux: echo <mangled_name> |
c++filt

Windows: undname <mangled_name>

Function calls that could not be inlined lack
the INLINE prefix. Additionally, the compiler
marks non-inlined functions using the
following conventions:

• EXTERN indicates the function contained
an external function call for which the
compiler was not supplied the code.

• ARGS_IN_REGS indicates inlining did not
occur.

For IA-32 and Intel® 64 architectures, an
alternative for functions that were not
inlined is to allow the compiler to pass the
function arguments in registers rather
than using standard calling conventions;
however, for IA-64 architecture this is the
default behavior.

Indicates the reported function is a dead
static. Code does not need to be created for
these functions. This behavior allows the
compiler to reduce the overall code size.

DEAD STATIC FUNCTION ELIMINATION:

1268

24 Intel® Fortran Compiler User and Reference Guides

Profile-guided Optimization (PGO) Report

The PGO report can help to identify can help identify where and how the compiler used profile
information to optimize the source code. The PGO report is most useful when combined with
the PGO compilation steps outlined in Profile an Application. Without the profiling data generated
during the application profiling process the report will generally not provide useful information.

Combine the final PGO step with the reporting options by including -prof-use (Linux* and
Mac OS* X) or /Qprof-use (Windows*). The following syntax examples demonstrate how to
run the report using the combined options.

Syntax ExamplesOperating System

ifort -prof-use -opt-report
-opt-report-phase=pgo
pgotools_sample.f90

Linux and Mac OS X

ifort /Qprof-use /Qopt-report
/Qopt-report-phase:pgo
pgotools_sample.f90

Windows

By default the PGO report generates a medium level of detail. You can use -opt-report-file
(Linux and Mac OS X) or /Qopt-report-file (Windows) to specify an output file to capture
the report results. Specifying a file to capture the results can help to reduce the time you spend
analyzing the results and can provide a baseline for future testing.

1269

24

Reading the Output

Running maximum PGO report results can produce long and detailed results. Depending on the
sources being profiled, analyzing the report could be very time consuming. The following sample
report illustrates typical results and element formatting for the default output.

Sample PGO Report

<pgotools_sample.f90;-1:-1;PGO;_DELEGATE.;0>

DYN-VAL: pgotools_sample.f90 _DELEGATE.

<pgotools_sample.f90;-1:-1;PGO;_ADDERMOD.;0>

NO-DYN: pgotools_sample.f90 _ADDERMOD.

<pgotools_sample.f90;-1:-1;PGO;_ADDERMOD_mp_MOD_ADD;0>

DYN-VAL: pgotools_sample.f90 _ADDERMOD_mp_MOD_ADD

<pgotools_sample.f90;-1:-1;PGO;_DELEGATE;0>

DYN-VAL: pgotools_sample.f90 _DELEGATE

<pgotools_sample.f90;-1:-1;PGO;_MAIN__;0>

DYN-VAL: pgotools_sample.f90 _MAIN__

<pgotools_sample.f90;-1:-1;PGO;_MAIN._MAIN_ADD;0>

DYN-VAL: pgotools_sample.f90 _MAIN._MAIN_ADD

<pgotools_sample.f90;-1:-1;PGO;;0>

5 FUNCTIONS HAD VALID DYNAMIC PROFILES

1 FUNCTIONS HAD NO DYNAMIC PROFILES

FILE CURRENT QUALITY METRIC: 91.7%

FILE POSSIBLE QUALITY METRIC: 91.7%

FILE QUALITY METRIC RATIO: 100.0%

The following table summarizes some of the common report elements and provides a general
description to help interpret the results.

1270

24 Intel® Fortran Compiler User and Reference Guides

DescriptionReport Element

The compact string contains the following
information:

String listing information about the function
being reported on. The string uses the
following format.

• <source name>: Name of the source file
being examined.

<source name>;<start line>;<end
line>;<optimization>; <function
name>;<element type>

• <start line>: Indicates the starting line
number for the function being examined.
A value of -1 means that the report
applies to the entire function.

• <end line>: Indicates the ending line
number for the function being examined.

• <optimization>: Indicates the
optimization phase; for this report the
indicated phase should be PGO.

• <function name>: Indicates the name
of the function.

• <element type>: Indicates the type of
the report element; 0 indicates the
element is a comment.

Indicates that valid profiling data was
generated for the function indicated; the
source file containing the function is also
listed.

DYN-VAL

Indicates that no profiling data was generated
for the function indicated; the source file
containing the function is also listed.

NO-DYN

Indicates the number of functions that had
valid profile information.

FUNCTIONS HAD VALID DYNAMIC PROFILES

1271

24

DescriptionReport Element

Indicated the number of functions that did
not have valid profile information. This
element could indicate that the function was
not executed during the instrumented
executable runs.

FUNCTIONS HAD NO DYNAMIC PROFILES

Indicates the number of functions for which
static profiles were generated.

FUNCTIONS HAD VALID STATIC PROFILES The most likely cause for having a non-zero
number is that dynamic profiling did not
happen and static profiles were generated for
all of the functions.

Indicates the general quality, represented as
a percentage value between 50% and 100%t.
A value of 50% means no functions had

IPO CURRENT QUALITY METRIC dynamic profiles, and a value of 100% means
that all functions have dynamic profiles. The
larger the number the greater the percentage
of functions that had dynamic profiles.

Indicates the number of possible dynamic
profiles. This number represent the best
possible value, as a percentage, for Current

IPO POSSIBLE QUALITY METRIC Quality. This number is the highest value
possible and represents the ideal quality for
the given data set and the instrumented
executable.

Indicates the ratio of Possible Quality to
Current Quality. A value of 100% indicates
that all dynamic profiles were accepted. Any
value less than 100% indicates rejected
profiles.

IPO QUALITY METRIC RATIO

1272

24 Intel® Fortran Compiler User and Reference Guides

High-level Optimization (HLO) Report

High-level Optimization (HLO) performs specific optimizations based on the usefulness and
applicability of each optimization. The HLO report can provide information on all relevant areas
plus structure splitting and loop-carried scalar replacement, and it can provide information
about interchanges not performed for the following reasons:

• Function call are inside the loop

• Imperfect loop nesting

• Reliance on data dependencies; dependencies preventing interchange are also reported.

• Original order was proper but it might have been considered inefficient to perform the
interchange.

For example, the report can provide clues to why the compiler was unable to apply loop
interchange to a loop nest that might have been considered a candidate for optimization. If the
reported problems (bottlenecks) can be removed by changing the source code, the report
suggests the possible loop interchanges.

Depending on the operating system, you must specify the following options to enable HLO and
generate the reports:

• Linux* and Mac OS* X: -x, -O2 or -O3, -opt-report 3, -opt-report-phase=hlo

• Windows*: /Qx, /O2 or /O3, /Qopt-report:3, /Qopt-report-phase:hlo

See High-level Optimization Overview for information about enabling HLO.

The following command examples illustrate the general command needed to create HLO report
with combined options.

Example CommandOperating System

ifort -c -xSSE3 -O3 -opt-report 3
-opt-report-phase=hlo sample.f90

Linux and Mac OS X

ifort /c /QxSSE3 /O3 /Qopt-report:3
/Qopt-report-phase:hlo sample.f90

Windows

You can use -opt-report-file (Linux and Mac OS X) or /Qopt-report-file (Windows) to
specify an output file to capture the report results. Specifying a file to capture the results can
help to reduce the time you spend analyzing the results and can provide a baseline for future
testing.

1273

24

Reading the report results

The report provides information using a specific format. The report format for Windows* is
different from the format on Linux* and Mac OS* X. While there are some common elements
in the report output, the best way to understand what kinds of advice the report can provide
is to show example code and the corresponding report output.

Example 1: This example illustrates the condition where a function call is inside a loop.

Example 1

subroutine foo (A, B, bound)

integer i,j,n,bound

integer A(bound), B(bound,bound)

n = bound

do j = 1, n

do i = 1, n

B(j,i) = B(j,i) + A(j)

call bar(A,B)

end do

end do

return

end subroutine foo

Regardless of the operating system, the reports list optimization results on specific functions
by presenting a line above there reported action. The line format and description are included
below.

The following table summarizes the common report elements and provides a general description
to help interpret the results.

DescriptionReport Element

The compact string contains the following
information:String listing information about the function

being reported on. The string uses the
following format. • <source name>: Name of the source file

being examined.

1274

24 Intel® Fortran Compiler User and Reference Guides

DescriptionReport Element

<source name>;<start line>;<end
line>;<optimization>; <function
name>;<element type>

• <start line>: Indicates the starting line
number for the function being examined.
A value of -1 means that the report
applies to the entire function.

For example, the reports listed below report
the following information:

• <end line>: Indicates the ending line
number for the function being examined.

Linux and Mac OS X:

<sample1.f90;-1:-1;hlo;foo_;0>

• <optimization>: Indicates the
optimization phase; for this report the
indicated phase should be hlo.

Windows:

<sample1.f90;-1:-1;hlo;_FOO;0>

• <function name>: Name of the function
being examined.

• <element type>: Indicates the type of
the report element; 0 indicates the
element is a comment.

Windows only: This section of the report lists
the following information:

Several report elements grouped together.

QLOOPS 2/2 ENODE LOOPS 2

• QLOOPS: Indicates the number of
well-formed loops found out of the loops
discovered.

unknown 0 multi_exit_do 0 do 2

linear_do 2

LINEAR HLO EXPRESSIONS: 17 / 18

• ENODE LOOPS: Indicates number of
preferred forms (canonical) of the loops
generated by HLO. This indicates the
number of loops generated by HLO.

• unknown: Indicates the number of loops
that could not be counted.

• multi_exit_do: Indicates the countable
loops containing multiple exits.

• do: Indicates the total number of loops
with trip counts that can be counted.

• linear_do: Indicates the number of loops
with bounds that can be represented in a
linear form.

1275

24

DescriptionReport Element

• LINEAR HLO EXPRESSIONS: Indicates the
number of expressions (first number) in
all of the intermediate forms (ENODE) of
the expression (second number) that can
be represented in a linear form.

The code sample list above will result in a report output similar to the following.

1276

24 Intel® Fortran Compiler User and Reference Guides

Example 1 Report OutputOperating System

<sample1.f90;-1:-1;hlo;foo_;0>

High Level Optimizer Report (foo_)

Block, Unroll, Jam Report:

(loop line numbers, unroll factors and type
of transformation)

<sample1.f90;7:7;hlo_unroll;foo_;0>

Loop at line 7 unrolled with remainder by
2

Linux and Mac OS X

<sample1.f90;-1:-1;hlo;_FOO;0>

High Level Optimizer Report (_FOO)

QLOOPS 2/2 ENODE LOOPS 2 unknown 0
multi_exit_do 0 do 2 linear_do 2

LINEAR HLO EXPRESSIONS: 17 / 18

--

C:\samples\sample1.f90;6:6;hlo_linear_trans;_FOO;0>

Loop Interchange not done due to: User
Function Inside Loop Nest

Advice: Loop Interchange, if possible, might
help Loopnest at lines: 6 7

: Suggested Permutation: (1 2) -->
(2 1)

Windows

Example 2: This example illustrates the condition where the loop nesting prohibits interchange.

Example 2

subroutine foo (A, B, bound)

integer i,j,n,bound

integer A(bound), B(bound,bound)

n = bound

do j = 1, n

1277

24

Example 2

A(j) = j + B(1,j)

do i = 1, n

B(j,i) = B(j,i) + A(j)

end do

end do

return

end subroutine foo

The code sample listed above will result in a report output similar to the following.

1278

24 Intel® Fortran Compiler User and Reference Guides

Example 2 Report OutputOperating System

<sample2.f90;-1:-1;hlo;foo_;0>

High Level Optimizer Report (foo_)

Block, Unroll, Jam Report:

(loop line numbers, unroll factors and type
of transformation)

<sample2.f90;8:8;hlo_unroll;foo_;0>

Loop at line 8 unrolled with remainder by
2

Linux and Mac OS X

<sample2.f90;-1:-1;hlo;_FOO;0>

High Level Optimizer Report (_FOO)

QLOOPS 2/2 ENODE LOOPS 2 unknown 0
multi_exit_do 0 do 2 linear_do 2

LINEAR HLO EXPRESSIONS: 24 / 24

--

C:\samples\sample2.f90;6:6;hlo_linear_trans;_FOO;0>

Loop Interchange not done due to: Imperfect
Loop Nest (Either at Source or due t

o other Compiler Transformations)

Advice: Loop Interchange, if possible, might
help Loopnest at lines: 6 8

: Suggested Permutation: (1 2) -->
(2 1)

Windows

Example 3: This example illustrates the condition where data dependence prohibits loop
interchange.

Example 3

subroutine foo (bound)

integer i,j,n,bound

integer A(100,100), B(100,100), C(100,100)

1279

24

Example 3

equivalence (B(2),A)

n = bound

do j = 1, n

do i = 1, n

A(j,i) = C(j,i) * 2

B(j,i) = B(j,i) + A(j,i) * C(j,i)

end do

end do

return

end subroutine foo

The code sample listed above will result in a report output similar to the following.

1280

24 Intel® Fortran Compiler User and Reference Guides

Example 3 Report OutputOperating System

<sample3.f90;-1:-1;hlo;foo_;0>

High Level Optimizer Report (foo_)

<sample3.f90;8:8;hlo_scalar_replacement;in
foo_;0>

#of Array Refs Scalar Replaced in foo_ at
line 8=2

Block, Unroll, Jam Report:

(loop line numbers, unroll factors and type
of transformation)

<sample3.f90;8:8;hlo_unroll;foo_;0>

Loop at line 8 unrolled with remainder by
2

Linux and Mac OS X

<sample3.f90;-1:-1;hlo;_FOO;0>

High Level Optimizer Report (_FOO)

QLOOPS 2/2 ENODE LOOPS 2 unknown 0
multi_exit_do 0 do 2 linear_do 2

LINEAR HLO EXPRESSIONS: 24 / 24

--

C:\samples\sample3.f90;8:8;hlo_scalar_replacement;in
_FOO

;0>

#of Array Refs Scalar Replaced in _FOO at
line 8=1

C:\samples\3.f90;7:7;hlo_linear_trans;_FOO;0>

Loop Interchange not done due to: Data
Dependencies

Dependencies found between following
statements:

[From_Line# -> (Dependency Type)
To_Line#]

[9 ->(Flow) 10] [9 ->(Output) 10] [10

Windows

1281

24

Example 3 Report OutputOperating System

->(Anti) 10]

[10 ->(Anti) 9] [10 ->(Output) 9]

Advice: Loop Interchange, if possible, might
help Loopnest at lines: 7 8

: Suggested Permutation: (1 2) -->
(2 1)

Example 4: This example illustrates the condition where the loop order was determined to be
proper, but loop interchange might offer only marginal relative improvement.

Example 4

subroutine foo (A, B, bound, value)

integer i,j,n,bound,value

integer A(bound, bound), B(bound,bound)

n = bound

do j = 1, n

do i = 1, n

A(i,j) = A(i,j) + B(j,i)

end do

end do

value = A(1,1)

return

end subroutine foo

The code sample listed above will result in a report output similar to the following.

1282

24 Intel® Fortran Compiler User and Reference Guides

Example 4 Report OutputOperating System

<sample4.f90;-1:-1;hlo;foo_;0>

High Level Optimizer Report (foo_)

Block, Unroll, Jam Report:

(loop line numbers, unroll factors and type
of transformation)

<sample4.f90;7:7;hlo_unroll;foo_;0>

Loop at line 7 unrolled with remainder by
2

Linux and Mac OS X

<sample4.f90;-1:-1;hlo;_FOO;0>

High Level Optimizer Report (_FOO)

QLOOPS 2/2 ENODE LOOPS 2 unknown 0
multi_exit_do 0 do 2 linear_do 2

LINEAR HLO EXPRESSIONS: 18 / 18

Windows

Example 5: This example illustrates the conditions where the loop nesting was imperfect and
the loop order was good, but loop interchange would offer marginal relative improvements.

Example

subroutine foo (A, B, C, bound, value)

integer i,j,n,bound,value

integer A(bound, bound), B(bound,bound), C(bound, bound)

n = bound

do j = 1, n

value = value + A(1,1)

do i = 1, n

value = B(i,j) + C(j,i)

end do

end do

return

1283

24

Example

end subroutine foo

The code sample listed above will result in a report output similar to the following.

1284

24 Intel® Fortran Compiler User and Reference Guides

Example 5 Report OutputOperating System

<sample5.f90;-1:-1;hlo;foo_;0>

High Level Optimizer Report (foo_)

Loopnest Preprocessing Report:

<sample5.f90;7:8;hlo;foo_;0>

Preprocess Loopnests <foo_>: Moving Out
Store @Line<8> in Loop @Line<7>

Linux and Mac OS X

<sample5.f90;-1:-1;hlo;_FOO;0>

High Level Optimizer Report (_FOO)

QLOOPS 2/2 ENODE LOOPS 2 unknown 0
multi_exit_do 0 do 2 linear_do 2

LINEAR HLO EXPRESSIONS: 20 / 25

--

Loopnest Preprocessing Report:

C:\samples\sample5.f90;7:8;hlo;_FOO;0>

Preprocess Loopnests <_FOO>: Moving Out
Store @Line<8> in Loop @Line<7>

C:\samples\sample5.f90;5:5;hlo_linear_trans;_FOO;0>

Loop Interchange not done due to: Imperfect
Loop Nest (Either at Source or due t

o other Compiler Transformations)

Advice: Loop Interchange, if possible, might
help Loopnest at lines: 5 7

: Suggested Permutation: (1 2) -->
(2 1)

Windows

Changing Code Based on the Report Results

While the HLO report tells you what loop transformations the compiler performed and provides
some advice, the omission of a given loop transformation might imply that there are
transformations the compiler might attempt. The following list suggests some transformations
you might want to apply. (Manual optimization techniques, like manual cache blocking, should

1285

24

be avoided or used only as a last resort.)

• Loop Interchanging - Swap the execution order of two nested loops to gain a cache locality
or unit-stride access performance advantage.

• Distributing - Distribute or split up one large loop into two smaller loops. This strategy might
provide an advantage when too many registers are being consumed in a large loop.

• Fusing - Fuse two smaller loops with the same trip count together to improve data locality.

• Loop Blocking - Use cache blocking to arrange a loop so it will perform as many computations
as possible on data already residing in cache. (The next block of data is not read into cache
until computations using the first block are finished.)

• Unrolling - Unrolling is a way of partially disassembling a loop structure so that fewer numbers
of iterations of the loop are required; however, each resulting loop iteration is larger. Unrolling
can be used to hide instruction and data latencies, to take advantage of floating point loadpair
instructions, and to increase the ratio of real work done per memory operation.

• Prefetching - Request the compiler to bring data in from relatively slow memory to a faster
cache several loop iterations ahead of when the data is actually needed.

• Load Pairing - Use an instruction to bring two floating point data elements in from memory
in a single step.

High Performance Optimizer (HPO) Report

The following command examples illustrate the general command needed to create HPO report
with combined options.

Example CommandOperating System

ifort -opt-report 0
-opt-report-phasehpo sample.f90

Linux* and Mac OS* X

ifort /Qopt-report:0
/Qopt-report-phase:hpo sample.f90

Windows*

Use -opt-report-help (Linux and Mac OS X) or /Qopt-report-help (Windows) to list the
names of HPO report categories.

You must specify different compiler options to use the specific HPO report categories.

• For OpenMP*, add -openmp (Linux and Mac OS X) or /Qopenmp (Windows) to the command
line.

1286

24 Intel® Fortran Compiler User and Reference Guides

• For parallelism, add -parallel (Linux and Mac OS X) or /Qparallel (Windows) to the
command line.

• For vectorization, add -x (Linux and Mac OS X) or /Qx (Windows) to the command line;
valid processor values are SSE4.1, SSSE3, SSE3, and SSE2.

Parallelism Report

The -par-report (Linux* and Mac OS* X) or /Qpar-report (Windows*) option controls the
diagnostic levels 0, 1, 2, or 3 of the auto-parallelizer. Specify a value of 3 to generate the
maximum diagnostic details.

Run the diagnostics report by entering commands similar to the following:

CommandsOperating System

ifort -c -parallel -par-report 3
sample.f90

Linux and Mac OS X

ifort /c /Qparallel /Qpar-report:3
sample.f90

Windows

where -c (Linux and Mac OS X) or /c (Windows) instructs the compiler to compile the example
without generating an executable.

NOTE. Linux and Mac OS X: The space between the option and the phase is optional.

Windows: The colon between the option and phase is optional.

For example, assume you want a full diagnostic report on the following example code:

Example

subroutine no_par(a, MAX)

integer :: i, a(MAX)

do i = 1, MAX

a(i) = mod((i * 2), i) * 1 + sqrt(3.0)

a(i) = a(i-1) + i

end do

end subroutine no_par

1287

24

The following example output illustrates the diagnostic report generated by the compiler for
the example code shown above. In most cases, the comment listed next to the line is
self-explanatory.

Example Report Output

procedure: NO_PAR

sample.f90(7):(4) remark #15049: loop was not parallelized: loop is not a parallelization
candidate

sample.f90(7):(4) remark #15050: loop was not parallelized: existence of parallel
dependence

sample.f90(13):(6) remark #15051: parallel dependence: proven FLOW dependence between A
line 13, and A line 13

Responding to the results

The -par-threshold{n) (Linux* and Mac OS* X) or /Qpar-threshold[:n] (Windows*)
option sets a threshold for auto-parallelization of loops based on the probability of profitable
execution of the loop in parallel. The value of n can be from 0 to 100. You can use -par-
threshold0 (Linux and Mac OS X) or /Qpar-threshold:0 (Windows) to auto-parallelize loops
regardless of computational work.

Use -ipo[value] (Linux and Mac OS X) or /Qipo (Windows) to eliminate assumed side-effects
done to function calls.

Use the !DEC$ PARALLEL directive to eliminate assumed data dependency.

Software Pipelining (SWP) Report (Linux* and Windows*)

The SWP report can provide details information about loops currently taking advantage of
software pipelining available on IA-64 architecture based systems. The report can suggest
reasons why the loops are not being pipelined.

The following command syntax examples demonstrates how to generate a SWP report for the
Itanium® Compiler Code Generator (ECG) Software Pipeliner (SWP).

Syntax ExamplesOperating System

ifort -c -opt-report
-opt-report-phase=ecg_swp sample.f90

Linux*

1288

24 Intel® Fortran Compiler User and Reference Guides

Syntax ExamplesOperating System

ifort /c /Qopt-report
/Qopt-report-phase:ecg_swp
sample.f90

Windows*

where -c (Linux) or /c (Windows) tells the compiler to stop at generating the object code (no
linking occurs), -opt-report (Linux) or /Qopt-report (Windows) invokes the report generator,
and -opt-report-phase=ecg_swp (Linux) or /Qopt-report-phase:ecg_swp (Windows)
indicates the phase (ecg) for which to generate the report.

You can use -opt-report-file (Linux) or /Qopt-report-file (Windows) to specify an
output file to capture the report results. Specifying a file to capture the results can help to
reduce the time you spend analyzing the results and can provide a baseline for future testing.

Typically, loops that software pipeline will have a line that indicates the compiler has scheduled
the loop for SWP in the report. If the -O3 (Linux) or /O3 (Windows) option is specified, the
SWP report merges the loop transformation summary performed by the loop optimizer.

Some loops will not software pipeline (SWP) and others will not vectorize if function calls are
embedded inside your loops. One way to get these loops to SWP or to vectorize is to inline the
functions using IPO.

1289

24

You can compile this example code to generate a sample SWP report. The sample reports is
also shown below.

Example

!#define NUM 1024

subroutine multiply_d(a,b,c,NUM)

implicit none

integer :: i,j,k,NUM

real :: a(NUM,NUM), b(NUM,NUM), c(NUM,NUM)

NUM=1024

do i=0,NUM

do j=0,NUM

do k=0,NUM

c(j,i) = c(j,i) + a(j,k) * b(k,i)

end do

end do

end do

end subroutine multiply_d

The following sample report shows the report phase that results from compiling the example
code shown above (when using the ecg_swp phase).

Sample SWP Report

Swp report for loop at line 10 in _Z10multiply_dPA1024_dS0_S0_ in file SWP report.f90

Resource II = 2

Recurrence II = 2

Minimum II = 2

Scheduled II = 2

Estimated GCS II = 7

1290

24 Intel® Fortran Compiler User and Reference Guides

Sample SWP Report

Percent of Resource II needed by arithmetic ops = 100%

Percent of Resource II needed by memory ops = 50%

Percent of Resource II needed by floating point ops = 50%

Number of stages in the software pipeline = 6

Reading the Reports

To understand the SWP report results, you must know something about the terminology used
and the related concepts. The following table describes some of the terminology used in the
SWP report.

DefinitionTerm

Initiation Interval (II). The number of cycles
between the start of one iteration and the
next in the SWP. The presence of the term II
in any SWP report indicates that SWP
succeeded for the loop in question.

II

II can be used in a quick calculation to
determine how many cycles your loop will
take, if you also know the number of
iterations. Total cycle time of the loop is
approximately N * Scheduled II + number
Stages (Where N is the number of iterations
of the loop). This is an approximation because
it does not take into account the ramp-up
and ramp-down of the prolog and epilog of
the SWP, and only considers the kernel of the
SWP loop. As you modify your code, it is
generally better to see scheduled II go down,
though it is really N* (Scheduled II) +
Number of stages in the software pipeline
that is ultimately the figure of merit.

1291

24

DefinitionTerm

Resource II implies what the Initiation
Interval should be when considering the
number of functional units available.

Resource II

Recurrence II indicates what the Initiation
Interval should be when there is a recurrence
relationship in the loop. A recurrence

Recurrence II

relationship is a particular kind of a data
dependency called a flow dependency like
a[i] = a[i-1] where a[i] cannot be
computed until a[i-1] is known. If
Recurrence II is non-zero and there is no flow
dependency in the code, then this indicates
either Non-Unit Stride Access or memory
aliasing.

See Helping the Compiler for more
information.

Minimum II is the theoretical minimum
Initiation Interval that could be achieved.

Minimum II

Scheduled II is what the compiler actually
scheduled for the SWP.

Scheduled II

Indicates the number of stages. For example,
in the report results below, the line "Number
of stages in the software pipeline = 3"

number of stages

indicates there were three stages of work,
which will show, in assembly, to be a load,
an FMA instruction and a store.

The loop-carried memory dependence edges
means the compiler avoided WAR (Write After
Read) dependency.

loop-carried memory dependence edges

Loop-carried memory dependence edges can
indicate problems with memory aliasing. See
Helping the Compiler.

1292

24 Intel® Fortran Compiler User and Reference Guides

Using the Report to Resolve Issues

One fast way to determine if specific loops have been software pipelined is to look for "r;Number
of stages in the software pipeline" in the report; the phrase indicates that software pipelining
for the associated loop was successfully applied.

Analyze the loops that did not SWP in order to determine how to enable SWP. If the compiler
reports the "Loop was not SWP because...", see the following table for suggestions about how
to correct possible problems:

Suggested ActionMessage in Report

Indicates that the most likely cause is
memory aliasing issues. For memory alias
problems see memory aliasing (restrict,
#pragma ivdep).

acyclic global scheduler can achieve a better
schedule: => loop not pipelined

Might indicate the application is accessing
memory in a non-Unit Stride fashion.
Non-Unit Stride issues may be indicated by
an artificially high recurrence II; If you know
there is no recurrence relationship (a[i] =
a[i-1] + b[i]) in the loop, then a high
recurrence II (greater than 0) is a sign that
you are accessing memory non-Unit Stride.

Rearranging code, perhaps a loop
interchange, might help mitigate this
problem.

Indicates inlining the function might help
solve the problem.

Loop body has a function call

Indicates you should distribute the loop by
separating it into two or more loops.

Not enough static registers

On IA-64 architecture based systems you
may use #pragma distribute point.

Indicates the loop carried values use the
rotating registers. Distribute the loop.

Not enough rotating registers

Indicates you should distribute the loop.Loop too large

1293

24

Suggested ActionMessage in Report

On IA-64 architecture based systems you
may use the #pragma distribute point.

Indicates unrolling was insufficient. Attempt
to fully unroll the loop. However, with small
loops fully unrolling the loop is not likely to
affect performance significantly.

Loop has a constant trip count < 4

Indicates complex loop structure. Attempt to
simplify the loop.

Too much flow control

Index variable type used can greatly impact performance. In some cases, using loop index
variables of type short or unsigned int can prevent software pipelining. If the report indicates
performance problems in loops where the index variable is not int and if there are no other
obvious causes, try changing the loop index variable to type int.

Vectorization Report

The vectorization report can provide information about loops that could take advantage of Intel®
Streaming SIMD Extensions (Intel® SSE3, SSE2, and SSE) vectorization, and it is available on
systems based on IA-32 and Intel® 64 architectures.

See Using Parallelism for information on other vectorization options.

The -vec-report (Linux* and Mac OS* X) or /Qvec-report (Windows*) option directs the
compiler to generate the vectorization reports with different levels of information. Specify a
value of 3 to generate the maximum diagnostic details.

CommandOperating System

ifort -c -xSSSE3 -vec-report3
sample.f90

Linux and Mac OS X

ifort /c /QxSSSE3 /Qvec-report:3
sample.f90

Windows

where -c (Linux and Mac OS X) or /c (Windows) instructs the compiler to compile the example
without generating an executable.

NOTE. Linux and Mac OS X: The space between the option and the phase is optional.

1294

24 Intel® Fortran Compiler User and Reference Guides

Windows: The colon between the option and phase is optional.

The following example results illustrate the type of information generated by the vectorization
report:

Example results

sample.f90(27) : (col. 9) remark: loop was not vectorized: not inner loop.

sample.f90(28) : (col. 11) remark: LOOP WAS VECTORIZED.

sample.f90(31) : (col. 9) remark: loop was not vectorized: not inner loop.

sample.f90(32) : (col. 11) remark: LOOP WAS VECTORIZED.

sample.f90(37) : (col. 10) remark: loop was not vectorized: not inner loop.

sample.f90(38) : (col. 12) remark: loop was not vectorized: not inner loop.

sample.f90(40) : (col. 14) remark: loop was not vectorized: vectorization possible but
seems inefficient.

sample.f90(46) : (col. 10) remark: loop was not vectorized: not inner loop.

sample.f90(47) : (col. 12) remark: loop was not vectorized: contains unvectorizable
statement at line 48.

If the compiler reports "r;Loop was not vectorized" because of the existence of vector
dependence, then you should analyze the loop for vector dependence. If you determine there
is no legitimate vector dependence, then the message indicates that the compiler was assuming
the pointers or arrays in the loop were dependent, which implies the pointers or arrays were
aliased. Use memory disambiguation techniques to resolve these cases.

There are three major types of vector dependence: FLOW, ANTI, and OUTPUT.

There are a number of situations where the vectorization report may indicate vector
dependencies. The following situations will sometimes be reported as vector dependencies,
non-unit stride, low trip count, and complex subscript expression.

Non-Unit Stride

The report might indicate that a loop could not be vectorized when the memory is accessed in
a non-Unit Stride manner. This means that nonconsecutive memory locations are being accessed
in the loop. In such cases, see if loop interchange can help or if it is practical. If not then you
can force vectorization sometimes through vector always directive; however, you should
verify improvement.

See Understanding Runtime Performance for more information about non-unit stride conditions.

1295

24

Usage with Other Options

The vectorization reports are generated during the final compilation phase, which is when the
executable is generated; therefore, there are certain option combinations you cannot use if
you are attempting to generate a report. If you use the following option combinations, the
compiler issues a warning and does not generate a report:

• -c or -ipo or -x with -vec-report (Linux* and Mac OS* X) and /c or /Qipo or /Qx with
/Qvec-report (Windows*)

• -c or -ax with -vec-report (Linux and Mac OS X) and /c or /Qax with /Qvec-report
(Windows)

The following example commands can generate vectorization reports:

Command ExamplesOperating System

ifort -xSSSE3 -vec-report3
sample.f90

Linux and Mac OS X

ifort -xSSSE3 -ipo -vec-report3
sample.f90

ifort /QxSSSE3 /Qvec-report:3
sample.f90

Windows

ifort /QxSSSE3 /Qipo /Qvec-report:3
sample.f90

Responding to the Results

You might consider changing existing code to allow vectorization under the following conditions:

• The vectorization report indicates that the program "contains unvectorizable statement at
line XXX".

• The vectorization report states there is a "vector dependence: proven FLOW dependence
between 'r;variable' line XXX, and 'r;variable' line XXX" or "loop was not vectorized: existence
of vector dependence." Generally, these conditions indicate true loop dependencies are
stopping vectorization. In such cases, consider changing the loop algorithm.

1296

24 Intel® Fortran Compiler User and Reference Guides

For example, consider the two equivalent algorithms producing identical output below. "Foo"
will not vectorize due to the FLOW dependence but "bar" does vectorize.

Example

subroutine foo(y)

implicit none

integer :: i

real :: y(10)

do i=2,10

y (i) = y (i-1)+1

end do

end subroutine foo

subroutine bar(y)

implicit none

integer :: i

real :: y(10)

do i=2,10

y (i) = y (1)+i

end do

end subroutine bar

1297

24

Unsupported loop structures may prevent vectorization. An example of an unsupported loop
structure is a loop index variable that requires complex computation. Change the structure to
remove function calls to loop limits and other excessive computation for loop limits.

Example

function func(n)

implicit none

integer :: func, n

func = n*n-1

end function func

subroutine unsupported_loop_structure(y,n)

implicit none

integer :: i,n, func

real :: y(n)

do i=0,func(n)

y(i) = y(i) * 2.0

end do

end subroutine unsupported_loop_structure

Non-unit stride access might cause the report to state that "vectorization possible but seems
inefficient". Try to restructure the loop to access the data in a unit-stride manner (for example,
apply loop interchange), or try directive .

Using mixed data types in the body of a loop might prevent vectorization. In the case of mixed
data types, the vectorization report might state something similar to "loop was not vectorized:
condition too complex".

1298

24 Intel® Fortran Compiler User and Reference Guides

The following example code demonstrates a loop that cannot vectorize due to mixed data types
within the loop. For example, withinborder is an integer while all other data types in loop
are not. Simply changing the withinborder data type will allow this loop to vectorize.

Example

subroutine howmany_close(x,y,n)

implicit none

integer :: i,n,withinborder

real :: x(n), y(n), dist

withinborder=0

do i=0,100

dist=sqrt(x(i)*x(i) + y(i)*y(i))

if (dist<5) withinborder= withinborder+1

end do

end subroutine howmany_close

OpenMP* Report

The -openmp-report (Linux* and Mac OS* X) or /Qopenmp-report (Windows*) option controls
the diagnostic levels for OpenMP* reporting. The OpenMP* report information is not generated
unless you specify the option with a value of either 1 or 2. Specifying 2 provides the most useful
information.

You must specify the -openmp (Linux and Mac OS X) or /Qopenmp (Windows) along with this
option.

DescriptionWindows OSLinux OS and Mac OS X

Report results are same as
when specifying 1 except the
results also include

/Qopenmp-report:2-openmp-report 2 diagnostics indicating
constructs, like directives,
that were handled
successfully. This is the
recommend level.

1299

24

DescriptionWindows OSLinux OS and Mac OS X

Reports on loops, regions,
and sections that were
parallelized successfully. This
is the default level.

/Qopenmp-report:1-openmp-report 1

No diagnostics report
generated.

/Qopenmp-report:0-openmp-report 0

The following example commands demonstrate how to run the report using the combined
commands.

Syntax ExamplesOperating System

ifort -openmp -openmp-report 2
sample1.f90 sample2.f90

Linux and Mac OS X

ifort /Qopenmp /Qopenmp-report:2
sample1.f90 sample2.f90

Windows

NOTE. Linux and Mac OS X: The space between the option and the level is optional.

Windows: The colon between the option and level is optional.

The following example results illustrate the typical format of the generated information:

Example results

openmp_sample.f90(77): (col. 7) remark : OpenMP DEFINED LOOP WAS PARALLELIZED.

openmp_sample.f90(68): (col. 7) remark: OpenMP DEFINED REGION WAS PARALLELIZED.

See also:

• OpenMP* Options Quick Reference for information about these options.

• OpenMP* Support Overview for information on using OpenMP* in Intel® compilers.

1300

24 Intel® Fortran Compiler User and Reference Guides

25Using Compiler Optimizations

Automatic Optimizations Overview

Intel® compilers allow you to compile applications for processors based on IA-32 architectures (32-bit
applications), Intel® 64 architectures (32-bit and 64-bit applications), or IA-64 architectures (64-bit
applications).

By default the compiler chooses a set of optimizations that balances compile-time and run-time
performance for your application. Also, you can manually select optimizations based on the specific
needs of the application.

The following table summarizes the common optimization options you can use for quick, effective
results.

DescriptionWindows*Linux* and Mac OS* X

Enables aggressive
optimization for code speed.
Recommended for code with/O3-O3
loops that perform substantial
calculations or process large
data sets.

Affects code speed. This is the
default option; the compiler
uses this optimization level if
you do not specify anything.

/O2-O2 (or -O)

Affects code size and locality.
Disables specific optimizations.

/O1-O1

Enables a collection of
common, recommended
optimizations for run-time
performance. Can introduce
architecture dependency.

/fast-fast

Disables optimization. Use this
for rapid compilation while
debugging an application.

/Od-O0

1301

The variety of automatic optimizations enable you to quickly enhance your application
performance. In addition to automatic optimizations, the compiler invokes other optimization
enabled with source code directives, optimized library routines, and performance-enhancing
utilities.

The remaining topics in this section provide more details on the automatic optimizations
supported in the Intel compilers.

See Also
• Using Compiler Optimizations
• Enabling Automatic Optimizations
• Restricting Optimizations

Enabling Automatic Optimizations

This topic lists the most common code optimization options, describes the characteristics shared
by IA-32, Intel® 64, and IA-64 architectures, and describes the general behavior for each
architecture.

The architectural differences and compiler options enabled or disabled by these options are
also listed in more specific detail in the associated Compiler Options topics; therefore, each
option discussion listed below includes a link to the appropriate reference topic.

DescriptionWindows*Linux* and Mac OS* X

Optimizes to favor smaller
code size and code locality.
In most cases, -O2 (Linux*

/O1-O1

OS and Mac OS* X) or /O2
(Windows* OS) is
recommended over this
option.

This optimization disables
some optimizations that
normally increase code size.
This level might improve
performance for applications
with very large code size,
many branches, and
execution time not dominated
by code within loops. In
general, this optimization
level does the following:

1302

25 Intel® Fortran Compiler User and Reference Guides

DescriptionWindows*Linux* and Mac OS* X

• Enables global
optimization.

• Disables intrinsic
recognition and inlining of
intrinsics.

IA-64 architecture:

• The option disables
software pipelining, loop
unrolling, and global code
scheduling.

Optimizes for code speed.
Since this is the default
optimization, if you do not

/O2-O2 or -O

specify an optimization level
the compiler will use this
optimization level
automatically. This is the
generally recommended
optimization level; however,
specifying other compiler
options can affect the
optimization normally gained
using this level.

In general, the resulting code
size will be larger than the
code size generated using
-O1 (Linux and Mac OS X) or
/O1 (Windows).

This option enables the
following capabilities for
performance gain: inlining
intrinsic functions, constant
propagation, copy
propagation, dead-code
elimination, global register
allocation, global instruction
scheduling and control
speculation, loop unrolling,

1303

25

DescriptionWindows*Linux* and Mac OS* X

optimized code selection,
partial redundancy
elimination, strength
reduction/induction variable
simplification, variable
renaming, exception handling
optimizations, tail recursions,
peephole optimizations,
structure assignment
lowering optimizations, and
dead store elimination.

For IA-32 and Intel 64
architectures:

• Enables certain
optimizations for speed,
such as vectorization.

IA-64 architecture:

• Enables optimizations for
speed, including global
code scheduling, software
pipelining, predication,
speculation, and data
prefetch.

Enables -O2 (Linux and Mac
OS X) or /O2 (Windows)
optimizations, as well as

/O3-O3

more aggressive
optimizations, including
prefetching, scalar
replacement, cache blocking,
and loop and memory access
transformations.

As compared to -O2 (Linux)
or /O2 (Windows), the
optimizations enabled by this
option often result in faster
program execution, but can

1304

25 Intel® Fortran Compiler User and Reference Guides

DescriptionWindows*Linux* and Mac OS* X

slow down code execution in
some cases. Using this option
may result in longer
compilation times.

This option is recommended
for loop-intensive applications
that perform substantial
floating-point calculations or
process large data sets.

Provides a single, simple
optimization that enables a
collection of optimizations
that favor run-time
performance.

/fast-fast

This is a good, general option
for increasing performance in
many programs.

For IA-32 and Intel 64
architectures, the -xSSSE3
(Linux and Mac OS X) or
/QxSSSE3 (Windows) option
that is set by this option
cannot be overridden by
other command line options.
If you specify this option
along with a different
processor-specific option,
such as -xSSE2 (Linux) or
/QxSSE2 (Windows), the
compiler will issue a warning
stating the -xSSSE3 or
/QxSSSE3 option cannot be
overridden; the best strategy
for dealing with this
restriction is to explicitly
specify the options you want
to set from the command
line.

1305

25

DescriptionWindows*Linux* and Mac OS* X

CAUTION. Programs
compiled with the -xSSSE3
(Linux and Mac OS X) or
/QxSSSE3 (Windows)
option will detect
non-compatible processors
and generate an error
message during execution.

While this option enables
other options quickly, the
specific options enabled by
this option might change
from one compiler release to
the next. Be aware of this
possible behavior change in
the case where you use
makefiles.

The following syntax examples demonstrate using the default option to compile an application:

ExampleOperating System

ifort -O2 prog.f90Linux and Mac OS X

ifort /O2 prog.f90Windows

Refer to Quick Reference Lists for a complete listing of the quick reference topics.

Targeting IA-32 and Intel(R) 64 Architecture Processors Automatically

The -x (Linux* and Mac OS* X) or /Qx (Windows*) option can automatically optimize your
application for specific Intel® processors based on IA-32 and Intel® 64 architectures.

The automatic optimizations allow you to take advantage of the architectural differences, new
instruction sets, or advances in processor design; however, the resulting, optimized code might
contain unconditional use of features that are not supported on other, earlier processors.
Therefore, using these options effectively sets a minimum hardware requirement for your
application.

1306

25 Intel® Fortran Compiler User and Reference Guides

The optimizations can include generating Intel® Streaming SIMD Extensions 4 (SSE4),
Supplemental Streaming SIMD Extensions 3 (SSSE3), Streaming SIMD Extensions 3 (SSE3),
Streaming SIMD Extensions 2 (SSE2), or Streaming SIMD Extensions (SSE) instructions.

If you intend to run your programs on multiple processors based on IA-32 or Intel® 64
architectures, do not use this option; instead, consider using the -ax (Linux and Mac OS X) or
/Qax (Windows) option to achieve both processor-specific performance gains and portability
among different processors.

DescriptionWindows OSLinux OS and Mac OS X

Can generate instructions for
the highest instruction set
and processor available on
the compilation host.

/QxHost-xHost

Optimizes for Intel processors
that support Intel® Advanced
Vector Extensions (Intel®
AVX).

/QxAVX-xAVX

Can generate Intel® SSE4
Vectorizing Compiler and
Media Accelerator instructions

/QxSSE4.1-xSSE4.1

for Intel processors. Can
generate Intel® SSSE3, SSE3,
SSE2, and SSE instructions
and it can optimize for Intel®
45nm Hi-k next generation
Intel® Core™
microarchitecture. This
replaces value S, which is
deprecated.

Can generate Intel® SSE4
Efficient Accelerated String
and Text Processing

/QxSSE4.2-xSSE4.2

instructions supported by
Intel® Core™ i7 processors.
Can generate Intel® SSE4
Vectorizing Compiler and
Media Accelerator, Intel®
SSSE3, SSE3, SSE2, and SSE

1307

25

DescriptionWindows OSLinux OS and Mac OS X

instructions and it can
optimize for the Intel® Core™
processor family.

Can generate Intel® SSSE3,
SSE3, SSE2, and SSE
instructions for Intel

/QxSSSE3-xSSSE3

processors and it can
optimize for the Intel®
Core™2 Duo processor
family. This replaces value T,
which is deprecated.

Optimizes for the Intel®
Atom™ processor and Intel®
Centrino® Atom™ Processor

/QxSSE3_ATOM-xSSE3_ATOM

Technology. Can generate
MOVBE instructions,
depending on the setting of
option -minstruction
(Linux and Mac OS) or /Qin-
struction (Windows).

Mac OS X: Supported on
IA-32 architectures.

Can generate Intel® SSE3,
SSE2, and SSE instructions
for Intel processors and it can

/QxSSE3-xSSE3

optimize for processors based
on Intel® Core™
microarchitecture and Intel
NetBurst® microarchitecture.
This replaces value P, which
is deprecated.

Mac OS X: Supported on
IA-32 architectures.

Can generate Intel® SSE2 and
SSE instructions for Intel
processors, and it can

/QxSSE2-xSSE2

optimize for Intel® Pentium®

1308

25 Intel® Fortran Compiler User and Reference Guides

DescriptionWindows OSLinux OS and Mac OS X

4 processors, Intel® Pentium®

M processors, and Intel®
Xeon® processors with Intel®
SSE2.

Mac OS X: Not supported.

Certain keywords for compiler options -m and /arch produce binaries that should run on
processors not made by Intel that implement the same capabilities as the corresponding Intel
processors. For details, see Compiler Options.

To prevent illegal instruction and similar unexpected run-time errors during program execution,
the compiler inserts code in the main routine of the program to check for proper processor
usage. Using this option limits you to a minimum processor level. For example, if you target
an application to run on Intel® Xeon® processors based on the Intel® Core™ microarchitecture,
it is unlikely the resulting application will operate correctly on earlier Intel processors.

If you target more than one processor value, the resulting code will be generated for the
highest-performing processor specified if the compiler determines there is an advantage in
doing so. The highest- to lowest-performing processor values are as follows:

1. SSE4.1

2. SSSE3

3. SSE3

4. SSE2

Executing programs compiled with processor values of SSE4.1, SSSE3, SSE3, or SSE2 on
unsupported processors will display a run-time error. For example, if you specify the SSSE3
processor value to compile an application but execute the application on an Intel® Pentium® 4
processor, the application generates an error similar to the following:

Run-time Error

Fatal Error: This program was not built to run on the processor in your
system.

The allowed processors are: Intel(R) Core(TM) Duo processors and compatible
Intel processors with supplemental Streaming SIMD Extensions 3 (SSSE3)
instruction support.

The following examples demonstrate compiling an application for Intel® Core™2 Duo processor
and compatible processors. The resulting binary might not execute correctly on earlier processors
or on IA-32 architecture processors not made by Intel Corporation.

1309

25

ExampleOperating System

ifort -xSSSE3 sample.f90Linux and Mac OS X

ifort /QxSSSE3 sample.f90Windows

Targeting Multiple IA-32 and Intel(R) 64 Architecture Processors for Run-time
Performance

The -ax (Linux* and Mac OS* X) or /Qax (Windows*) option instructs the compiler to determine
if opportunities exist to generate multiple, specialized code paths to take advantage of
performance gains and features available on newer Intel® processors based on IA-32 and Intel®
64 architectures. This option also instructs the compiler to generate a more generic (baseline)
code path that should allow the same application to run on a larger number of processors;
however, the baseline code path is usually slower than the specialized code.

The compiler inserts run-time checking code to help determine which version of the code to
execute. The size of the compiled binary increases because it contains both a processor-specific
version of some of the code and a generic baseline version of all code. Application performance
is affected slightly due to the run-time checks needed to determine which code to use. The
code path executed depends strictly on the processor detected at run time.

Processor support for the baseline code path is determined by the processor family or instruction
set specified in the -m or -x (Linux and Mac OS X) or /arch or /Qx (Windows) option, which
has default values for each architecture.

This allows you to impose a more strict processor or instruction set requirement for the baseline
code path; however, such generic baseline code will not operate correctly on processors that
are not compatible with the minimum processor or instruction set requirement. For the IA-32
architecture, you can specify a baseline code path that will work on all IA-32 compatible
processors using the -mia32 (Linux) or /arch:IA32 (Windows) options. You should always
specify the processor or instruction set requirements explicitly for the baseline code path, rather
than depend on the defaults for the architecture.

Optimizations in the specialized code paths can include generating and using Intel® Streaming
SIMD Extensions 4 (SSE4), Supplemental Streaming SIMD Extensions 3 (SSSE3), Streaming
SIMD Extensions 3 (SSE3), or Streaming SIMD Extensions 2 (SSE2) instructions for supported
Intel processors; however, such specialized code paths are executed only after checking verifies
that the code is supported by the run-time host processor.

If not indicated otherwise, the following processor values are valid for IA-32 and Intel® 64
architectures.

1310

25 Intel® Fortran Compiler User and Reference Guides

DescriptionWindows OSLinux OS and Mac OS X

Can generate Intel® SSE4
Efficient Accelerated String
and Text Processing

/QaxSSE4.2-axSSE4.2

instructions supported by
Intel® Core™ i7 processors.
Can generate Intel® SSE4
Vectorizing Compiler and
Media Accelerator, Intel®
SSSE3, SSE3, SSE2, and SSE
instructions and it can
optimize for the Intel® Core™
processor family.

Can generate Intel® SSE4
Vectorizing Compiler and
Media Accelerator instructions

/QaxSSE4.1-axSSE4.1

for Intel processors. Can
generate Intel® SSSE3, SSE3,
SSE2, and SSE instructions
and it can optimize for Intel®
45nm Hi-k next generation
Intel® Core™
microarchitecture. This
replaces value S, which is
deprecated.

Mac OS X: IA-32 and Intel®
64 architectures.

Can generate Intel® SSSE3,
SSE3, SSE2, and SSE
instructions for Intel

/QaxSSSE3-axSSSE3

processors and it can
optimize for the Intel®
Core™2 Duo processor
family. This replaces value T,
which is deprecated.

Mac OS X: IA-32
architecture.

1311

25

DescriptionWindows OSLinux OS and Mac OS X

Optimizes for the Intel®
Atom™ processor and Intel®
Centrino® Atom™ Processor

/QaxSSE3_ATOM-axSSE3_ATOM

Technology. Can generate
MOVBE instructions,
depending on the setting of
option -minstruction
(Linux and Mac OS) or /Qin-
struction (Windows).

Mac OS X: Supported on
IA-32 architectures.

Can generate Intel® SSE3,
SSE2, and SSE instructions
for Intel processors and it can

/QaxSSE3-axSSE3

optimize for processors based
on Intel® Core™
microarchitecture and Intel
NetBurst® microarchitecture.
This replaces value P, which
is deprecated.

Mac OS X: IA-32
architecture.

Can generate Intel® SSE2 and
SSE instructions for Intel
processors, and it can

/QaxSSE2-axSSE2

optimize for Intel® Pentium®

4 processors, Intel® Pentium®

M processors, and Intel®
Xeon® processors with Intel®
SSE2.

Linux and Windows: IA-32
architecture.

NOTE. You can specify -diag-disable cpu-dispatch (Linux and Mac OS X) or
/Qdiag-disable:cpu-dispatch (Windows) to disable the display of remarks about
multiple code paths for CPU dispatch.

1312

25 Intel® Fortran Compiler User and Reference Guides

If your application for IA-32 or Intel® 64 architectures does not need to run on multiple
processors , consider using the -x (Linux and Mac OS X) or /Qx (Windows) option instead of
this option.

The following compilation examples demonstrate how to generate an IA-32 architecture
executable that includes an optimized version for Intel® Core™2 Duo processors, as long as
there is a performance gain, an optimized version for Intel® Core™ Duo processors, as long as
there is a performance gain, and a generic baseline version that runs on any IA-32 architecture
processor.

NOTE. If you combine the arguments, you must add a comma (",") separator between
the individual arguments.

ExampleOperating System

ifort -axSSSE3,SSE3 -mia32
sample.f90

Linux

ifort /QaxSSSE3,SSE3 /arch:IA32
sample.f90

Windows

Targeting IA-64 Architecture Processors Automatically

The Intel compiler supports options that optimize application performance for Intel® Itanium®

processors based on the IA-64 architecture.

Optimizes applications for...Windows* OSLinux* OS

Default. Dual-Core Intel®
Itanium® 2 processor (9000
series)

/G2-p9000-mtune=itanium2-p9000

Intel® Itanium® 2 processors/G2-mtune=itanium2

NOTE. Mac OS* X: These options are not supported.

1313

25

While the resulting executable is backward compatible, generated code is optimized for specific
processors; therefore, code generated with -mtune=itanium2-p9000 (Linux) or /G2-p9000
(Windows) will run correctly on Itanium® 2 processors.

The following examples demonstrate using the default options to target an Itanium® 2 processor
(9000 series). The same binary will also run on Intel® Itanium® 2 processors.

ExampleOperating System

ifort -mtune=itanium2-p9000 prog.f90Linux

ifort /G2-p9000 prog.f90Windows

Restricting Optimizations

The following table lists options that restrict the ability of the Intel® compiler to optimize
programs.

EffectWindows*Linux* and Mac OS* X

Disables all optimizations.
Use this during development
stages where fast compile
times are desired.

/Od-O0

Linux* and Mac OS* X:

• Sets option -fomit-
frame-pointer and
option -fmath-errno.

Windows*:

• Use /Od to disable all
optimizations while
specifying particular
optimizations, such as:
/Od /Ob1 (disables all
optimizations, but only
enables inlining)

For more information, see the
following topic:

• -O0 compiler option

1314

25 Intel® Fortran Compiler User and Reference Guides

EffectWindows*Linux* and Mac OS* X

Generates symbolic
debugging information in
object files for use by
debuggers.

/Zi, /Z7-g

This option enables or
disables other compiler
options depending on
architecture and operating
system; for more information
about the behavior, see the
following topic:

• -g compiler option

Instructs the compiler to
assume that the program
tests errno after calls to
math library functions.

No equivalent-fmath-errno,
-fno-math-errno

For more information, see the
following topic:

• -fmath-errno compiler
option

Diagnostic Options

EffectWindowsLinux and Mac OS X

Instructs the compiler to save
the compiler options and
version number in the

/Qsox-sox

executable. During the linking
process, the linker places
information strings into the
resulting executable. Slightly
increases file size, but using
this option can make

1315

25

EffectWindowsLinux and Mac OS X

identifying versions for
regression issues much
easier.

For more information, see the
following topic:

• -sox compiler option

1316

25 Intel® Fortran Compiler User and Reference Guides

26Using Parallelism: OpenMP*
Support

OpenMP* Support Overview

The Intel® compiler supports the OpenMP* Version 3.0 API specification. For complete Fortran
language support for OpenMP, see the OpenMP Application Program Interface Version 3.0 specification,
which is available from the OpenMP web site (http://www.openmp.org/, click the Specifications link).

This version of the Intel compiler also introduces OpenMP API Version 3.0 API specification support,
as described in the OpenMP web site (http://www.openmp.org/, click Specifications).

OpenMP provides symmetric multiprocessing (SMP) with the following major features:

• Relieves the user from having to deal with the low-level details of iteration space partitioning,
data sharing, and thread creation, scheduling, and synchronization.

• Provides the benefit of the performance available from shared memory multiprocessor and
multi-core processor systems on IA-32, Intel® 64, and IA-64 architectures, including those
processors with Hyper-Threading Technology.

The compiler performs transformations to generate multithreaded code based on a developer's
placement of OpenMP directives in the source program making it easy to add threading to existing
software. The Intel compiler supports all of the current industry-standard OpenMP directives and
compiles parallel programs annotated with OpenMP directives.

The compiler provides Intel-specific extensions to the OpenMP Version 3.0 specification including
run-time library routines and environment variables. However, these extensions are only supported
by the Intel compilers. A summary of the compiler options that apply to OpenMP* appears in OpenMP*
Options Quick Reference.

Parallel Processing with OpenMP

To compile with OpenMP, you need to prepare your program by annotating the code with OpenMP
directives in the form of the Fortran program comments. The Intel compiler processes the application
and internally produces a multithreaded version of the code which is then compiled. The output is
an executable with the parallelism implemented by threads that execute parallel regions or constructs.
See Programming with OpenMP.

1317

Using Other Compilers

The OpenMP specification does not define interoperability of multiple implementations; therefore,
the OpenMP implementation supported by other compilers and OpenMP support in Intel compilers
might not be interoperable. Even if you compile and build the entire application with one
compiler, be aware that different compilers might not provide OpenMP source compatibility
that would allow you to compile and link the same set of application sources with a different
compiler and get the expected parallel execution results.

Intel compilers include two sets of OpenMP libraries, as described in OpenMP Source Compatibility
and Interoperability with Other Compilers.

OpenMP* Options Quick Reference

These options are supported on IA-32, Intel® 64, and IA-64 architectures.

DescriptionWindows* OSLinux* OS and Mac OS* X

This option enables the
parallelizer to generate
multi-threaded code based

/Qopenmp-openmp

on the OpenMP* directives.
The code can be executed in
parallel on both uniprocessor
and multiprocessor systems.

IA-64 architecture only:

• Implies -opt-mem-band-
with1 (Linux) or /Qopt-
mem-bandwidth1
(Windows).

This option controls the
OpenMP parallelizer's level of
diagnostic messages. To use

/Qopenmp-report-openmp-report this option, you must also
specify -openmp (Linux and
Mac OS X) or /Qopenmp
(Windows).

1318

26 Intel® Fortran Compiler User and Reference Guides

DescriptionWindows* OSLinux* OS and Mac OS* X

This option enables
compilation of OpenMP
programs in sequential mode./Qopenmp-stubs-openmp-stubs
The OpenMP directives are
ignored and a stub OpenMP
library is linked.

This option enables analysis
of OpenMP* applications. To
use this option, you must

/Qopenmp-profile-openmp-profile

have previously installed
Intel® Thread Profiler, which
is one of the Intel® Threading
Analysis Tools.

This option can adversely
affect performance because
of the additional profiling and
error checking invoked to
enable compatibility with the
threading tools. Do not use
this option unless you plan to
use the Intel® Thread Profiler.

This option lets you specify
an OpenMP* run-time library
to use for linking. The legacy

/Qopenmp-lib-openmp-lib

OpenMP run-time library is
not compatible with object
files created using OpenMP
run-time libraries supported
in other compilers.

The compatibility OpenMP
run-time library is compatible
with object files created using
the Microsoft* OpenMP
run-time library (vcomp) and
GNU OpenMP run-time library
(libgomp).

1319

26

DescriptionWindows* OSLinux* OS and Mac OS* X

This option controls whether
the compiler links to static or
dynamic OpenMP run-time

/Qopenmp-link-openmp-link

libraries. To link to the static
OpenMP run-time library
(RTL) and create a purely
static executable, you must
specify -openmp-link static
(Linux and Mac OS X) or
/Qopenmp-link (Windows).
However, we strongly
recommend you use the
default setting, -openmp-
link dynamic (Linux and
Mac OS X) or /Qopenmp-
link:dynamic (Windows).

This option lets you specify
an OpenMP* threadprivate
implementation. The legacy

/Qopenmp-threadprivate-openmp-threadprivate OpenMP run-time library is
not compatible with object
files created using OpenMP
run-time libraries supported
in other compilers.

When both -openmp and -parallel (Linux OS and Mac OS X) or /Qopenmp and /Qparallel
(Windows OS) are specified on the command line, the parallel option is only applied in loop
nests that do not have OpenMP directives. For loop nests with OpenMP directives, only the
openmp option is applied.

Refer to the following topics for information about OpenMP environment variable and run-time
routines:

• OpenMP Environment Variables

• OpenMP Run-time Library Routines

• Intel Extension Routines to OpenMP

Refer to Quick Reference Lists for a complete listing of the quick reference topics.

1320

26 Intel® Fortran Compiler User and Reference Guides

OpenMP* Source Compatibility and Interoperability with Other Compilers

Intel compilers include two sets of OpenMP libraries:

• The Compatibility OpenMP libraries, which provide compatibility with OpenMP support provided
by certain versions of the Microsoft Visual C++* compiler on Windows* OS, certain versions
of the GNU* compilers on Linux* OS and Mac OS* X, as well as the Intel compiler version
10.x (and later).

• The Legacy OpenMP libraries, which provide compatibility with OpenMP support provided
by Intel compilers, including Intel compilers prior to version 10.0.

To select the Compatibility (default) or Legacy OpenMP libraries, use the Intel compiler to link
your application and specify the Intel compiler option /Qopenmp-lib (Windows OS) or -openmp-
lib (Linux OS and Mac OS X) .

The term "object-level interoperability" refers to the ability to link object files and libraries
generated by one compiler with object files and libraries generated by the second compiler,
such that the resulting executable runs successfully. In contrast, "source compatibility" means
that the entire application is compiled and linked by one compiler, and you do not need to
modify the sources to get the resulting executable to run successfully.

Different compilers support different versions of the OpenMP specification. Based on the OpenMP
features your application uses, determine what version of the OpenMP specification your
application requires. If your application uses an OpenMP specification level equal or less than
the OpenMP specification level supported by all the compilers, your application should have
source compatibility with all compilers, but you need to link all object files and libraries with
the same compiler's OpenMP libraries.

OpenMP Compatibility Libraries Provided by Intel Compilers

The Compatibility libraries provide source compatibility and object-level interoperability with
the OpenMP support provided by:

• On Windows* OS, certain versions of Microsoft Visual C++* that support OpenMP, starting
with Microsoft Visual C++ 2005.

• On Linux* OS and Mac OS* X, certain versions of GNU* gcc* that support OpenMP, starting
with GNU* gcc* version 4.2.

• Intel compilers versions 10.0 and later and their supplied OpenMP libraries.

For Fortran applications on Linux systems, it is not possible to link objects compiled by the
Intel® Fortran Compiler (ifort) with objects compiled by the GNU* Fortran compiler (gfortran).
Thus, for mixed-language C++ and Fortran applications, you can do one of the following:

1321

26

• Combine objects created by gfortran and Intel® C++ objects, if you specify the Intel
OpenMP Compatibility libraries during linking.

• Combine objects created by the Intel C++ compiler and the Intel Fortran Compiler, using
Intel OpenMP Compatibility or Legacy libraries.

OpenMP Legacy Libraries Provided by Intel Compilers

The set of Legacy OpenMP libraries has been provided by Intel compilers for multiple releases
and provide source compatibility and object-level interoperability with the current Legacy
libraries and OpenMP libraries provided by previous Intel compiler versions, including those
prior to version 10.0. The Legacy libraries are not compatible with OpenMP support from
non-Intel compilers, such as Microsoft Visual C++*, GNU gcc*, or GNU Fortran.

You should only use the Legacy libraries if your application requires object-level interoperability
with OpenMP library versions provided prior to Intel compilers version 10.0.

Guidelines for Using Different Intel Compiler Versions

To avoid possible linking or run-time problems, follow these guidelines:

• If you compile your application using only the Intel compilers, avoid mixing the Compatibility
and Legacy OpenMP runtime libraries. That is, you must link the entire application with
either the Compatibility or Legacy libraries.

• When using the Legacy libraries, use the most recent Intel compiler to link the entire
application. However, be aware that the Legacy libraries are deprecated, so for a future
release, you will need to link the entire application with the Compatibility libraries.

• Use dynamic instead of static OpenMP libraries to avoid linking multiple copies of the libraries
into a single program. For details, see OpenMP Support Libraries.

Guidelines for Using Intel and Non-Intel Compilers

To avoid possible linking or run-time problems, follow these guidelines:

• Always link the entire application using the Intel compiler OpenMP Compatibility libraries.
This avoids linking multiple copies of the OpenMP runtime libraries from different compilers.
It is easiest if you use the Intel compiler command (driver) to link the application, but it is
possible to link with the Intel compiler OpenMP Compatibility libraries when linking the
application using the GNU* or Visual C++ compiler (or linker) commands.

• If possible, compile all the OpenMP sources with the same compiler. If you compile (not
link) using multiple compilers such as the Microsoft Visual C++* or GNU compilers that
provide object-level interoperability with the Compatibility libraries, see the instructions in
Using the OpenMP Compatibility Libraries.

• Use dynamic instead of static OpenMP libraries to avoid linking multiple copies of the libraries
into a single program. For details, see OpenMP Support Libraries.

Limitations When Using OpenMP Compatibility Libraries with Other Compilers

1322

26 Intel® Fortran Compiler User and Reference Guides

Limitations of threadprivate objects on object-level interoperability:

• On Windows OS systems, the Microsoft Visual C++* compiler uses a different mechanism
than the Intel compilers to reference threadprivate data. If you declare a variable as
threadprivate in your code and you compile the code with both Intel compilers and Visual
C++ compilers, the code compiled by the Intel compiler and the code compiled by the Visual
C++* compiler will reference different locations for the variable even when referenced by
the same thread. Thus, use the same compiler to compile all source modules that use the
same threadprivate objects.

• On Linux OS systems, the GNU* compilers use a different mechanism than the Intel compilers
to reference threadprivate data. If you declare a variable as threadprivate in your code and
you compile the code with both Intel compilers and GNU compilers, the code compiled by
the Intel compiler and the code compiled by the GNU compiler will reference different
locations for the variable even when referenced by the same thread. Thus, use the same
compiler to compile all source modules that use the same threadprivate objects.

• On Mac OS* X systems, the operating system does not currently support the mechanism
used by the GNU* compiler to support threadprivate data. Threadprivate data objects will
only be accessible by name from object files compiled by the Intel compilers.

Using OpenMP*

Using OpenMP* in your application requires several steps. To use OpenMP, you must do the
following:

1. Add OpenMP directives to your application source code.

2. Compile the application with -openmp (Linux* and Mac OS* X) or /Qopenmp (Windows*)
option.

3. For applications with large local or temporary arrays, you may need to increase the stack
space available at run-time. In addition, you may need to increase the stack allocated to
individual threads by using the KMP_STACKSIZE environment variable or by setting the
corresponding library routines.

You can set other environment variables for the multi-threaded code execution.

Add OpenMP Support to the Application

Add the OpenMP API routine declarations to your application by adding a statement similar to
the following in your code:

Example

use omp_lib

1323

26

OpenMP Directive Syntax

OpenMP directives use a specific format and syntax. Intel Extension Routines to OpenMP*
describes the OpenMP extensions to the specification that have been added to the Intel® compiler.

The following syntax illustrates using the directives in your source.

Example

<prefix> <directive> [<clause>[[,]<clause>...]]

where:

• <prefix> - Required for all OpenMP directives. For free form source input, the prefix is
!$OMP only; for fixed form source input, the prefix is !$OMP or C$OMP.

• <directive> - A valid OpenMP directive. Must immediately follow the prefix; for example:
!$OMP PARALLEL.

• [<clause>] - Optional. Clauses can be in any order and repeated as necessary, unless
otherwise restricted.

• [<newline>] - A required component of directive syntax. It precedes the structured block
which is enclosed by this directive.

• [,]: Optional. Commas between more than one <clause> are optional.

The directives are interpreted as comments if you omit the -openmp (Linux and Mac OS X) or
/Qopenmp (Windows*) option.

The OpenMP constructs defining a parallel region have one of the following syntax forms:

Example

!$OMP <directive>

<structured block of code>

!$OMP END <directive>

or

!$OMP <directive>

<structured block of code>

or

!$OMP <directive>

1324

26 Intel® Fortran Compiler User and Reference Guides

The following example demonstrates one way of using an OpenMP directive to parallelize a
loop.

Example

subroutine simple_omp(a, N)

use omp_lib

integer :: N, a(N)

!$OMP PARALLEL DO

do i = 1, N

a(i) = i*2

end do

end subroutine simple_omp

See OpenMP* Examples for more examples on using directives in specific circumstances.

Compile the Application

The -openmp (Linux* and Mac OS* X) or /Qopenmp (Windows*) option enables the parallelizer
to generate multi-threaded code based on the OpenMP directives in the source. The code can
be executed in parallel on single processor, multi-processor, or multi-core processor systems.

NOTE. IA-64 Architecture: Specifying this option implies -opt-mem-bandwith1 (Linux)
or /Qopt-mem-bandwidth1 (Windows).

The openmp option works with both -O0 (Linux and Mac OS X) and /Od (Windows) and with
any optimization level of -O1, -O2 and -O3 (Linux and Mac OS X) or /O1, /O2 and /O3
(Windows).

Specifying -O0 (Linux and Mac OS X) or /Od (Windows) with the OpenMP option helps to debug
OpenMP applications.

Compile your application using commands similar to those shown below:

1325

26

DescriptionOperating
System

ifort -openmp source_fileLinux and Mac
OS X

ifort /Qopenmp source_fileWindows

Assume that you compile the sample above, using the commands similar to the following, where
-c (Linux and Mac OS X) or /c (Windows) instructs the compiler to compile the code without
generating an executable:

ExampleOperating
System

ifort -openmp -c parallel.f90Linux and Mac
OS X

ifort /Qopenmp /c parallel.f90Windows

The compiler might return a message similar to the following:

parallel.f90(20) : (col. 6) remark: OpenMP DEFINED LOOP WAS PARALLELIZED.

Configure the OpenMP Environment

Before you run the multi-threaded code, you can set the number of desired threads using the
OpenMP environment variable, OMP_NUM_THREADS. See the OpenMP Environment Variables.

Parallel Processing Model

A program containing OpenMP* API compiler directives begins execution as a single thread,
called the initial thread of execution. The initial thread executes sequentially until the first
parallel construct is encountered.

In the OpenMP API, the PARALLEL and END PARALLEL directives define the extent of the parallel
construct. When the initial thread encounters a parallel construct, it creates a team of threads,
with the initial thread becoming the master of the team. All program statements enclosed by
the parallel construct are executed in parallel by each thread in the team, including all routines
called from within the enclosed statements.

The statements enclosed lexically within a construct define the static extent of the construct.
The dynamic extent includes all statements encountered during the execution of a construct
by a thread, including all called routines.

1326

26 Intel® Fortran Compiler User and Reference Guides

When a thread encounters the end of a structured block enclosed by a parallel construct, the
thread waits until all threads in the team have arrived. When that happens the team is dissolved,
and only the master thread continues execution of the code following the parallel construct.
The other threads in the team enter a wait state until they are needed to form another team.
You can specify any number of parallel constructs in a single program. As a result, thread teams
can be created and dissolved many times during program execution.

1327

26

The following example illustrates, from a high level, the execution model for the OpenMP
constructs. The comments in the code explain the structure of each construct or section.

Example

PROGRAM MAIN ! Begin serial execution.

... ! Only the initial thread executes.

!$OMP PARALLEL ! Begin a Parallel construct, form a team.

... ! This code is executed by each team member.

!$OMP SECTIONS ! Begin a worksharing construct.

!$OMP SECTION ! One unit of work.

... !

!$OMP SECTION ! Another unit of work.

... !

!$OMP END SECTIONS ! Wait until both units of work complete.

... ! More Replicated Code.

!$OMP DO ! Begin a worksharing construct,

DO ! each iteration is a unit of work.

... ! Work is distributed among the team.

END DO !

!$OMP END DO NOWAIT ! End of worksharing construct, NOWAIT

! is specified (threads need not wait).

! This code is executed by each team member.

!$OMP CRITICAL ! Begin critical construct.

... ! One thread executes at a time.

!$OMP END CRITICAL ! End the critical construct.

... ! This code is executed by each team member.

!$OMP BARRIER ! Wait for all team members to arrive.

... ! This code is executed by each team member.

!$OMP END PARALLEL ! End of parallel onstruct, disband team.

1328

26 Intel® Fortran Compiler User and Reference Guides

Example

! and continue with serial execution.

... ! Possibly more parallel constructs.

END PROGRAM MAIN ! End serial execution.

Using Orphaned Directives

In routines called from within parallel constructs, you can also use directives. Directives that
are not in the static extent of the parallel construct, but are in the dynamic extent, are called
orphaned directives. Orphaned directives allow you to execute portions of your program in
parallel with only minimal changes to the sequential version of the program. Using this
functionality, you can code parallel constructs at the top levels of your program call tree and
use directives to control execution in any of the called routines. For example:

Example

subroutine F

...

!$OMP PARALLEL...

call G

...

subroutine G

!$OMP DO... ! This is an orphaned directive.

...

This is an orphaned DO loop directive since the parallel region is not lexically present in
subroutine G .

Data Environment Controls

You can control the data environment within parallel and worksharing constructs. Using directives
and data environment clauses on directives, you can privatize named global-lifetime objects
by using THREADPRIVATE directive, or control data scope attributes by using the data
environment clauses for directives that support them.

The data scope attribute clauses are:

1329

26

• DEFAULT

• PRIVATE

• FIRSTPRIVATE

• LASTPRIVATE

• REDUCTION

• SHARED

The data copying clauses are:

• COPYIN

• COPYPRIVATE

You can use several directive clauses to control the data scope attributes of variables for the
duration of the construct in which you specify them; however, if you do not specify a data scope
attribute clause on a directive, the behavior for the variable is determined by the default scoping
rules, which are described in the OpenMP API specification, for the variables affected by the
directive.

Determining How Many Threads to Use

For applications where the workload depends on application input that can vary widely, delay
the decision about the number of threads to employ until runtime when the input sizes can be
examined. Examples of workload input parameters that affect the thread count include things
like matrix size, database size, image/video size and resolution, depth/breadth/bushiness of
tree based structures, and size of list based structures. Similarly, for applications designed to
run on systems where the processor count can vary widely, defer the number of threads to
employ until application run-time when the machine size can be examined.

For applications where the amount of work is unpredictable from the input data, consider using
a calibration step to understand the workload and system characteristics to aid in choosing an
appropriate number of threads. If the calibration step is expensive, the calibration results can
be made persistent by storing the results in a permanent place like the file system.

Avoid simultaneously using more threads than the number of processing units on the system.
This situation causes the operating system to multiplex the processors and typically yields
sub-optimal performance.

1330

26 Intel® Fortran Compiler User and Reference Guides

When developing a library as opposed to an entire application, provide a mechanism whereby
the user of the library can conveniently select the number of threads used by the library,
because it is possible that the user has higher-level parallelism that renders the parallelism in
the library unnecessary or even disruptive.

Use the NUM_THREADS clause on parallel regions to control the number of threads employed
and use the if clause on parallel regions to decide whether to employ multiple threads at all.
The OMP_SET_NUM_THREADS routine can also be used, but it also affects parallel regions created
by the calling thread. The NUM_THREADS clause is local in its effect, so it does not impact other
parallel regions.

By default, the Intel OpenMP runtime lets you to create a large number of threads and active
nested parallel regions. Use OMP_GET_THREAD_LIMIT() and OMP_GET_MAX_ACTIVE_LEVELS()
to determine the limits. Developers should carefully consider their thread usage and nesting
of parallelism to avoid overloading the system. The OMP_THREADS_LIMIT environment variable
limits the number of OpenMP threads to use for the whole OpenMP program. The
OMP_MAX_ACTIVE_LEVELS environment variable limits the number of active nested parallel
regions.

Verifying OpenMP* Using Parallel Lint

To accelerate migration of sequential applications to parallel applications using OpenMP, parallel
lint can be very helpful by reducing application development and debugging time. This topic
explains how to use parallel lint to optimize your parallel application. Parallel lint performs static

1331

26

global analysis of a program to diagnose existing and potential issues with parallelization. One
of the advantages of parallel lint is that it makes its checks considering the whole stack of
parallel regions and worksharing constructs, even when placed in different routines.

Example

1 parameter (N = 100)

2 real, dimension(N) :: x,y

3

4 !$OMP PARALLEL DEFAULT(SHARED)

5 !$OMP SECTIONS

6 !$OMP SECTION

7 do i = 1, N

8 call work(x, N, i)

9 call output(x, N)

10 end do

11 !$OMP SECTION

12 call work(y, N, N)

13 call output(y, N)

14 !$OMP END SECTIONS

15 !$OMP END PARALLEL

16 print *, x, y

17 end

18

19

20 subroutine work(x, N, i)

21 real, dimension(N) :: x

22 x(i) = i*10.0

23 end subroutine work

24

1332

26 Intel® Fortran Compiler User and Reference Guides

Example

25 subroutine output(x, N)

26 real, dimension(N) :: x

27 !$OMP SINGLE

28 print *, x

29 !$OMP END SINGLE

tst.f(27): error #12200: SINGLE directive is not allowed in

the dynamic extent of SECTIONS directive (file:tst.f line:5)

This makes parallel lint a powerful tool for diagnosing OpenMP directives in whole program
context. Parallel lint also provides checks to debug errors connected with data dependencies
and race conditions.

Example

1 parameter (N = 10)

2 integer i

3 integer, dimension(N) :: factorial

4

5 factorial(1) = 1

6 !$OMP PARALLEL DO

7 do i = 2, N

8 factorial(i) = i * factorial(i-1)

9 end do

10 print *, factorial

11 end

tst.f(8): warning #12246: flow data dependence from

(file:tst.f line:8) to (file:tst.f line:8), due to

"FACTORIAL" may lead to incorrect program execution in parallel mode

1333

26

Basics of Compilation

To enable parallel lint analysis, pass the /Qdiag-enable:sc-parallel[n] (Windows), -diag-
enable sc-parallel[n] (Linux and Mac OS) option to the compiler.

Parallel lint is available for IA-32 and Intel® 64 architectures only.

Parallel lint requires the OpenMP option, /Qopenmp (Windows) -openmp (Linux and Mac OS).
This option forces the compiler to process OpenMP directives to make parallelization specifics
available for parallel lint analysis. If parallel lint is used without OpenMP, the compiler issues
the following error message:

command line error: parallel lint not called due to lack of OpenMP

parallelization option, please add option /Qopenmp when using parallel lint.

If you are using Microsoft Visual Studio*, you should create a separate build configuration
devoted to parallel lint, since object and library files produced by parallel lint should not be
used to build your product.

Basic Checks

Parallel lint provides a broad set of OpenMP checks which are useful both for beginners in
parallel programming using OpenMP and for advanced parallel developers. See the Overview
section of this manual.

The examples below highlight the most useful features of parallel lint.

Case 1: Nested Regions

An OpenMP program is much more difficult to debug if it has nested parallel regions. Various
restrictions apply to nested parallel constructs. Parallel lint can check nested parallel statements
even if they are located in different files.

1334

26 Intel® Fortran Compiler User and Reference Guides

In the example below, a worksharing construct may not be closely nested inside a WORKSHARING,
CRITICAL, ORDERED, or MASTER construct.

Example

1 parameter (N = 10)

2 real, dimension(N,N) :: x, y, z

3 x = 1.0

4 y = 2.0

5 !$OMP PARALLEL DEFAULT(SHARED)

6 !$OMP MASTER

7 call work(x, y, z, N)

8 !$OMP END MASTER

9 !$OMP END PARALLEL

10 print *, z

11 end

12

13 subroutine work(x, y, z, N)

14 real, dimension(N,N) :: x, y, z

15 !$OMP DO

16 do i = 1, N

17 do j = 1, N

18 z(i,j) = x(i,j) + y(j,i)

19 end do

20 end do

21 end subroutine work

tst.f(15): error #12200: LOOP directive is not allowed in

the dynamic extent of MASTER directive (file:tst.f line:6)

1335

26

Case 2: Data-Sharing Attribute Clauses

Parallelization of an existing serial application requires accurate placement of data sharing
clauses. Parallel lint can help determine not only improper usage of sharing clauses but also
lack of proper data sharing directives.

1336

26 Intel® Fortran Compiler User and Reference Guides

The example below demonstrates the OpenMP standard restriction: "If the LASTPRIVATE clause
is used on a construct to which NOWAIT is also applied, then the original list item remains
undefined until a barrier synchronization has been performed to ensure that the thread that
executed the sequentially last iteration, or the lexically last SECTION construct, has stored that
list item." [OpenMP standard]

Example

1 integer, parameter :: N=10

2 integer last, i

3 real, dimension(N) :: a, b, c

4 b = 10.0

5 c = 50.0

6 !$OMP PARALLEL SHARED(a, b, c, last)

7 !$OMP DO LASTPRIVATE(last)

8 do i = 1, N

9 a(i) = b(i) + c(i)

10 last = i

11 end do

12 !$OMP END DO NOWAIT

13 !$OMP SINGLE

14 call sub(last)

15 !$OMP END SINGLE

16 !$OMP END PARALLEL

17 end

18

19 subroutine sub(last)

20 integer last

21 print *, last

22 end subroutine sub

tst.f(14): error #12220: LASTPRIVATE variable "LAST" in NOWAIT

1337

26

Example

work-sharing construct is used before barrier synchronization

The next example demonstrates OpenMP standard restriction: "Private pointers that become
allocated during the execution of parallel region should be explicitly deallocated by the program
prior to the end of parallel region to avoid memory leaks."

Example

1 integer :: OMP_GET_THREAD_NUM

2 integer, pointer :: ptr

3 integer, pointer :: a(:)

4

5 call OMP_SET_NUM_THREADS(2)

6 allocate(ptr)

7 allocate(a(2))

8 ptr = 5

9 print *, ptr

10 !$OMP PARALLEL PRIVATE(ptr) SHARED(a)

11 allocate(ptr)

12 ptr = 3

13 !$OMP CRITICAL

14 a(OMP_GET_THREAD_NUM()+1) = ptr

15 !$OMP END CRITICAL

16 !$OMP END PARALLEL

17 print *, a

18 end

as_44_1.f(11): error #12359: private pointer "PTR" should be explicitly deallocated by
the

program prior to the end of parallel region (file:as_44_1.f line:10) to avoid memory
leaks.

1338

26 Intel® Fortran Compiler User and Reference Guides

Case 3: Data Dependence

Data dependency issues are very difficult to debug in parallel programs due to non-deterministic
behavior. Parallel lint is able to determine data dependency issues in programs without executing
them.

To turn on data dependency analysis you should specify severity level 3 parallel lint in
diagnostics.

Example

1 integer i, a(4)

2 !$OMP PARALLEL DO SHARED(i) NUM_THREADS(4)

3 do i=1,4

4 a(i) = loc(i)

5 end do

6 !$OMP END PARALLEL DO

7 print *,a

8 end

tst.f(3): warning #12246: flow data dependence from

(file:tst.f line:3) to (file:tst.f line:3), due to "I"

may lead to incorrect program execution in parallel mode

1339

26

Case 4: Treadprivate Variables

Example

1 integer a(1000)

2 !$OMP THREADPRIVATE(a)

3 integer i, sum

4

5 !$OMP PARALLEL DO

6 do i=1,1000

7 a(i) = i

8 end do

9 !$OMP END PARALLEL DO

10 !$OMP PARALLEL DO REDUCTION(+:sum)

11 do i=10,1000

12 sum = sum + a(i)

13 end do

14 !$OMP END PARALLEL DO

15 print *,sum

16 end

tst.f(12): error #12344: THREADPRIVATE variable "A"

is used in loops with different initial values. See

loops (file:tst.f line:6) and (file:tst.f line:11).

1340

26 Intel® Fortran Compiler User and Reference Guides

Case 5: Reductions

Reductions are widely used in parallel programming, but there are a lot of hidden and explicit
restrictions. Parallel lint helps avoid potential problems connected to reductions. In this case
explicit constraint from the OpenMP API, variables that appear in a REDUCTION clause must be
SHARED in the enclosing context, is illustrated.

Example

1 integer i, j

2 real a

3

4 !$OMP PARALLEL PRIVATE(a)

5 do i = 1, 10

6 call sub(a,i)

7 end do

8 !$OMP SINGLE

9 print *, a

10 !$OMP END SINGLE

11 !$OMP END PARALLEL

12 end

13

14 subroutine sub(a,i)

15 integer i

16 real a

17 !$OMP DO REDUCTION(+: a)

18 do j = 1, 10

19 a = a + i + j

20 end do

21 end subroutine sub

as_35_1.f(17): error #12208: variable "A" must be SHARED in the enclosing

1341

26

Example

context since it is specified in a REDUCTION clause at (file:as_35_1.f line:4)

OpenMP* Clauses"

Data Scope Attribute Clauses Overview

You can use several directive clauses to control the data scope attributes of variables for the
duration of the construct in which you specify them. If you do not specify a data scope attribute
clause on a directive, the default is SHARED for those variables affected by the directive.

Each of the data scope attribute clauses accepts a list, which is a comma-separated list of
named variables or named common blocks that are accessible in the scoping unit. When you
specify named common blocks, they must appear between slashes (/name/).

Not all of the clauses are allowed on all directives, but the directives to which each clause
applies are listed in the clause descriptions.

The data scope attribute clauses are:

• COPYIN

• DEFAULT

• PRIVATE

• FIRSTPRIVATE

• LASTPRIVATE

• REDUCTION

• SHARED

Specifying Schedule Type and Chunk Size

The SCHEDULE clause of the DO or PARALLEL DO directive specifies a scheduling algorithm that
determines how iterations of the DO loop are divided among and dispatched to the threads of
the team. The SCHEDULE clause applies only to the current DO or PARALLEL DO directive.

Within the SCHEDULE clause, you must specify a schedule type and, optionally, a chunk size.
A chunk is a contiguous group of iterations dispatched to a thread. Chunk size must be a scalar
integer expression.

The following list describes the schedule types and how the chunk size affects scheduling:

1342

26 Intel® Fortran Compiler User and Reference Guides

DescriptionSchedule Type

The iterations are divided into pieces having
a size specified by chunk. The pieces are
statically dispatched to threads in the team
in a round-robin manner in the order of
thread number.

STATIC

When chunk is not specified, the iterations
are first divided into contiguous pieces by
dividing the number of iterations by the
number of threads in the team. Each piece is
then dispatched to a thread before loop
execution begins.

The iterations are divided into pieces having
a size specified by chunk. As each thread
finishes its currently dispatched piece of the

DYNAMIC

iteration space, the next piece is dynamically
dispatched to the thread. When no chunk is
specified, the default is 1.

The chunk size is decreased exponentially
with each succeeding dispatch. Chunk
specifies the minimum number of iterations

GUIDED

to dispatch each time. If there are less than
chunk number of iterations remaining, the
rest are dispatched. When no chunk is
specified, the default is 1.

When SCHEDULE(AUTO) is specified, the
decision regarding scheduling is delegated to
the compiler. The programmer gives the
compiler the freedom to choose any possible
mapping of iterations to threads in the team.

AUTO

The decision regarding scheduling is deferred
until run time. The schedule type and chunk
size can be chosen at run time by using the

RUNTIME

OMP_SCHEDULE environment variable. When
you specify RUNTIME, you cannot specify a
chunk size.

The following list shows which schedule type is used, in priority order:

1343

26

1. The schedule type specified in the SCHEDULE clause of the current DO or PARALLEL DO
directive.

2. If the schedule type for the current DO or PARALLEL DO directive is RUNTIME, the default
value specified in the OMP_SCHEDULE environment variable.

3. The compiler default schedule type of STATIC.

The following list shows which chunk size is used, in priority order:

• The chunk size specified in the SCHEDULE clause of the current DO or PARALLEL DO directive.

• For STATIC schedule type, the loop iteration space is divided evenly (approximately) by the
number of threads in the team.

• For RUNTIME schedule type, the value specified in the OMP_SCHEDULE environment variable.

• For DYNAMIC and GUIDED schedule types, the default value 1.

COPYIN Clause

Use the COPYIN clause on the PARALLEL, PARALLEL DO, and PARALLEL SECTIONS directives
to copy the data in the master thread variable or common block to the thread private copies
of the variables or common block. The copy occurs at the beginning of the parallel region. The
COPYIN clause applies only to variables or common blocks that have been declared
THREADPRIVATE.

You do not have to specify a whole common block to be copied in; you can specify named
variables that appear in the THREADPRIVATE common block.

Example

INTEGER, SAVE:: X

!OMP THREADPRIVATE(X)

!OMP PARALLEL COPYIN(X)

1344

26 Intel® Fortran Compiler User and Reference Guides

In the following example, the common blocks BLK1 and FIELDS are specified as thread private,
but only one of the variables in common block FIELDS is specified to be copied.

Example

COMMON /BLK1/ SCRATCH

COMMON /FIELDS/ XFIELD, YFIELD, ZFIELD

!$OMP THREADPRIVATE(/BLK1/, /FIELDS/)

!$OMP PARALLEL DEFAULT(PRIVATE),COPYIN(/BLK1/,ZFIELD)

DEFAULT Clause

Use the DEFAULT clause on the PARALLEL, PARALLEL DO, PARALLEL SECTIONS and TASK
directives to specify a default data scope attribute for all variables within the lexical extent of
a parallel region. Variables in THREADPRIVATE common blocks are not affected by this clause.
You can specify only one DEFAULT clause on a directive. The default data scope attribute can
be one of the following:

DescriptionAttribute

Makes all named objects in the lexical extent
of the parallel or task region private to a
thread. The objects include common block
variables, but exclude THREADPRIVATE
variables.

PRIVATE

Makes all named objects in the lexical extent
of the parallel or task region private to a
thread, and initialized from the original

FIRSTPRIVATE

object. The objects include common block
variables, but exclude THREADPRIVATE
variables.

Makes all named objects in the lexical extent
of the parallel or task region shared among
all the threads in the team.

SHARED

Declares that there is no implicit default as
to whether variables are PRIVATE,
FIRSTPRIVATE, or SHARED. You must

NONE

1345

26

DescriptionAttribute

explicitly specify the scope attribute for each
variable in the lexical extent of the parallel
or task region.

If you do not specify the DEFAULT clause, the default is DEFAULT (SHARED). However, loop
control variables are always PRIVATE by default.

You can exempt variables from the default data scope attribute by using other scope attribute
clauses on the parallel region as shown in the following example:

Example

!$OMP PARALLEL DO DEFAULT(PRIVATE), FIRSTPRIVATE(I),SHARED(X),

!$OMP& SHARED(R) LASTPRIVATE(I)

PRIVATE, FIRSTPRIVATE, and LASTPRIVATE Clauses

PRIVATE

Use the PRIVATE clause on the PARALLEL, DO, SECTIONS, SINGLE, PARALLEL DO, and PARALLEL
SECTIONS directives to declare variables to be private to each thread in the team.

The behavior of variables declared PRIVATE is as follows:

• A new object of the same type and size is declared once for each thread in the team, and
the new object is no longer storage associated with the original object.

• All references to the original object in the lexical extent of the directive construct are replaced
with references to the private object.

• Variables defined as PRIVATE are undefined for each thread on entering the construct, and
the corresponding shared variable is undefined on exit from a parallel construct.

• Contents, allocation state, and association status of variables defined as PRIVATE are
undefined when they are referenced outside the lexical extent, but inside the dynamic extent,
of the construct unless they are passed as actual arguments to called routines.

1346

26 Intel® Fortran Compiler User and Reference Guides

In the following example, the values of I and J are undefined on exit from the parallel region:

Example

INTEGER I,J

I = 1

J = 2

!$OMP PARALLEL PRIVATE(I) FIRSTPRIVATE(J)

I = 3

J = J + 2

!$OMP END PARALLEL

PRINT *, I, J

FIRSTPRIVATE

Use the FIRSTPRIVATE clause on the PARALLEL, DO, SECTIONS, SINGLE, PARALLEL DO, and
PARALLEL SECTIONS directives to provide a superset of the PRIVATE clause functionality.

In addition to the PRIVATE clause functionality, private copies of the variables are initialized
from the original object existing before the parallel construct.

LASTPRIVATE

Use the LASTPRIVATE clause on the DO, SECTIONS, PARALLEL DO, and PARALLEL SECTIONS
directives to provide a superset of the PRIVATE clause functionality.

When the LASTPRIVATE clause appears on a DO or PARALLEL DO directive, the thread that
executes the sequentially last iteration updates the version of the object it had before the
construct.

When the LASTPRIVATE clause appears on a SECTIONS or PARALLEL SECTIONS directive, the
thread that executes the lexically last section updates the version of the object it had before
the construct.

Sub-objects that are not assigned a value by the last iteration of the DO loop or the lexically
last SECTION directive are undefined after the construct.

1347

26

Correct execution sometimes depends on the value that the last iteration of a loop assigns to
a variable. You must list all such variables as arguments to a LASTPRIVATE clause so that the
values of the variables are the same as when the loop is executed sequentially. As shown in
the following example, the value of I at the end of the parallel region is equal to N+1, as it
would be with sequential execution.

Example

!$OMP PARALLEL

!$OMP DO LASTPRIVATE(I

DO I=1,N

A(I) = B(I) + C(I)

END DO

!$OMP END PARALLEL

CALL REVERSE(I)

REDUCTION Clause

Use the REDUCTION clause on the PARALLEL, DO, SECTIONS, PARALLEL DO, and PARALLEL
SECTIONS directives to perform a reduction on the specified variables by using an operator or
intrinsic as shown:

Example

REDUCTION (operator or intrinsic: list)

where:

• Operator can be one of the following: +, *, -, .AND., .OR., .EQV., or .NEQV..

• Intrinsic can be one of the following: MAX, MIN, IAND, IOR, or IEOR.

The specified variables must be named variables of intrinsic type and must be shared in the
enclosing context. Deferred-shape and assumed-size arrays are not allowed. A private copy of
each specified variable is created for each thread as if you had used the PRIVATE clause. The
private copy is initialized to a value that depends on the operator or intrinsic as shown in the
following table. The actual initialization value is consistent with the data type of the reduction
variable.

1348

26 Intel® Fortran Compiler User and Reference Guides

Operators/Intrinsics and Initialization Values for Reduction Variables

Initialization ValueOperators/Intrinsic

0+

1*

0-

.TRUE..AND.

.FALSE..OR.

.TRUE..EQV.

.FALSE..NEQV.

Largest representable numberMAX

Smallest representable numberMIN

All bits onIAND

0IOR

0IEOR

At the end of the construct to which the reduction applies, the shared variable is updated to
reflect the result of combining the original value of the shared reduction variable with the final
value of each of the private copies using the specified operator.

Except for subtraction, all of the reduction operators are associative and the compiler can freely
reassociate the computation of the final value. The partial results of a subtraction reduction
are added to form the final value.

The value of the shared variable becomes undefined when the first thread reaches the clause
containing the reduction, and it remains undefined until the reduction computation is complete.
Normally, the computation is complete at the end of the REDUCTION construct. However, if you
use the REDUCTION clause on a construct to which NOWAIT is also applied, the shared variable
remains undefined until a barrier synchronization has been performed. This ensures that all of
the threads have completed the REDUCTION clause.

1349

26

The REDUCTION clause is intended to be used on a region or worksharing construct in which
the reduction variable is used only in reduction statements having one of the following forms:

DescriptionForm

x is a scalar variable of intrinsic type. Arrays
are allowed.

x = x operator expr

except for subtractionx = expr operator x

intrinsic is either MAX, MIN, IAND, IOR, or
IEOR

x = intrinsic (x, expr)

operator is either +, *, -, /, .AND., .OR.,
.EQV., or .NEQV.

x = intrinsic (expr, x)

Some reductions can be expressed in other forms. For instance, a MAX reduction might be
expressed as follows:

Example

IF (x .LT. expr) x = expr

Alternatively, the reduction might be hidden inside a subroutine call. Be careful that the operator
specified in the REDUCTION clause matches the reduction operation.

Any number of reduction clauses can be specified on the directive, but a variable can appear
only once in a REDUCTION clause for that directive as shown in the following example:

Example

!$OMP DO REDUCTION(+: A, Y),REDUCTION(.OR.: AM)

1350

26 Intel® Fortran Compiler User and Reference Guides

The following example shows how to use the REDUCTION clause:

Example

!$OMP PARALLEL DO DEFAULT(PRIVATE),SHARED(A,B),REDUCTION(+: A,B)

DO I=1,N

CALL WORK(ALOCAL,BLOCAL)

A = A + ALOCAL

B = B + BLOCAL

END DO

!$OMP END PARALLEL DO

SHARED Clause

Use the SHARED clause on the PARALLEL, PARALLEL DO, and PARALLEL SECTIONS directives
to make variables shared among all the threads in a team.

In the following example, the variables X and NPOINTS are shared among all the threads in the
team:

Example

!$OMP PARALLEL DEFAULT(PRIVATE),SHARED(X,NPOINTS)

IAM = OMP_GET_THREAD_NUM()

NP = OMP_GET_NUM_THREADS()

IPOINTS = NPOINTS/NP

CALL SUBDOMAIN(X,IAM,IPOINTS)

!$OMP END PARALLEL

1351

26

OpenMP* Directives

Programming with OpenMP*

The Intel® compiler accepts a Fortran program containing OpenMP* directives as input and
produces a multithreaded version of the code. When the parallel program begins execution, a
single thread exists. This thread is called the initial thread.

The initial thread can become the master thread, of a team, when it encounters a parallel
region. The initial thread will continue to process serially until it encounters a parallel region.

Parallel Region

A parallel region is a block of code that must be executed by a team of threads in parallel. In
the OpenMP API, a parallel construct is defined by placing OpenMP directive PARALLEL at the
beginning and directive END PARALLEL at the end of the code segment. Code segments thus
bounded can be executed in parallel.

A structured block of code is a collection of one or more executable statements with a single
point of entry at the top and a single point of exit at the bottom.

The compiler supports worksharing and synchronization constructs. Each of these constructs
consists of one or two specific OpenMP directives and sometimes the enclosed or following
structured block of code.

At the end of the parallel region, threads wait until all team members have arrived. The team
is logically disbanded (but may be reused in the next parallel region), and the master thread
continues serial execution until it encounters the next parallel region.

Worksharing Construct

A worksharing construct divides the execution of the enclosed code region among the members
of the team created on entering the enclosing parallel region. When the master thread enters
a parallel region, a team of threads is formed. Starting from the beginning of the parallel region,
code is executed by all team members until a worksharing construct is encountered. A
worksharing construct divides the execution of the enclosed code among the members of the
team that encounter it.

The OpenMP SECTIONS or DO constructs are defined as worksharing constructs because they
distribute the enclosed work among the threads of the current team. A worksharing construct
is only distributed if it is encountered during dynamic execution of a parallel region. If the

1352

26 Intel® Fortran Compiler User and Reference Guides

worksharing construct occurs lexically inside of the parallel region, then it is always executed
by distributing the work among the team members. If the worksharing construct is not lexically
(explicitly) enclosed by a parallel region (that is, it is orphaned), then the worksharing construct
will be distributed among the team members of the closest dynamically-enclosing parallel
region, if one exists. Otherwise, it will be executed serially.

When a thread reaches the end of a worksharing construct, it may wait until all team members
within that construct have completed their work. When all of the work defined by the worksharing
construct is finished, the team exits the worksharing construct and continues executing the
code that follows.

A combined parallel/worksharing construct denotes a parallel region that contains only one
worksharing construct.

Parallel Processing Directive Groups

The parallel processing directives include the following groups:

Parallel Region Directives

• PARALLEL and END PARALLEL

Worksharing Construct Directives

• The DO and END DO directives specify parallel execution of loop iterations.

• The SECTIONS and END SECTIONS directives specify parallel execution for arbitrary blocks
of sequential code. Each SECTION is executed once by a thread in the team.

• The SINGLE and END SINGLE directives define a section of code where exactly one thread
is allowed to execute the code; threads not chosen to execute this section ignore the code.

Combined Parallel/Worksharing Construct Directives

The combined parallel/worksharing constructs provide an abbreviated way to specify a parallel
region that contains a single worksharing construct. The combined parallel/worksharing
constructs are:

• PARALLEL DO and END PARALLEL DO

• PARALLEL SECTIONS and END PARALLEL SECTIONS

• WORKSHARE and PARALLEL WORKSHARE

1353

26

Synchronization and MASTER Directives

Synchronization is the interthread communication that ensures the consistency of shared data
and coordinates parallel execution among threads. Shared data is consistent within a team of
threads when all threads obtain the identical value when the data is accessed. A synchronization
construct is used to insure this consistency of the shared data.

The OpenMP synchronization directives are CRITICAL, ORDERED, ATOMIC, FLUSH, and BARRIER.

UsageDirective

Within a parallel region or a worksharing
construct only one thread at a time is allowed
to execute the code within a CRITICAL
construct.

CRITICAL

Used in conjunction with a DO or SECTIONS
construct to impose a serial order on the
execution of a section of code.

ORDERED

Used to update a memory location in an
uninterruptable fashion.

ATOMIC

Used to insure that all threads in a team have
a consistent view of memory.

FLUSH

Forces all team members to gather at a
particular point in code. Each team member
that executes a BARRIER waits at the

BARRIER

BARRIER until all of the team members have
arrived. A BARRIER cannot be used within
worksharing or other synchronization
constructs due to the potential for deadlock.

The directive is used to force execution by
the master thread.

MASTER

See the list of OpenMP Directives and Clauses.

1354

26 Intel® Fortran Compiler User and Reference Guides

Data Sharing

Data sharing is specified at the start of a parallel region or worksharing construct by using the
SHARED and PRIVATE clauses. All variables in the SHARED clause are shared among the members
of a team. The application must do the following:

• Synchronize access to these variables.

• Insure that all variables in the PRIVATE clause are private to each team member. For the
entire parallel region, assuming t team members, there are t+1 copies of all the variables
in the PRIVATE clause: one global copy that is active outside parallel regions and a PRIVATE
copy for each team member.

• Initialize PRIVATE variables at the start of a parallel region, unless the FIRSTPRIVATE clause
is specified. In this case, the PRIVATE copy is initialized from the global copy at the start of
the construct at which the FIRSTPRIVATE clause is specified.

• Update the global copy of a PRIVATE variable at the end of a parallel region. However, the
LASTPRIVATE clause of a DO directive enables updating the global copy from the team
member that executed serially the last iteration of the loop.

In addition to SHARED and PRIVATE variables, individual variables and entire common blocks
can be privatized using the THREADPRIVATE directive.

Orphaned Directives

OpenMP contains a feature called orphaning that dramatically increases the expressiveness of
parallel directives. Orphaning is a situation when directives related to a parallel region are not
required to occur lexically within a single program unit. Directives such as CRITICAL, BARRIER,
SECTIONS, SINGLE, MASTER, DO, and TASK can occur by themselves in a program unit,
dynamically "binding" to the enclosing parallel region at run time.

1355

26

Orphaned directives enable parallelism to be inserted into existing code with a minimum of
code restructuring. Orphaning can also improve performance by enabling a single parallel region
to bind with multiple DO directives located within called subroutines. Consider the following
code segment:

Example

subroutine phase1

integer :: i

!$OMP DO PRIVATE(i) SHARED(n)

do i = 1, 200

call some_work(i)

end do

!$OMP END DO

end

subroutine phase2

integer :: j

!$OMP DO PRIVATE(j) SHARED(n)

do j = 1, 100

call more_work(j)

end do

!$OMP END DO

end

program par

!$OMP PARALLEL

call phase1

call phase2

!$OMP END PARALLEL

end program par

1356

26 Intel® Fortran Compiler User and Reference Guides

Orphaned Directives Usage Rules

The following orphaned directives usage rules apply:

• Any collective operation (worksharing construct or BARRIER) executed inside of a worksharing
construct is illegal.

• It is illegal to execute a collective operation (worksharing construct or BARRIER) from within
a synchronization region (CRITICAL/ORDERED).

• The opening and closing directives of a directive pair (for example, DO and END DO) must
occur in a single block of the program.

• Private scoping of a variable can be specified at a worksharing construct. Shared scoping
must be specified at the parallel region.

Preparing Code for OpenMP Processing

The following are the major stages and steps of preparing your code for using OpenMP. Typically,
the first two stages can be done on uniprocessor or multiprocessor systems; later stages are
typically done on dual core processor and multiprocessor systems.

Before Inserting OpenMP Directives

Before inserting any OpenMP parallel directives, verify that your code is safe for parallel execution
by doing the following:

• Place local variables on the stack. This is the default behavior of the Intel Compiler when
-openmp (Linux* and Mac OS* X) or /Qopenmp (Windows*) is specified.

• Use -automatic or -auto-scalar (Linux and Mac OS X) or /automatic (Windows) to
make the locals automatic. This is the default behavior of the Intel® compiler when the
-openmp (Linux and Mac OS X) or /Qopenmp (Windows) compiler option is specified. Avoid
using the -save (Linux and Mac OS X) or /Qsave (Windows) option, which inhibits stack
allocation of local variables. By default, automatic local variables become shared across
threads, so you may need to add synchronization code to ensure proper access by threads.

Analyze

The analysis includes the following major actions:

1357

26

1. Profile the program to find out where it spends most of its time. This is the part of the
program that benefits most from parallelization efforts. This stage can be accomplished
using basic PGO options.

2. Wherever the program contains nested loops, choose the outer-most loop, which has very
few cross-iteration dependencies.

Restructure

To restructure your program for successful OpenMP implementation, you can perform some or
all of the following actions:

• If a chosen loop is able to execute iterations in parallel, introduce a PARALLEL DO construct
around this loop.

• Try to remove any cross-iteration dependencies by rewriting the algorithm.

• Synchronize the remaining cross-iteration dependencies by placing CRITICAL constructs
around the uses and assignments to variables involved in the dependencies.

• List the variables that are present in the loop within appropriate SHARED, PRIVATE,
LASTPRIVATE, FIRSTPRIVATE, or REDUCTION clauses.

• List the DO index of the parallel loop as PRIVATE. This step is optional.

• COMMON block elements must not be placed on the PRIVATE list if their global scope is to be
preserved. The THREADPRIVATE directive can be used to privatize to each thread the COMMON
block containing those variables with global scope. THREADPRIVATE creates a copy of the
COMMON block for each of the threads in the team.

• Any I/O in the parallel region should be synchronized.

• Identify more parallel loops and restructure them.

• If possible, merge adjacent PARALLEL DO constructs into a single parallel region containing
multiple DO directives to reduce execution overhead.

Tune

The tuning process should include minimizing the sequential code in critical sections and load
balancing by using the SCHEDULE clause or the OMP_SCHEDULE environment variable.

NOTE. This step is typically performed on dual core processor and multiprocessor
systems.

1358

26 Intel® Fortran Compiler User and Reference Guides

Combined Parallel and Worksharing Constructs

The combined parallel/worksharing constructs provide an abbreviated way to specify a parallel
region that contains a single worksharing construct. The combined parallel/worksharing
constructs are:

• PARALLEL DO and END PARALLEL DO

• PARALLEL SECTIONS and END PARALLEL SECTIONS

• PARALLEL WORKSHARE and END PARALLEL WORKSHARE

For more details on these directives, see OpenMP* Fortran Compiler Directives.

PARALLEL DO and END PARALLEL DO

Use the PARALLEL DO directive to specify a parallel region that implicitly contains a single DO
directive. You can specify one or more of the clauses for the PARALLEL DO directives.

The following example shows how to parallelize a simple loop. The loop iteration variable is
private by default, so it is not necessary to declare it explicitly. The END PARALLEL DO directive
is optional:

Example

subroutine par(a, b, N)

integer :: i, N, a(N), b(N)

!$OMP PARALLEL DO

do i= 1, N

b(i) = (a(i) + a(i-1)) / 2.0

end do

!$OMP END PARALLEL DO

end subroutine par

PARALLEL SECTIONS and END PARALLEL SECTIONS

Use the PARALLEL SECTIONS directive to specify a parallel region that implicitly contains a
single SECTIONS directive. You can specify one or more of the clauses for the PARALLEL
SECTIONS directives.

1359

26

The last section ends at the END PARALLEL SECTIONS directive.

In the following example, subroutines X_AXIS, Y_AXIS, and Z_AXIS can be executed
concurrently. The first SECTION directive is optional. Note that all SECTION directives must
appear in the lexical extent of the PARALLEL SECTIONS/END PARALLEL SECTIONS construct:

Example

!$OMP PARALLEL SECTIONS

!$OMP SECTION

CALL X_AXIS

!$OMP SECTION

CALL Y_AXIS

!$OMP SECTION

CALL Z_AXIS

!$OMP END PARALLEL SECTIONS

PARALLEL WORKSHARE and END PARALLEL WORKSHARE

Use the WORKSHARE directive to divide work within blocks of worksharing statements or constructs
into different units. This directive distributes the work of executing the units to threads of the
team so each unit is only executed once.

Use the PARALLEL WORKSHARE directive to specify parallel regions, in an abbreviated way, that
contain a single WORKSHARE directive.

When using either directive, be aware that your code cannot branch in to or out of the block
defined by these directives.

Parallel Region Directives

The PARALLEL and END PARALLEL directives define a parallel region as follows:

Example

!$OMP PARALLEL

! parallel region

!$OMP END PARALLEL

1360

26 Intel® Fortran Compiler User and Reference Guides

When a thread encounters a parallel region, it creates a team of threads and becomes the
master of the team. You can control the number of threads in a team by the use of an
environment variable, run-time library call, or using the NUM_THREADS clause, or by combining
these means.

Clauses Used

The PARALLEL directive takes an optional comma-separated list of clauses that specify as
follows:

• IF: whether the statements in the parallel region are executed in parallel by a team of
threads or serially by a single thread.

• NUM_THREADS: number of threads in a team.

• PRIVATE, FIRSTPRIVATE, SHARED, or REDUCTION: variable types

• DEFAULT: variable data scope attribute

• COPYIN: master thread common block values are copied to THREADPRIVATE copies of the
common block

Changing the Number of Threads

Once created, the number of threads in the team remains constant for the duration of that
parallel region. To explicitly change the number of threads used in the next parallel region, you
can call the NUM_THREADS clause, call the OMP_SET_NUM_THREADS run-time library routine from
a serial portion of the program, or use the OMP_NUM_THREADS environment variable. The order
of precedence, or priority, is NUM_THREADS clause, OMP_SET_NUM_THREADS run-time library
routine, then OMP_NUM_THREADS environment variable. For example, calling the NUM_THREADS
clause overrides the OMP_SET_NUM_THREADS routine, and so forth.

1361

26

Assuming you have used the OMP_NUM_THREADS environment variable to set the number of
threads to 6, you can change the number of threads between parallel regions as follows:

Example

!$OMP PARALLEL

... ! This region is executed by 6 threads.

!$OMP END PARALLEL

CALL OMP_SET_NUM_THREADS(3)

!$OMP PARALLEL

... ! This region is executed by 3 threads.

!$OMP PARALLEL

!$OMP PARALLEL NUM_THREADS(4)

... ! This region is executed by 4 threads.

!$OMP END PARALLEL

Setting Units of Work

Use the worksharing directives such as DO, SECTIONS, and SINGLE to divide the statements in
the parallel region into units of work and to distribute those units so that each unit is executed
by one thread.

In the following example, the !$OMP DO and !$OMP END DO directives and all the statements
enclosed by them comprise the static extent of the parallel region:

Example

!$OMP PARALLEL

!$OMP DO

DO I=1,N

B(I) = (A(I) + A(I-1))/ 2.0

END DO

!$OMP END DO

!$OMP END PARALLEL

1362

26 Intel® Fortran Compiler User and Reference Guides

In the following example, the DO and END DO directives and all the statements enclosed by
them, including all statements contained in the WORK subroutine, comprise the dynamic extent
of the parallel region:

Example

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO

DO I=1,N

CALL WORK(I,N)

END DO

!$OMP END DO

!$OMP END PARALLEL

Setting Conditional Parallel Region Execution

When an IF clause is present on the PARALLEL directive, the enclosed code region is executed
in parallel only if the scalar logical expression evaluates to .TRUE.. Otherwise, the parallel
region is serialized. When there is no IF clause, the region is executed in parallel by default.

In the following example, the statements enclosed within the DO and END DO directives are
executed in parallel only if there are more than three processors available. Otherwise the
statements are executed serially:

Example

!$OMP PARALLEL IF (OMP_GET_NUM_PROCS() .GT. 3)

!$OMP DO

DO I=1,N

Y(I) = SQRT(Z(I))

END DO

!$OMP END DO

!$OMP END PARALLEL

1363

26

If a thread executing a parallel region encounters another parallel region, it creates a new team
and becomes the master of that new team. By default, nested parallel regions are always
executed by a team of one thread.

NOTE. To achieve better performance than sequential execution, a parallel region must
contain one or more worksharing constructs so that the team of threads can execute
work in parallel. It is the contained worksharing constructs that lead to the performance
enhancements offered by parallel processing.

For more details on this directive, see OpenMP* Fortran Compiler Directives.

Synchronization Constructs

Synchronization constructs are used to ensure the consistency of shared data and to coordinate
parallel execution among threads.

The synchronization constructs are:

• ATOMIC directive

• BARRIER directive

• CRITICAL directive

• FLUSH directive

• MASTER directive

• ORDERED directive

For more details on these directives, see OpenMP* Fortran Compiler Directives.

ATOMIC Directive

Use the ATOMIC directive to ensure that a specific memory location is updated atomically instead
of exposing the location to the possibility of multiple, simultaneously writing threads.

This directive applies only to the immediately following statement, which must have one of the
following forms:

DescriptionForm

x is a scalar variable of intrinsic typex = x operator expr

1364

26 Intel® Fortran Compiler User and Reference Guides

DescriptionForm

expr is a scalar expression that does not
reference x

x = expr operator x

intrinsic is either MAX, MIN, IAND, IOR or
IEOR

x = intrinsic (x, expr)

operator is either +, *, -, /, .AND., .OR.,
.EQV., or .NEQV.

x = intrinsic (expr, x)

This directive permits optimization beyond that of a critical section around the assignment. An
implementation can replace all ATOMIC directives by enclosing the statement in a critical section.
All of these critical sections must use the same unique name.

Only the load and store of x are atomic; the evaluation of expr is not atomic. To avoid race
conditions, all updates of the location in parallel must be protected by using the ATOMIC directive,
except those that are known to be free of race conditions. The function intrinsic, the operator
operator, and the assignment must be the intrinsic function, operator, and assignment.

This restriction applies to the ATOMIC directive: All references to storage location x must have
the same type parameters.

In the following example, the collection of Y locations is updated atomically:

Example

!$OMP ATOMIC

Y = Y + B(I)

BARRIER Directive

To synchronize all threads within a parallel region, use the BARRIER directive. You can use this
directive only within a parallel region defined by using the PARALLEL directive. You cannot use
the BARRIER directive within the DO, PARALLEL DO, SECTIONS, PARALLEL SECTIONS, and
SINGLE constructs.

When encountered, each thread waits at the BARRIER directive until all threads have reached
the directive.

1365

26

In the following example, the BARRIER directive ensures that all threads have executed the
first loop and that it is safe to execute the second loop:

Example

!$OMP PARALLEL

!$OMP DO PRIVATE(i)

DO i = 1, 100

b(i) = i

END DO

!$OMP BARRIER

!$OMP DO PRIVATE(i)

DO i = 1, 100

a(i) = b(101-i)

END DO

!$OMP END PARALLEL

CRITICAL and END CRITICAL

Use the CRITICAL and END CRITICAL directives to restrict access to a block of code, referred
to as a critical section, to one thread at a time.

A thread waits at the beginning of a critical section until no other thread in the team is executing
a critical section having the same name.

When a thread enters the critical section, a latch variable is set to closed and all other threads
are locked out. When the thread exits the critical section at the END CRITICAL directive, the
latch variable is set to open, allowing another thread access to the critical section.

If you specify a critical section name in the CRITICAL directive, you must specify the same
name in the END CRITICAL directive. If you do not specify a name for the CRITICAL directive,
you cannot specify a name for the END CRITICAL directive.

All unnamed CRITICAL directives map to the same name. Critical section names are global to
the program.

1366

26 Intel® Fortran Compiler User and Reference Guides

The following example includes several CRITICAL directives, and illustrates a queuing model
in which a task is dequeued and worked on. To guard against multiple threads dequeuing the
same task, the dequeuing operation must be in a critical section. Because there are two
independent queues in this example, each queue is protected by CRITICAL directives having
different names, X_AXIS and Y_AXIS, respectively:

Example

!$OMP PARALLEL DEFAULT(PRIVATE),SHARED(X,Y)

!$OMP CRITICAL(X_AXIS)

CALL DEQUEUE(IX_NEXT, X)

!$OMP END CRITICAL(X_AXIS)

CALL WORK(IX_NEXT, X)

!$OMP CRITICAL(Y_AXIS)

CALL DEQUEUE(IY_NEXT,Y)

!$OMP END CRITICAL(Y_AXIS)

CALL WORK(IY_NEXT, Y)

!$OMP END PARALLEL

FLUSH Directive

Use the FLUSH directive to identify a synchronization point at which a consistent view of memory
is provided. Thread-visible variables are written back to memory at this point.

1367

26

To avoid flushing all thread-visible variables at this point, include a list of comma-separated
named variables to be flushed. The following example uses the FLUSH directive for point-to-point
synchronization between thread 0 and thread 1 for the variable ISYNC:

Example

!$OMP PARALLEL DEFAULT(PRIVATE),SHARED(ISYNC)

IAM = OMP_GET_THREAD_NUM()

ISYNC(IAM) = 0

!$OMP BARRIER

CALL WORK()

! Synchronize With My Neighbor

ISYNC(IAM) = 1

!$OMP FLUSH(ISYNC)

! Wait Till Neighbor Is Done

DO WHILE (ISYNC(NEIGH) .EQ. 0)

!$OMP FLUSH(ISYNC)

END DO

. . .

!$OMP END PARALLEL

MASTER and END MASTER

Use the MASTER and END MASTER directives to identify a block of code that is executed only by
the master thread.

1368

26 Intel® Fortran Compiler User and Reference Guides

The other threads of the team skip the code and continue execution. There is no implied barrier
at the END MASTER directive. In the following example, only the master thread executes the
routines OUTPUT and INPUT:

Example

!$OMP PARALLEL DEFAULT(SHARED)

CALL WORK(X)

!$OMP MASTER

CALL OUTPUT(X)

CALL INPUT(Y)

!$OMP END MASTER

CALL WORK(Y)

!$OMP END PARALLEL

ORDERED and END ORDERED

Use the ORDERED and END ORDERED directives within a DO construct to allow work within an
ordered section to execute sequentially while allowing work outside the section to execute in
parallel.

When you use the ORDERED directive, you must also specify the ORDERED clause on the DO
directive.

1369

26

Only one thread at a time is allowed to enter the ordered section, and then only in the order
of loop iterations. In the following example, the code prints out the indexes in sequential order:

Example

!$OMP DO ORDERED,SCHEDULE(DYNAMIC)

DO I=LB,UB,ST

CALL WORK(I)

END DO

SUBROUTINE WORK(K)

!$OMP ORDERED

WRITE(*,*) K

!$OMP END ORDERED

END

THREADPRIVATEthreadprivate Directive

You can make named common blocks private to a thread, but global within the thread, by using
the THREADPRIVATE directive.

Each thread gets its own copy of the common block with the result that data written to the
common block by one thread is not directly visible to other threads. During serial portions and
master sections of the program, accesses are to the master thread copy of the common block.

You cannot use a thread private variable in any clause other than the following:

• COPYIN

• COPYPRIVATE

• SCHEDULE

• NUM_THREADS

• IF

1370

26 Intel® Fortran Compiler User and Reference Guides

In the following example common blocks BLK1 and FIELDS are specified as thread private:

Example

COMMON /BLK1/ SCRATCH

COMMON /FIELDS/ XFIELD, YFIELD, ZFIELD

!$OMP THREADPRIVATE(/BLK1/,/FIELDS/)

For more details on this directive, see OpenMP* Fortran Compiler Directives.

Worksharing Construct Directives

A worksharing construct must be enclosed dynamically within a parallel region if the worksharing
directive is to execute in parallel. No new threads are launched and there is no implied barrier
on entry to a worksharing construct.

The worksharing constructs are:

• DO and END DO directives

• SECTIONS, SECTION, and END SECTIONS directives

• SINGLE and END SINGLE directives

For more details on these directives, see OpenMP* Fortran Compiler Directives.

DO and END DO

The DO directive specifies that the iterations of the immediately following DO loop must be
dispatched across the team of threads so that each iteration is executed by a single thread.
The loop that follows a DO directive cannot be a DO WHILE or a DO loop that does not have loop
control. The iterations of the DO loop are dispatched among the existing team of threads.

The DO directive optionally lets you:

• Control data scope attributes

• Use the SCHEDULE clause to specify schedule type and chunk size (see Specifying Schedule
Type and Chunk Size)

Clauses Used

The clauses for DO directive specify:

1371

26

• Whether variables are PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or REDUCTION

• How loop iterations are scheduled onto threads

• In addition, the ORDERED clause must be specified if the ORDERED directive appears in
the dynamic extent of the DO directive.

• If you do not specify the optional NOWAIT clause on the END DO directive, threads
synchronize at the END DO directive. If you specify NOWAIT, threads do not synchronize,
and threads that finish early proceed directly to the instructions following the END DO
directive.

Usage Rules

• You cannot use a GOTO statement, or any other statement, to transfer control onto or out
of the DO construct.

• If you specify the optional END DO directive, it must appear immediately after the end of
the DO loop. If you do not specify the END DO directive, an END DO directive is assumed at
the end of the DO loop, and threads synchronize at that point.

• The loop iteration variable is private by default, so it is not necessary to declare it explicitly.

SECTIONS, SECTION and END SECTIONS

Use the noniterative worksharing SECTIONS directive to divide the enclosed sections of code
among the team. Each section is executed just one time by one thread.

Each section should be preceded with a SECTION directive, except for the first section, in which
the SECTION directive is optional. The SECTION directive must appear within the lexical extent
of the SECTIONS and END SECTIONS directives.

The last section ends at the END SECTIONS directive. When a thread completes its section and
there are no undispatched sections, it waits at the END SECTION directive unless you specify
NOWAIT.

The SECTIONS directive takes an optional comma-separated list of clauses that specifies which
variables are PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or REDUCTION.

1372

26 Intel® Fortran Compiler User and Reference Guides

The following example shows how to use the SECTIONS and SECTION directives to execute
subroutines X_AXIS, Y_AXIS, and Z_AXIS in parallel. The first SECTIONS directive is optional:

Example

!$OMP PARALLEL

!$OMP SECTIONS

!$OMP SECTION

CALL X_AXIS

!$OMP SECTION

CALL Y_AXIS

!$OMP SECTION

CALL Z_AXIS

!$OMP END SECTIONS

!$OMP END PARALLEL

SINGLE and END SINGLE

Use the SINGLE and END SINGLE directives when you want just one thread of the team to
execute the enclosed block of code.

Threads that are not executing the SINGLE construct wait at the END SINGLE directive unless
you specify NOWAIT.

The SINGLE directive takes an optional comma-separated list of clauses that specifies which
variables are PRIVATE or FIRSTPRIVATE.

When the END SINGLE directive is encountered, an implicit barrier is erected and threads wait
until all threads have finished. This can be overridden by using the NOWAIT option.

1373

26

In the following example, the first thread that encounters the SINGLE directive executes
subroutines OUTPUT and INPUT:

Example

!$OMP PARALLEL DEFAULT(SHARED)

CALL WORK(X)

!$OMP BARRIER

!$OMP SINGLE

CALL OUTPUT(X)

CALL INPUT(Y)

!$OMP END SINGLE

CALL WORK(Y)

!$OMP END PARALLEL

Tasking Directives

The tasking model implemented by the Intel® compiler enables OpenMP* to parallelize a large
range of applications. The directives used for tasking are:

• TASK and END TASK

• TASKWAIT

TASK and END TASK

The TASK and END TASK directives define an explicit task region as follows:

Example

!$OMP TASK

! explicit task region

!$OMP END TASK

The binding thread set of the task region is the current parallel team. A task region binds to
the innermost enclosing PARALLEL region. When a thread encounters a task construct, a task
is generated from the structured block enclosed in the construct. The encountering thread may

1374

26 Intel® Fortran Compiler User and Reference Guides

immediately execute the task, or defer its execution. A task construct may be nested inside an
outer task, but the task region of the inner task is not a part of the task region of the outer
task.

Clauses Used

The TASK directive takes an optional comma-separated list of clauses. The data environment
of the task is created according to the data-sharing attribute clauses on the task construct and
any defaults that apply. These clauses are:

• IF: whether the task has to be executed immediately or can be deferred.

• UNTIED: whether any thread in the team may resume a suspended task

• PRIVATE, FIRSTPRIVATE, or SHARED: variable types

• DEFAULT: variable data scope attribute

This example shows a way to generate N tasks with one thread and execute them with the
threads in the parallel team:

Example

!$OMP PARALLEL SHARED(DATA)

!$OMP SINGLE PRIVATE (I)

DO I = 1, N

!$OMP TASK FIRSTPRIVATE(I), SHARED(DATA)

CALL WORK(DATA(I))

!$OMP END TASK

END DO

!$OMP END SINGLE

!$OMP END PARALLEL

OpenMP* Advanced Issues

This topic discusses how to use the OpenMP* library functions and environment variables and
discusses some guidelines for enhancing performance with OpenMP*.

1375

26

OpenMP* provides specific function calls, and environment variables. See the following topics
to refresh you memory about the primary functions and environment variable used in this topic:

• OpenMP* Run-time Library Routines

• OpenMP* Environment Variables

To use the function calls, include the omp_lib.h header file or specify use omp_lib to use
the module file, which are installed in the INCLUDE directory during the compiler installation,
and compile the application using the -openmp (Linux* and Mac OS* X) or /Qopenmp (Windows*)
option.

The following example, which demonstrates how to use the OpenMP* functions to print the
alphabet, also illustrates several important concepts.

First, when using functions instead of directives, your code must be rewritten; rewrites can
mean extra debugging, testing, and maintenance efforts.

Second, it becomes difficult to compile without OpenMP support.

Third, it is very easy to introduce simple bugs, as in the loop (below) that fails to print all the
letters of the alphabet when the number of threads is not a multiple of 26.

1376

26 Intel® Fortran Compiler User and Reference Guides

Fourth, you lose the ability to adjust loop scheduling without creating your own work-queue
algorithm, which is a lot of extra effort. You are limited by your own scheduling, which is mostly
likely static scheduling as shown in the example.

Example

include "omp_lib.h"

integer i

integer LettersPerThread, ThisThreadNum, StartLetter, EndLetter

call omp_set_num_threads(4)

!$OMP PARALLEL PRIVATE(i)

! OMP_NUM_THREADS is not a multiple of 26,

! which can be considered a bug in this code.

LettersPerThread = 26 / omp_get_num_threads()

ThisThreadNum = omp_get_thread_num()

StartLetter = 'a'+ThisThreadNum*LettersPerThread

EndLetter = 'a'+ThisThreadNum*LettersPerThread+LettersPerThread

DO i = StartLetter, EndLetter - 1

write(*,FMT='(A)',ADVANCE='NO') char(i)

END DO

!$OMP END PARALLEL

write(*,*)

end

Debugging threaded applications is a complex process, because debuggers change the run-time
performance, which can mask race conditions. Even print statements can mask issues, because
they use synchronization and operating system functions. OpenMP* itself also adds some
complications, because it introduces additional structure by distinguishing private variables and
shared variables, and inserts additional code. A specialized debugger that supports OpenMP,
such as the Intel® Debugger, can help you to examine variables and step through threaded
code. You can also use the Intel® Thread Checker to detect many hard-to-find threading errors
analytically. Sometimes, a process of elimination can help identify problems without resorting
to sophisticated debugging tools.

1377

26

Remember that most mistakes are race conditions. Most race conditions are caused by shared
variables that really should have been declared private. Start by looking at the variables inside
the parallel regions and make sure that the variables are declared private when necessary.
Next, check functions called within parallel constructs.

The DEFAULT(NONE) clause, shown below, can be used to help find those hard-to-spot variables.
If you specify DEFAULT(NONE), then every variable must be declared with a data-sharing
attribute clause.

Example

!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(x,y) SHARED(a,b)

Another common mistake is using uninitialized variables. Remember that private variables do
not have initial values upon entering a parallel construct. Use the FIRSTPRIVATE and
LASTPRIVATE clauses to initialize them only when necessary, because doing so adds extra
overhead.

If you still can't find the bug, then consider the possibility of reducing the scope. Try a
binary-hunt. Another method is to force large chunks of a parallel region to be critical sections.
Pick a region of the code that you think contains the bug and place it within a critical section.
Try to find the section of code that suddenly works when it is within a critical section and fails
when it is not. Now look at the variables, and see if the bug is apparent. If that still doesn't
work, try setting the entire program to run in serial by setting the compiler-specific environment
variable KMP_LIBRARY=serial.

If the code is still not working, compile it without the -openmp (Linux and Mac OS X) or
/Qopenmp (Windows) option to make sure the serial version works.

Performance

OpenMP threaded application performance is largely dependent upon the following things:

• The underlying performance of the single-threaded code.

• CPU utilization, idle threads, and load balancing.

• The percentage of the application that is executed in parallel by multiple threads.

• The amount of synchronization and communication among the threads.

• The overhead needed to create, manage, destroy, and synchronize the threads, made worse
by the number of single-to-parallel or parallel-to-single transitions called fork-join transitions.

• Performance limitations of shared resources such as memory, bus bandwidth, and CPU
execution units.

• Memory conflicts caused by shared memory or falsely shared memory.

1378

26 Intel® Fortran Compiler User and Reference Guides

Performance always begins with a properly constructed parallel algorithm or application. For
example, parallelizing a bubble-sort, even one written in hand-optimized assembly language,
is not a good place to start. Keep scalability in mind; creating a program that runs well on two
CPUs is not as efficient as creating one that runs well on n CPUs. With OpenMP, the number of
threads is chosen by the compiler, so programs that work well regardless of the number of
threads are highly desirable. Producer/consumer architectures are rarely efficient, because
they are made specifically for two threads.

Once the algorithm is in place, make sure that the code runs efficiently on the targeted Intel®

architecture; a single-threaded version can be a big help. Turn off the -openmp (Linux and Mac
OS X) or /Qopenmp (Windows) option to generate a single-threaded version, or build with
-openmp-stubs (Linux and Mac OS X) or /Qopenmp-stubs (Windows), and run the
single-threaded version through the usual set of optimizations.

Once you have gotten the single-threaded performance, it is time to generate the multi-threaded
version and start doing some analysis.

Optimizations are really a combination of patience, experimentation, and practice. Make little
test programs that mimic the way your application uses the computer resources to get a feel
for what things are faster than others. Be sure to try the different scheduling clauses for the
parallel sections of code.

OpenMP* Examples

The following examples show how to use several OpenMP* features.

A Simple Difference Operator

This example shows a simple parallel loop where the amount of work in each iteration is different.
Dynamic scheduling is used to improve load balancing.

1379

26

The END DO has a NOWAIT because there is an implicit barrier at the end of the parallel region.

Example

subroutine do_1(a,b,n)

real a(n,n), b(n,n)

!$OMP PARALLEL SHARED(A,B,N)

!$OMP DO SCHEDULE(DYNAMIC,1) PRIVATE(I,J)

do i = 2, n

do j = 1, i

b(j,i) = (a(j,i) + a(j,i-1)) / 2.0

end do

end do

!$OMP END DO NOWAIT

!$OMP END PARALLEL

end

1380

26 Intel® Fortran Compiler User and Reference Guides

Two Difference Operators: DO Loop Version

The example uses two parallel loops fused to reduce fork/join overhead. The first END DO
directive has a NOWAIT clause because all the data used in the second loop is different than all
the data used in the first loop.

Example

subroutine do_2(a,b,c,d,m,n)

real a(n,n), b(n,n), c(m,m), d(m,m)

!$OMP PARALLEL SHARED(A,B,C,D,M,N) PRIVATE(I,J)

!$OMP DO SCHEDULE(DYNAMIC,1)

do i = 2, n

do j = 1, i

b(j,i) = (a(j,i) + a(j,i-1)) / 2.0

end do

end do

!$OMP END DO NOWAIT

!$OMP DO SCHEDULE(DYNAMIC,1)

do i = 2, m

do j = 1, i

d(j,i) = (c(j,i) + c(j,i-1)) / 2.0

end do

end do

!$OMP END DO NOWAIT

!$OMP END PARALLEL

end

1381

26

Two Difference Operators: SECTIONS Version

The example demonstrates the use of the SECTIONS directive. The logic is identical to the
preceding DO example, but uses SECTIONS instead of DO. Here the speedup is limited to 2
because there are only two units of work whereas in the example above there are n-1 + m-1
units of work.

Example

subroutine sections_1(a,b,c,d,m,n)

real a(n,n), b(n,n), c(m,m), d(m,m)

!$OMP PARALLEL SHARED(A,B,C,D,M,N) PRIVATE(I,J)

!$OMP SECTIONS

!$OMP SECTION

do i = 2, n

do j = 1, i

b(j,i)=(a(j,i) + a(j,i-1)) / 2.0

end do

end do

!$OMP SECTION

do i = 2, m

do j = 1, i

d(j,i)=(c(j,i) + c(j,i-1)) / 2.0

end do

end do

!$OMP END SECTIONS NOWAIT

!$OMP END PARALLEL

end

1382

26 Intel® Fortran Compiler User and Reference Guides

Updating a Shared Scalar

This example demonstrates how to use a SINGLE construct to update an element of the shared
array a. The optional nowait after the first loop is omitted because it is necessary to wait at
the end of the loop before proceeding into the SINGLE construct.

Example

subroutine sp_1a(a,b,n)

real a(n), b(n)

!$OMP PARALLEL SHARED(A,B,N) PRIVATE(I)

!$OMP DO

do i = 1, n

a(i) = 1.0 / a(i)

end do

!$OMP SINGLE

a(1) = min(a(1), 1.0)

!$OMP END SINGLE

!$OMP DO

do i = 1, n

b(i) = b(i) / a(i)

end do

!$OMP END DO NOWAIT

!$OMP END PARALLEL

end

Libraries, Directives, Clauses, and Environmental Variables

OpenMP* Environment Variables

The Intel® Compiler supports OpenMP* environment variables (with the OMP_ prefix) and
extensions in the form of Intel-specific environment variables (with the KMP_ prefix).

1383

26

OpenMP Environment Variables

The syntax examples assume bash on Linux* and Mac OS* X. Use the set command for
Windows*.

Description and SyntaxDefaultVariable Name

Sets the maximum number
of threads to use for
OpenMP* parallel regions if
no other value is specified in
the application.

Number of processors visible
to the operating system.

OMP_NUM_THREADS

This environment variable
applies to both -openmp and
-parallel (Linux and Mac
OS X) or /Qopenmp and
/Qparallel (Windows).

Example syntax:

export
OMP_NUM_THREADS=value

Sets the run-time schedule
type and an optional chunk
size.

STATIC, no chunk size
specified

OMP_SCHEDULE
Example syntax:

export
OMP_SCHEDULE="kind[,chunk_size]"

Enables (.TRUE.) or disables
(.FALSE.) the dynamic
adjustment of the number of
threads..FALSE.

0
OMP_DYNAMIC

Example syntax:

export
OMP_DYNAMIC=value

1384

26 Intel® Fortran Compiler User and Reference Guides

Description and SyntaxDefaultVariable Name

Enables (.TRUE.) or disables
(.FALSE.)nested parallelism..FALSE.

0
OMP_NESTED

Example syntax:

export OMP_NESTED=value

Sets the number of bytes to
allocate for each OpenMP
thread to use as the private
stack for the thread.

IA-32 architecture: 2M
Intel® 64 and IA-32
Architecures: 4M

OMP_STACKSIZE

Recommended size is 16M.

Use the optional suffixes: B
(bytes), K (Kilobytes), M
(Megabytes), G (Gigabytes),
or T (Terabytes) to specify
the units. If only value is
specified and B, K, M, G, or
T is not specified, then size
is assumed to be K
(Kilobytes).

This variable does not affect
the native operating system
threads created by the user
program nor the thread
executing the sequential part
of an OpenMP program or
parallel programs created
using -parallel (Linux and
Mac OS X) or /Qparallel
(Windows).

kmp_{set,get}_stacksize_s()
routines set/retrieve the
value.
kmp_set_stacksize_s()
routine must be called from
sequential part, before first

1385

26

Description and SyntaxDefaultVariable Name

parallel region is created.
Otherwise, calling
kmp_set_stacksize_s()
has no effect.

Related env variables:
KMP_STACKSIZE.
KMP_STACKSIZE overrides
OMP_STACKSIZE.

Example syntax:

export
OMP_STACKSIZE=value

Limits the number of
simultaneously executing
threads in an OpenMP
program.

No enforced limitOMP_MAX_ACTIVE_LEVELS

If this limit is reached and
another native operating
system thread encounters
OpenMP API calls or
constructs, the program can
abort with an error message.
If this limit is reached when
an OpenMP parallel region
begins, a one-time warning
message might be generated
indicating that the number of
threads in the team was
reduced, but the program will
continue.

This environment variable is
only used for programs
compiled with the following
options: -openmp or -open-
mp-profile or -parallel

1386

26 Intel® Fortran Compiler User and Reference Guides

Description and SyntaxDefaultVariable Name

(Linux and Mac OS X) and
/Qopenmp or /Qopenmp-pro-
file or /Qparallel
(Windows).

omp_get_thread_limit()
routine returns the value of
the limit.

Related env variable:
KMP_ALL_THREADS.
OMP_THREAD_LIMIT
overrides KMP_ALL_THREADS.

Example syntax:

export
OMP_THREAD_LIMIT=value

Limits the number of
simultaneously executing
threads in an OpenMP*
program.

No enforced limitOMP_THREAD_LIMIT

If this limit is reached and
another native operating
system thread encounters
OpenMP* API calls or
constructs, the program can
abort with an error message.
If this limit is reached when
an OpenMP parallel region
begins, a one-time warning
message might be generated
indicating that the number of
threads in the team was
reduced, but the program will
continue.

1387

26

Description and SyntaxDefaultVariable Name

This environment variable is
only used for programs
compiled with the following
options: -openmp or

-openmp-profile or -paral-
lel (Linux and Mac OS X)
and /Qopenmp or /Qopenmp-
profile or /Qparallel
(Windows).

omp_get_thread_limit()
routine returns the value of
the limit.

Related environment
variable:
KMP_ALL_THREADS. Its value
overrides
OMP_THREAD_LIMIT.

Example syntax:

export
OMP_THREAD_LIMIT=value

Intel Environment Variables Extensions

DescriptionDefaultVariable Name

Limits the number of
simultaneously executing
threads in an OpenMP*
program.

No enforced limitKMP_ALL_THREADS If this limit is reached and
another native operating
system thread encounters
OpenMP* API calls or
constructs, the program can

1388

26 Intel® Fortran Compiler User and Reference Guides

DescriptionDefaultVariable Name

abort with an error message.
If this limit is reached when
an OpenMP parallel region
begins, a one-time warning
message might be generated
indicating that the number of
threads in the team was
reduced, but the program will
continue.

This environment variable is
only used for programs
compiled with the following
options: -openmp or -open-
mp-profile (Linux and Mac
OS X) and /Qopenmp or
/Qopenmp-profile
(Windows).

Sets the time, in
milliseconds, that a thread
should wait, after completing
the execution of a parallel
region, before sleeping.

200 millisecondsKMP_BLOCKTIME

Use the optional character
suffixes: s (seconds), m
(minutes), h (hours), or d
(days) to specify the units.

Specify infinite for an
unlimited wait time.

See also the throughput
execution mode and the
KMP_LIBRARY environment
variable.

1389

26

DescriptionDefaultVariable Name

Selects the OpenMP run-time
library execution mode. The
options for the variable value
are throughput,
turnaround, and serial.

throughputKMP_LIBRARY

Enables (1) or disables (0)
the printing OpenMP run-time
library environment variables

0KMP_SETTINGS

during program execution.
Two lists of variables are
printed: user-defined
environment variables
settings and effective values
of variables used by OpenMP
run-time library.

Sets the number of bytes to
allocate for each OpenMP*
thread to use as the private
stack for the thread.

IA-32 architecture: 2m

Intel® 64 and IA-64
architectures: 4m

KMP_STACKSIZE

Recommended size is 16m.

Use the optional suffixes: b
(bytes), k (kilobytes), m
(megabytes), g (gigabytes),
or t (terabytes) to specify
the units.

This variable does not affect
the native operating system
threads created by the user
program nor the thread
executing the sequential part
of an OpenMP* program or
parallel programs created

1390

26 Intel® Fortran Compiler User and Reference Guides

DescriptionDefaultVariable Name

using -parallel (Linux and
Mac OS X) or /Qparallel
(Windows).

Sets the number of bytes to
allocate for the monitor
thread, which is used for
book-keeping during program
execution.max (32k, system minimum

thread stack size)
KMP_MONITOR_STACKSIZE

Use the optional suffixes: b
(bytes), k (kilobytes), m
(megabytes), g (gigabytes),
or t (terabytes) to specify
the units.

Enables (.TRUE.) or disables
(.FALSE.) the printing of
OpenMP run-time library
version information during
program execution.

.FALSE.

0
KMP_VERSION

Enables run-time library to
bind threads to physical
processing units.

noverbose,
respect,
granularity=core

KMP_AFFINITY See Thread Affinity Interface
for more information on the
default and the affect this
environment variable has on
the parallel environment.

Specifies an alternate file
name for file containing
machine topology description.
The file must be in the same
format as /proc/cpuinfo.

noneKMP_CPUINFO_FILE

GNU Environment Variables Extensions

1391

26

These environment variables are GNU extensions. They are recognized by the Intel OpenMP
compatibility library.

DescriptionDefaultVariable Name

OMP_STACKSIZE overrides
GOMP_STACKSIZE.
KMP_STACKSIZE overrides
OMP_STACKSIZE and
GOMP_STACKSIZE

See OMP_STACKSIZE
description

GOMP_STACKSIZE

TBDGOMP_CPU_AFFINITY

OpenMP* Directives and Clauses Summary

This is a summary of the OpenMP* directives and clauses supported in the Intel® Compiler. For
detailed information about the OpenMP API, see the OpenMP Application Program Interface
Version 2.5 specification, which is available from the OpenMP web site
(http://www.openmp.org/).

OpenMP Directives

DescriptionDirective

Defines a parallel region.PARALLEL
END PARALLEL

Defines a task region.TASK
END TASK

Identifies an iterative worksharing construct in which the iterations
of the associated loop should be divided among threads in a team.

DO
END DO

Identifies a non-iterative worksharing construct that specifies a set
of structured blocks that are to be divided among threads in a team.

SECTIONS
END SECTIONS

Indicates that the associated structured block should be executed in
parallel as part of the enclosing sections construct.

SECTION

1392

26 Intel® Fortran Compiler User and Reference Guides

DescriptionDirective

Identifies a construct that specifies that the associated structured
block is executed by only one thread in the team.

SINGLE
END SINGLE

A shortcut for a PARALLEL region that contains a single DO directive.PARALLEL DO
END PARALLEL DO

NOTE. The OpenMP PARALLEL DO or DO directive must be
immediately followed by a DO statement (DO-stmt as defined
by R818 of the ANSI Fortran standard). If you place another
statement or an OpenMP directive between the PARALLEL DO
or DO directive and the DO statement, the compiler issues a
syntax error.

Provides a shortcut form for specifying a parallel region containing
a single SECTIONS construct.

PARALLEL SECTIONS
END PARALLEL
SECTIONS

Identifies a construct that specifies a structured block that is executed
by only the master thread of the team.

MASTER
END MASTER

Identifies a construct that restricts execution of the associated
structured block to a single thread at a time. Each thread waits at
the beginning of the critical construct until no other thread is
executing a critical construct with the same name argument.

CRITICAL[name]
END
CRITICAL[name]

Indicates a wait on the completion of child tasks generated since the
beginning of the current task.

TASKWAIT

Synchronizes all the threads in a team. Each thread waits until all of
the other threads in that team have reached this point.

BARRIER

Ensures that a specific memory location is updated atomically, rather
than exposing it to the possibility of multiple, simultaneously writing
threads.

ATOMIC

1393

26

DescriptionDirective

Specifies a cross-thread sequence point at which the implementation
is required to ensure that all the threads in a team have a consistent
view of certain objects in memory. The optional list argument
consists of a comma-separated list of variables to be flushed.

FLUSH [(list)]

The enclosed structured block is executed in the order in which
iterations would be executed in a sequential loop.

ORDERED
END ORDERED

Makes the named COMMON blocks or variables private to a thread.
The list argument consists of a comma-separated list of COMMON
blocks or variables.

THREADPRIVATE
(list)

OpenMP Clauses

DescriptionClause

Declares variables in list to be PRIVATE to each thread in a team.PRIVATE (list)

Same as PRIVATE, but the copy of each variable in the list is
initialized using the value of the original variable existing before the
construct.

FIRSTPRIVATE
(list)

Same as PRIVATE, but the original variables in list are updated
using the values assigned to the corresponding PRIVATE variables
in the last iteration in the DO construct loop or the last SECTION
construct.

LASTPRIVATE
(list)

Uses private variables in list to broadcast values, or pointers to
shared objects, from one member of a team to the other members
at the end of a single construct.

COPYPRIVATE
(list)

Specifies that threads need not wait at the end of worksharing
constructs until they have completed execution. The threads may
proceed past the end of the worksharing constructs as soon as there
is no more work available for them to execute.

NOWAIT

Shares variables in list among all the threads in a team.SHARED (list)

1394

26 Intel® Fortran Compiler User and Reference Guides

DescriptionClause

Determines the default data-scope attributes of variables not explicitly
specified by another clause. Possible values for mode are PRIVATE,
SHARED, or NONE.

DEFAULT (mode)

Performs a reduction on variables that appear in list with the
operator operator or the intrinsic procedure name intrinsic;
operator is one of the following: +, *, .AND., .OR., .EQV., .NEQV.;
intrinsic refers to one of the following: MAX, MIN, IAND, IOR, or
IEOR.

REDUCTION
({operator|intrinsic}:list)

Used in conjunction with a DO or SECTIONS construct to impose a
serial order on the execution of a section of code. If ORDERED
constructs are contained in the dynamic extent of the DO construct,
the ordered clause must be present on the DO directive.

ORDERED
END ORDERED

The enclosed parallel region is executed in parallel only if the
expression evaluates to .TRUE., otherwise the parallel region is
serialized.

IF (expression)

The expression must be scalar logical.

Requests the number of threads specified by expression for the
parallel region. The expressions must be scalar integers.

NUM_THREADS
(expression)

Specifies how iterations of the DO construct are divided among the
threads of the team. Possible values for the type argument are
STATIC, DYNAMIC, GUIDED, and RUNTIME. The optional chunk
argument must be a positive scalar integer expression.

SCHEDULE
(type[,chunk])

Specifies how many loops are associated with the OpenMP loop
construct for collapsing.

COLLAPSE (n)

Provide a mechanism to specify that the master thread data values
be copied to the THREADPRIVATE copy of the common blocks or
variables specified in list at the beginning of the parallel region.

COPYIN (list)

1395

26

DescriptionClause

Indicates that a resumed task does not have to be executed by same
thread executing it before it was suspended.

UNTIED

Directives and Clauses Cross-reference

See Data Scope Attribute Clauses Overview.

Use these ClausesDirective

PARALLEL
END PARALLEL

• IF

• NUM_THREADS

• DEFAULT

• PRIVATE

• FIRSTPRIVATE

• SHARED

• COPYIN

• REDUCTION

DO
END DO

• SCHEDULE

• PRIVATE

• FIRSTPRIVATE

• LASTPRIVATE

• REDUCTION

• ORDERED

• NOWAIT

• COLLAPSE

SECTIONS
END SECTIONS

• PRIVATE

• FIRSTPRIVATE

1396

26 Intel® Fortran Compiler User and Reference Guides

Use these ClausesDirective

• LASTPRIVATE

• REDUCTION

• NOWAIT

NoneSECTION

SINGLE
END SINGLE

• PRIVATE

• FIRSTPRIVATE

• COPYPRIVATE

• NOTWAIT

PARALLEL DO
END PARALLEL DO

• IF

• NUM_THREADS

• SCHEDULE

• DEFAULT

• PRIVATE

• FIRSTPRIVATE

• LASTPRIVATE

• SHARED

• COPYIN

• REDUCTION

• ORDERED

• COLLAPSE

PARALLEL SECTIONS
END PARALLEL SECTIONS

• IF

• NUM_THREADS

• DEFAULT

• PRIVATE

1397

26

Use these ClausesDirective

• FIRSTPRIVATE

• LASTPRIVATE

• SHARED

• COPYIN

• REDUCTION

NoneAll others

OpenMP* Library Support

OpenMP* Run-time Library Routines

OpenMP* provides several run-time library routines to help you manage your program in parallel
mode. Many of these run-time library routines have corresponding environment variables that
can be set as defaults. The run-time library routines let you dynamically change these factors
to assist in controlling your program. In all cases, a call to a run-time library routine overrides
any corresponding environment variable.

This topic provides a summary of the OpenMP run-time library routines. See OpenMP* Support
Overview for additional resources; refer to the OpenMP API Version 3.0 specification for detailed
information about using these routines.

The following tables specify the interfaces to these routines. (The names for the routines are
in user name space.)

Execution Environment Routines

Use these routines to monitor and influence threads and the parallel environment.

DescriptionFunction

Sets the number of threads to use for
subsequent parallel regions created by the
calling thread.

SUBROUTINE
OMP_SET_NUM_THREADS(num_threads)
INTEGER num_threads

Returns the number of threads that are being
used in the current parallel region.

INTEGER FUNCTION
OMP_GET_NUM_THREADS()

1398

26 Intel® Fortran Compiler User and Reference Guides

DescriptionFunction

This function does not return the value
inherited by the calling thread from the
OMP_SET_NUM_THREADS() function.

Returns the number of threads available to
subsequent parallel regions created by the
calling thread.

INTEGER FUNCTION
OMP_GET_MAX_THREADS()

This function returns the value inherited by
the calling thread from the
OMP_SET_NUM_THREADS() function.

Returns the thread number of the calling
thread, within the context of the current
parallel region..

INTEGER FUNCTION
OMP_GET_THREAD_NUM()

Returns the number of processors available
to the program.

INTEGER FUNCTION OMP_GET_NUM_PROCS()

Returns .TRUE. if called within the dynamic
extent of a parallel region executing in
parallel; otherwise returns .FALSE..

LOGICAL FUNCTION OMP_IN_PARALLEL()

Enables or disables dynamic adjustment of
the number of threads used to execute a
parallel region. If dynamic_threads is

SUBROUTINE
OMP_SET_DYNAMIC(dynamic_threads)
LOGICAL dynamic_threads

.TRUE., dynamic threads are enabled. If
dynamic_threads is .FALSE., dynamic
threads are disabled. Dynamic threads are
disabled by default.

Returns .TRUE. if dynamic thread adjustment
is enabled, otherwise returns .FALSE..

LOGICAL FUNCTION OMP_GET_DYNAMIC()

Enables or disables nested parallelism. If
nested is .TRUE., nested parallelism is
enabled. If nested is .FALSE., nested
parallelism is disabled. Nested parallelism is
disabled by default.

SUBROUTINE OMP_SET_NESTED(nested)
LOGICAL nested

1399

26

DescriptionFunction

Returns .TRUE. if nested parallelism is
enabled, otherwise returns .FALSE..

LOGICAL FUNCTION OMP_GET_NESTED()

Determines the schedule of a worksharing
loop that is applied when 'runtime' is used as
schedule kind.

SUBROUTINE
OMP_SET_SCHEDULE(kind,modifier)
INTEGER(KIND=omp_sched_t) kind
INTEGER modifier

Returns the schedule of a worksharing loop
that is applied when the 'runtime' schedule
is used.

SUBROUTINE
OMP_GET_SCHEDULE(kind,modifier)
INTEGER(KIND=omp_sched_t) kind
INTEGER modifier

Returns the maximum number of
simultaneously executing threads in an
OpenMP* program.

INTEGER FUNCTION
OMP_GET_THREAD_LIMIT()

Limits the number of nested active parallel
regions. The call is ignored if negative
max_active_levels specified.

SUBROUTINE
OMP_SET_MAX_ACTIVE_LEVELS(max_active_levels)
INTEGER max_active_levels

Returns the maximum number of nested
active parallel regions.

INTEGER FUNCTION
OMP_GET_MAX_ACTIVE_LEVELS()

Returns the number of nested, active parallel
regions enclosing the task that contains the
call.

INTEGER FUNCTION
OMP_GET_ACTIVE_LEVEL()

Returns the number of nested parallel regions
(whether active or inactive) enclosing the
task that contains the call, not including the
implicit parallel region.

INTEGER FUNCTION
OMP_GET_LEVEL()

Returns the thread number of the ancestor
at a given nest level of the current thread.

INTEGER FUNCTION
OMP_GET_ANCESTOR_THREAD_NUM(level)
INTEGER level

1400

26 Intel® Fortran Compiler User and Reference Guides

DescriptionFunction

Returns the size of the thread team to which
the ancestor belongs.

INTEGER FUNCTION
OMP_GET_TEAM_SIZE(level)
INTEGER level

Lock Routines

Use these routines to affect OpenMP locks.

DescriptionFunction

Initializes the lock associated with lock for
use in subsequent calls.

SUBROUTINE OMP_INIT_LOCK(lock)
INTEGER (KIND=OMP_LOCK_KIND)::lock

Causes the lock specified by lock to become
undefined or uninitialized. The lock must be
initialized and not locked.

SUBROUTINE OMP_DESTROY_LOCK(lock)
INTEGER(KIND=OMP_LOCK_KIND)::lock

Forces the executing thread to wait until the
lock associated with lock is available. The
thread is granted ownership of the lock when
it becomes available. The lock must be
initialized.

SUBROUTINE OMP_SET_LOCK(lock)
INTEGER(KIND=OMP_LOCK_KIND)::lock

Releases the executing thread from ownership
of the lock associated with lock. The behavior
is undefined if the executing thread does not
own the lock associated with lock.

SUBROUTINE OMP_UNSET_LOCK(lock)
INTEGER(KIND=OMP_LOCK_KIND)::lock

Attempts to set the lock associated with lock.
If successful, returns .TRUE., otherwise
returns .FALSE.. The lock must be initialized.

LOGICAL OMP_TEST_LOCK(lock)
INTEGER(KIND=OMP_LOCK_KIND)::lock

Initializes the nested lock associated with
lock for use in the subsequent calls.

SUBROUTINE OMP_INIT_NEST_LOCK(lock)
INTEGER(KIND=OMP_NEST_LOCK_KIND)::lock

Causes the nested lock associated with lock
to become undefined or uninitialized. The lock
must be initialized and not locked.

SUBROUTINE
OMP_DESTROY_NEST_LOCK(lock)

1401

26

DescriptionFunction

INTEGER(KIND=OMP_NEST_LOCK_KIND)::lock

Forces the executing thread to wait until the
nested lock associated with lock is available.
The thread is granted ownership of the nested
lock when it becomes available. The lock must
be initialized.

SUBROUTINE OMP_SET_NEST_LOCK(lock)
INTEGER(KIND=OMP_NEST_LOCK_KIND)::lock

Releases the executing thread from ownership
of the nested lock associated with lock if the
nesting count is zero. Behavior is undefined
if the executing thread does not own the
nested lock associated with lock.

SUBROUTINE OMP_UNSET_NEST_LOCK(lock)
INTEGER(KIND=OMP_NEST_LOCK_KIND)::lock

Attempts to set the nested lock specified by
lock. If successful, returns the nesting count,
otherwise returns zero.

INTEGER OMP_TEST_NEST_LOCK(lock)
INTEGER(KIND=OMP_NEST_LOCK_KIND)::lock

Timing Routines

DescriptionFunction

Returns a double precision value equal to the
elapsed wall clock time (in seconds) relative
to an arbitrary reference time. The reference
time does not change during program
execution.

DOUBLE PRECISION FUNCTION
OMP_GET_WTIME()

Returns a double precision value equal to the
number of seconds between successive clock
ticks.

DOUBLE PRECISION FUNCTION
OMP_GET_WTICK()

Intel Extension Routines to OpenMP*

The Intel® Compiler implements the following group of routines as an extensions to the OpenMP*
run-time library:

• Getting and setting the execution environment

• Getting and setting stack size for parallel threads

1402

26 Intel® Fortran Compiler User and Reference Guides

• Memory allocation

• Getting and setting thread sleep time for the throughput execution mode

The Intel extension routines described in this section can be used for low-level tuning to verify
that the library code and application are functioning as intended. These routines are generally
not recognized by other OpenMP-compliant compilers, which may cause the link stage to fail
in other compiler. These OpenMP routines require that you use the -openmp-stubs (Linux*
and Mac OS* X) or /Qopenmp-stubs (Windows*) command-line option to execute.

See OpenMP* Run-time Library Routines for details about including support for these declarations
in your source, and see OpenMP* Support Libraries for detailed information about execution
environment (mode).

In most cases, environment variables can be used in place of the extension library routines.
For example, the stack size of the parallel threads may be set using the OMP_STACKSIZE
environment variable rather than the KMP_SET_STACKSIZE_S() library routine.

NOTE. A run-time call to an Intel extension routine takes precedence over the
corresponding environment variable setting.

Execution Environment Routines

DescriptionFunction

Sets OpenMP environment variables defined
as a list of variables separated by "|" in the
argument.

SUBROUTINE
KMP_SET_DEFAULTS(STRING)
CHARACTER*(*) STRING

Sets execution mode to throughput, which is
the default. Allows the application to
determine the runtime environment. Use in
multi-user environments.

SUBROUTINE
KMP_SET_LIBRARY_THROUGHPUT()

Sets execution mode to turnaround. Use in
dedicated parallel (single user) environments.

SUBROUTINE
KMP_SET_LIBRARY_TURNAROUND()

Sets execution mode to serial.SUBROUTINE KMP_SET_LIBRARY_SERIAL()

Sets execution mode indicated by the value
passed to the function. Valid values are:

SUBROUTINE KMP_SET_LIBRARY(LIBNUM)
INTEGER (KIND=OMP_INTEGER_KIND)
LIBNUM

1403

26

DescriptionFunction

• 1 - serial mode

• 2 - turnaround mode

• 3 - throughput mode

Call this routine before the first parallel region
is executed.

Returns a value corresponding to the current
execution mode: 1 (serial), 2 (turnaround),
or 3 (throughput).

FUNCTION KMP_GET_LIBRARY()
INTEGER (KIND=OMP_INTEGER_KIND)
KMP_GET_LIBRARY

Stack Size

For IA-64 architecture it is recommended to always use KMP_SET_STACKSIZE_S() and

KMP_GET_STACKSIZE_S(). The _S() variants must be used if you need to set a stack size ≥
2**31 bytes (2 gigabytes).

DescriptionFunction

Returns the number of bytes that will be
allocated for each parallel thread to use as
its private stack. This value can be changed

FUNCTION KMP_GET_STACKSIZE_S()
INTEGER(KIND=KMP_SIZE_T_KIND) &
KMP_GET_STACKSIZE_S

with KMP_SET_STACKSIZE_S() routine, prior
to the first parallel region or via the
KMP_STACKSIZE environment variable.

Provided for backwards compatibility only.
Use KMP_GET_STACKSIZE_S() routine for
compatibility across different families of Intel
processors.

FUNCTION KMP_GET_STACKSIZE()
INTEGER KMP_GET_STACKSIZE

Sets to size the number of bytes that will be
allocated for each parallel thread to use as
its private stack. This value can also be set

SUBROUTINE KMP_SET_STACKSIZE_S(size)
INTEGER (KIND=KMP_SIZE_T_KIND)size

via the KMP_STACKSIZE environment
variable. In order for
KMP_SET_STACKSIZE_S()kmp_set_stacksize_s()

1404

26 Intel® Fortran Compiler User and Reference Guides

DescriptionFunction

to have an effect, it must be called before the
beginning of the first (dynamically executed)
parallel region in the program.

Provided for backward compatibility only. Use
KMP_SET_STACKSIZE_S(size) for
compatibility across different families of Intel
processors.

SUBROUTINE KMP_SET_STACKSIZE_S(size)
INTEGER size

Memory Allocation

The Intel® compiler implements a group of memory allocation routines as an extension to the
OpenMP* run-time library to enable threads to allocate memory from a heap local to each
thread. These routines are: KMP_MALLOC(), KMP_CALLOC(), and KMP_REALLOC().

The memory allocated by these routines must also be freed by the KMP_FREE() routine. While
it is legal for the memory to be allocated by one thread and freed by a different thread, this
mode of operation has a slight performance penalty.

Working with the local heap might lead to improved application performance since
synchronization is not required.

DescriptionFunction

Allocate memory block of size bytes from
thread-local heap.

FUNCTION KMP_MALLOC(size)
INTEGER(KIND=KMP_POINTER_KIND)KMP_MALLOC
INTEGER(KIND=KMP_SIZE_T_KIND)size

Allocate array of nelem elements of size
elsize from thread-local heap.

FUNCTION KMP_CALLOC(nelem,elsize)
INTEGER(KIND=KMP_POINTER_KIND)KMP_CALLOC
INTEGER(KIND=KMP_SIZE_T_KIND)nelem
INTEGER(KIND=KMP_SIZE_T_KIND)elsize

Reallocate memory block at address ptr and
size bytes from thread-local heap.

FUNCTION KMP_REALLOC(ptr, size)
INTEGER(KIND=KMP_POINTER_KIND)KMP_REALLOC
INTEGER(KIND=KMP_POINTER_KIND) ptr
INTEGER(KIND=KMP_SIZE_T_KIND)size

1405

26

DescriptionFunction

Free memory block at address ptr from
thread-local heap.

SUBROUTINE KMP_FREE(ptr)
INTEGER (KIND=KMP_POINTER_KIND)ptr

Memory must have been previously allocated
with KMP_MALLOC(), KMP_CALLOC(), or
KMP_REALLOC().

Thread Sleep Time

In the throughput execution mode, threads wait for new parallel work at the ends of parallel
regions, and then sleep, after a specified period of time. This time interval can be set by the
KMP_BLOCKTIME environment variable or by the KMP_SET_BLOCKTIME() function.

DescriptionFunction

Returns the number of milliseconds that a
thread should wait, after completing the
execution of a parallel region, before sleeping,

FUNCTION KMP_GET_BLOCKTIME(
INTEGER KMP_GET_BLOCKTIME

as set either by the KMP_BLOCKTIME
environment variable or by
KMP_SET_BLOCKTIME().

Sets the number of milliseconds that a thread
should wait, after completing the execution
of a parallel region, before sleeping. This

FUNCTION KMP_SET_BLOCKTIME(msec)
INTEGER msec

routine affects the block time setting for the
calling thread and any OpenMP team threads
formed by the calling thread. The routine
does not affect the block time for any other
threads.

OpenMP* Support Libraries

The Intel® Compiler provides support libraries for OpenMP*. There are several kinds of libraries:

• Performance: supports parallel OpenMP execution.

• Profile: supports parallel OpenMP execution and allows use of Intel® Thread Profiler.

• Stubs: supports serial execution of OpenMP applications.

1406

26 Intel® Fortran Compiler User and Reference Guides

Each kind of library is available for both dynamic and static linking.

NOTE. The use of static OpenMP libraries is not recommended, because they might
cause multiple libraries to be linked in an application. The condition is not supported and
could lead to unpredictable results.

This section describes the compatibility libraries and legacy libraries provided with the Intel
compiler, as well as the selection of run-time execution modes.

Compatibility Libraries

To use the Compatibility OpenMP libraries, specify the (default) /Qopenmp-lib:compat (Windows
OS) or -openmp-lib compat (Linux OS and Mac OS X) compiler option during linking.

On Linux and Mac OS X systems, to use dynamically linked libraries during linking, specify
-openmp-link=dynamic option; to use static linking, specify the -openmp-link=static
option.

On Windows systems, to use dynamically linked libraries during linking, specify the /MD and
/Qopenmp-link:dynamic options; to use static linking, specify the /MT and /Qopenmp-
link:static options.

To provide run-time support for dynamically linked applications, the supplied DLL (Windows
OS) or shared library (Linux OS and Mac OS X) must be available to the application at run time.

Performance Libraries

To use these libraries, specify the -openmp (Linux* and Mac OS* X) or /Qopenmp (Windows*)
compiler option.

Static LinkDynamic LinkOperating System

libiomp5.alibiomp5.soLinux

libiomp5.alibiomp5.dylibMac OS X

libiomp5mt.lib
libiomp5md.lib
libiomp5md.dll

Windows

Profile Libraries

1407

26

To use these libraries, specify -openmp-profile (Linux* and Mac OS* X) or /Qopenmp-profile
(Windows*) compiler option. These allow you to use Intel® Thread Profiler to analyze OpenMP
applications.

Static LinkDynamic LinkOperating System

libiompprof5.alibiompprof5.soLinux

libiompprof5.alibiompprof5.dylibMac OS X

libiompprof5mt.lib
libiompprof5md.lib
libiompprof5md.dll

Windows

Stubs Libraries

To use these libraries, specify -openmp-stubs (Linux* and Mac OS* X) or /Qopenmp-stubs
(Windows*) compiler option. These allow you to compile OpenMP applications in serial mode
and provide stubs for OpenMP routines and extended Intel-specific routines.

Static LinkDynamic LinkOperating System

libiompstubs5.alibiompstubs5.soLinux

libiompstubs5.alibiompstubs5.dylibMac OS X

libiompstubs5mt.lib
libiompstubs5md.lib
libiompstubs5md.dll

Windows

Legacy Libraries

To use the Legacy OpenMP libraries, specify the /Qopenmp-lib:legacy (Windows OS) or
-openmp-lib legacy (Linux OS and Mac OS X) compiler options during linking. Legacy libraries
are deprecated.

On Linux and Mac OS X systems, to use dynamically linked libraries during linking, specify the
-openmp-link:dynamic option; to use static linking, specify the -openmp-link:static
option.

On Windows systems, to use dynamically linked libraries during linking, specify the /MD and
/Qopenmp-link=dynamic options; to use static linking, specify the /MT and /Qopenmp-
link=static options.

1408

26 Intel® Fortran Compiler User and Reference Guides

To provide run-time support for dynamically linked applications, the supplied DLL (Windows
OS) or shared library (Linux OS and Mac OS X) must be available to the application at run time.

Performance Libraries

To use these libraries, specify -openmp (Linux* and Mac OS* X) or /Qopenmp (Windows*)
compiler option.

Static LinkDynamic LinkOperating System

libguide.alibguide.soLinux

libguide.alibguide.dylibMac OS X

libguide.lib
libguide40.lib
libguide40.dll

Windows

Profile Libraries

To use these libraries, specify -openmp-profile (Linux* and Mac OS* X) or /Qopenmp-profile
(Windows*) compiler option. These allow you to use Intel® Thread Profiler to analyze OpenMP
applications.

Static LinkDynamic LinkOperating System

libguide_stats.alibguide_stats.soLinux

libguide_stats.alibguide_stats.dylibMac OS X

libguide_stats.lib
libguide40_stats.lib
libguide40_stats.dll

Windows

Stubs Libraries

To use these libraries, specify -openmp-stubs (Linux* and Mac OS* X) or /Qopenmp-stubs
(Windows*) compiler option. These allow you to compile OpenMP applications in serial mode
and provide stubs for OpenMP routines and extended Intel-specific routines.

Static LinkDynamic LinkOperating System

libompstub.alibompstub.soLinux

libompstub.alibompstub.dylibMac OS X

1409

26

Static LinkDynamic LinkOperating System

libompstub.lib
libompstub40.lib
libompstub40.dll

Windows

Execution modes

The Intel compiler enables you to run an application under different execution modes specified
at run time; the libraries support the turnaround, throughput, and serial modes. Use the
KMP_LIBRARY environment variable to select the modes at run time.

DescriptionMode

The throughput mode allows the program to
detect its environment conditions (system
load) and adjust resource usage to produce
efficient execution in a dynamic environment.

throughput

(default)

In a multi-user environment where the load
on the parallel machine is not constant or
where the job stream is not predictable, it
may be better to design and tune for
throughput. This minimizes the total time to
run multiple jobs simultaneously. In this
mode, the worker threads yield to other
threads while waiting for more parallel work.

After completing the execution of a parallel
region, threads wait for new parallel work to
become available. After a certain period of
time has elapsed, they stop waiting and
sleep. Until more parallel work becomes
available, sleeping allows processor and
resources to be used for other work by
non-OpenMP threaded code that may execute
between parallel regions, or by other
applications.

The amount of time to wait before sleeping
is set either by the KMP_BLOCKTIME
environment variable or by the

1410

26 Intel® Fortran Compiler User and Reference Guides

DescriptionMode

KMP_SET_BLOCKTIME() function. A small
blocktime value may offer better overall
performance if your application contains
non-OpenMP threaded code that executes
between parallel regions. A larger blocktime
value may be more appropriate if threads are
to be reserved solely for use for OpenMP
execution, but may penalize other
concurrently-running OpenMP or threaded
applications.

The turnaround mode is designed to keep
active all processors involved in the parallel
computation, which minimizes execution time

turnaround

of a single job. In this mode, the worker
threads actively wait for more parallel work,
without yielding to other threads. In a
dedicated (batch or single user) parallel
environment where all processors are
exclusively allocated to the program for its
entire run, it is most important to effectively
use all processors all of the time.

NOTE. Avoid over-allocating system
resources. The condition can occur if
either too many threads have been
specified, or if too few processors are
available at run time. If system resources
are over-allocated, this mode will cause
poor performance. The throughput mode
should be used instead if this occurs.

The serial mode forces parallel applications
to run as a single thread.

serial

1411

26

Using the OpenMP Compatibility Libraries

This section describes the steps needed to set up and use the OpenMP Compatibility Libraries
from the command line. On Windows* systems, you can also build applications compiled with
the OpenMP Compatibility libraries in the Microsoft Visual Studio* development environment.

For a summary of the support provided by the Compatibility and Legacy libraries provided with
Intel compilers, see OpenMP* Source Compatibility and Interoperability with Other Compilers.

For a list of the options and libraries used by the OpenMP libraries, see OpenMP Support Libraries.

Set up your environment for access to the Intel compiler to ensure that the appropriate OpenMP
library is available during linking. On Windows systems, you can either execute the appropriate
batch (.bat) file or use the command-line window supplied in the compiler program folder that
already has the environment set up. On Linux and Mac OS systems, you can source the
appropriate script file (see Using the ifortvars File to Specify Location of Components.

During C/C++ compilation, ensure the version of omp.h used when compiling is the version
provided by that compiler. For example, on Linux systems when compiling with the GNU C/C++
compiler, use the omp.h provided with the GNU C/C++ compiler. Similarly, during Fortran
compilation, ensure that the version of omp_lib.h or omp_lib.mod used when compiling is
the version provided by that compiler.

The following table lists the commands used by the various command-line compilers for both
C and C++ source files.:

C++ Source ModuleC Source ModuleOperating System

GNU: g++
Intel: icpc

GNU: gcc
Intel: iccLinux*

GNU: g++
Intel: icpc

GNU: gcc
Intel: iccMac OS* X

Visual C++: cl
Intel: icl

Visual C++: cl
Intel: iclWindows*

The command for the Intel® Fortran compiler is ifort on Linux, Mac OS X, and Windows
operating systems.

For information on the OpenMP libraries and options used by the Intel compiler, see OpenMP
Support Libraries.

Command-Line Examples, Windows OS

On Windows systems, to use the Compatibility Libraries with Microsoft Visual C++ in the
Microsoft Visual Studio* environment, see Using the OpenMP Compatibility Libraries from Visual
Studio*.

1412

26 Intel® Fortran Compiler User and Reference Guides

To compile and link (build) the entire application with one command using the Compatibility
libraries, specify the following Intel compiler command:

CommandsType of File

ifort /MD /Qopenmp /Qopenmp-lib:compat hello.f90Fortran source, dynamic
link

By default, the Intel compilers perform a dynamic link of the OpenMP libraries. To perform a
static link (not recommended), use the /MT option in place of the /MD option above and add
the option /Qopenmp-link:static. The Intel compiler option /Qopenmp-link controls whether
the linker uses static or dynamic OpenMP libraries on Windows OS systems (default is
/Qopenmp-link:dynamic).

When using Microsoft Visual C++ compiler, you should link with the Intel OpenMP compatibility
library. You need to avoid linking the Microsoft OpenMP run-time library (vcomp) and explicitly
pass the name of the Intel OpenMP compatibility library as linker options (following /link):

CommandsType of File

icl /MD /openmp hello.c /link /nodefaultlib:vcomp
libiomp5md.lib

C source, dynamic link

icl /MD /openmp hello.cpp /link /nodefaultlib:vcomp
libiomp5md.lib

C++ source, dynamic link

Performing a static link is not recommended, but would require use of the /MT option in place
of the /MD option above.

You can also use both Intel C++ and Visual C++ compilers to compile parts of the application
and create object files (object-level interoperability). In this example, the Intel compiler links
the entire application:

CommandsType of File

icl /MD /openmp hello.cpp /c f1.c f2.cC source, dynamic link

icl /MD /Qopenmp /Qopenmp-lib:compat /c f3.c f4.c

icl /MD /Qopenmp /Qopenmp-lib:compat f1.obj f2.obj
f3.obj f4.obj /Feapp /link /nodefaultlib:vcomp

The first command produces two object files compiled by Visual C++ compiler, and the second
command produces two more object files compiled by Intel C++ Compiler. The final command
links all four object files into an application.

1413

26

Alternatively, the third line below uses the Visual C++ linker to link the application and specifies
the Compatibility library libiomp5md.lib at the end of the third command:

CommandsType of File

icl /MD /openmp hello.cpp /c f1.c f2.cC source, dynamic link

icl /MD /Qopenmp /Qopenmp-lib:compat /c f3.c f4.c

link f1.obj f2.obj f3.obj f4.obj /out:app.exe
/nodefaultlib:vcomp libiomp5md.lib

The following example shows the use of interprocedural optimization by the Intel compiler on
several files, the Visual C++ compiler compiles several files, and the Visual C++ linker links
the object files to create the executable:

CommandsType of File

icl /MD /Qopenmp /Qopenmp-lib:compat /O3 /Qipo
/Qipo-c f1.c f2.c f3.c

C source, dynamic link

cl /MD /openmp /O2 /c f4.c f5.c

cl /MD /openmp /O2 ipo_out.obj f4.obj f5.obj /Feapp
/link /nodefaultlib:vcomp libiomp5md.lib

The first command uses the Intel® C++ Compiler to produce an optimized multi-file object file
named ipo_out.obj by default (the /Fe option is not required; see Using IPO). The second
command uses the Visual C++ compiler to produce two more object files. The third command
uses the Visual C++ cl command to link all three object files using the Intel compiler OpenMP
Compatibility library. Performing a static link (not recommended) requires use of the /MT option
in place of the /MD option in each line above.

Command-Line Examples, Linux OS and Mac OS X

To compile and link (build) the entire application with one command using the Compatibility
libraries, specify the following Intel compiler command:

CommandsType of File

ifort -openmp -openmp-lib=compat hello.f90Fortran source

By default, the Intel compilers perform a dynamic link of the OpenMP libraries. To perform a
static link (not recommended), add the option -openmp-link static. The Intel compiler
option -openmp-link controls whether the linker uses static or dynamic OpenMP libraries on
Linux OS and Mac OS X systems (default is -openmp-link dynamic).

1414

26 Intel® Fortran Compiler User and Reference Guides

You can also use both Intel C++ icc/icpc and GNU gcc/g++ compilers to compile parts of
the application and create object files (object-level interoperability). In this example, the GNU
compiler compiles the C file foo.c (the gcc option -fopenmp enables OpenMP support), and
the Intel compiler links the application using the OpenMP Compatibility library:

CommandsType of File

gcc -fopenmp -c foo.cC source

icc -openmp -openmp-lib=compat foo.o

g++ -fopenmp -c foo.cppC++ source

icpc -openmp -openmp-lib=compat foo.o

When using GNU gcc or g++ compiler to link the application with the Intel compiler OpenMP
compatibility library, you need to explicitly pass the Intel OpenMP compatibility library name
using the -l option, the GNU pthread library using the -l option, and path to the Intel libraries
where the Intel C++ compiler is installed using the -L option:

CommandsType of File

gcc -fopenmp -c foo.c bar.cC source

gcc foo.o bar.o -liomp5 -lpthread -L<icc_dir>/lib

You can mix object files, but it is easier to use the Intel compiler to link the application so you
do not need to specify the gcc -l option, -L option, and the -lpthread option:

CommandsType of File

gcc -fopenmp -c foo.cC source

icc -openmp -c bar.c

icc -openmp -openmp=compat foo.o bar.o

You can mix OpenMP object files compiled with the GNU gcc compiler, the Intel® C++ Compiler,
and the Intel® Fortran Compiler. This example uses use the Intel Fortran Compiler to link all
the objects:

CommandsType of File

ifort -openmp -c foo.fMixed C and Fortran
sources

icc -openmp -c ibar.c

1415

26

CommandsType of File

gcc -fopenmp -c gbar.c

ifort -openmp -openmp-lib=compat foo.o ibar.o gbar.o

When using the Intel Fortran compiler, if the main program does not exist in a Fortran object
file that is compiled by the Intel Fortran Compiler ifort, specify the -nofor-main option on
the ifort command line during linking.

NOTE. Do not mix objects created by the Intel Fortran Compiler (ifort) with the GNU
Fortran Compiler (gfortran); instead, recompile all Fortran sources with the same
Fortran compiler. The GNU Fortran Compiler is only available on Linux operating systems.

Similarly, you can mix object files compiled with the Intel® C++ Compiler, the GNU C/C++
compiler, and the GNU Fortran Compiler (gfortran), if you link with the GNU Fortran Compiler
(gfortran). When using GNU gfortran compiler to link the application with the Intel compiler
OpenMP compatibility library, you need to explicitly pass the Intel OpenMP compatibility library
name and the Intel irc libraries using the -l options, the GNU pthread library using the -l
option, and path to the Intel libraries where the Intel C++ compiler is installed using the -L.
option. You do not need to specify the -fopenmp option on the link line:

CommandsType of File

gfortran -fopenmp -c foo.fMixed C and GNU Fortran
sources

icc -openmp -c ibar.c

gcc -fopenmp -c gbar.c

gfortran foo.o ibar.o gbar.o -lirc -liomp5 -lpthread
-lc -L<icc_dir>/lib

Alternatively, you could use the Intel compiler to link the application, but need to pass multiple
gfortran libraries using the -l options on the link line:

CommandsType of File

gfortran -fopenmp -c foo.fMixed C and Fortran
sources

icc -openmp -c ibar.c

icc -openmp -openmp-lib=compat foo.o bar.o
-lgfortranbegin -lgfortran

1416

26 Intel® Fortran Compiler User and Reference Guides

Using the OpenMP Compatibility Libraries from Visual Studio

When using systems running a Windows OS, you can make certain changes in the Visual C++
Visual Studio 2005 development environment to allow you to use the Intel C++ Compiler and
Visual C++ to create applications that use the Intel compiler OpenMP Compatibility libraries.

NOTE. Microsoft Visual C++ must have the symbol _OPENMP_NOFORCE_MANIFEST defined
or it will include the manifest for the vcomp90 dlls. While this may not appear to cause
a problem on the build system, it will cause a problem when the application is moved to
another system that does not have this DLL installed.

Set the project Property Pages to indicate the Intel OpenMP run-time library location:

1. Open the project's property pages in from the main menu: Project > Properties (or right
click the Project name and select Properties) .

2. Select Configuration Properties > Linker > General > Additional Library Directories

3. Enter the path to the Intel compiler libraries. For example, for an IA-32 architecture system,
enter: < Intel_compiler_installation_path>\IA32\LIB

Make the Intel OpenMP dynamic run-time library accessible at run-time, you must specify the
corresponding path:

1. Open the project's property pages in from the main menu: Project > Properties (or right
click the Project name and select Properties).

2. Select Configuration Properties > Debugging > Environment

3. Enter the path to the Intel compiler libraries. For example, for an IA-32 architecture system,
enter:

PATH=%PATH%;< Intel_compiler_installation_path>\IA32\Bin

Add the Intel OpenMP run-time library name to the linker options and exclude the default
Microsoft OpenMP run-time library:

1. Open the project's property pages in from the main menu: Project > Properties (or right
click the Project name and select Properties).

2. Select Configuration Properties > Linker > Command Line > Additional Options

3. Enter the OpenMP library name and the Visual C++ linker option /nodefaultlib:

1417

26

Thread Affinity Interface (Linux* and Windows*)

The Intel® runtime library has the ability to bind OpenMP threads to physical processing units.
The interface is controlled using the KMP_AFFINITY environment variable. Depending on the
system (machine) topology, application, and operating system, thread affinity can have a
dramatic effect on the application speed.

Thread affinity restricts execution of certain threads (virtual execution units) to a subset of
the physical processing units in a multiprocessor computer. Depending upon the topology of
the machine, thread affinity can have a dramatic effect on the execution speed of a program.

Thread affinity is supported on Windows OS systems and versions of Linux OS systems that
have kernel support for thread affinity, but is not supported by Mac OS* X. The thread affinity
interface is supported only for Intel® processors.

The Intel compiler's OpenMP runtime library has the ability to bind OpenMP threads to physical
processing units. There are three types of interfaces you can use to specify this binding, which
are collectively referred to as the Intel OpenMP Thread Affinity Interface:

• The high-level affinity interface uses an environment variable to determine the machine
topology and assigns OpenMP threads to the processors based upon their physical location
in the machine. This interface is controlled entirely by the KMP_AFFINITY environment
variable.

• The mid-level affinity interface uses an environment variable to explicitly specifies which
processors (labeled with integer IDs) are bound to OpenMP threads. This interface provides
compatibility with the GNU gcc* GOMP_CPU_AFFINITY environment variable, but you can
also invoke it by using the KMP_AFFINITY environment variable. The GOMP_CPU_AFFINITY
environment variable is supported on Linux systems only, but users on Windows or Linux
systems can use the similar functionality provided by the KMP_AFFINITY environment
variable.

• The low-level affinity interface uses APIs to enable OpenMP threads to make calls into the
OpenMP runtime library to explicitly specify the set of processors on which they are to be
run. This interface is similar in nature to sched_setaffinity and related functions on
Linux* systems or to SetThreadAffinityMask and related functions on Windows* systems.
In addition, you can specify certain options of the KMP_AFFINITY environment variable to
affect the behavior of the low-level API interface. For example, you can set the affinity type
KMP_AFFINITY to disabled, which disables the low-level affinity interface, or you could use
the KMP_AFFINITY or GOMP_CPU_AFFINITY environment variables to set the initial affinity
mask, and then retrieve the mask with the low-level API interface.

The following terms are used in this section

• The total number of processing elements on the machine is referred to as the number of OS
thread contexts.

• Each processing element is referred to as an Operating System processor, or OS proc.

1418

26 Intel® Fortran Compiler User and Reference Guides

• Each OS processor has a unique integer identifier associated with it, called an OS proc ID.

• The term package refers to a single or multi-core processor chip.

• The term OpenMP Global Thread ID (GTID) refers to an integer which uniquely identifies
all threads known to the Intel OpenMP runtime library. The thread that first initializes the
library is given GTID 0. In the normal case where all other threads are created by the library
and when there is no nested parallelism, then n-threads-var - 1 new threads are created
with GTIDs ranging from 1 to ntheads-var - 1, and each thread's GTID is equal to the
OpenMP thread number returned by function omp_get_thread_num(). The high-level and
mid-level interfaces rely heavily on this concept. Hence, their usefulness is limited in programs
containing nested parallelism. The low-level interface does not make use of the concept of
a GTID, and can be used by programs containing arbitrarily many levels of parallelism.

The KMP_AFFINITY Environment Variable

The KMP_AFFINITY environment variable uses the following general syntax:

Syntax

KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

For example, to list a machine topology map, specify KMP_AFFINITY=verbose,none to use a
modifier of verbose and a type of none.

The following table describes the supported specific arguments.

DescriptionDefaultArgument

Optional. String consisting of
keyword and specifier.

noverbose

respect

modifier

• granularity=<specifier>
takes the following
specifiers: fine, thread,
and core

granularity=core

• norespect

• noverbose

• nowarnings

• proclist={<proc-list>}

• respect

1419

26

DescriptionDefaultArgument

• verbose

• warnings

The syntax for <proc-list>
is explained in mid-level
affinity interface.

Required string. Indicates the
thread affinity to use.

nonetype

• compact

• disabled

• explicit

• none

• scatter

• logical (deprecated;
instead use compact, but
omit any permute value)

• physical (deprecated;
instead use scatter,
possibly with an offset
value)

The logical and physical
types are deprecated but
supported for backward
compatibility.

Optional. Positive integer
value. Not valid with type
values of explicit, none,
or disabled.

0permute

1420

26 Intel® Fortran Compiler User and Reference Guides

DescriptionDefaultArgument

Optional. Positive integer
value. Not valid with type
values of explicit, none,
or disabled.

0offset

Affinity Types

Type is the only required argument.

type = none (default)

Does not bind OpenMP threads to particular thread contexts; however, if the operating system
supports affinity, the compiler still uses the OpenMP thread affinity interface to determine
machine topology. Specify KMP_AFFINITY=verbose,none to list a machine topology map.

type = compact

Specifying compact assigns the OpenMP thread <n>+1 to a free thread context as close as
possible to the thread context where the <n> OpenMP thread was placed. For example, in a
topology map, the nearer a node is to the root, the more significance the node has when sorting
the threads.

type = disabled

Specifying disabled completely disables the thread affinity interfaces. This forces the OpenMP
run-time library to behave as if the affinity interface was not supported by the operating system.
This includes the low-level API interfaces such as kmp_set_affinity and kmp_get_affinity,
which have no effect and will return a nonzero error code.

type = explicit

Specifying explicit assigns OpenMP threads to a list of OS proc IDs that have been explicitly
specified by using the proclist= modifier, which is required for this affinity type. See Explicitly
Specifying OS Proc IDs (GOMP_CPU_AFFINITY).

type = scatter

Specifying scatter distributes the threads as evenly as possible across the entire system.
scatter is the opposite of compact; so the leaves of the node are most significant when sorting
through the machine topology map.

Deprecated Types: logical and physical

1421

26

Types logical and physical are deprecated and may become unsupported in a future release.
Both are supported for backward compatibility.

For logical and physical affinity types, a single trailing integer is interpreted as an offset
specifier instead of a permute specifier. In contrast, with compact and scatter types, a single
trailing integer is interpreted as a permute specifier.

• Specifying logical assigns OpenMP threads to consecutive logical processors, which are
also called hardware thread contexts. The type is equivalent to compact, except that the
permute specifier is not allowed. Thus, KMP_AFFINITY=logical,n is equivalent to
KMP_AFFINITY=compact,0,n (this equivalence is true regardless of the whether or not a
granularity=fine modifier is present).

• Specifying physical assigns threads to consecutive physical processors (cores). For systems
where there is only a single thread context per core, the type is equivalent to logical. For
systems where multiple thread contexts exist per core, physical is equivalent to compact
with a permute specifier of 1; that is, KMP_AFFINITY=physical,n is equivalent to
KMP_AFFINITY=compact,1,n (regardless of the whether or not a granularity=fine
modifier is present). This equivalence means that when the compiler sorts the map it should
permute the innermost level of the machine topology map to the outermost, presumably
the thread context level. This type does not support the permute specifier.

Examples of Types compact and scatter

The following figure illustrates the topology for a machine with two processors, and each
processor has two cores; further, each core has Hyper-Threading Technology (HT Technology)
enabled.

The following figure also illustrates the binding of OpenMP thread to hardware thread contexts
when specifying KMP_AFFINITY=granularity=fine,compact.

1422

26 Intel® Fortran Compiler User and Reference Guides

Specifying scatter on the same system as shown in the figure above, the OpenMP threads
would be assigned the thread contexts as shown in the following figure, which shows the result
of specifying KMP_AFFINITY=granularity=fine,scatter.

1423

26

permute and offset combinations

For both compact and scatter, permute and offset are allowed; however, if you specify
only one integer, the compiler interprets the value as a permute specifier. Both permute and
offset default to 0.

The permute specifier controls which levels are most significant when sorting the machine
topology map. A value for permute forces the mappings to make the specified number of most
significant levels of the sort the least significant, and it inverts the order of significance. The
root node of the tree is not considered a separate level for the sort operations.

The offset specifier indicates the starting position for thread assignment.

The following figure illustrates the result of specifying
KMP_AFFINITY=granularity=fine,compact,0,3.

1424

26 Intel® Fortran Compiler User and Reference Guides

Consider the hardware configuration from the previous example, running an OpenMP application
which exhibits data sharing between consecutive iterations of loops. We would therefore like
consecutive threads to be bound close together, as is done with KMP_AFFINITY=compact, so
that communication overhead, cache line invalidation overhead, and page thrashing are
minimized. Now, suppose the application also had a number of parallel regions which did not
utilize all of the available OpenMP threads. It is desirable to avoid binding multiple threads to
the same core and leaving other cores not utilized, since a thread normally executes faster on
a core where it is not competing for resources with another active thread on the same core.
Since a thread normally executes faster on a core where it is not competing for resources with
another active thread on the same core, you might want to avoid binding multiple threads to
the same core while leaving other cores unused. The following figure illustrates this strategy
of using KMP_AFFINITY=granularity=fine,compact,1,0 as a setting.

1425

26

The OpenMP thread n+1 is bound to a thread context as close as possible to OpenMP thread
n, but on a different core. Once each core has been assigned one OpenMP thread, the subsequent
OpenMP threads are assigned to the available cores in the same order, but they are assigned
on different thread contexts.

Modifier Values for Affinity Types

Modifiers are optional arguments that precede type. If you do not specify a modifier, the
noverbose, respect, and granularity=core modifiers are used automatically.

Modifiers are interpreted in order from left to right, and can negate each other. For example,
specifying KMP_AFFINITY=verbose,noverbose,scatter is therefore equivalent to setting
KMP_AFFINITY=noverbose,scatter, or just KMP_AFFINITY=scatter.

modifier = noverbose (default)

Does not print verbose messages.

modifier = verbose

Prints messages concerning the supported affinity. The messages include information about
the number of packages, number of cores in each package, number of thread contexts for each
core, and OpenMP thread bindings to physical thread contexts.

1426

26 Intel® Fortran Compiler User and Reference Guides

Information about binding OpenMP threads to physical thread contexts is indirectly shown in
the form of the mappings between hardware thread contexts and the operating system (OS)
processor (proc) IDs. The affinity mask for each OpenMP thread is printed as a set of OS
processor IDs.

For example, specifying KMP_AFFINITY=verbose,scatter on a dual core system with two
processors, with Hyper-Threading Technology (HT Technology) disabled, results in a message
listing similar to the following when then program is executed:

Verbose, scatter message

...

KMP_AFFINITY: Affinity capable, using global cpuid info

KMP_AFFINITY: Initial OS proc set respected:

{0,1,2,3}

KMP_AFFINITY: 4 available OS procs - Uniform topology of

KMP_AFFINITY: 2 packages x 2 cores/pkg x 1 threads/core (4 total cores)

KMP_AFFINITY: OS proc to physical thread map ([] => level not in map):

KMP_AFFINITY: OS proc 0 maps to package 0 core 0 [thread 0]

KMP_AFFINITY: OS proc 2 maps to package 0 core 1 [thread 0]

KMP_AFFINITY: OS proc 1 maps to package 3 core 0 [thread 0]

KMP_AFFINITY: OS proc 3 maps to package 3 core 1 [thread 0]

KMP_AFFINITY: Internal thread 0 bound to OS proc set {0}

KMP_AFFINITY: Internal thread 2 bound to OS proc set {2}

KMP_AFFINITY: Internal thread 3 bound to OS proc set {3}

KMP_AFFINITY: Internal thread 1 bound to OS proc set {1}

The verbose modifier generates several standard, general messages. The following table
summarizes how to read the messages.

DescriptionMessage String

Indicates that all components (compiler,
operating system, and hardware) support
affinity, so thread binding is possible.

"affinity capable"

1427

26

DescriptionMessage String

Indicates that the machine topology was
discovered by binding a thread to each
operating system processor and decoding the
output of the cpuid instruction.

"using global cpuid info"

Indicates that compiler is decoding the output
of the cpuid instruction, issued by only the
initial thread, and is assuming a machine
topology using the number of operating
system processors.

"using local cpuid info"

Linux* only. Indicates that cpuinfo is being
used to determine machine topology.

"using /proc/cpuinfo"

Operating system processor ID is assumed
to be equivalent to physical package ID. This
method of determining machine topology is

"using flat"

used if none of the other methods will work,
but may not accurately detect the actual
machine topology.

The machine topology map is a full tree with
no missing leaves at any level.

"uniform topology of"

The mapping from the operating system processors to thread context ID is printed next. The
binding of OpenMP thread context ID is printed next unless the affinity type is none. The thread
level is contained in brackets (in the listing shown above). This implies that there is no
representation of the thread context level in the machine topology map. For more information,
see Determining Machine Topology.

modifier = granularity

Binding OpenMP threads to particular packages and cores will often result in a performance
gain on systems with Intel processors with Hyper-Threading Technology (HT Technology)
enabled; however, it is usually not beneficial to bind each OpenMP thread to a particular thread
context on a specific core. Granularity describes the lowest levels that OpenMP threads are
allowed to float within a topology map.

This modifier supports the following additional specifiers.

1428

26 Intel® Fortran Compiler User and Reference Guides

DescriptionSpecifier

Default. Broadest granularity level supported.
Allows all the OpenMP threads bound to a
core to float between the different thread
contexts.

core

The finest granularity level. Causes each
OpenMP thread to be bound to a single thread
context. The two specifiers are functionally
equivalent.

fine or thread

1429

26

Specifying KMP_AFFINITY=verbose,granularity=core,compact on the same dual core
system with two processors as in the previous section, but with HT Technology enabled, results
in a message listing similar to the following when the program is executed:

Verbose, granularity=core,compact message

KMP_AFFINITY: Affinity capable, using global cpuid info

KMP_AFFINITY: Initial OS proc set respected:

{0,1,2,3,4,5,6,7}

KMP_AFFINITY: 8 available OS procs - Uniform topology of

KMP_AFFINITY: 2 packages x 2 cores/pkg x 2 threads/core (4 total cores)

KMP_AFFINITY: OS proc to physical thread map ([] => level not in map):

KMP_AFFINITY: OS proc 0 maps to package 0 core 0 thread 0

KMP_AFFINITY: OS proc 4 maps to package 0 core 0 thread 1

KMP_AFFINITY: OS proc 2 maps to package 0 core 1 thread 0

KMP_AFFINITY: OS proc 6 maps to package 0 core 1 thread 1

KMP_AFFINITY: OS proc 1 maps to package 3 core 0 thread 0

KMP_AFFINITY: OS proc 5 maps to package 3 core 0 thread 1

KMP_AFFINITY: OS proc 3 maps to package 3 core 1 thread 0

KMP_AFFINITY: OS proc 7 maps to package 3 core 1 thread 1

KMP_AFFINITY: Internal thread 0 bound to OS proc set {0,4}

KMP_AFFINITY: Internal thread 1 bound to OS proc set {0,4}

KMP_AFFINITY: Internal thread 2 bound to OS proc set {2,6}

KMP_AFFINITY: Internal thread 3 bound to OS proc set {2,6}

KMP_AFFINITY: Internal thread 4 bound to OS proc set {1,5}

KMP_AFFINITY: Internal thread 5 bound to OS proc set {1,5}

KMP_AFFINITY: Internal thread 6 bound to OS proc set {3,7}

KMP_AFFINITY: Internal thread 7 bound to OS proc set {3,7}

The affinity mask for each OpenMP thread is shown in the listing (above) as the set of operating
system processor to which the OpenMP thread is bound.

1430

26 Intel® Fortran Compiler User and Reference Guides

The following figure illustrates the machine topology map, for the above listing, with OpenMP
thread bindings.

1431

26

In contrast, specifying KMP_AFFINITY=verbose,granularity=fine,compact or
KMP_AFFINITY=verbose,granularity=thread,compact binds each OpenMP thread to a
single hardware thread context when the program is executed:

Verbose, granularity=fine,compact message

KMP_AFFINITY: Affinity capable, using global cpuid info

KMP_AFFINITY: Initial OS proc set respected:

{0,1,2,3,4,5,6,7}

KMP_AFFINITY: 8 available OS procs - Uniform topology of

KMP_AFFINITY: 2 packages x 2 cores/pkg x 2 threads/core (4 total cores)

KMP_AFFINITY: OS proc to physical thread map ([] => level not in map):

KMP_AFFINITY: OS proc 0 maps to package 0 core 0 thread 0

KMP_AFFINITY: OS proc 4 maps to package 0 core 0 thread 1

KMP_AFFINITY: OS proc 2 maps to package 0 core 1 thread 0

KMP_AFFINITY: OS proc 6 maps to package 0 core 1 thread 1

KMP_AFFINITY: OS proc 1 maps to package 3 core 0 thread 0

KMP_AFFINITY: OS proc 5 maps to package 3 core 0 thread 1

KMP_AFFINITY: OS proc 3 maps to package 3 core 1 thread 0

KMP_AFFINITY: OS proc 7 maps to package 3 core 1 thread 1

KMP_AFFINITY: Internal thread 0 bound to OS proc set {0}

KMP_AFFINITY: Internal thread 1 bound to OS proc set {4}

KMP_AFFINITY: Internal thread 2 bound to OS proc set {2}

KMP_AFFINITY: Internal thread 3 bound to OS proc set {6}

KMP_AFFINITY: Internal thread 4 bound to OS proc set {1}

KMP_AFFINITY: Internal thread 5 bound to OS proc set {5}

KMP_AFFINITY: Internal thread 6 bound to OS proc set {3}

KMP_AFFINITY: Internal thread 7 bound to OS proc set {7}

The OpenMP to hardware context binding for this example was illustrated in the first example.

1432

26 Intel® Fortran Compiler User and Reference Guides

Specifying granularity=fine will always cause each OpenMP thread to be bound to a single
OS processor. This is equivalent to granularity=thread, currently the finest granularity level.

modifier = respect (default)

Respect the process' original affinity mask, or more specifically, the affinity mask in place for
the thread that initializes the OpenMP run-time library. The behavior differs between Linux and
Windows OS:

• On Windows: Respect original affinity mask for the process.

• On Linux: Respect the affinity mask for the thread that initializes the OpenMP run-time
library.

1433

26

Specifying KMP_AFFINITY=verbose,compact for the same system used in the previous example,
with HT Technology enabled, and invoking the library with an initial affinity mask of {4,5,6,7}
(thread context 1 on every core) causes the compiler to model the machine as a dual core,
two-processor system with HT Technology disabled.

Verbose,compact message

KMP_AFFINITY: Affinity capable, using global cpuid info

KMP_AFFINITY: Initial OS proc set respected:

{4,5,6,7}

KMP_AFFINITY: 4 available OS procs - Uniform topology of

KMP_AFFINITY: 2 packages x 2 cores/pkg x 1 threads/core (4 total cores)

KMP_AFFINITY: OS proc to physical thread map ([] => level not in map):

KMP_AFFINITY: OS proc 4 maps to package 0 core 0 [thread 1]

KMP_AFFINITY: OS proc 6 maps to package 0 core 1 [thread 1]

KMP_AFFINITY: OS proc 5 maps to package 3 core 0 [thread 1]

KMP_AFFINITY: OS proc 7 maps to package 3 core 1 [thread 1]

KMP_AFFINITY: Internal thread 0 bound to OS proc set {4}

KMP_AFFINITY: Internal thread 1 bound to OS proc set {6}

KMP_AFFINITY: Internal thread 2 bound to OS proc set {5}

KMP_AFFINITY: Internal thread 3 bound to OS proc set {7}

KMP_AFFINITY: Internal thread 4 bound to OS proc set {4}

KMP_AFFINITY: Internal thread 5 bound to OS proc set {6}

KMP_AFFINITY: Internal thread 6 bound to OS proc set {5}

KMP_AFFINITY: Internal thread 7 bound to OS proc set {7}

Because there are eight thread contexts on the machine, by default the compiler created eight
threads for an OpenMP parallel construct.

The brackets around thread 1 indicate that the thread context level is ignored, and is not present
in the topology map. The following figure illustrates the corresponding machine topology map.

1434

26 Intel® Fortran Compiler User and Reference Guides

When using the local cpuid information to determine the machine topology, it is not always
possible to distinguish between a machine that does not support Hyper-Threading Technology
(HT Technology) and a machine that supports it, but has it disabled. Therefore, the compiler
does not include a level in the map if the elements (nodes) at that level had no siblings, with
the exception that the package level is always modeled. As mentioned earlier, the package
level will always appear in the topology map, even if there only a single package in the machine.

modifier = norespect

Do not respect original affinity mask for the process. Binds OpenMP threads to all operating
system processors.

In early versions of the OpenMP run-time library that supported only the physical and logical
affinity types, norespect was the default and was not recognized as a modifier.

The default was changed to respect when types compact and scatter were added; therefore,
thread bindings for the logical and physical affinity types may have changed with the newer
compilers in situations where the application specified a partial initial thread affinity mask.

modifier = nowarnings

Do not print warning messages from the affinity interface.

modifier = warnings (default)

Print warning messages from the affinity interface (default).

1435

26

Determining Machine Topology

On IA-32 and Intel® 64 architecture systems, if the package has an APIC (Advanced
Programmable Interrupt Controller), the compiler will use the cpuid instruction to obtain the
package id, core id, and thread context id. Under normal conditions, each thread context
on the system is assigned a unique APIC ID at boot time. The compiler obtains other pieces of
information obtained by using the cpuid instruction, which together with the number of OS
thread contexts (total number of processing elements on the machine), determine how to break
the APIC ID down into the package ID, core ID, and thread context ID.

Normally, all core ids on a package and all thread context ids on a core are contiguous;
however, numbering assignment gaps are common for package ids, as shown in the figure
above.

On IA-64 architecture systems on Linux* operating systems, the compiler obtains this information
from /proc/cpuinfo. The package id, core id, and thread context id are obtained from
the physical id, core id, and thread id fields from /proc/cpuinfo. The core id and
thread context id default to 0, but the physical id field must be present in order to
determine the machine topology, which is not always the case. If the information contained in
/proc/cpuinfo is insufficient or erroneous, you may create an alternate specification file and
pass it to the OpenMP runtime library by using the KMP_CPUINFO_FILE environment variable,
as described in KMP_CPUINFO and /proc/cpuinfo.

If the compiler cannot determine the machine topology using either method, but the operating
system supports affinity, a warning message is printed, and the topology is assumed to be
flat. For example, a flat topology assumes the operating system process N maps to package
N, and there exists only one thread context per core and only one core for each package. (This
assumption is always the case for processors based on IA-64 architecture running Windows.)

If the machine topology cannot be accurately determined as described above, the user can
manually copy /proc/cpuinfo to a temporary file, correct any errors, and specify the machine
topology to the OpenMP runtime library via the environment variable
KMP_CPUINFO_FILE=<temp_filename>, as described in the section KMP_CPUINFO_FILE and
/proc/cpuinfo.

Regardless of the method used in determining the machine topology, if there is only one thread
context per core for every core on the machine, the thread context level will not appear in the
topology map. If there is only one core per package for every package in the machine, the core
level will not appear in the machine topology map. The topology map need not be a full tree,
because different packages may contain a different number of cores, and different cores may
support a different number of thread contexts.

1436

26 Intel® Fortran Compiler User and Reference Guides

The package level will always appear in the topology map, even if there only a single package
in the machine.

KMP_CPUINFO and /proc/cpuinfo

One of the methods the Intel compiler OpenMP runtime library can use to detect the machine
topology on Linux* systems is to parse the contents of /proc/cpuinfo. If the contents of this
file (or a device mapped into the Linux file system) are insufficient or erroneous, you can
consider copying its contents to a writable temporary file <temp_file>,correct it or extend it
with the necessary information, and set KMP_CPUINFO_FILE=<temp_file>.

If you do this, the OpenMP runtime library will read the <temp_file> location pointed to by
KMP_CPUINFO_FILE instead of the information contained in /proc/cpuinfo or attempting to
detect the machine topology by decoding the APIC IDs. That is, the information contained in
the <temp_file> overrides these other methods. You can use the KMP_CPUINFO_FILE interface
on Windows* systems, where /proc/cpuinfo does not exist.

The content of /proc/cpuinfo or <temp_file> should contain a list of entries for each
processing element on the machine. Each processor element contains a list of entries (descriptive
name and value on each line). A blank line separates the entries for each processor element.
Only the following fields are used to determine the machine topology from each entry, either
in <temp_file> or /proc/cpuinfo:

DescriptionField

Specifies the OS ID for the processing
element. The OS ID must be unique. The
processor and physical id fields are the
only ones that are required to use the
interface.

processor :

Specifies the package ID, which is a physical
chip ID. Each package may contain multiple
cores. The package level always exists in the
Intel compiler OpenMP run-time library's
model of the machine topology.

physical id :

Specifies the core ID. If it does not exist, it
defaults to 0. If every package on the
machine contains only a single core, the core

core id :

1437

26

DescriptionField

level will not exist in the machine topology
map (even if some of the core ID fields are
non-zero).

Specifies the thread ID. If it does not exist,
it defaults to 0. If every core on the machine
contains only a single thread, the thread level
will not exist in the machine topology map
(even if some thread ID fields are non-zero).

thread id :

This is a extension to the normal contents of
/proc/cpuinfo that can be used to specify
the nodes at different levels of the memory

node_n id :

interconnect on Non-Uniform Memory Access
(NUMA) systems. Arbitrarily many levels n
are supported. The node_0 level is closest to
the package level; multiple packages
comprise a node at level 0. Multiple nodes at
level 0 comprise a node at level 1, and so on.

Each entry must be spelled exactly as shown, in lowercase, followed by optional whitespace,
a colon (:), more optional whitespace, then the integer ID. Fields other than those listed are
simply ignored.

NOTE. It is common for the thread id field to be missing from /proc/cpuinfo on
many Linux variants, and for a field labeled siblings to specify the number of threads
per node or number of nodes per package. However, the Intel compiler OpenMP runtime
library ignores fields labeled siblings so it can distinguish between the thread id and
siblings fields. When this situation arises, the warning message Physical
node/pkg/core/thread ids not unique appears (unless the type specified is
nowarnings).

1438

26 Intel® Fortran Compiler User and Reference Guides

The following is a sample entry for an IA-64 architecture system that has been extended to
model the different levels of the memory interconnect:

Sample /proc/cpuinfo or <temp-file>

processor : 23

vendor : GenuineIntel

arch : IA-64

family : 32

model : 0

revision : 7

archrev : 0

features : branchlong, 16-byte atomic ops

cpu number : 0

cpu regs : 4

cpu MHz : 1594.000007

itc MHz : 399.000000

BogoMIPS : 3186.68

siblings : 2

node_3 id : 0

node_2 id : 1

node_1 id : 0

node_0 id : 1

physical id : 2563

core id: 1

thread id: 0

This example includes the fields from /proc/cpuinfo that affect the functionality of the Intel
compiler OpenMP Affinity Interface: processor, physical id, core id, and thread id.
Other fields (vendor, arch, ..., siblings) from /proc/cpuinfo are ignored. The four fields
node_n are extensions.

1439

26

Explicitly Specifying OS Processor IDs (GOMP_CPU_AFFINITY)

Instead of allowing the library to detect the hardware topology and automatically assign OpenMP
threads to processing elements, the user may explicitly specify the assignment by using a list
of operating system (OS) processor (proc) IDs. However, this requires knowledge of which
processing elements the OS proc IDs represent.

This list may either be specified by using the proclist modifier along with the explicit affinity
type in the KMP_AFFINITY environment variable, or by using the GOMP_CPU_AFFINITY
environment variable (for compatibility with gcc) when using the Intel OpenMP compatibility
libraries.

On Linux systems when using the Intel OpenMP compatibility libraries enabled by the compiler
option -openmp-lib compat, you can use the GOMP_CPU_AFFINITY environment variable to
specify a list of OS processor IDs. Its syntax is identical to that accepted by libgomp (assume
that <proc_list> produces the entire GOMP_CPU_AFFINITY environment string):

<entry> | <elem> , <list> | <elem>
<whitespace> <list>

<proc_list> :=

<proc_spec> | <range><elem> :=

<proc_id><proc_spec> :=

<proc_id> - <proc_id> | <proc_id> -
<proc_id> : <int>

<range> :=

<positive_int><proc_id> :=

OS processors specified in this list are then assigned to OpenMP threads, in order of OpenMP
Global Thread IDs. If more OpenMP threads are created than there are elements in the list,
then the assignment occurs modulo the size of the list. That is, OpenMP Global Thread ID n is
bound to list element n mod <list_size>.

Consider the machine previously mentioned: a dual core, dual-package machine without
Hyper-Threading Technology (HT Technology) enabled, where the OS proc IDs are assigned in
the same manner as the example in a previous figure. Suppose that the application creates 6
OpenMP threads instead of 4 (the default), oversubscribing the machine. If
GOMP_CPU_AFFINITY=3,0-2, then OpenMP threads are bound as shown in the figure below,
just as should happen when compiling with gcc and linking with libgomp:

1440

26 Intel® Fortran Compiler User and Reference Guides

The same syntax can be used to specify the OS proc ID list in the proclist=[<proc_list>] modifier
in the KMP_AFFINITY environment variable string. There is a slight difference: in order to have
strictly the same semantics as in the gcc OpenMP runtime library libgomp: the
GOMP_CPU_AFFINITY environment variable implies granularity=fine. If you specify the OS
proc list in the KMP_AFFINITY environment variable without a granularity= specifier, then
the default granularity is not changed. That is, OpenMP threads are allowed to float between
the different thread contexts on a single core. Thus GOMP_CPU_AFFINITY=<proc_list> is an
alias for KMP_AFFINITY=granularity=fine,proclist=[<proc_list>],explicit

In the KMP_AFFINITY environment variable string, the syntax is extended to handle operating
system processor ID sets. The user may specify a set of operating system processor IDs among
which an OpenMP thread may execute ("œfloat") enclosed in brackets:

<proc_id> | { <float_list> }<proc_list> :=

<proc_id> | <proc_id> , <float_list><float_list> :=

This allows functionality similarity to the granularity= specifier, but it is more flexible.
The OS processors on which an OpenMP thread executes may exclude other OS processors
nearby in the machine topology, but include other distant OS processors. Building upon the

1441

26

previous example, we may allow OpenMP threads 2 and 3 to "œfloat" between OS processor
1 and OS processor 2 by using
KMP_AFFINITY="granularity=fine,proclist=[3,0,{1,2},{1,2}],explicit", as shown
in the figure below:

1442

26 Intel® Fortran Compiler User and Reference Guides

If verbose were also specified, the output when the application is executed would include:

KMP_AFFINITY="granularity=verbose,fine,proclist=[3,0,{1,2},{1,2}],explicit"

KMP_AFFINITY: Affinity capable, using global cpuid info

KMP_AFFINITY: Initial OS proc set respected: {0,1,2,3}

KMP_AFFINITY: 4 available OS procs - Uniform topology of

KMP_AFFINITY: 2 packages x 2 cores/pkg x 1 threads/core (4 total cores)

KMP_AFFINITY: OS proc to physical thread map ([] => level not in map):

KMP_AFFINITY: OS proc 0 maps to package 0 core 0 [thread 0]

KMP_AFFINITY: OS proc 2 maps to package 0 core 1 [thread 0]

KMP_AFFINITY: OS proc 1 maps to package 3 core 0 [thread 0]

KMP_AFFINITY: OS proc 3 maps to package 3 core 1 [thread 0]

KMP_AFFINITY: Internal thread 0 bound to OS proc set {3}

KMP_AFFINITY: Internal thread 1 bound to OS proc set {0}

KMP_AFFINITY: Internal thread 2 bound to OS proc set {1,2}

KMP_AFFINITY: Internal thread 3 bound to OS proc set {1,2}

KMP_AFFINITY: Internal thread 4 bound to OS proc set {3}

KMP_AFFINITY: Internal thread 5 bound to OS proc set {0}}

Low Level Affinity API

Instead of relying on the user to specify the OpenMP thread to OS proc binding by setting an
environment variable before program execution starts (or by using the kmp_settings interface
before the first parallel region is reached), each OpenMP thread may determine the desired set
of OS procs on which it is to execute and bind to them with the kmp_set_affinity API call.

The Fortran API interfaces follow, where the type name kmp_affinity_mask_t is defined in
omp.h or omp.mod:

1443

26

DescriptionSyntax

Sets the affinity mask for the current OpenMP
thread to mask, where mask is a set of OS
proc IDs that has been created using the API

integer function
kmp_set_affinity(mask)
integer
(kind=kmp_affinity_mask_kind) mask calls listed below, and the thread will only

execute on OS procs in the set. Returns either
a zero (0) upon success or a nonzero error
code.

Retrieves the affinity mask for the current
OpenMP thread, and stores it in mask, which
must have previously been initialized with a

integer kmp_get_affinity(mask)
integer
(kind=kmp_affinity_mask_kind) mask

call to kmp_create_affinity_mask().
Returns either a zero (0) upon success or a
nonzero error code.

Returns the maximum OS proc ID that is on
the machine, plus 1. All OS proc IDs are
guaranteed to be between 0 (inclusive) and
kmp_get_affinity_max_proc() (exclusive).

integer function
kmp_get_affinity_max_proc()

Allocates a new OpenMP thread affinity mask,
and initializes mask to the empty set of OS
procs. The implementation is free to use an

subroutine
kmp_create_affinity_mask(mask)
integer
(kind=kmp_affinity_mask_kind) mask object of kmp_affinity_mask_t either as

the set itself, a pointer to the actual set, or
an index into a table describing the set. Do
not make any assumption as to what the
actual representation is.

Deallocates the OpenMP thread affinity mask.
For each call to
kmp_create_affinity_mask(), there
should be a corresponding call to
kmp_destroy_affinity_mask().

subroutine
kmp_destroy_affinity_mask(mask)
integer
(kind=kmp_affinity_mask_kind) mask

Adds the OS proc ID proc to the set mask, if
it is not already. Returns either a zero (0)
upon success or a nonzero error code.

integer function
kmp_set_affinity_mask_proc(proc,
mask)

1444

26 Intel® Fortran Compiler User and Reference Guides

DescriptionSyntax

integer proc
integer
(kind=kmp_affinity_mask_kind) mask

If the OS proc ID proc is in the set mask, it
removes it. Returns either a zero (0) upon
success or a nonzero error code.

integer function
kmp_unset_affinity_mask_proc(proc,
mask)
integer proc
integer
(kind=kmp_affinity_mask_kind) mask

Returns 1 if the OS proc ID proc is in the set
mask; if not, it returns 0.

integer function
kmp_get_affinity_mask_proc(proc,
mask)integer proc
integer
(kind=kmp_affinity_mask_kind) mask

Once an OpenMP thread has set its own affinity mask via a successful call to
kmp_affinity_set_mask(), then that thread remains bound to the corresponding OS proc
set until at least the end of the parallel region, unless reset via a subsequent call to
kmp_affinity_set_mask().

Between parallel regions, the affinity mask (and the corresponding OpenMP thread to OS proc
bindings) can be considered thread private data objects, and have the same persistence as
described in the OpenMP Application Program Interface. For more information, see the OpenMP
API specification (http://www.openmp.org), some relevant parts of which are provided below:

"In order for the affinity mask and thread binding to persist between two consecutive active
parallel regions, all three of the following conditions must hold:

• Neither parallel region is nested inside another explicit parallel region.

• The number of threads used to execute both parallel regions is the same.

• The value of the dyn-var internal control variable in the enclosing task region is false at
entry to both parallel regions."

Therefore, by creating a parallel region at the start of the program whose sole purpose is to
set the affinity mask for each thread, the user can mimic the behavior of the KMP_AFFINITY
environment variable with low-level affinity API calls, if program execution obeys the three
aforementioned rules from the OpenMP specification. Consider again the example presented

1445

26

in the previous figure. To mimic KMP_AFFINITY=compact, in each OpenMP thread with global
thread ID n, we need to create an affinity mask containing OS proc IDs n modulo c, n modulo
c + c, and so on, where c is the number of cores. This can be accomplished by inserting the
following C code fragment into the application that gets executed at program startup time:

Example

int main() {

#pragma omp parallel

{

int tmax = omp_get_max_threads();

int tnum = omp_get_thread_num();

int nproc = omp_get_num_procs();

int ncores = nproc / 2;

int i;

kmp_affinity_mask_t mask;

kmp_create_affinity_mask(&mask);

for (i = tnum % ncores; i < tmax; i += ncores) {

kmp_set_affinity_mask_proc(i, &mask);

}

if (kmp_set_affinity(&mask) != 0) <error>;

}

This program fragment was written with knowledge about the mapping of the OS proc IDs to
the physical processing elements of the target machine. On another machine, or on the same
machine with a different OS installed, the program would still run, but the OpenMP thread to
physical processing element bindings could differ.

1446

26 Intel® Fortran Compiler User and Reference Guides

27Using Parallelism: Automatic
Parallelization

Auto-parallelization Overview

The auto-parallelization feature of the Intel® compiler automatically translates serial portions of the
input program into equivalent multithreaded code. Automatic parallelization determines the loops
that are good worksharing candidates, performs the dataflow analysis to verify correct parallel
execution, and partitions the data for threaded code generation as needed in programming with
OpenMP* directives. The OpenMP and auto-parallelization applications provide the performance
gains from shared memory on multiprocessor and dual core systems.

The auto-parallelization feature of the Intel® compiler automatically translates serial portions of the
input program into equivalent multithreaded code. The auto-parallelizer analyzes the dataflow of
the loops in the application source code and generates multithreaded code for those loops which
can safely and efficiently be executed in parallel.

This behavior enables the potential exploitation of the parallel architecture found in symmetric
multiprocessor (SMP) systems.

Automatic parallelization frees developers from having to:

• find loops that are good worksharing candidates

• perform the dataflow analysis to verify correct parallel execution

• partition the data for threaded code generation as is needed in programming with OpenMP*
directives.

The parallel run-time support provides the same run-time features as found in OpenMP, such as
handling the details of loop iteration modification, thread scheduling, and synchronization.

While OpenMP directives enable serial applications to transform into parallel applications quickly, a
programmer must explicitly identify specific portions of the application code that contain parallelism
and add the appropriate compiler directives.

Auto-parallelization, which is triggered by the -parallel (Linux* OS and Mac OS* X) or /Qparallel
(Windows* OS) option, automatically identifies those loop structures that contain parallelism. During
compilation, the compiler automatically attempts to deconstruct the code sequences into separate
threads for parallel processing. No other effort by the programmer is needed.

NOTE. IA-64 architecture only: Specifying these options implies -opt-mem-bandwith1
(Linux) or /Qopt-mem-bandwidth1 (Windows).

1447

Serial code can be divided so that the code can execute concurrently on multiple threads. For
example, consider the following serial code example.

Example 1: Original Serial Code

subroutine ser(a, b, c)

integer, dimension(100) :: a, b, c

do i=1,100

a(i) = a(i) + b(i) * c(i)

enddo

end subroutine ser

The following example illustrates one method showing how the loop iteration space, shown in
the previous example, might be divided to execute on two threads.

Example 2: Transformed Parallel Code

subroutine par(a, b, c)

integer, dimension(100) :: a, b, c

! Thread 1

do i=1,50

a(i) = a(i) + b(i) * c(i)

enddo

! Thread 2

do i=51,100

a(i) = a(i) + b(i) * c(i)

enddo

end subroutine par

Auto-Vectorization and Parallelization

Auto-vectorization detects low-level operations in the program that can be done in parallel,
and then converts the sequential program to process 2, 4, 8 or up to 16 elements in one
operation, depending on the data type. In some cases auto-parallelization and vectorization

1448

27 Intel® Fortran Compiler User and Reference Guides

can be combined for better performance results. For example, in the code below, thread-level
parallelism can be exploited in the outermost loop, while instruction-level parallelism can be
exploited in the innermost loop.

Example

DO I = 1, 100 ! Execute groups of iterations in different hreads (TLP)

DO J = 1, 32 ! Execute in SIMD style with multimedia extension (ILP)

A(J,I) = A(J,I) + 1

ENDDO

ENDDO

Auto-vectorization can help improve performance of an application that runs on systems based
on Pentium®, Pentium with MMX™ technology, Pentium II, Pentium III, and Pentium 4 processors.

With the right choice of options, you can:

• Increase the performance of your application with minimum effort

• Use compiler features to develop multithreaded programs faster

Additionally, with the relatively small effort of adding OpenMP directives to existing code you
can transform a sequential program into a parallel program. The following example shows
OpenMP directives within the code.

Example

!OMP$ PARALLEL PRIVATE(NUM), SHARED (X,A,B,C)

! Defines a parallel region

1449

27

Example

!OMP$ PARALLEL DO

! Specifies a parallel region that

! implicitly contains a single DO directive

DO I = 1, 1000

NUM = FOO(B(i), C(I))

X(I) = BAR(A(I), NUM)

! Assume FOO and BAR have no other effect

ENDDO

See examples of the auto-parallelization and auto-vectorization directives in the following topics.

Auto-Parallelization Options Quick Reference

These options are supported on IA-32, Intel® 64, and IA-64 architectures.

DescriptionWindows*Linux* and Mac OS* X

Enables the auto-parallelizer
to generate multithreaded
code for loops that can be
safely executed in parallel.

/Qparallel-parallel

IA-64 architecture only:

• Implies -opt-mem-band-
with1 (Linux) or /Qopt-
mem-bandwidth1
(Windows).

Depending on the program
and level of parallelization
desired, you might need to
set the KMP_STACKSIZE
environment variable to an
appropriately large size.

1450

27 Intel® Fortran Compiler User and Reference Guides

DescriptionWindows*Linux* and Mac OS* X

Sets a threshold for the auto
of loops based on the
probability of profitable/Qpar-threshold[:n]-par-threshold(n}
execution of the loop in
parallel; valid values of n can
be 0 to 100.

Specifies the scheduling
algorithm or a tuning method
for loop iterations. It specifies/Qpar-schedule-keyword-par-schedule-keyword
how iterations are to be
divided among the threads of
the team.

Controls the diagnostic levels
in the auto-parallelizer
optimizer.

/Qpar-report-par-report

Refer to Quick Reference Lists for a complete listing of the quick reference topics.

Auto-parallelization: Enabling, Options, Directives, and Environment Variables

To enable the auto-parallelizer, use the -parallel (Linux* and Mac OS* X) or /Qparallel
(Windows*) option. This option detects parallel loops capable of being executed safely in parallel
and automatically generates multi-threaded code for these loops.

NOTE. You might need to set the KMP_STACKSIZE environment variable to an
appropriately large size to enable parallelization with this option.

An example of the command using auto-parallelization is as follows:

DescriptionOperating System

ifort -c -parallel myprog.fLinux and Mac OS X

ifort -c /Qparallel myprog.fWindows

Auto-parallelization uses two specific directives, !DEC$ PARALLEL and !DEC$ NO PARALLEL.

Auto-parallelization Directives Format and Syntax

1451

27

The format of an auto-parallelization compiler directive is:

Syntax

<prefix> <directive>

where the brackets above mean:

• <xxx>: the prefix and directive are required

• For fixed form source input, the prefix is !DEC$ or CDEC$

• For free form source input, the prefix is !DEC$ only

The prefix is followed by the directive name; for example:

Syntax

!DEC$ PARALLEL

Since auto-parallelization directives begin with an exclamation point, the directives take the
form of comments if you omit the -parallel (Linux) or /Qparallel (Windows) option.

The !DEC$ PARALLEL directive instructs the compiler to ignore dependencies that it assumes
may exist and which would prevent correct parallelization in the immediately following loop.
However, if dependencies are proven, they are not ignored.

The !DEC$ NOPARALLEL directive disables auto-parallelization for the following loop:

Example

program main

parameter (n=100

integer x(n),a(n)

!DEC$ NOPARALLEL

do i=1,n

x(i) = i

enddo

1452

27 Intel® Fortran Compiler User and Reference Guides

Example

!DEC$ PARALLEL

do i=1,n

a(x(i)) = i

enddo

end

Auto-parallelization Environment Variables

Auto-parallelization uses the following OpenMP* environment variables.

• OMP_NUM_THREADS

• OMP_SCHEDULE

• KMP_STACKSIZE

See OpenMP* Environment Variables for more information about the default settings and how
to use these variables.

Programming with Auto-parallelization

The auto-parallelization feature implements some concepts of OpenMP*, such as the worksharing
construct (with the PARALLEL DO directive) . See Programming with OpenMP for worksharing
construct. This section provides details on auto-parallelization.

Guidelines for Effective Auto-parallelization Usage

A loop can be parallelized if it meets the following criteria:

• The loop is countable at compile time: this means that an expression representing how many
times the loop will execute (also called "the loop trip count") can be generated just before
entering the loop.

• There are no FLOW (READ after WRITE), OUTPUT (WRITE after WRITE) or ANTI (WRITE after
READ) loop-carried data dependencies. A loop-carried data dependency occurs when the
same memory location is referenced in different iterations of the loop. At the compiler's
discretion, a loop may be parallelized if any assumed inhibiting loop-carried dependencies
can be resolved by run-time dependency testing.

1453

27

The compiler may generate a run-time test for the profitability of executing in parallel for loop
with loop parameters that are not compile-time constants.

Coding Guidelines

Enhance the power and effectiveness of the auto-parallelizer by following these coding guidelines:

• Expose the trip count of loops whenever possible; specifically use constants where the trip
count is known and save loop parameters in local variables.

• Avoid placing structures inside loop bodies that the compiler may assume to carry dependent
data, for example, procedure calls, ambiguous indirect references or global references.

• Insert the !DEC$ PARALLEL directive to disambiguate assumed data dependencies.

• Insert the !DEC$ NOPARALLEL directive before loops known to have insufficient work to
justify the overhead of sharing among threads.

Auto-parallelization Data Flow

For auto-parallelization processing, the compiler performs the following steps:

1. Data flow analysis: Computing the flow of data through the program.

2. Loop classification: Determining loop candidates for parallelization based on correctness and
efficiency, as shown by threshold analysis.

3. Dependency analysis: Computing the dependency analysis for references in each loop nest.

4. High-level parallelization: Analyzing dependency graph to determine loops which can execute
in parallel, and computing run-time dependency.

5. Data partitioning: Examining data reference and partition based on the following types of
access: SHARED, PRIVATE, and FIRSTPRIVATE.

6. Multithreaded code generation: Modifying loop parameters, generating entry/exit per threaded
task, and generating calls to parallel run-time routines for thread creation and
synchronization.

Programming for Multithread Platform Consistency

For applications where most of the computation is carried out in simple loops, Intel compilers
may be able to generate a multithreaded version automatically. This information applies to
applications built for deployment on symmetric multiprocessors (SMP), systems with
Hyper-Threading Technology (HT Technology) enabled, and dual core processor systems.

1454

27 Intel® Fortran Compiler User and Reference Guides

The compiler can analyze dataflow in loops to determine which loops can be safely and efficiently
executed in parallel. Automatic parallelization can sometimes result in shorter execution times.
Compiler enabled auto-parallelization can help reduce the time spent performing several common
tasks:

• searching for loops that are good candidates for parallel execution

• performing dataflow analysis to verify correct parallel execution

• adding parallel compiler directives manually

Parallelization is subject to certain conditions, which are described in the next section. If
-openmp and -parallel (Linux* and Mac OS* X) or /Qopenmp and /Qparallel (Windows*)
are both specified on the same command line, the compiler will only attempt to parallelize those
functions that do not contain OpenMP* directives.

The following program contains a loop with a high iteration count:

Example

subroutine no_dep

parameter (n=100000000)

real a, c(n)

do i = 1, n

a = 2 * i - 1

c(i) = sqrt(a)

enddo

print*, n, c(1), c(n)

end subroutine no_dep

Dataflow analysis confirms that the loop does not contain data dependencies. The compiler will
generate code that divides the iterations as evenly as possible among the threads at runtime.
The number of threads defaults to the number of processors but can be set independently using
the OMP_NUM_THREADS environment variable. The increase in parallel speed for a given loop
depends on the amount of work, the load balance among threads, the overhead of thread
creation and synchronization, etc., but generally will be less than the number of threads. For
a whole program, speed increases depend on the ratio of parallel to serial computation.

For builds with separate compiling and linking steps, be sure to link the OpenMP* runtime
library when using automatic parallelization. The easiest way to do this is to use the Intel®
compiler driver for linking.

Parallelizing Loops

1455

27

Three requirements must be met for the compiler to parallelize a loop.

1. The number of iterations must be known before entry into a loop so that the work can be
divided in advance. A while-loop, for example, usually cannot be made parallel.

2. There can be no jumps into or out of the loop.

3. The loop iterations must be independent.

In other words, correct results must not logically depend on the order in which the iterations
are executed. There may, however, be slight variations in the accumulated rounding error, as,
for example, when the same quantities are added in a different order. In some cases, such as
summing an array or other uses of temporary scalars, the compiler may be able to remove an
apparent dependency by a simple transformation.

Potential aliasing of pointers or array references is another common impediment to safe
parallelization. Two pointers are aliased if both point to the same memory location. The compiler
may not be able to determine whether two pointers or array references point to the same
memory location. For example, if they depend on function arguments, run-time data, or the
results of complex calculations. If the compiler cannot prove that pointers or array references
are safe and that iterations are independent, the compiler will not parallelize the loop, except
in limited cases when it is deemed worthwhile to generate alternative code paths to test explicitly
for aliasing at run-time. If you know parallelizing a particular loop is safe and that potential
aliases can be ignored, you can instruct the compiler to parallelize the loop using the !DIR$
PARALLEL directive.

The compiler can only effectively analyze loops with a relatively simple structure. For example,
the compiler cannot determine the thread safety of a loop containing external function calls
because it does not know whether the function call might have side effects that introduce
dependences. Fortran90 programmers can use the PURE attribute to assert that subroutines
and functions contain no side effects. You can invoke interprocedural optimization with the
-ipo (Linux* OS and Mac OS X) or /Qipo (Windows) compiler option. Using this option gives
the compiler the opportunity to analyze the called function for side effects.

When the compiler is unable to parallelize automatically loops you know to be parallel use
OpenMP*. OpenMP* is the preferred solution because you, as the developer, understand the
code better than the compiler and can express parallelism at a coarser granularity. On the other
hand, automatic parallelization can be effective for nested loops, such as those in a matrix
multiply. Moderately coarse-grained parallelism results from threading of the outer loop, allowing
the inner loops to be optimized for fine-grained parallelism using vectorization or software
pipelining.

If a loop can be parallelized, it's not always the case that it should be parallelized. The compiler
uses a threshold parameter to decide whether to parallelize a loop. The -par-threshold
(Linux* OS and Mac OS X) or /Qpar-threshold (Windows) compiler option adjusts this
behavior. The threshold ranges from 0 to 100, where 0 instructs the compiler to always parallelize
a safe loop and 100 instructs the compiler to only parallelize those loops for which a performance
gain is highly probable. Use the -par-report (Linux* OS and Mac OS X) or /Qpar-report

1456

27 Intel® Fortran Compiler User and Reference Guides

(Windows) compiler option to determine which loops were parallelized. The compiler will also
report which loops could not be parallelized indicate a probably reason why it could not be
parallelized. See Auto-parallelization: Threshold Control and Diagnostics for more information
on the using these compiler options.

Because the compiler does not know the value of k, the compiler assumes the iterations depend
on each other, for example if k equals -1, even if the actual case is otherwise. You can override
the compiler inserting !DEC$ parallel:

Example

subroutine add(k, a, b)

integer :: k

real :: a(10000), b(10000)

!$DEC parallel

do i = 1, 10000

a(i) = a(i+k) + b(i)

end do

end subroutine add

As the developer, it's your responsibility to not call this function with a value of k that is less
than 10000; passing a value less than 10000 could to incorrect results.

Thread Pooling

Thread pools offer an effective approach to managing threads. A thread pool is a group of
threads waiting for work assignments. In this approach, threads are created once during an
initialization step and terminated during a finalization step. This simplifies the control logic for
checking for failures in thread creation midway through the application and amortizes the cost
of thread creation over the entire application. Once created, the threads in the thread pool wait
for work to become available. Other threads in the application assign tasks to the thread pool.
Typically, this is a single thread called the thread manager or dispatcher. After completing the
task, each thread returns to the thread pool to await further work. Depending upon the work
assignment and thread pooling policies employed, it is possible to add new threads to the thread
pool if the amount of work grows. This approach has the following benefits:

• Possible runtime failures midway through application execution due to inability to create
threads can be avoided with simple control logic.

• Thread management costs from thread creation are minimized. This in turn leads to better
response times for processing workloads and allows for multithreading of finer-grained
workloads.

1457

27

A typical usage scenario for thread pools is in server applications, which often launch a thread
for every new request. A better strategy is to queue service requests for processing by an
existing thread pool. A thread from the pool grabs a service request from the queue, processes
it, and returns to the queue to get more work.

Thread pools can also be used to perform overlapping asynchronous I/O. The I/O completion
ports provided with the Win32* API allow a pool of threads to wait on an I/O completion port
and process packets from overlapped I/O operations.

OpenMP* is strictly a fork/join threading model. In some OpenMP implementations, threads
are created at the start of a parallel region and destroyed at the end of the parallel region.
OpenMP applications typically have several parallel regions with intervening serial regions.
Creating and destroying threads for each parallel region can result in significant system overhead,
especially if a parallel region is inside a loop; therefore, the Intel OpenMP implementation uses
thread pools. A pool of worker threads is created at the first parallel region. These threads exist
for the duration of program execution. More threads may be added automatically if requested
by the program. The threads are not destroyed until the last parallel region is executed.

Thread pools can be created on Windows and Linux using the thread creation API.

The function CheckPoolQueue executed by each thread in the pool is designed to enter a wait
state until work is available on the queue. The thread manager can keep track of pending jobs
in the queue and dynamically increase the number of threads in the pool based on the demand.

1458

27 Intel® Fortran Compiler User and Reference Guides

28Using Parallelism: Automatic
Vectorization

Automatic Vectorization Overview

The automatic vectorizer (also called the auto-vectorizer) is a component of the Intel® compiler that
automatically uses SIMD instructions in the MMX™, Intel® Streaming SIMD Extensions (Intel® SSE,
SSE2, SSE3 and SSE4 Vectorizing Compiler and Media Accelerators) and Supplemental Streaming
SIMD Extensions (SSSE3) instruction sets. The vectorizer detects operations in the program that
can be done in parallel, and then converts the sequential operations like one SIMD instruction that
processes 2, 4, 8 or up to 16 elements in parallel, depending on the data type.

Automatic vectorization is supported on IA-32 and Intel® 64 architectures.

The section discusses the following topics, among others:

• High-level discussion of compiler options used to control or influence vectorization

• Vectorization Key Programming Guidelines

• Loop parallelization and vectorization

• Discussion and general guidelines on vectorization levels:

• automatic vectorization

• vectorization with user intervention

• Examples demonstrating typical vectorization issues and resolutions

The compiler supports a variety of directives that can help the compiler to generate effective vector
instructions.

See Vectorization Support.

See The Software Vectorization Handbook. Applying Multimedia Extensions for Maximum Performance,
A.J.C. Bik. Intel Press, June, 2004, for a detailed discussion of how to vectorize code using the Intel®
compiler. Additionally, see the Related Publications topic in this document for other resources.

Automatic Vectorization Options Quick Reference

These options are supported on IA-32 and Intel® 64 architectures.

1459

DescriptionWindows* OSLinux* OS and Mac OS* X

Generates specialized code
to run exclusively on
processors with the
extensions specified as the
processor value.

/Qx-x
See Targeting IA-32 and
Intel® 64 Architecture
Processors Automatically for
more information about using
the option.

Generates, in a single binary,
code specialized to the
extensions specified as the

/Qax-ax

processor value and also
generic IA-32 architecture
code. The generic code is
usually slower.

See Targeting Multiple IA-32
and Intel® 64 Architecture
Processors for Run-time
Performance for more
information about using the
option.

Enables or disables
vectorization and
transformations enabled for

/Qvec-vec vectorization. The default is
that vectorization is enabled.
Supported for IA-32 and
Intel® 64 architectures only.

Controls the diagnostic
messages from the
vectorizer./Qvec-report-vec-report

See Vectorization Report.

Vectorization within the Intel® compiler depends upon ability of the compiler to disambiguate
memory references. Certain options may enable the compiler to do better vectorization.

1460

28 Intel® Fortran Compiler User and Reference Guides

Refer to Quick Reference Lists for a complete listing of the quick reference topics.

Programming Guidelines for Vectorization

The goal of vectorizing compilers is to exploit single-instruction multiple data (SIMD) processing
automatically. Users can help however by supplying the compiler with additional information;
for example, by using directives.

Guidelines

You will often need to make some changes to your loops. Follow these guidelines for loop bodies.

Use:

• straight-line code (a single basic block)

• vector data only; that is, arrays and invariant expressions on the right hand side of
assignments. Array references can appear on the left hand side of assignments.

• only assignment statements

Avoid:

• function calls

• unvectorizable operations (other than mathematical)

• mixing vectorizable types in the same loop

• data-dependent loop exit conditions

To make your code vectorizable, you will often need to make some changes to your loops.
However, you should make only the changes needed to enable vectorization and no others. In
particular, you should avoid these common changes:

• loop unrolling; the compiler does it automatically.

• decomposing one loop with several statements in the body into several single-statement
loops.

Restrictions

There are a number of restrictions that you should be consider. Vectorization depends on two
major factors: hardware and style of source code.

1461

28

DescriptionFactor

The compiler is limited by restrictions
imposed by the underlying hardware. In the
case of Streaming SIMD Extensions, the

Hardware

vector memory operations are limited to
stride-1 accesses with a preference to
16-byte-aligned memory references. This
means that if the compiler abstractly
recognizes a loop as vectorizable, it still might
not vectorize it for a distinct target
architecture.

The style in which you write source code can
inhibit optimization. For example, a common
problem with global pointers is that they often

Style of source code

prevent the compiler from being able to prove
that two memory references refer to distinct
locations. Consequently, this prevents certain
reordering transformations.

Many stylistic issues that prevent automatic vectorization by compilers are found in loop
structures. The ambiguity arises from the complexity of the keywords, operators, data references,
and memory operations within the loop bodies.

However, by understanding these limitations and by knowing how to interpret diagnostic
messages, you can modify your program to overcome the known limitations and enable effective
vectorization. The following sections summarize the capabilities and restrictions of the vectorizer
with respect to loop structures.

Vectorization and Loops

Combine the -parallel (Linux* and Mac OS* X) or /Qparallel (Windows*) and -x (Linux)
or /Qx (Windows) options to instructs the compiler to attempt both automatic loop parallelization
and automatic loop vectorization in the same compilation.

In most cases, the compiler will consider outermost loops for parallelization and innermost
loops for vectorization. If deemed profitable, however, the compiler may even apply loop
parallelization and vectorization to the same loop.

See Guidelines for Effective Auto-parallelization Usage and Programming Guidelines for
Vectorization.

1462

28 Intel® Fortran Compiler User and Reference Guides

In some rare cases successful loop parallelization (either automatically or by means of OpenMP*
directives) may affect the messages reported by the compiler for a non-vectorizable loop in a
non-intuitive way; for example, in the cases where -vec-report2 (Linux and Mac OS X) or
/Qvec-report2 (Windows) option indicating loops were not successfully vectorized. (See
Vectorization Report.)

Types of Vectorized Loops

For integer loops, the 64-bit MMX™ technology and 128-bit Intel® Streaming SIMD Extensions
(Intel® SSE) provide SIMD instructions for most arithmetic and logical operators on 32-bit,
16-bit, and 8-bit integer data types.

Vectorization may proceed if the final precision of integer wrap-around arithmetic will be
preserved. A 32-bit shift-right operator, for instance, is not vectorized in 16-bit mode if the
final stored value is a 16-bit integer. Also, note that because the MMX™ and Intel® SSE
instruction sets are not fully orthogonal (shifts on byte operands, for instance, are not
supported), not all integer operations can actually be vectorized.

For loops that operate on 32-bit single-precision and 64-bit double-precision floating-point
numbers, Intel® SSE provides SIMD instructions for the following arithmetic operators: addition
(+), subtraction (-), multiplication (*), and division (/).

Additionally, the Streaming SIMD Extensions provide SIMD instructions for the binary MIN and
MAX and unary SQRT operators. SIMD versions of several other mathematical operators (like
the trigonometric functions SIN, COS, and TAN) are supported in software in a vector
mathematical run-time library that is provided with the Intel® compiler of which the compiler
takes advantage.

Statements in the Loop Body

The vectorizable operations are different for floating-point and integer data.

Integer Array Operations

The statements within the loop body may be arithmetic or logical operations (again, typically
for arrays). Arithmetic operations are limited to such operations as addition, subtraction, ABS,
MIN, and MAX. Logical operations include bitwise AND, OR, and XOR operators. You can mix data
types only if the conversion can be done without a loss of precision. Some example operators
where you can mix data types are multiplication, shift, or unary operators.

1463

28

Other Operations

No statements other than the preceding floating-point and integer operations are valid. The
loop body cannot contain any function calls other than the ones described above.

Data Dependency

Data dependency relations represent the required ordering constraints on the operations in
serial loops. Because vectorization rearranges the order in which operations are executed, any
auto-vectorizer must have at its disposal some form of data dependency analysis.

An example where data dependencies prohibit vectorization is shown below. In this example,
the value of each element of an array is dependent on the value of its neighbor that was
computed in the previous iteration.

Example 1: Data-dependent Loop

subroutine dep(data, n)

real :: data(n)

integer :: i

do i = 1, n-1

data(i) = data(i-1)*0.25 + data(i)*0.5 + data(i+1)*0.25

end do

end subroutine dep

1464

28 Intel® Fortran Compiler User and Reference Guides

The loop in the above example is not vectorizable because the WRITE to the current element
DATA(I) is dependent on the use of the preceding element DATA(I-1), which has already
been written to and changed in the previous iteration. To see this, look at the access patterns
of the array for the first two iterations as shown below.

Example 2: Data-dependency Vectorization Patterns

I=1: READ DATA(0)

READ DATA(1)

READ DATA(2)

WRITE DATA(1)

I=2: READ DATA(1)

READ DATA(2)

READ DATA(3)

WRITE DATA(2)

In the normal sequential version of this loop, the value of DATA(1) read from during the second
iteration was written to in the first iteration. For vectorization, it must be possible to do the
iterations in parallel, without changing the semantics of the original loop.

Data dependency Analysis

Data dependency analysis involves finding the conditions under which two memory accesses
may overlap. Given two references in a program, the conditions are defined by:

• whether the referenced variables may be aliases for the same (or overlapping) regions in
memory

• for array references, the relationship between the subscripts

For IA-32 architecture, data dependency analyzer for array references is organized as a series
of tests, which progressively increase in power as well as in time and space costs.

First, a number of simple tests are performed in a dimension-by-dimension manner, since
independency in any dimension will exclude any dependency relationship. Multidimensional
arrays references that may cross their declared dimension boundaries can be converted to their
linearized form before the tests are applied.

1465

28

Some of the simple tests that can be used are the fast greatest common divisor (GCD) test
and the extended bounds test. The GCD test proves independency if the GCD of the coefficients
of loop indices cannot evenly divide the constant term. The extended bounds test checks for
potential overlap of the extreme values in subscript expressions.

If all simple tests fail to prove independency, the compiler will eventually resort to a powerful
hierarchical dependency solver that uses Fourier-Motzkin elimination to solve the data
dependency problem in all dimensions.

Loop Constructs

Loops can be formed with the usual DO-END DO and DO WHILE, or by using an IF/GOTO and a
label. The loops must have a single entry and a single exit to be vectorized. The following
examples illustrate loop constructs that can and cannot be vectorized.

Example: Vectorizable structure

subroutine vec(a, b, c)

dimension a(100), b(100), c(100)

integer i

i = 1

do while (i .le. 100)

a(i) = b(i) * c(i)

if (a(i) .lt. 0.0) a(i) = 0.0

i = i + 1

enddo

end subroutine vec

1466

28 Intel® Fortran Compiler User and Reference Guides

The following example shows a loop that cannot be vectorized because of the inherent potential
for an early exit from the loop.

Example: Non-vectorizable structure

subroutine no_vec(a, b, c)

dimension a(100), b(100), c(100)

integer i

i = 1

do while (i .le. 100)

a(i) = b(i) * c(i)

! The next statement allows early

!

exit from the loop and prevents

! vectorization of the loop.

if (a(i) .lt. 0.0) go to 10

i = i + 1

enddo

10 continue

end subroutine no_vecN

END

Loop Exit Conditions

Loop exit conditions determine the number of iterations a loop executes. For example, fixed
indexes for loops determine the iterations. The loop iterations must be countable; in other
words, the number of iterations must be expressed as one of the following:

• A constant

• A loop invariant term

• A linear function of outermost loop indices

1467

28

In the case where a loops exit depends on computation, the loops are not countable. The
examples below show loop constructs that are countable and non-countable.

Example: Countable Loop

subroutine cnt1 (a, b, c, n, lb)

dimension a(n), b(n), c(n)

integer n, lb, i, count

! Number of iterations is "n - lb + 1"

count = n

do while (count .ge. lb)

a(i) = b(i) * c(i)

count = count - 1

i = i + 1

enddo ! lb is not defined within loop

end

The following example demonstrates a different countable loop construct.

Example: Countable Loop

! Number of iterations is (n-m+2)/2

subroutine cnt2 (a, b, c, m, n)

dimension a(n), b(n), c(n)

integer i, l, m, n

i = 1;

do l = m,n,2

a(i) = b(i) * c(i)

i = i + 1

enddo

end

1468

28 Intel® Fortran Compiler User and Reference Guides

The following examples demonstrates a loop construct that is non-countable due to dependency
loop variant count value.

Example: Non-Countable Loop

! Number of iterations is dependent on a(i)

subroutine foo (a, b, c)

dimension a(100),b(100),c(100)

integer i

i = 1

do while (a(i) .gt. 0.0)

a(i) = b(i) * c(i)

i = i + 1

enddo

end

Strip-mining and Cleanup

Strip-mining, also known as loop sectioning, is a loop transformation technique for enabling
SIMD-encodings of loops, as well as a means of improving memory performance. By fragmenting
a large loop into smaller segments or strips, this technique transforms the loop structure in
two ways:

• It increases the temporal and spatial locality in the data cache if the data are reusable in
different passes of an algorithm.

• It reduces the number of iterations of the loop by a factor of the length of each vector, or
number of operations being performed per SIMD operation. In the case of Streaming SIMD
Extensions, this vector or strip-length is reduced by 4 times: four floating-point data items
per single Streaming SIMD Extensions single-precision floating-point SIMD operation are
processed.

First introduced for vectorizers, this technique consists of the generation of code when each
vector operation is done for a size less than or equal to the maximum vector length on a given
vector machine.

1469

28

The compiler automatically strip-mines your loop and generates a cleanup loop. For example,
assume the compiler attempts to strip-mine the following loop:

Example1: Before Vectorization

i = 1

do while (i<=n)

a(i) = b(i) + c(i) ! Original loop code

i = i + 1

end do

The compiler might handle the strip mining and loop cleaning by restructuring the loop in the
following manner:

Example 2: After Vectorization

!The vectorizer generates the following two loops

i = 1

do while (i < (n - mod(n,4)))

! Vector strip-mined loop.

a(i:i+3) = b(i:i+3) + c(i:i+3)

i = i + 4

end do

do while (i <= n)

a(i) = b(i) + c(i) !Scalar clean-up loop

i = i + 1

end do

Loop Blocking

It is possible to treat loop blocking as strip-mining in two or more dimensions. Loop blocking
is a useful technique for memory performance optimization. The main purpose of loop blocking
is to eliminate as many cache misses as possible. This technique transforms the memory domain

1470

28 Intel® Fortran Compiler User and Reference Guides

into smaller chunks rather than sequentially traversing through the entire memory domain.
Each chunk should be small enough to fit all the data for a given computation into the cache,
thereby maximizing data reuse.

Consider the following example. The two-dimensional array A is referenced in the j (column)
direction and then in the i (row) direction (column-major order); array B is referenced in the
opposite manner (row-major order). Assume the memory layout is in column-major order;
therefore, the access strides of array A and B for the code would be 1 and MAX, respectively.
In example 2: BS = block_size; MAX must be evenly divisible by BS.

Consider the following loop example code:

Example: Original loop

REAL A(MAX,MAX), B(MAX,MAX)

DO I =1, MAX

DO J = 1, MAX

A(I,J) = A(I,J) + B(J,I)

ENDDO

ENDDO

1471

28

The arrays could be blocked into smaller chunks so that the total combined size of the two
blocked chunks is smaller than the cache size, which can improve data reuse. One possible way
of doing this is demonstrated below:

Example: Transformed Loop after blocking

REAL A(MAX,MAX), B(MAX,MAX)

DO I =1, MAX, BS

DO J = 1, MAX, BS

DO II = I, I+MAX, BS-1

DO J = J, J+MAX, BS-1

A(II,JJ) = A(II,JJ) + B(JJ,II

ENDDO

ENDDO

ENDDO

ENDDO

1472

28 Intel® Fortran Compiler User and Reference Guides

Loop Interchange and Subscripts: Matrix Multiply

Loop interchange need unit-stride constructs to be vectorized. Matrix multiplication is commonly
written as shown in the following example:

Example: Typical Matrix Multiplication

subroutine matmul_slow(a, b, c)

integer :: i, j, k

real :: a(100,100), b(100,100), c(100,100)

do i = 1, n

do j = 1, n

do k = 1, n

c(i,j) = c(i,j) + a(i,k)*b(k,j);

end do

end do

end do

end subroutine matmul_slow

The use of B(K,J)is not a stride-1 reference and therefore will not normally be vectorizable.

1473

28

If the loops are interchanged, however, all the references will become stride-1 as shown in the
following example.

Example: Matrix Multiplication with Stride-1

subroutine matmul_fast(a, b, c)

integer :: i, j, k

real :: a(100,100), b(100,100), c(100,100)

do j = 1, n

do k = 1, n

do i = 1, n

c(i,j) = c(i,j) + a(i,k)*b(k,j)

enddo

enddo

enddo

end subroutine matmul_fast

Interchanging is not always possible because of dependencies, which can lead to different
results.

Absence of Loop-carried Memory Dependency with IVDEP Directive

For applications designed to run on IA-64 architectures, the -ivdep-parallel (Linux*) or
/Qivdep-parallel (Windows*) option indicates there is no loop-carried memory dependency
in the loop where an ivdep directive is specified. This technique is useful for some sparse
matrix applications.

NOTE. Mac OS* X: This option is not supported.

1474

28 Intel® Fortran Compiler User and Reference Guides

For example, the following loop requires the parallel option in addition to the ivdep directive
to ensure there is no loop-carried dependency for the store into a().

Example

!DEC$ IVDEP

do j=1,n

a(b(j)) = a(b(j))+1

enddo

Vectorization Examples

This section contains simple examples of some common issues in vector programming.

Argument Aliasing: A Vector Copy

The loop in the example of a vector copy operation does not vectorize because the compiler
cannot prove that DEST(A(I)) and DEST(B(I)) are distinct.

Example: Unvectorizable Copy Due to Unproven Distinction

SUBROUTINE VEC_COPY(DEST,A,B,LEN)

DIMENSION DEST(*)

INTEGER A(*), B(*)

INTEGER LEN, I

DO I=1,LEN

DEST(A(I)) = DEST(B(I))

END DO

RETURN

END

1475

28

Data Alignment

A 16-byte (Linux* and Mac OS* X) or 64-byte (Windows*) or greater data structure or array
should be aligned so that the beginning of each structure or array element is aligned in a way
that its base address is a multiple of 16 (Linux and Mac OS X) or 32 (Windows).

The figure (below) shows the effect of a data cache unit (DCU) split due to misaligned data.
The code loads the misaligned data across a 16-byte boundary, which results in an additional
memory access causing a six- to twelve-cycle stall. You can avoid the stalls if you know that
the data is aligned and you specify to assume alignment.

Figure 20: Misaligned Data Crossing 16- Byte Boundary

After vectorization, the loop is executed as shown in figure below.

Figure 21: Vector and Scalar Clean-up iterations

Both the vector iterations A(1:4) = B(1:4); and A(5:8) = B(5:8); can be implemented
with aligned moves if both the elements A(1) and B(1) are 16-byte aligned.

CAUTION. If you use the vectorizer with incorrect alignment options the compiler will
generate code with unexpected behavior. Specifically, using aligned moves on unaligned
data, will result in an illegal instruction exception.

Alignment Strategy

The compiler has at its disposal several alignment strategies in case the alignment of data
structures is not known at compile-time. A simple example is shown below (several other
strategies are supported as well). If in the loop shown below the alignment of A is unknown,
the compiler will generate a prelude loop that iterates until the array reference, that occurs the
most, hits an aligned address. This makes the alignment properties of A known, and the vector
loop is optimized accordingly. In this case, the vectorizer applies dynamic loop peeling, a specific
Intel® Fortran feature.

1476

28 Intel® Fortran Compiler User and Reference Guides

Examples of Data Alignment

Example: Original loop

SUBROUTINE SIMLOOP(A)

REAL A(100) ! alignment of argument A is unknown

DO I = 1, 100

A(I) = A(I) + 1.0

ENDDO

END SUBROUTINE

Example: Aligning Data

! The vectorizer applies dynamic loop peeling as follows:

SUBROUTINE SIMLOOP(A)

REAL A(100)

! let P be (A%16)where A is address of A(1)

IF (P .NE. 0) THEN

P = (16 - P)/4 ! determine run-time peeling factor

DO I = 1, P

A(I) = A(I) + 1.0

ENDDO

ENDIF

! Now this loop starts at a 16-byte boundary, and will be

! vectorized accordingly

DO I = P + 1, 100

A(I) = A(I) + 1.0

ENDDO

END SUBROUTINE

1477

28

29Using Parallelism:
Multi-Threaded Applications

Creating Multithread Applications Overview

Intel® Fortran provides support for creating multithread applications. You should consider using more
than one thread if your application needs to manage multiple activities, such as simultaneous
keyboard input and calculations. One thread can process keyboard input while a second thread
performs data transformation calculations. A third thread can update the display screen based on
data from the keyboard thread. At the same time, other threads can access disk files, or get data
from a communications port.

When using a multiprocessor machine (sometimes called an "SMP machine") you can achieve a
substantial speedup on numerically intensive problems by dividing the work among different threads;
the operating system will assign the different threads to different processors (symmetric
multiprocessing or parallel execution). Even if you have a single-processor machine, multiple-window
applications might benefit from multithreading because threads can be associated with different
windows; one thread can be calculating while another is waiting for input.

While you might gain execution speed by having a program executed in multiple threads, there is
overhead involved in managing the threads. You need to evaluate the requirements of your project
to determine whether you should run it with more than one thread.

If your multithreaded code calls functions from the run-time library or does input/output, you must
also link your code to the multithreaded version of the run-time libraries instead of the regular
single-threaded ones.

See Also
• Using Parallelism: Multi-Threaded Applications
• Basic Concepts of Multithreading
• Writing a Multithread Program

Basic Concepts of Multithreading

A thread is a path of execution through a program. It is an executable entity that belongs to one
and only one process. Each process has at least one thread of execution, automatically created when
the process is created. Your main program runs in the first thread. A Windows thread consists of a
stack, the state of the CPU registers, a security context, and an entry in the execution list of the
system scheduler. Each thread shares all of the process's resources.

1479

A process consists of one or more threads and the code, data, and other resources of a program
in memory. Typical program resources are open files, semaphores (a method of interthread
communication), and dynamically allocated memory. A program executes when the system
scheduler gives one of its threads execution control. The scheduler determines which threads
should run and when they should run. Threads of lower priority might need to wait while higher
priority threads complete their tasks. On multiprocessor machines, the scheduler can move
individual threads to different processors to balance the CPU load.

Because threads require less system overhead and are easier to create than an entire process,
they are useful for time- or resource-intensive operations that can be performed concurrently
with other tasks. Threads can be used for operations such as background printing, monitoring
a device for input, or backing up data while it is being edited.

When threads, processes, files, and communications devices are opened, the function that
creates them returns a handle. Each handle has an associated Access Control List (ACL) that
is used to check the security credentials of the process. Processes and threads can inherit a
handle or give one away using functions described in this section. Objects and handles regulate
access to system resources.

All threads in a process execute independently of one another. Unless you take special steps
to make them communicate with each other, each thread operates while completely unaware
of the existence of other threads in a process. Threads sharing common resources must
coordinate their work by using semaphores or another method of interthread communication.
For more information on interthread communication, see Sharing Resources.

Developing Multithread Applications

Writing a Multithread Program Overview

Multiple threads are best used for:

• Background tasks such as data calculations, database queries, and input gathering, which
do not directly involve window management or user interface.

• Operations that are independent from one another that can benefit from concurrent
processing.

• Asynchronous tasks such as polling on a serial port.

If your application contains tasks that require a private address space and private resources,
you can protect them from the activities of other threads by creating multiple processes rather
than multiple threads. See Working with Multiple Processes.

The sections that follow discuss the steps you need to consider in creating a multithread
application:

• Modules for Multithread Programs

1480

29 Intel® Fortran Compiler User and Reference Guides

• Starting and Stopping Threads

• Thread Routine Format

• Sharing Resources

• Thread Local Storage (TLS)

• Synchronizing Threads

• Handling Errors in Multithread Programs

• Working with Multiple Processes

• Table of Multithread Routines

Modules for Multithread Programs

A module called IFMT.MOD is supplied with Intel® Visual Fortran.

It contains interface statements to the underlying Windows API routines as well as parameter
and structure definitions used by the routines. You need to include a USE IFMT statement in
the declarations section of every Fortran program unit (program, subroutine, function, or
module) that uses multithread API routines.

The source code for the IFMT module (IFMT.F90) contains type definitions and external function
declarations. You can use it as an added reference for the calling syntax, number, and type of
arguments for a multithread procedure.

Other Windows APIs that support multithreading tasks (such as window management functions)
are included in the IFWIN.F90 module, available to your programs with the USE IFWIN
statement.

For information about creating a Fortran Windows application, see Creating Windows Applications
in Building Applications.

Starting and Stopping Threads

When you add threads to a process, you need to consider the costs to your process. Create
only the number of threads that help your application respond and perform better. You can
save time by multitasking, but remember that additional CPU time is needed to keep track of
multiple threads. When you are deciding how many threads to create, you also need to consider
what data can be process-specific, and what data is thread-specific. Sharing Resources discusses
synchronizing access to variables and data.

One single call to the CreateThread function creates a thread, specifies security attributes and
memory stack size, and names the routine for the thread to run. Windows allocates memory
for the thread stack in the virtual address space of the application that contains the thread.
Once a thread has finished processing, the CloseHandle routine frees the resources used by
the thread.

1481

29

Starting Threads

The CreateThread function creates a new thread. Its return value is an INTEGER(4) thread
handle, used in communicating to the thread and when closing it. The syntax for this function
is:

CreateThread (security, stack, thread_func, argument, flags, thread_id)

All arguments are INTEGER(4) variables except for thread_func, which names the routine for
CreateThread to run. The arguments are as follows:

DescriptionArgument

This argument uses the
SECURITY_ATTRIBUTES type, defined in
IFMT.F90. If security is zero, the thread

security

has the default security attributes of the
parent process. For more information about
setting security attributes for processes and
threads, see the Platform SDK online
reference.

Defines the stack size of the new thread. All
of an application's default stack space is
allocated to the first thread of execution. As

stack

a result, you must specify how much memory
to allocate for a separate stack for each
additional thread your program needs. The
CreateThread call allows you to specify the
value for the stack size on each thread you
create. A value of zero indicates the stack
has the same size as the application's primary
thread. The size of the stack is increased
dynamically, if necessary, up to a limit of 1
MB.

The starting address for the thread function.thread_func

An optional argument for thread_func. Your
program defines this parameter and how it
is used.

argument

This argument lets you create a thread that
will not begin processing until you signal it.
The flags argument can take either of two

flags

1482

29 Intel® Fortran Compiler User and Reference Guides

DescriptionArgument

values: 0 or CREATE_SUSPENDED. If you
specify 0, the thread is created and runs
immediately after creation. If you specify
CREATE_SUSPENDED, the thread is created,
but does not run until you call the
ResumeThread function.

This argument is returned by CreateThread.
It is a unique identifier for the thread, which
you can use when calling other multithread

thread_id

routines. While the thread is running, no
other thread has the same identifier.
However, the operating system may use the
identifier again for other threads once this
one has completed.

A thread can be referred to by its handle as
well as its unique thread identifier.
Synchronization functions such as
WaitForSingleObject and
WaitForMultipleObjects take the thread handle
as an argument.

Stopping Threads

The ExitThread routine allows a thread to stop its own execution. The syntax is: CALL
EXITTHREAD ([Termination Status])

Termination status may be queried by another thread. A termination status of 0 indicates normal
termination. You can assign other termination status values and their meaning in your program.

When the called thread is no longer needed, the calling thread needs to close the handle for
the thread. Use the CloseHandle routine to free memory used by the thread. A thread object
is not deleted until the last thread handle is closed.

It is possible for more than one handle to be open to a thread: for example, if a program creates
two threads, one of which waits for information from the other. In this case, two handles are
open to the first thread: one from the thread requesting information, the other from the thread
that created it. All handles are closed implicitly when the enclosing process terminates.

The TerminateThread routine allows one thread to terminate another, if the security attributes
are set appropriately for both threads. DLLs attached to the thread are not notified that the
thread is terminating, and its initial stack is not deallocated. Use Terminate Thread for
emergencies only.

Other Thread Support Functions

1483

29

Scheduling thread priorities is supported through the functions GetThreadPriority and
SetThreadPriority. Use the priority class of a thread to differentiate between applications
that are time critical and those that have normal or below normal scheduling requirements. If
you need to manipulate priorities, be very careful not to give a thread too high a priority, or it
can consume all of the available CPU time. A thread with a base priority level above 11 interferes
with the normal operation of the operating system. Using REALTIME_PRIORITY_CLASS may
cause disk caches to not flush, hang the mouse, and so on.

When communicating with other threads, a thread uses a pseudohandle to refer to itself. A
pseudohandle is a special constant that is interpreted as the current thread handle.
Pseudohandles are only valid for the calling thread; they cannot be inherited by other threads.
The GetCurrentThread function returns a pseudohandle for the current thread. The calling
thread can use this handle to specify itself whenever a thread handle is required. Pseudohandles
are not inherited.

To get the thread's identifier, use the GetCurrentThreadId function. The identifier uniquely
identifies the thread in the system until it terminates. You can use the identifier to specify the
thread itself whenever an identifier is required.

Use GetExitCodeThread to find out if a thread is still active, or if it is not, to find its exit
status. Call GetLastError for more detailed information on the exit status. If one routine
depends on a task being performed by a different thread, use the wait functions described in
Synchronizing Threads instead of GetExitCodeThread.

Thread Routine Format

A thread routine is a function that runs in a separate thread from the main program and takes
a single argument. In the first interface below, the argument is the address of a integer(4)
variable. It will be accessed as an INTEGER(4) in the body of thread_proc because of the
POINTER attribute.

Example

INTERFACE

integer(4) FUNCTION thread_proc(arg)

!DEC$ ATTRIBUTES STDCALL, ALIAS:"_thread_proc" :: thread_proc

integer(4),POINTER :: arg

END FUNCTION

END INTERFACE

1484

29 Intel® Fortran Compiler User and Reference Guides

In this second interface example, the argument is passed as an address of some undefined
data in memory. You must create a pointer to a specific data type variable with the POINTER
attribute and assign the lpThreadParameter argument to it in the body of the thread_proc
routine. You can pass a pointer to an entire block of data with this method.

Example

INTERFACE

integer(4) FUNCTION thread_proc(lpThreadParameter)

!DEC$ ATTRIBUTES STDCALL, ALIAS:"_thread_proc" :: thread_proc

integer(INT_PTR_KIND()) lpThreadParameter

END FUNCTION

END INTERFACE

Example 1

Program TESTPROC0

use ifcore

use ifmt

INTERFACE

integer(4) FUNCTION Thread_Proc0(arg)

!DEC$ ATTRIBUTES STDCALL, ALIAS:"_thread_proc0" :: Thread_Proc0

integer(4),POINTER :: arg

END FUNCTION

END INTERFACE

integer(INT_PTR_KIND()) ThreadHandle

integer(INT_PTR_KIND()), PARAMETER :: security = 0

integer(INT_PTR_KIND()), PARAMETER :: stack_size = 0

integer(INT_PTR_KIND()) :: thread_id

integer(4) :: ivalue0 = 12345678

ThreadHandle = CreateThread(security,stack_size,Thread_Proc0,loc(ivalue0), &

CREATE_SUSPENDED, thread_id)

1485

29

Example 1

iretlog = SetThreadPriority(ThreadHandle, THREAD_PRIORITY_BELOW_NORMAL)

iretint = ResumeThread(ThreadHandle)

call sleepqq(100) ! let io complete

end

integer(4) function Thread_Proc0(arg)

USE IFCORE

USE IFMT

!DEC$ ATTRIBUTES STDCALL, ALIAS:"_thread_proc0" :: Thread_Proc0

integer(4), POINTER :: arg

write(6,*) "The value of the Thread_Proc0 argument is ",arg

Thread_Proc0 = 0

call ExitThread(0)

end function

The resulting output will be similar to the following example:

1486

29 Intel® Fortran Compiler User and Reference Guides

The value of the Thread_Proc0 argument is 12345678

Example 2

Program TESTPROC1

use ifcore

use ifmt

INTERFACE

integer(4) FUNCTION Thread_Proc1(lpThreadParameter)

!DEC$ ATTRIBUTES STDCALL,ALIAS:"_thread_proc1" :: Thread_Proc1

integer(INT_PTR_KIND()) lpThreadParameter

END FUNCTION

END INTERFACE

integer(INT_PTR_KIND()) ThreadHandle1

integer(INT_PTR_KIND()), PARAMETER :: security = 0

integer(INT_PTR_KIND()), PARAMETER :: stack_size = 0

integer(INT_PTR_KIND()) :: thread_id

integer(4) :: ivalue1(5) = (/1,2,3,4,5/)

ThreadHandle1 = CreateThread(security,stack_size,Thread_Proc1,loc(ivalue1(1)), &

CREATE_SUSPENDED, thread_id)

iretlog = SetThreadPriority(ThreadHandle1, THREAD_PRIORITY_BELOW_NORMAL)

iretint = ResumeThread(ThreadHandle1)

call sleepqq(100) ! let IO complete

end

1487

29

Example 2

integer(4) function Thread_Proc1(lpThreadParameter)

USE IFCORE

USE IFMT

!DEC$ ATTRIBUTES STDCALL, ALIAS:"_thread_proc1" :: Thread_Proc1

integer(INT_PTR_KIND()) lpThreadParameter

integer(4) arg(5)

POINTER(parg,arg)

parg = lpThreadParameter

write(6,*) "The value of the Thread_Proc1 argument is ",arg

Thread_Proc1 = 0

call ExitThread(0)

end function

The resulting output will be similar to the following example:

The value of the Thread_Proc1 argument is 1 2 3 4 5

Sharing Resources

Each thread has its own stack and its own copy of the CPU registers. Other resources, such as
files, units, static data, and heap memory, are shared by all threads in the process. Threads
using these common resources must coordinate their work. There are several ways to
synchronize resources:

• Critical section - A block of code that accesses a non-shareable resource. Critical sections
are typically used to restrict access to data or code that can only be used by one thread at
a time within a process (for example, modification of shared data in a common block).

• MUTual EXclusion object (Mutex) - A mechanism that allows only one thread at a time to
access a resource. Mutexes are typically used to restrict access to a system resource that
can only be used by one thread at a time (for example, a printer), or when sharing might
produce unpredictable results.

• Semaphore - A counter that regulates the number of threads that can use a resource.
Semaphores are typically used to control access to a specified number of identical resources.

• Event - An event object announces that an event has happened to one or more threads.

1488

29 Intel® Fortran Compiler User and Reference Guides

The state of each of these objects is either signaled or not-signaled. A signaled state indicates
a resource is available for a process or thread to use it. A not-signaled state indicates the
resource is in use.

The routines described in the following sections manage the creation, initialization, and
termination of resource sharing mechanisms. Some of them change the state to signaled from
not-signaled. The routines WaitForSingleObject and WaitForMultipleObjects also change
the signal status of an object. For information on these functions, see Synchronizing Threads.

This section also contains information about:

• Memory Use and Thread Stacks

• I/O Operations

Critical Sections

Before you can synchronize threads with a critical section, you must initialize it by calling
InitializeCriticalSection. Call EnterCriticalSection when beginning to process the
global variable, and LeaveCriticalSection when the application is finished with it. Both
EnterCriticalSection and LeaveCriticalSection can be called several times within an
application.

Mutexes

CreateMutex creates a mutex object. It returns an error if the mutex already exists (one by
the same name was created by another process or thread). Call GetLastError after calling
CreateMutex to look for the error status ERROR_ALREADY_EXISTS. You can also use the
OpenMutex function to determine whether or not a named mutex object exists. When called,
OpenMutex returns the object's handle if it exists, or null if a mutex with the specified name
is not found. Using OpenMutex does not change a mutex object to a signaled state; this is
accomplished by one of the wait routines described in Synchronizing Threads.

ReleaseMutex changes a mutex from the not-signaled state to the signaled state. This function
only has an effect if the thread calling it also owns the mutex. When the mutex is in a signaled
state, any thread waiting for it can acquire it and begin executing.

Semaphores

Functions for handling semaphores are nearly identical to functions that manage mutexes.
CreateSemaphore creates a semaphore, specifying an initial as well as a maximum count for
the number of threads that can access the resource. OpenSemaphore, like OpenMutex, returns
the handle of the named semaphore object, if it exists. The handle can then be used in any
function that requires it (such as one of the wait functions described in Synchronizing Threads).
Calling OpenSemaphore does not reduce a resource's available count; this is accomplished by
the function waiting for the resource.

1489

29

Use ReleaseSemaphore to increase the available count for a resource by a specified amount.
You can call this function when the thread is finished with the resource. Another possible use
is to call CreateSemaphore, specifying an initial count of zero to protect the resource from
access during an initialization process. When the application has finished its initialization, call
ReleaseSemaphore to increase the resource's count to its maximum.

Events

Event objects can trigger execution of other threads. You can use events if one thread provides
data to several other threads. An event object is created by the CreateEvent function. The
creating thread specifies the initial state of the object and whether it is a manual-reset or
auto-reset event. A manual-reset event is one whose state remains signaled until it is explicitly
reset by a call to ResetEvent. An auto-reset event is automatically reset by the system when
a single waiting thread is released.

Use either SetEvent or PulseEvent to set an event object's state to signaled. OpenEvent
returns a handle to the event, which can be used in other function calls. ReleaseEvent releases
ownership of the event.

Memory Use and Thread Stacks

Because each thread has its own stack, you can avoid potential collisions over data items by
using as little static data as possible. Design your program to use automatic stack variables for
all data that can be private to a thread. All the variables declared in a multithread routine are
by default static and shared among the threads. If you do not want one thread to overwrite a
variable used by another, you can do one of the following:

• Declare the variable as AUTOMATIC.

• Create a vector of variable values, one for each thread, so that the variable values for
different threads are in different storage locations. (You can use the single integer parameter
passed by CreateThread as an index to identify the thread.)

• Use Thread Local Storage (TLS).

Variables declared as automatic are placed on the stack, which is part of the thread context
saved with the thread. Automatic variables within procedures are discarded when the procedure
completes execution.

I/O Operations

Although files and units are shared between threads, you may not need to coordinate the use
of these shared resources by threads. Fortran treats each input/output statement as an atomic
operation. If two separate threads try to write to the same unit and one thread's output operation
has started, the operation will complete before the other thread's output operation can begin.

The operating system does not impose an ordering on threads' access to units or files. For
example, the non-determinate nature of multithread applications can cause records in a
sequential file to be written in a different order on each execution of the application as each

1490

29 Intel® Fortran Compiler User and Reference Guides

thread writes to the file. Direct access files might be a better choice than sequential files in
such a case. If you cannot use direct access files, use mutexes to impose an ordering constraint
on input or output of sequential files.

Certain restrictions apply to blocking functions for input procedures in QuickWin programs. For
details on these restrictions, see Using QuickWin in Building Applications.

Thread Local Storage

Thread Local Storage (TLS) calls allow you to store per-thread data. TLS is the method by which
each thread in a multithreaded process can allocate locations in which to store thread-specific
data.

Dynamically bound (run-time) thread-specific data is supported by routines such as TlsAlloc
(allocates an index to store data), TlsGetValue (retrieves values from an index), TlsSetValue
(stores values into an index), and TlsFree (frees the dynamic storage). Threads allocate
dynamic storage and use TlsSetValue to associate the index with a pointer to that storage.
When a thread needs to access the storage, it calls TlsGetValue, specifying the index.

When all threads have finished using the index, TlsFree frees the dynamic storage.

Synchronizing Threads

The routines WaitForSingleObject and WaitForMultipleObjects enable threads to wait
for a variety of different occurrences, such as thread completion or signals from other threads.
They enable threads and processes to wait efficiently, consuming no CPU resources, either
indefinitely or until a specified timeout interval has elapsed.

WaitForSingleObject takes an object handle as the first parameter and does not return until
the object referenced by the handle either reaches a signaled state or until a specified timeout
value elapses. The syntax is:

WaitResult = WaitForSingleObject (ObjectHandle, [Timeout])

If you are using a timeout, specify the value in milliseconds as the second parameter. The value
WAIT_INFINITE represents an infinite timeout, in which case the function waits until
ObjectHandle completes.

WaitForMultipleObjects is similar, except that its second parameter is an array of Windows
object handles. Specify the number of handles to wait for in the first parameter. This can be
less than the total number of threads created, and its maximum is 64. The function can either
wait until all events have completed, or resume as soon as any one of the objects completes.

Deadlocks occur when a thread waits for objects that never become available. Use the timeout
parameter when there is a chance that the thread you are waiting for may never terminate.

Suspending and Resuming Threads

1491

29

You can use SuspendThread to stop a thread from executing. SuspendThread is not particularly
useful for synchronization because it does not control the point in the code at which the thread's
execution is suspended. However, you could suspend a thread if you need to confirm the user
input that would terminate the work of the thread. If confirmed, the thread is terminated;
otherwise, it resumes.

If a thread is created in a suspended state, it does not begin to run until ResumeThread is
called with a handle to the suspended thread. This can be useful for initializing the thread's
state before it begins to run. Suspending a thread at creation can be useful for one-time
synchronization, because ResumeThread ensures that the suspended thread will resume running
at the starting point of its code.

Handling Errors in Multithread Programs

Use the GetLastError function to obtain error information if any of the multithreading routines
returns an error code. Remember that it returns the error code of the last error, not necessarily
the error status of the last call.

Error codes are 32-bit values. Bit 29 is reserved for application-defined error codes. You can
set this bit and use SetLastError if you are creating your own dynamic-link library, to emulate
Windows API behavior. Windows functions only call SetLastError when they fail, not when
they succeed.

The last error code value is kept in Thread Local Storage, so that multiple threads do not
overwrite each other's values.

Table of Multithread Routines

The following table lists routines available for multithread programs. For more information on
these routines, see the Microsoft Developer Network (MSDN) or platform SDK documentation.

DescriptionRoutine

Closes an open object handle.CloseHandle

Creates a named or unnamed event object.CreateEvent

Creates a named or unnamed mutex object.CreateMutex

Creates a new process and its primary thread.CreateProcess

Creates a named or unnamed semaphore
object.

CreateSemaphore

1492

29 Intel® Fortran Compiler User and Reference Guides

DescriptionRoutine

Creates a thread to execute within the
address space of the calling process.

CreateThread

Releases all resources used by an unowned
critical section object.

DeleteCriticalSection

Duplicates an object handle.DuplicateHandle

Waits for ownership of the specified critical
section object.

EnterCriticalSection

Ends a process and all its threads.ExitProcess

Ends a thread.ExitThread

Returns a pseudohandle for the current
process.

GetCurrentProcess

Returns the process identifier of the calling
process.

GetCurrentProcessId

Returns a pseudohandle for the current
thread.

GetCurrentThread

Returns the thread identifier of the calling
thread.

GetCurrentThreadId

Retrieves the termination status of the
specified process.

GetExitCodeProcess

Retrieves the termination status of the
specified thread.

GetExitCodeThread

Returns the calling thread's last-error code
value.

GetLastError

Returns the priority class for the specified
process.

GetPriorityClass

Returns the priority value for the specified
thread.

GetThreadPriority

1493

29

DescriptionRoutine

Initializes a critical section object.InitializeCriticalSection

Releases ownership of the specified critical
section object.

LeaveCriticalSection

Returns a handle of an existing named event
object.

OpenEvent

Returns a handle of an existing named mutex
object.

OpenMutex

Returns a handle of an existing process
object.

OpenProcess

Returns a handle of an existing named
semaphore object.

OpenSemaphore

As a single operation, sets (to signaled) and
then resets the state of the specified event
object after releasing the appropriate number
of waiting threads.

PulseEvent

Releases ownership of the specified mutex
object.

ReleaseMutex

Increases the count of the specified
semaphore object by a specified amount.

ReleaseSemaphore

Sets the state of the specified event object
to nonsignaled.

ResetEvent

Decrements a thread's suspend count. When
the suspend count is zero, execution of the
thread resumes.

ResumeThread

Sets the state of the specified event object
to signaled.

SetEvent

Sets the last-error code for the calling thread.SetLastError

Sets the priority class for the specified
process.

SetPriorityClass

1494

29 Intel® Fortran Compiler User and Reference Guides

DescriptionRoutine

Sets the priority value for the specified
thread.

SetThreadPriority

Suspends the specified thread.SuspendThread

Terminates the specified process and all of
its threads.

TerminateProcess

Terminates a thread.TerminateThread

Allocates a thread local storage (TLS) index.TlsAlloc

Releases a thread local storage (TLS) index,
making it available for reuse.

TlsFree

Retrieves the value in the calling thread's
thread local storage (TLS) slot for a specified
TLS index.

TlsGetValue

Stores a value in the calling thread's thread
local storage (TLS) slot for a specified TLS
index.

TlsSetValue

Returns either any one or all of the specified
objects are in the signaled state or when the
time-out interval elapses.

WaitForMultipleObjects

Returns when the specified object is in the
signaled state or the time-out interval
elapses.

WaitForSingleObject

If a function mentioned in this section is not listed in the preceding table, it is only available
through the USE IFWIN statement.

Working with Multiple Processes

The multithread libraries provide a number of routines for working with multiple processes. An
application can use multiple processes for functions that require a private address space and
private resources, to protect them from the activities of other threads. It is usually more efficient
to implement multitasking by creating several threads in one process, rather than by creating
multiple processes, for these reasons:

1495

29

• The system can create and execute threads more quickly than it can create processes, since
the code for threads has already been mapped into the address space of the process, while
the code for a new process must be loaded.

• All threads of a process share the same address space and can access the process's global
variables, which can simplify communications between threads.

• All threads of a process can use open handles to resources such as files and pipes.

If you want to create an independent process that runs concurrently with the current one, use
CreateProcess. CreateProcess returns a process identifier that is valid until the process
terminates. ExitProcess stops the process and notifies all DLLs the process is terminating.

Different processes can share mutexes, events, and semaphores (but not critical sections).
Processes can also optionally inherit handles from the process that created them (see online
help for CreateProcess).

You can obtain information about the current process by calling GetCurrentProcess (returns
a pseudohandle to its own process), and GetCurrentProcessId (returns the process identifier).
The value returned by these functions can be used in calls to communicate with other processes.
GetExitCodeProcess returns the exit code of a process, or an indication that it is still running.

The OpenProcess function opens a handle to a process specified by its process identifier.
OpenProcess allows you to specify the handle's access rights and inheritability.

A process terminates whenever one of the following occurs:

• Any thread of the process calls ExitProcess

• The primary thread of the process returns

• The last thread of the process terminates

• TerminateProcess is called with a handle to the process

ExitProcess is the preferred way to terminate a process because it notifies all attached DLLs
of the termination, and ensures that all threads of the process terminate. DLLs are not notified
after a call to TerminateProcess.

1496

29 Intel® Fortran Compiler User and Reference Guides

30Using Interprocedural
Optimization (IPO)

Interprocedural Optimization (IPO) Overview

Interprocedural Optimization (IPO) allows the compiler to analyze your code to determine where
you can benefit from specific optimizations. In many cases, the optimizations that can be applied
are related to the specific architectures.

The compiler might apply the following optimizations for the listed architectures:

OptimizationArchitecture

IA-32, Intel® 64, and IA-64 architectures • inlining

• constant propagation

• mod/ref analysis

• alias analysis

• forward substitution

• routine key-attribute propagation

• address-taken analysis

• partial dead call elimination

• symbol table data promotion

• common block variable coalescing

• dead function elimination

• unreferenced variable removal

• whole program analysis

• array dimension padding

• common block splitting

• stack frame alignment

• structure splitting and field reordering

• formal parameter alignment analysis

• indirect call conversion

• specialization

1497

OptimizationArchitecture

IA-32 and Intel® 64 architectures • Passing arguments in registers to optimize
calls and register usage

IA-64 architecture only • removing redundant EXTEND instructions

• short data section allocation

• prefetch analysis

IPO is an automatic, multi-step process: compilation and linking; however, IPO supports two
compilation models: single-file compilation and multi-file compilation.

Single-file compilation, which uses the -ip (Linux* OS and Mac OS* X) or /Qip (Windows*
OS) option, results in one, real object file for each source file being compiled. During single-file
compilation the compiler performs inline function expansion for calls to procedures defined
within the current source file.

The compiler performs some single-file interprocedural optimization at the default optimization
level: -O2 (Linux* and Mac OS* X) or /O2 (Windows*); additionally some the compiler performs
some inlining for the -O1 (Linux* and Mac OS* X) or /O1 (Windows*) optimization level, like
inlining functions marked with inlining directives.

Multi-file compilation, which uses the -ipo (Linux and Mac OS X) or /Qipo (Windows) option,
results in one or more mock object files rather than normal object files. (See the Compilation
section below for information about mock object files.) Additionally, the compiler collects
information from the individual source files that make up the program. Using this information,
the compiler performs optimizations across functions and procedures in different source files.
Inlining is the most powerful optimization supported by IPO. See Inline Function Expansion.

NOTE. Inlining and other optimizations are improved by profile information. For a
description of how to use IPO with profile information for further optimization, see Profile
an Application.

Mac OS* X: Intel®-based systems running Mac OS X do not support a multiple object
compilation model.

1498

30 Intel® Fortran Compiler User and Reference Guides

Compilation

As each source file is compiled with IPO, the compiler stores an intermediate representation
(IR) of the source code in a mock object file, which includes summary information used for
optimization. The mock object files contain the IR, instead of the normal object code. Mock
object files can be ten times larger, and in some cases more, than the size of normal object
files.

During the IPO compilation phase only the mock object files are visible. The Intel compiler does
not expose the real object files during IPO unless you also specify the -ipo-c (Linux and Mac
OS X) or /Qipo-c (Windows) option.

Linkage

When you link with the -ipo (Linux and Mac OS X) or /Qipo (Windows) option the compiler
is invoked a final time. The compiler performs IPO across all object files that have an IR
equivalent. The mock objects must be linked with the Intel compiler or by using the Intel linking
tools. The compiler calls the linkers indirectly by using aliases (or wrappers) for the native
linkers, so you must modify make files to account for the different linking tool names. For
information on using the linking tools, see Using IPO; see the Linking Tools and Options topic
for detailed information.

CAUTION. Linking the mock object files with ld (Linux and Mac OS X) or link.exe
(Windows) will cause linkage errors. You must use the Intel linking tools to link mock
object files.

During the compilation process, the compiler first analyzes the summary information
and then produces mock object files for source files of the application.

Whole program analysis

The compiler supports a large number of IPO optimizations that either can be applied or have
the effectiveness greatly increased when the whole program condition is satisfied.

Whole program analysis, when it can be done, enables many interprocedural optimizations.
During the analysis process, the compiler reads all Intermediate Representation (IR) in the
mock file, object files, and library files to determine if all references are resolved and whether
or not a given symbol is defined in a mock object file. Symbols that are included in the IR in a
mock object file for both data and functions are candidates for manipulation based on the results
of whole program analysis.

1499

30

There are two types of whole program analysis: object reader method and table method. Most
optimizations can be applied if either type of whole program analysis determine that the whole
program conditions exists; however, some optimizations require the results of the object reader
method, and some optimizations require the results of table method.

NOTE. The IPO report provides details about whether whole program analysis was
satisfied and indicate the method used during IPO compilation.

In the first type of whole program analysis, the object reader method, the object reader emulates
the behavior of the native linker and attempts to resolve the symbols in the application. If all
symbols are resolved correctly, the whole program condition is satisfied. This type of whole
program analysis is more likely to detect the whole program condition.

Often the object files and libraries accessed by the compiler do not represent the whole program;
there are many dependencies to well-known libraries. IPO linking, whole program analysis,
determines whether or not the whole program can be detected using the available compiler
resources.

The second type of whole program analysis, the table method, is where the compiler analyzes
the mock object files and generates a call-graph.

The compiler contains detailed tables about all of the functions for all important language-specific
libraries, like the Fortran runtime libraries. In this second method, the compiler constructs a
call-graph for the application. The compiler then compares the function table and application
call-graph. For each unresolved function in the call-graph, the compiler attempts to resolve the
calls. If the compiler can resolve the functions call, the whole program condition exists.

Interprocedural Optimization (IPO) Quick Reference

IPO is a two step process: compile and link. See Using IPO.

DescriptionWindows*Linux* and Mac OS* X

Enables interprocedural
optimization for multi-file
compilations.

/Qipo

or

/QipoN

-ipo

or

-ipoN Normally, multi-file
compilations result in a single
object file only. Passing an
integer value for N allows you
to specify number of true

1500

30 Intel® Fortran Compiler User and Reference Guides

DescriptionWindows*Linux* and Mac OS* X

object files to generate; the
default value is 0, which
means the compiler
determines the appropriate
number of object files to
generate. (See IPO for Large
Programs.)

Instructs the compiler to
generate a separate, real
object file for each mock

/Qipo-separate-ipo-separate

object file. Using this option
overrides any integer value
passed for ipoN. (See IPO for
Large Programs for specifics.)

Enables interprocedural
optimizations for single file
compilations. Instructs the

/Qip-ip

compiler to generate a
separate, real object file for
each source file.

Additionally, the compiler supports options that provide support for compiler-directed or
developer-directed inline function expansion.

Refer to Quick Reference Lists for a complete listing of the quick reference topics.

Using IPO

This topic discusses how to use IPO from a command line. For specific information on using
IPO from within an Integrated Development Environment (IDE), refer to the appropriate section
in Building Applications.

Compiling and Linking Using IPO

The steps to enable IPO for compilations targeted for IA-32, Intel® 64, and IA-64 architectures
are the same: compile and link.

First, compile your source files with -ipo (Linux* and Mac OS* X) or /Qipo (Windows*) as
demonstrated below:

1501

30

Example CommandOperating System

ifort -ipo -c a.f90 b.f90 c.f90Linux and Mac OS X

ifort /Qipo /c a.f90 b.f90 c.f90Windows*

The output of the above example command differs according to operating system:

• Linux and Mac OS X: The commands produce a.o, b.o, and c.o object files.

• Windows: The commands produce a.obj, b.obj, and c.obj object files.

Use -c (Linux and Mac OS X) or /c (Windows) to stop compilation after generating .o or .obj
files. The output files contain compiler intermediate representation (IR) corresponding to the
compiled source files. (See the section below on capturing the intermediate IPO output.)

Second, link the resulting files. The following example command will produce an executable
named app:

Example CommandOperating System

ifort -o app a.o b.o c.oLinux and Mac OS X

ifort /exe:app a.obj b.obj c.objWindows

The command invoke the compiler on the objects containing IR and creates a new list of objects
to be linked. Alternately, you can use the xild (Linux and Mac OS X) or xilink (Windows)
tool, with the appropriate linking options.

Combining the Steps

The separate compile and link commands demonstrated above can be combined into a single
command, as shown in the following examples:

Example CommandOperating System

ifort -ipo -o app a.f90 b.f90 c.f90Linux and Mac OS X

ifort /Qipo /exe:app a.f90 b.f90
c.f90

Windows

1502

30 Intel® Fortran Compiler User and Reference Guides

The ifort command, shown in the examples above, calls GCC ld (Linux and Mac OS X) or
Microsoft* link.exe (Windows only) to link the specified object files and produce the executable
application, which is specified by the -o (Linux and Mac OS X) or /exe (Windows) option.

Capturing Intermediate IPO Output

The -ipo-c (Linux and Mac OS X) or /Qipo-c (Windows*) and -ipo-S (Linux and Mac OS X)
or /Qipo-S (Windows) options are useful for analyzing the effects of multi-file IPO, or when
experimenting with multi-file IPO between modules that do not make up a complete program.

• Use the -ipo-c option to optimize across files and produce an object file. The option performs
optimizations as described for the -ipo option but stops prior to the final link stage, leaving
an optimized object file. The default name for this file is ipo_out.s (Linux and Mac OS X)
or ipo_out.obj (Windows).

• Use the -ipo-S option to optimize across files and produce an assembly file. The option
performs optimizations as described for -ipo, but stops prior to the final link stage, leaving
an optimized assembly file. The default name for this file is ipo_out.s (Linux) or
ipo_out.asm (Windows).

For both options, you can use the -o (Linux and Mac OS X) or /exe (Windows) option to specify
a different name.

These options generate multiple outputs if multi-object IPO is being used. The name of the first
file is taken from the value of the -o (Linux and Mac OS X) or /exe (Windows) option.

The names of subsequent files are derived from the first file with an appended numeric value
to the file name. For example, if the first object file is named foo.o (Linux and Mac OS X) or
foo.obj (Windows), the second object file will be named foo1.o or foo1.obj.

You can use the object file generated with the -ipo-c (Linux and Mac OS X) or /Qipo-c
(Windows) option, but you will not get the same benefits from the optimizations applied that
would otherwise if the whole program analysis condition had been satisfied.

The object file created using the -ipo-c option is a real object file, in contrast to the mock file
normally generated using IPO; however, the generated object file is significantly different than
the mock object file. It does not contain the IR information needed to fully optimize the
application using IPO.

The compiler generates a message indicating the name of each object or assembly file it
generates. These files can be added to the real link step to build the final application.

1503

30

IPO-Related Performance Issues

There are some general optimization guidelines for IPO that you should keep in mind:

• Large IPO compilations might trigger internal limits of other compiler optimization phases.

• Combining IPO and PGO can be a key technique for C++ applications. The -O3, -ipo, and
-prof-use (Linux* and Mac OS* X) or /O3, /Qipo, /Qprof-use (Windows*) options can
result in significant performance gains.

• IPO benefits C more than C++, since C++ compilations include intra-file inlining by default.

• Applications where the compiler does not have sufficient intermediate representation (IR)
coverage to do whole program analysis might not perform as well as those where IR
information is complete.

In addition to the general guidelines, there are some practices to avoid while using IPO. The
following list summarizes the activities to avoid:

• Do not use the link phase of an IPO compilation using mock object files produced for your
application by a different compiler. The Intel® Compiler cannot inspect mock object files
generated by other compilers for optimization opportunities.

• Do not link mock files with the -prof-use (Linux* and Mac OS* X) or /Qprof-use
(Windows*) option unless the mock files were also compiled with the -prof-use (Linux and
Mac OS X) or /Qprof-use (Windows) option.

• Update make files to call the appropriate Intel linkers when using IPO from scripts. For Linux
and Mac OS X, replaces all instances of ld with xild; for Windows, replace all instances of
link with xilink.

• Update make file to call the appropriate Intel archiver. Replace all instances of ar with xiar.

IPO for Large Programs

In most cases, IPO generates a single object file for the link-time compilation. This behavior is
not optimal for very large programs, perhaps even making it impossible to use -ipo (Linux*
and Mac OS* X) or /Qipo (Windows*) on the application.

The compiler provides two methods to avoid this problem. The first method is an automatic
size-based heuristic, which causes the compiler to generate multiple object files for large
link-time compilations. The second method is to manually instruct the compiler to perform
multi-object IPO.

• Use the -ipoN (Linux and Mac OS X) or /QipoN (Windows) option and pass an integer value
in the place of N.

1504

30 Intel® Fortran Compiler User and Reference Guides

• Use the -ipo-separate (Linux and Mac OS X) or /Qipo-separate (Windows) option.

The number of true object files generated by the link-time compilation is invisible to the
user unless either the -ipo-c or -ipo-S (Linux and Mac OS X) or /Qipo-c or /Qipo-S
(Windows) option is used.

Regardless of the method used, it is best to use the compiler defaults first and examine the
results. If the defaults do not provide the expected results then experiment with generating
more object files.

You can use the -ipo-jobs (Linux and Mac OS X) or /Qipo-jobs (Windows) option to control
the number of commands, or jobs, executed during parallel builds.

Using -ipoN or /QipoN to Create Multiple Object Files

If you specify -ipo0 (Linux and Mac OS X) or /Qipo0 (Windows), which is the same as not
specifying a value, the compiler uses heuristics to determine whether to create one or more
object files based on the expected size of the application. The compiler generates one object
file for small applications, and two or more object files for large applications. If you specify any
value greater than 0, the compiler generates that number of object files, unless the value you
pass a value that exceeds the number of source files. In that case, the compiler creates one
object file for each source file then stops generating object files.

The following example commands demonstrate how to use -ipo2 (Linux and Mac OS X) or
/Qipo2 (Windows) to compile large programs.

Example CommandOperating System

ifort -ipo2 -c a.f90 b.f90Linux and Mac OS X

ifort /Qipo2 /c a.f90 b.f90Windows

Because the example command shown above, the compiler generates object files using an
OS-dependent naming convention. On Linux and Mac OS X, the example command results in
object files named ipo_out.o, ipo_out1.o, ipo_out2.o, and ipo_out3.o. On Windows, the
file names follow the same convention; however, the file extensions will be .obj.

Link the resulting object files as shown in Using IPO or Linking Tools and Options.

1505

30

Creating the Maximum Number of Object Files

Using -ipo-separate (Linux and Mac OS X) or /Qipo-separate (Windows) allows you to
force the compiler to generate the maximum number of true object files that the compiler will
support during multiple object compilation.

For example, if you passed example commands similar to the following:

Example CommandOperating System

ifort a.o b.o c.o -ipo-separate
-ipo-c

Linux and Mac OS X

ifort a.obj b.obj c.obj
/Qipo-separate /Qipo-c

Windows

The compiler will generate multiple object file, which use the same naming convention discussed
above. The first object file contains global variables. The other object files contain code for the
functions or routines used the source files.

Link the resulting object files as shown in Using IPO or Linking Tools and Options.

Considerations for Large Program Compilation

For many large programs, compiling with IPO can result in a single, large object file. Compiling
to produce large objects can create problems for efficient compilation. During compilation, the
compiler attempts to swap the memory usage during compiles; a large object file might result
in poor swap usage, which could result in out-of-memory message or long compilation times.
Using multiple, relatively small object files during compilation causes the system to use resources
more efficiently.

Understanding Code Layout and Multi-Object IPO

One of the optimizations performed during an IPO compilation is code layout. The analysis
performed by the compiler during multi-file IPO determines a layout order for all of the routines
for which it has intermediate representation (IR) information. For a multi-object IPO compilation,
the compiler must tell the linker about the desired order.

If you are generating an executable in the link step, the compiler does all of this automatically.
However, if you are generating object files instead of an executable, the compiler generates a
layout script, which contains the correct information needed to optimally link the executable
when you are ready to create it.

1506

30 Intel® Fortran Compiler User and Reference Guides

This linking tool script must be taken into account if you use either -ipo-c or -ipo-S (Linux*)
or /Qipo-c or /Qipo-S (Windows*). With these options, the IPO compilation and actual linking
are done by different invocations of the compiler. When this occurs, the compiler issues a
message indicating that it is generating an explicit linker script, ipo_layout.script.

The Windows linker (link.exe) automatically collates these sections lexigraphically in the desired
order.

The compiler first puts each routine in a named text section that varies depending on the
operating system:

Windows:

• The first routine is placed in .text$00001, the second is placed in .text$00002, and so
on.

Linux:

• The first routine is placed in .text00001, the second is placed in .text00002, and so on.
It then generates a linker script that tells the linker to first link contributions from
.text00001, then .text00002.

When ipo_layout.script is generated, you should modify your link command if you want
to use the script to optimize code layout:

Example

--script=ipo_layout.script

If your application already requires a custom linker script, you can place the necessary contents
of ipo_layout.script in your script.

The layout-specific content of ipo_layout.script is at the beginning of the description of
the .text section. For example, to describe the layout order for 12 routines:

Example output

.text :

{

*(.text00001) *(.text00002) *(.text00003) *(.text00004) *(.text00005)

*(.text00006) *(.text00007) *(.text00008) *(.text00009) *(.text00010)

*(.text00011) *(.text00012)

...

1507

30

For applications that already require a linker script, you can add this section of the .text
section description to the customized linker script. If you add these lines to your linker script,
it is desirable to add additional entries to account for future development. The addition is
harmless, since the "r;*("¦)" syntax makes these contributions optional.

If you choose to not use the linker script your application will still build, but the layout order
will be random. This may have an adverse affect on application performance, particularly for
large applications.

Creating a Library from IPO Objects

Linux* and Mac OS* X

Libraries are often created using a library manager such as lib. Given a list of objects, the
library manager will insert the objects into a named library to be used in subsequent link steps.

Example

xiar cru user.a a.o b.o

The above command creates a library named user.a containing the a.o and b.o objects.

If the objects have been created using -ipo-c then the archive will not only contain a valid
object, but the archive will also contain intermediate representation (IR) for that object file.
For example, the following example will produce a.o and b.o that may be archived to produce
a library containing both object code and IR for each source file.

Example

ifort -ipo -c a.f90 b.f90

This program will invoke the compiler on the IR saved in the object file and generate a valid
object that can be inserted into a library.

Using xiar is the same as specifying xild -lib.

1508

30 Intel® Fortran Compiler User and Reference Guides

Mac OS X Only

When using xilibtool, specify -static to generate static libraries, or specify -dynamiclib
to create dynamic libraries. For example, the following example command will create a static
library named mylib.a that includes the a.o, b.o, and c.o objects.

Example

xilibtool -static -o mylib.a a.o b.o c.o

Alternately, the following example command will create a dynamic library named mylib.dylib
that includes the a.o, b.o, and c.o objects.

Example

xilibtool -dynamic -o mylib.dylib a.o b.o c.o

Specifying xilibtool is the same as specifying xild -libtool.

Windows* Only

Create libraries using xilib or xilink -lib to create libraries of IPO mock object files and
link them on the command line.

For example, assume that you create three mock object files by using a command similar to
the following:

Example

ifort /c /Qipo a.obj b.obj c.obj

Further assume a.obj contains the main subprogram. You can enter commands similar to the
following to link the objects.

Example

xilib -out:main.lib b.obj c.obj

or

xilink -lib -out:main.lib b.obj c.obj

1509

30

You can link the library and the main program object file by entering a command similar to the
following:

Example

xilink -out:result.exe a.obj main.lib

Requesting Compiler Reports with the xi* Tools

The compiler option -opt-report (Linux* and Mac OS* X) or /Qopt-report (Windows*)
generates optimization reports with different levels of detail. Related compiler options described
in Compiler Reports Quick Reference allow you to specify the phase, direct output to a file
(instead of stderr), and request reports from all routines with names containing a string as part
of their name.

The xi* tools are used with interprocedural optimization (IPO) during the final stage of IPO
compilation. You can request compiler reports to be generated during the final IPO compilation
by using certain options. The supported xi* tools are:

• Linker tools: xilink (Windows) and xild (Linux and Mac OS X)

• Library tools: xilib (Windows), xiar (Linux and Mac OS X), xilibtool (Mac OS X)

The following tables lists the compiler report options for the xi* tools. These options are
equivalent to the corresponding compiler options, but occur during the final IPO compilation.

DescriptionTool Option

Enables optimization report generation with different levels
of detail, directed to stderr. Valid values for n are 0 through
3. By default, when you specify this option without passing
a value the compiler will generate a report with a medium
level of detail.

-qopt-report[=n]

Generates an optimization report and directs the report output
to the specified file name. If you omit the path, the file is
created in the current directory. To create the file in a
different directory, specify the full path to the output file and
its file name.

-qopt-report-file=file

Specifies the optimization phase name to use when generating
reports. If you do not specify a phase the compiler defaults
to all. You can request a list of all available phase by using
the -qopt-report-help option.

-qopt-report-phase=name

1510

30 Intel® Fortran Compiler User and Reference Guides

DescriptionTool Option

Generates reports from all routines with names containing a
string as part of their name. If not specified, the compiler
will generate reports on all routines.

-qopt-report-rou-
tine=string

Displays the optimization phases available.-qopt-report-help

To understand the compiler reports, use the links provided in Compiler Reports Overview.

Inline Expansion of Functions

Inline Function Expansion

Because inline function expansion does not require that the applications meet the criteria for
whole program analysis normally require by IPO, this optimization is one of the primary
optimizations used in Interprocedural Optimization (IPO). For function calls that the compiler
believes are frequently executed, the Intel® compiler often decides to replace the instructions
of the call with code for the function itself.

In the compiler, inline function expansion typically favors relatively small user functions over
functions that are relatively large. This optimization improves application performance by
performing the following:

• Removing the need to set up parameters for a function call

• Eliminating the function call branch

• Propagating constants

Function inlining can improve execution time by removing the runtime overhead of function
calls; however, function inlining can increase code size, code complexity, and compile times.
In general, when you instruct the compiler to perform function inlining, the compiler can examine
the source code in a much larger context, and the compiler can find more opportunities to apply
optimizations.

Specifying -ip (Linux* and Mac OS* X) or /Qip (Windows*), single-file IP, causes the compiler
to perform inline function expansion for calls to procedures defined within the current source
file; in contrast, specifying -ipo (Linux and Mac OS X) or /Qipo (Windows), multi-file IPO,
causes the compiler to perform inline function expansion for calls to procedures defined in other
files.

CAUTION. Using the -ip and -ipo (Linux and Mac OS X) or /Qip and /Qipo (Windows)
options can in some cases significantly increase compile time and code size.

1511

30

Selecting Routines for Inlining

The compiler attempts to select the routines whose inline expansions will provide the greatest
benefit to program performance. The selection is done using the default heuristics. The inlining
heuristics used by the compiler differ based on whether or not you use Profile-Guided
Optimizations (PGO): -prof-use (Linux and Mac OS X) or /Qprof-use (Windows).

When you use PGO with -ip or -ipo (Linux and Mac OS X) or /Qip or /Qipo (Windows), the
compiler uses the following guidelines for applying heuristics:

• The default heuristic focuses on the most frequently executed call sites, based on the profile
information gathered for the program.

• The default heuristic always inlines very small functions that meet the minimum inline
criteria.

PGO (Windows)

Combining IPO and PGO produces better results than using IPO alone. PGO produces dynamic
profiling information that can usually provide better optimization opportunities than the static
profiling information used in IPO.

The compiler uses characteristics of the source code to estimate which function calls are executed
most frequently. It applies these estimates to the PGO-based guidelines described above. The
estimation of frequency, based on static characteristics of the source, is not always accurate.

Avoid using static profile information when combining PGO and IPO; with static profile
information, the compiler can only estimate the application performance for the source files
being used. Using dynamically generated profile information allows the compiler to accurately
determine the real performance characteristics of the application.

Compiler Directed Inline Expansion of User Functions

Without directions from the user, the compiler attempts to estimate what functions should be
inlined to optimize application performance. See Criteria for Inline Function Expansion for more
information.

The following options are useful in situations where an application can benefit from user function
inlining but does not need specific direction about inlining limits. Except where noted, these
options are supported on IA-32, Intel® 64, and IA-64 architectures.

EffectWindows*Linux* and Mac OS* X

Specifies the level of inline
function expansion.
Depending on the value

/Ob-inline-level

1512

30 Intel® Fortran Compiler User and Reference Guides

EffectWindows*Linux* and Mac OS* X

specified, the option can
disable or enable inlining. By
default, the option enables
inlining of any function if the
compiler believes the function
can be inlined.

For more information, see the
following topic:

• -inline-level compiler
option

Disables only inlining
normally enabled by the
following options:

/Qip-no-inlining-ip-no-inlining

• Linux and Mac OS X: -ip
or -ipo

• Windows: /Qip, /Qipo,
or /Ob2

No other IPO optimization are
disabled.

For more information, see the
following topic:

• -ip-no-inlining
compiler option

Disables partial inlining
normally enabled by the
following options:

/Qip-no-pinlining-ip-no-pinlining
• Linux and Mac OS X: -ip

or -ipo

• Windows: /Qip or /Qipo

No other IPO optimization are
disabled.

1513

30

EffectWindows*Linux* and Mac OS* X

For more information, see the
following topic:

• -ip-no-pinlining
compiler option

Keeps source information for
inlined functions. The
additional source code can be

/Qinline-debug-info-inline-debug-info

used by the Intel® Debugger
track the user-defined call
stack while using inlining.

To use this option you must
also specify an additional
option to enable debugging:

• Linux: -g

• Mac OS X: This option is
not supported.

• Windows: /debug

For more information, see the
following topic:

• -inline-debug-info
compiler option

Developer Directed Inline Expansion of User Functions

In addition to the options that support compiler directed inline expansion of user functions, the
compiler also provides compiler options that allow you to more precisely direct when and if
inline function expansion occurs.

The compiler measures the relative size of a routine in an abstract value of intermediate language
units, which is approximately equivalent to the number of instructions that will be generated.
The compiler uses the intermediate language unit estimates to classify routines and functions
as relatively small, medium, or large functions. The compiler then uses the estimates to
determine when to inline a function; if the minimum criteria for inlining is met and all other
things are equal, the compiler has an affinity for inlining relatively small functions and not
inlining relative large functions.

1514

30 Intel® Fortran Compiler User and Reference Guides

The following developer directed inlining options provide the ability to change the boundaries
used by the inlining optimizer to distinguish between small and large functions. These options
are supported on IA-32, Intel® 64, and IA-64 architectures.

In general, you should use the -inline-factor (Linux* and Mac OS* X) and /Qinline-
factor (Windows*) option before using the individual inlining options listed below; this single
option effectively controls several other upper-limit options.

EffectWindows*Linux* and Mac OS* X

Controls the multiplier
applied to all inlining options
that define upper limits:

/Qinline-factor-inline-factor

inline-max-size,
inline-max-total-size,
inline-max-per-routine,
and
inline-max-per-compile.
While you can specify an
individual increase in any of
the upper-limit options, this
single option provides an
efficient means of controlling
all of the upper-limit options
with a single command.

By default, this option uses a
multiplier of 100, which
corresponds to a factor of 1.
Specifying 200 implies a
factor of 2, and so on.
Experiment with the
multiplier carefully. You could
increase the upper limits to
allow too much inlining,
which might result in your
system running out of
memory.

For more information, see the
following topic:

• -inline-factor
compiler option

1515

30

EffectWindows*Linux* and Mac OS* X

Instructs the compiler to
force inlining of functions
suggested for inlining

/Qinline-forceinline-inline-forceinline

whenever the compiler is
capable doing so. Typically,
the compiler targets functions
that have been marked for
inlining based on the
presence of directives, like
DEC$ ATTRIBUTES
FORCEINLINE, in the source
code; however, all such
directives in the source code
are treated only as
suggestions for inlining. The
option instructs the compiler
to view the inlining
suggestion as mandatory and
inline the marked function if
it can be done legally.

For more information, see the
following topic:

• -inline-forceinline
compiler option

Redefines the maximum size
of small routines; routines
that are equal to or smaller
than the value specified are
more likely to be inlined.

/Qinline-min-size-inline-min-size
For more information, see the
following topic:

• -inline-min-size
compiler option

1516

30 Intel® Fortran Compiler User and Reference Guides

EffectWindows*Linux* and Mac OS* X

Redefines the minimum size
of large routines; routines
that are equal to or larger
than the value specified are
less likely to be inlined.

/Qinline-max-size-inline-max-size
For more information, see the
following topic:

• -inline-max-size
compiler option

Limits the expanded size of
inlined functions.

/Qinline-max-total-size-inline-max-total-size
For more information, see the
following topic:

• -inline-max-total-
size compiler option

Limits the number of times
inlining can be applied within
a routine.

/Qinline-max-per-rou-
tine

-inline-max-per-routine For more information, see the
following topic:

• -inline-max-per-rou-
tine compiler option

Limits the number of times
inlining can be applied within
a compilation unit.

/Qinline-max-per-com-
pile

-inline-max-per-compile

The compilation unit limit
depends on the whether or
not you specify the -ipo
(Linux and Mac OS X) or
/Qipo (Windows) option. If
you enable IPO, all source
files that are part of the
compilation are considered

1517

30

EffectWindows*Linux* and Mac OS* X

one compilation unit. For
compilations not involving
IPO each source file is
considered an individual
compilation unit.

For more information, see the
following topic:

• -inline-max-per-com-
pile compiler option

1518

30 Intel® Fortran Compiler User and Reference Guides

31Using Profile-Guided
Optimization (PGO)

Profile-Guided Optimizations Overview

Profile-guided Optimization (PGO) improves application performance by reorganizing code layout to
reduce instruction-cache problems, shrinking code size, and reducing branch mispredictions. PGO
provides information to the compiler about areas of an application that are most frequently executed.
By knowing these areas, the compiler is able to be more selective and specific in optimizing the
application.

PGO consists of three phases or steps.

1. Step one is to instrument the program. In this phase, the compiler creates and links an
instrumented program from your source code and special code from the compiler.

2. Step two is to run the instrumented executable. Each time you execute the instrumented code,
the instrumented program generates a dynamic information file, which is used in the final
compilation.

3. Step three is a final compilation. When you compile a second time, the dynamic information files
are merged into a summary file. Using the summary of the profile information in this file, the
compiler attempts to optimize the execution of the most heavily traveled paths in the program.

See Profile-guided Optimization Quick Reference for information about the supported options and
Profile an Application for specific details about using PGO from a command line.

PGO enables the compiler to take better advantage of the processor architecture, more effective
use of instruction paging and cache memory, and make better branch predictions. PGO provides the
following benefits:

• Use profile information for register allocation to optimize the location of spill code.

• Improve branch prediction for indirect function calls by identifying the most likely targets. (Some
processors have longer pipelines, which improves branch prediction and translates into high
performance gains.)

• Detect and do not vectorize loops that execute only a small number of iterations, reducing the
run time overhead that vectorization might otherwise add.

Interprocedural Optimization (IPO) and PGO can affect each other; using PGO can often enable the
compiler to make better decisions about function inlining, which increases the effectiveness of
interprocedural optimizations. Unlike other optimizations, such as those strictly for size or speed,
the results of IPO and PGO vary. This variability is due to the unique characteristics of each program,
which often include different profiles and different opportunities for optimizations.

1519

Performance Improvements with PGO

PGO works best for code with many frequently executed branches that are difficult to predict
at compile time. An example is the code with intensive error-checking in which the error
conditions are false most of the time. The infrequently executed (cold) error-handling code can
be relocated so the branch is rarely predicted incorrectly. Minimizing cold code interleaved into
the frequently executed (hot) code improves instruction cache behavior.

When you use PGO, consider the following guidelines:

• Minimize changes to your program after you execute the instrumented code and before
feedback compilation. During feedback compilation, the compiler ignores dynamic information
for functions modified after that information was generated. (If you modify your program
the compiler issues a warning that the dynamic information does not correspond to a modified
function.)

• Repeat the instrumentation compilation if you make many changes to your source files after
execution and before feedback compilation.

• Know the sections of your code that are the most heavily used. If the data set provided to
your program is very consistent and displays similar behavior on every execution, then PGO
can probably help optimize your program execution.

• Different data sets can result in different algorithms being called. The difference can cause
the behavior of your program to vary for each execution. In cases where your code behavior
differs greatly between executions, PGO may not provide noticeable benefits. If it takes
multiple data sets to accurately characterize application performance then execute the
application with all data sets then merge the dynamic profiles; this technique should result
in an optimized application.

You must insure the benefit of the profiled information is worth the effort required to maintain
up-to-date profiles.

Profile-Guided Optimization (PGO) Quick Reference

Profile-Guided Optimization consists of three phases (or steps):

1. Generating instrumented code by compiling with the -prof-gen (Linux* OS and Mac OS*
X) or /Qprof-gen (Windows* OS) option when creating the instrumented executable.

2. Running the instrumented executable, which produces dynamic-information (.dyn) files.

3. Compiling the application using the profile information using the -prof-use (Linux and Mac
OS X) or /Qprof-use (Windows) option.

1520

31 Intel® Fortran Compiler User and Reference Guides

The figure illustrates the phases and the results of each phase.

See Profile an Application for details about using each phase.

The following table lists the compiler options used in PGO:

EffectWindows*Linux* and Mac OS* X

Instruments a program for
profiling to get the execution
counts of each basic block.

/Qprof-gen-prof-gen

The option is used in phase
1 (instrumenting the code)
to instruct the compiler to
produce instrumented code
for your object files in
preparation for instrumented
execution. By default, each
instrumented execution
creates one
dynamic-information (dyn)
file for each executable and
(on Windows OS) one for
each DLL invoked by the
application. You can specify
keywords, such as -prof-
gen=default (Linux and Mac
OS X) or /Qprof-gen:de-
fault (Windows).

The keywords control the
amount of source information
gathered during phase 2 (run
the instrumented
executable). The prof-gen
keywords are:

• Specify default (or omit
the keyword) to request
profiling information for
use with the prof-use
option and optimization

1521

31

EffectWindows*Linux* and Mac OS* X

when the instrumented
application is run (phase
2).

• Specify srcpos or
globdata to request
additional profiling
information for the code
coverage and test
prioritization tools
when the instrumented
application is run (phase
2). The phase 1
compilation creates an spi
file.

• Specify globdata to
request additional profiling
information for data
ordering optimization
when the instrumented
application is run (phase
2). The phase 1
compilation creates an spi
file.

If you are performing a
parallel make, this option will
not affect it.

Instructs the compiler to
produce a profile-optimized
executable and merges

/Qprof-use-prof-use

available
dynamic-information (dyn)
files into a pgopti.dpi file.
This option implicitly invokes
the profmerge tool.

The dynamic-information files
are produced in phase 2
when you run the
instrumented executable.

1522

31 Intel® Fortran Compiler User and Reference Guides

EffectWindows*Linux* and Mac OS* X

If you perform multiple
executions of the
instrumented program to
create additional
dynamic-information files
that are newer than the
current summary pgopti.dpi
file, this option merges the
dynamic-information files
again and overwrites the
previous pgopti.dpi file (you
can set the environment
variable PROF_NO_CLOBBER
to prevent the previous dpi
file from being overwritten).

When you compile with
prof-use, all dynamic
information and summary
information files should be in
the same directory (current
directory or the directory
specified by the prof-dir
option). If you need to use
certain profmerge options
not available with compiler
options (such as specifying
multiple directories), use the
profmerge tool. For
example, you can use
profmerge to create a new
summary dpi file before you
compile with the prof-use
option to create the
optimized application.

You can specify keywords,
such as -prof-gen=weight-
ed (Linux and Mac OS X) or
/Qprof-gen:weighted
(Windows). If you omit the
weighted keyword, the
merged dynamic-information

1523

31

EffectWindows*Linux* and Mac OS* X

(dyn) files will be weighted
proportionally to the length
of time each application
execution runs. If you specify
the weighted keyword, the
profiler applies an equal
weighting (regardless of
execution times) to the dyn
file values to normalize the
data counts. This keyword is
useful when the execution
runs have different time
durations and you want them
to be treated equally.

When you use prof-use, you
can also specify the prof-
file option to rename the
summary dpi file and the
prof-dir option to specify
the directory for
dynamic-information (dyn)
and summary (dpi) files.

Linux:

• Using this option with
-prof-func-groups
allows you to control
function grouping
behavior.

Disables function splitting.
Function splitting is enabled
by the prof-use option in

/Qfnsplit--no-fnsplit

phase 3 to improve code
locality by splitting routines
into different sections: one
section to contain the cold or
very infrequently executed
(cold) code, and one section
to contain the rest of the
frequently executed (hot)

1524

31 Intel® Fortran Compiler User and Reference Guides

EffectWindows*Linux* and Mac OS* X

code. You may want to
disable function splitting for
the following reasons:

• Improve debugging
capability. In the debug
symbol table, it is difficult
to represent a split
routine, that is, a routine
with some of its code in
the hot code section and
some of its code in the
cold code section.

• Account for the cases
when the profile data does
not represent the actual
program behavior, that is,
when the routine is
actually used frequently
rather than infrequently.

This option is supported on
IA-32 architecture for
Windows OS and on IA-64
architecture for Windows and
Linux OS. It is not supported
on other platforms (Intel® 64
architecture, Mac OS X, and
Linux on IA-32 architecture).

Windows: This option
behaves differently on
systems based on IA-32
architecture than it does on
systems based on IA-64
architecture.

IA-32 architecture, Windows
OS:

• The option completely
disables function splitting,
placing all the code in one
section.

1525

31

EffectWindows*Linux* and Mac OS* X

IA-64 architecture, Linux and
Windows OS:

• The option disables the
splitting within a routine
but enables function
grouping, an optimization
in which entire routines
are placed either in the
cold code section or the
hot code section. Function
grouping does not
degrade debugging
capability.

Enables ordering of program
routines using profile
information when specified

/Qprof-func-order-prof-func-groups

with prof-use (phase 3).
The instrumented program
(phase 1) must have been
compiled with the prof-gen
option srcpos keyword. Not
valid for multi-file compilation
with the ipo options.

Mac OS X: Not supported.

IA-64 architecture: Not
supported.

For more information, see
Using Function Ordering,
Function Order Lists, Function
Grouping, and Data Ordering
Optimizations.

Enables ordering of static
program data items based on
profiling information when/Qprof-data-order-prof-data-order
specified with prof-use. The
instrumented program (phase
1) must have been compiled

1526

31 Intel® Fortran Compiler User and Reference Guides

EffectWindows*Linux* and Mac OS* X

with the prof-gen option
srcpos keyword. Not valid
for multi-file compilation with
the ipo options.

Mac OS X: Not supported.

For more information, see
Using Function Ordering,
Function Order Lists, Function
Grouping, and Data Ordering
Optimizations.

Controls whether full
directory information for the
source directory path is

/Qprof-src-dir-prof-src-dir

stored in or read from
dynamic-information (dyn)
files. When used during
phase 1 compilation (prof-
gen), this determines
whether the full path is added
into dyn file created during
instrumented application
execution. When used during
profmerge or phase 3
compilation (prof-use), this
determines whether the full
path for source file names is
used or ignored when reading
the dyn or dpi files.

Using the default -prof-
src-dir (Linux and Mac OS
X) or /Qprof-src-dir
(Windows) uses the full
directory information and
also enables the use of the
prof-src-root and prof-
src-cwd options.

1527

31

EffectWindows*Linux* and Mac OS* X

If you specify -no-prof-
src-dir (Linux and Mac OS
X) or /Qprof-src-dir
(Windows), only the file
name (and not the full path)
is stored or used. If you do
this, all dyn or dpi files must
be in the current directory
and the prof-src-root and
prof-src-cwd options are
ignored.

Specifies the directory in
which dynamic information
(dyn) files are created in,

/Qprof-dir-prof-dir

read from, and stored;
otherwise, the dyn files are
created in or read from the
current directory used during
compilation. For example,
you can use this option when
compiling in phase 1 (prof-
gen option) to define where
dynamic information files will
be created when running the
instrumented executable in
phase 2. You also can use
this option when compiling in
phase 3 (prof-use option)
to define where the dynamic
information files will be read
from and a summary file
(dpi) created.

Specifies a directory path
prefix for the root directory
where the user's application
files are stored:

/Qprof-src-root

or

/Qprof-src-cwd

-prof-src-root or

-prof-src-cwd
• To specify the directory

prefix root where source
files are stored, specify

1528

31 Intel® Fortran Compiler User and Reference Guides

EffectWindows*Linux* and Mac OS* X

the -prof-src-root
(Linux and Mac OS X) or
/Qprof-src-root
(Windows) option.

• To use the current
working directory, specify
the -prof-src-cwd
(Linux and Mac OS X) or
/Qprof-src-cwd
(Windows) option.

This option is ignored if you
specify -no-prof-src-dir
(Linux and Mac OS X) or
/Qprof-src-dir (Windows).

Specifies file name for
profiling summary file. If this
option is not specified, the/Qprof-file-prof-file
name of the file containing
summary information will be
pgopti.dpi.

IA-32 architecture. Prepares
application executables for
hardware profiling (sampling)

/Qprof-gen-sampling-prof-gen-sampling
and causes the compiler to
generate source code
mapping information.

Mac OS X: This option is not
supported.

IA-32 architecture. Enables
Software-based Speculative
Pre-computation (SSP)
optimization./Qssp-ssp

Mac OS X: This option is not
supported.

Refer to Quick Reference Lists for a complete listing of the quick reference topics.

1529

31

Profile an Application

Profiling an application includes the following three phases:

• Instrumentation compilation and linking

• Instrumented execution

• Feedback compilation

This topic provides detailed information on how to profile an application by providing sample
commands for each of the three phases (or steps).

1. Instrumentation compilation and linking

Use -prof-gen (Linux* and Mac OS* X) or /Qprof-gen (Windows*) to produce an
executable with instrumented information included.

CommandsOperating System

ifort -prof-gen
-prof-dir/usr/profiled a1.f90
a2.f90 a3.f90

Linux and Mac OS X

ifort -oa1 a1.o a2.o a3.o

ifort /Qprof-gen
/Qprof-dirc:\profiled a1.f90 a2.f90
a3.f90

Windows

ifort a1.obj a2.obj a3.obj

Use the -prof-dir (Linux and Mac OS X) or /Qprof-dir (Windows) option if the application
includes the source files located in multiple directories; using the option insures the profile
information is generated in one consistent place. The example commands demonstrate how
to combine these options on multiple sources.

The compiler gathers extra information when you use the -prof-gen=srcpos (Linux and
Mac OS X) or /Qprof-gen:srcpos (Windows) option; however, the extra information is
collected to provide support only for specific Intel tools, like the code-coverage tool. If you
do not expect to use such tools, do not specify -prof-gen=srcpos (Linux and Mac OS X)
or /Qprof-gen:srcpos (Windows); the extended option does not provide better optimization
and could slow parallel compile times.

2. Instrumented execution

1530

31 Intel® Fortran Compiler User and Reference Guides

Run your instrumented program with a representative set of data to create one or more
dynamic information files.

CommandOperating System

./a1.outLinux and Mac OS X

a1.exeWindows

Executing the instrumented applications generates dynamic information file that has a unique
name and .dyn suffix. A new dynamic information file is created every time you execute the
instrumented program.

You can run the program more than once with different input data.

3. Feedback compilation

Before this step, copy all .dyn and .dpi files into the same directory. Compile and link the
source files with -prof-use (Linux and Mac OS X) or /Qprof-use (Windows); the option
instructs the compiler to use the generated dynamic information to guide the optimization:

ExamplesOperating System

ifort -prof-use -ipo
-prof-dir/usr/profiled a1.f90
a2.f90 a3.f90

Linux and Mac OS X

ifort /Qprof-use /Qipo
/Qprof-dirc:\profiled a1.f90 a2.f90
a3.f90

Windows

This final phase compiles and links the sources files using the data from the dynamic
information files generated during instrumented execution (phase 2).

In addition to the optimized executable, the compiler produces a pgopti.dpi file.

Most of the time, you should specify the default optimizations,-02 (Linux and Mac OS X) or
/O2 (Windows), for phase 1, and specify more advanced optimizations, -ipo (Linux) or
/Qipo (Windows), during the final (phase 3) compilation. For example, the example shown
above used-O2 (Linux and Mac OS X) or /O2 (Windows) in step 1 and-ipo (Linux or Mac
OS X) or /Qipo (Windows) in step 3.

NOTE. The compiler ignores the -ipo or -ip (Linux and Mac OS X) or /Qipo or /Qip
(Windows) option during phase 1 with -prof-gen (Linux and Mac OS X) or /Qprof-gen
(Windows).

1531

31

PGO Tools

PGO Tools Overview

This section describes the tools that take advantage or support the Profile-guided Optimizations
(PGO) available in the compiler.

• code coverage tool

• test prioritization tool

• profmerge tool

• proforder tool

In addition to the tools, this section also contains information on using Software-based
Speculative Precomputation, which will allow you to optimize applications using profiling- and
sampling-feedback methods on IA-32 architectures.

code coverage Tool

The code coverage tool provides software developers with a view of how much application code
is exercised when a specific workload is applied to the application. To determine which code is
used, the code coverage tool uses Profile-guided Optimization (PGO) options and optimizations.
The major features of the code coverage tool are:

• Visually presenting code coverage information for an application with a customizable code
coverage coloring scheme

• Displaying dynamic execution counts of each basic block of the application

• Providing differential coverage, or comparison, profile data for two runs of an application

The information about using the code coverage tool is separated into the following sections:

• code coverage tool Requirements

• Visually Presenting Code Coverage for an Application

• Excluding Code from Coverage Analysis

• Exporting Coverage Data

The tool analyzes static profile information generated by the compiler, as well as dynamic profile
information generated by running an instrumented form of the application binaries on the
workload. The tool can generate the in HTML-formatted report and export data in both text-,
and XML-formatted files. The reports can be further customized to show color-coded, annotated,
source-code listings that distinguish between used and unused code.

1532

31 Intel® Fortran Compiler User and Reference Guides

The code coverage tool is available on IA-32, Intel® 64, and IA-64 architectures on Linux* and
Windows*. The tool is available on IA-32 and Intel® 64 architectures on Mac OS* X.

You can use the tool in a number of ways to improve development efficiency, reduce defects,
and increase application performance:

• During the project testing phase, the tool can measure the overall quality of testing by
showing how much code is actually tested.

• When applied to the profile of a performance workload, the code coverage tool can reveal
how well the workload exercises the critical code in an application. High coverage of
performance-critical modules is essential to taking full advantage of the Profile-Guided
Optimizations that Intel Compilers offer.

• The tool provides an option, useful for both coverage and performance tuning, enabling
developers to display the dynamic execution count for each basic block of the application.

• The code coverage tool can compare the profile of two different application runs. This feature
can help locate portions of the code in an application that are unrevealed during testing but
are exercised when the application is used outside the test space, for example, when used
by a customer.

code coverage tool Requirements

To run the code coverage tool on an application, you must have following items:

• The application sources.

• The .spi file generated by the Intel® compiler when compiling the application for the
instrumented binaries using the -prof-gen=srcpos (Linux and Mac OS X) or /Qprof-
gen:srcpos (Windows) options.

• A pgopti.dpi file that contains the results of merging the dynamic profile information
(.dyn) files, which is most easily generated by the profmerge tool. This file is also generated
implicitly by the Intel® compilers when compiling an application with -prof-use (Linux and
Mac OS X) or /Qprof-use (Windows) options with available .dyn and .dpi files.

See Understanding Profile-guided Optimization and Example of Profile-guided Optimization for
general information on creating the files needed to run this tool.

Using the Tool

The tool uses the following syntax:

Tool Syntax

codecov [-codecov_option]

1533

31

where -codecov_option is one or more optional parameters specifying the tool option passed
to the tool. The available tool options are listed in code coverage tools Options (below). If you
do not use any additional tool options, the tool will provide the top-level code coverage for the
entire application.

In general, you must perform the following steps to use the code coverage tool:

1. Compile the application using -prof-gen=srcpos (Linux and Mac OS X) or /Qprof-
gen:srcpos (Windows).

This step generates an instrumented executable and a corresponding static profile information
(pgopti.spi) file.

2. Run the instrumented application.

This step creates the dynamic profile information (.dyn) file Each time you run the
instrumented application, the compiler generates a unique .dyn file either in the current
directory or the directory specified in by prof_dir.

3. Use the profmerge tool to merge all the .dyn files into one .dpi (pgopti.dpi) file.

This step consolidates results from all runs and represents the total profile information for
the application, generates an optimized binary, and creates the dpi file needed by the code
coverage tool.

You can use the profmerge tool to merge the .dyn files into a .dpi file without recompiling
the application. The profmerge tool can also merge multiple .dpi files into one .dpi file using
the profmerge -a option. Select the name of the output .dpi file using the profmerge
-prof_dpi option.

CAUTION. The profmerge tool merges all .dyn files that exist in the given directory.
Make sure unrelated .dyn files, which may remain from unrelated runs, are not present.
Otherwise, the profile information will be skewed with invalid profile data, which can
result in misleading coverage information and adverse performance of the optimized
code.

4. Run the code coverage tool. (The valid syntax and tool options are shown below.)

This step creates a report or exported data as specified. If no other options are specified,
the code coverage tool creates a single HTML file (CODE_COVERAGE.HTML) and a
sub-directory (CodeCoverage) in the current directory. Open the file in a web browser to
view the reports.

1534

31 Intel® Fortran Compiler User and Reference Guides

NOTE. Windows* only: Unlike the compiler options, which are preceded by forward
slash ("/"), the tool options are preceded by a hyphen ("-").

The code coverage tool allows you to name the project and specify paths to specific, necessary
files. The following example demonstrates how to name a project and specify .dpi and .spi files
to use:

Example: specify .dpi and .spi files

codecov -prj myProject -spi pgopti.spi -dpi pgopti.dpi

The tool can add a contact name and generate an email link for that contact at the bottom of
each HTML page. This provides a way to send an electronic message to the named contact.
The following example demonstrates how to add specify a contact and the email links:

Example: add contact information

codecov -prj myProject -mname JoeSmith -maddr js@company.com

This following example demonstrates how to use the tool to specify the project name, specify
the dynamic profile information file, and specify the output format and file name.

Example: export data to text

codecov -prj test1 -dpi test1.dpi -txtbcvrg test1_bcvrg.txt

code coverage tool Options

The tool uses the options listed in the table:

DescriptionDefaultOption

Specifies the HTML color
name for code in the
uncovered blocks.

#FFFF99-bcolor color

Specifies the comment that
marks the beginning of the
code fragment to be ignored
by the coverage tool.

-beginblkdsbl string

1535

31

DescriptionDefaultOption

Specifies the HTML color
name or code of the covered
code.

#FFFFFF-ccolor color

Specifies the file name that
contains the list of files being
(or not) displayed.

-comp file

Generates dynamic execution
counts.

-counts

Demangles both function
names and their arguments.

-demang

Specifies the file name of the
dynamic profile information
file (.dpi).

pgopti.dpi-dpi file

Specifies the comment that
marks the end of the code
fragment to be ignored by
the coverage tool.

-endblkdsbl string

Specifies the HTML color
name for code of the
uncovered functions.

#FFCCCC-fcolor color

Prints tool option
descriptions.

-help, -h

Specifies the HTML color
name or code of the
information lines, such as
basic-block markers and
dynamic counts.

#FFFFFF-icolor color

Sets the email address of the
web-page owner

Nobody-maddr string

1536

31 Intel® Fortran Compiler User and Reference Guides

DescriptionDefaultOption

Sets the name of the
web-page owner.

Nobody-mname string

Treats partially covered code
as fully covered code.

-nopartial

Turns off the progress meter.
The meter is enabled by
default.

-nopmeter

Specifies the comment that
marks individual lines of code
or the whole functions to be
ignored by the coverage tool.

-onelinedsbl string

Specifies the HTML color
name or code of the partially
covered code.

#FAFAD2-pcolor color

Sets the project name.-prj string

Finds the differential
coverage with respect to
ref_dpi_file.

-ref

Specifies the file name of the
static profile information file
(.spi).

pgopti.spi-spi file

Specifies a different top level
project directory than was
used during compiler

-srcroot dir

instrumentation run to use
for relative paths to source
files in place of absolute
paths.

1537

31

DescriptionDefaultOption

Export block-coverage for
covered functions as text
format. The file parameter
must be in the form of a valid
file name.

-txtbcvrg file

Export block-coverage for
entire application in text and
HTML formats. The file
parameter must be in the
form of a valid file name.

-txtbcvrgfull file

Generates the dynamic
call-graph information in text
format. The file parameter
must be in the form of a valid
file name.

-txtdcg file

Export function coverage for
covered function in text
format. The file parameter
must by in the form of a valid
file name.

-txtfcvrg file

Specifies the HTML color
name or code of the unknown
code.

#FFFFFF-ucolor color

Specifies the HTML color of
the code ignored.

#90EE90-xcolor color

Export the block-coverage for
the covered function in XML
format. The file parameter
must by in the form of a valid
file name.

-xmlbcvrg file

1538

31 Intel® Fortran Compiler User and Reference Guides

DescriptionDefaultOption

Export function coverage for
entire application in XML
format in addition to HTML

-xmlbcvrgfull file

output. The file parameter
must be in the form of a valid
file name.

Export function coverage for
covered function in XML
format. The file parameter
must be in the form of a valid
file name.

-xmlfcvrg file

Visually Presenting Code Coverage for an Application

Based on the profile information collected from running the instrumented binaries when testing
an application, the Intel® compiler will create HTML-formatted reports using the code coverage
tool. These reports indicate portions of the source code that were or were not exercised by the
tests. When applied to the profile of the performance workloads, the code coverage information
shows how well the training workload covers the application's critical code. High coverage of
performance-critical modules is essential to taking full advantage of the profile-guided
optimizations.

The code coverage tool can create two levels of coverage:

• Top level (for a group of selected modules)

• Individual module source views

Top Level Coverage

The top-level coverage reports the overall code coverage of the modules that were selected.
The following options are provided:

• Select the modules of interest

• For the selected modules, the tool generates a list with their coverage information. The
information includes the total number of functions and blocks in a module and the portions
that were covered.

1539

31

• By clicking on the title of columns in the reported tables, the lists may be sorted in ascending
or descending order based on:

• basic block coverage

• function coverage

• function name

By default, the code coverage tool generates a single HTML file (CODE_COVERAGE.HTML) and
a subdirectory (CodeCoverage) in the current directory. The HTML file defines a frameset to
display all of the other generated reports. Open the HTML file in a web-browser. The tool places
all other generated report files in a CodeCoverage subdirectory.

If you choose to generate the html-formatted version of the report, you can view coverage
source of that particular module directly from a browser. The following figure shows the top-level
coverage report.

1540

31 Intel® Fortran Compiler User and Reference Guides

The coverage tool creates a frame set that allows quick browsing through the code to identify
uncovered code. The top frame displays the list of uncovered functions while the bottom frame
displays the list of covered functions. For uncovered functions, the total number of basic blocks
of each function is also displayed. For covered functions, both the total number of blocks and
the number of covered blocks as well as their ratio (that is, the coverage rate) are displayed.

For example, 66.67(4/6) indicates that four out of the six blocks of the corresponding function
were covered. The block coverage rate of that function is thus 66.67%. These lists can be sorted
based on the coverage rate, number of blocks, or function names. Function names are linked
to the position in source view where the function body starts. So, just by one click, you can
see the least-covered function in the list and by another click the browser displays the body of
the function. You can scroll down in the source view and browse through the function body.

Individual Module Source View

Within the individual module source views, the tool provides the list of uncovered functions as
well as the list of covered functions. The lists are reported in two distinct frames that provide
easy navigation of the source code. The lists can be sorted based on:

• Number of blocks within uncovered functions

• Block coverage in the case of covered functions

• Function names

Setting the Coloring Scheme for the Code Coverage

The tool provides a visible coloring distinction of the following coverage categories: covered
code, uncovered basic blocks, uncovered functions, partially covered code, and unknown code.
The default colors that the tool uses for presenting the coverage information are shown in the
tables that follows:

DescriptionDefaultCategory

Indicates code was exercised
by the tests. You can override
the default color with the
-ccolor tool option.

#FFFFFFCovered code

Indicates the basic blocks
that were not exercised by
any of the tests. However,

#FFFF99Uncovered basic block

these blocks were within
functions that were executed

1541

31

DescriptionDefaultCategory

during the tests. You can
override the default color
with the -bcolor tool option.

Indicates functions that were
never called during the tests.
You can override the default
color with the -fcolor tool
option.

#FFCCCCUncovered function

Indicates that more than one
basic block was generated for
the code at this position.

#FAFAD2Partially covered code

Some of the blocks were
covered and some were not.
You can override the default
color with the -pcolor tool
option.

Indicates code that was
specifically marked to be
ignored. You can override this
default color using the
-xcolor tool option.

#90EE90Ignored code

Indicates basic-block markers
and dynamic counts. You can
override the default color
with the -icolor tool option.

#FFFFFFInformation lines

Indicates that no code was
generated for this source line.
Most probably, the source at

#FFFFFFUnknown

this position is a comment, a
header-file inclusion, or a
variable declaration. You can
override the default color
with the -ucolor tool option.

1542

31 Intel® Fortran Compiler User and Reference Guides

The default colors can be customized to be any valid HTML color name or hexadecimal value
using the options mentioned for each coverage category in the table above.

For code coverage colored presentation, the coverage tool uses the following heuristic: source
characters are scanned until reaching a position in the source that is indicated by the profile
information as the beginning of a basic block. If the profile information for that basic block
indicates that a coverage category changes, then the tool changes the color corresponding to
the coverage condition of that portion of the code, and the coverage tool inserts the appropriate
color change in the HTML-formatted report files.

NOTE. You need to interpret the colors in the context of the code. For instance, comment
lines that follow a basic block that was never executed would be colored in the same
color as the uncovered blocks.

Dynamic Counters

The coverage tool can be configured to generate the information about the dynamic execution
counts. This ability can display the dynamic execution count of each basic block of the application
and is useful for both coverage and performance tuning.

The custom configuration requires using the -counts option. The counts information is displayed
under the code after a "^" sign precisely under the source position where the corresponding
basic block begins.

If more than one basic block is generated for the code at a source position (for example, for
macros), then the total number of such blocks and the number of the blocks that were executed
are also displayed in front of the execution count. For example, line 11 in the code is an IF
statement:

Example

11 IF ((N .EQ. 1).OR. (N .EQ. 0))

^ 10 (1/2)

12 PRINT N

^ 7

The coverage lines under code lines 11 and 12 contain the following information:

• The IF statement in line 11 was executed 10 times.

• Two basic blocks were generated for the IF statement in line 11.

1543

31

• Only one of the two blocks was executed, hence the partial coverage color.

• Only seven out of the ten times variable n had a value of 0 or 1.

In certain situations, it may be desirable to consider all the blocks generated for a single source
position as one entity. In such cases, it is necessary to assume that all blocks generated for
one source position are covered when at least one of the blocks is covered. This assumption
can be configured with the -nopartial option. When this option is specified, decision coverage
is disabled, and the related statistics are adjusted accordingly. The code lines 11 and 12 indicate
that the print statement in line 12 was covered. However, only one of the conditions in line
11 was ever true. With the -nopartial option, the tool treats the partially covered code (like
the code on line 11) as covered.

Differential Coverage

Using the code coverage tool, you can compare the profiles from two runs of an application: a
reference run and a new run identifying the code that is covered by the new run but not covered
by the reference run. Use this feature to find the portion of the applications code that is not
covered by the applications tests but is executed when the application is run by a customer. It
can also be used to find the incremental coverage impact of newly added tests to an applications
test space.

Generating Reference Data

Create the dynamic profile information for the reference data, which can be used in differential
coverage reporting later, by using the -ref option. The following command demonstrate a
typical command for generating the reference data:

Example: generating reference data

codecov -prj Project_Name -dpi customer.dpi -ref appTests.dpi

The coverage statistics of a differential-coverage run shows the percentage of the code exercised
on a new run but missed in the reference run. In such cases, the tool shows only the modules
that included the code that was not covered. Keep this in mind when viewing the coloring
scheme in the source views.

The code that has the same coverage property (covered or not covered) on both runs is
considered as covered code. Otherwise, if the new run indicates that the code was executed
while in the reference run the code was not executed, then the code is treated as uncovered.
On the other hand, if the code is covered in the reference run but not covered in the new run,
the differential-coverage source view shows the code as covered.

Running Differential Coverage

1544

31 Intel® Fortran Compiler User and Reference Guides

To run the code coverage tool for differential coverage, you must have the application sources,
the .spi file, and the .dpi file, as described in the code coverage tool Requirements section
(above).

Once the required files are available, enter a command similar to the following begin the process
of differential coverage analysis:

Example

codecov -prj Project_Name -spi pgopti.spi -dpi pgopti.dpi

Specify the .dpi and .spi files using the -spi and -dpi options.

Excluding Code from Coverage Analysis

The code coverage tool allows you to exclude portions of your code from coverage analysis.
This ability can be useful during development; for example, certain portions of code might
include functions used for debugging only. The test case should not include tests for functionality
that will unavailable in the final application.

Another example of code that can be excluded is code that might be designed to deal with
internal errors unlikely to occur in the application. In such cases, not having a test case lack
of a test case is preferred. You might want to ignore infeasible (dead) code in the coverage
analysis. The code coverage tool provides several options for marking portions of the code
infeasible (dead) and ignoring the code at the file level, function level, line level, and arbitrary
code boundaries indicated by user-specific comments. The following sections explain how to
exclude code at different levels.

Including and Excluding Coverage at the File Level

The code coverage tool provides the ability to selectively include or exclude files for analysis.
Create a component file and add the appropriate string values that indicate the file and directory
name for code you want included or excluded. Pass the file name as a parameter of the -comp
option. The following example shows the general command:

Example: specifying a component file

codecov -comp file

where file is the name of a text file containing strings that ask as file and directory name
masks for including and excluding file-level analysis. For example, assume that the following:

• You want to include all files with the string "source" in the file name or directory name.

1545

31

• You create a component text file named myComp.txt with the selective inclusion string.

Once you have a component file, enter a command similar to the following:

Example

codecov -comp myComp.txt

In this example, individual files name including the string "source" (like source1.f and source2.f)
and files in directories where the name contains the string "source" (like source/file1.f and
source2\file2.f) are include in the analysis.

Excluding files is done in the same way; however, the string must have a tilde (~) prefix. The
inclusion and exclusion can be specified in the same component file.

For example, assume you want to analyze all individual files or files contained in a directory
where the name included the string "source", and you wanted to exclude all individual file and
files contained in directories where the name included the string "skip". You would add content
similar to the following to the component file (myComp.txt) and pass it to the -comp option:

Example: inclusion and exclusion strings

source

~skip

Entering the codecov -comp myComp.txt command with both instructions in the component
file will instruct the tool to include individual files where the name contains "source" (like
source1.f and source2.f) and directories where the name contains "source" (like source/file1.f
and source2\file2.f), and exclude any individual files where the name contains "skip" (like
skipthis1.f and skipthis2.f) or directories where the name contains "skip" (like
skipthese1\debug1.f and skipthese2\debug2.f).

Excluding Coverage at the Line and Function Level

You can mark individual lines for exclusion my passing string values to the -onelinedsbl
option. For example, assume that you have some code similar to the following:

Sample code

print*, "ERROR: n = ", n ! NO_COVER

print*, " n2 = ", n2 ! INF IA-32 architecture

1546

31 Intel® Fortran Compiler User and Reference Guides

If you wanted to exclude all functions marked with the comments NO_COVER or INF IA-32
architecture, you would enter a command similar to the following.

Example

codecov -onelinedsbl NO_COVER -onelinedsbl "INF IA-32 architecture"

You can specify multiple exclusion strings simultaneously, and you can specify any string values
for the markers; however, you must remember the following guidelines when using this option:

• Inline comments must occur at the end of the statement.

• The string must be a part of an inline comment.

An entire function can be excluded from coverage analysis using the same methods. For example,
the following function will be ignored from the coverage analysis when you issue example
command shown above.

Sample code

subroutine dumpInfo (n)

integer n ! NO_COVER

...

end subroutine

Additionally, you can use the code coverage tool to color the infeasible code with any valid
HTML color code by combining the -onelinedsbl and -xcolor options. The following example
commands demonstrate the combination:

Example: combining tool options

codecov -onelinedsbl INF -xcolor lightgreen

codecov -onelinedsbl INF -xcolor #CCFFCC

Excluding Code by Defining Arbitrary Boundaries

The code coverage tool provides the ability to arbitrarily exclude code from coverage analysis.
This feature is most useful where the excluded code either occur inside of a function or spans
several functions.

1547

31

Use the -beginblkdsbl and -endblkdsbl options to mark the beginning and end, respectively,
of any arbitrarily defined boundary to exclude code from analysis. Remember the following
guidelines when using these options:

• Inline comments must occur at the end of the statement.

• The string must be a part of an inline comment.

For example assume that you have the following code:

Sample code

integer n, n2

n = 123

n2 = n*n

if (n2 .lt. 0) then

! /* BINF */

print*, "ERROR: n = ", n

print*, " n2 = ", n2

! // EINF

else if (n2 .eq. 0) then

print*, "zero: n = ", n, " n2 = ", n2

else

print*, "positive: n = ", n, " n2 = ", n2

endif

end

The following example commands demonstrate how to use the -beginblkdsbl option to mark
the beginning and the -endblkdsbl option to mark the end of code to exclude from the sample
shown above.

Example: arbitrary code marker commands

codecov -xcolor #ccFFCC -beginblkdsbl BINF -endblkdsbl EINF

codecov -xcolor #ccFFCC -beginblkdsbl "BEGIN_INF" -endblkdsbl "END_INF"

1548

31 Intel® Fortran Compiler User and Reference Guides

Notice that you can combine these options in combination with the -xcolor option.

Exporting Coverage Data

The code coverage tool provides specific options to extract coverage data from the dynamic
profile information (.dpi files) that result from running instrumented application binaries under
various workloads. The tool can export the coverage data in various formats for post-processing
and direct loading into databases: the default HTML, text, and XML. You can choose to export
data at the function and basic block levels.

There are two basic methods for exporting the data: quick export and combined export. Each
method has associated options supported by the tool

• Quick export: The first method is to export the data coverage to text- or XML-formatted
files without generating the default HTML report. The application sources need not be present
for this method. The code coverage tool creates reports and provides statistics only about
the portions of the application executed. The resulting analysis and reporting occurs quickly,
which makes it practical to apply the coverage tool to the dynamic profile information (the
.dpi file) for every test case in a given test space instead of applying the tool to the profile
of individual test suites or the merge of all test suites. The -xmlfcvrg, -txtfcvrg, -xml-
bcvrg and -txtbcvrg options support the first method.

• Combined export: The second method is to generate the default HTML and simultaneously
export the data to text- and XML-formatted files. This process is slower than first method
since the application sources are parsed and reports generated. The -xmlbcvrgfull and
-txtbcvrgfull options support the second method.

These export methods provide the means to quickly extend the code coverage reporting
capabilities by supplying consistently formatted output from the code coverage tool. You can
extend these by creating additional reporting tools on top of these report files.

Quick Export

The profile of covered functions of an application can be exported quickly using the -xmlfcvrg,
-txtfcvrg, -xmlbcvrg, and -txtbcvrg options. When using any of these options, specify
the output file that will contain the coverage report. For example, enter a command similar to
the following to generate a report of covered functions in XML formatted output:

Example: quick export of function data

codecov -prj test1 -dpi test1.dpi -xmlfcvrg test1_fcvrg.xml

1549

31

The resulting report will show how many times each function was executed and the total number
of blocks of each function together with the number of covered blocks and the block coverage
of each function. The following example shows some of the content of a typical XML report.

XML-formatted report example

<PROJECT name = "test1">

<MODULE name = "D:\SAMPLE.F">

<FUNCTION name="f0" freq="2">

<BLOCKS total="6" covered="5" coverage="83.33%"></BLOCKS>

</FUNCTION>

...

</MODULE>

<MODULE name = "D:\SAMPLE2.F">

...

</MODULE>

</PROJECT>

In the above example, we note that function f0, which is defined in file sample.f, has been
executed twice. It has a total number of six basic blocks, five of which are executed, resulting
in an 83.33% basic block coverage.

You can also export the data in text format using the -txtfcvrg option. The generated text
report, using this option, for the above example would be similar to the following example:

Text-formatted report example

Covered Functions in File: "D:\SAMPLE.F"

"f0" 2 6 5 83.33

"f1" 1 6 4 66.67

"f2" 1 6 3 50.00

...

In the text formatted version of the report, the each line of the report should be read in the
following manner:

1550

31 Intel® Fortran Compiler User and Reference Guides

Column 5Column 4Column 3Column 2Column 1

percentage of basic-block coverage
of the function

column
number of
the start of
the function
definition

line number
of the start
of the
function
definition

execution
frequency

function
name

Additionally, the tool supports exporting the block level coverage data using the -xmlbcvrg
option. For example, enter a command similar to the following to generate a report of covered
blocks in XML formatted output:

Example: quick export of block data to XML

codecov -prj test1 -dpi test1.dpi -xmlbcvrg test1_bcvrg.xml

The example command shown above would generate XML-formatted results similar to the
following:

XML-formatted report example

<PROJECT name = "test1">

<MODULE name = "D:\SAMPLE.cF90">

<FUNCTION name="f0" freq="2">

...

<BLOCK line="11" col="2">

<INSTANCE id="1" freq="1"> </INSTANCE>

</BLOCK>

<BLOCK line="12" col="3">

<INSTANCE id="1" freq="2"> </INSTANCE>

<INSTANCE id="2" freq="1"> </INSTANCE>

</BLOCK>

In the sample report, notice that one basic block is generated for the code in function f0 at the
line 11, column 2 of the file sample.f90. This particular block has been executed only once.
Also notice that there are two basic blocks generated for the code that starts at line 12, column

1551

31

3 of file. One of these blocks, which has id = 1, has been executed two times, while the other
block has been executed only once. A similar report in text format can be generated through
the -txtbcvrg option.

Combined Exports

The code coverage tool has also the capability of exporting coverage data in the default HTML
format while simultaneously generating the text- and XML-formatted reports.

Use the -xmlbcvrgfull and -txtbcvrgfull options to generate reports in all supported
formatted in a single run. These options export the basic-block level coverage data while
simultaneously generating the HTML reports. These options generate more complete reports
since they include analysis on functions that were not executed at all. However, exporting the
coverage data using these options requires access to application source files and take much
longer to run.

Dynamic Call Graphs

Using the -txtdcg option the tool can provide detailed information about the dynamic call
graphs in an application. Specify an output file for the dynamic call-graph report. The resulting
call graph report contains information about the percentage of static and dynamic calls (direct,
indirect, and virtual) at the application, module, and function levels.

test prioritization Tool

The test prioritization tool enables the profile-guided optimizations on IA-32, Intel® 64, and
IA-64 architectures, on Linux* and Windows*, to select and prioritize test for an application
based on prior execution profiles. The tool is available on IA-32 and Intel® 64 architectures on
Mac OS* X.

The tool offers a potential of significant time saving in testing and developing large-scale
applications where testing is the major bottleneck.

Development often requires changing applications modules. As applications change, developers
can have a difficult time retaining the quality of their functional and performance tests so they
are current and on-target. The test prioritization tool lets software developers select and prioritize
application tests as application profiles change.

The information about the tool is separated into the following sections:

• Features and benefits

• Requirements and syntax

• Usage model

• Tool options

• Running the tool

1552

31 Intel® Fortran Compiler User and Reference Guides

Features and Benefits

The test prioritization tool provides an effective testing hierarchy based on the code coverage
for an application. The following list summarizes the advantages of using the tool:

• Minimizing the number of tests that are required to achieve a given overall coverage for any
subset of the application: the tool defines the smallest subset of the application tests that
achieve exactly the same code coverage as the entire set of tests.

• Reducing the turn-around time of testing: instead of spending a long time on finding a
possibly large number of failures, the tool enables the users to quickly find a small number
of tests that expose the defects associated with the regressions caused by a change set.

• Selecting and prioritizing the tests to achieve certain level of code coverage in a minimal
time based on the data of the tests' execution time.

See Understanding Profile-guided Optimization and Example of Profile-guided Optimization for
general information on creating the files needed to run this tool.

test prioritization Tool Requirements

The test prioritization tool needs the following items to work:

• The .spi file generated by Intel® compilers when compiling the application for the instrumented
binaries with the -prof-gen=srcpos (Linux* and Mac OS* X) or /Qprof-gen:srcpos
(Windows*) option.

• The .dpi files generated by the profmerge tool as a result of merging the dynamic profile
information .dyn files of each of the application tests. (Run the profmerge tool on all .dyn
files that are generated for each individual test and name the resulting .dpi in a fashion that
uniquely identifies the test.)

CAUTION. The profmerge tool merges all .dyn files that exist in the given directory.
Make sure unrelated .dyn files, which may remain from unrelated runs, are not present.
Otherwise, the profile information will be skewed with invalid profile data, which can
result in misleading coverage information and adverse performance of the optimized
code;

• User-generated file containing the list of tests to be prioritized. For successful instrumented
code run, you should:

• Name each test .dpi file so the file names uniquely identify each test.

1553

31

• Create a .dpi list file, which is a text file that contains the names of all .dpi test files.

Each line of the .dpi list file should include one, and only one .dpi file name. The name can
optionally be followed by the duration of the execution time for a corresponding test in the
dd:hh:mm:ss format.

For example: Test1.dpi 00:00:60:35 states that Test1 lasted 0 days, 0 hours, 60 minutes
and 35 seconds.

The execution time is optional. However, if it is not provided, then the tool will not prioritize
the test for minimizing execution time. It will prioritize to minimize the number of tests only.

The tool uses the following general syntax:

Tool Syntax

tselect -dpi_list file

-dpi_list is a required tool option that sets the path to the list file containing the list of the
all .dpi files. All other tool commands are optional.

NOTE. Windows* only: Unlike the compiler options, which are preceded by forward
slash ("/"), the tool options are preceded by a hyphen ("-").

Usage Model

The following figure illustrates a typical test prioritization tool usage model.

test prioritization tool Options

The tool uses the options that are listed in the following table:

DescriptionDefaultOption

Prints tool option
descriptions.

-help

Required. Specifies the file
name of the file that contains
the names of the dynamic

-dpi_list file

1554

31 Intel® Fortran Compiler User and Reference Guides

DescriptionDefaultOption

profile information (.dpi)
files. Each line of the file
must contain only one .dpi
file name, which can be
optionally followed by its
execution time. The name
must uniquely identify the
test.

Specifies the file name of the
static profile information file
(.SPI).

pgopti.spi-spi file

Specifies the file name of the
output report file.

-o file

Specifies the file name that
contains the list of files of
interest.

-comp file

Instructs the tool to
terminate when the
cumulative block coverage

-cutoff file

reaches a preset percentage,
as specified by value, of
pre-computed total coverage.
value must be greater than
0.0 (for example, 99.00) but
not greater than 100. value
can be set to 100.

Instructs the tool to ignore
the pre-compute total
coverage process.

-nototal

Instructs the tool to minimize
testing execution time. The
execution time of each test

-mintime

must be provided on the

1555

31

DescriptionDefaultOption

same line of dpi_list file,
after the test name in
dd:hh:mm:ss format.

Specifies a different top level
project directory than was
used during compiler

-srcbasedir dir

instrumentation run with the
prof-src-root compiler
option to support relative
paths to source files in place
of absolute paths.

Instructs the tool to generate
more logging information
about program progress.

-verbose

Running the tool

The following steps demonstrate one simple example for running the tool on IA-32 architectures.

1. Specify the directory by entering a command similar to the following:

Example

set prof-dir=c:\myApp\prof-dir

2. Compile the program and generate instrumented binary by issuing commands similar to the
following:

CommandOperating System

ifort -prof-gen=srcpos myApp.f90Linux and Mac OS X

ifort /Qprof-gen:srcpos myApp.f90Windows

This commands shown above compiles the program and generates instrumented binary
myApp as well as the corresponding static profile information pgopti.spi.

1556

31 Intel® Fortran Compiler User and Reference Guides

3. Make sure that unrelated .dyn files are not present by issuing a command similar to the
following:

Example

rm prof-dir *.dyn

4. Run the instrumented files by issuing a command similar to the following:

Example

myApp < data1

The command runs the instrumented application and generates one or more new dynamic
profile information files that have an extension .dyn in the directory specified by the -prof-
dir step above.

5. Merge all .dyn file into a single file by issuing a command similar to the following:

Example

profmerge -prof_dpi Test1.dpi

The profmerge tool merges all the .dyn files into one file (Test1.dpi) that represents the
total profile information of the application on Test1.

6. Again make sure there are no unrelated .dyn files present a second time by issuing a
command similar to the following:

Example

rm prof-dir *.dyn

7. Run the instrumented application and generate one or more new dynamic profile information
files that have an extension .dyn in the directory specified the prof-dir step above by
issuing a command similar to the following:

Example

myApp < data2

8. Merge all .dyn files into a single file, by issuing a command similar to the following

1557

31

Example

profmerge -prof_dpi Test2.dpi

At this step, the profmerge tool merges all the .dyn files into one file (Test2.dpi) that
represents the total profile information of the application on Test2.

9. Make sure that there are no unrelated .dyn files present for the final time, by issuing a
command similar to the following:

Example

rm prof-dir *.dyn

10. Run the instrumented application and generates one or more new dynamic profile information
files that have an extension .dyn in the directory specified by -prof-dir by issuing a
command similar to the following:

Example

myApp < data3

11. Merge all .dyn file into a single file, by issuing a command similar to the following:

Example

profmerge -prof_dpi Test3.dpi

At this step, the profmerge tool merges all the .dyn files into one file (Test3.dpi) that
represents the total profile information of the application on Test3.

12. Create a file named tests_list with three lines. The first line contains Test1.dpi, the
second line contains Test2.dpi, and the third line contains Test3.dpi.

Tool Usage Examples

When these items are available, the test prioritization tool may be launched from the command
line in prof-dir directory as described in the following examples.

Example 1: Minimizing the Number of Tests

The following example describes how minimize the number of test runs.

1558

31 Intel® Fortran Compiler User and Reference Guides

Example Syntax

tselect -dpi_list tests_list -spi pgopti.spi

where the -spi option specifies the path to the .spi file.

The following sample output shows typical results.

Sample Output

Total number of tests = 3

Total block coverage ~ 52.17

Total function coverage ~ 50.00

num %RatCvrg %BlkCvrg %FncCvrg Test Name @ Options

--- -------- -------- -------- -------------------

1 87.50 45.65 37.50 Test3.dpi

2 100.50 52.17 50.00 Test2.dpi

In this example, the results provide the following information:

• By running all three tests, we achieve 52.17% block coverage and 50.00% function coverage.

• Test3 by itself covers 45.65% of the basic blocks of the application, which is 87.50% of the
total block coverage that can be achieved from all three tests.

• By adding Test2, we achieve a cumulative block coverage of 52.17% or 100% of the total
block coverage of Test1, Test2, and Test3.

• Elimination of Test1 has no negative impact on the total block coverage.

Example 2: Minimizing Execution Time

Suppose we have the following execution time of each test in the tests_list file:

Sample Output

Test1.dpi 00:00:60:35

Test2.dpi 00:00:10:15

Test3.dpi 00:00:30:45

1559

31

The following command minimizes the execution time by passing the -mintime option:

Sample Syntax

tselect -dpi_list tests_list -spi pgopti.spi -mintime

The following sample output shows possible results:

Sample Output

Total number of tests = 3

Total block coverage ~ 52.17

Total function coverage ~ 50.00

Total execution time = 1:41:35

num elaspedTime %RatCvrg %BlkCvrg %FncCvrg Test Name @ Options

--- ----------- -------- -------- -------- -------------------

1 10:15 75.00 39.13 25.00 Test2.dpi

2 41:00 100.00 52.17 50.00 Test3.dpi

In this case, the results indicate that the running all tests sequentially would require one hour,
45 minutes, and 35 seconds, while the selected tests would achieve the same total block
coverage in only 41 minutes.

The order of tests is based on minimizing time (first Test2, then Test3) could be different than
when prioritization is done based on minimizing the number of tests. See Example 1 shown
above: first Test3, then Test2. In Example 2, Test2 is the test that gives the highest coverage
per execution time, so Test2 is picked as the first test to run.

Using Other Options

The -cutoff option enables the tool to exit when it reaches a given level of basic block coverage.
The following example demonstrates how to the option:

Example

tselect -dpi_list tests_list -spi pgopti.spi -cutoff 85.00

1560

31 Intel® Fortran Compiler User and Reference Guides

If the tool is run with the cutoff value of 85.00, as in the above example, only Test3 will be
selected, as it achieves 45.65% block coverage, which corresponds to 87.50% of the total block
coverage that is reached from all three tests.

The tool does an initial merging of all the profile information to figure out the total coverage
that is obtained by running all the tests. The -nototal option enables you to skip this step.
In such a case, only the absolute coverage information will be reported, as the overall coverage
remains unknown.

profmerge and proforder Tools

profmerge Tool

Use the profmerge tool to merge dynamic profile information (.dyn) files and any specified
summary files (.dpi). The compiler executes profmerge automatically during the feedback
compilation phase when you specify -prof-use (Linux* and Mac OS* X) or /Qprof-use
(Windows*).

The command-line usage for profmerge is as follows:

Syntax

profmerge [-prof_dir dir_name]

The tool merges all .dyn files in the current directory, or the directory specified by -prof_dir,
and produces a summary file: pgopti.dpi.

NOTE. The spelling of tools options may differ slightly from compiler options. Tools
options use an underscore (for example -prof_dir) instead of the hyphen used by compiler
options ompiler options (for example -prof-dir or /Qprof-dir)to join words. Also,
on Windows* OS systems, the tool options are preceded by a hyphen ("-") unlike Windows
compiler options, which are preceded by a forward slash ("/").

You can use profmerge tool to merge .dyn files into a .dpi file without recompiling the application.
Thus, you can run the instrumented executable file on multiple systems to generate dyn files,
and optionally use profmerge with the -prof_dpi option to name each summary dpi file created
from the multiple dyn files.

1561

31

Since the profmerge tool merges all the .dyn files that exist in the given directory, make sure
unrelated .dyn files are not present; otherwise, profile information will be based on invalid
profile data, which can negatively impact the performance of optimized code.

profmerge Options

The profmerge tool supports the following options:

DescriptionTool Option

Lists supported options.-help

Disables version information. This option is
supported on Windows* only.

-nologo

Excludes functions from the profile. The list
items must be separated by a comma (",");
you can use a period (".") as a wild card
character in function names.

-exclude_funcs functions

Specifies the directory from which to read
.dyn and .dpi files , and write the .dpi file.
Alternatively, you can set the environment
variable PROF_DIR.

-prof_dir dir

Specifies the name of the .dpi file being
generated.

-prof_dpi file

Merges information from file matching:
dpi_file_and_dyn_tag.

-prof_file file

Displays profile information.-dump

Changes the directory path stored within the
.dpi file.

-src_old dir -src_new dir

Uses only the file name and not the directory
name when reading dyn/dpi records. If you
specify -src_no_dir, the directory name of

-src_no_dir

the source file will be ignored when deciding

1562

31 Intel® Fortran Compiler User and Reference Guides

DescriptionTool Option

which profile data records correspond to a
specific application routine, and the -src-
root option is ignored.

Specifies a directory path prefix for the root
directory where the user's application files
are stored. This option is ignored if you
specify -src_no_dir.

-src-root dir

Specifies and merges available .dpi files.-a file1.dpi ... fileN.dpi

Instructs the tool to display full information
during merge.

-verbose

Instructs the tool to apply an equal weighting
(regardless of execution times) to the dyn
file values to normalize the data counts. This

-weighted

keyword is useful when the execution runs
have different time durations and you want
them to be treated equally.

Relocating source files using profmerge

The Intel® compiler uses the full path to the source file for each routine to look up the profile
summary information associated with that routine. By default, this prevents you from:

• Using the profile summary file (.dpi) if you move your application sources.

• Sharing the profile summary file with another user who is building identical application
sources that are located in a different directory.

You can disable the use of directory names when reading dyn/dpi file records by specifying the
profmerge option -src_no_dir. This profmerge option is the same as the compiler option
-no-prof-src-dir (Linux and Mac OS X) and /Qprof-src-dir- (Windows).

To enable the movement of application sources, as well as the sharing of profile summary files,
you can use the profmerge option -src-root to specify a directory path prefix for the root
directory where the application files are stored. Alternatively, you can specify the option pair
-src_old -src_new to modify the data in an existing summary dpi file. For example:

1563

31

Example: relocation command syntax

profmerge -prof_dir <dir1> -src_old <dir2> -src_new <dir3>

where <dir1> is the full path to dynamic information file (.dpi), <dir2> is the old full path to
source files, and <dir3> is the new full path to source files. The example command (above)
reads the pgopti.dpi file, in the location specified in <dir1>. For each routine represented in
the pgopti.dpi file, whose source path begins with the <dir2> prefix, profmerge replaces
that prefix with <dir3>. The pgopti.dpi file is updated with the new source path information.

You can run profmerge more than once on a given pgopti.dpi file. For example, you may
need to do this if the source files are located in multiple directories:

Command ExamplesOperating System

profmerge -prof_dir -src_old
/src/prog_1 -src_new /src/prog_2

Linux and Mac OS X

profmerge -prof_dir -src_old /proj_1
-src_new /proj_2

profmerge -src_old "c:/program
files" -src_new "e:/program files"

Windows

profmerge -src_old
c:/proj/application -src_new d:/app

In the values specified for -src_old and -src_new, uppercase and lowercase characters are
treated as identical. Likewise, forward slash (/) and backward slash (\) characters are treated
as identical.

NOTE. Because the source relocation feature of profmerge modifies the pgopti.dpi
file, consider making a backup copy of the file before performing the source relocation.

proforder Tool

The proforder tool is used as part of the feedback compilation phase, to improve program
performance. Use proforder to generate a function order list for use with the /ORDER linker
option. The tool uses the following syntax:

1564

31 Intel® Fortran Compiler User and Reference Guides

Syntax

proforder [-prof_dir dir] [-o file]

where dir is the directory containing the profile files (.dpi and .spi), and file is the optional
name of the function order list file. The default name is proford.txt .

NOTE. The spelling of tools options may differ slightly from compiler options. Tools
options use an underscore (for example -prof_dir) instead of the hyphen used by compiler
options (for example -prof-dir or /Qprof-dir) to join words. Also, on Windows* OS
systems, the tool options are preceded by a hyphen ("-") unlike Windows compiler options,
which are preceded by a forward slash ("/").

proforder Options

The proforder tool supports the following options:

DescriptionDefaultTool Option

Lists supported options.-help

Disables version information.
This option is supported on
Windows* only.

-nologo

Instructs the tool to omit
static functions from function
ordering.

-omit_static

Specifies the directory where
the .spi and .dpi file reside.

-prof_dir dir

Specifies the name of the .dpi
file.

-prof_dpi file

Selects the .dpi and .spi files
that include the substring
value in the file name
matching the values passed
as string.

-prof_file string

1565

31

DescriptionDefaultTool Option

Specifies the name of the .spi
file.

-prof_spi file

Specifies an alternate name
for the output file.

proford.txt-o file

Using Function Order Lists, Function Grouping, Function Ordering, and Data Ordering
Optimizations

Instead of doing a full multi-file interprocedural build of your application by using the compiler
option -ipo (Linux* OS) or /Qipo (Windows* OS), you can obtain some of the benefits by
having the compiler and linker work together to make global decisions about where to place
the procedures and data in your application. These optimizations are not supported on Mac
OS* X systems.

The following table lists each optimization, the type of procedures or global data it applies to,
and the operating systems and architectures that it is supported on.

Supported OS and
ArchitecturesType of Procedure or DataOptimization

Windows OS: IA-32, Intel®
64, and IA-64 architectures

EXTERNAL procedures and
library procedures only (not
other types of static
procedures).

Function Order Lists:
Specifies the order in which
the linker should link the
non-static routines
(procedures) of your

Linux OS: not supported

program. This optimization
can improve application
performance by improving
code locality and reduce
paging. Also see Comparison
of Function Order Lists and
IPO Code Layout.

Linux OS: IA-32 and Intel 64
architectures

EXTERNAL procedures and
static procedures only (not
library procedures).

Function Grouping:
Specifies that the linker
should place the extern and
static routines (procedures)

Windows OS: not supportedof your program into hot or
cold program sections. This
optimization can improve

1566

31 Intel® Fortran Compiler User and Reference Guides

Supported OS and
ArchitecturesType of Procedure or DataOptimization

application performance by
improving code locality and
reduce paging.

Linux and Windows OS:
IA-32, Intel 64, and IA-64
architectures

EXTERNAL procedures and
static procedures only (not
library procedures)

Function Ordering: Enables
ordering of static and extern
routines using profile
information. Specifies the
order in which the linker
should link the routines
(procedures) of your
program. This optimization
can improve application
performance by improving
code locality and reduce
paging.

Linux and Windows OS,
IA-32, Intel 64, and IA-64
architectures

Static global data (data in
common blocks, module
variables, and variables for
which the compiler applied
the SAVE attribute or
statement) only

Data Ordering: Enables
ordering of static global data
items (data in common
blocks, module variables, and
variables for which the
compiler applied the SAVE
attribute or statement) based
on profiling information.
Specifies the order in which
the linker should link global
data of your program. This
optimization can improve
application performance by
improving the locality of
static global data, reduce
paging of large data sets, and
improve data cache use.

You can use only one of the function-related ordering optimizations listed above. However, you
can use the Data Ordering optimization with any one of the function-related ordering
optimizations listed above, such as Data Ordering with Function Ordering, or Data Ordering
with Function Grouping. In this case, specify the prof-gen option keyword globdata (needed
for Data Ordering) instead of srcpos (needed for function-related ordering).

1567

31

The following sections show the commands needed to implement each of these optimizations:
function order list, function grouping, function ordering, and data ordering. For all of these
optimizations, omit the -ipo (Linux* OS) or /Qipo (Windows OS) or equivalent compiler option.

Generating a Function Order List (Windows OS)

This section provides an example of the process for generating a function order list. Assume
you have a Fortran program that consists of the following files: file1.f90 and file2.f90.
Additionally, assume you have created a directory for the profile data files called c:\profdata.
You would enter commands similar to the following to generate and use a function order list
for your Windows application.

1. Compile your program using the /Qprof-gen:srcpos option. Use the /Qprof-dir option
to specify the directory location of the profile files. This step creates an instrumented
executable.

Example commands

ifort /exe:myprog /Qprof-gen:srcpos /Qprof-dir c:\profdata file1.f90
file2.f90

2. Run the instrumented program with one or more sets of input data. Change your directory
to the directory where the executables are located. The program produces a .dyn file each
time it is executed.

Example commands

myprog.exe

3. Before this step, copy all .dyn and .dpi files into the same directory. Merge the data from
one or more runs of the instrumented program by using the profmerge tool to produce the
pgopti.dpi file. Use the /prof_dir option to specify the directory location of the .dyn
files.

Example commands

profmerge /prof_dir c:\profdata

4. Generate the function order list using the proforder tool. (By default, the function order list
is produced in the file proford.txt.)

1568

31 Intel® Fortran Compiler User and Reference Guides

Example commands

proforder /prof_dir c:\profdata /o myprog.txt

5. Compile the application with the generated profile feedback by specifying the ORDER option
to the linker. Use the /Qprof-dir option to specify the directory location of the profile files.

Example commands

ifort /exe:myprog Qprof-dir c:\profdata file1.f90 file2.f90 /link
/ORDER:@MYPROG.txt

Using Function Grouping (Linux OS)

This section provides a general example of the process for using the function grouping
optimization. Assume you have a Fortran program that consists of the following files: file1.f90
and file2.f90. Additionally, assume you have created a directory for the profile data files
called profdata. You would enter commands similar to the following to use a function grouping
for your Linux application.

1. Compile your program using the -prof-gen option. Use the -prof-dir option to specify
the directory location of the profile files. This step creates an instrumented executable.

Example commands

ifort -o myprog -prof-gen -prof-dir ./profdata file1.f90 file2.f90

2. Run the instrumented program with one or more sets of input data. Change your directory
to the directory where the executables are located. The program produces a .dyn file each
time it is executed.

Example commands

./myprog

3. Copy all .dyn and .dpi files into the same directory. If needed, you can merge the data from
one or more runs of the instrumented program by using the profmerge tool to produce the
pgopti.dpi file.

1569

31

4. Compile the application with the generated profile feedback by specifying the -prof-func-
group option to request the function grouping as well as the -prof-use option to request
feedback compilation. Again, use the -prof-dir option to specify the location of the profile
files.

Example commands

ifort /exe:myprog file1.f90 file2.f90 -prof-func-group -prof-use -prof-dir
./profdata

Using Function Ordering

This section provides an example of the process for using the function ordering optimization.
Assume you have a Fortran program that consists of the following files: file1.f90 and
file2.f90. Additionally, assume you have created a directory for the profile data files called
c:\profdata (on Windows) or ./profdata (on Linux). You would enter commands similar to
the following to generate and use function ordering for your application.

1. Compile your program using the -prof-gen=srcpos (Linux) or /Qprof-gen:srcpos
(Windows) option. Use the -prof-dir (Linux) or /Qprof-dir (Windows) option to specify
the directory location of the profile files. This step creates an instrumented executable.

Example commandsOperating System

ifort -o myprog -prof-gen=srcpos
-prof-dir ./profdata file1.f90
file2.f90

Linux

ifort /exe:myprog /Qprof-gen:srcpos
/Qprof-dir c:\profdata file1.f90
file2.f90

Windows

2. Run the instrumented program with one or more sets of input data. Change your directory
to the directory where the executables are located. The program produces a .dyn file each
time it is executed.

Example commandsOperating System

./myprogLinux

1570

31 Intel® Fortran Compiler User and Reference Guides

Example commandsOperating System

myprog.exeWindows

3. Copy all .dyn and .dpi files into the same directory. If needed, you can merge the data from
one or more runs of the instrumented program by using the profmerge tool to produce the
pgopti.dpi file.

4. Compile the application with the generated profile feedback by specifying the -prof-func-
order (Linux) or /Qprof-func-order (Windows) option to request the function ordering
as well as the -prof-use (Linux) or /Qprof-use (Windows) option to request feedback
compilation. Again, use the -prof-dir (Linux) or /Qprof-dir (Windows) option to specify
the location of the profile files.

Example commandsOperating System

ifort -o myprog -prof-dir ./profdata
file1.f90 file2.f90 -prof-func-order
-prof-use

Linux

ifort /exe:myprog /Qprof-dir
c:\profdata file1.f90 file2.f90
/Qprof-func-order /Qprof-use

Windows

Using Data Ordering

This section provides an example of the process for using the data order optimization. Assume
you have a Fortran program that consists of the following files: file1.f90 and file2.f90.
Additionally, assume you have created a directory for the profile data files called c:\profdata
(on Windows) or ./profdata (on Linux). You would enter commands similar to the following
to use data ordering for your application.

1. Compile your program using the -prof-gen=globdata (Linux) or /Qprof-gen:globdata
(Windows) option. Use the -prof-dir (Linux) or /Qprof-dir (Windows) option to specify
the directory location of the profile files. This step creates an instrumented executable.

1571

31

Example commandsOperating System

ifort -o myprog -prof-gen=globdata
-prof-dir ./profdata file1.f90
file2.f90

Linux

ifort /exe:myprog
/Qprof-gen:globdata /Qprof-dir
c:\profdata file1.f90 file2.f90

Windows

2. Run the instrumented program with one or more sets of input data. If you specified a location
other than the current directory, change your directory to the directory where the executables
are located. The program produces a .dyn file each time it is executed.

Example commandsOperating System

./myprogLinux

myprog.exeWindows

3. Copy all .dyn and .dpi files into the same directory. If needed, you can merge the data from
one or more runs of the instrumented program by using the profmerge tool to produce the
pgopti.dpi file.

4. Compile the application with the generated profile feedback by specifying the -prof-data-
order (Linux) or /Qprof-data-order option to request the data ordering as well as the
-prof-use (Linux) or /Qprof-use (Windows) option to request feedback compilation.
Again, use the -prof-dir (Linux) or /Qprof-dir (Windows) option to specify the location
of the profile files.

Example commandsOperating System

ifort -o myprog -prof-dir
./profdata file1.f90 file2.f90
-prof-data-order -prof-use

Linux

ifort /exe:myprog Qprof-dir
c:\profdata file1.f90 file2.f90
/Qprof-data-order /Qprof-use

Windows

1572

31 Intel® Fortran Compiler User and Reference Guides

Comparison of Function Order Lists and IPO Code Layout

The Intel® compiler provides two methods of optimizing the layout of functions in the executable:

• Using a function order list

• Using the /Qipo (Windows) compiler option

Each method has its advantages. A function order list, created with proforder, lets you optimize
the layout of non-static functions: that is, external and library functions whose names are
exposed to the linker.

The compiler cannot affect the layout order for functions it does not compile, such as library
functions. The function layout optimization is performed automatically when IPO is active.

Function Order List Effects

Function Ordering with
proforderIPO Code LayoutFunction Type

No effectXStatic

XXExtern

XNo effectLibrary

Function Order List Usage Guidelines (Windows*)

Use the following guidelines to create a function order list:

• The order list only affects the order of non-static functions.

•

PGO API Support

API Support Overview

The Profile Information Generation Support (Profile IGS) lets you control the generation of
profile information during the instrumented execution phase of profile-guided optimizations.

A set of functions and an environment variable comprise the Profile IGS. The remaining topics
in this section describe the associated functions and environment variables.

1573

31

The compiler sets a define for _PGO_INSTRUMENT when you compile with either -prof-gen
(Linux* and Mac OS* X) or /Qprof-gen (Windows*). Without instrumentation, the Profile IGS
functions cannot provide PGO API support.

NOTE. The Profile IGS functions are written in C. Fortran applications must call C/C++
functions.

Normally, profile information is generated by an instrumented application when it terminates
by calling the standard exit() function.

To ensure that profile information is generated, the functions described in this section may be
necessary or useful in the following situations:

• The instrumented application exits using a non-standard exit routine.

• The instrumented application is a non-terminating application: exit() is never called.

• The application requires control of when the profile information is generated.

You can use the Profile IGS functions in your application by including a header file at the top
of any source file where the functions may be used.

Example

INCLUDE "pgouser.h"

The Profile IGS Environment Variable

The environment variable for Profile IGS is INTEL_PROF_DUMP_INTERVAL. This environment
variable may be used to initiate Interval Profile Dumping in an instrumented user application.

See Also
• PGO API Support
• _PGOPTI_Set_Interval_Prof_Dump()

PGO Environment Variables

The environment variables determine the directory in which to store dynamic information files,
control the creation of one or multiple dyn files to collect profiling information, and determine
whether to overwrite pgopti.dpi.

The environment variables are described in the table below.

1574

31 Intel® Fortran Compiler User and Reference Guides

DescriptionVariable

When using interval profile dumping (initiated
by INTEL_PROF_DUMP_INTERVAL or the
function

INTEL_PROF_DUMP_CUMULATIVE

_PGOPTI_Set_Interval_Prof_Dump) during
the execution of an instrumented user
application, allows creation of a single .dyn
file to contain profiling information instead of
multiple .dyn files. If this environment
variable is not set, executing an instrumented
user application creates a new .dyn file for
each interval. Setting this environment
variable is useful for applications that do not
terminate or those that terminate abnormally
(bypass the normal exit code).

Initiates interval profile dumping in an
instrumented user application. This
environment variable may be used to initiate
Interval Profile Dumping in an instrumented
application.

INTEL_PROF_DUMP_INTERVAL

See Interval Profile Dumping for more
information.

Specifies the directory in which dynamic
information files are created. This variable
applies to all three phases of the profiling
process.

PROF_DIR

Deprecated. Please use
INTEL_PROF_DUMP_INTERVAL instead.

PROF_DUMP_INTERVAL

Alters the feedback compilation phase
slightly. By default, during the feedback
compilation phase, the compiler merges data

PROF_NO_CLOBBER

from all dynamic information files and creates
a new pgopti.dpi file if the .dyn files are
newer than an existing pgopti.dpi file.

1575

31

DescriptionVariable

When this variable is set the compiler does
not overwrite the existing pgopti.dpi file.
Instead, the compiler issues a warning. You
must remove the pgopti.dpi file if you want
to use additional dynamic information files.

See the appropriate operating system documentation for instructions on how to specify
environment variables and their values.

Dumping Profile Information

The _PGOPTI_Prof_Dump_All() function dumps the profile information collected by the
instrumented application. The prototype of the function call is listed below.

Syntax

void _PGOPTI_Prof_Dump_All(void);

An older version of this function, _PGOPTI_Prof_Dump(), which will also dump profile information
is still available; the older function operates much like _PGOPTI_Prof_Dump_All(), except on
Linux when used in connection with shared libraries (.so) and _exit() to terminate a program.
When _PGOPTI_Prof_Dump_All() is called before_exit() to terminate the program, the new
function insures that a .dyn file is created for all shared libraries needing to create a .dyn file.
Use _PGOPTI_Prof_Dump_All() on Linux to insure portability and correct functionality.

The profile information is generated in a .dyn file (generated in phase 2 of PGO).

1576

31 Intel® Fortran Compiler User and Reference Guides

Recommended usage

Insert a single call to this function in the body of the function which terminates the user
application. Normally, _PGOPTI_Prof_Dump_All() should be called just once. It is also possible
to use this function in conjunction with _PGOPTI_Prof_Reset() function to generate multiple
.dyn files (presumably from multiple sets of input data).

Example

! Selectively collect profile information

! for the portion of the application

! involved in processing input data.

input_data = get_input_data()

do while (input_data)

call _PGOPTI_Prof_Reset()

call process_data(input_data)

call _PGOPTI_Prof_Dump_All()

input_data = get_input_data()

end do

end program

Dumping Profile Data

This discussion provides an example of how to call the C PGO API routines from Fortran.

As part of the instrumented execution phase of PGO, the instrumented program writes profile
data to the dynamic information file (.dyn file).

The profile information file is written after the instrumented program returns normally from
PROGRAM() or calls the standard exit function.

1577

31

Programs that do not terminate normally, can use the _PGOPTI_Prof_Dump_All function.
During the instrumentation compilation, using the -prof-gen (Linux* and Mac OS* X) or
/Qprof-gen (Windows*) option, you can add a call to this function to your program using a
strategy similar to the one shown below:

Example

interface

subroutine PGOPTI_Prof_Dump_All()

!DEC$attributes c,alias:'PGOPTI_Prof_Dump_All'::PGOPTI_Prof_Dump_All

end subroutine

subroutine PGOPTI_Prof_Reset()

!DEC$attributes c,alias:'PGOPTI_Prof_Reset'::PGOPTI_Prof_Reset

end subroutine

end interface

call PGOPTI_Prof_Dump_All()

CAUTION. You must remove the call or comment it out prior to the feedback compilation
with -prof-use (Linux and Mac OS X) or /Qprof-use (Windows).

Interval Profile Dumping

The _PGOPTI_Set_Interval_Prof_Dump() function activates Interval Profile Dumping and
sets the approximate frequency at which dumps occur. This function is used in non-terminating
applications.

The prototype of the function call is listed below.

Syntax

void _PGOPTI_Set_Interval_Prof_Dump(int interval);

This function is used in non-terminating applications.

1578

31 Intel® Fortran Compiler User and Reference Guides

The interval parameter specifies the time interval at which profile dumping occurs and is
measured in milliseconds. For example, if interval is set to 5000, then a profile dump and reset
will occur approximately every 5 seconds. The interval is approximate because the time-check
controlling the dump and reset is only performed upon entry to any instrumented function in
your application.

Setting the interval to zero or a negative number will disable interval profile dumping, and
setting a very small value for the interval may cause the instrumented application to spend
nearly all of its time dumping profile information. Be sure to set interval to a large enough value
so that the application can perform actual work and substantial profile information is collected.

You can use the profmerge tool to merge the .dyn files.

Recommended usage

Call this function at the start of a non-terminating user application to initiate interval profile
dumping. Note that an alternative method of initiating interval profile dumping is by setting
the environment variable INTEL_PROF_DUMP_INTERVAL to the desired interval value prior to
starting the application.

Using interval profile dumping, you should be able to profile a non-terminating application with
minimal changes to the application source code.

Resetting the Dynamic Profile Counters

The _PGOPTI_Prof_Reset() function resets the dynamic profile counters. The prototype of
the function call is listed below.

Syntax

void _PGOPTI_Prof_Reset(void);

Recommended usage

Use this function to clear the profile counters prior to collecting profile information on a section
of the instrumented application. See the example under Dumping Profile Information.

Dumping and Resetting Profile Information

The _PGOPTI_Prof_Dump_And_Reset() function dumps the profile information to a new .dyn
file and then resets the dynamic profile counters. Then the execution of the instrumented
application continues.

The prototype of the function call is listed below.

1579

31

Syntax

void _PGOPTI_Prof_Dump_And_Reset(void);

This function is used in non-terminating applications and may be called more than once. Each
call will dump the profile information to a new .dyn file.

Recommended usage

Periodic calls to this function enables a non-terminating application to generate one or more
profile information files (.dyn files). These files are merged during the feedback phase (phase
3) of profile-guided optimizations. The direct use of this function enables your application to
control precisely when the profile information is generated.

1580

31 Intel® Fortran Compiler User and Reference Guides

32Using High-Level Optimization
(HLO)

High-Level Optimizations (HLO) Overview

HLO exploits the properties of source code constructs (for example, loops and arrays) in applications
developed in high-level programming languages. Within HLO, loop transformation techniques include:

• Loop Permutation or Interchange

• Loop Distribution

• Loop Fusion

• Loop Unrolling

• Data Prefetching

• Scalar Replacement

• Unroll and Jam

• Loop Blocking or Tiling

• Partial-Sum Optimization

• Loadpair Optimization

• Predicate Optimization

• Loop Versioning with Runtime Data-Dependence Check (IA-64 architecture only)

• Loop Versioning with Low Trip-Count Check

• Loop Reversal

• Profile-Guided Loop Unrolling

• Loop Peeling

• Data Transformation: Malloc Combining and Memset Combining

• Loop Rerolling

• Memset and Memcpy Recognition

• Statement Sinking for Creating Perfect Loopnests

While the default optimization level, -O2 (Linux* OS and Mac OS* X) or /O2 (Windows* OS) option,
performs some high-level optimizations (for example, prefetching, complete unrolling, etc.), specifying
-O3 (Linux and Mac OS X) or /O3 (Windows) provides the best chance for performing loop
transformations to optimize memory accesses; the scope of optimizations enabled by these options
is different for IA-32 architecture, Intel® 64, and IA-64 architectures.

1581

Applications for the IA-32 and Intel® 64 architectures

In conjunction with the vectorization options, -ax and -x (Linux and Mac OS X) or /Qax and
/Qx (Windows), the -O3 (Linux and Mac OS X) or /O3 (Windows) option causes the compiler
to perform more aggressive data dependency analysis than the default -O2 (Linux and Mac OS
X) or /O2 (Windows).

Compiler prefetching is disabled in favor of the prefetching support available in the processors.

Applications for the IA-32 and IA-64 architectures

The -O3 (Linux and Mac OS X) or /O3 (Windows) option enables the -O2 (Linux and Mac OS
X) or /O2 (Windows) option and adds more aggressive optimizations (like loop transformations);
O3 optimizes for maximum speed, but may not improve performance for some programs.

Applications for the IA-64 architecture

The -ivdep-parallel (Linux) or /Qivdep-parallel (Windows) option implies there is no
loop-carried dependency in the loop where an IVDEP directive is specified. (This strategy is
useful for sparse matrix applications.)

Tune applications for IA-64 architecture by following these general steps:

1. Compile your program with -O3 (Linux) or /O3 (Windows) and -ipo (Linux) or /Qipo
(Windows). Use profile guided optimization whenever possible.

2. Identify hot spots in your code.

3. Generate a high-level optimization report.

4. Check why loops are not software pipelined.

5. Make the changes indicated by the results of the previous steps.

6. Repeat these steps until you achieve the desired performance.

General Application Tuning

In general, you can use the following strategies to tune applications for multiple architectures:

• Use !DEC$ ivdep to tell the compiler there is no dependency. You may also need the
-ivdep-parallel (Linux and Mac OS X) or /Qivdep-parallel (Windows) option to indicate
there is no loop carried dependency.

1582

32 Intel® Fortran Compiler User and Reference Guides

• Use !DEC$ swp to enable software pipelining (useful for lop-sided control and unknown loop
count).

• Use !DEC$ loop count(n) when needed.

• If cray pointers are used, use -safe-cray-ptr (Linux and Mac OS X) or /Qsafe-cray-
ptr (Windows) to indicate there is no aliasing.

• Use !DEC$ distribute point to split large loops (normally, this is automatically done).

• Check that the prefetch distance is correct. Use CDEC$ prefetch to override the distance
when it is needed.

Loop Unrolling

The benefits of loop unrolling are as follows:

• Unrolling eliminates branches and some of the code.

• Unrolling enables you to aggressively schedule (or pipeline) the loop to hide latencies if you
have enough free registers to keep variables live.

• For processors based on the IA-32 architectures, the processor can correctly predict the exit
branch for an inner loop that has 16 or fewer iterations, if that number of iterations is
predictable and there are no conditional branches in the loop. Therefore, if the loop body
size is not excessive, and the probable number of iterations is known, unroll inner loops for
the processors, until they have a maximum of 16 iterations

• A potential limitation is that excessive unrolling, or unrolling of very large loops, can lead
to increased code size.

The -unroll[n] (Linux* and Mac OS* X) or /Qunroll:[n] (Windows*) option controls how
the Intel® compiler handles loop unrolling.

Refer to Applying Optimization Strategies for more information.

DescriptionWindowsLinux and Mac OS X

Specifies the maximum
number of times you want to
unroll a loop. The following
examples unrolls a loop four
times:

/Qunroll:n-unrolln

ifort -unroll4 a.f90
(Linux and Mac OS X)

1583

32

DescriptionWindowsLinux and Mac OS X

ifort /Qunroll:4 a.f90
(Windows)

(Linux and Mac OS X)

(Windows)

NOTE. The compilers for
IA-64 architecture
recognizes only n = 0; any
other value is ignored.

Omitting a value for n lets
the compiler decide whether
to perform unrolling or not.
This is the default; the
compiler uses default
heuristics or defines n.

Passing 0 as n disables loop
unrolling; the following
examples disables loop
unrolling:

ifort -unroll0 a.f90
(Linux and Mac OS X)

ifort /Qunroll:0 a.f90
(Windows)

(Linux and Mac OS X)

(Windows)

Loop Independence

Loop independence is important since loops that are independent can be parallelized.
Independent loops can be parallelized in a number of ways, from the course-grained parallelism
of OpenMP*, to fine-grained Instruction Level Parallelism (ILP) of vectorization and software
pipelining.

1584

32 Intel® Fortran Compiler User and Reference Guides

Loops are considered independent when the computation of iteration Y of a loop can be done
independently of the computation of iteration X. In other words, if iteration 1 of a loop can be
computed and iteration 2 simultaneously could be computed without using any result from
iteration 1, then the loops are independent.

Occasionally, you can determine if a loop is independent by comparing results from the output
of the loop with results from the same loop written with a decrementing index counter.

For example, the loop shown in example 1 might be independent if the code in example 2
generates the same result.

Example

subroutine loop_independent_A (a,b,MAX)

implicit none

integer :: j, MAX, a(MAX), b(MAX)

do j=0, MAX

a(j) = b(j)

end do

end subroutine loop_independent_A

subroutine loop_independent_B (a,b,MAX)

implicit none

integer :: j, MAX, a(MAX), b(MAX)

do j=MAX, 0, -1

a(j) = b(j)

end do

end subroutine loop_independent_B

When loops are dependent, improving loop performance becomes much more difficult. Loops
can be dependent in several, general ways.

• Flow Dependency

• Anti Dependency

• Output Dependency

• Reductions

The following sections illustrate the different loop dependencies.

1585

32

Flow Dependency - Read After Write

Cross-iteration flow dependence is created when variables are written then read in different
iterations, as shown in the following example:

Example

subroutine flow_dependence (A,MAX)

implicit none

integer :: J,MAX

real :: A(MAX)

do j=1, MAX

A(J)=A(J-1)

end do

end subroutine flow_dependence

The above example is equivalent to the following lines for the first few iterations:

Sample Iterations

A[1]=A[0];

A[2]=A[1];

Recurrence relations feed information forward from one iteration to the next.

Example

subroutine time_stepping_loops (a,b,MAX)

implicit none

integer :: J,MAX

real :: a(MAX), b(MAX)

do j=1, MAX

a(j) = a(j-1) + b(j)

end do

end subroutine time_stepping_loops

1586

32 Intel® Fortran Compiler User and Reference Guides

Most recurrences cannot be made fully parallel. Instead, look for a loop further out or further
in to parallelize. You might be able to get more performance gains through unrolling.

Anti Dependency - Write After Read

Cross-iteration anti-dependence is created when variables are read then written in different
iterations, as shown in the following example:

Example

subroutine anti_dependence (A,MAX)

implicit none

integer :: J,MAX

real :: a(MAX), b(MAX)

do J=1, MAX

A(J)=A(J+1)

end do

end subroutine anti_dependence

The above example is equivalent to the following lines for the first few iterations:

Sample Iterations

A[1]=A[2];

A[2]=A[3];

1587

32

Output Dependency - Write After Write

Cross-iteration output dependence is where variables are written then rewritten in a different
iteration. The following example illustrates this type of dependency:

Example

subroutine output_dependence (A,B,C,MAX)

implicit none

integer :: J,MAX

real :: a(MAX), b(MAX), c(MAX)

do J=1, MAX

A(J)=B(J)

A(J+1)=C(J)

end do

end subroutine output_dependence

The above example is equivalent to the following lines for the first few iterations:

Sample Iterations

A[1]=B[1];

A[2]=C[1];

A[2]=B[2];

A[3]=C[2];

1588

32 Intel® Fortran Compiler User and Reference Guides

Reductions

The Intel® compiler can successfully vectorize or software pipeline (SWP) most loops containing
reductions on simple math operators like multiplication (*), addition (+), subtraction (-), and
division (/). Reductions collapse array data to scalar data by using associative operations:

Example

subroutine reduction (sum,c,MAX)

implicit none

integer :: j,MAX

real :: sum, c(MAX)

do J=0, MAX

sum = sum + c(j)

end do

end subroutine reduction

The compiler might occasionally misidentify a reduction and report flow-, anti-,
output-dependencies or sometimes loop-carried memory-dependency-edges; in such cases,
the compiler will not vectorize or SWP the loop.

Prefetching with Options

The goal of prefetch insertion optimization is to reduce cache misses by providing hints to the
processor about when data should be loaded into the cache. The prefetch optimization is enabled
or disabled by the -opt-prefetch (Linux* and Mac OS* X) or /Qopt-prefetch (Windows*)
compiler option. This option also allows you to specify the level of software prefetching.

To facilitate compiler optimization:

• Minimize use of global variables and pointers.

• Minimize use of complex control flow.

• Choose data types carefully and avoid type casting.

In addition to the -opt-prefetch (Linux and Mac OS X) or /Qopt-prefetch (Windows) option,
an intrinsic subroutine mm_prefetch and compiler directive prefetch are also available.

The architecture affects the option behavior. For more information about the differences, see
the following topic:

1589

32

• -opt-prefetch compiler option

See Also
• Using High-Level Optimization (HLO)
• Other Resources

1590

32 Intel® Fortran Compiler User and Reference Guides

33Optimization Support Features

Optimization Support Features Overview

This section describes the language extensions that enable you to optimize your source code directly.

• Loop Support

• Loop Unrolling Support

• Vectorization Support

• Prefetch Support

• Software Pipelining (IA-64 Architecture)

See General Compiler Directives for more information about these directives.

Loop Support

LOOP COUNT Directive

The LOOP COUNT directive can affect heuristics used in vectorization, loop-transformations, and
software pipelining (IA-64 architecture). The directive can specific the minimum, maximum, or
average number of iterations for a DO loop. In addition, a list of commonly occurring values can be
specified. This behavior might help the compiler generate multiple versions and perform complete
unrolling.

1591

The syntax for this directive supports the following syntax variations:

Syntax

!DEC$ LOOP COUNT (n)

!DEC$ LOOP COUNT = n

or

!DEC$ LOOP COUNT (n1[,n2]...)

!DEC$ LOOP COUNT = n1[,n2]...

or

!DEC$ LOOP COUNT MAX(n), AVG(n)

!DEC$ LOOP COUNT MAX=n, MIN=n, AVG=n

The syntax variations support the following arguments:

DescriptionArgument

Non-negative integer value. The compiler will
attempt to iterate the next loop the number
of times specified in n; however, the number
of iterations is not guaranteed.

(n) or =n

Non-negative integer values. The compiler
will attempt to iterate the next loop the
number of time specified by n1 or n2, or some

(n1[,n2]...)

or

=n1[,n2]...

other unspecified number of times. This
behavior allows the compiler some flexibility
in attempting to unroll the loop. The number
of iterations is not guaranteed.

Non-negative integer values. Specify one or
more in any order without duplication. The
compiler insures the next loop iterates for

min(n), max(n), >avg(n)

or

min=n, max=n, avg=n
the specified maximum, minimum, or average
number (n1) of times. The specified number
of iterations is guaranteed for min and max.

You can specify more than one directive for a single loop; however, do not duplicate the directive.

1592

33 Intel® Fortran Compiler User and Reference Guides

The following example illustrates how to use the directive to iterate through the loop and enable
software pipelining on IA-64 architectures.

Using Loop Count (n)

subroutine loop_count(a, b, N)

integer :: i, N, b(N), c(N)

!DEC$ LOOP COUNT (1000)

do i = 1, 1000

b(i) = a(i) + 1

enddo

end subroutine loop_count

The following example illustrates how to use the directive to iterate through the loop a minimum
of three, a maximum of ten, and average of five times.

Using Loop Count min, max, avg

!DEC$ LOOP COUNT MIN(3), MAX(10), AVG(5)

DO i = 1, 15

PRINT i

END DO

DISTRIBUTE POINT Directive

The DISTRIBUTE POINT directive instructs the compiler to prefer loop distribution at the location
indicated. The syntax for this directive is shown below:

Syntax

!DEC$ DISTRIBUTE POINT

Loop distribution can cause large loops to be distributed into smaller ones. This strategy can
enable software pipelining for the new, smaller loops (IA-64 architecture).

• If the directive is placed inside a loop, distribution is performed after the directive and any
loop-carried dependency is ignored.

1593

33

• If the directive is placed before a loop, the compiler determines where to distribute the loops
and observes data dependency. If they are placed inside the loop, the compiler supports
multiple instances of the directive.

Using distribute point

subroutine dist1(a, b, c, d, N)

integer :: i, N, a(N), b(N), c(N), d(N)

!DEC$ DISTRIBUTE POINT

do i = 1, N

b(i) = a(i) + 1

c(i) = a(i) + b(i)

! Compiler will decide where to distribute.

! Data dependency is observed.

d(i) = c(i) + 1

enddo

end subroutine dist1

subroutine dist2(a, b, c, d, N)

integer :: i, N, a(N), b(N), c(N), d(N)

do i = 1, N

b(i) = a(i) + 1

!DEC$

DISTRIBUTE POINT

! Distribution will start here, ignoring all

! loop-carried dependency.

c(i) = a(i) + b(i)

d(i) = c(i) + 1

enddo

end subroutine dist2

1594

33 Intel® Fortran Compiler User and Reference Guides

Loop Unrolling Support

The UNROLL[n] directive tells the compiler how many times to unroll a counted loop. The general
syntax for this directive is shown below:

Syntax

!DEC$ UNROLL(n)

where n is an integer constant from 0 through 255.

The UNROLL directive must precede the DO statement for each DO loop it affects. If n is specified,
the optimizer unrolls the loop n times. If n is omitted or if it is outside the allowed range, the
optimizer assigns the number of times to unroll the loop.

This directive is supported only when option -O3 (Linux* OS and Mac OS* X) or /O3 (Windows*
OS) is used. The UNROLL directive overrides any setting of loop unrolling from the command
line.

Currently, the directive can be applied only for the innermost loop nest. If applied to the outer
loop nests, it is ignored. The compiler generates correct code by comparing n and the loop
count.

Example

subroutine unroll(a, b, c, d)

integer :: i, b(100), c(100), d(100)

!DEC$ UNROLL(4)

do i = 1, 100

b(i) = a(i) + 1

d(i) = c(i) + 1

enddo

end subroutine unroll

1595

33

Vectorization Support

IVDEP Directive

The IVDEP directive instructs the compiler to ignore assumed vector dependences. To ensure
correct code, the compiler treats an assumed dependence as a proven dependence, which
prevents vectorization. This directive overrides that decision. Use IVDEP only when you know
that the assumed loop dependences are safe to ignore.

For example, if the expression j >= 0 is always true in the code fragment bellow, the IVDEP
directive can communicate this information to the compiler. This directive informs the compiler
that the conservatively assumed loop-carried flow dependences for values j < 0 can be safely
ignored:

Example

!DEC$ IVDEP

do i = 1, 100

a(i) = a(i+j)

enddo

NOTE. The proven dependences that prevent vectorization are not ignored, only assumed
dependences are ignored.

1596

33 Intel® Fortran Compiler User and Reference Guides

The usage of the directive differs depending on the loop form, see examples below.

Example: Loop 1

do i

= a(*) + 1

a(*) =

enddo

Example: Loop 2

do i

a(*) =

= a(*) + 1

enddo

For loops of the form 1, use old values of a, and assume that there is no loop-carried flow
dependencies from DEF to USE.

For loops of the form 2, use new values of a, and assume that there is no loop-carried
anti-dependencies from USE to DEF.

1597

33

In both cases, it is valid to distribute the loop, and there is no loop-carried output dependency.

Example 1

!DEC$ IVDEP

do j=1,n

a(j)= a(j+m) + 1

enddo

Example 2

!DEC$ IVDEP

do j=1,n

a(j) = b(j) + 1

b(j) = a(j+m) + 1

enddo

Example 1 ignores the possible backward dependencies and enables the loop to get software
pipelined.

Example 2 shows possible forward and backward dependencies involving array a in this loop
and creating a dependency cycle. With IVDEP, the backward dependencies are ignored.

IVDEP has options: IVDEP:LOOP and IVDEP:BACK. The IVDEP:LOOP option implies no
loop-carried dependencies. The IVDEP:BACK option implies no backward dependencies.

The IVDEP directive is also used for IA-64 architecture based applications.

Overriding the Efficiency Heuristics in the Vectorizer

In addition to IVDEP directive, there are VECTOR directives that can be used to override the
efficiency heuristics of the vectorizer:

• VECTOR ALWAYS

• NOVECTOR

• VECTOR ALIGNED

• VECTOR UNALIGNED

1598

33 Intel® Fortran Compiler User and Reference Guides

• VECTOR NONTEMPORAL

The VECTOR directives control the vectorization of the subsequent loop in the program, but the
compiler does not apply them to nested loops. Each nested loop needs its own directive preceding
it. You must place the vector directive before the loop control statement.

VECTOR ALWAYS and NOVECTOR Directives

The VECTOR ALWAYS directive overrides the efficiency heuristics of the vectorizer, but it only
works if the loop can actually be vectorized, that is: use IVDEP to ignore assumed dependences.

The VECTOR ALWAYS directive can be used to override the default behavior of the compiler in
the following situation. Vectorization of non-unit stride references usually does not exhibit any
speedup, so the compiler defaults to not vectorizing loops that have a large number of non-unit
stride references (compared to the number of unit stride references). The following loop has
two references with stride 2.

Vectorization would be disabled by default, but the directive overrides this behavior.

Example

!DEC$ VECTOR ALWAYS

do i = 1, 100, 2

a(i) = b(i)

enddo

If, on the other hand, avoiding vectorization of a loop is desirable (if vectorization results in a
performance regression rather than improvement), the NOVECTOR directive can be used in the
source text to disable vectorization of a loop. For instance, the compiler vectorizes the following
example loop by default. If this behavior is not appropriate, the NOVECTOR directive can be
used, as shown below.

Example

!DEC$ NOVECTOR

do i = 1, 100

a(i) = b(i) + c(i)

enddo

VECTOR ALIGNED/UNALIGNED Directives

1599

33

Like VECTOR ALWAYS, these directives also override the efficiency heuristics. The difference is
that the qualifiers UNALIGNED and ALIGNED instruct the compiler to use, respectively, unaligned
and aligned data movement instructions for all array references. This disables all the advanced
alignment optimizations of the compiler, such as determining alignment properties from the
program context or using dynamic loop peeling to make references aligned.

NOTE. The directives VECTOR [ALWAYS|UNALIGNED|ALIGNED] should be used with
care. Overriding the efficiency heuristics of the compiler should only be done if the
programmer is absolutely sure the vectorization will improve performance. Furthermore,
instructing the compiler to implement all array references with aligned data movement
instructions will cause a run-time exception in case some of the access patterns are
actually unaligned.

The VECTOR NONTEMPORAL Directive

The VECTOR NONTEMPORAL directive results in streaming stores on the systems based on IA-32
and Intel® 64 architectures. A floating-point type loop together with the generated assembly
are shown in the example below. For large n, significant performance improvements result on
a Pentium 4 system over a non-streaming implementation.

1600

33 Intel® Fortran Compiler User and Reference Guides

The following example shows the VECTOR NONTEMPORAL directive that directs the compiler to
use streaming store on the array a but not for the array b:

Example

subroutine set(a,b,n)

integer i,n

real a(n), b(n)

!DEC$ VECTOR NONTEMPORAL (a)

!DEC$ VECTOR ALIGNED

do i = 1, n

a(i) = 1

b(i) = 1

enddo

end

program setit

parameter(n=1024*1204)

real a(n), b(n)

integer i

do i = 1, n

a(i) = 0

enddo

call set(a,b,n)

do i = 1, n

if (a(i)+b(i).ne.2) then

print *, 'failed nontemp.f', a(i), i

stop

endif

enddo

print *, 'passed nontemp.f'

1601

33

Example

end

Prefetching Support

Data prefetching refers to loading data from a relatively slow memory into a relatively fast
cache before the data is needed by the application. Data prefetch behavior depends on the
architecture:

• IA-64 architecture: The Intel® compiler generally issues prefetch instructions when you
specify -O1, -O2, and -O3 (Linux*) or /O1, /O2, and /03 (Windows*).

• IA-32 and Intel® 64 architectures: The processor identifies simple, regular data access
patterns and performs a hardware prefetch. The compiler will only issue prefetch instructions
for more complicated data access patterns where a hardware prefetch is not expected.

Issuing prefetches improves performance in most cases; however, there are cases where issuing
prefetch instructions might slow application performance. Experiment with prefetching; it can
be helpful to turn prefetching on or off with a compiler option while leaving all other optimizations
unaffected to isolate a suspected prefetch performance issue. See Prefetching with Options for
information on using compiler options for prefetching data.

There are two primary methods of issuing prefetch instructions. One is by using compiler
directives and the other is by using compiler intrinsics.

PREFETCH and NOPREFETCH Directives

The PREFETCH and NOPREFETCH directives are supported by Itanium® processors only. These
directives assert that the data prefetches be generated or not generated for some memory
references. This affects the heuristics used in the compiler.

1602

33 Intel® Fortran Compiler User and Reference Guides

If loop includes expression A(j), placing PREFETCH A in front of the loop, instructs the compiler
to insert prefetches for A(j + d) within the loop. d is the number of iterations ahead to prefetch
the data and is determined by the compiler. This directive is supported with optimization levels
of -O1 (Linux*) or /O1 (Windows*) or higher. Remember that -O2 or /O2 is the default
optimization level.

Example

!DEC$ NOPREFETCH c

!DEC$ PREFETCH a

do i = 1, m

b(i) = a(c(i)) + 1

enddo

1603

33

The following example is for IA-64 architecture only:

Example

do j=1,lastrow-firstrow+1

i = rowstr(j)

iresidue = mod(rowstr(j+1)-i, 8)

sum = 0.d0

!DEC$ NOPREFETCH a,p,colidx

do k=i,i+iresidue-1

sum = sum + a(k)*p(colidx(k))

enddo

!DEC$ NOPREFETCH colidx

!DEC$ PREFETCH a:1:40

!DEC$ PREFETCH p:1:20

do k=i+iresidue, rowstr(j+1)-8, 8

sum = sum + a(k)*p(colidx(k))

& + a(k+1)*p(colidx(k+1)) + a(k+2)*p(colidx(k+2))

& + a(k+3)*p(colidx(k+3)) + a(k+4)*p(colidx(k+4))

& + a(k+5)*p(colidx(k+5)) + a(k+6)*p(colidx(k+6))

& + a(k+7)*p(colidx(k+7))

enddo

q(j) = sum

enddo

Intrinsics

Before inserting compiler intrinsics, experiment with all other supported compiler options and
directives. Compiler intrinsics are less portable and less flexible than either a compiler option
or compiler directives.

1604

33 Intel® Fortran Compiler User and Reference Guides

Directives enable compiler optimizations while intrinsics perform optimizations. As a result,
programs with directives are more portable, because the compiler can adapt to different
processors, while the programs with intrinsics may have to be rewritten/ported for different
processors. This is because intrinsics are closer to assembly programming.

The compiler supports an intrinsic subroutine mm_prefetch. In contrast the way the prefetch
directive enables a data prefetch from memory, the subroutine mm_prefetch prefetches data
from the specified address on one memory cache line. The mm_prefetch subroutine is described
in the Intel® Fortran Language Reference.

Software Pipelining Support (IA-64 Architecture)

The SWP directive indicates preference for loops to be software pipelined. The directive does
not help data dependency, but overrides heuristics based on profile counts or unequal control
flow.

The syntax for this directive is shown below:

Syntax

!DEC$ SWP

The Software Pipelining optimization triggered by the SWP directive applies instruction scheduling
to certain innermost loops, allowing instructions within a loop to be split into different stages,
allowing increased instruction level parallelism.

This strategy can reduce the impact of long-latency operations, resulting in faster loop execution.
Loops chosen for software pipelining are always innermost loops that do not contain procedure
calls that are not inlined. Because the optimizer no longer considers fully unrolled loops as
innermost loops, fully unrolling loops can allow an additional loop to become the innermost
loop (see loop unrolling options).

You can view an optimization report to see whether software pipelining was applied (see
Optimizer Report Generation).

1605

33

The following example demonstrates on way of using the directive to instruct the compiler to
attempt software pipelining.

Example: Using SWP

subroutine swp(a, b)

integer :: i, a(100), b(100)

!DEC$ SWP

do i = 1, m

if (a(i) .eq. 0)

then

b(i) = a(i) + 1

else

b(i) = a(i)/c(i)

endif

enddo

end subroutine swp

About Register Allocation

The Intel® Compiler for IA-32 and Intel® 64 architectures contains an advanced, region-based
register allocator. Register allocation can be influenced using the -opt-ra-region-strategy
(Linux* and Mac OS* X) and /Qopt-ra-region-strategy (Windows*) option.

The register allocation high-level strategy when compiling a routine is to partition the routine
into regions, assign variables to registers or memory within each region, and resolve
discrepancies at region boundaries. The overall quality of the allocation depends heavily on the
region partitioning.

By default, the Intel Compiler selects the best region partitioning strategy, but the -opt-ra-
region-strategy (Linux* and Mac OS X) and /Qopt-ra-region-strategy (Windows) option
allows you to experiment with the other available allocation strategies, which might result in
better performance in some cases. The option provides several different arguments that allow
you to specify the following allocation strategies:

• routine = a region for each routine

1606

33 Intel® Fortran Compiler User and Reference Guides

• trace = a region for each trace

• loop = a region for each loop

• block = a region for each block

• default = the compiler selects best allocation strategy

See the /Qopt-ra-region-strategy (Windows) -opt-ra-region-strategy (Linux and Mac
OS X) compiler option for additional information.

The option can affect compile time. Register allocation is a relatively costly operation, and the
time spent in register allocation tends to grow as the number of regions increases. Expect
relative compile time to increase in the order listed, from shortest to longest:

1. routine-based regions (shortest)

2. loop-based regions

3. trace-based regions

4. block-based regions (longest)

Trace-based regions tend to work very well when profile guided optimizations are enabled. The
allocator is able to construct traces that accurately reflect the hot paths through the routine.

In the absence of profile information, loop-based regions tend to work well because the execution
profile of a program tends to match its loop structure. In programs where the execution profile
does not match the loop structure, routine- or block-based regions can produce better allocations.

Block-based regions provide maximum flexibility to the allocator and in many cases can produce
the best allocation; however, the allocator is sometimes over-aggressive with block-based
regions about allocating variables to registers; the behavior can lead to poor allocations in the
IA-32 and Intel® 64 architectures where registers can be scarce resources.

Register Allocation Example Scenarios

Consider the following example, which illustrates a control flow that results from a simple
if-then-else statement within a loop.

1607

33

There are 3 variables in this loop: i, s, and n. For this example, assume there are only two
registers available to hold these three variables; one, or more, variable will need to be stored
in memory for at least part of the loop.

The best choice depends on which path through the loop is more frequently executed. For
example, if B1, B2, B4 is the hot path, keeping variables i and n in registers along that path
and saving and restoring one of them in B3 to free up a register for s is the best strategy. That
scenario avoids all memory accesses on the hot path. If B1, B3, B4 is the hot path, the best
strategy is to keep variables i and s in registers and to store n in memory, since there are no
assignments to n along the path. This strategy results in a single memory read on the hot path.
If both paths are executed with equal frequency, the best strategy is to save and restore either
i or n around B3 just like in the B1, B2, B4 case. That case avoids all memory accesses on one
path and results in a single memory write and a single memory read on the other path.

The compiler generates two significantly different allocations for this example depending on
the region strategy; the preferred result depends on the runtime behavior of the program,
which may not be known at compile time.

With a routine- or a loop-based strategy, all four blocks will be allocated together. The compiler
picks a variable to store in memory based on expected costs. In this example, the allocator will
probably select variable n, resulting in a memory write in B2 and a memory read in B3.

1608

33 Intel® Fortran Compiler User and Reference Guides

With a trace-based strategy, the compiler uses estimates of execution frequency to select the
most frequently executed path through the loop. When profile guided optimizations are enabled
the estimates are based on the concrete information about the runtime behavior of the
instrumented program. If the PGO information accurately reflects typical application behavior,
the compiler produces highly accurate traces. In other cases, the traces are not necessarily an
accurate reflection of the hot paths through the code.

Suppose in this example that the compiler selects B1, B2, B4 path as the hot trace. The compiler
will assign these three blocks to one region, and B3 will be in a separate region. There are only
two variables in the larger region, so both may be kept in registers. In the region containing
just B3 either i or n are stored in memory, and the compiler makes an arbitrary choice between
the two variables. In a block-based strategy, each block is a region. In the B1, B2, B4 path
there are sufficient registers to hold the two variables: i and n. The region containing B3 is
treated just like the trace-based case; either i or n will be stored in memory.

1609

33

34Programming Guidelines

Coding Guidelines for Intel® Architectures

This topic provides general guidelines for coding practices and techniques for using:

• IA-32 and Intel® 64 architectures supporting MMX™ technology and Intel® Streaming SIMD
Extensions Streaming SIMD Extensions (SSE), Streaming SIMD Extensions 2 (SSE2), Streaming
SIMD Extensions 3 (SSE3), and Streaming SIMD Extensions 4 (SSE4)

• IA-64 architecture

This section describes practices, tools, coding rules and recommendations associated with the
architecture features that can improve the performance for processors based on IA-32, Intel® 64,
and IA-64 architectures.

NOTE. If a guideline refers to a particular architecture only, this architecture is explicitly
named. The default is for IA-32 architectures.

Performance of compiler-generated code may vary from one compiler to another. Intel® Fortran
Compiler generates code that is optimized for Intel architectures. You can significantly improve
performance by using various compiler optimization options. In addition, you can help the compiler
to optimize your Fortran program by following the guidelines described in this section.

To achieve optimum processor performance in your Fortran application, do the following:

• avoiding memory access stalls

• ensuring good floating-point performance

• ensuring good SIMD integer performance

• using vectorization

The following sections summarize and describe coding practices, rules and recommendations
associated with the features that will contribute to optimizing the performance on Intel
architecture-based processors.

1611

Memory Access

The Intel compiler lays out arrays in column-major order. For example, in a two-dimensional
array, elements A(22,34) and A(23,34) are contiguous in memory. For best performance,
code arrays so that inner loops access them in a contiguous manner.

Consider the following examples. The code in example 1 will likely have higher performance
than the code in example 2.

Example 1

subroutine contiguous(a, b, N)

integer :: i, j, N, a(N,N), b(N,N)

do j = 1, N

do i = 1, N

b(i, j) = a(i, j) + 1

end do

end do

end subroutine contiguous

The code above illustrates access to arrays A and B in the inner loop I in a contiguous manner
which results in good performance; however, the following example illustrates access to arrays
A and B in inner loop J in a non-contiguous manner which results in poor performance.

Example 2

subroutine non_contiguous(a, b, N)

integer :: i, j, N, a(N,N), b(N,N)

do i = 1, N

do j = 1, N

b(i, j) = a(i, j) + 1

end do

end do

end subroutine non_contiguous

1612

34 Intel® Fortran Compiler User and Reference Guides

The compiler can transform the code so that inner loops access memory in a contiguous manner.
To do that, you need to use advanced optimization options, such as -O3 (Linux* OS) or /O3
(Windows* OS) for IA-32, Intel® 64, and IA-64 architectures, and -O3 (Linux) or /O3 (Windows)
and -ax (Linux) or /Qax (Windows) for IA-32 architecture only.

Memory Layout

Alignment is an increasingly important factor in ensuring good performance. Aligned memory
accesses are faster than unaligned accesses. If you use the interprocedural optimization on
multiple files, the -ipo (Linux) or /Qipo (Windows) option, the compiler analyzes the code
and decides whether it is beneficial to pad arrays so that they start from an aligned boundary.
Multiple arrays specified in a single common block can impose extra constraints on the compiler.

For example, consider the following COMMON statement:

Example 3

COMMON /AREA1/ A(200), X, B(200)

If the compiler added padding to align A(1) at a 16-byte aligned address, the element B(1)
would not be at a 16-byte aligned address. So it is better to split AREA1 as follows.

Example 4

COMMON /AREA1/ A(200)

COMMON /AREA2/ X

COMMON /AREA3/ B(200)

The above code provides the compiler maximum flexibility in determining the padding required
for both A and B.

Setting Data Type and Alignment

Alignment of data affects these kinds of variables:

• Those that are dynamically allocated. (Dynamically allocated data allocated with ALLOCATE
is 8-byte aligned.)

• Those that are members of a data structure

• Those that are global or local variables

1613

34

• Those that are parameters passed on the stack

For best performance, align data as follows:

• Align 8-bit data at any address.

• Align 16-bit data to be contained within an aligned four byte word.

• Align 32-bit data so that its base address is a multiple of four.

• Align 64-bit data so that its base address is a multiple of eight.

• Align 128-bit data so that its base address is a multiple of sixteen (8-byte boundaries).

Causes of Unaligned Data and Ensuring Natural Alignment

For optimal performance, make sure your data is aligned naturally. A natural boundary is a
memory address that is a multiple of the data item's size. For example, a REAL (KIND=8) data
item aligned on natural boundaries has an address that is a multiple of 8. An array is aligned
on natural boundaries if all of its elements are so aligned.

All data items whose starting address is on a natural boundary are naturally aligned. Data not
aligned on a natural boundary is called unaligned data.

Although the Intel® compiler naturally aligns individual data items when it can, certain Fortran
statements can cause data items to become unaligned.

You can use the align command-option to ensure naturally aligned data, but you should check
and consider reordering data declarations of data items within common blocks, derived-type
structures, and record structures as follows:

• Carefully specify the order and sizes of data declarations to ensure naturally aligned data.

• Start with the largest size numeric items first, followed by smaller size numeric items, and
then non-numeric (character) data.

The !DEC$ ATTRIBUTES ALIGN directive specifies the byte alignment for a variable.

Common blocks (COMMON statement), derived-type data, and record structures (RECORD
statement) usually contain multiple items within the context of the larger structure.

The following statements can cause unaligned data:

DescriptionOptionsStatement

The order of variables in the
COMMON statement
determines their storage

commons or dcommonsCommon blocks (COMMON
statement)

1614

34 Intel® Fortran Compiler User and Reference Guides

DescriptionOptionsStatement

order. Unless you are sure
that the data items in the
common block will be
naturally aligned, specify
either -align commons or
-align dcommons (Linux*)
or /align:commons or
/align:dcommons
(Windows*), depending on
the largest data size used.

Derived-type data items are
declared after a TYPE
statement.

records or sequenceDerived-type
(user-defined) data

If your data includes
derived-type data structures,
you should use the -align
records (Linux) or
/align:records (Windows)
option, unless you are sure
that the data items in the
derived-type structures will
be naturally aligned.

If you omit the sequence
statement, the -align
records (Linux) or
/align:records (Windows)
option (default) ensures all
data items are naturally
aligned.

If you specify the SEQUENCE
statement, the -align
records (Linux) or
/align:records (Windows)
option is prevented from
adding necessary padding to

1615

34

DescriptionOptionsStatement

avoid unaligned data (data
items are packed) unless you
specify SEQUENCE. When you
use SEQUENCE, you should
specify data declaration order
so that all data items are
naturally aligned.

Intel Fortran record
structures usually contain
multiple data items. The

record
or structure

Record structures (RECORD
and STRUCTURE statements)

order of variables in the
STRUCTURE statement
determines their storage
order. The RECORD statement
names the record structure.
Record structures are an Intel
Fortran language extension.

If your data includes record
structures, you should use
the -align records (Linux)
or /align:records
(Windows) option, unless you
are sure that the data items
in the record structures will
be naturally aligned.

EQUIVALENCE statements can
force unaligned data or cause
data to span natural

EQUIVALENCE statements

boundaries. For more
information, see the Intel®

Fortran Language Reference.

To avoid unaligned data in a common block, derived-type data, or record structure (extension),
use one or both of the following:

1616

34 Intel® Fortran Compiler User and Reference Guides

• For new programs or for programs where the source code declarations can be modified
easily, plan the order of data declarations with care. For example, you should order variables
in a COMMON statement such that numeric data is arranged from largest to smallest, followed
by any character data (see the data declaration rules in Ordering Data Declarations to Avoid
Unaligned Data below.

• For existing programs where source code changes are not easily done or for array elements
containing derived-type or record structures, you can use command line options to request
that the compiler align numeric data by adding padding spaces where needed.

Other possible causes of unaligned data include unaligned actual arguments and arrays that
contain a derived-type structure or Intel Fortran record structure as detailed below.

• When actual arguments from outside the program unit are not naturally aligned, unaligned
data access occurs. Intel Fortran assumes all passed arguments are naturally aligned and
has no information at compile time about data that will be introduced by actual arguments
during program execution.

• For arrays where each array element contains a derived-type structure or Intel Fortran
record structure, the size of the array elements may cause some elements (but not the first)
to start on an unaligned boundary.

• Even if the data items are naturally aligned within a derived-type structure without the
SEQUENCE statement or a record structure, the size of an array element might require use
of the -align records (Linux) or /align:records (Windows) option to supply needed
padding to avoid some array elements being unaligned.

• If you specify -align norecords (Linux) or /align:norecords (Windows) or specify -vms
(Linux) or /Qvms (Windows) without RECORDS no padding bytes are added between array
elements. If array elements each contain a derived-type structure with the SEQUENCE
statement, array elements are packed without padding bytes regardless of the Fortran
command options specified. In this case, some elements will be unaligned.

• When the -align records (Linux) or /align:records (Windows)option is in effect, the
number of padding bytes added by the compiler for each array element is dependent on the
size of the largest data item within the structure. The compiler determines the size of the
array elements as an exact multiple of the largest data item in the derived-type structure
without the SEQUENCE statement or a record structure. The compiler then adds the
appropriate number of padding bytes. For instance, if a structure contains an 8-byte
floating-point number followed by a 3-byte character variable, each element contains five
bytes of padding (16 is an exact multiple of 8). However, if the structure contains one 4-byte
floating-point number, one 4-byte integer, followed by a 3-byte character variable, each
element would contain one byte of padding (12 is an exact multiple of 4).

1617

34

Checking for Inefficient Unaligned Data

During compilation, the Intel compiler naturally aligns as much data as possible. Exceptions
that can result in unaligned data are described above.

Because unaligned data can slow run-time performance, it is worthwhile to:

• Double-check data declarations within common block, derived-type data, or record structures
to ensure all data items are naturally aligned (see the data declaration rules in the subsection
below). Using modules to contain data declarations can ensure consistent alignment and
use of such data.

• Avoid the EQUIVALENCE statement or use it in a manner that cannot cause unaligned data
or data spanning natural boundaries.

• Ensure that passed arguments from outside the program unit are naturally aligned.

• Check that the size of array elements containing at least one derived-type data or record
structure (extension) cause array elements to start on aligned boundaries (see the previous
subsection).

• There are two ways unaligned data might be reported:

• During compilation, warning messages are issued for any data items that are known to
be unaligned (unless you specify the -warn noalignments (or -warn none) (Linux) or
/warn:noalignments (or /warn:none) (Windows) option that suppresses all warnings).

• During program execution, warning messages are issued for any data that is detected
as unaligned. The message includes the address of the unaligned access.

Consider the following run-time message:

Example

Unaligned access pid=24821 <a.out> va=140000154, pc=3ff80805d60,
ra=1200017bc

This message shows that:

• The statement accessing the unaligned data (program counter) is located at 3ff80805d60

• The unaligned data is located at address 140000154

1618

34 Intel® Fortran Compiler User and Reference Guides

Ordering Data Declarations to Avoid Unaligned Data

For new programs or when the source declarations of an existing program can be easily modified,
plan the order of your data declarations carefully to ensure the data items in a common block,
derived-type data, record structure, or data items made equivalent by an EQUIVALENCE
statement will be naturally aligned.

Use the following rules to prevent unaligned data:

• Always define the largest size numeric data items first.

• If your data includes a mixture of character and numeric data, place the numeric data first.

• Add small data items of the correct size (or padding) before otherwise unaligned data to
ensure natural alignment for the data that follows.

When declaring data, consider using explicit length declarations, such as specifying a KIND
parameter. For example, specify INTEGER(KIND=4) (or INTEGER(4)) rather than INTEGER. If
you do use a default size (such as INTEGER, LOGICAL, COMPLEX, and REAL), be aware that the
following compiler options can change the size of an individual field's data declaration size and
thus can alter the data alignment of a carefully planned order of data declarations:

Compiler OptionOperating System

/4I or /4RWindows*

-integer_size or -real_sizeLinux* and Mac OS* X

Using the suggested data declaration guidelines minimizes the need to use the -align keyword
(Linux) or /align:keyword (Windows) options to add padding bytes to ensure naturally aligned
data. In cases where the -align keyword (Linux) or /align:keyword (Windows) options are
still needed, using the suggested data declaration guidelines can minimize the number of
padding bytes added by the compiler.

1619

34

Arranging Data Items in Common Blocks

The order of data items in a COMMON statement determines the order in which the data items
are stored. Consider the following declaration of a common block named X:

Example

logical (kind=2) flag

integer iarry_i(3)

character(len=5) name_ch

common /x/ flag, iarry_i(3), name_ch

As shown in Figure 1-1, if you omit the appropriate Fortran command options, the common
block will contain unaligned data items beginning at the first array element of IARRY_I.

Figure 22: Figure 1-1 Common Block with Unaligned Data

As shown in Figure 1-2, if you compile the program units that use the common block with the
-align commons (Linux) or /align:commons (Windows) option, data items will be naturally
aligned.

Figure 23: Figure 1-2 Common Block with Naturally Aligned Data

Because the common block X contains data items whose size is 32 bits or smaller, specify the
-align commons (Linux) or /align:commons (Windows) option. If the common block contains
data items whose size might be larger than 32 bits (such as REAL (KIND=8) data), use the
-align dcommons (Linux) or /align:dcommons (Windows) option.

1620

34 Intel® Fortran Compiler User and Reference Guides

If you can easily modify the source files that use the common block data, define the numeric
variables in the COMMON statement in descending order of size and place the character variable
last. This provides more portability, ensures natural alignment without padding, and does not
require the Fortran command options -align commons (Linux) or -align dcommons (Linux)
or /align commons (Windows) or /align:dcommons (Windows):

Example

LOGICAL (KIND=2) FLAG

INTEGER IARRY_I(3)

CHARACTER(LEN=5) NAME_CH

COMMON /X/ IARRY_I(3), FLAG, NAME_CH

As shown in Figure 1-3, if you arrange the order of variables from largest to smallest size and
place character data last, the data items will be naturally aligned.

Figure 24: Figure 1-3 Common Block with Naturally Aligned Reordered Data

When modifying or creating all source files that use common block data, consider placing the
common block data declarations in a module so the declarations are consistent. If the common
block is not needed for compatibility (such as file storage or Fortran 77 use), you can place the
data declarations in a module without using a COMMON block.

Arranging Data Items in Derived-Type Data

Like common blocks, derived-type data may contain multiple data items (members).

Data item components within derived-type data will be naturally aligned on up to 64-bit
boundaries, with certain exceptions related to the use of the SEQUENCE statement and Fortran
options.

Intel Fortran stores a derived data type as a linear sequence of values, as follows:

• If you specify the SEQUENCE statement, the first data item is in the first storage location
and the last data item is in the last storage location. The data items appear in the order in
which they are declared. The Fortran options have no effect on unaligned data, so data

1621

34

declarations must be carefully specified to naturally align data. The -align sequence
(Linux) or /align:sequence (Windows) option specifically aligns data items in a SEQUENCE
derived-type on natural boundaries.

• If you omit the SEQUENCE statement, the Intel Fortran adds the padding bytes needed to
naturally align data item components, unless you specify the -align norecords (Linux)
or /align:norecords (Windows) option.

Consider the following declaration of array CATALOG_SPRING of derived-type PART_DT:

Example

MODULE DATA_DEFS

TYPE PART_DT

INTEGER IDENTIFIER

REAL WEIGHT

CHARACTER(LEN=15) DESCRIPTION

END TYPE PART_DT

TYPE (PART_DT) CATALOG_SPRING(30)

...

END MODULE DATA_DEFS

As shown in Figure 1-4, the largest numeric data items are defined first and the character data
type is defined last. There are no padding characters between data items and all items are
naturally aligned. The trailing padding byte is needed because CATALOG_SPRING is an array;
it is inserted by the compiler when the -align records (Linux) or /align:records (Windows)
option is in effect.

Figure 25: Figure 1-4 Derived-Type Naturally Aligned Data (in CATALOG_SPRING : (
,))

1622

34 Intel® Fortran Compiler User and Reference Guides

Arranging Data Items in Intel Fortran Record Structures

Intel Fortran supports record structures provided by Intel Fortran. Intel Fortran record structures
use the RECORD statement and optionally the STRUCTURE statement, which are extensions to
the Fortran 77 and Fortran standards. The order of data items in a STRUCTURE statement
determines the order in which the data items are stored.

Intel Fortran stores a record in memory as a linear sequence of values, with the record's first
element in the first storage location and its last element in the last storage location. Unless
you specify -align norecords (Linux) or /align:norecords (Windows) padding bytes are
added if needed to ensure data fields are naturally aligned.

The following example contains a structure declaration, a RECORD statement, and diagrams
of the resulting records as they are stored in memory:

Example

STRUCTURE /STRA/

CHARACTER*1 CHR

INTEGER*4 INT

END STRUCTURE

...

RECORD /STRA/ REC

Figure 1-5 shows the memory diagram of record REC for naturally aligned records.

Figure 26: Figure 1-5 Memory Diagram of REC for Naturally Aligned Records

Using Arrays Efficiently

This topic discusses how to efficiently access arrays and pass array arguments.

1623

34

Accessing Arrays Efficiently

Many of the array access efficiency techniques described in this section are applied automatically
by the Intel Fortran loop transformation optimizations. Several aspects of array use can improve
run-time performance; the following sections discuss the most important aspects.

Perform the fewest operations necessary

The fastest array access occurs when contiguous access to the whole array or most of an array
occurs. Perform one or a few array operations that access all of the array or major parts of an
array instead of numerous operations on scattered array elements. Rather than use explicit
loops for array access, use elemental array operations, such as the following line that increments
all elements of array variable A:

Example

A = A + 1

When reading or writing an array, use the array name and not a DO loop or an implied DO-loop
that specifies each element number. Fortran 95/90 array syntax allows you to reference a whole
array by using its name in an expression.

For example:

Example

REAL :: A(100,100)

A = 0.0

A = A + 1 ! Increment all elements

! of A by 1

...

WRITE (8) A ! Fast whole array use

1624

34 Intel® Fortran Compiler User and Reference Guides

Similarly, you can use derived-type array structure components, such as:

Example

TYPE X

INTEGER A(5)

END TYPE X

...

TYPE (X) Z

WRITE (8)Z%A ! Fast array structure

! component use

Access arrays using the proper array syntax

Make sure multidimensional arrays are referenced using proper array syntax and are traversed
in the natural ascending storage order, which is column-major order for Fortran. With
column-major order, the leftmost subscript varies most rapidly with a stride of one. Whole
array access uses column-major order.

Avoid row-major order, as is done by C, where the rightmost subscript varies most rapidly. For
example, consider the nested DO loops that access a two-dimension array with the J loop as
the innermost loop:

Example

INTEGER X(3,5), Y(3,5), I, J

Y = 0

DO I=1,3 ! I outer loop varies slowest

DO J=1,5 ! J inner loop varies fastest

X (I,J) = Y(I,J) + 1

1625

34

Example

! Inefficient row-major storage order

END DO ! (rightmost subscript varies fastest)

END DO

...

END PROGRAM

Since J varies the fastest and is the second array subscript in the expression X (I,J), the
array is accessed in row-major order. To make the array accessed in natural column-major
order, examine the array algorithm and data being modified. Using arrays X and Y, the array
can be accessed in natural column-major order by changing the nesting order of the DO loops
so the innermost loop variable corresponds to the leftmost array dimension:

Example

INTEGER X(3,5), Y(3,5), I, J

Y = 0

DO J=1,5 ! J outer loop varies slowest

DO I=1,3 ! I inner loop varies fastest

X (I,J) = Y(I,J) + 1

! Efficient column-major storage order

END DO ! (leftmost subscript varies fastest)

END DO

...

END PROGRAM

The Intel Fortran whole array access (X = Y + 1) uses efficient column major order. However,
if the application requires that J vary the fastest or if you cannot modify the loop order without
changing the results, consider modifying the application to use a rearranged order of array
dimensions. Program modifications include rearranging the order of:

• Dimensions in the declaration of the arrays X(5,3) and Y(5,3)

• The assignment of X(J,I) and Y(J,I) within the DO loops

1626

34 Intel® Fortran Compiler User and Reference Guides

• All other references to arrays X and Y

In this case, the original DO loop nesting is used where J is the innermost loop:

Example

INTEGER X(5,3), Y(5,3), I, J

Y = 0

DO I=1,3 ! I outer loop varies slowest

DO J=1,5 ! J inner loop varies fastest

X (J,I) = Y(J,I) + 1

! Efficient column-major storage order

END DO ! (leftmost subscript varies fastest)

END DO

...

END PROGRAM

Code written to access multidimensional arrays in row-major order (like C) or random order
can often make inefficient use of the CPU memory cache. For more information on using natural
storage order during record, see Improving I/O Performance.

Use available intrinsics

Whenever possible, use Fortran array intrinsic procedures instead of creating your own routines
to accomplish the same task. Fortran array intrinsic procedures are designed for efficient use
with the various Intel Fortran run-time components.

Using the standard-conforming array intrinsics can also make your program more portable.

Avoid leftmost array dimensions

With multidimensional arrays where access to array elements will be noncontiguous, avoid
leftmost array dimensions that are a power of two (such as 256, 512).

1627

34

Since the cache sizes are a power of 2, array dimensions that are also a power of 2 may make
inefficient use of cache when array access is noncontiguous. If the cache size is an exact multiple
of the leftmost dimension, your program will probably make use of the cache less efficient. This
does not apply to contiguous sequential access or whole array access.

One work-around is to increase the dimension to allow some unused elements, making the
leftmost dimension larger than actually needed. For example, increasing the leftmost dimension
of A from 512 to 520 would make better use of cache:

Example

REAL A (512,100)

DO I = 2,511

DO J = 2,99

A(I,J)=(A(I+1,J-1) + A(I-1, J+1)) * 0.5

END DO

END DO

In this code, array A has a leftmost dimension of 512, a power of two. The innermost loop
accesses the rightmost dimension (row major), causing inefficient access. Increasing the leftmost
dimension of A to 520 (REAL A (520,100)) allows the loop to provide better performance,
but at the expense of some unused elements.

Because loop index variables I and J are used in the calculation, changing the nesting order
of the DO loops changes the results.

For more information on arrays and their data declaration statements, see the Intel® Fortran
Language Reference.

Passing Array Arguments Efficiently

In Fortran, there are two general types of array arguments:

• Explicit-shape arrays (introduced with Fortran 77); for example, A(3,4) and B(0:*)

These arrays have a fixed rank and extent that is known at compile time. Other dummy argument
(receiving) arrays that are not deferred-shape (such as assumed-size arrays) can be grouped
with explicit-shape array arguments.

• Deferred-shape arrays (introduced with Fortran 95/90); for example, C(:.:)

1628

34 Intel® Fortran Compiler User and Reference Guides

Types of deferred-shape arrays include array pointers and allocatable arrays. Assumed-shape
array arguments generally follow the rules about passing deferred-shape array arguments.

When passing arrays as arguments, either the starting (base) address of the array or the
address of an array descriptor is passed:

• When using explicit-shape (or assumed-size) arrays to receive an array, the starting address
of the array is passed.

• When using deferred-shape or assumed-shape arrays to receive an array, the address of
the array descriptor is passed (the compiler creates the array descriptor).

Passing an assumed-shape array or array pointer to an explicit-shape array can slow run-time
performance. This is because the compiler needs to create an array temporary for the entire
array. The array temporary is created because the passed array may not be contiguous and
the receiving (explicit-shape) array requires a contiguous array. When an array temporary is
created, the size of the passed array determines whether the impact on slowing run-time
performance is slight or severe.

The following table summarizes what happens with the various combinations of array types.
The amount of run-time performance inefficiency depends on the size of the array.

Dummy Argument Array Types
(choose one)

Deferred-Shape and
Assumed-Shape
Arrays

Explicit-Shape
Arrays

Actual Argument Array Types
(choose one)

Result when using this
combination: Efficient. Only
allowed for assumed-shape
arrays (not deferred-shape
arrays).

Result when using this
combination: Very efficient.
Does not use an array
temporary. Does not pass an
array descriptor.

Explicit-Shape
Arrays

Does not use an array
temporary. Passes an array
descriptor.

Interface block optional.

Requires an interface block.

1629

34

Result when using this
combination: Efficient.
Requires an assumed-shape
or array pointer as dummy
argument.

Result when using this
combination: When passing
an allocatable array, very
efficient. Does not use an
array temporary. Does not
pass an array descriptor.
Interface block optional.

Deferred-Shape and
Assumed-Shape
Arrays

Does not use an array
temporary. Passes an array
descriptor.When not passing an

allocatable array, not
efficient. Instead use
allocatable arrays whenever
possible.

Requires an interface block.

Uses an array temporary.
Does not pass an array
descriptor. Interface block
optional.

Improving I/O Performance

Improving overall I/O performance can minimize both device I/O and actual CPU time. The
techniques listed in this topic can significantly improve performance in many applications.

An I/O flow problems limit the maximum speed of execution by being the slowest process in
an executing program. In some programs, I/O is the bottleneck that prevents an improvement
in run-time performance. The key to relieving I/O problems is to reduce the actual amount of
CPU and I/O device time involved in I/O.

The problems can be caused by one or more of the following:

• A dramatic reduction in CPU time without a corresponding improvement in I/O time.

• Such coding practices as:

• Unnecessary formatting of data and other CPU-intensive processing•

• Unnecessary transfers of intermediate results

• Inefficient transfers of small amounts of data

• Application requirements

Improved coding practices can minimize actual device I/O, as well as the actual CPU time. Intel
offers software solutions to system-wide problems like minimizing device I/O delays.

1630

34 Intel® Fortran Compiler User and Reference Guides

Use Unformatted Files Instead of Formatted Files

Use unformatted files whenever possible. Unformatted I/O of numeric data is more efficient
and more precise than formatted I/O. Native unformatted data does not need to be modified
when transferred and will take up less space on an external file.

Conversely, when writing data to formatted files, formatted data must be converted to character
strings for output, less data can transfer in a single operation, and formatted data may lose
precision if read back into binary form.

To write the array A(25,25) in the following statements, S1 is more efficient than S2:

Example

S1 WRITE (7) A

S2 WRITE (7,100) A

100 FORMAT (25(' ',25F5.21))

Although formatted data files are more easily ported to other systems, Intel Fortran can convert
unformatted data in several formats; see Little-endian-to-Big-endian Conversion (IA-32
architecture).

Write Whole Arrays or Strings

To eliminate unnecessary overhead, write whole arrays or strings at one time rather than
individual elements at multiple times. Each item in an I/O list generates its own calling sequence.
This processing overhead becomes most significant in implied-DO loops. When accessing whole
arrays, use the array name (Fortran array syntax) instead of using implied-DO loops.

Write Array Data in the Natural Storage Order

Use the natural ascending storage order whenever possible. This is column-major order, with
the leftmost subscript varying fastest and striding by 1. (See Accessing Arrays Efficiently.) If
a program must read or write data in any other order, efficient block moves are inhibited.

If the whole array is not being written, natural storage order is the best order possible.

If you must use an unnatural storage order, in certain cases it might be more efficient to transfer
the data to memory and reorder the data before performing the I/O operation.

1631

34

Use Memory for Intermediate Results

Performance can improve by storing intermediate results in memory rather than storing them
in a file on a peripheral device. One situation that may not benefit from using intermediate
storage is when there is a disproportionately large amount of data in relation to physical memory
on your system. Excessive page faults can dramatically impede virtual memory performance.

Linux*: If you are primarily concerned with the CPU performance of the system, consider using
a memory file system (mfs) virtual disk to hold any files your code reads or writes.

Enable Implied-DO Loop Collapsing

DO loop collapsing reduces a major overhead in I/O processing. Normally, each element in an
I/O list generates a separate call to the Intel Fortran run-time library (RTL). The processing
overhead of these calls can be most significant in implied-DO loops.

Intel Fortran reduces the number of calls in implied-DO loops by replacing up to seven nested
implied-DO loops with a single call to an optimized run-time library I/O routine. The routine can
transmit many I/O elements at once.

Loop collapsing can occur in formatted and unformatted I/O, but only if certain conditions are
met:

• The control variable must be an integer. The control variable cannot be a dummy argument
or contained in an EQUIVALENCE or VOLATILE statement. Intel Fortran must be able to
determine that the control variable does not change unexpectedly at run time.

• The format must not contain a variable format expression.

For information on the VOLATILE attribute and statement, see the Intel® Fortran Language
Reference.

Use of Variable Format Expressions

Variable format expressions (an Intel Fortran extension) are almost as flexible as run-time
formatting, but they are more efficient because the compiler can eliminate run-time parsing of
the I/O format. Only a small amount of processing and the actual data transfer are required
during run time.

1632

34 Intel® Fortran Compiler User and Reference Guides

On the other hand, run-time formatting can impair performance significantly. For example, in
the following statements, S1 is more efficient than S2 because the formatting is done once at
compile time, not at run time:

Example

S1 WRITE (6,400) (A(I), I=1,N)

400

FORMAT (1X, <N> F5.2)

...

S2 WRITE (CHFMT,500) '(1X,',N,'F5.2)'

500

FORMAT (A,I3,A)

WRITE (6,FMT=CHFMT) (A(I), I=1,N)

Efficient Use of Record Buffers and Disk I/O

Records being read or written are transferred between the user's program buffers and one or
more disk block I/O buffers, which are established when the file is opened by the Intel Fortran
RTL. Unless very large records are being read or written, multiple logical records can reside in
the disk block I/O buffer when it is written to disk or read from disk, minimizing physical disk
I/O.

You can specify the size of the disk block physical I/O buffer by using the OPEN statement
BLOCKSIZE specifier; the default size can be obtained from fstat(2). If you omit the BLOCKSIZE
specifier in the OPEN statement, it is set for optimal I/O use with the type of device the file
resides on (with the exception of network access).

The OPEN statement BUFFERCOUNT specifier specifies the number of I/O buffers. The default
for BUFFERCOUNT is 1. Any experiments to improve I/O performance should increase the
BUFFERCOUNT value and not the BLOCKSIZE value, to increase the amount of data read by each
disk I/O.

If the OPEN statement has BLOCKSIZE and BUFFERCOUNT specifiers, then the internal buffer
size in bytes is the product of these specifiers. If the open statement does not have these
specifiers, then the default internal buffer size is 8192 bytes. This internal buffer will grow to
hold the largest single record, but will never shrink.

1633

34

The default for the Fortran run-time system is to use unbuffered disk writes. That is, by default,
records are written to disk immediately as each record is written instead of accumulating in
the buffer to be written to disk later.

To enable buffered writes (that is, to allow the disk device to fill the internal buffer before the
buffer is written to disk), use one of the following:

• The OPEN statement BUFFERED specifier

• The -assume buffered_io (Linux*) or /assume:buffered_io (Windows*) option of the
ASSUME command

• The FORT_BUFFERED run-time environment variable

The OPEN statement BUFFERED specifier takes precedence over the -assume buffered_io
(Linux) or /assume:buffered_io (Windows) option. If neither one is set (which is the default),
the FORT_BUFFERED environment variable is tested at run time.

The OPEN statement BUFFERED specifier applies to a specific logical unit. In contrast, the -assume
nobuffered_io (Linux) or /assume:nobuffered_io (Windows) option and the FORT_BUFFERED
environment variable apply to all Fortran units.

Using buffered writes usually makes disk I/O more efficient by writing larger blocks of data to
the disk less often. However, a system failure when using buffered writes can cause records
to be lost, since they might not yet have been written to disk. (Such records would have been
written to disk with the default unbuffered writes.)

When performing I/O across a network, be aware that the size of the block of network data
sent across the network can impact application efficiency. When reading network data, follow
the same advice for efficient disk reads, by increasing the BUFFERCOUNT. When writing data
through the network, several items should be considered:

• Unless the application requires that records be written using unbuffered writes, enable
buffered writes by a method described above.

• Especially with large files, increasing the BLOCKSIZE value increases the size of the block
sent on the network and how often network data blocks get sent.

• Time the application when using different BLOCKSIZE values under similar conditions to find
the optimal network block size.

Completion of a WRITE statement, even when not buffered, does not guarantee that the data
has been written to disk; the operating system may delay the actual disk write. To ensure that
the data has been written to disk, you can call the FLUSH routine. Because this can cause a
significant slowdown of the application, FLUSH should be used only when absolutely needed.

1634

34 Intel® Fortran Compiler User and Reference Guides

Linux* Only: When writing records, be aware that I/O records are written to unified buffer
cache (UBC) system buffers. To request that I/O records be written from program buffers to
the UBC system buffers, use the FLUSH library routine. Be aware that calling FLUSH also discards
read-ahead data in user buffer. For more information, see FLUSH in the Intel® Fortran Libraries
Reference.

Specify RECL

The sum of the record length (RECL specifier in an OPEN statement) and its overhead is a
multiple or divisor of the blocksize, which is device-specific. For example, if the BLOCKSIZE is
8192 then RECL might be 24576 (a multiple of 3) or 1024 (a divisor of 8).

The RECL value should fill blocks as close to capacity as possible (but not over capacity). Such
values allow efficient moves, with each operation moving as much data as possible; the least
amount of space in the block is wasted. Avoid using values larger than the block capacity,
because they create very inefficient moves for the excess data only slightly filling a block
(allocating extra memory for the buffer and writing partial blocks are inefficient).

The RECL value unit for formatted files is always 1-byte units. For unformatted files, the RECL
unit is 4-byte units, unless you specify the -assume byterecl (Linux) or /assume:byterecl
(Windows) option for the ASSUME specifier to request 1-byte units.

Use the Optimal Record Type

Unless a certain record type is needed for portability reasons, choose the most efficient type,
as follows:

• For sequential files of a consistent record size, the fixed-length record type gives the best
performance.

• For sequential unformatted files when records are not fixed in size, the variable-length record
type gives the best performance, particularly for BACKSPACE operations.

• For sequential formatted files when records are not fixed in size, the Stream_LF record type
gives the best performance.

1635

34

Reading from a Redirected Standard Input File

Due to certain precautions that the Fortran run-time system takes to ensure the integrity of
standard input, reads can be very slow when standard input is redirected from a file. For
example, when you use a command such as myprogram.exe < myinput.data> , the data is
read using the READ(*) or READ(5) statement, and performance is degraded. To avoid this
problem, do one of the following:

• Explicitly open the file using the OPEN statement. For example: OPEN(5, STATUS='OLD',
FILE='myinput.dat')

• Use an environment variable to specify the input file.

To take advantage of these methods, be sure your program does not rely on sharing the
standard input file.

For more information on Intel Fortran data files and I/O, see Files, Devices, and I/O in the
Building Applications; on OPEN statement specifiers and defaults, see Open Statement in the
Intel® Fortran Language Reference.

Improving Run-time Efficiency

Use these source-coding guidelines to improve run-time performance. The amount of
improvement in run-time performance is related to the number of times a statement is executed.
For example, improving an arithmetic expression executed within a loop many times has the
potential to improve performance, more than improving a similar expression executed once
outside a loop.

Avoid Small Integer and Small Logical Data Items

Avoid using integer or logical data less than 32 bits. Accessing a 16-bit (or 8-bit) data type can
make data access less efficient, especially on IA-64 architecture based systems.

To minimize data storage and memory cache misses with arrays, use 32-bit data rather than
64-bit data, unless you require the greater numeric range of 8-byte integers or the greater
range and precision of double precision floating-point numbers.

Avoid Using Slow Arithmetic Operators

Before you modify source code to avoid slow arithmetic operators, be aware that optimizations
convert many slow arithmetic operators to faster arithmetic operators. For example, the compiler
optimizes the expression H=J**2 to be H=J*J.

1636

34 Intel® Fortran Compiler User and Reference Guides

Consider also whether replacing a slow arithmetic operator with a faster arithmetic operator
will change the accuracy of the results or impact the maintainability (readability) of the source
code.

Replacing slow arithmetic operators with faster ones should be reserved for critical code areas.
The following list shows the Intel Fortran arithmetic operators, from fastest to slowest:

1. Addition (+), Subtraction (-), and Floating-point multiplication (*)

2. Integer multiplication (*)

3. Division (/)

4. Exponentiation (**)

Avoid Using EQUIVALENCE Statements

Avoid using EQUIVALENCE statements. EQUIVALENCE statements can:

• Force unaligned data or cause data to span natural boundaries.

• Prevent certain optimizations, including:

• Global data analysis under certain conditions; see the -O2 (Linux*) or /O2 (Windows*)
option description for more information.

• Implied-DO loop collapsing when the control variable is contained in an EQUIVALENCE
statement

Use Statement Functions and Internal Subprograms

Whenever the Intel compiler has access to the use and definition of a subprogram during
compilation, it may choose to inline the subprogram. Using statement functions and internal
subprograms maximizes the number of subprogram references that will be inlined, especially
when multiple source files are compiled together at optimization level -O3 (Linux) or /O3
(Windows).

For more information, see Efficient Compilation.

Code DO Loops for Efficiency

Minimize the arithmetic operations and other operations in a DO loop whenever possible. Moving
unnecessary operations outside the loop will improve performance (for example, when the
intermediate nonvarying values within the loop are not needed).

1637

34

Using Fortran Intrinsics

Intel® Fortran supports all standard Fortran intrinsic procedures and provides Intel-specific
intrinsic procedures to extend the language functionality. The Intel-specific intrinsic procedures
are provided in libifcore.lib. For more details on these intrinsic procedures, see the Intel®

Fortran Language Reference.

This topic provides an example of an Intel-extended intrinsic that is helpful in developing efficient
applications on IA-32, Intel® 64, and IA-64 architectures.

CACHESIZE Intrinsic

The intrinsic CACHESIZE(n) returns the size in kilobytes of the cache at level n; one (1)
represents the first level cache. Zero (0) is returned for a nonexistent cache level.

Use this intrinsic in any situation you would like to tailor algorithms for the cache hierarchy on
the target processor. For example, an application may query the cache size and use the result
to select block sizes in algorithms that operate on matrices.

Example

subroutine foo (level)

integer level

if (cachesize(level) > threshold) then

call big_bar()

else

call small_bar()

end if

end subroutine

Understanding Run-time Performance

The information in this topic assumes that you are using a performance optimization methodology
and have analyzed the application type you are optimizing.

After profiling your application to determine where best to spend your time, attempt to discover
what optimizations and what limitations have been imposed by the compiler. Use the compiler
reports to determine what to try next.

1638

34 Intel® Fortran Compiler User and Reference Guides

Depending on what you discover from the reports you may be able to help the compiler through
options, directives, and slight code modifications to take advantage of key architectural features
to achieve the best performance.

The compiler reports can describe what actions have been taken and what actions cannot be
taken based on the assumptions made by the compiler. Experimenting with options and directives
allows you to use an understanding of the assumptions and suggest a new optimization strategy
or technique.

Helping the Compiler

You can help the compiler in some important ways:

• Read the appropriate reports to gain an understanding of what the compiler is doing for you
and the assumptions the compiler has made with respect to your code.

• Use specific options, intrinsics, libraries, and directives to get the best performance from
your application.

Use the Math Kernel Library (MKL) instead of user code, or calling F90 intrinsics instead of user
code.

See Applying Optimization Strategies for other suggestions.

Memory Aliasing For IA-64 Architectures

Memory aliasing is the single largest issue affecting the optimizations in the Intel® compiler for
IA-64 architecture based systems. Memory aliasing is writing to a given memory location with
more than one pointer. The compiler is cautious to not optimize too aggressively in these cases;
if the compiler optimizes too aggressively, unpredictable behavior can result (for example,
incorrect results, abnormal termination, etc.).

Since the compiler usually optimizes on a module-by-module, function-by-function basis, the
compiler does not have an overall perspective with respect to variable use for global variables
or variables that are passed into a function; therefore, the compiler usually assumes that any
pointers passed into a function are likely to be aliased. The compiler makes this assumption
even for pointers you know are not aliased. This behavior means that perfectly safe loops do
not get pipelined or vectorized, and performance suffers.

There are several ways to instruct the compiler that pointers are not aliased:

• Use a comprehensive compiler option, such as -fno-alias (Linux*) or /Oa (Windows*).
These options instruct the compiler that no pointers in any module are aliased, placing the
responsibility of program correctness directly with the developer.

1639

34

• Use a less comprehensive option, like -fno-fnalias (Linux) or /Ow (Windows). These
options instruct the compiler that no pointers passed through function arguments are aliased.

Function arguments are a common example of potential aliasing that you can clarify for the
compiler. You may know that the arguments passed to a function do not alias, but the
compiler is forced to assume so. Using these options tells the compiler it is now safe to
assume that these function arguments are not aliased. This option is still a somewhat bold
statement to make, as it affects all functions in the module(s) compiled with the -fno-nalias
(Linux) or /Ow (Windows) option.

• Use the IDVEP directive. Alternatively, you might use a directive that applies to a specified
loop in a function. This is more precise than specifying an entire function. The directive
asserts that, for a given loop, there are no vector dependencies. Essentially, this is the same
as saying that no pointers are aliasing in a given loop.

1640

34 Intel® Fortran Compiler User and Reference Guides

Non-Unit Stride Memory Access

Another issue that can have considerable impact on performance is accessing memory in a
non-Unit Stride fashion. This means that as your inner loop increments consecutively, you
access memory from non adjacent locations. For example, consider the following matrix
multiplication code:

Example

!Non-Unit Stride Memory Access

subroutine non_unit_stride_memory_access(a,b,c, NUM)

implicit none

integer :: i,j,k,NUM

real :: a(NUM,NUM), b(NUM,NUM), c(NUM,NUM)

! loop before loop interchange

do i=1,NUM

do j=1,NUM

do k=1,NUM

c(j,i) = c(j,i) + a(j,k) * b(k,i)

end do

end do

end do

end subroutine non_unit_stride_memory_access

Notice that c[i][j], and a[i][k] both access consecutive memory locations when the
inner-most loops associated with the array are incremented. The b array however, with its
loops with indexes k and j, does not access Memory Unit Stride. When the loop reads
b[k=0][j=0] and then the k loop increments by one to b[k=1][j=0], the loop has skipped
over NUM memory locations having skipped b[k][1], b[k][2] .. b[k][NUM].

Loop transformation (sometimes called loop interchange) helps to address this problem. While
the compiler is capable of doing loop interchange automatically, it does not always recognize
the opportunity.

The memory access pattern for the example code listed above is illustrated in the following
figure:

1641

34

Assume you modify the example code listed above by making the following changes to introduce
loop interchange:

Example

subroutine unit_stride_memory_access(a,b,c, NUM)

implicit none

integer :: i,j,k,NUM

real :: a(NUM,NUM), b(NUM,NUM), c(NUM,NUM)

! loop after interchange

do i=1,NUM

do k=1,NUM

do j=1,NUM

c(j,i) = c(j,i) + a(j,k) * b(k,i)

end do

end do

end do

end subroutine unit_stride_memory_access

After the loop interchange the memory access pattern might look the following figure:

Understanding Data Alignment

Aligning data on boundaries can help performance. The Intel® compiler attempts to align data
on boundaries for you. However, as in all areas of optimization, coding practices can either
help or hinder the compiler and can lead to performance problems.

Always attempt to optimize using compiler options first.

To avoid performance problems you should keep the following guidelines in mind, which are
separated by architecture:

1642

34 Intel® Fortran Compiler User and Reference Guides

IA-32, Intel® 64, and IA-64 architectures:

• Do not access or create data at large intervals that are separated by exactly 2n (for example,
1 KB, 2 KB, 4 KB, 16 KB, 32 KB, 64 KB, 128 KB, 512 KB, 1 MB, 2 MB, 4 MB, 8 MB, etc.).

• Align data so that memory accesses does not cross cache lines (for example, 32 bytes, 64
bytes, 128 bytes).

• Use Application Binary Interface (ABI) for the Itanium® compiler to insure that ITP pointers
are 16-byte aligned.

IA-32 and Intel® 64 architectures:

• Align data to correspond to the SIMD or Streaming SIMD Extension registers sizes.

IA-64 architecture:

• Avoid using packed structures.

• Avoid casting pointers of small data elements to pointers of large data elements.

• Do computations on unpacked data, then repack data if necessary, to correctly output the
data.

In general, keeping data in cache has a better performance impact than keeping the data
aligned. Try to use techniques that conform to the rules listed above.

See Setting Data Type and Alignment for more detailed information on aligning data.

Timing Your Application

You can start collecting information about your application performance by timing your
application. More sophisticated and helpful data can be collected by using performance analysis
tools.

Considerations on Timing Your Application

One of the performance indicators is your application timing. The following considerations apply
to timing your application:

• Run program timings when other users are not active. Your timing results can be affected
by one or more CPU-intensive processes also running while doing your timings.

• Try to run the program under the same conditions each time to provide the most accurate
results, especially when comparing execution times of a previous version of the same
program. Use the same system (processor model, amount of memory, version of the
operating system, and so on) if possible.

1643

34

• If you do need to change systems, you should measure the time using the same version of
the program on both systems, so you know each system's effect on your timings.

• For programs that run for less than a few seconds, run several timings to ensure that the
results are not misleading. Certain overhead functions like loading libraries might influence
short timings considerably.

• If your program displays a lot of text, consider redirecting the output from the program.
Redirecting output from the program will change the times reported because of reduced
screen I/O.

Timings that show a large amount of system time may indicate a lot of time spent doing
I/O, which might be worth investigating.

• For programs that run for less than a few seconds, run several timings to ensure that the
results are not misleading. Overhead functions like loading shared libraries might influence
short timings considerably.

Use the time command and specify the name of the executable program to provide the
following:

• The elapsed, real, or "wall clock" time, which will be greater than the total charged actual
CPU time.

• Charged actual CPU time, shown for both system and user execution. The total actual
CPU time is the sum of the actual user CPU time and actual system CPU time.

Methods of Timing Your Application

To perform application timings, use a version of the TIME command in a .BAT file (or the
function timing profiling option). You might consider modifying the program to call routines
within the program to measure execution time (possibly using conditionally compiled lines).

For example:

• Intel Fortran intrinsic procedures, such as SECNDS, CPU_TIME, SYSTEM_CLOCK, TIME, and
DATE_AND_TIME.

• Portability library routines, such as DCLOCK, ETIME, SECNDS, or TIME.

Whenever possible, perform detailed performance analysis on a system that closely resembles
the system(s) that will be used for actual application use.

1644

34 Intel® Fortran Compiler User and Reference Guides

Sample Timing

The following program template could be run by a .BAT file that executes the TIME command
both before and after execution, to provide an approximate wall-clock time for the execution
of the entire program. The Fortran intrinsic CPU_TIME can be used at selected points in the
program to collect the CPU time between the start and end of the task to be timed.

Example

REAL time_begin, time_end

...

CALL CPU_TIME (time_begin)

!

!task to be timed

!

CALL CPU_TIME (time_end)

PRINT *, 'Time of operation was ', &

time_end - time_begin, ' seconds'

Considerations for Linux*

In the following example timings, the sample program being timed displays the following line:

Bourne* shell example

Average of all the numbers is: 4368488960.000000

1645

34

Using the Bourne* shell, the following program timing reports that the program uses 1.19
seconds of total actual CPU time (0.61 seconds in actual CPU time for user program use and
0.58 seconds of actual CPU time for system use) and 2.46 seconds of elapsed time:

Bourne* shell example

$ time a.out

Average of all the numbers is:

4368488960.000000

real 0m2.46s

user 0m0.61s

sys 0m0.58s

Using the C shell, the following program timing reports 1.19 seconds of total actual CPU time
(0.61 seconds in actual CPU time for user program use and 0.58 seconds of actual CPU time
for system use), about 4 seconds (0:04) of elapsed time, the use of 28% of available CPU time,
and other information:

C shell l example

% time a.out

Average of all the numbers is: 4368488960.000000

0.61u 0.58s 0:04 28% 78+424k 9+5io 0pf+0w

Using the bash shell, the following program timing reports that the program uses 1.19 seconds
of total actual CPU time (0.61 seconds in actual CPU time for user program use and 0.58 seconds
of actual CPU time for system use) and 2.46 seconds of elapsed time:

bash shell l example

[user@system user]$ time ./a.out

Average of all the numbers is: 4368488960.000000

elapsed 0m2.46s

user 0m0.61s

sys 0m0.58s

1646

34 Intel® Fortran Compiler User and Reference Guides

Timings that indicate a large amount of system time is being used may suggest excessive I/O,
a condition worth investigating.

If your program displays a lot of text, you can redirect the output from the program on the
time command line. Redirecting output from the program will change the times reported because
of reduced screen I/O.

For more information, see time(1).

In addition to the time command, you might consider modifying the program to call routines
within the program to measure execution time. For example, use the Intel intrinsic procedures,
such as SECNDS, DCLOCK, CPU_TIME, SYSTEM_CLOCK, TIME, and DATE_AND_TIME.

Applying Optimization Strategies

The compiler may or may not apply the following optimizations to your loop: Interchange,
Unrolling, Cache Blocking, and LoadPair. These transformations are discussed in the following
sections, including how to transform loops manually and how to control them with directives
or internal options.

Loop Interchange

Loop Interchange is a nested loop transformation applied by High-level Optimization (HLO)
that swaps the order of execution of two nested loops. Typically, the transformation is performed
to provide sequential Unit Stride access to array elements used inside the loop to improve cache
locality. The compiler -O3 (Linux* and Mac OS* X) or /O3 (Windows*) optimization looks for
opportunities to apply loop interchange for you.

1647

34

The following is an example of a loop interchange

Example

subroutine loop_interchange(a,b,c, NUM)

implicit none

integer :: i,j,k,NUM

real :: a(NUM,NUM), b(NUM,NUM), c(NUM,NUM)

! loop before loop interchange

do i=1,NUM

do j=1,NUM

do k=1,NUM

c(j,i) = c(j,i) + a(j,k) * b(k,i)

end do

end do

end do

! loop after interchange

do i=1,NUM

do k=1,NUM

do j=1,NUM

c(j,i) = c(j,i) + a(j,k) * b(k,i)

end do

end do

end do

end subroutine loop_interchange

1648

34 Intel® Fortran Compiler User and Reference Guides

Unrolling

Loop unrolling is a loop transformation generally used by HLO that can take better advantage
of Instruction-Level Parallelism (ILP), keeping as many functional units busy doing useful work
as possible during single loop iteration. In loop unrolling, you add more work to the inside of
the loop while doing fewer loop iterations in exchange.

Example

subroutine loop_unroll_before(a,b,c,N,M)

implicit none

integer :: i,j,N,M

real :: a(N,M), b(N,M), c(N,M)

N=1025

M=5

do i=1,N

do j=1,M

a(j,i) = b(j,i) + c(j,i)

end do

end do

end subroutine loop_unroll_before

Example

subroutine loop_unroll_after(a,b,c,N,M)

implicit none

integer :: i,j,K,N,M

real :: a(N,M), b(N,M), c(N,M)

N=1025

M=5

K=MOD(N,4) !K= N MOD 4

! main part of loop

1649

34

Example

do i=1,N-K,4

do j=1,M

a(j,i) = b(j,i) + c(j,i)

a(j,i+1) = b(j,i+1) + c(j,i+1)

a(j,i+2) = b(j,i+2) + c(j,i+2)

a(j,i+3) = b(j,i+3) + c(j,i+3)

end do

end do

! post conditioning part of loop

do i= N-K+2, N, 4

do j=1,M

a(j,i) = b(j,i) + c(j,i)

end do

end do

end subroutine loop_unroll_after

Post conditioning is preferred over pre-conditioning because post conditioning will preserve the
data alignment and avoid the cost of memory alignment access penalties.

Cache Blocking

Cache blocking involves structuring data blocks so that they conveniently fit into a portion of
the L1 or L2 cache. By controlling data cache locality, an application can minimize performance
delays due to memory bus access. The application controls the behavior by dividing a large
array into smaller blocks of memory so a thread can make repeated accesses to the data while
the data is still in cache.

For example, image processing and video applications are well suited to cache blocking
techniques because an image can be processed on smaller portions of the total image or video
frame. Compilers often use the same technique, by grouping related blocks of instructions close
together so they execute from the L2 cache.

1650

34 Intel® Fortran Compiler User and Reference Guides

The effectiveness of the cache blocking technique depends on data block size, processor cache
size, and the number of times the data is reused. Cache sizes vary based on processor. An
application can detect the data cache size using the CPUID instruction and dynamically adjust
cache blocking tile sizes to maximize performance. As a general rule, cache block sizes should
target approximately one-half to three-quarters the size of the physical cache. For systems
that are Hyper-Threading Technology (HT Technology) enabled target one-quarter to one-half
the physical cache size. Designing for Hyper-Threading Technology

1651

34

Cache blocking is applied in HLO and is used on large arrays where the arrays cannot all fit into
cache simultaneously. This method is one way of pulling a subset of data into cache (in a small
region), and using this cached data as effectively as possible before the data is replaced by
new data from memory.

Example

subroutine cache_blocking_before(a,b,N)

implicit none

integer :: i,j,k,N

real :: a(N,N,N), b(N,N,N), c(N,N,N)

N=1000

do i = 1, N

do j = 1, N

do k = 1, N

a(i,j,k) = a(i,j,k) + b(i,j,k)

end do

end do

end do

end subroutine cache_blocking_before

subroutine cache_blocking_after(a,b,N)

implicit none

integer :: i,j,k,u,v,N

real :: a(N,N,N), b(N,N,N), c(N,N,N)

N=1000

do v = 1, N, 20

do u = 1, N, 20

do k = v, v+19

do j = u, u+19

do i = 1, N

a(i,j,k) = a(i,j,k) + b(i,j,k)

1652

34 Intel® Fortran Compiler User and Reference Guides

Example

end do

end do

end do

end do

end do

end subroutine cache_blocking_after

The cache block size is set to 20. The goal is to read in a block of cache, do every bit of
computing we can with the data in this cache, then load a new block of data into cache. There
are 20 elements of A and 20 elements of B in cache at the same time and you should do as
much work with this data as you can before you increment to the next cache block.

Blocking factors will be different for different architectures. Determine the blocking factors
experimentally. For example, different blocking factors would be required for single precision
versus double precision. Typically, the overall impact to performance can be significant.

1653

34

Loop Distribution

Loop distribution is a high-level loop transformation that splits a large loop into two smaller
loops. It can be useful in cases where optimizations like software-pipelining (SWP) or
vectorization cannot take place due to excessive register usage. By splitting a loop into smaller
segments, it may be possible to get each smaller loop or at least one of the smaller loops to
SWP or vectorize. An example is as follows:

Example

subroutine loop_distribution_before(a,b,c,x,y,z,N)

implicit none

integer :: i,N

real :: a(N), b(N), c(N), x(N), y(N), z(N)

N=1024

do i = 1, N

a(i) = a(i) + i

b(i) = b(i) + i

c(i) = c(i) + i

x(i) = x(i) + i

y(i) = y(i) + i

z(i) = z(i) + i

end do

end subroutine loop_distribution_before

subroutine loop_distribution_after(a,b,c,x,y,z,N)

implicit none

integer :: i,N

real :: a(N), b(N), c(N), x(N), y(N), z(N)

N=1024

do i = 1, N

a(i) = a(i) + i

b(i) = b(i) + i

1654

34 Intel® Fortran Compiler User and Reference Guides

Example

c(i) = c(i) + i

end do

do i = 1, N

x(i) = x(i) + i

y(i) = y(i) + i

z(i) = z(i) + i

end do

end subroutine loop_distribution_after

There are directives to suggest distributing loops to the compiler as follows:

Example

!DEC$ distribute point

1655

34

Placed outside a loop, the compiler will attempt to distribute the loop based on an internal
heuristic. The following is an example of using the pragma outside the loop:

Example

subroutine loop_distribution_pragma1(a,b,c,x,y,z,N)

implicit none

integer :: i,N

real :: a(N), b(N), c(N), x(N), y(N), z(N)

N=1024

!DEC$ distribute point

do i = 1, N

a(i) = a(i) + i

b(i) = b(i) + i

c(i) = c(i) + i

x(i) = x(i) + i

y(i) = y(i) + i

z(i) = z(i) + i

end do

end subroutine loop_distribution_pragma1

1656

34 Intel® Fortran Compiler User and Reference Guides

Placed within a loop, the compiler will attempt to distribute the loop at that point. All loop-carried
dependencies will be ignored. The following example uses the directive within a loop to precisely
indicate where the split should take place:

Example

subroutine loop_distribution_pragma2(a,b,c,x,y,z,N)

implicit none

integer :: i,N

real :: a(N), b(N), c(N), x(N), y(N), z(N)

N=1024

do i = 1, N

a(i) = a(i) + i

b(i) = b(i) + i

c(i) = c(i) + i

!DEC$ distribute point

x(i) = x(i) + i

y(i) = y(i) + i

z(i) = z(i) + i

end do

end subroutine loop_distribution_pragma2

Load Pair (Itanium® Compiler)

Load pairs (ldfp) are instructions that load two contiguous single or double precision values
from memory in one move. Load pairs can significantly improve performance.

Manual Loop Transformations

There might be cases where these manual transformations are called acceptable or even
preferred. As a general rule, you should let the compiler transform loops for you. Manually
transform loops as a last resort; use this strategy only in cases where you are attempting to
gain performance increases.

1657

34

Manual loop transformations have many disadvantages, which include the following:

• Application code becomes harder to maintain over time.

• New compiler features can cause you to lose any optimization you gain by manually
transforming the loop.

• Architectural requirements might restrict your code to a specific architecture unintentionally.

The HLO report can give you an idea of what loop transformations have been applied by the
compiler.

Experimentation is a critical component in manually transforming loops. You might try to apply
a loop transformation that the compiler ignored. Sometimes, it is beneficial to apply a manual
loop transformation that the compiler has already applied with -O3 (Linux) or /O3 (Windows).

Optimizing the Compilation Process

Optimizing the Compilation Process Overview

This section describes the Intel® compiler options that can optimize the compilation process.
By default, the compiler converts source code directly to an executable file. Appropriate options
enable you not only to control the process and obtain desired output file produced by the
compiler, but also make the compilation itself more efficient.

A group of options monitors the outcome of Intel compiler-generated code without interfering
with the way your program runs. These options control some computation aspects, such as
allocating the stack memory, setting or modifying variable settings, and defining the use of
some registers.

The options in this section provide you with the following capabilities of efficient compilation:

• Compiling efficiently

• Using default compiler optimizations

• Automatic allocation of variables and stacks

• Converting little-endian to big-endian

• Symbol visibility attribute options

Efficient Compilation

Efficient compilation contributes to performance improvement. Before you analyze your program
for performance improvement, and improve program performance, you should think of efficient
compilation itself.

1658

34 Intel® Fortran Compiler User and Reference Guides

Based on the analysis of your application, you can decide which compiler optimizations and
command-line options can improve the run-time performance of your application.

Efficient Compilation Techniques

The efficient compilation techniques can be used during the earlier stages and later stages of
program development. During the earlier stages of program development, you can use
incremental compilation without optimization. For example:

Linux* and Mac OS* X

Example

ifort -c -g -O0 sub2.f90

ifort -c -g -O0 sub3.f90

ifort -o main -g -O0 main.f90 sub2.o sub3.o

The above commands turn off all compiler default optimizations, for example, -O2 (Linux* and
Mac OS* X) or /O2 (Windows*), with -O0 (Linux and Mac OS X) or /Od (Windows). You can
use the -g (Linux) or /Zi or /debug:full (Windows) option to generate symbolic debugging
information and line numbers in the object code for all routines in the program for use by a
source-level debugger. The main file created in the third command above contains symbolic
debugging information as well.

During the later stages of program development, you should specify multiple source files
together and use an optimization level of at least -O2 (Linux and Mac OS X) or /O2 (Windows)
to allow more optimizations to occur. For instance, the following command compiles all three
source files together using the default level of optimization:

Linux and Mac OS X

Example

ifort -o main main.f90 sub2.f90 sub3.f90

Compiling multiple source files lets the compiler examine more code for possible optimizations,
which results in:

• Inlining more procedures

• More complete data flow analysis

• Reducing the number of external references to be resolved during linking

1659

34

For very large programs, compiling all source files together may not be practical. In such
instances, consider compiling source files containing related routines together using multiple
ifort commands, rather than compiling source files individually.

Stacks: Automatic Allocation and Checking

The options in this group enable you to control the computation of stacks and variables in the
compiler generated code.

Automatic Allocation of Variables

-automatic (Linux*and Mac OS* X) and /automatic (Windows*)

These options specify that locally declared variables are allocated to the run-time stack rather
than static storage. If variables defined in a procedure do not have the SAVE or ALLOCATABLE
attribute, they are allocated to the stack. It does not affect variables that appear in an
EQUIVALENCE or SAVE statement, or those that are in COMMON.

-automatic (Linux and Mac OS X) or /automatic (Windows) may provide a performance gain
for your program, but if your program depends on variables having the same value as the last
time the routine was invoked, your program may not function properly. Variables that need to
retain their values across routine calls should appear in a SAVE statement.

NOTE. Linux: If you specify -recursive or -openmp, the default is -auto.

Windows: The Windows NT* system imposes a performance penalty for addressing a
stack frame that is too large. This penalty may be incurred with /Qauto because arrays
are allocated on the stack along with scalars.

-auto-scalar (Linux and Mac OS X) or /Qauto-scalar (Windows)

These options cause allocation of local scalar variables of intrinsic type INTEGER, REAL, COMPLEX,
or LOGICAL to the stack. This option does not affect variables that appear in an EQUIVALENCE
or SAVE statement, or those that are in COMMON.

The -auto-scalar (Linux and Mac OS X) or /Qauto-scalar (Windows) option may provide
a performance gain for your program, but if your program depends on variables having the
same value as the last time the routine was invoked, your program may not function properly.
Variables that need to retain their values across subroutine calls should appear in a SAVE
statement. This option is similar to -auto (Linux and Mac OS X) and /Qauto (Windows) which

1660

34 Intel® Fortran Compiler User and Reference Guides

causes all local variables to be allocated on the stack. The difference is that -auto-scalar
(Linux and Mac OS X) or /Qauto-scalar (Windows) allocates only scalar variables of the stated
above intrinsic types to the stack.

NOTE. Windows: Windows NT* imposes a performance penalty for addressing a stack
frame that is too large. This penalty may be incurred with /Qauto because arrays are
allocated on the stack along with scalars. However, with /Qauto-scalar, you would
have to have more than 32K bytes of local scalar variables before you incurred the
performance penalty.

-auto-scalar (Linux and Mac OS X) or /Qauto-scalar (Windows) enables the compiler to
make better choices about which variables should be kept in registers during program execution.

-save, -zero[-] (Linux and Mac OS X) or /Qsave, /Qzero[-] (Windows)

The -save (Linux and Mac OS X) or /Qsave (Windows) option is opposite of -auto (Linux) or
/Qauto (Windows). The -save (Linux and Mac OS X) or /Qsave (Windows) option saves all
variables in static allocation except local variables within a recursive routine.

If a routine is invoked more than once, this option forces the local variables to retain their
values from the last invocation. The save option ensures that the final results on the exit of
the routine is saved on memory and can be reused at the next occurrence of that routine. This
may cause some performance degradation as it causes more frequent rounding of the results.

NOTE. Linux and Mac OS X: -save is the same as -noauto.

Windows: /Qsave is the same as /save, and /noautomatic.

When the compiler optimizes the code, the results are stored in registers.

The -zero[-] (Linux and Mac OS X) or /Qzero[-] (Windows) option initializes to zero all local
scalar variables of intrinsic type INTEGER, REAL, COMPLEX, or LOGICAL, which are saved and
not initialized yet. Used in conjunction with SAVE.

Summary

There are three options for allocating variables: -save (Linux and Mac OS X) or /Qsave
(Windows), -auto (Linux) or /Qauto (Windows) and -auto-scalar (Linux) or /Qauto-scalar
(Windows). Only one of these three can be specified.

The correlation among them is as follows:

1661

34

• -save (Linux and Mac OS X) or /Qsave (Windows) disables -auto (Linux and Mac OS X)
or /Qauto (Windows), sets -noauto (Linux and Mac OS X) or /noautomatic (Windows),
and allocates all variables not marked AUTOMATIC to static memory.

• -auto (Linux and Mac OS X) or /Qauto (Windows) disables -save (Linux and Mac OS X)
or /Qsave (Windows), sets -nosave (Linux and Mac OS X) or /automatic (Windows) and
allocates all variables, scalars and arrays of all types, not marked SAVE to the stack.

• -auto-scalar (Linux and Mac OS X) or /Qauto-scalar (Windows) makes local scalars of
intrinsic types INTEGER, REAL, COMPLEX, and LOGICAL automatic. Additionally, this is the
default. There is no -noauto-scalar (Linux and Mac OS X) or /Qauto-scalar- (Windows);
however, -recursive or -openmp (Linux and Mac OS X) or /recursive or /Openmp
(Windows) disables -auto-scalar (Linux and Mac OS X) or /Qauto-scalar (Windows)
and makes -auto (Linux and Mac OS X) or /Qauto (Windows) the default.

Checking and Setting Space

The following options perform checking and setting space for stacks (these options are supported
on Windows only):

• The /Gs0 option enables stack-checking for all functions.

• The /Gsn option checks by default the stack space allocated for functions with more than
4KB.

• The /Fn option sets the stack reserve amount for the program. The /Fn option passes
/stack:n to the linker.

Aliases

The -common-args (Linux and Mac OS X) or /Qcommon-args (Windows) option assumes that
the by-reference subprogram arguments may have aliases of one another.

It is recommended that you use the -assume dummy_aliases (Linux and Mac OS X) or /as-
sume:dummy_aliases (Windows) option instead of the common-args option.

For more information about using the preferred option, see the following topic:

• -assume compiler option

1662

34 Intel® Fortran Compiler User and Reference Guides

Preventing CRAY* Pointer Aliasing

Option -safe-cray-ptr (Linux and Mac OS X) or /Qsafe-cray-ptr (Windows) specifies that
the CRAY* pointers do not alias with other variables. Consider the following example.

Example

pointer (pb, b)

pb = getstorage()

do i = 1, n

b(i) = a(i) + 1

enddo

When the option is not specified, the compiler assumes that b and a are aliased. To prevent
such an assumption, specify this option, and the compiler will treat b(i) and a(i) as
independent of each other.

However, if the variables are intended to be aliased with CRAY pointers, using the -safe-cray-
ptr (Linux and Mac OS X) or /Qsafe-cray-ptr (Windows) option produces incorrect result.
For the code example below, the option should not be used.

Example

pb = loc(a(2))

do i=1, n

b(i) = a(i) +1

enddo

Cross Platform

For example, an object of type real cannot be accessed as an integer. You should see the ANSI
standard for the complete set of rules.

The option directs the compiler to assume the following:

• Arrays are not accessed out of arrays' bounds.

• Pointers are not cast to non-pointer types and vice-versa.

1663

34

• References to objects of two different scalar types cannot alias. For example, an object of
type integer cannot alias with an object of type real or an object of type real cannot alias
with an object of type double precision.

If your program satisfies the above conditions, setting this option will help the compiler better
optimize the program. However, if your program may not satisfy one of the above conditions,
the option must be disabled, as it can lead the compiler to generate incorrect code.

For more information, see the following topic:

• -ansi-alias compiler option

Little-endian-to-Big-endian Conversion (IA-32 Architecture)

The Intel® compiler can write unformatted sequential files in big-endian format and can also
read files produced in big-endian format by using the little-endian-to-big-endian conversion
feature.

On processors based on IA-32 or IA-64 architectures, Intel Fortran handles internal data in
little-endian format. The little-endian-to-big-endian conversion feature is intended for Fortran
unformatted input/output operations in unformatted sequential files. The feature enables the
following:

• Processing of the files developed on processors that accept big-endian data format

• Producing big-endian files for such processors on little-endian systems.

The little-endian-to-big-endian conversion is accomplished by the following operations:

• The WRITE operation converts little-endian format to big-endian format.

• The READ operation converts big-endian format to little-endian format.

The feature enables the conversion of variables and arrays (or array subscripts) of basic data
types. Derived data types are not supported.

Little-to-Big Endian Conversion Environment Variable

In order to use the little-endian-to-big-endian conversion feature, specify the numbers of the
units to be used for conversion purposes by setting the F_UFMTENDIAN environment variable.
Then, the READ/WRITE statements that use these unit numbers, will perform relevant
conversions. Other READ/WRITE statements will work in the usual way.

In the general case, the variable consists of two parts divided by a semicolon. No spaces are
allowed inside the F_UFMTENDIAN value. The variable has the following syntax:

1664

34 Intel® Fortran Compiler User and Reference Guides

Example

F_UFMTENDIAN=MODE | [MODE;] EXCEPTION

where the following conditions are true:

Conditions

MODE = big | little

EXCEPTION = big:ULIST | little:ULIST | ULIST

ULIST = U | ULIST,U

U = decimal | decimal -decimal

and the following conditions apply:

• MODE defines current format of data, represented in the files; it can be omitted.

The keyword little means that the data have little endian format and will not be converted.
This keyword is a default.

The keyword big means that the data have big endian format and will be converted. This
keyword may be omitted together with the colon.

• EXCEPTION is intended to define the list of exclusions for MODE; it can be omitted. EXCEPTION
keyword (little or big) defines data format in the files that are connected to the units
from the EXCEPTION list. This value overrides MODE value for the units listed.

• Each list member U is a simple unit number or a number of units. The number of list members
is limited to 64.

decimal is a non-negative decimal number less than 232.

Converted data should have basic data types, or arrays of basic data types. Derived data types
are disabled.

Command lines for variable setting with different shells:

Command LineShell

export F_UFMTENDIAN=MODE;EXCEPTIONSh

setenv F_UFMTENDIAN MODE;EXCEPTIONCsh

1665

34

NOTE. Environment variable value should be enclosed in quotes if semicolon is present.

Another Possible Environment Variable Setting

The environment variable can also have the following syntax:

Example

F_UFMTENDIAN=u[,u] . . .

Command lines for the variable setting with different shells:

Command LineShell

export F_UFMTENDIAN=u[,u] . . .Sh

setenv F_UFMTENDIAN u[,u] . . .Csh

See error messages that may be issued during the little-endian to big-endian conversion. They
are all fatal. You should contact Intel if such errors occur.

Usage Examples

The following usage examples illustrate the concepts detailed above.

Example 1

F_UFMTENDIAN=big

All input/output operations perform conversion from big-endian to little-endian on READ and
from little-endian to big-endian on WRITE.

Example 2

F_UFMTENDIAN="little;big:10,20"

or

F_UFMTENDIAN=big:10,20

or

1666

34 Intel® Fortran Compiler User and Reference Guides

Example 2

F_UFMTENDIAN=10,20

In this case, only on unit numbers 10 and 20 the input/output operations perform big-little
endian conversion.

Example 3

F_UFMTENDIAN="big;little:8"

In this case, on unit number 8 no conversion operation occurs. On all other units, the
input/output operations perform big-little endian conversion.

Example 4

4. F_UFMTENDIAN=10-20

Define 10, 11, 12...19, 20 units for conversion purposes; on these units, the input/output
operations perform big-little endian conversion.

Assume you set F_UFMTENDIAN=10,100 and run the following program.

Example 5

integer*4 cc4

integer*8 cc8

integer*4 c4

integer*8 c8

c4 = 456

c8 = 789

1667

34

Example 5

C prepare a little endian representation of data

open(11,file='lit.tmp',form='unformatted')

write(11) c8

write(11) c4

close(11)

C prepare a big endian representation of data

open(10,file='big.tmp',form='unformatted')

write(10) c8

write(10) c4

close(10)

C read big endian data and operate with them on

C little endian machine.

open(100,file='big.tmp',form='unformatted')

read(100) cc8

read(100) cc4

C Any operation with data, which have been read

C

. . .

close(100)

stop

end

You can compare lit.tmp and big.tmp files to see the difference of the byte order in these
files.

Linux* Systems Only

On Linux* systems you can use the od utility to compare the files.

1668

34 Intel® Fortran Compiler User and Reference Guides

Example output

> od -t x4 lit.tmp

0000000 00000008 00000315 00000000 00000008

0000020 00000004 000001c8 00000004

0000034

> od -t x4 big.tmp

0000000 08000000 00000000 15030000 08000000

0000020 04000000 c8010000 04000000

0000034

You can see that the byte order is different in these files. If info and od are installed on your
Linux system, enter info od at the prompt to get more information about the utility.

Symbol Visibility Attribute Options (Linux* and Mac OS* X)

Applications that do not require symbol preemption or position-independent code can obtain a
performance benefit by taking advantage of the generic ABI visibility attributes.

Global Symbols and Visibility Attributes

A global symbol is a symbol that is visible outside the compilation unit in which it is declared
(compilation unit is a single-source file with the associated include files). Each global symbol
definition or reference in a compilation unit has a visibility attribute that controls how it may
be referenced from outside the component in which it is defined.

The values for visibility are defined and described in the following topic:

• -fvisibility compiler option

NOTE. Visibility applies to both references and definitions. A symbol reference's visibility
attribute is an assertion that the corresponding definition will have that visibility.

1669

34

Symbol Preemption and Optimization

Sometimes programmers need to use some of the functions or data items from a shareable
object, but at the same time, they need to replace other items with definitions of their own.
For example, an application may need to use the standard run-time library shareable object,
libc.so, but to use its own definitions of the heap management routines malloc and free.

NOTE. In this case it is important that calls to malloc and free within libc.so use
the user's definition of the routines and not the definitions in libc.so. The user's
definition should then override, or preempt, the definition within the shareable object.

This functionality of redefining the items in shareable objects is called symbol preemption.
When the run-time loader loads a component, all symbols within the component that have
default visibility are subject to preemption by symbols of the same name in components that
are already loaded. Note that since the main program image is always loaded first, none of the
symbols it defines will be preempted (redefined).

The possibility of symbol preemption inhibits many valuable compiler optimizations because
symbols with default visibility are not bound to a memory address until run-time. For example,
calls to a routine with default visibility cannot be inlined because the routine might be preempted
if the compilation unit is linked into a shareable object. A preemptable data symbol cannot be
accessed using GP-relative addressing because the name may be bound to a symbol in a
different component; and the GP-relative address is not known at compile time.

Symbol preemption is a rarely used feature and has negative consequences for compiler
optimization. For this reason, by default the compiler treats all global symbol definitions as
non-preemptable (protected visibility). Global references to symbols defined in another
compilation unit are assumed by default to be preemptable (default visibility). In those rare
cases where all global definitions as well as references need to be preemptable, you can override
this default.

Specifying Symbol Visibility Explicitly

The Intel® compiler has visibility attribute options that provide command-line control of the
visibility attributes in addition to a source syntax to set the complete range of these attributes.

The options ensure immediate access to the feature without depending on header file
modifications. The visibility options cause all global symbols to get the visibility specified by
the option. There are two variety of options to specify symbol visibility explicitly.

1670

34 Intel® Fortran Compiler User and Reference Guides

Example

-fvisibility=keyword

-fvisibility-keyword= file

The first form specifies the default visibility for global symbols. The second form specifies the
visibility for symbols that are in a file (this form overrides the first form).

Specifying Visibility without the Symbol File

This option sets the visiblity for symbols not specified in a visibility list file and that do not have
VISIBILITY attribute in their declaration. If no symbol file option is specified, all symbols will
get the specified attribute. Command line example:

Example

ifort -fvisibility=protected a.f

You can set the default visibility for symbols using one of the following command line options:

Examples

-fvisibility=extern

-fvisibility=default

-fvisibility=protected

-fvisibility=hidden

-fvisibility=internal

Data Alignment Options

These options control how the Intel® compiler align data items. Refer to Compiler Options for
more information on using these alignment-related options.

DescriptionWindows*Linux* and Mac OS* X

Specifies the alignment
constraint for structures on
n-byte boundaries.

/align:recnbyte-align recnbyte

1671

34

DescriptionWindows*Linux* and Mac OS* X

For more information, see the
following topic:

These front-end options
changes alignment of
variables in a common block.

For more information, see the
following topic:

This option aligns stack for
functions./Qsfalign

IA-32 architecture Only
No equivalent

For more information, see the
following topic:

1672

34 Intel® Fortran Compiler User and Reference Guides

Part

IV
Floating-point Operations
Topics:

• Overview: Floating-point
Operations

• Floating-point Options Quick
Reference

• Understanding Floating-point
Operations

• Tuning Performance

• Handling Floating-point
Exceptions

• Understanding IEEE
Floating-point Operations

1673

35Overview: Floating-point
Operations

This section introduces the floating-point support in the Intel® Fortran Compiler and provides information
about using floating-point operations in your applications. The section also briefly describes the IEEE*
Floating-Point Standard (IEEE 754).

The following table lists some possible starting points:

Then start with...If you are trying to...

Programming Trade-offs in Floating-Point
Applications

Understand the programming trade-offs in
floating-point applications

Using the -fp-model or /fp OptionUse the -fp-model (Linux* and Mac OS* X) or
/fp (Windows*) option

Setting the FTZ and DAZ FlagsSet the flush-to-zero (FTZ) or denormals-are-zero
(DAZ) flags

Handling Floating-Point ExceptionsHandle floating-point exceptions

Overview: Tuning Performance of Floating-Point
Applications

Tune the performance of floating-point applications
for consistency

Overview: Understanding IEEE Floating-Point
Standard

Learn about the IEEE Floating-Point Standard

1675

36Floating-point Options Quick
Reference

The Intel® Compiler provides various options for you to optimize floating-point calculations with varying
degrees of accuracy and predictability on different Intel architectures. This topic lists these compiler
options and provides information about their supported architectures and operating systems.

IA-32, Intel® 64, and IA-64 architectures

DescriptionWindows*Linux* and Mac OS* X

Specifies semantics used in floating-point
calculations. Values are precise, fast
[=1/2], strict, source, double,
extended, [no-]except (Linux* and
MacOS* X) and except[-] (Windows*).

/fp-fp-model

• -fp-model compiler option

Specifies the speculation mode for
floating-point operations. Values are fast,
safe, strict, and off.

/Qfp-speculation-fp-speculation

• -fp-speculation compiler option

Attempts to use slower but more accurate
implementation of floating-point divide. Use
this option to disable the divide

/Qprec-div,
/Qprec-div-

-prec-div, -no-prec-div

optimizations in cases where it is important
to maintain the full range and precision for
floating-point division. Using this option
results in greater accuracy with some loss
of performance.

Specifying -no-prec-div (Linux* and Mac
OS* X) or /Qprec-div- (Windows*) enable
the divide-to-reciprocal multiply
optimization; these results are slightly less
precise than full IEEE division results.

1677

DescriptionWindows*Linux* and Mac OS* X

• -prec-div compiler option

Enables the use of basic algebraic
expansions of some arithmetic operations
involving data of type COMPLEX. This can

/Qcomplex-limit-
ed-range

-complex-limited-range

cause performance improvements in
programs that use a lot of COMPLEX
arithmetic. Values at the extremes of the
exponent range might not compute
correctly; for example, for
single-precision floating-point operations,
values >1.E20 or <1.E-20 will not
compute correctly .

• -complex-limited-range compiler
option

May flush denormal results to zero. The
default behavior depends on the
architecture. Refer to the following topic
for details:

/Qftz-ftz

• -ftz compiler option

By default, the Fortran compiler disables
all floating-point exceptions; whether
floating underflow defaults to gradual or
abrupt is architecture-dependent.

/fpe, /fpe-all-fpe, -fpe-all

These options control which exceptions
are enabled by the Fortran compiler. They
also control whether floating-point
underflow is gradual or abrupt.

• -fpe compiler option

• -fpe-all compiler option

1678

36 Intel® Fortran Compiler User and Reference Guides

IA-32 and Intel® 64 Architectures

DescriptionWindows*Linux* and Mac OS* X

Improves the accuracy of square root
implementations, but using this option
may impact speed.

/Qprec-sqrt-prec-sqrt

• -prec-sqrt compiler option

Changes the floating point significand
precision in the x87 control word.

/Qpc-pc

The application must use PROGRAM as the
entry point, and you must compile the
source file containing PROGRAM with this
option.

• -pc compiler option

Disables rounding mode changes for
floating-point-to-integer conversions.

/Qrcd-rcd

• -rcd compiler option

Causes floating-point values to be
rounded to the source precision at
assignments and casts.

/Qfp-port-fp-port

• -fp-port compiler option

This option rounds floating-point values
to the precision specified in the source
program prior to comparisons. It also

/Qprec-mp1

implies -prec-div and -prec-sqrt
(Linux and Mac OS X) or /Qprec-div and
/Qprec-sqrt (Windows).

• -mp1 compiler option

1679

36

IA-64 architecture only

DescriptionWindows*Linux*

Enables/disables the contraction of
floating-point multiply and add/subtract
operations into a single operation.

/Qfma, /Qfma--fma, -no-fma

• -fma compiler option

• -fp-model compiler options

Enables use of faster but slightly less
accurate code sequences for math
functions, such as the sqrt() function

/Qfp-relaxed-fp-relaxed

and the divide operation. As compared
to strict IEEE* precision, using this option
slightly reduces the accuracy of
floating-point calculations performed by
these functions, usually limited to the
least significant binary digit.

• -fp-relaxed compiler option

1680

36 Intel® Fortran Compiler User and Reference Guides

37Understanding Floating-point
Operations

Programming Tradeoffs in Floating-point Applications

In general, the programming objectives for floating-point applications fall into the following categories:

• Accuracy: The application produces results that are close to the correct result.

• Reproducibility and portability: The application produces consistent results across different
runs, different sets of build options, different compilers, different platforms, and different
architectures.

• Performance: The application produces fast, efficient code.

Based on the goal of an application, you will need to make tradeoffs among these objectives. For
example, if you are developing a 3D graphics engine, then performance may be the most important
factor to consider, and reproducibility and accuracy may be your secondary concerns.

The Intel® Compiler provides appropriate compiler options, such as the -fp-model (Linux* and Mac
OS* X operating systems) or /fp (Windows* operating system) option, that allow you to tune your
applications based on specific objectives. The compiler optimizes and generates code differently
when you specify different compiler options. Take the following code as an example:
REAL(4):: t0, t1, t2

...

t0=t1+t2+4.0+0.1

If you specify the -fp-model extended (Linux* and Mac OS* X) or /fp:extended (Windows*)
option in favor of accuracy, the compiler generates the following assembly code:
fld DWORD PTR _t1

fadd DWORD PTR _t2

fadd DWORD PTR _Cnst4.0

fadd DWORD PTR _Cnst0.1

fstp DWORD PTR _t0

The above code maximizes accuracy because it utilizes the highest mantissa precision available on
the target platform. However, the code might suffer in performance due to the overhead of managing
the x87 stack and it might yield results that cannot be reproduced on other platforms that do not
have an equivalent extended precision type.

1681

If you specify the -fp-model source (Linux* and Mac OS* X) or /fp:source (Windows*)
option in favor of reproducibility and portability, the compiler generates the following assembly
code:
movss xmm0, DWORD PTR _t1

addss xmm0, DWORD PTR _t2

addss xmm0, DWORD PTR _Cnst4.0

addss xmm0, DWORD PTR _Cnst0.1

movss DWORD PTR _t0, xmm0

The above code maximizes portability by preserving the original order of the computation and
by using the well-defined IEEE single-precision type for all computations. It is not as accurate
as the previous implementation because the intermediate rounding error is greater compared
to extended precision. And it is not the highest performance implementation because it does
not take advantage of the opportunity to precompute 4.0 + 0.1.

If you specify the -fp-model fast (Linux* and Mac OS* X) or /fp:fast (Windows*) option
in favor of performance, the compiler generates the following assembly code:
movss xmm0, DWORD PTR _Cnst4.1

addss xmm0, DWORD PTR _t1

addss xmm0, DWORD PTR _t2

movss DWORD PTR _t0, xmm0

The above code maximizes performance by using Intel® SSE instructions and precomputing
4.0 + 0.1. It is not as accurate as the first implementation, again due to greater intermediate
rounding error. It will not provide reproducible results like the second implementation because
it must reorder the addition in order to precompute 4.0 + 0.1, and you cannot expect that
all compilers, on all platforms, at all optimization levels will reorder the addition in the same
way.

For most other applications, the considerations may be more complicated. You should select
appropriate compiler options by carefully balancing your programming objectives and making
tradeoffs among these objectives.

Floating-point Optimizations

Application performance is an important goal of the Intel® Compilers, even at default optimization
levels. A number of optimizations involve transformations that might affect the floating-point
behavior of the application, such as evaluation of constant expressions at compile time, hoisting

1682

37 Intel® Fortran Compiler User and Reference Guides

invariant expressions out of loops, or changes in the order of evaluation of expressions. These
optimizations usually help the compiler to produce the most efficient code possible. However,
the optimizations might be contrary to the floating-point requirements of the application.

Some optimizations are not consistent with strict interpretation of the ANSI or ISO standards
for Fortran. Such optimizations can cause differences in rounding and small variations in
floating-point results that may be more or less accurate than the ANSI-conformant result.

Intel Compilers provide the -fp-model (Linux* and Mac OS* X) or /fp (Windows*) option,
which allows you to control the optimizations performed when you build an application. The
option allows you to specify the compiler rules for:

• Value safety: Whether the compiler may perform transformations that could affect the
result. For example, in the SAFE mode, the compiler won't transform x/x to 1.0 because
the value of x at runtime might be a zero or a NaN . The UNSAFE mode is the default.

• Floating-point expression evaluation: How the compiler should handle the rounding of
intermediate expressions.

• Floating-point contractions: Whether the compiler should generate fused multiply-add
(FMA) instructions on processors based on the IA-64 architecture. When enabled, the compiler
may generate FMA instructions for combining multiply and add operations; when disabled,
the compiler must generate separate multiply and add instructions with intermediate
rounding.

• Floating-point environment access:Whether the compiler must account for the possibility
that the program might access the floating-point environment, either by changing the default
floating-point control settings or by reading the floating-point status flags. This is disabled
by default. You can use the -fp-model:strict (Linux and Mac OS X) /fp:strict
(Windows) option to enable it.

• Precise floating-point exceptions:Whether the compiler should account for the possibility
that floating-point operations might produce an exception. This is disabled by default. You
can use -fp-model:strict (Linux and Mac OS X) or /fp:strict (Windows); or -fp-
model:except (Linux and Mac OS X) or /fp:except (Windows) to enable it.

The following table describes the impact of different keywords of the option on compiler rules
and optimizations:

Precise
Floating-Point
Exceptions

Floating-Point
Environment
Access

Floating-Point
Contractions

Floating-Point
Expression
Evaluation

Value SafetyKeyword

NoNoYesSource
Source

Variesprecise
source

YesYesNoSourceVariesstrict

1683

37

Precise
Floating-Point
Exceptions

Floating-Point
Environment
Access

Floating-Point
Contractions

Floating-Point
Expression
Evaluation

Value SafetyKeyword

NoNoYesUnknownUnsafefast=1
(default)

NoNoYesUnknownUnsafefast=2

Yes
No

Unaffected
Unaffected

Unaffected
Unaffected

Source
Source

Unaffected
Unaffected

except
except-

NOTE. It is illegal to specify the except keyword in an unsafe safety mode.

Based on the objectives of an application, you can choose to use different sets of compiler
options and keywords to enable or disable certain optimizations, so that you can get the desired
result.

See Also
• Understanding Floating-point Operations
• Using -fp-model (/fp) Option

Using the -fp-model (/fp) Option

The -fp-model (Linux* and Mac OS* X) or /fp (Windows*) option allows you to control the
optimizations on floating-point data. You can use this option to tune the performance, level of
accuracy, or result consistency for floating-point applications across platforms and optimization
levels.

For applications that do not require support for denormalized numbers, the -fp-model or /fp
option can be combined with the -ftz (Linux*and Mac OS* X) or /Qftz (Windows*) option to
flush denormalized results to zero in order to obtain improved runtime performance on processors
based on all Intel architectures (IA-32, Intel® 64, and IA-64 architectures).

You can use keywords to specify the semantics to be used. Possible values of the keywords are
as follows:

1684

37 Intel® Fortran Compiler User and Reference Guides

DescriptionKeyword

Enables value-safe optimizations on floating-point data and
rounds intermediate results to source-defined precision.

precise

Enables more aggressive optimizations on floating-point data.fast[=1|2]

Enables precise and except, disables contractions, and enables
the property that allows modification of the floating-point
environment.

strict

Enables value-safe optimizations on floating-point data and
rounds intermediate results to source-defined precision (same
as precise keyword).

source

Determines whether strict floating-point exception semantics
are used.

[no-]except (Linux* and
Mac OS* X) or
except[-] (Windows*)

The default value of the option is -fp-model fast=1 or /fp:fast=1, which means that the
compiler uses more aggressive optimizations on floating-point calculations.

NOTE. Using the default option keyword -fp-model fast or /fp:fast, you may get
significant differences in your result depending on whether the compiler uses x87 or
SSE2 instructions to implement floating-point operations. Results are more consistent
when the other option keywords are used.

Several examples are provided to illustrate the usage of the keywords. These examples show:

• A small example of source code
Note that the same source code is considered in all the included examples.

• The semantics that are used to interpret floating-point calculations in the source code

• One or more possible ways the compiler may interpret the source code
Note that there are several ways the compiler may interpret the code; we show just some
of these possibilities.

1685

37

-fp-model fast or /fp:fast

Example source code:

REAL T0, T1, T2;

...

T0 = 4.0E + 0.1E + T1 + T2;

When this option is specified, the compiler applies the following semantics:

• Additions may be performed in any order

• Intermediate expressions may use single, double, or extended double precision

• The constant addition may be pre-computed, assuming the default rounding mode

Using these semantics, some possible ways the compiler may interpret the original code are
given below:

REAL T0, T1, T2;

...

T0 = (T1 + T2) + 4.1E;

REAL T0, T1, T2;

...

T0 = (T1 + 4.1E) + T2;

-fp-model source or /fp:source

This setting is equivalent to -fp-model precise or /fp:precise on systems based on the
Intel® 64 architecture.

Example source code:

REAL T0, T1, T2;

...

T0 = 4.0E + 0.1E + T1 + T2;

When this option is specified, the compiler applies the following semantics:

• Additions are performed in program order

1686

37 Intel® Fortran Compiler User and Reference Guides

• Intermediate expressions use the precision specified in the source code, that is,
single-precision

• The constant addition may be pre-computed, assuming the default rounding mode

Using these semantics, a possible way the compiler may interpret the original code is shown
below:

REAL T0, T1, T2;

...

T0 = ((4.1E + T1) + T2);

-fp-model strict or /fp:strict

Example source code:

REAL T0, T1, T2;

...

T0 = 4.0E + 0.1E + T1 + T2;

When this option is specified, the compiler applies the following semantics:

• Additions are performed in program order

• Intermediate expressions always use source precision in modes other than fast.

• The constant addition is not pre-computed because there is no way to tell what rounding
mode will be active when the program runs.

Using these semantics, a possible way the compiler may interpret the original code is shown
below:

REAL T0, T1, T2;

...

T0 = REAL ((((REAL)4.0E + (REAL)0.1E) + (REAL)T1) + (REAL)T2);

See Also
• Understanding Floating-point Operations
• -fp-model compiler option

1687

37

Denormal Numbers

A normalized number is a number for which both the exponent (including bias) and the most
significant bit of the mantissa are non-zero. For such numbers, all the bits of the mantissa
contribute to the precision of the representation.

The smallest normalized single-precision floating-point number greater than zero is about
1.1754943-38. Smaller numbers are possible, but those numbers must be represented with a
zero exponent and a mantissa whose leading bit(s) are zero, which leads to a loss of precision.
These numbers are called denormalized numbers or denormals (newer specifications refer to
these as subnormal numbers).

Denormal computations use hardware and/or operating system resourcesto handle denormals;
these can cost hundreds of clock cycles.

• Denormal computations take much longer to calculate on processors based on IA-32 and
Intel® 64 architectures than normal computations.

• Denormals are computed in software on processors based on the IA-64 architecture. The
computation usually requires hundreds of clock cycles that results in excessive kernel time.

There are several ways to avoid denormals and increase the performance of your application:

• Scale the values into the normalized range.

• Use a higher precision data type with a larger range.

• Flush denormals to zero.

See Also
• Understanding Floating-point Operations

Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture

Intel® Itanium® Architecture Software Developer's Manual, Volume 1: Application Architecture

Institute of Electrical and Electronics Engineers, Inc*. (IEEE) web site for information about
the current floating-point standards and recommendations

Floating-point Environment

The floating-point environment is a collection of registers that control the behavior of the
floating-point machine instructions and indicate the current floating-point status. The
floating-point environment can include rounding mode controls, exception masks, flush-to-zero
(FTZ) controls, exception status flags, and other floating-point related features.

1688

37 Intel® Fortran Compiler User and Reference Guides

For example, on IA-32 and Intel® 64 architectures, bit 15 of the MXCSR register enables the
flush-to-zero mode, which controls the masked response to an single-instruction multiple-data
(SIMD) floating-point underflow condition.

The floating-point environment affects most floating-point operations; therefore, correct
configuration to meet your specific needs is important. For example, the exception mask bits
define which exceptional conditions will be raised as exceptions by the processor. In general,
the default floating-point environment is set by the operating system. You don't need to configure
the floating-point environment unless the default floating-point environment does not suit your
needs.

There are several methods available if you want to modify the default floating-point environment.
For example, you can use inline assembly, compiler built-in functions, library functions, or
command line options.

Changing the default floating-point environment affects runtime results only. This does not
affect any calculations that are pre-computed at compile time.

See Also
• Understanding Floating-point Operations

Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture

Intel® Itanium® Architecture Software Developer's Manual, Volume 1: Application Architecture

Setting the FTZ and DAZ Flags

In Intel® processors, the flush-to-zero (FTZ) and denormals-are-zero (DAZ) flags in the MXCSR
register are used to control floating-point calculations. The Intel® Streaming SIMD (Single
Instruction Multiple Data) Extensions (Intel® SSE) and the Intel® SSE 2 instructions, including
scalar and vector instructions, benefit from enabling the FTZ and DAZ flags respectively.
Floating-point computations using these Intel® SSE instructions are accelerated when the FTZ
and DAZ flags are enabled and thus the performance of the application improves.

You can use the -ftz (Linux* and Mac OS* X) or /Qftz (Windows*) option to flush denormal
results to zero when the application is in the gradual underflow mode. This option may improve
performance if the denormal values are not critical to your application's behavior. The -ftz
and /Qftz options, when applied to the main program, set the FTZ and the DAZ hardware
flags. The -no-ftz and /Qftz- options leave the flags as they are.

The following table describes how the compiler processes denormal values based on the status
of the FTZ and DAZ flags:

1689

37

Supported onWhen set to OFF, the
compiler...

When set to ON, the
compiler...

Flag

IA-64, Intel® 64
architectures,
and some IA-32
architectures

Does not change the
denormal results

Sets denormal results
from floating-point
calculations to zero

FTZ
(flush-to-zero)

Intel® 64
architecture and
some IA-32
architecture

Does not change the
denormal instruction
inputs

Treats denormal values
used as input to
floating-point instructions
as zero

DAZ
(denormals-are-zero)

• FTZ and DAZ are not supported on all IA-32 architectures. The FTZ flag is supported only
on IA-32 architectures that support Intel® SSE instructions.

• On systems based on the IA-64 architecture, FTZ always works, while on systems based on
the IA-32 and Intel® 64 architectures, FTZ only applies to Intel® SSE instructions. Hence, if
your application happens to generate denormals using x87 instructions, FTZ does not apply.

• DAZ and FTZ flags are not compatible with IEEE Standard 754, so you should only consider
enabling them when strict compliance to the IEEE standard is not required.

Options -ftz and /Qftz are performance options. Setting these options does not guarantee
that all denormals in a program are flushed to zero. They only cause denormals generated at
run-time to be flushed to zero.

On Intel®64 and IA-32 systems, the compiler, by default, inserts code into the main routine to
set the FTZ and DAZ flags. When -ftz or /Qftz option is used on IA-32 systems with the
option –msse2 or /arch:sse2, the compiler will insert code to conditionally set FTZ/DAZ flags
based on a run-time processor check. The -no-ftz (Linux* and Mac OS* X) or /Qftz-
(Windows) will prevent the compiler from inserting any code that might set FTZ or DAZ flags.

When -ftz or /Qftz is used in combination with an Intel® SSE-enabling option on systems
based on the IA-32 architecture (for example, -msse2 or /arch:sse2), the compiler will insert
code in the main routine to set FTZ and DAZ. When -ftz or /Qftz is used without such an
option, the compiler will insert code to conditionally set FTZ/DAZ based on a run-time processor
check. -no-ftz (Linux and Mac OS X) or /Qftz- (Windows) will prevent the compiler from
inserting any code that might set FTZ or DAZ.

The -ftz or /Qftz option only has an effect when the main program is being compiled. It sets
the FTZ/DAZ mode for the process. The initial thread and any threads subsequently created
by that process will operate in the FTZ/DAZ mode.

1690

37 Intel® Fortran Compiler User and Reference Guides

On systems based on the IA-64 architecture, optimization option O3 sets -ftz and /Qftz;
optimization option O2 sets -no-ftz (Linux) and /Qftz- (Windows). On systems based on
the IA-32 and Intel® 64 architectures, every optimization option O level, except O0, sets -ftz
and /Qftz.

If this option produces undesirable results of the numerical behavior of your program, you can
turn the FTZ/DAZ mode off by using -no-ftz or /Qftz- in the command line while still
benefiting from the O3 optimizations.

For some non-Intel processors, the flags can be set manually by calling the following Intel
Fortran intrinsic:

Example

RESULT = FOR_SET_FPE (FOR_M_ABRUPT_UND)

See Also
• Understanding Floating-point Operations

Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture

Checking the Floating-point Stack State

On systems based on the IA-32 architectures, when an application calls a function that returns
a floating-point value, the returned floating-point value is supposed to be on the top of the
floating-point stack. If the return value is not used, the compiler must pop the value off of the
floating-point stack in order to keep the floating-point stack in the correct state.

On systems based on Intel(R) 64 architectures, floating-point values are usually returned in
the xmm0 register. The floating-point stack is used only when the return value is an internal
80-bit floating-point data type on Linux* and Mac OS* X systems.

If the application calls a function without defining or incorrectly defining the function's prototype,
the compiler cannot determine if the function must return a floating-point value. Consequently,
the return value is not popped off the floating-point stack if it is not used. This can cause the
floating-point stack to overflow.

The overflow of the stack results in two undesirable situations:

• A NaN value gets involved in the floating-point calculations

• The program results become unpredictable; the point where the program starts making
errors can be arbitrarily far away from the point of the actual error.

1691

37

For systems based on the IA-32 and Intel® 64 architectures, the -fp-stack-check (Linux*
and Mac OS* X) or /Qfp-stack-check (Windows*) option checks whether a program makes
a correct call to a function that should return a floating-point value. If an incorrect call is
detected, the option places a code that marks the incorrect call in the program. The -fp-stack-
check (Linux* and Mac OS* X) or /Qfp-stack-check (Windows*) option marks the incorrect
call and makes it easy to find the error.

NOTE. The -fp-stack-check (Linux* and Mac OS* X) and the /Qfp-stack-check
(Windows*) option causes significant code generation after every function/subroutine
call to ensure that the floating-point stack is maintained in the correct state. Therefore,
using this option slows down the program being compiled. Use the option only as a
debugging aid to find floating point stack underflow/overflow problems, which can be
otherwise hard to find.

See Also
• Understanding Floating-point Operations
• -fp-stack-check, /Qfp-stack-check option

1692

37 Intel® Fortran Compiler User and Reference Guides

38Tuning Performance

Overview: Tuning Performance

This section describes several programming guidelines that can help you improve the performance
of a floating-point applications:

• Avoid exact floating-point comparisons

• Avoid exceeding representable ranges during computation; handling these cases can have a
performance impact.

• Use REAL variables in single precision format unless the extra precision obtained through DOUBLE
or REAL*8 is required because a larger precision formation will also increase memory size and
bandwidth requirements. See Using Efficient Data Types section.

• Reduce the impact of denormal exceptions for all supported architectures.

• Avoid mixed data type arithmetic expressions.

Avoiding Exact Floating-point Comparison

It is unsafe for applications to rely on exact floating-point comparisons. Slight variations in rounding
can change the outcome of such comparisons, leading to non-convergence or other unexpected
behavior.

Tests for equality of floating-point quantities should be made within some tolerance related to the
expected precision of the calculation, for example, by using the Fortran intrinsic function EPSILON.
The following examples demonstrate the concept:

Example

if (foo() == 2.0)

Where foo() may be as close to 2.0 as can be imagined without actually exactly matching 2.0. You
can improve the behavior of such codes by using inexact floating-point comparisons or fuzzy
comparisons to test a value to within a certain tolerance, as shown below:

Example

epsilon = 1E-8;
if (abs(foo() - 2.0) <= epsilon)

1693

Handling Floating-point Array Operations in a Loop Body

Following the guidelines below will help autovectorization of the loop.

• Statements within the loop body may contain float or double operations (typically on arrays).
The following arithmetic operations are supported: addition, subtraction, multiplication,
division, negation, square root, MAX, MIN, and mathematical functions such as SIN and
COS.

• Writing to a single-precision scalar/array and a double scalar/array within the same loop
decreases the chance of autovectorization due to the differences in the vector length (that
is, the number of elements in the vector register) between float and double types. If
autovectorization fails, try to avoid using mixed data types.

See Also
• Tuning Performance
• Programming Guidelines for Vectorization

Reducing the Impact of Denormal Exceptions

Denormalized floating-point values are those that are too small to be represented in the normal
manner; that is, the mantissa cannot be left-justified. Denormal values require hardware or
operating system interventions to handle the computation, so floating-point computations that
result in denormal values may have an adverse impact on performance.

There are several ways to handle denormals to increase the performance of your application:

• Scale the values into the normalized range

• Use a higher precision data type with a larger range

• Flush denormals to zero

For example, you can translate them to normalized numbers by multiplying them using a large
scalar number, doing the remaining computations in the normal space, then scaling back down
to the denormal range. Consider using this method when the small denormal values benefit
the program design.

If you change the declaration of a variable you might also need to change the libraries you call
to use the variable Another strategy that might result in increased performance is to increase
the amount of precision of intermediate values using the -fp-model [double|extended]
option. However, this strategy might not eliminate all denormal exceptions, so you must
experiment with the performance of your application.

1694

38 Intel® Fortran Compiler User and Reference Guides

If you change the type declaration of a variable, you might also need to change associated
library calls, unless these are generic Another strategy that might result in increased performance
is to increase the amount of precision of intermediate values using the -fp-model [double|ex-
tended] option. However, this strategy might not eliminate all denormal exceptions, so you
must experiment with the performance of your application. You should verify that the gain in
performance from eliminating denormals is greater than the overhead of using a data type with
higher precision and greater dynamic range.

Finally, in many cases denormal numbers can be treated safely as zero without adverse effects
on program results. Depending on the target architecture, use flush-to-zero (FTZ) options.

IA-32 and Intel® 64 Architectures

These architectures take advantage of the FTZ (flush-to-zero) and DAZ (denormals-are-zero)
capabilities of Intel® Streaming SIMD Extensions (Intel® SSE) instructions.

On Intel®64 and IA-32-based systems, the compiler, by default, inserts code into the main
routine to enable FTZ and DAZ at optimization levels higher than -O0. To enable FTZ and DAZ
at -O0, compile the source file containing PROGRAM using –ftz or /Qftz option. When -ftz
or /Qftz option is used on IA-32-based systems with the option –mia32 or /arch:IA32, the
compiler inserts code to conditionally enable FTZ and DAZ flags based on a run-time processor
check.

NOTE. After using flush-to-zero, ensure that your program still gives correct results
when treating denormalized values as zero.

IA-64 Architecture

Enable the FTZ mode by using the -ftz (Linux and Mac OS X) or /Qftz (Windows) option on
the source file containing PROGRAM. The -O3 (Linux and Mac OS X) or /O3 (Windows) option
automatically enables -ftz or /Qftz.

NOTE. After using flush-to-zero, ensure that your program still gives correct results
when treating denormalized values as zero.

See Also
• Tuning Performance
• Setting the FTZ and DAZ Flags

1695

38

Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture

Avoiding Mixed Data Type Arithmetic Expressions

Avoid mixing integer and floating-point (REAL) data in the same computation. Expressing all
numbers in a floating-point arithmetic expression (assignment statement) as floating-point
values eliminates the need to convert data between fixed and floating-point formats. Expressing
all numbers in an integer arithmetic expression as integer values also achieves this. This
improves run-time performance.

For example, assuming that I and J are both INTEGER variables, expressing a constant number
(2.) as an integer value (2) eliminates the need to convert the data. The following examples
demonstrate inefficient and efficient code.

Examples

Example 1: Inefficient Code

INTEGER I, J
I = J / 2.

Example 2: Efficient Code

INTEGER I, J
I = J / 2

Special Considerations for Auto-Vectorization of the Innermost Loops

Auto-vectorization of an innermost loop packs multiple data elements from consecutive loop
iterations into a vector register, each of which is 128-bit in size.

Consider a loop that uses different sized data, for example, REAL and DOUBLE PRECISION. For
REAL data, the compiler tries to pack data elements from four (4) consecutive iterations (32
bits x 4 = 128 bits). For DOUBLE PRECISION data, the compiler tries to pack data elements
from two (2) consecutive iterations (64 bits x 2 = 128 bits). Because of the mismatched number
of iterations, the compiler sometimes fails to perform auto-vectorization of the loop, after trying
to automatically remedy the situation.

If your attempt to auto-vectorize an innermost loop fails, it is a good practice to try using the
same sized data. INTEGER and REAL are considered same sized data since both are 32-bit in
size.

1696

38 Intel® Fortran Compiler User and Reference Guides

Examples

Example 1: Non-autovectorizable code

DOUBLE PRECISION A(N), B(N)

REAL C(N), D(N)

DO I=1, N

A(I)=D(I)

C(I)=B(I)

ENDDO

Example 2: Auto-vectorizable after automatic distribution into two loops

DOUBLE PRECISION A(N), B(N)

REAL C(N), D(N)

DO I=1, N

A(I)=B(I)

C(I)=D(I)

ENDDO

Example 3: Auto-vectorizable as one loop

REAL A(N), B(N)

REAL C(N), D(N)

DO I=1, N

A(I)=B(I)

C(I)=D(I)

ENDDO

1697

38

Using Efficient Data Types

In cases where more than one data type can be used for a variable, consider selecting the data
types based on the following hierarchy, listed from most to least efficient:

• Integer

• Single-precision real, expressed explicitly as REAL, REAL (KIND=4), or REAL*4

• Double-precision real, expressed explicitly as DOUBLE PRECISION, REAL (KIND=8), or
REAL*8

• Extended-precision real, expressed explicitly as REAL (KIND=16) or REAL*16

However, keep in mind that in an arithmetic expression, you should avoid mixing integer and
floating-point data.

1698

38 Intel® Fortran Compiler User and Reference Guides

39Handling Floating-point
Exceptions

Overview: Controlling Floating-point Exceptions

When developing applications, you may need to control the exceptions that can occur during the
run-time processing of floating-point numbers. These exceptions can be categorized into specific
types: overflow, divide-by-zero, underflow, and invalid operations.

Overflow

Overflow is signaled whenever the destination format's largest finite number is exceeded in magnitude
by what would have been the rounded floating-point result. The result computed is rounding mode
specific:

• Round-to-nearest (default): +/- Infinity in specified precision

• Round-to-zero: +/- Maximum Number in specified precision

• Round-to-+Infinity: +Infinity or -(Maximum Positive Number) in specified precision

• Round-to--Infinity: (Maximum Positive Number) or -Infinity in specified precision

For example, in round-to-nearest mode 1.E30 * 1.E30 overflows the single-precision floating-point
range and results in a +Infinity; -1.E30 * 1.E30 results in a -Infinity.

Divide-by-zero

Divide-by-zero is signaled when the divisor is zero and the dividend is a finite nonzero number. The
computed result is a correctly signed Infinity.
For example, 2.0E0/+0.0 produces a divide-by-zero exception and results in a +Infinity; -2.0E0/+0.0
produces a divide-by-zero exception and results in a -Infinity.

Underflow

Underflow occurs when a computed result (of an add, subtract, multiply, divide, or math function
call) falls beyond the minimum range in magnitude of normalized numbers of the floating-point data
type. Each floating-point type (32-, 64-, and 128-bit) has a denormalized range where very small
numbers can be represented with some loss of precision. This is called gradual underflow. For
example, the lower bound for normalized single-precision floating-point is approximately 1.E-38,

1699

while the lower bound for denormalized single-precision floating-point is approximately 1.E-45.
Results falling below the lower bound of the denormalized range simply become zero. 1.E-30
/ 1.E10 underflows the normalized range but not the denormalized range so the result is the
denormal value 1.E-40. 1.E-30 / 1.E30 underflows the entire range and the result is zero.

Invalid operation

Invalid occurs when operands to the basic floating-point operations or math function inputs
produce an undefined (QNaN) result. Some examples include:

• SNaN operand in any floating-point operation or math function call

• Division of zeroes: (+/-0.0)/(+/-0.0)

• Sum of Infinities having different signs: Infinity + (-Infinity)

• Difference of Infinities having the same sign: (+/-Infinity) - (+/-Infinity)

• Product of signed Infinities with zero: (+/-Inf) * 0

• Math Function Domain Errors: log(negative), sqrt(negative), asin(|x|>1)

With the Intel® Compiler, you can use the -fpe (Linux* and Mac OS* X) or /fpe (Windows*)
option to control floating-point exceptions.

Handling Floating-point Exceptions

If a floating-point exception is disabled (its bit is set to 1 with SETCONTROLFPQQ (x87 arithmetic
only), it will not generate an interrupt signal if it occurs. The floating-point process may return
an appropriate special value (for example, NaN or signed infinity) or may return an acceptable
value (for example, in the case of a denormal operand), and the program will continue. If a
floating-point exception is enabled (its bit is set to 0), it will generate an interrupt signal
(software interrupt) if it occurs.

The following table lists the floating-point exception signals:

DescriptionValue in HexParameter Name

Invalid result#81FPE$INVALID

Denormal operand#82FPE$DENORMAL

Divide by zero#83FPE$ZERODIVIDE

Overflow#84FPE$OVERFLOW

1700

39 Intel® Fortran Compiler User and Reference Guides

DescriptionValue in HexParameter Name

Underflow#85FPE$UNDERFLOW

Inexact precision#86FPE$INEXACT

If a floating-point exception interrupt occurs and you do not have an exception handling routine,
the run-time system will respond to the interrupt according to the behavior selected by the
compiler option /fpe. Remember, interrupts only occur if an exception is enabled (set to 0).

If you do not want the default system exception handling, you need to write your own interrupt
handling routine:

• Write a function that performs whatever special behavior you require on the interrupt.

• Register that function as the procedure to be called on that interrupt with SIGNALQQ.

Note that your interrupt handling routine must use the cDEC$ ATTRIBUTES option C.

The drawback of writing your own routine is that your exception-handling routine cannot return
to the process that caused the exception. This is because when your exception-handling routine
is called, the floating-point processor is in an error condition, and if your routine returns, the
processor is in the same state, which will cause a system termination. Your exception-handling
routine can therefore either branch to another separate program unit or exit (after saving your
program state and printing an appropriate message). You cannot return to a different statement
in the program unit that caused the exception-handling routine, because a global GOTO does
not exist, and you cannot reset the status word in the floating-point processor.

If you need to know when exceptions occur and also must continue if they do, you must disable
exceptions so they do not cause an interrupt, then poll the floating-point status word at intervals
with GETSTATUSFPQQ (IA-32 architecture only) to see if any exceptions occurred. To clear the
status word flags, call the CLEARSTATUSFPQQ (IA-32 architecture only) routine.

1701

39

Polling the floating-point status word at intervals creates processing overhead for your program.
In general, you will want to allow the program to terminate if there is an exception. An example
of an exception-handling routine follows. The comments at the beginning of the SIGTEST.F90
file describe how to compile this example.
! SIGTEST.F90

!Establish the name of the exception handler as the

! function to be invoked if an exception happens.

! The exception handler hand_fpe is attached below.

USE IFPORT

INTERFACE

FUNCTION hand_fpe (sigid, except)

!DEC$ ATTRIBUTES C :: hand_fpe

INTEGER(4) hand_fpe

INTEGER(2) sigid, except

END FUNCTION

END INTERFACE

INTEGER(4) iret

REAL(4) r1, r2

r1 = 0.0

iret = SIGNALQQ(SIG$FPE, hand_fpe)

WRITE(*,*) 'Set exception handler. Return = ', iret

! Cause divide-by-zero exception

r1 = 0.0

r2 = 3/r1

END

! Exception handler routine hand_fpe

FUNCTION hand_fpe (signum, excnum)

!DEC$ ATTRIBUTES C :: hand_fpe

USE IFPORT

INTEGER(2) signum, excnum

1702

39 Intel® Fortran Compiler User and Reference Guides

WRITE(*,*) 'In signal handler for SIG$FPE'

WRITE(*,*) 'signum = ', signum

WRITE(*,*) 'exception = ', excnum

SELECT CASE(excnum)

CASE(FPE$INVALID)

STOP ' Floating point exception: Invalid number'

CASE(FPE$DENORMAL)

STOP ' Floating point exception: Denormalized number'

CASE(FPE$ZERODIVIDE)

STOP ' Floating point exception: Zero divide'

CASE(FPE$OVERFLOW)

STOP ' Floating point exception: Overflow'

CASE(FPE$UNDERFLOW)

STOP ' Floating point exception: Underflow'

CASE(FPE$INEXACT)

STOP ' Floating point exception: Inexact precision'

CASE DEFAULT

STOP ' Floating point exception: Non-IEEE type'

END SELECT

hand_fpe = 1

END

File fordef.for and Its Usage

The parameter file fordef.for contains symbols and INTEGER*4 values corresponding to the
classes of floating-point representations. Some of these classes are exceptional ones such as
bit patterns that represent positive denormalized numbers.

With this file of symbols and with the FP_CLASS intrinsic function, you have the flexibility of
identifying exceptional numbers so that, for example, you can replace positive and negative
denormalized numbers with true zero.

1703

39

The following is a simple example of identifying floating-point bit representations:
include 'fordef.for'

real*4 a

integer*4 class_of_bits

a = 57.0

class_of_bits = fp_class(a)

if (class_of_bits .eq. for_k_fp_pos_norm .or. &

class_of_bits .eq. for_k_fp_neg_norm) then

print *, a, ' is a non-zero and non-exceptional value'

else

print *, a, ' is zero or an exceptional value'

end if

end

In this example, the symbol for_k_fp_pos_norm in the file fordef.for plus the REAL*4
value 57.0 to the FP_CLASS intrinsic function results in the execution of the first print statement.

The table below explains the symbols in the file fordef.for and their corresponding
floating-point representations.

Symbols in fordef.for

Class of Floating-Point Bit RepresentationSymbol Name

Signaling NaNFOR_K_FP_SNAN

Quiet NaNFOR_K_FP_QNAN

Positive infinityFOR_K_FP_POS_INF

Negative infinityFOR_K_FP_NEG_INF

Positive normalized finite numberFOR_K_FP_POS_NORM

Negative normalized finite numberFOR_K_FP_NEG_NORM

Positive denormalized numberFOR_K_FP_POS_DENORM

Negative denormalized numberFOR_K_FP_NEG_DENORM

1704

39 Intel® Fortran Compiler User and Reference Guides

Class of Floating-Point Bit RepresentationSymbol Name

Positive zeroFOR_K_FP_POS_ZERO

Negative zeroFOR_K_FP_NEG_ZERO

Another example of using file fordef.for and intrinsic function FP_CLASS follows. The goals
of this program are to quickly read any 32-bit pattern into a REAL*4 number from an unformatted
file with no exception reporting and to replace denormalized numbers with true zero:
include 'fordef.for'

real*4 a(100)

integer*4 class_of_bits

! open an unformatted file as unit 1

! ...

read (1) a

do i = 1, 100

class_of_bits = fp_class(a(i))

if (class_of_bits .eq. for_k_fp_pos_denorm .or. &

class_of_bits .eq. for_k_fp_neg_denorm) then

a(i) = 0.0

end if

end do

close (1)

end

You can compile this program with any value of -fpen (Linux* and Mac OS* X) or /fpe:n
(Windows*). Intrinsic function FP_CLASS helps to find and replace denormalized numbers with
zeroes before the program can attempt to perform calculations on the denormalized numbers.

On the other hand, if this program did not replace denormalized numbers read from unit 1 with
zeroes and the program was compiled with -fpe0 or /fpe:0, then the first attempted calculation
on a denormalized number would result in a floating-point exception. If you compile with /fpe:0
flush-to-zero is enabled. If the resulting calculation creates a divide-by-zero, overflow, or invalid
operation, then the application should abort with a floating-point exception. Otherwise, a
program using the data will run to completion, perhaps faster and with different answers.

1705

39

File fordef.for and intrinsic function FP_CLASS can work together to identify NaNs. A variation
of the previous example would contain the symbols for_k_fp_snan and for_k_fp_qnan in
the IF statement. A faster way to do this is based on the intrinsic ISNAN function. One
modification of the previous example, using ISNAN, follows:
! The ISNAN function does not need file fordef.for

real*4 a(100)

! open an unformatted file as unit 1

! ...

read (1) a

do i = 1, 100

if (isnan (a(i))) then

print *, 'Element ', i, ' contains a NaN'

end if

end do

close (1)

end

You can compile this program with any value of -fpen or /fpe:n.

Setting and Retrieving Floating-point Status and Control Words (IA-32)

Overview: Setting and Retrieving Floating-point Status and Control Word

The FPU (floating-point unit) on systems based on the IA-32 architecture contains eight
floating-point registers the system uses for numeric calculations, status and control words, and
error pointers. You normally need to consider only the status and control words, and then only
when customizing your floating-point environment.

The FPU status and control words correspond to 16-bit registers whose bits hold the value of
a state of the FPU or control its operation. Intel Fortran defines a set of symbolic constants to
set and reset the proper bits in the status and control words.

NOTE. The symbolic constants and the library routines used to read and write the control
and status registers only affect the x87 control and status registers. They do not affect
the MXCSR register (the control and status register for the Intel(R) SSE and Intel(R)
SSE2 instructions).

1706

39 Intel® Fortran Compiler User and Reference Guides

They do not affect the MXCSR (the control and status register for the Intel(R) SSE and Intel(R)
SSE2 instructions). For example:
USE IFPORT

INTEGER(2) status, control, controlo, mask_all_traps

CALL GETCONTROLFPQQ(control)

WRITE (*, 9000) 'Control word: ', control

! Save old control word

controlo = control

! Clear the rounding control flags

control = IAND(control,NOT(FPCW$MCW_RC))

! Set new control to round up

control = IOR(control,FPCW$UP)

CALL SETCONTROLFPQQ(control)

CALL GETCONTROLFPQQ(control)

WRITE (*, 9000) 'Control word: ', control

! Demonstrate setting and clearing exception mask flags

mask_all_traps = FPCW$INVALID + FPCW$DENORMAL + &

FPCW$ZERODIVIDE + FPCW$OVERFLOW + &

FPCW$UNDERFLOW + FPCW$INEXACT

! Clear the exception mask flags

control = IAND(control,NOT(FPCW$MCW_EM))

! Set new exception mask to disallow overflow

! (i.e., enable overflow traps)

! but allow (i.e., mask) all other exception conditions.

control = IOR(control,IEOR(mask_all_traps,FPCW$OVERFLOW))

CALL SETCONTROLFPQQ(control)

CALL GETCONTROLFPQQ(control)

WRITE (*, 9000) 'Control word: ', control

9000 FORMAT (1X, A, Z4)

1707

39

END

The status and control symbolic constants (such as FPCW$OVERFLOW and FPCW$CHOP in the
preceding example) are defined as INTEGER(2) parameters in the module IFORT.F90 in the
...\INCLUDE folder. The status and control words are logical combinations (such as with .AND.)
of different parameters for different FPU options.

The name of a symbolic constant takes the general form name$option. The prefix name is one
of the following:

Prefixes for Parameter Flags

Meaningname

Floating-point status wordFPSW

Floating-point control wordFPCW

SignalSIG

Floating-point exceptionFPE

Math functionMTH

The suffix option is one of the options available for that name. The parameter name$option
corresponds either to a status or control option (for example, FPSW$ZERODIVIDE, a status
word parameter that shows whether a zero-divide exception has occurred or not) or name$option
corresponds to a mask, which sets all symbolic constants to 1 for all the options of name. You
can use the masks in logical functions (such as IAND, IOR, and NOT) to set or to clear all options
for the specified name. The following sections define the options and illustrate their use with
examples.

You can control the floating-point processor options (on systems based on the IA-32 architecture)
and find out its status with the run-time library routines GETSTATUSFPQQ (IA-32 architecture
only), GETCONTROLFPQQ (IA-32 architecture only), and SETCONTROLFPQQ (IA-32 architecture
only). Examples of using these routines also appear in the following sections.

See Also
• Setting and Retrieving Floating-point Status and Control Words (IA-32)
• Understanding Floating-Point Control Word (IA-32 architecture only)

1708

39 Intel® Fortran Compiler User and Reference Guides

Understanding Floating-point Status Word

On systems based on the IA-32 architecture, the FPU status word includes bits that show the
floating-point exception state of the processor. The status word parameters describe six
exceptions: invalid result, denormalized operand, zero divide, overflow, underflow and inexact
precision. These are described in the section, Loss of Precision Errors. When one of the bits is
set to 1, it means a past floating-point operation produced that exception type. (Intel Fortran
initially clears all status bits. It does not reset the status bits before performing additional
floating-point operations after an exception occurs. The status bits accumulate.)

The following table shows the floating-point exception status parameters:

DescriptionValue in HexParameter Name

Status Mask (set all bits to 1)#003FFPSW$MSW_EM

An invalid result occurred#0001FPSW$INVALID

A denormal operand occurred#0002FPSW$DENORMAL

A divide by zero occurred#0004FPSW$ZERODIVIDE

An overflow occurred#0008FPSW$OVERFLOW

>An underflow occurred#0010FPSW$UNDERFLOW

Inexact precision occurred#0020FPSW$INEXACT

You can find out which exceptions have occurred by retrieving the status word and comparing
it to the exception parameters. For example:

USE IFPORT
INTEGER(2) status

CALL GETSTATUSFPQQ(status)

IF (IAND (status, FPSW$INEXACT) > 0) THEN

WRITE (*, *) "Inexact precision has occurred"

ELSE IF (IAND (status, FPSW$DENORMAL) > 0) THEN

WRITE (*, *) "Denormal occurred"

END IF

To clear the status word flags, call the CLEARSTATUSFPQQ (IA-32 architecture only) routine.

1709

39

NOTE. The GETSTAUSFPQQ and CLEARSTATUSFPQQ routines only affect the x87 status
register. They do not affect the MXCSR register (the control and status register for the
Intel® SSE and Intel® SSE2 instructions).

Floating-point Control Word Overview

On systems based on the IA-32 architecture, the FPU control word includes bits that control
the FPU's precision, rounding mode, and whether exceptions generate signals if they occur.
You can read the control word value with GETCONTROLFPQQ (IA-32 architecture only) to find
out the current control settings, and you can change the control word with SETCONTROLFPQQ
(IA-32 architecture only).

NOTE. The GETCONTROLFPQQ and SETCONTROLFPQQ routines only affect the x87 status
register. They do not affect the MXCSR register (the control and status register for the
SSE and SSE2 instructions).

Each bit in the floating-point control word corresponds to a mode of the floating-point math
processor. The IFORT.F90 module file in the ...\INCLUDE folder contains the INTEGER(2)
parameters defined for the control word, as shown in the following table:

DescriptionValue in HexParameter Name

Precision control mask#0300FPCW$MCW_PC

64-bit precision#0300FPCW$64

53-bit precision#0200FPCW$53

24-bit precision#0000FPCW$24

Rounding control mask#0C00FPCW$MCW_RC

Truncate#0C00FPCW$CHOP

Round up#0800FPCW$UP

Round down#0400FPCW$DOWN

Round to nearest#0000FPCW$NEAR

1710

39 Intel® Fortran Compiler User and Reference Guides

DescriptionValue in HexParameter Name

Exception mask#003FFPCW$MCW_EM

Allow invalid numbers#0001FPCW$INVALID

Allow denormals (very small numbers)#0002>FPCW$DENORMAL

Allow divide by zero#0004FPCW$ZERODIVIDE

Allow overflow#0008FPCW$OVERFLOW

Allow underflow#0010FPCW$UNDERFLOW

Allow inexact precision#0020FPCW$INEXACT

The control word defaults are:

• 53-bit precision

• Round to nearest (rounding mode)

• The denormal, underflow, overflow, divide-by-zero, invalid, and inexact precision exceptions
are disabled (do not generate an exception). To change exception handling, you can use
the -fpe (Linux* and Mac OS* X) or the /fpe (Windows*) compiler option or the
FOR_SET_FPE routine.

Using Exception, Precision, and Rounding Parameters

This topic describes the exception, precision, and rounding parameters that you can use for
the control word.

Exception Parameters

An exception is disabled if its bit is set to 1 and enabled if its bit is cleared to 0. If an exception
is disabled (exceptions can be disabled by setting the flags to 1 with SETCONTROLFPQQ [IA-32
architecture only]), it will not generate an interrupt signal if it occurs. The floating-point process
will return an appropriate special value (for example, NaN or signed infinity), but the program
continues. You can find out which exceptions (if any) occurred by calling GETSTATUSFPQQ
(IA-32 architecture only).

1711

39

If errors on floating-point exceptions are enabled (by clearing the flags to 0 with
SETCONTROLFPQQ [IA-32 architecture only]), the operating system generates an interrupt
when the exception occurs. By default these interrupts cause run-time errors, but you can
capture the interrupts with SIGNALQQ and branch to your own error-handling routines.

You should remember not to clear all existing settings when changing one. The values you want
to change should be combined with the existing control word in an inclusive-OR operation (IOR)
if you do not want to reset all options. For example:

USE IFPORT

INTEGER(2) control, newcontrol

CALL GETCONTROLFPQQ(control)

newcontrol = IOR(control,FPCW$INVALID)

! Invalid exception set (disabled).

CALL SETCONTROLFPQQ(newcontrol)

NOTE. The GETCONTROLFPQQ, SETCONTROLFPQQ, and GETSTATUSFPQQ routines only
affect the x87 status register. They do not affect the MXCSR register (the control and
status register for the Intel(R) SSE and Intel(R) SSE2 instructions).

Precision Parameters

On systems based on the IA-32 architecture, the precision bits control the precision to which
the FPU rounds floating-point numbers. For example:

USE IFPORT

INTEGER(2) control, holdcontrol, newcontrol

CALL GETCONTROLFPQQ(control)

! Clear any existing precision flags.

holdcontrol = IAND(control, NOT(FPCW$MCW_PC))

newcontrol = IOR(holdcontrol, FPCW$64)

! Set precision to 64 bits.

CALL SETCONTROLFPQQ(newcontrol)

1712

39 Intel® Fortran Compiler User and Reference Guides

The precision options are mutually exclusive. If you set more than one, you may get an invalid
mode or a mode other than the one you want. Therefore, you should clear the precision bits
before setting a new precision mode.

NOTE. The GETCONTROLFPQQ and SETCONTROLFPQQ routines only affect the x87 status
register. They do not affect the MXCSR register (the control and status register for the
Intel(R) SSE and Intel(R) SSE2 instructions).

Rounding Parameters

On systems based on the IA-32 architecture, the rounding flags control the method of rounding
that the FPU uses. For example:

USE IFPORT

INTEGER(2) status, control, controlo, mask_all_traps

CALL GETCONTROLFPQQ(control)

WRITE (*, 9000) 'Control word: ', control

>
! Save old control word

controlo = control

! Clear the rounding control flags

control = IAND(control,NOT(FPCW$MCW_RC))

! Set new control to round up

control = IOR(control,FPCW$UP)

CALL SETCONTROLFPQQ(control)

CALL GETCONTROLFPQQ(control)

WRITE (*, 9000) 'Control word: ', control

The rounding options are mutually exclusive. If you set more than one, you may get an invalid
mode or a mode other than the one you want. Therefore, you should clear the rounding bits
before setting a new rounding mode.

1713

39

NOTE. The GETCONTROLFPQQ and SETCONTROLFPQQ routines only affect the x87 status
register. They do not affect the MXCSR register (the control and status register for the
Intel(R) SSE and Intel(R) SSE2 instructions).

Handling Floating-point Exceptions with the -fpe or /fpe Compiler Option

Using the -fpe or /fpe Compiler Options

The -fpen (Linux* and Mac OS* X) or /fpe:n (Windows*) option allows some control over
the results of floating-point exceptions.

-fpe0 or /fpe:0 restricts floating-point exceptions by enabling the overflow, the divide-by-zero,
and the invalid floating-point exceptions. The program will print an error message and abort if
any of these exceptions occurs. If a floating underflow occurs, the result is set to zero and
execution continues. This is called flush-to-zero. This option sets -fp-speculation=strict
(Linux and Mac OS X) or /Qfp-speculation:strict (Windows) if no specific -fp-speculation
or /Qfp-speculation option is specified. The -fpe0 or /fpe:0 option sets -ftz (Linux and
Mac OS X) /Qftz(Windows). To get more detailed location information about where the exception
occurred, use -traceback (Linux and Mac OS X) or /traceback (Windows).

NOTE. On systems based on the IA-32 and Intel® 64 architectures , explicitly setting
-fpe0 or /fpe:0 can degrade performance since the generated code stream must be
synchronized after each floating-point instruction to allow for abrupt underflow fix-up.

-fpe1 or /fpe:1 restricts only floating-point underflow. Floating-point overflow, floating-point
divide-by-zero, and floating-point invalid produce exceptional values (NaN and signed Infinities)
and execution continues. If a floating-point underflow occurs, the result is set to zero and
execution continues. The /fpe:1 option sets -ftz or /Qftz.

NOTE. On systems based on the IA-32 and Intel® 64 architectures , explicitly setting
-fpe1 or /fpe:1 can degrade performance since the generated code stream must be
synchronized after each floating-point instruction to allow for abrupt underflow fix-up.

-fpe3 or /fpe:3 is the default on all processors, which allows full floating-point exception
behavior. Floating-point overflow, floating-point divide-by-zero, and floating-point invalid
produce exceptional values (NaN and signed Infinities) and execution continues. Floating
underflow is gradual: denormalized values are produced until the result becomes 0.

1714

39 Intel® Fortran Compiler User and Reference Guides

The -fpe or /fpe option enables exceptions in the Fortran main program only. The floating-point
exception behavior set by the Fortran main program remains in effect throughout the execution
of the entire program unless changed by the programmer. If the main program is not Fortran,
the user can use the Fortran intrinsic FOR_SET_FPE to set the floating-point exception behavior.

When compiling different routines in a program separately, you should use the same value of
n in -fpen or /fpe:n.

An example follows:
IMPLICIT NONE

real*4 res_uflow, res_oflow

real*4 res_dbyz, res_inv

real*4 small, big, zero, scale

small = 1.0e-30

big = 1.0e30

zero = 0.0

scale = 1.0e-10

! IEEE underflow condition (Underflow Raised)

res_uflow = small * scale

write(6,100)"Underflow: ",small, " *", scale, " = ", res_uflow

! IEEE overflow condition (Overflow Raised)

res_oflow = big * big

write(6,100)"Overflow:", big, " *", big, " = ", res_oflow

! IEEE divide-by-zero condition (Divide by Zero Raised)

res_dbyz = -big / zero

write(6,100)"Div-by-zero:", -big, " /", zero, " = ", res_dbyz

! IEEE invalid condition (Invalid Raised)

res_inv = zero / zero

write(6,100)"Invalid:", zero, " /", zero, " = ", res_inv

100 format(A14,E8.1,A2,E8.1,A2,E10.1)

end

Consider the following command line:

1715

39

ifort fpe.f90 -fpe0 -fp-model strict -g (Linux and Mac OS X)

ifort fpe.f90 /fpe:0 /fp:strict /traceback (Windows)

Output similar to the following should result:

Windows:
Underflow: 0.1E-29 * 0.1E-09 = 0.0E+00

forrtl: error (72): floating overflow

Image PC Routine Line Source

fpe.exe 0040115B Unknown Unknown Unknown

fpe.exe 0044DFC0 Unknown Unknown Unknown

fpe.exe 00433277 Unknown Unknown Unknown

kernel32.dll 7C816D4F Unknown Unknown Unknown

Linux and Mac OS X:
./a.out

Underflow: 0.1E-29* 0.1E-09 = 0.0E+00

forrtl: error (72): floating overflow

Image PC Routine Line Source

a.out 0804A063 Unknown Unknown Unknown

a.out 08049E78 Unknown Unknown Unknown

Unknown B746B748 Unknown Unknown Unknown

a.out 08049D31 Unknown Unknown Unknown

Aborted

The following command line uses /fpe1:

ifort fpe.f90 -fpe1 -g (Linux and Mac OS X)
ifort fpe.f90 /fpe:1 /traceback (Windows)

The following output is produced:
Underflow: 0.1E-29 * 0.1E-09 = 0.0E+00

Overflow: 0.1E+31 * 0.1E+31 = Infinity

Div-by-zero: -0.1E+31 / 0.0E+00 = -Infinity

Invalid: 0.0E+00 / 0.0E+00 = NaN

1716

39 Intel® Fortran Compiler User and Reference Guides

The following command line uses /fpe3:

ifort fpe.f90 -fpe3 -g (Linux and Mac OS X)

ifort fpe.f90 /fpe:3 /traceback (Windows)

The following output is produced:
Underflow: 0.1E-29 * 0.1E-09 = 0.1E-39

Overflow: 0.1E+31 * 0.1E+31 = Infinity

Div-by-zero: -0.1E+31 / 0.0E+00 = -Infinity

Invalid: 0.0E+00 / 0.0E+00 = NaN

Understanding the Impact of Application Types

The full consequences of the /fpe option depend on the type of application you are building.
You only get the full support for the chosen option setting in a Fortran Console or
QuickWin/Standard Graphics application, assuming you do not override the default run-time
exception handler. The work to achieve the full behavior is done partly by each of the default
run-time handler, the Fortran compiler, the math library, the underlying hardware, and the
operating system.

Floating-point Exceptions in Fortran Console, Fortran QuickWin, and Fortran Standard
Graphics Applications

When you build a console application, the compiler generates a few calls at the beginning of
your Fortran main program to Fortran run-time routines that initialize the environment, either
with default options or in accordance with your selected compile-time options.

For floating-point exception handling, /fpe:3 is the default. The run-time system initializes
the hardware to mask all exceptions. With /fpe:3:

• The Intel Fortran run-time system does this initialization automatically (no call from the
compiled code).

• The IA-32 architecture hardware automatically generates the default IEEE result for
exceptional conditions.

• Because traps are masked with /fpe:3, there are no traps and you may see exceptional
values like Nan's, Infinities, and denormalized numbers in your computations.

Users can poll the floating-point status word with GETSTATUSFPQQ to see if an exception has
occurred and can clear the status register with CLEARSTATUSFPQQ.

1717

39

If you specify /fpe:0, the compiler generates a call to an Intel Fortran run-time routine
FOR_SET_FPE, with an argument that unmasks all floating-point traps in the floating-point
control word. In this case, the hardware does not supply the default IEEE result. It traps to the
operating system, which then looks for a condition handler.

In a Fortran console or Fortran QuickWin application, the Intel Fortran run-time system provides
a default condition handler unless you establish your own. For all exceptions except underflow,
the run-time system just prints out an error message and aborts the application. For underflow,
the run-time system replaces the result with zero. This treatment of underflow with /fpe:0 is
called abrupt underflow to 0 (zero), as opposed to gradual underflow to 0 provided with /fpe:3.

Fixing up underflow results to zero can significantly degrade the performance of your application
based on IA-32 architecture. If you are experiencing a large number of underflows, consider
changing your code to avoid underflows or consider masking underflow traps and allowing the
hardware to operate on denormalized numbers. The IA-32 architecture based hardware is
designed to operate correctly in the denormalized range and doing so is much faster than
trapping to fix up a result to zero.

Another important point to understand about selecting the /fpe option is that the generated
code must support the trapping mode. When an IA-32 architecture based floating-point
instruction generates an exceptional result, you do not necessarily get a trap. The instruction
must be followed by an fwait instruction or another floating-point operate instruction to cause
the trap to occur.

The Intel Fortran compiler generates machine code to support these requirements in accordance
with your selected /fpe option setting. In other words, the generated code must support the
trapping mode. You can see this by compiling a simple test program and look at the machine
code listing with /fpe:0 first, then /fpe:3. There are no fwait instructions in the /fpe:3
code. Even if you replace the default run-time exception handler with your own handler, you
may still want to compile with /fpe:0 to generate code that supports trapping.

Floating-Point Exceptions in Fortran DLL Applications

In a DLL, there is no main Fortran program (unless you have written your main program in
Fortran), so there is no automatic calling of run-time routines to initialize the environment.
Even if you select /fpe:0, there is nothing that causes the run-time system to unmask traps
in the hardware so you won't see traps. You will continue to see the hardware generated default
IEEE results (Nan's, Infinities, and and denormalized numbers in your computations). The
generated code will still do its part by supplying the fwait instructions, and so on, but unless
the traps are unmasked somehow, no traps will occur. You can use SETCONTROLFPQQ or
FOR_SET_FPE to unmask traps in the floating-point control word.

1718

39 Intel® Fortran Compiler User and Reference Guides

There is also no default exception handling in a DLL. The main application that calls the DLL
must provide this, or the code in the DLL must provide something when it is called. Since
underflow processing (fixup to 0, and so on) is done by the default Fortran run-time system
handler, a DLL won't have that feature automatically.

A typical strategy is to compile with /fpe:0, but only unmask floating divide-by-zero, floating
overflow, and floating invalid traps in the floating-point control word. By leaving floating-point
underflow traps masked, the hardware will continue to provide gradual underflow, but other
floating-point exceptions will generate traps, which the user then handles as desired.

Floating-Point Exceptions in Fortran Windows Applications

In a Fortran Windows application, the situation is similar to a Fortran DLL application. You define
a WinMain routine in your Fortran code as the main entry point for your application. The Fortran
run-time system does not define the main routine as it does in a Fortran console or Fortran
QuickWin (or Standard Graphics) application. Your code is not protected by the default handler
and the default run-time initialization routines are not called.

1719

39

40Understanding IEEE
Floating-point Operations

Overview: Understanding IEEE Floating-point Standard

This version of Intel® Compiler uses a close approximation to the IEEE floating-point standard
(ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, 1985) unless otherwise
stated. This standard is common to many microcomputer-based systems due to the availability of
fast processors that implement the required characteristics.

This section outlines the characteristics of the standard and its implementation for the Intel Compilers.
Except as noted, the description includes both the IEEE standard and the Intel Compiler
implementation.

Floating-point Formats

The IEEE Standard 754 specifies values and requirements for floating-point representation (such as
base 2). The standard outlines requirements for two formats: basic and extended, and for two
word-lengths within each format: single and double.

Intel Fortran supports single-precision format (REAL(4)) and double-precision format (REAL(8))
floating-point numbers. At some levels of optimization, some floating-point numbers are stored in
register file format (which equals 1 bit sign, 15 bit exponent, 64 bits of significand rounded to 53
bits), rather than being stored in IEEE single or double precision format. This can affect the values
produced by some computations. The compiler option -fp-model (Linux* and Mac OS* X) or /fp
(Windows*) can control how floating-point expressions are evaluated, thus leading to more predictable
results.

Limitations of Numeric Conversion

The Intel® Fortran floating-point conversion solution is not expected to fulfill all floating-point
conversion needs.

For instance, data fields in record structure variables (specified in a STRUCTURE statement) and
data components of derived types (TYPE statement) are not converted. When they are later examined
as separate fields by the program, they will remain in the binary format they were stored in on disk,
unless the program is modified. With EQUIVALENCE statements, the data type of the variable named
in the I/O statement is used.

1721

If a program reads an I/O record containing multiple format floating-point fields into a single
variable (such as an array) instead of their respective variables, the fields will not be converted.
When they are later examined as separate fields by the program, they will remain in the binary
format they were stored in on disk, unless the program is modified.

Conversions of the following file structure types are not supported:

• Binary data (FORM='BINARY')

• Formatted data (FORM='FORMATTED')

• Unformatted data (FORM='UNFORMATTED') written by Microsoft* Fortran PowerStation or
by Intel Fortran with the /fpscomp:ioformat compiler option in effect.

Special Values

This topic lists the special values of IEEE floating-point REALs that the Intel® Compiler supports
and provides a brief description of each of them.

Signed Zero

Intel Fortran treats zero as signed by default. The sign of zero is the same as the sign of a
nonzero number. If you use the intrinsic function SIGN with zero as the second argument, the
sign of the zero will be transferred. Comparisons, however, consider +0 to be equal to -0.

A signed zero is useful in certain numerical analysis algorithms but in most applications the
sign of zero is invisible. -0.0 is accepted as formatted input but is printed as formatted output
only when the -assume minus0 compiler option is used.

Denormalized Numbers

Denormalized numbers (denormals) fill the gap between the smallest positive normalized
number and the smallest negative number. Otherwise only (+/-) 0 occurs in that interval.
Denormalized numbers extend the range of computable results by allowing for gradual underflow.

Systems based on the IA-32 architecture support the Denormal Operand status flag, which
when set, means that at least one of the input operands to a floating-point operation is a
denormal. The Underflow status flag is set when a number loses precision and becomes a
denormal.

Denormalized values can be read and printed with formatted I/O.

1722

40 Intel® Fortran Compiler User and Reference Guides

Signed Infinity

Infinities are the result of arithmetic in the limiting case of operands with arbitrarily large
magnitude. They provide a way to continue when an overflow occurs. The sign of an infinity is
simply the sign you obtain for a finite number in the same operation as the finite number
approaches an infinite value.

By retrieving the status flags, you can differentiate between an infinity that results from an
overflow and one that results from division by zero. Intel® Compiler treats infinity as signed by
default. +Infinity and -Infinity are accepted as formatted input and those strings are printed
on/as? formatted output.

Not a Number

Not a Number (NaN) results from an invalid operation. For instance 0/0 and SQRT(-1) result
in NaN. In general, an operation involving a NaN produces another NaN. Because the fraction
of a NaN is unspecified, there are many possible NaNs. The Intel® processor treats all NaNs
identically but provides two different types of NaNs:

• Signaling NAN: has an initial fraction bit of 0 (zero), which usually raises an invalid exception
when used in an operation.

• Quiet NaN: has an initial fraction bit of 1.

The floating-point hardware changes a signaling NAN into a quiet NAN during many arithmetic
operations, including the assignment operation. An invalid exception may be raised but the
resulting floating-point value will be a quiet NAN. An operation may raise an invalid exception
and return a signaling NaN but if the exception is not trapped, the signaling NaN may be turned
into a quite NaN by subsequent processing.

Fortran binary and unformatted input and output do not change the internal representations
of the values as they are handled. Therefore, signaling and quiet NANs may be read into real
data and output to files in binary form. 'NaN' is accepted as formatted input and results in a
quiet NaN. 'NaN' is printed by formatted output for both signaling and quiet NaNs.

1723

40

Representing Floating-point Numbers

Floating-point Representation

The Fortran numeric environment is flexible, which helps make Fortran a strong language for
intensive numerical calculations. The Fortran standard purposely leaves the precision of numeric
quantities and the method of rounding numeric results unspecified. This allows Fortran to
operate efficiently for diverse applications on diverse systems.

Computations on real numbers may not yield what you expect. This happens because the
hardware must represent numbers in a finite number of bits.

There are several effects of using finite floating-point numbers. The hardware is not able to
represent every real number exactly, but must approximate exact representations by rounding
or truncating to finite length. In addition, some numbers lie outside the range of representation
of the maximum and minimum exponents and can result in calculations that underflow and
overflow. As an example of one consequence, finite precision produces many numbers that,
although non-zero, behave in addition as zero.

You can minimize the effects of finite representation with programming techniques; for example,
by not using floating-point numbers in LOGICAL comparisons or by giving them a tolerance
(for example, IF (ABS(x-10.0) <= 0.001)), and by not attempting to combine or compare
numbers that differ by more than the number of significant bits.

Floating-point numbers approximate real numbers with a finite number of bits. The bits are
calculated as shown in the following formula. The representation is binary, so the base is 2.
The bits bn represent binary digits (0 or 1). The precision P is the number of bits in the
nonexponential part of the number (the significand), and E is the exponent. With these
parameters, binary floating-point numbers approximate real numbers with the values:

(- 1)s b0. b1b2 ... bP-1 x 2E

where s is 0 or 1 (+ or -), and Emin <= E <= Emax

The following table gives the standard values for these parameters for single, double, and quad
(extended precision) formats and the resulting bit widths for the sign, the exponent, and the
full number.

Parameters for IEEE* Floating-Point Formats

Quad or
Extended
Precision
(IEEE_X)*

DoubleSingleParameter

111Sign width in bits

1724

40 Intel® Fortran Compiler User and Reference Guides

Quad or
Extended
Precision
(IEEE_X)*

DoubleSingleParameter

1135324P

+16383+1023+127Emax

-16382-1022-126Emin

+16383+1023+127Exponentbias

15118Exponent width in bits

1286432Format width in bits

* This type is emulated in software.

The actual number of bits needed to represent the precisions 24, 53, and 113 is therefore 23,
52, and 112, respectively, because b0 is chosen to be 1 implicitly.

A bias is added to all exponents so that only positive integer exponents occur. This expedites
comparisons of exponent values. The stored exponent is actually:

e = E + bias

See Also
• Representing Floating-point Numbers
• Native IEEE Floating-Point Representations
• Rounding Errors

Retrieving Parameters of Numeric Representations

Intel Fortran includes several intrinsic functions that return details about the numeric
representation. These are listed in the following table and described fully in the Language
Reference.

1725

40

Functions that Return Numeric Parameters

Argument/Function TypeDescriptionName

x: Integer or Real
result: INTEGER(4)

DIGITS(x). Returns number of significant
digits for data of the same type as x.

DIGITS

x: Real
result: same type as x

EPSILON(x). Returns the smallest positive
number that when added to one produces a
number greater than one for data of the same
type as x.

EPSILON

x: Real
result: INTEGER(4)

EXPONENT(x). Returns the exponent part of
the representation of x.

EXPONENT

x: Real
result: same type as x

FRACTION(x). Returns the fractional part
(significand) of the representation of x.

FRACTION

x: Integer or Real
result: same type as x.

HUGE(x). Returns largest number that can
be represented by data of type x.

HUGE

x: Real
result: INTEGER(4)

MAXEXPONENT(x). Returns the largest
positive decimal exponent for data of the
same type as x.

MAXEXPONENT

x: Real
result: INTEGER(4)

MINEXPONENT(x). Returns the largest
negative decimal exponent for data of the
same type as x.

MINEXPONENT

x: Real s: Real and not
zero
result: same type as x.

NEAREST(x, s). Returns the nearest different
machine representable number to x in the
direction of the sign of s.

NEAREST

x: Real or Complex
result: INTEGER(4)

PRECISION(x). Returns the number of
significant digits for data of the same type as
x.

PRECISION

x: Integer or Real
result: INTEGER(4)

RADIX(x). Returns the base for data of the
same type as x.

RADIX

1726

40 Intel® Fortran Compiler User and Reference Guides

Argument/Function TypeDescriptionName

x: Integer, Real or
Complex
result: INTEGER(4)

RANGE(x). Returns the decimal exponent
range for data of the same type as x.

RANGE

x: Real
result: same type as x

RRSPACING(x). Returns the reciprocal of the
relative spacing of numbers near x.

RRSPACING

x: Real
i: Integer
result: same type as x

SCALE(x, i). Multiplies x by 2 raised to the
power of i.

SCALE

x: Real
i: Integer
result: same type as x

SET_EXPONENT(x,i). Returns a number
whose fractional part is x and whose
exponential part is i.

SET_EXPONENT

x: Real
result: same type as x

SPACING(x). Returns the absolute spacing of
numbers near x.

SPACING

x: Real
result: same type as x

TINY(x). Returns smallest positive number
that can be represented by data of type x.

TINY

ULPs, Relative Error, and Machine Epsilon

ULP, Relative Error, and Machine Epsilon are terms that describe the magnitude of rounding
error. A floating-point approximation to a real constant or to a computed result may err by as
much as 1/2 unit in the last place (the bP-1 bit). The abbreviation ULP represents the measure
"unit in the last place." Another measure of the rounding error uses the relative error, which
is the difference between the exact number and its approximation divided by the exact number.
The relative error that corresponds to 1/2 ULP is bounded by:

1/2 2-P <= 1/2 ULP <=2-P

The upper bound EPS = 2-P, the machine epsilon, is commonly used in discussions of rounding
errors because it expresses the smallest floating-point number that you can add to 1.0 with a
result that does not round to 1.0.

See Also
• Representing Floating-point Numbers
• Floating-point Representation for 'b' and 'P' definitions

1727

40

Native IEEE Floating-point Representation

Overview: Native IEEE* Floating-point Representations

The REAL(4) (IEEE* S_floating), REAL(8) (IEEE T_floating), and REAL(16) (IEEE-style X_floating)
formats are stored in standard little endian IEEE binary floating-point notation. (See IEEE
Standard 754 for additional information about IEEE binary floating point notation.) COMPLEX()
formats use a pair of REAL values to denote the real and imaginary parts of the data.

All floating-point formats represent fractions in sign-magnitude notation, with the binary radix
point to the right of the most-significant bit. Fractions are assumed to be normalized, and
therefore the most-significant bit is not stored (this is called "hidden bit normalization"). This
bit is assumed to be 1 unless the exponent is 0. If the exponent equals 0, then the value
represented is denormalized (subnormal) or plus or minus zero.

Intrinsic REAL kinds are 4 (single precision), 8 (double precision), and 16 (extended precision),
such as REAL(KIND=4) for single-precision floating-point data. Intrinsic COMPLEX kinds are
also 4 (single precision), 8 (double precision), and 16 (extended precision).

To obtain the kind of a variable, use the KIND intrinsic function. You can also use a size specifier,
such as REAL*4, but be aware this is an extension to the Fortran 2003 standard.

If you omit certain compiler options, the default sizes for REAL and COMPLEX data declarations
are as follows:

• For REAL data declarations without a kind parameter (or size specifier), the default size is
REAL (KIND=4) (same as REAL*4).

• For COMPLEX data declarations without a kind parameter (or size specifier), the default data
size is COMPLEX (KIND=4) (same as COMPLEX*8).

To control the size of all REAL or COMPLEX declarations without a kind parameter, use the
/real_size:64 (or /4R8) or /real_size:128 (or /4R16) options; the default is /real_size:32.

You can explicitly declare the length of a REAL or a COMPLEX declaration using a kind parameter,
or specify DOUBLE PRECISION or DOUBLE COMPLEX. To control the size of all DOUBLE
PRECISION and DOUBLE COMPLEX declarations, use the /double_size:128 (or /Qautodouble)
option; the default is /double_size:64.

REAL(KIND=4) (REAL) Representation

REAL(4) (same as REAL(KIND=4)) data occupies 4 contiguous bytes stored in IEEE S_floating
format. Bits are labeled from the right, 0 through 31, as shown below.

REAL(4) Floating-Point Data Representation

1728

40 Intel® Fortran Compiler User and Reference Guides

The form of REAL(4) data is sign magnitude, with bit 31 the sign bit (0 for positive numbers,
1 for negative numbers), bits 30:23 a binary exponent in excess 127 notation, and bits 22:0
a normalized 24-bit fraction including the redundant most-significant fraction bit not represented.

The value of data is in the approximate range: 1.17549435E-38 (normalized) to 3.40282347E38.
The IEEE denormalized (subnormal) limit is 1.40129846E-45. The precision is approximately
one part in 2**23; typically 7 decimal digits.

REAL(KIND=8) (DOUBLE PRECISION) Representation

REAL(8) (same as REAL(KIND=8)) data occupies 8 contiguous bytes stored in IEEE T_floating
format. Bits are labeled from the right, 0 through 63, as shown below.

REAL(8) Floating-Point Data Representation

The form of REAL(8) data is sign magnitude, with bit 63 the sign bit (0 for positive numbers,
1 for negative numbers), bits 62:52 a binary exponent in excess 1023 notation, and bits 51:0
a normalized 53-bit fraction including the redundant most-significant fraction bit not represented.

The value of data is in the approximate range: 2.2250738585072013D-308 (normalized) to
1.7976931348623158D308. The IEEE denormalized (subnormal) limit is
4.94065645841246544D-324. The precision is approximately one part in 2**52; typically 15
decimal digits.

REAL(KIND=16) Representation

REAL(16) (same as REAL(KIND=16)) data occupies 16 contiguous bytes stored in IEEE-style
X_floating format. Bits are labeled from the right, 0 through 127, as shown below.

1729

40

The form of REAL(16) data is sign magnitude, with bit 127 the sign bit (0 for positive numbers,
1 for negative numbers), bits 126:112 a binary exponent in excess 16383 notation, and bits
111:0 a normalized 113-bit fraction including the redundant most-significant fraction bit not
represented.

The value of data is in the approximate range:
6.4751751194380251109244389582276465524996Q-4966 to
1.189731495357231765085759326628007016196477Q4932. Unlike other floating-point
formats, there is little if any performance penalty from using denormalized extended-precision
numbers. This is because accessing denormalized REAL (KIND=16) numbers does not result
in an arithmetic trap (the extended-precision format is emulated in software). The smallest
normalized number is 3.362103143112093506262677817321753Q-4932.

The precision is approximately one part in 2**112 or typically 33 decimal digits.

COMPLEX(KIND=4) (COMPLEX) Representation

COMPLEX(4) (same as COMPLEX(KIND=4) and COMPLEX*8) data is 8 contiguous bytes
containing a pair of REAL(4) values stored in IEEE S_floating format. The low-order 4 bytes
contain REAL(4) data that represents the real part of the complex number. The high-order 4
bytes contain REAL(4) data that represents the imaginary part of the complex number, as
shown below.

COMPLEX(4) Floating-Point Data Representation

The limits and underflow characteristics for REAL(4) apply to the two separate real and imaginary
parts of a COMPLEX(4) number. Like REAL(4) numbers, the sign bit representation is 0 (zero)
for positive numbers and 1 for negative numbers.

1730

40 Intel® Fortran Compiler User and Reference Guides

COMPLEX(KIND=8) (DOUBLE COMPLEX) Representation

COMPLEX(8) (same as COMPLEX(KIND=8) and COMPLEX*16) data is 16 contiguous bytes
containing a pair of REAL(8) values stored in IEEE T_floating format. The low-order 8 bytes
contain REAL(8) data that represents the real part of the complex data. The high-order 8 bytes
contain REAL(8) data that represents the imaginary part of the complex data, as shown below.

COMPLEX(8) Floating-Point Data Representation

The limits and underflow characteristics for REAL(8) apply to the two separate real and imaginary
parts of a COMPLEX(8) number. Like REAL(8) numbers, the sign bit representation is 0 (zero)
for positive numbers and 1 for negative numbers.

COMPLEX(KIND=16) Representation

COMPLEX(16) (same as COMPLEX(KIND=16) or COMPLEX*32) data is 32 contiguous bytes
containing a pair of REAL(16) values stored in IEEE-style X_floating format. The low-order 16
bytes contain REAL(16) data that represents the real part of the complex data. The high-order
16 bytes contain REAL(8) data that represents the imaginary part of the complex data, as
shown below.

The limits and underflow characteristics for REAL(16) apply to the two separate real and
imaginary parts of a COMPLEX(16) number. Like REAL(16) numbers, the sign bit representation
is 0 (zero) for positive numbers and 1 for negative numbers.

1731

40

Handling Exceptions and Errors

Loss of Precision Errors

If a real number is not exactly one of the representable floating-point numbers, then the nearest
floating-point number must represent it. The rounding error is the difference between the exact
real number and its nearest floating-point representation. If the rounding error is non-zero,
the rounded floating-point number is called inexact.

Normally, calculations proceed when an inexact value results. Almost any floating-point operation
can produce an inexact result. The rounding mode (round up, round down, round nearest,
truncate) is determined by the floating-point control word.

If an arithmetic operation results in a floating-point number that cannot be represented in a
specific data type, the operation may produce a special value: signed zero, signed infinity, NaN,
or a denormal. Numbers that have been rounded to an exactly representable floating-point
number also result in a special value. Special-value results are a limiting case of the arithmetic
operation involved. Special values can propagate through your arithmetic operations without
causing your program to fail, and often provide usable results.

If an arithmetic operation results in an exception, the operation can cause an underflow or
overflow:

• Underflow occurs when an arithmetic result is too small for the math processor to handle.
Depending on the setting of the /fpe compiler option, underflows are set to zero (they are
usually harmless) or they are left as is (denormalized).

• Overflow occurs when an arithmetic result is too large for the math processor to handle.
Overflows are more serious than underflows, and may indicate an error in the formulation
of a problem (for example, unintended exponentiation of a large number by a large number).
Overflows generally produce an appropriately signed infinity value. (This depends on the
rounding mode as per the IEEE standard.)

An arithmetic operation can also throw the following exceptions: divide-by-zero exception, an
invalid exception, and an inexact exception.

You can select how exceptions are handled by setting the floating-point control word.

See Also
• Handling Exceptions and Errors
• Special Values

1732

40 Intel® Fortran Compiler User and Reference Guides

Rounding Errors

Although the rounding error for one real number might be acceptably small in your calculations,
at least two problems can arise because of it. If you test for exact equality between what you
consider to be two exact numbers, the rounding error of either or both floating-point
representations of those numbers may prevent a successful comparison and produce spurious
results. Also, when you calculate with floating-point numbers the rounding errors may accumulate
to a meaningful loss of numerical significance.

Carefully consider the numerics of your solution to minimize rounding errors or their effects.
You might benefit from using double-precision arithmetic or restructuring your algorithm, or
both. For instance, if your calculations involve arrays of linear data items, you might reduce
the loss of numerical significance by subtracting the mean value of each array from each array
element and by normalizing each element of such an array to the standard deviation of the
array elements.

The following code segment can execute differently on various systems and produce varying
results for n, x, and s. It also produces different results if you use the -fp-model precise
(Linux* and Mac OS* X) or /fp:precise (Windows*; systems), or -fp-model fast (Linux
and Mac OS X) or /fp:fast (Windows) compiler options. Rounding error accumulates in x
because the floating-point representation of 0.2 is inexact, then accumulates in s, and affects
the final value for n:

INTEGER n

REAL s, x

n = 0

s = 0.0

x = 0.0

1 n = n + 1

x = x + 0.2

s = s + x

IF (x .LE. 10.) GOTO 1 ! Will you get 51 cycles?

WRITE(*,*) 'n = ', n, '; x = ', x, '; s = ', s

This example illustrates a common coding problem: carrying a floating-point variable through
many successive cycles and then using it to perform an IF test. This process is common in
numerical integration. There are several remedies. You can compute x and s as multiples of
an integer index, for example, replacing the statement that increments x with x = n * 0.2

1733

40

to avoid round-off accumulation. You might test for completion on the integer index, such as
IF (n <= 50) GOTO 1, or use a DO loop, such as DO n= 1,51. If you must test on the real
variable that is being cycled, use a realistic tolerance, such as IF (x <= 10.001).

Floating-point arithmetic does not always obey the standard rules of algebra exactly. Addition
is not precisely associative when round-off errors are considered. You can use parentheses to
express the exact evaluation you require to compute a correct, accurate answer, provided you
use a switch such as /fp:precise (on Windows systems) or -fp-model precise (on Linux
or MacOS X systems), or /assume:protect_parens (on Windows systems) or -assume
protect_parens (on Linux or MacOS X systems). This is recommended when you specify
optimization for your generated code, since associativity may otherwise be unpredictable.

The expressions (x + y) + z and x + (y + z) can give unequal results in some cases.

The compiler uses the default rounding mode (round-to-nearest) during compilation. The
compiler performs more compile-time operations that eliminate runtime operations as the
optimization level increases. If you set rounding mode to a different setting (other than
round-to-nearest), that rounding mode is used only if that computation is performed at runtime.
If you want to force computations to be performed at runtime, use the -fp-model strict
(Linux or MacOS) or /fp:strict (Windows) option.

See Also
• Handling Exceptions and Errors
• ULPs, Relative Error, and Machine Epsilon

1734

40 Intel® Fortran Compiler User and Reference Guides

Part

V
Language Reference
Topics:

• Overview: Language Reference

• Conformance, Compatibility, and
Fortran 2003 Features

• Program Structure, Characters,
and Source Forms

• Data Types, Constants, and
Variables

• Expressions and Assignment
Statements

• Specification Statements

• Dynamic Allocation

• Execution Control

• Program Units and Procedures

• Intrinsic Procedures

• Data Transfer I/O Statements

• I/O Formatting

• File Operation I/O Statements

• Compilation Control Lines and
Statements

• Directive Enhanced Compilation

• Scope and Association

• Deleted and Obsolescent
Language Features

• Additional Language Features

• Additional Character Sets

• Data Representation Models

• Run-Time Library Routines

1735

• Summary of Language
Extensions

• A to Z Reference

• Glossary

1736

Intel® Fortran Compiler User and Reference Guides

41Overview: Language Reference

This document contains the complete description of the Intel® Fortran programming language, which
includes Fortran 95, Fortran 90, and many Fortran 2003 language features. It contains information on
language syntax and semantics, on adherence to various Fortran standards, and on extensions to those
standards.

This manual is intended for experienced applications programmers who have a basic understanding of
Fortran concepts and the Fortran 95/90 language.

Some familiarity with your operating system is helpful. This manual is not a Fortran or programming
tutorial.

This manual contains the full content of what originally appeared in the Language Reference and Libraries
Reference PDF files. However, the library routines described in the Libraries Reference PDF file are now
described within the A to Z Reference.

This document covers the following topics:

• Conformance, Compatibility, and Fortran 2003 Features

This topic describes conformance with language standards, compatibility with other Fortran languages,
and it contains a summary of Fortran 2003 features.

• Program Structure, Characters, and Source Forms

This topic describes program structure, the Fortran 95/90 character set, and source forms.

• Data Types, Constants, and Variables

This topic describes language standards, language compatibility, and Fortran 95/90 features.

• Expressions and Assignment Statements

This topic describes Fortran expressions and assignment statements, which are used to define or
redefine variables.

• Specification Statements

This topic describes specification statements, which are used to declare the attributes of data objects.

• Dynamic Allocation

This topic describes statements used in dynamic allocation: ALLOCATE, DEALLOCATE, and NULLIFY.

• Execution Control

This topic describes constructs and statements that can transfer control within a program.

• Program Units and Procedures

This topic describes program units (including modules), subroutines and functions, and procedure
interfaces.

1737

• Intrinsic Procedures

This topic describes argument keywords used in intrinsic procedures and provides an overview
of intrinsic procedures.

• Data Transfer I/O Statements

This topic describes data transfer input/output (I/O) statements.

• I/O Formatting

This topic describes the rules for I/O formatting.

• File Operation I/O Statements

This topic describes auxiliary I/O statements you can use to perform file operations.

• Compilation Control Statements

This topic describes compilation control statements: INCLUDE and OPTIONS.

• Directive Enhanced Compilation

This topic describes general and parallel compiler directives.

• Scope and Association

This topic describes scope, which refers to the area in which a name is recognized, and association,
which is the language concept that allows different names to refer to the same entity in a particular
region of a program.

• Deleted and Obsolescent Language Features

This topic describes deleted features in Fortran 95 and obsolescent language features in Fortran
95 and Fortran 90.

• Additional Language Features

This topic describes some statements and language features supported for programs written in
older versions of Fortran.

• Additional Character Sets

This topic describes the additional character sets available on Windows*, Linux*, and Mac OS* X
systems.

• Data Representation Models

This topic describes data representation models for numeric intrinsic functions.

• Run-Time Library Routines

This topic summarizes the many run-time library routines.

• Summary of Language Extensions

This topic summarizes Intel Fortran extensions to the Fortran 95 Standard.

• A to Z Reference

1738

41 Intel® Fortran Compiler User and Reference Guides

This topic contains language summary tables and descriptions of all Intel® Fortran statements,
intrinsics, directives, and module library routines, which are listed in alphabetical order.

• Glossary

This topic contains abbreviated definitions of some commonly used terms in this manual.

For details on the features of the compilers, see your guide to Building Applications. For details on
how to improve the run-time performance of Fortran programs, see your guide to Optimizing
Applications. For details on floating-point support, see your guide to Floating-point Operations. For
details on compiler options, see your Compiler Options reference.

For information on conventions used in this document, see Conventions.

For more information on Fortran 2003 features in this release, see Fortran 2003 Features.

New Language Features

The major new features for this release are as follows:

• OpenMP* Fortran directive TASK

The TASK directive defines a task region. For more information, see TASK.

• OpenMP* Fortran directive TASKWAIT

The TASKWAIT directive specifies a wait on the completion of child tasks generated since
the beginning of the current task. For more information, see TASKWAIT.

• OpenMP* Fortran directive clause SCHEDULE (AUTO)

The AUTO setting delegates the scheduling decision until compile time or run time. The
schedule is processor dependent. For more information, see SCHEDULE in the DO directive.

• VECTOR TEMPORAL directive

The VECTOR TEMPORAL directive tells the compiler to use temporal (that is, non-streaming)
stores. For more information, see VECTOR TEMPORAL and VECTOR NONTEMPORAL.

• VECTOR NONTEMPORAL directive now allows variables

VECTOR NONTEMPORAL directs the compiler to use non-temporal (that is, streaming) stores.
It now allows variables as optional memory references. For more information, see VECTOR
TEMPORAL and VECTOR NONTEMPORAL.

• UNROLL_AND_JAM and NOUNROLL_AND_JAM directives

The UNROLL_AND_JAM and NOUNROLL_AND_JAM directives enable or disable loop unrolling
and jamming. For more information, see UNROLL_AND_JAM and NOUNROLL_AND_JAM.

For more information on Fortran 2003 features, see Fortran 2003 Features.

1739

41

For information on new compiler options in this release, see New Options in the Compiler Options
reference.

1740

41 Intel® Fortran Compiler User and Reference Guides

42Conformance, Compatibility, and
Fortran 2003 Features

Fortran 95 includes Fortran 90 and most features of FORTRAN 77. Fortran 90 is a superset that includes
FORTRAN 77. Intel Fortran fully supports the Fortran 95, Fortran 90, and FORTRAN 77 Standards.

Language Standards Conformance

Intel Fortran conforms to American National Standard Fortran 95 (ANSI X3J3/96-007)1, American
National Standard Fortran 90 (ANSI X3.198-1992)2, and includes support for many features in the
Fortran 2003 standard (ISO/IEC 1539-1:2004).

The ANSI committee X3J3 is currently answering questions of interpretation of Fortran 95 and Fortran
90 language features. Any answers given by the ANSI committee that are related to features
implemented in Intel Fortran may result in changes in future releases of the Intel Fortran compiler,
even if the changes produce incompatibilities with earlier releases of Intel Fortran.

Intel Fortran provides a number of extensions to the Fortran 95 Standard. In the language reference,
extensions are displayed in this color.

Intel Fortran also includes support for programs that conform to the previous Fortran standards
(ANSI X3.9-1978 and ANSI X3.0-1966), the International Standards Organization standard ISO
1539-1980 (E), the Federal Information Processing Institute standard FIPS 69-1, and the Military
Standard 1753 Language Specification.

Language Compatibility

Intel Fortran is highly compatible with Compaq* Fortran 77 on supported systems, and it is
substantially compatible with PDP-11* and VAX* FORTRAN 77.

Fortran 2003 Features

The following Fortran 2003 features are new in this release:

• Enumerators

• Type extension (not polymorphic)

• Allocatable scalar variables (not deferred-length character)

• ERRMSG keyword for ALLOCATE and DEALLOCATE

1 This is the same as International Standards Organization standard ISO/IEC 1539-1:1997 (E).
2 This is the same as International Standards Organization standard ISO/IEC 1539:1991 (E).

1741

• SOURCE= keyword for ALLOCATE

• Character arguments for MAX, MIN, MAXVAL, MINVAL, MAXLOC, and MINLOC

• Intrinsic modules IEEE_EXCEPTIONS, IEEE_ARITHMETIC and IEEE_FEATURES

• ASSOCIATE construct

• PROCEDURE declaration

• Procedure pointers

• ABSTRACT INTERFACE

• PASS and NOPASS attributes

• Structure constructors with component names and default initialization

• Array constructors with type and character length specifications

• I/O keywords BLANK, DELIM, ENCODING, IOMSG, PAD, ROUND, SIGN, and SIZE

• Format edit descriptors DC, DP, RD, RC, RN, RP, RU, and RZ

The following Fortran 2003 features are also supported:

• RECORDTYPE setting STREAM_CRLF

• A file can be opened for stream access (ACCESS='STREAM')

• Specifier POS can be specified in an INQUIRE, READ, or WRITE statement

• BIND attribute and statement

• Language binding can be specified in a FUNCTION or SUBROUTINE statement, or when
defining a derived type

• IS_IOSTAT_END intrinsic function

• IS_IOSTAT_EOR intrinsic function

• INTRINSIC and NONINTRINSIC can be specified for modules in USE statements

• ASYNCHRONOUS attribute and statement

• VALUE attribute and statement

• Specifier ASYNCHRONOUS can be specified in an OPEN, INQUIRE, READ, or WRITE statement

• An ID can be specified for a pending data transfer operation

• FLUSH statement

• WAIT statement

• IMPORT statement

• NEW_LINE intrinsic function

• SELECTED_CHAR_KIND intrinsic function

1742

42 Intel® Fortran Compiler User and Reference Guides

• Intrinsic modules ISO_C_BINDING and ISO_FORTRAN_ENV

• MEMORYTOUCH compiler directive

• Specifiers ID and PENDING can be specified in an INQUIRE statement

• User-defined operators can be renamed in USE statements

• MOVE_ALLOC intrinsic subroutine

• PROTECTED attribute and statement

• Pointer objects can have the INTENT attribute

• GET_COMMAND intrinsic

• GET_COMMAND_ARGUMENT intrinsic

• COMMAND_ARGUMENT_COUNT intrinsic

• GET_ENVIRONMENT_VARIABLE intrinsic

• Allocatable components of derived types

• Allocatable dummy arguments

• Allocatable function results

• VOLATILE attribute and statement

• Names of length up to 63 characters

• Statements up to 256 lines

• A named PARAMETER constant may be part of a complex constant

• In all I/O statements, the following numeric values can be of any kind: UNIT=, IOSTAT=

• The following OPEN numeric values can be of any kind: RECL=

• The following READ and WRITE numeric values can be of any kind: REC=, SIZE=

• The following INQUIRE numeric values can be of any kind: NEXTREC=, NUMBER=, RECL=,
SIZE=

• Recursive I/O is allowed when the new I/O being started is internal I/O that does not modify
any internal file other than its own

• IEEE infinities and Nans are displayed by formatted output as specified by Fortran 2003

• In an I/O format, the comma after a P edit descriptor is optional when followed by a repeat
specifier

• The following intrinsics take an optional KIND= argument: ACHAR, COUNT, IACHAR, ICHAR,
INDEX, LBOUND, LEN, LEN_TRIM, MAXLOC, MINLOC, SCAN, SHAPE, SIZE, UBOUND, VERIFY

• Square brackets [] are permitted to delimit array constructors instead of (/ /)

• The Fortran character set has been extended to contain the 8-bit ASCII characters ~ \ []
` ^ { } | # @

1743

42

See Also
• Conformance, Compatibility, and Fortran 2003 Features
• New Language Features

1744

42 Intel® Fortran Compiler User and Reference Guides

43Program Structure, Characters,
and Source Forms

This section contains information on the following topics:

• An overview of program structure, including general information on statements and names

• Character sets

• Source forms

Program Structure

A Fortran program consists of one or more program units. A program unit is usually a sequence of
statements that define the data environment and the steps necessary to perform calculations; it is
terminated by an END statement.

A program unit can be either a main program, an external subprogram, a module, or a block data
program unit. An executable program contains one main program, and, optionally, any number of
the other kinds of program units. Program units can be separately compiled.

An external subprogram is a function or subroutine that is not contained within a main program,
a module, or another subprogram. It defines a procedure to be performed and can be invoked from
other program units of the Fortran program. Modules and block data program units are not executable,
so they are not considered to be procedures. (Modules can contain module procedures, though,
which are executable.)

Modules contain definitions that can be made accessible to other program units: data and type
definitions, definitions of procedures (called module subprograms), and procedure interfaces.
Module subprograms can be either functions or subroutines. They can be invoked by other module
subprograms in the module, or by other program units that access the module.

A block data program unit specifies initial values for data objects in named common blocks. In
Fortran 95/90, this type of program unit can be replaced by a module program unit.

Main programs, external subprograms, and module subprograms can contain internal subprograms.
The entity that contains the internal subprogram is its host. Internal subprograms can be invoked
only by their host or by other internal subprograms in the same host. Internal subprograms must
not contain internal subprograms.

The following sections discuss Statements, Names, and Keywords.

1745

Statements

Program statements are grouped into two general classes: executable and nonexecutable. An
executable statement specifies an action to be performed. A nonexecutable statement
describes program attributes, such as the arrangement and characteristics of data, as well as
editing and data-conversion information.

Order of Statements in a Program Unit

The following figure shows the required order of statements in a Fortran program unit. In this
figure, vertical lines separate statement types that can be interspersed. For example, you can
intersperse DATA statements with executable constructs.

Horizontal lines indicate statement types that cannot be interspersed. For example, you cannot
intersperse DATA statements with CONTAINS statements.

1746

43 Intel® Fortran Compiler User and Reference Guides

Required Order of Statements

PUBLIC and PRIVATE statements are only allowed in the scoping units of modules. In Fortran
95/90, NAMELIST statements can appear only among specification statements. However, Intel®

Fortran allows them to also appear among executable statements.

The following table shows other statements restricted from different types of scoping units.

1747

43

Statements Restricted in Scoping Units

Restricted StatementsScoping Unit

ENTRY, IMPORT, and RETURN statementsMain program

ENTRY, FORMAT, IMPORT, OPTIONAL, and
INTENT statements, statement functions, and
executable statements

Module1

CONTAINS, ENTRY, IMPORT, and FORMAT
statements, interface blocks, statement
functions, and executable statements

Block data program unit

CONTAINS, IMPORT, and ENTRY statementsInternal subprogram

CONTAINS, DATA, ENTRY, IMPORT2, SAVE,
and FORMAT statements, statement
functions, and executable statements

Interface body

1 The scoping unit of a module does not include any module subprograms that the module
contains.
2 An IMPORT statement can appear only in the interface-body of an INTERFACE block.

See Also
• Program Structure
• Scope

Names

Names identify entities within a Fortran program unit (such as variables, function results,
common blocks, named constants, procedures, program units, namelist groups, and dummy
arguments). In FORTRAN 77, names were called "symbolic names".

A name can contain letters, digits, underscores (_), and the dollar sign ($) special character.
The first character must be a letter or a dollar sign.

In Fortran 95/90, a name can contain up to 31 characters. Intel® Fortran allows names up to
63 characters.

The length of a module name (in MODULE and USE statements) may be restricted by your file
system.

1748

43 Intel® Fortran Compiler User and Reference Guides

NOTE. Be careful when defining names that contain dollar signs. A dollar sign can be a
symbol for command or symbol substitution in various shell and utility commands.

In an executable program, the names of the following entities are global and must be unique
in the entire program:

• Program units

• External procedures

• Common blocks

• Modules

Examples

The following examples demonstrate valid and invalid names

Table 520: Valid Names

NUMBER

FIND_IT

X

Table 521: Invalid Names

Begins with a numeral.5Q

Contains a special character other than _ or $.B.4

Begins with an underscore._WRONG

The following are all valid examples of using names:

INTEGER (SHORT) K !K names an integer variable

SUBROUTINE EXAMPLE !EXAMPLE names the subroutine

LABEL: DO I = 1,N !LABEL names the DO block

1749

43

Keywords

A keyword can either be a part of the syntax of a statement (statement keyword), or it can be
the name of a dummy argument (argument keyword). Examples of statement keywords are
WRITE, INTEGER, DO, and OPEN. Examples of argument keywords are arguments to the intrinsic
functions.

In the intrinsic function UNPACK (vector, mask, field), for example, vector, mask, and field
are argument keywords. They are dummy argument names, and any variable may be substituted
in their place. Dummy argument names and real argument names are discussed in Program
Units and Procedures.

Keywords are not reserved. The compiler recognizes keywords by their context. For example,
a program can have an array named IF, read, or Goto, even though this is not good programming
practice. The only exception is the keyword PARAMETER. If you plan to use variable names
beginning with PARAMETER in an assignment statement, you need to use compiler option
altparam.

Using keyword names for variables makes programs harder to read and understand. For
readability, and to reduce the possibility of hard-to-find bugs, avoid using names that look like
parts of Fortran statements. Rules that describe the context in which a keyword is recognized
are discussed in Program Units and Procedures.

Argument keywords are a feature of Fortran 90 that let you specify dummy argument names
when calling intrinsic procedures, or anywhere an interface (either implicit or explicit) is defined.
Using argument keywords can make a program more readable and easy to follow. This is
described more fully in Program Units and Procedures. The syntax statements in the A-Z
Reference show the dummy keywords you can use for each Fortran procedure.

See Also
• Program Structure
• altparam compiler option

Character Sets

Intel Fortran supports the following characters:

• The Fortran 95/90 character set which consists of the following:

• All uppercase and lowercase letters (A through Z and a through z)

• The numerals 0 through 9

• The underscore (_)

• The following special characters:

1750

43 Intel® Fortran Compiler User and Reference Guides

NameCharacterNameCharacter

Colon:Blank (space) or tabblank or <Tab>

Exclamation point!Equal sign=

Quotation mark"Plus sign+

Percent sign%Minus sign-

Ampersand&Asterisk*

Semicolon;Slash/

Less than<Left parenthesis(

Greater than>Right parenthesis)

Question mark?Comma,

Dollar sign (currency
symbol)

$Period (decimal
point)

.

Apostrophe'

• Other printable characters

Printable characters include the tab character (09 hex), ASCII characters with codes in the
range 20(hex) through 7E(hex), and characters in certain special character sets.

Printable characters that are not in the Fortran 95/90 character set can only appear in
comments, character constants, Hollerith constants, character string edit descriptors, and
input/output records.

Uppercase and lowercase letters are treated as equivalent when used to specify program
behavior (except in character constants and Hollerith constants).

See Also
• Program Structure, Characters, and Source Forms
• Data Types, Constants, and Variables
• ASCII and Key Code Charts for Windows*OS
• ASCII Character Set for Linux* OS and Mac OS* X

1751

43

Source Forms

Within a program, source code can be in free, fixed, or tab form. Fixed or tab forms must not
be mixed with free form in the same source program, but different source forms can be used
in different source programs.

All source forms allow lowercase characters to be used as an alternative to uppercase characters.

Several characters are indicators in source code (unless they appear within a comment or a
Hollerith or character constant). The following are rules for indicators in all source forms:

• Comment indicator

A comment indicator can precede the first statement of a program unit and appear anywhere
within a program unit. If the comment indicator appears within a source line, the comment
extends to the end of the line.

An all blank line is also a comment line.

Comments have no effect on the interpretation of the program unit.

For more information, see comment indicators in free source form, or fixed and tab source
forms.

• Statement separator

More than one statement (or partial statement) can appear on a single source line if a
statement separator is placed between the statements. The statement separator is a
semicolon character (;).

Consecutive semicolons (with or without intervening blanks) are considered to be one
semicolon.

If a semicolon is the last character on a line, or the last character before a comment, it is
ignored.

• Continuation indicator

A statement can be continued for more than one line by placing a continuation indicator on
the line. Intel Fortran allows at least 511 continuation lines for a fixed or tab source program
and at least 255 continuation lines for a free form source program.

Comments can occur within a continued statement, but comment lines cannot be continued.

For more information, see continuation indicators in free source form, or fixed and tab source
forms.

The following table summarizes characters used as indicators in source forms.

1752

43 Intel® Fortran Compiler User and Reference Guides

Table 523: Indicators in Source Forms

PositionSource FormIndicator 1Source Item

Anywhere in source
code

All forms!Comment

At the beginning of
the source line

Free!Comment line

In column 1Fixed!, C, or *

In column 1Tab

At the end of the
source line

Free&Continuation line 2

In column 6FixedAny character except
zero or blank

After the first tabTabAny digit except zero

Between statements
on the same line

All forms;Statement separator

Before a statementFree1 to 5 decimal digitsStatement label

In columns 1 through
5

Fixed

Before the first tabTab

In column 1FixedDA debugging
statement3

In column 1Tab

1 If the character appears in a Hollerith or character constant, it is not an indicator and is
ignored.
2 For fixed or tab source form, at least 511 continuation lines are allowed. For free source
form, at least 255 continuation lines are allowed.

1753

43

PositionSource FormIndicator 1Source Item
3 Fixed and tab forms only.

Source form and line length can be changed at any time by using the FREEFORM, NOFREEFORM,
or FIXEDFORMLINESIZE directives. The change remains in effect until the end of the file, or
until changed again.

You can also select free source form by using compiler option free.

Source code can be written so that it is useable for all source forms.

Statement Labels

A statement label (or statement number) identifies a statement so that other statements can
refer to it, either to get information or to transfer control. A label can precede any statement
that is not part of another statement.

A statement label must be one to five decimal digits long; blanks and leading zeros are ignored.
An all-zero statement label is invalid, and a blank statement cannot be labeled.

Labeled FORMAT and labeled executable statements are the only statements that can be referred
to by other statement. FORMAT statements are referred to only in the format specifier of an
I/O statement or in an ASSIGN statement. Two statements within a scoping unit cannot have
the same label.

See Also
• Program Structure, Characters, and Source Forms
• Free Source Form
• Fixed and Tab Source Forms
• Source Code Useable for All Source Forms
• free compiler option

Free Source Form

In free source form, statements are not limited to specific positions on a source line. In Fortran
95/90, a free form source line can contain from 0 to 132 characters. Intel Fortran allows the
line to be of any length.

Blank characters are significant in free source form. The following are rules for blank characters:

• Blank characters must not appear in lexical tokens, except within a character context. For
example, there can be no blanks between the exponentiation operator **. Blank characters
can be used freely between lexical tokens to improve legibility.

1754

43 Intel® Fortran Compiler User and Reference Guides

• Blank characters must be used to separate names, constants, or labels from adjacent
keywords, names, constants, or labels. For example, consider the following statements:
INTEGER NUM

GO TO 40

20 DO K=1,8

The blanks are required after INTEGER, TO, 20, and DO.

• Some adjacent keywords must have one or more blank characters between them. Others
do not require any; for example, BLOCK DATA can also be spelled BLOCKDATA. The following
list shows which keywords have optional or required blanks:

Required BlanksOptional Blanks

CASE DEFAULTBLOCK DATA

DO WHILEDOUBLE COMPLEX

IMPLICIT type-specifierDOUBLE PRECISION

IMPLICIT NONEELSE IF

INTERFACE ASSIGNMENTELSE WHERE

INTERFACE OPERATOREND BLOCK DATA

MODULE PROCEDUREEND DO

RECURSIVE FUNCTIONEND FILE

RECURSIVE SUBROUTINEEND FORALL

RECURSIVE type-specifier FUNCTIONEND FUNCTION

type-specifier FUNCTIONEND IF

type-specifier RECURSIVE FUNCTIONEND INTERFACE

END MODULE

END PROGRAM

END SELECT

END SUBROUTINE

1755

43

Required BlanksOptional Blanks

END TYPE

END WHERE

GO TO

IN OUT

SELECT CASE

For information on statement separators (;) in all forms, see Source Forms.

Comment Indicator

In free source form, the exclamation point character (!) indicates a comment if it is within a
source line, or a comment line if it is the first character in a source line.

Continuation Indicator

In free source form, the ampersand character (&) indicates a continuation line (unless it appears
in a Hollerith or character constant, or within a comment). The continuation line is the first
noncomment line following the ampersand. Although Fortran 90 permits up to 39 continuation
lines in free-form programs, Intel Fortran allows up to 511 continuation lines.

The following shows a continued statement:

TCOSH(Y) = EXP(Y) + & ! The initial statement line

EXP(-Y) ! A continuation line

If the first nonblank character on the next noncomment line is an ampersand, the statement
continues at the character following the ampersand. For example, the preceding example can
be written as follows:

TCOSH(Y) = EXP(Y) + &

& EXP(-Y)

If a lexical token must be continued, the first nonblank character on the next noncomment line
must be an ampersand followed immediately by the rest of the token. For example:

TCOSH(Y) = EXP(Y) + EX&

&P(-Y)

1756

43 Intel® Fortran Compiler User and Reference Guides

If you continue a character constant, an ampersand must be the first non-blank character of
the continued line; the statement continues with the next character following the ampersand.
For example:

ADVERTISER = "Davis, O'Brien, Chalmers & Peter&

&son"

ARCHITECT = "O'Connor, Emerson, and Davis&

& Associates"

If the ampersand is omitted on the continued line, the statement continues with the first
non-blank character in the continued line. So, in the preceding example, the whitespace before
"Associates" would be ignored.

The ampersand cannot be the only nonblank character in a line, or the only nonblank character
before a comment; an ampersand in a comment is ignored.

Fixed and Tab Source Forms

In Fortran 95, fixed source form is identified as obsolescent.

In fixed and tab source forms, there are restrictions on where a statement can appear within
a line.

By default, a statement can extend to character position 72. In this case, any text following
position 72 is ignored and no warning message is printed. You can specify compiler option
extend-source to extend source lines to character position 132.

Except in a character context, blanks are not significant and can be used freely throughout the
program for maximum legibility.

Some Fortran compilers use blanks to pad short source lines out to 72 characters. By default,
Intel Fortran does not. If portability is a concern, you can use the concatenation operator to
prevent source lines from being padded by other Fortran compilers (see the example in
"Continuation Indicator" below) or you can force short source lines to be padded by using
compiler option pad-source.

Comment Indicator

In fixed and tab source forms, the exclamation point character (!) indicates a comment if it is
within a source line. (It must not appear in column 6 of a fixed form line; that column is reserved
for a continuation indicator.)

The letter C (or c), an asterisk (*), or an exclamation point (!) indicates a comment line when
it appears in column 1 of a source line.

1757

43

Continuation Indicator

In fixed and tab source forms, a continuation line is indicated by one of the following:

• For fixed form: Any character (except a zero or blank) in column 6 of a source line

• For tab form: Any digit (except zero) after the first tab

The compiler considers the characters following the continuation indicator to be part of the
previous line. Although Fortran 95/90 permits up to 19 continuation lines in a fixed-form
program, Intel Fortran allows up to 511 continuation lines.

If a zero or blank is used as a continuation indicator, the compiler considers the line to be an
initial line of a Fortran statement.

The statement label field of a continuation line must be blank (except in the case of a debugging
statement).

When long character or Hollerith constants are continued across lines, portability problems can
occur. Use the concatenation operator to avoid such problems. For example:

PRINT *, 'This is a very long character constant '//

+ 'which is safely continued across lines'

Use this same method when initializing data with long character or Hollerith constants. For
example:

CHARACTER*(*) LONG_CONST

PARAMETER (LONG_CONST = 'This is a very long '//

+ 'character constant which is safely continued '//

+ 'across lines')

CHARACTER*100 LONG_VAL

DATA LONG_VAL /LONG_CONST/

Hollerith constants must be converted to character constants before using the concatenation
method of line continuation.

The Fortran Standard requires that, within a program unit, the END statement cannot be
continued, and no other statement in the program unit can have an initial line that appears to
be the program unit END statement. In these instances, Intel Fortran produces warnings when
standards checking is requested.

1758

43 Intel® Fortran Compiler User and Reference Guides

Debugging Statement Indicator

In fixed and tab source forms, the statement label field can contain a statement label, a comment
indicator, or a debugging statement indicator.

The letter D indicates a debugging statement when it appears in column 1 of a source line. The
initial line of the debugging statement can contain a statement label in the remaining columns
of the statement label field.

If a debugging statement is continued onto more than one line, every continuation line must
begin with a D and a continuation indicator.

By default, the compiler treats debugging statements as comments. However, you can specify
compiler option d-lines to force the compiler to treat debugging statements as source text to
be compiled.

Fixed-Format Lines

In fixed source form, a source line has columns divided into fields for statement labels,
continuation indicators, statement text, and sequence numbers. Each column represents a
single character.

The column positions for each field follow:

ColumnField

1 through 5Statement label

6Continuation indicator

7 through 72 (or 132 with compiler option
extend-source)

Statement

73 through 80Sequence number

By default, a sequence number or other identifying information can appear in columns 73
through 80 of any fixed-format line in an Intel Fortran program. The compiler ignores the
characters in this field.

If you extend the statement field to position 132, the sequence number field does not exist.

NOTE. If you use the sequence number field, do not use tabs anywhere in the source
line, or the compiler may interpret the sequence numbers as part of the statement field
in your program.

1759

43

See Also
• Fixed and Tab Source Forms
• Source Forms
• Fixed and Tab Source Forms
• extend-source compiler option
Tab-Format Lines

In tab source form, you can specify a statement label field, a continuation indicator field, and
a statement field, but not a sequence number field.

The following figure shows equivalent source lines coded with tab and fixed source form.

Line Formatting Example

The statement label field precedes the first tab character. The continuation indicator field and
statement field follow the first tab character.

1760

43 Intel® Fortran Compiler User and Reference Guides

The continuation indicator is any nonzero digit. The statement field can contain any Fortran
statement. A Fortran statement cannot start with a digit.

If a statement is continued, a continuation indicator must be the first character (following the
first tab) on the continuation line.

Many text editors and terminals advance the terminal print carriage to a predefined print position
when you press the <Tab> key. However, the Intel Fortran compiler does not interpret the tab
character in this way. It treats the tab character in a statement field the same way it treats a
blank character. In the source listing that the compiler produces, the tab causes the character
that follows to be printed at the next tab stop (usually located at columns 9, 17, 25, 33, and
so on).

NOTE. If you use the sequence number field, do not use tabs anywhere in the source
line, or the compiler may interpret the sequence numbers as part of the statement field
in your program.

See Also
• Fixed and Tab Source Forms
• Source Forms
• Fixed and Tab Source Forms

Source Code Useable for All Source Forms

To write source code that is useable for all source forms (free, fixed, or tab), follow these rules:

Treat as significant (see Free Source Form).Blanks

Place in column positions 1 through 5 (or
before the first tab character).

Statement labels

Start in column position 7 (or after the first
tab character).

Statements

Use only !. Place anywhere except in column
position 6 (or immediately after the first tab
character).

Comment indicator

1761

43

Use only &. Place in column position 73 of
the initial line and each continuation line, and
in column 6 of each continuation line (no tab
character can precede the ampersand in
column 6).

Continuation indicator

The following example is valid for all source forms:
Column:

12345678... 73

! Define the user function MY_SIN

DOUBLE PRECISION FUNCTION MY_SIN(X)

MY_SIN = X - X**3/FACTOR(3) + X**5/FACTOR(5) &

& - X**7/FACTOR(7)

CONTAINS

INTEGER FUNCTION FACTOR(N)

FACTOR = 1

DO 10 I = N, 1, -1

10 FACTOR = FACTOR * I

END FUNCTION FACTOR

END FUNCTION MY_SIN

1762

43 Intel® Fortran Compiler User and Reference Guides

44Data Types, Constants, and
Variables

Each constant, variable, array, expression, or function reference in a Fortran statement has a data type.
The data type of these items can be inherent in their construction, implied by convention, or explicitly
declared.

Each data type has the following properties:

• A name

The names of the intrinsic data types are predefined, while the names of derived types are defined in
derived-type definitions. Data objects (constants, variables, or parts of constants or variables) are
declared using the name of the data type.

• A set of associated values

Each data type has a set of valid values. Integer and real data types have a range of valid values.
Complex and derived types have sets of values that are combinations of the values of their individual
components.

• A way to represent constant values for the data type

A constant is a data object with a fixed value that cannot be changed during program execution. The
value of a constant can be a numeric value, a logical value, or a character string.

A constant that does not have a name is a literal constant. A literal constant must be of intrinsic
type and it cannot be array-valued.

A constant that has a name is a named constant. A named constant can be of any type, including
derived type, and it can be array-valued. A named constant has the PARAMETER attribute and is
specified in a type declaration statement or PARAMETER statement.

• A set of operations to manipulate and interpret these values

The data type of a variable determines the operations that can be used to manipulate it. Besides
intrinsic operators and operations, you can also define operators and operations.

Intrinsic Data Types

Intel® Fortran provides the following intrinsic data types:

• INTEGER

There are four kind parameters for data of type integer:

• INTEGER([KIND=]1) or INTEGER*1

• INTEGER([KIND=]2) or INTEGER*2

1763

• INTEGER([KIND=]4) or INTEGER*4

• INTEGER([KIND=]8) or INTEGER*8

• REAL

There are three kind parameters for data of type real:

• REAL([KIND=]4) or REAL*4

• REAL([KIND=]8) or REAL*8

• REAL([KIND=]16) or REAL*16

• DOUBLE PRECISION

No kind parameter is permitted for data declared with type DOUBLE PRECISION. This data
type is the same as REAL([KIND=]8).

• COMPLEX

There are two kind parameters for data of type complex:

• COMPLEX([KIND=]4) or COMPLEX*8

• COMPLEX([KIND=]8) or COMPLEX*16

• COMPLEX([KIND=]16) or COMPLEX*32

• DOUBLE COMPLEX

No kind parameter is permitted for data declared with type DOUBLE COMPLEX. This data
type is the same as COMPLEX([KIND=]8).

• LOGICAL

There are four kind parameters for data of type logical:

• LOGICAL([KIND=]1) or LOGICAL*1

• LOGICAL([KIND=]2) or LOGICAL*2

• LOGICAL([KIND=]4) or LOGICAL*4

• LOGICAL([KIND=]8) or LOGICAL*8

• CHARACTER

There is one kind parameter for data of type character: CHARACTER([KIND=]1).

• BYTE

This is a 1-byte value; the data type is equivalent to INTEGER([KIND=]1).

1764

44 Intel® Fortran Compiler User and Reference Guides

The intrinsic function KIND can be used to determine the kind type parameter of a representation
method.

For more portable programs, you should not use the forms INTEGER([KIND=]n) or
REAL([KIND=]n). You should instead define a PARAMETER constant using the
SELECTED_INT_KIND or SELECTED_REAL_KIND function, whichever is appropriate. For example,
the following statements define a PARAMETER constant for an INTEGER kind that has 9 digits:
INTEGER, PARAMETER :: MY_INT_KIND = SELECTED_INT_KIND(9)

...

INTEGER(MY_INT_KIND) :: J

...

Note that the syntax :: is used in type declaration statements.

The following sections describe the intrinsic data types and forms for literal constants for each
type.

See Also
• Data Types, Constants, and Variables
• Integer Data Types
• Real Data Types
• KIND
• Declaration Statements for Noncharacter Types
• Declaration Statements for Character Types
• Expressions
• Data Type Storage Requirements table

Integer Data Types

Integer data types can be specified as follows:

INTEGER

INTEGER([KIND=]n)

INTEGER*n

Is an initialization expression that evaluates to kind 1, 2, 4, or 8.n

If a kind parameter is specified, the integer has the kind specified. If a kind parameter is not
specified, integer constants are interpreted as follows:

• If the integer constant is within the default integer kind range, the kind is default integer.

1765

44

• If the integer constant is outside the default integer kind range, the kind of the integer
constant is the smallest integer kind that holds the constant.

Default integer is affected by compiler option integer-size, the INTEGER compiler directive, and
the OPTIONS statement.

The intrinsic inquiry function KIND returns the kind type parameter, if you do not know it. You
can use the intrinsic function SELECTED_INT_KIND to find the kind values that provide a given
range of integer values. The decimal exponent range is returned by the intrinsic function RANGE.

Examples

The following examples show ways an integer variable can be declared.

An entity-oriented example is:

INTEGER, DIMENSION(:), POINTER :: days, hours

INTEGER(2), POINTER :: k, limit

INTEGER(1), DIMENSION(10) :: min

An attribute-oriented example is:

INTEGER days, hours

INTEGER(2) k, limit

INTEGER(1) min

DIMENSION days(:), hours(:), min (10)

POINTER days, hours, k, limit

An integer can be used in certain cases when a logical value is expected, such as in a logical expression
evaluating a condition, as in the following:

INTEGER I, X

READ (*,*) I

IF (I) THEN

X = 1

END IF

Integer Constants

An integer constant is a whole number with no decimal point. It can have a leading sign and
is interpreted as a decimal number.

Integer constants take the following form:

1766

44 Intel® Fortran Compiler User and Reference Guides

[s]n[n...][_k]

Is a sign; required if negative (-), optional if positive (+).s

Is a decimal digit (0 through 9). Any leading zeros are ignored.n

Is the optional kind parameter: 1 for INTEGER(1), 2 for INTEGER(2),
4 for INTEGER(4), or 8 for INTEGER(8). It must be preceded by an
underscore (_).

k

An unsigned constant is assumed to be nonnegative.

Integer constants are interpreted as decimal values (base 10) by default. To specify a constant
that is not in base 10, use the following extension syntax:

[s] [[base] #] nnn...

Is an optional plus (+) or minus (-) sign.s

Is any constant from 2 through 36.base
If base is omitted but # is specified, the integer is interpreted in base
16. If both base and # are omitted, the integer is interpreted in base
10.
For bases 11 through 36, the letters A through Z represent numbers
greater than 9. For example, for base 36, A represents 10, B represents
11, C represents 12, and so on, through Z, which represents 35. The
case of the letters is not significant.

Note that compiler option integer-size can affect INTEGER data.

Examples

Table 527: Valid Integer (base 10) Constants

0

-127

+32123

47_2

Table 528: Invalid Integer (base 10) Constants

Number too large.9999999999999999999

Decimal point not allowed; this is a valid REAL
constant.

3.14

1767

44

Comma not allowed.32,767

3 is not a valid kind type for integers.33_3

The following seven integers are all assigned a value equal to 3,994,575 decimal:

I = 2#1111001111001111001111

m = 7#45644664

J = +8#17171717

K = #3CF3CF

n = +17#2DE110

L = 3994575

index = 36#2DM8F

You can use integer constants to assign values to data. The following table shows assignments to
different data and lists the integer and hexadecimal values in the data:

Fortran Assignment Integer Value in Data Hexadecimal Value in Data

LOGICAL(1)X

INTEGER(1)X

X = -128 -128 Z'80'

X = 127 127 Z'7F'

X = 255 -1 Z'FF'

LOGICAL(2)X

INTEGER(2)X

X = 255 255 Z'FF'

X = -32768 -32768 Z'8000'

X = 32767 32767 Z'7FFF'

X = 65535 -1 Z'FFFF'

See Also
• Integer Data Types
• Numeric Expressions
• integer-size compiler option

1768

44 Intel® Fortran Compiler User and Reference Guides

Building Applications for details on the ranges for integer types and kinds

Real Data Types

Real data types can be specified as follows:

REAL

REAL([KIND=]n)

REAL*n

DOUBLE PRECISION

Is an initialization expression that evaluates to kind 4, 8, or 16.n

If a kind parameter is specified, the real constant has the kind specified. If a kind parameter
is not specified, the kind is default real.

Default real is affected by compiler options specifying real size and by the REAL directive.

The default KIND for DOUBLE PRECISION is affected by compiler option double-size. If this
compiler option is not specified, default DOUBLE PRECISION is REAL(8).

No kind parameter is permitted for data declared with type DOUBLE PRECISION.

The intrinsic inquiry function KIND returns the kind type parameter. The intrinsic inquiry function
RANGE returns the decimal exponent range, and the intrinsic function PRECISION returns the
decimal precision. You can use the intrinsic function SELECTED_REAL_KIND to find the kind
values that provide a given precision and exponent range.

Examples

The following examples show how real variables can be declared.

An entity-oriented example is:

REAL (KIND = high), OPTIONAL :: testval

REAL, SAVE :: a(10), b(20,30)

An attribute-oriented example is:

REAL (KIND = high) testval

REAL a(10), b(20,30)

OPTIONAL testval

SAVE a, b

1769

44

General Rules for Real Constants

A real constant approximates the value of a mathematical real number. The value of the
constant can be positive, zero, or negative.

The following is the general form of a real constant with no exponent part:

[s]n[n...][_k]

A real constant with an exponent part has one of the following forms:

[s]n[n...]E[s]nn...[_k]

[s]n[n...]D[s]nn...

[s]n[n...]Q[s]nn...

Is a sign; required if negative (-), optional if positive (+).s

Is a decimal digit (0 through 9). A decimal point must appear if the
real constant has no exponent part.

n

Is the optional kind parameter: 4 for REAL(4), 8 for REAL(8), or 16 for
REAL(16). It must be preceded by an underscore (_).

k

Description

Leading zeros (zeros to the left of the first nonzero digit) are ignored in counting significant
digits. For example, in the constant 0.00001234567, all of the nonzero digits, and none of the
zeros, are significant. (See the following sections for the number of significant digits each kind
type parameter typically has).

The exponent represents a power of 10 by which the preceding real or integer constant is to
be multiplied (for example, 1.0E6 represents the value 1.0 * 10**6).

A real constant with no exponent part and no kind type parameter is (by default) a
single-precision (REAL(4)) constant. You can change the default behavior by specifying compiler
option fpconstant.

If the real constant has no exponent part, a decimal point must appear in the string (anywhere
before the optional kind parameter). If there is an exponent part, a decimal point is optional
in the string preceding the exponent part; the exponent part must not contain a decimal point.

The exponent letter E denotes a single-precision real (REAL(4)) constant, unless the optional
kind parameter specifies otherwise. For example, -9.E2_8 is a double-precision constant (which
can also be written as -9.D2).

The exponent letter D denotes a double-precision real (REAL(8)) constant.

The exponent letter Q denotes a quad-precision real (REAL(16)) constant.

1770

44 Intel® Fortran Compiler User and Reference Guides

A minus sign must appear before a negative real constant; a plus sign is optional before a
positive constant. Similarly, a minus sign must appear between the exponent letter (E, D, or
Q) and a negative exponent, whereas a plus sign is optional between the exponent letter and
a positive exponent.

If the real constant includes an exponent letter, the exponent field cannot be omitted, but it
can be zero.

To specify a real constant using both an exponent letter and a kind parameter, the exponent
letter must be E, and the kind parameter must follow the exponent part.

See Also
• Real Data Types
• fpconstant compiler option
REAL(4) Constants

A single-precision REAL constant occupies four bytes of memory. The number of digits is
unlimited, but typically only the leftmost seven digits are significant.

IEEE* S_floating format is used.

Note that compiler option real-size can affect REAL data.

Examples

Table 529: Valid REAL(4) Constants

3.14159

3.14159_4

621712._4

-.00127

+5.0E3

2E-3_4

Table 530: Invalid REAL(4) Constants

Commas not allowed.1,234,567.

Too small for REAL; this is a valid DOUBLE
PRECISION constant.

325E-47

1771

44

Too large for REAL; this is a valid DOUBLE
PRECISION constant.

-47.E47

6 is not a valid kind for reals.625._6

Decimal point missing; this is a valid integer
constant.

100

Special character not allowed.$25.00

See Also
• Real Data Types
• General Rules for Real Constants
• real-size compiler option

Building Applications for details on the format and range of REAL(4) data

REAL(8) or DOUBLE PRECISION Constants

A REAL(8) or DOUBLE PRECISION constant has more than twice the accuracy of a REAL(4)
number, and greater range.

A REAL(8) or DOUBLE PRECISION constant occupies eight bytes of memory. The number of
digits that precede the exponent is unlimited, but typically only the leftmost 15 digits are
significant.

IEEE T_floating format is used.

Note that compiler option double-size can affect DOUBLE PRECISION data.

The default KIND for DOUBLE PRECISION is affected by compiler option double-size.

Examples

Table 531: Valid REAL(8) or DOUBLE PRECISION Constants

123456789D+5

123456789E+5_8

+2.7843D00

-.522D-12

2E200_8

1772

44 Intel® Fortran Compiler User and Reference Guides

2.3_8

3.4E7_8

Table 532: Invalid REAL(8) or DOUBLE PRECISION Constants

2 is not a valid kind for reals.-.25D0_2

No D exponent designator is present; this is a
valid single-precision constant.

+2.7182812846182

Too large for any double-precision format.123456789.D400

Too small for any double-precision format.123456789.D-400

See Also
• Real Data Types
• General Rules for Real Constants
• -double-size compiler option

Building Applications for details on the format and range of DOUBLE PRECISION (REAL(8)) data

REAL(16) Constants

A REAL(16) constant has more than four times the accuracy of a REAL(4) number, and a greater
range.

A REAL(16) constant occupies 16 bytes of memory. The number of digits that precede the
exponent is unlimited, but typically only the leftmost 33 digits are significant.

IEEE X_floating format is used.

Examples

Table 533: Valid REAL(16) Constants

123456789Q4000

-1.23Q-400

+2.72Q0

1.88_16

1773

44

Table 534: Invalid REAL(16) Constants

Too large.1.Q5000

Too small.1.Q-5000

See Also
• Real Data Types
• General Rules for Real Constants

Building Applications for details on the format and range of REAL(16) data

Complex Data Types

Complex data types can be specified as follows:

COMPLEX

COMPLEX([KIND=]n)

COMPLEX*s

DOUBLE COMPLEX

Is an initialization expression that evaluates to kind 4, 8, or 16.n

Is 8, 16, or 32. COMPLEX(4) is specified as COMPLEX*8; COMPLEX(8)
is specified as COMPLEX*16; COMPLEX(16) is specified as COMPLEX*32.

s

If a kind parameter is specified, the complex constant has the kind specified. If no kind parameter
is specified, the kind of both parts is default real, and the constant is of type default complex.

Default real is affected by compiler option real-size and by the REAL directive.

The default KIND for DOUBLE COMPLEX is affected by compiler option double-size. If the
compiler option is not specified, default DOUBLE COMPLEX is COMPLEX(8).

No kind parameter is permitted for data declared with type DOUBLE COMPLEX.

Examples

The following examples show how complex variables can be declared.

An entity-oriented example is:

COMPLEX (4), DIMENSION (8) :: cz, cq

1774

44 Intel® Fortran Compiler User and Reference Guides

An attribute-oriented example is:

COMPLEX(4) cz, cq

DIMENSION(8) cz, cq

General Rules for Complex Constants

A complex constant approximates the value of a mathematical complex number. The constant
is a pair of real or integer values, separated by a comma, and enclosed in parentheses. The
first constant represents the real part of that number; the second constant represents the
imaginary part.

The following is the general form of a complex constant:

(c,c)

Is as follows:c

• For COMPLEX(4) constants, c is an integer or REAL(4) constant.

• For COMPLEX(8) constants, c is an integer, REAL(4) constant, or
DOUBLE PRECISION (REAL(8)) constant. At least one of the pair
must be DOUBLE PRECISION.

• For COMPLEX(16) constants, c is an integer, REAL(4) constant,
REAL(8) constant, or REAL(16) constant. At least one of the pair
must be a REAL(16) constant.

Note that the comma and parentheses are required.

COMPLEX(4) Constants

A COMPLEX(4) constant is a pair of integer or single-precision real constants that represent a
complex number.

A COMPLEX(4) constant occupies eight bytes of memory and is interpreted as a complex number.

If the real and imaginary part of a complex literal constant are both real, the kind parameter
value is that of the part with the greater decimal precision.

The rules for REAL(4) constants apply to REAL(4) constants used in COMPLEX constants. (See
General Rules for Complex Constants and REAL(4) Constants for the rules on forming REAL(4)
constants.)

The REAL(4) constants in a COMPLEX constant have IEEE S_floating format.

Note that compiler option real-size can affect REAL data.

1775

44

Examples

Table 535: Valid COMPLEX(4) Constants

(1.7039,-1.70391)

(44.36_4,-12.2E16_4)

(+12739E3,0.)

(1,2)

Table 536: Invalid COMPLEX(4) Constants

Missing second integer or single-precision real
constant.

(1.23,)

Hollerith constant not allowed.(1.0, 2H12)

See Also
• Complex Data Types
• General Rules for Complex Constants
• real-size compiler option

Building Applications for details on the format and range of COMPLEX (COMPLEX(4)) data

COMPLEX(8) or DOUBLE COMPLEX Constants

A COMPLEX(8) or DOUBLE COMPLEX constant is a pair of constants that represents a complex
number. One of the pair must be a double-precision real constant, the other can be an integer,
single-precision real, or double-precision real constant.

A COMPLEX(8) or DOUBLE COMPLEX constant occupies 16 bytes of memory and is interpreted
as a complex number.

The rules for DOUBLE PRECISION (REAL(8)) constants also apply to the double precision portion
of COMPLEX(8) or DOUBLE COMPLEX constants. (See General Rules for Complex Constants
and REAL(8) or DOUBLE PRECISION Constants for the rules on forming DOUBLE PRECISION
constants.)

The DOUBLE PRECISION constants in a COMPLEX(8) or DOUBLE COMPLEX constant have IEEE
T_floating format.

The default KIND for DOUBLE COMPLEX is affected by compiler option double-size.

1776

44 Intel® Fortran Compiler User and Reference Guides

Examples

Table 537: Valid COMPLEX(8) or DOUBLE COMPLEX Constants

(1.7039,-1.7039D0)

(547.3E0_8,-1.44_8)

(1.7039E0,-1.7039D0)

(+12739D3,0.D0)

Table 538: Invalid COMPLEX(8) or DOUBLE COMPLEX Constants

Second constant missing.(1.23D0,)

Hollerith constants not allowed.(1D1,2H12)

Neither constant is DOUBLE PRECISION; this is
a valid single-precision constant.

(1,1.2)

See Also
• Complex Data Types
• General Rules for Complex Constants
• -double-size

Building Applications for details on the format and range of DOUBLE COMPLEX data

COMPLEX(16) Constants

A COMPLEX(16) constant is a pair of constants that represents a complex number. One of the
pair must be a REAL(16) constant, the other can be an integer, single-precision real,
double-precision real, or REAL(16) constant.

A COMPLEX(16) constant occupies 32 bytes of memory and is interpreted as a complex number.

The rules for REAL(16) constants apply to REAL(16) constants used in COMPLEX constants.
(See General Rules for Complex Constants and REAL(16) Constants for the rules on forming
REAL(16) constants.)

The REAL(16) constants in a COMPLEX constant have IEEE X_floating format.

Note that compiler option real-size can affect REAL data.

1777

44

Examples

Table 539: Valid COMPLEX(16) Constants

(1.7039,-1.7039Q2)

(547.3E0_16,-1.44)

(+12739D3,0.Q0)

Table 540: Invalid COMPLEX(16) Constants

Second constant missing.(1.23Q0,)

Hollerith constants not allowed.(1D1,2H12)

Neither constant is REAL(16); this is a valid
double-precision constant.

(1.7039E0,-1.7039D0)

See Also
• Complex Data Types
• General Rules for Complex Constants
• real-size compiler option

Building Applications for details on the format and range of COMPLEX(16) data

Logical Data Types

Logical data types can be specified as follows:

LOGICAL

LOGICAL([KIND=]n)

LOGICAL*n

Is an initialization expression that evaluates to kind 1, 2, 4, or 8.n

If a kind parameter is specified, the logical constant has the kind specified. If no kind parameter
is specified, the kind of the constant is default logical.

Examples

The following examples show how logical variables can be declared.

1778

44 Intel® Fortran Compiler User and Reference Guides

An entity-oriented example is:

LOGICAL, ALLOCATABLE :: flag1, flag2

LOGICAL (KIND = byte), SAVE :: doit, dont

An attribute-oriented example is:

LOGICAL flag1, flag2

LOGICAL (KIND = byte) doit, dont

ALLOCATABLE flag1, flag2

SAVE doit, dont

Logical Constants

A logical constant represents only the logical values true or false, and takes one of the following
forms:

.TRUE.[_k]

.FALSE.[_k]

Is the optional kind parameter: 1 for LOGICAL(1), 2 for LOGICAL(2),
4 for LOGICAL(4), or 8 for LOGICAL(8). It must be preceded by an
underscore (_).

k

The numeric value of .TRUE. and .FALSE. can be -1 and 0 or 1 and 0 depending on compiler
option fpscomp [no]logicals. Logical data can take on integer data values. Logical data type
ranges correspond to their comparable integer data type ranges. For example, the LOGICAL(2)
range is the same as the INTEGER(2) range.

See Also
• Logical Data Types

Building Applications for details on integer data type ranges

Character Data Type

The character data type can be specified as follows:

CHARACTER

CHARACTER([LEN=] len)

CHARACTER(LEN= len, KIND= n)

CHARACTER(len, [KIND=] n)

1779

44

CHARACTER(KIND= n [, LEN= len])

CHARACTER* len [,]

Is an initialization expression that evaluates to kind 1.n

Is a string length (not a kind). For more information, see Declaration
Statements for Character Types.

len

If no kind type parameter is specified, the kind of the constant is default character.

On Windows systems, several Multi-Byte Character Set (MBCS) functions are available to
manipulate special non-English characters.

Character Constants

A character constant is a character string enclosed in delimiters (apostrophes or quotation
marks). It takes one of the following forms:

[k_]'[ch...]' [C]

[k_]"[ch...]" [C]

Is the optional kind parameter: 1 (the default). It must be followed by
an underscore (_). Note that in character constants, the kind must
precede the constant.

k

Is an ASCII character.ch

Is a C string specifier. C strings can be used to define strings with
nonprintable characters. For more information, see C Strings in
Character Constants.

C

Description

The value of a character constant is the string of characters between the delimiters. The value
does not include the delimiters, but does include all blanks or tabs within the delimiters.

If a character constant is delimited by apostrophes, use two consecutive apostrophes ('') to
place an apostrophe character in the character constant.

Similarly, if a character constant is delimited by quotation marks, use two consecutive quotation
marks ("") to place a quotation mark character in the character constant.

The length of the character constant is the number of characters between the delimiters, but
two consecutive delimiters are counted as one character.

The length of a character constant must be in the range of 0 to 7188. Each character occupies
one byte of memory.

1780

44 Intel® Fortran Compiler User and Reference Guides

If a character constant appears in a numeric context (such as an expression on the right side
of an arithmetic assignment statement), it is considered a Hollerith constant.

A zero-length character constant is represented by two consecutive apostrophes or quotation
marks.

Examples

Table 541: Valid Character Constants

"WHAT KIND TYPE? "

'TODAY''S DATE IS: '

"The average is: "

''

Table 542: Invalid Character Constants

No trailing apostrophe.'HEADINGS

Beginning delimiter does not match ending
delimiter.

'Map Number:"

See Also
• Character Data Type
• Declaration Statements for Character Types

C Strings in Character Constants

String values in the C language are terminated with null characters (CHAR(0)) and can contain
nonprintable characters (such as backspace).

Nonprintable characters are specified by escape sequences. An escape sequence is denoted by
using the backslash (\) as an escape character, followed by a single character indicating the
nonprintable character desired.

This type of string is specified by using a standard string constant followed by the character C.
The standard string constant is then interpreted as a C-language constant. Backslashes are
treated as escapes, and a null character is automatically appended to the end of the string
(even if the string already ends in a null character).

The following table shows the escape sequences that are allowed in character constants:

1781

44

Table 543: C-Style Escape Sequences

RepresentsEscape Sequence

A bell\a or \A

A backspace\b or \B

A formfeed\f or \F

A new line\n or \N

A carriage return\r or \R

A horizontal tab\t or \T

A vertical tab\v or \V

A hexadecimal bit pattern\xhh or \Xhh

An octal bit pattern\ooo

A null character\0

A backslash\\

If a string contains an escape sequence that isn't in this table, the backslash is ignored.

A C string must also be a valid Fortran string. If the string is delimited by apostrophes,
apostrophes in the string itself must be represented by two consecutive apostrophes ('').

For example, the escape sequence \'string causes a compiler error because Fortran interprets
the apostrophe as the end of the string. The correct form is \''string.

If the string is delimited by quotation marks, quotation marks in the string itself must be
represented by two consecutive quotation marks ("").

The sequences \ooo and \xhh allow any ASCII character to be given as a one- to three-digit
octal or a one- to two-digit hexadecimal character code. Each octal digit must be in the range
0 to 7, and each hexadecimal digit must be in the range 0 to F. For example, the C strings
'\010'C and '\x08'C both represent a backspace character followed by a null character.

The C string '\\abcd'C is equivalent to the string '\abcd' with a null character appended.
The string ''C represents the ASCII null character.

1782

44 Intel® Fortran Compiler User and Reference Guides

Character Substrings

A character substring is a contiguous segment of a character string. It takes one of the following
forms:

v ([e1]:[e2])

a (s [, s] . . .) ([e1]:[e2])

Is a character scalar constant, or the name of a character scalar variable
or character structure component.

v

Is a scalar integer (or other numeric) expression specifying the leftmost
character position of the substring; the starting point.

e1

Is a scalar integer (or other numeric) expression specifying the
rightmost character position of the substring; the ending point.

e2

Is the name of a character array.a

Is a subscript expression.s

Both e1 and e2 must be within the range 1,2, ..., len, where len is the length of the parent
character string. If e1 exceeds e2, the substring has length zero.

Description

Character positions within the parent character string are numbered from left to right, beginning
at 1.

If the value of the numeric expression e1 or e2 is not of type integer, it is converted to integer
before use (any fractional parts are truncated).

If e1 is omitted, the default is 1. If e2 is omitted, the default is len. For example, NAMES(1,3)(:7)
specifies the substring starting with the first character position and ending with the seventh
character position of the character array element NAMES(1,3).

Examples

Consider the following example:

CHARACTER*8 C, LABEL

LABEL = 'XVERSUSY'

C = LABEL(2:7)

LABEL(2:7) specifies the substring starting with the second character position and ending with the
seventh character position of the character variable assigned to LABEL, so C has the value 'VERSUS'.

1783

44

Consider the following example:

TYPE ORGANIZATION

INTEGER ID

CHARACTER*35 NAME

END TYPE ORGANIZATION

TYPE(ORGANIZATION) DIRECTOR

CHARACTER*25 BRANCH, STATE(50)

The following are valid substrings based on this example:

BRANCH(3:15) ! parent string is a scalar variable

STATE(20) (1:3) ! parent string is an array element

DIRECTOR%NAME(:) ! parent string is a structure component

Consider the following example:

CHARACTER(*), PARAMETER :: MY_BRANCH = "CHAPTER 204"

CHARACTER(3) BRANCH_CHAP

BRANCH_CHAP = MY_BRANCH(9:11) ! parent string is a character constant

BRANCH_CHAP is a character string of length 3 that has the value '204'.

See Also
• Character Data Type
• Arrays
• Array Elements
• Structure Components

Derived Data Types

You can create derived data types from intrinsic data types or previously defined derived types.

A derived type is resolved into "ultimate" components that are either of intrinsic type or are
pointers.

The set of values for a specific derived type consists of all possible sequences of component
values permitted by the definition of that derived type. Structure constructors are used to
specify values of derived types.

1784

44 Intel® Fortran Compiler User and Reference Guides

Nonintrinsic assignment for derived-type entities must be defined by a subroutine with an
ASSIGNMENT interface. Any operation on derived-type entities must be defined by a function
with an OPERATOR interface. Arguments and function values can be of any intrinsic or derived
type.

See Also
• Data Types, Constants, and Variables
• Derived-Type Definition
• Default Initialization
• Structure Components
• Structure Constructors
• Derived-Type Definition
• Default Initialization
• Structure Components
• Structure Constructors
• Derived-Type Assignment Statements
• Defining Generic Operators
• Defining Generic Assignment
• Records

Derived-Type Definition

A derived-type definition specifies the name of a user-defined type and the types of its
components.

See Also
• Derived Data Types
• TYPE

Default Initialization

Default initialization occurs if initialization appears in a derived-type component definition. (This
is a Fortran 95 feature.)

The specified initialization of the component will apply even if the definition is PRIVATE.

Default initialization applies to dummy arguments with INTENT(OUT). It does not imply the
derived-type component has the SAVE attribute.

Explicit initialization in a type declaration statement overrides default initialization.

1785

44

To specify default initialization of an array component, use a constant expression that includes
one of the following:

• An array constructor

• A single scalar that becomes the value of each array element

Pointers can have an association status of associated, disassociated, or undefined. If no default
initialization status is specified, the status of the pointer is undefined. To specify disassociated
status for a pointer component, use =>NULL().

Examples

You do not have to specify initialization for each component of a derived type. For example:

TYPE REPORT

CHARACTER (LEN=20) REPORT_NAME

INTEGER DAY

CHARACTER (LEN=3) MONTH

INTEGER :: YEAR = 1995 ! Only component with default

END TYPE REPORT ! initialization

Consider the following:

TYPE (REPORT), PARAMETER :: NOV_REPORT = REPORT ("Sales", 15, "NOV", 1996)

In this case, the explicit initialization in the type declaration statement overrides the YEAR component
of NOV_REPORT.

The default initial value of a component can also be overridden by default initialization specified in
the type definition. For example:

TYPE MGR_REPORT

TYPE (REPORT) :: STATUS = NOV_REPORT

INTEGER NUM

END TYPE MGR_REPORT

TYPE (MGR_REPORT) STARTUP

In this case, the STATUS component of STARTUP gets its initial value from NOV_REPORT, overriding
the initialization for the YEAR component.

Structure Components

A reference to a component of a derived-type structure takes the following form:

1786

44 Intel® Fortran Compiler User and Reference Guides

parent [%component [(s-list)]] ... %component [(s-list)]

Is the name of a scalar or array of derived type. The percent sign (%)
is called a component selector.

parent

Is the name of a component of the immediately preceding parent or
component.

component

Is a list of one or more subscripts. If the list contains subscript triplets
or vector subscripts, the reference is to an array section.

s-list

Each subscript must be a scalar integer (or other numeric) expression
with a value that is within the bounds of its dimension.
The number of subscripts in any s-list must equal the rank of the
immediately preceding parent or component.

Description

Each parent or component (except the rightmost) must be of derived type.

The parent or one of the components can have nonzero rank (be an array). Any component to
the right of a parent or component of nonzero rank must not have the POINTER attribute.

The rank of the structure component is the rank of the part (parent or component) with nonzero
rank (if any); otherwise, the rank is zero. The type and type parameters (if any) of a structure
component are those of the rightmost part name.

The structure component must not be referenced or defined before the declaration of the parent
object.

If the parent object has the INTENT, TARGET, or PARAMETER attribute, the structure component
also has the attribute.

Examples

The following example shows a derived-type definition with two components:

TYPE EMPLOYEE

INTEGER ID

CHARACTER(LEN=40) NAME

END TYPE EMPLOYEE

The following shows how to declare CONTRACT to be of type EMPLOYEE:

TYPE(EMPLOYEE) :: CONTRACT

1787

44

Note that both examples started with the keyword TYPE. The first (initial) statement of a derived-type
definition is called a derived-type statement, while the statement that declares a derived-type object
is called a TYPE statement.

The following example shows how to reference component ID of parent structure CONTRACT:

CONTRACT%ID

The following example shows a derived type with a component that is a previously defined type:

TYPE DOT

REAL X, Y

END TYPE DOT

....

TYPE SCREEN

TYPE(DOT) C, D

END TYPE SCREEN

The following declares a variable of type SCREEN:

TYPE(SCREEN) M

Variable M has components M%C and M%D (both of type DOT); M%C has components M%C%X and
M%C%Y of type REAL.

The following example shows a derived type with a component that is an array:

TYPE CAR_INFO

INTEGER YEAR

CHARACTER(LEN=15), DIMENSION(10) :: MAKER

CHARACTER(LEN=10) MODEL, BODY_TYPE*8

REAL PRICE

END TYPE

...

TYPE(CAR_INFO) MY_CAR

Note that MODEL has a character length of 10, but BODY_TYPE has a character length of 8. You can
assign a value to a component of a structure; for example:

MY_CAR%YEAR = 1985

1788

44 Intel® Fortran Compiler User and Reference Guides

The following shows an array structure component:

MY_CAR%MAKER

In the preceding example, if a subscript list (or substring) was appended to MAKER, the reference
would not be to an array structure component, but to an array element or section.

Consider the following:

MY_CAR%MAKER(2) (4:10)

In this case, the component is substring 4 to 10 of the second element of array MAKER.

Consider the following:

TYPE CHARGE

INTEGER PARTS(40)

REAL LABOR

REAL MILEAGE

END TYPE CHARGE

TYPE(CHARGE) MONTH

TYPE(CHARGE) YEAR(12)

Some valid array references for this type follow:

MONTH%PARTS(I) ! An array element

MONTH%PARTS(I:K) ! An array section

YEAR(I)%PARTS ! An array structure component (a whole array)

YEAR(J)%PARTS(I) ! An array element

YEAR(J)%PARTS(I:K) ! An array section

YEAR(J:K)%PARTS(I) ! An array section

YEAR%PARTS(I) ! An array section

1789

44

The following example shows a derived type with a pointer component that is of the type being
defined:

TYPE NUMBER

INTEGER NUM

TYPE(NUMBER), POINTER :: START_NUM => NULL()

TYPE(NUMBER), POINTER :: NEXT_NUM => NULL()

END TYPE

A type such as this can be used to construct linked lists of objects of type NUMBER. Note that the
pointers are given the default initialization status of disassociated.

The following example shows a private type:

TYPE, PRIVATE :: SYMBOL

LOGICAL TEST

CHARACTER(LEN=50) EXPLANATION

END TYPE SYMBOL

This type is private to the module. The module can be used by another scoping unit, but type SYMBOL
is not available.

See Also
• Derived Data Types
• Array Elements
• Array Sections
• Modules and Module Procedures

Structure Constructors

A structure constructor lets you specify scalar values of a derived type. It takes the following
form:

d-name (expr-list)

Is the name of the derived type.d-name

Is a list of expressions specifying component values. The values must
agree in number and order with the components of the derived type.
If necessary, values are converted (according to the rules of
assignment), to agree with their corresponding components in type
and kind parameters.

expr-list

1790

44 Intel® Fortran Compiler User and Reference Guides

Description

A structure constructor must not appear before its derived type is defined.

If a component of the derived type is an array, the shape in the expression list must conform
to the shape of the component array.

If a component of the derived type is a pointer, the value in the expression list must evaluate
to an object that would be a valid target in a pointer assignment statement. (A constant is not
a valid target in a pointer assignment statement.)

If all the values in a structure constructor are constant expressions, the constructor is a
derived-type constant expression.

Examples

Consider the following derived-type definition:

TYPE EMPLOYEE

INTEGER ID

CHARACTER(LEN=40) NAME

END TYPE EMPLOYEE

This can be used to produce the following structure constructor:

EMPLOYEE(3472, "John Doe")

The following example shows a type with a component of derived type:

TYPE ITEM

REAL COST

CHARACTER(LEN=30) SUPPLIER

CHARACTER(LEN=20) ITEM_NAME

END TYPE ITEM

TYPE PRODUCE

REAL MARKUP

TYPE(ITEM) FRUIT

END TYPE PRODUCE

In this case, you must use an embedded structure constructor to specify the values of that component;
for example:

PRODUCE(.70, ITEM (.25, "Daniels", "apple"))

1791

44

See Also
• Derived Data Types
• Pointer Assignments

Binary, Octal, Hexadecimal, and Hollerith Constants

Binary, octal, hexadecimal, and Hollerith constants are nondecimal constants. They have no
intrinsic data type, but assume a numeric data type depending on their use.

Fortran 95/90 allows unsigned binary, octal, and hexadecimal constants to be used in DATA
statements; the constant must correspond to an integer scalar variable.

In Intel Fortran, binary, octal, hexadecimal, and Hollerith constants can appear wherever
numeric constants are allowed.

Binary Constants

A binary constant is an alternative way to represent a numeric constant. A binary constant
takes one of the following forms:

B'd[d...]'

B"d[d...]"

Is a binary (base 2) digit (0 or 1).d

You can specify up to 128 binary digits in a binary constant.

Examples

Table 544: Valid Binary Constants

B'0101110'

B"1"

Table 545: Invalid Binary Constants

The character 2 is invalid.B'0112'

No apostrophe after the B.B10011'

No B before the first quotation mark."1000001"

1792

44 Intel® Fortran Compiler User and Reference Guides

See Also
• Binary, Octal, Hexadecimal, and Hollerith Constants
• Alternative Syntax for Binary, Octal, and Hexadecimal Constants

Octal Constants

An octal constant is an alternative way to represent numeric constants. An octal constant takes
one of the following forms:

O'd[d...]'

O"d[d...]"

Is an octal (base 8) digit (0 through 7).d

You can specify up to 128 bits (43 octal digits) in octal constants.

Examples

Table 546: Valid Octal Constants

O'07737'

O"1"

Table 547: Invalid Octal Constants

The character 8 is invalid.O'7782'

No apostrophe after the O.O7772'

No O before the first quotation mark."0737"

See Also
• Binary, Octal, Hexadecimal, and Hollerith Constants
• Alternative Syntax for Binary, Octal, and Hexadecimal Constants

Hexadecimal Constants

A hexadecimal constant is an alternative way to represent numeric constants. A hexadecimal
constant takes one of the following forms:

Z'd[d...]'

Z"d[d...]"

1793

44

Is a hexadecimal (base 16) digit (0 through 9, or an uppercase or
lowercase letter in the range of A to F).

d

You can specify up to 128 bits (32 hexadecimal digits) in hexadecimal constants.

Examples

Table 548: Valid Hexadecimal Constants

Z'AF9730'

Z"FFABC"

Z'84'

Table 549: Invalid Hexadecimal Constants

Decimal not allowed.Z'999.'

No quotation mark after the Z.ZF9"

See Also
• Binary, Octal, Hexadecimal, and Hollerith Constants
• Alternative Syntax for Binary, Octal, and Hexadecimal Constants

Hollerith Constants

A Hollerith constant is a string of printable ASCII characters preceded by the letter H. Before
the H, there must be an unsigned, nonzero default integer constant stating the number of
characters in the string (including blanks and tabs).

Hollerith constants are strings of 1 to 2000 characters. They are stored as byte strings, one
character per byte.

Examples

Table 550: Valid Hollerith Constants

16HTODAY'S DATE IS:

1HB

4H ABC

1794

44 Intel® Fortran Compiler User and Reference Guides

Table 551: Invalid Hollerith Constants

Wrong number of characters.3HABCD

Hollerith constants must contain at least one
character.

0H

Determining the Data Type of Nondecimal Constants

Binary, octal, hexadecimal, and Hollerith constants have no intrinsic data type. In most cases,
the default integer data type is assumed.

However, these constants can assume a numeric data type depending on their use. When the
constant is used with a binary operator (including the assignment operator), the data type of
the constant is the data type of the other operand. For example:

Length of Constant (in
bytes)

Data Type of ConstantStatement

INTEGER(2) ICOUNT

INTEGER(4) JCOUNT

INTEGER(4) N

REAL(8) DOUBLE

REAL(4) RAFFIA, RALPHA

4REAL(4)RAFFIA =
B'1001100111111010011'

4REAL(4)RAFFIA = Z'99AF2'

4REAL(4)RALPHA = 4HABCD

8REAL(8)DOUBLE =
B'1111111111100110011010'

8REAL(8)DOUBLE = Z'FFF99A'

8REAL(8)DOUBLE = 8HABCDEFGH

1795

44

Length of Constant (in
bytes)

Data Type of ConstantStatement

2INTEGER(2)JCOUNT = ICOUNT +
B'011101110111'

2INTEGER(2)JCOUNT = ICOUNT +
O'777'

2INTEGER(2)JCOUNT = ICOUNT + 2HXY

4INTEGER(4)IF (N .EQ. B'1010100')
GO TO 10

4INTEGER(4)IF (N .EQ. O'123') GO
TO 10

4INTEGER(4)IF (N. EQ. 1HZ) GO TO
10

When a specific data type (generally integer) is required, that type is assumed for the constant.
For example:

Length of Constant (in
bytes)

Data Type of ConstantStatement

4INTEGER(4)Y(IX) = Y(O'15') + 3.

4INTEGER(4)Y(IX) = Y(1HA) + 3.

When a nondecimal constant is used as an actual argument, the following occurs:

• For binary, octal, and hexadecimal constants, if the value fits in a default integer, that integer
kind is used. Otherwise, the smallest integer kind large enough to hold the value is used.

• For Hollerith constants, a numeric data type of sufficient size to hold the length of the
constant is assumed.

For example:

Length of Constant (in
bytes)

Data Type of ConstantStatement

4INTEGER(4)CALL APAC(Z'34BC2')

1796

44 Intel® Fortran Compiler User and Reference Guides

Length of Constant (in
bytes)

Data Type of ConstantStatement

9REAL(16)CALL APAC(9HABCDEFGHI)

When a binary, octal, or hexadecimal constant is used in any other context, the default integer
data type is assumed. In the following examples, default integer is INTEGER(4):

Length of Constant (in
bytes)

Data Type of ConstantStatement

4INTEGER(4)IF (Z'AF77') 1,2,3

4INTEGER(4)IF (2HAB) 1,2,3

4INTEGER(4)I = O'7777' - Z'A39' 1

4INTEGER(4)I = 1HC - 1HA

4INTEGER(4)J = .NOT. O'73777'

4INTEGER(4)J = .NOT. 1HB

1 When two typeless constants are used in an operation, they both take default integer type.

When nondecimal constants are not the same length as the length implied by a data type, the
following occurs:

• Binary, octal, and hexadecimal constants

These constants can specify up to 16 bytes of data. When the length of the constant is less
than the length implied by the data type, the leftmost digits have a value of zero.

When the length of the constant is greater than the length implied by the data type, the
constant is truncated on the left. An error results if any nonzero digits are truncated.

The Data Type Storage Requirements table lists the number of bytes that each data type
requires.

• Hollerith constants

When the length of the constant is less than the length implied by the data type, blanks are
appended to the constant on the right.

When the length of the constant is greater than the length implied by the data type, the
constant is truncated on the right. If any characters other than blank characters are truncated,
a warning occurs.

1797

44

Each Hollerith character occupies one byte of memory.

Variables

A variable is a data object whose value can be changed at any point in a program. A variable
can be any of the following:

• A scalar

A scalar is a single object that has a single value; it can be of any intrinsic or derived
(user-defined) type.

• An array

An array is a collection of scalar elements of any intrinsic or derived type. All elements must
have the same type and kind parameters.

• A subobject designator

A subobject is part of an object. The following are subobjects:

An array element

An array section

A structure component

A character substring

For example, B(3) is a subobject (array element) designator for array B. A subobject cannot
be a variable if its parent object is a constant.

The name of a variable is associated with a single storage location.

Variables are classified by data type, as constants are. The data type of a variable indicates
the type of data it contains, including its precision, and implies its storage requirements. When
data of any type is assigned to a variable, it is converted to the data type of the variable (if
necessary).

A variable is defined when you give it a value. A variable can be defined before program
execution by a DATA statement or a type declaration statement. During program execution,
variables can be defined or redefined in assignment statements and input statements, or
undefined (for example, if an I/O error occurs). When a variable is undefined, its value is
unpredictable.

When a variable becomes undefined, all variables associated by storage association also become
undefined.

1798

44 Intel® Fortran Compiler User and Reference Guides

An object with subobjects, such as an array, can only be defined when all of its subobjects are
defined. Conversely, when at least one of its subobjects are undefined, the object itself, such
as an array or derived type, is undefined.

This section also discusses the Data Types of Scalar Variables and Arrays.

Data Types of Scalar Variables

The data type of a scalar variable can be explicitly declared in a type declaration statement. If
no type is declared, the variable has an implicit data type based on predefined typing rules or
definitions in an IMPLICIT statement.

An explicit declaration of data type takes precedence over any implicit type. Implicit type
specified in an IMPLICIT statement takes precedence over predefined typing rules.

Specification of Data Type

Type declaration statements explicitly specify the data type of scalar variables. For example,
the following statements associate VAR1 with an 8-byte complex storage location, and VAR2
with an 8-byte double-precision storage location:
COMPLEX(8) VAR1

REAL(8) VAR2

NOTE. If no kind parameter is specified for a data type, the default kind is used. The
default kind can be affected by compiler options that affect the size of variables.

You can explicitly specify the data type of a scalar variable only once.

If no explicit data type specification appears, any variable with a name that begins with the
letter in the range specified in the IMPLICIT statement becomes the data type of the variable.

Character type declaration statements specify that given variables represent character values
with the length specified. For example, the following statements associate the variable names
INLINE, NAME, and NUMBER with storage locations containing character data of lengths 72,
12, and 9, respectively:
CHARACTER*72 INLINE

CHARACTER NAME*12, NUMBER*9

In single subprograms, assumed-length character arguments can be used to process character
strings with different lengths. The assumed-length character argument has its length specified
with an asterisk, for example:
CHARACTER*(*) CHARDUMMY

The argument CHARDUMMY assumes the length of the actual argument.

1799

44

See Also
• Data Types of Scalar Variables
• Type declaration statements
• Assumed-length character arguments
• IMPLICIT statement
• Declaration Statements for Character Types
Implicit Typing Rules

By default, all scalar variables with names beginning with I, J, K, L, M, or N are assumed to be
default integer variables. Scalar variables with names beginning with any other letter are
assumed to be default real variables. For example:

Integer VariablesReal Variables

JCOUNTALPHA

ITEM_1BETA

NTOTALTOTAL_NUM

Names beginning with a dollar sign ($) are implicitly INTEGER.

You can override the default data type implied in a name by specifying data type in either an
IMPLICIT statement or a type declaration statement.

See Also
• Data Types of Scalar Variables
• Type declaration statements
• IMPLICIT statement

Arrays

An array is a set of scalar elements that have the same type and kind parameters. Any object
that is declared with an array specification is an array. Arrays can be declared by using a type
declaration statement, or by using a DIMENSION, COMMON, ALLOCATABLE, POINTER, or
TARGET statement.

An array can be referenced by element (using subscripts), by section (using a section subscript
list), or as a whole. A subscript list (appended to the array name) indicates which array element
or array section is being referenced.

A section subscript list consists of subscripts, subscript triplets, or vector subscripts. At least
one subscript in the list must be a subscript triplet or vector subscript.

1800

44 Intel® Fortran Compiler User and Reference Guides

When an array name without any subscripts appears in an intrinsic operation (for example,
addition), the operation applies to the whole array (all elements in the array).

An array has the following properties:

• Data type

An array can have any intrinsic or derived type. The data type of an array (like any other
variable) is specified in a type declaration statement or implied by the first letter of its name.
All elements of the array have the same type and kind parameters. If a value assigned to
an individual array element is not the same as the type of the array, it is converted to the
array's type.

• Rank

The rank of an array is the number of dimensions in the array. An array can have up to
seven dimensions. A rank-one array represents a column of data (a vector), a rank-two
array represents a table of data arranged in columns and rows (a matrix), a rank-three
array represents a table of data on multiple pages (or planes), and so forth.

• Bounds

Arrays have a lower and upper bound in each dimension. These bounds determine the range
of values that can be used as subscripts for the dimension. The value of either bound can
be positive, negative, or zero.

The bounds of a dimension are defined in an array specification.

• Size

The size of an array is the total number of elements in the array (the product of the array's
extents).

The extent is the total number of elements in a particular dimension. It is determined as
follows: upper bound - lower bound + 1. If the value of any of an array's extents is zero,
the array has a size of zero.

• Shape

The shape of an array is determined by its rank and extents, and can be represented as a
rank-one array (vector) where each element is the extent of the corresponding dimension.

Two arrays with the same shape are said to be conformable. A scalar is conformable to an
array of any shape.

The name and rank of an array must be specified when the array is declared. The extent of
each dimension can be constant, but does not need to be. The extents can vary during program
execution if the array is a dummy argument array, an automatic array, an array pointer, or an
allocatable array.

1801

44

A whole array is referenced by the array name. Individual elements in a named array are
referenced by a scalar subscript or list of scalar subscripts (if there is more than one dimension).
A section of a named array is referenced by a section subscript.

This section also discusses:

• Whole Arrays

• Array Elements

• Array Sections

• Array Constructors

Examples

The following are examples of valid array declarations:

DIMENSION A(10, 2, 3) ! DIMENSION statement

ALLOCATABLE B(:, :) ! ALLOCATABLE statement

POINTER C(:, :, :) ! POINTER statement

REAL, DIMENSION (2, 5) :: D ! Type declaration with

DIMENSION attribute

Consider the following array declaration:

INTEGER L(2:11,3)

The properties of array L are as follows:

INTEGERData type:

2 (two dimensions)Rank:

First dimension: 2 to 11Bounds:

Second dimension: 1 to 3

30; the product of the extents: 10 x 3Size:

(/10,3/) (or 10 by 3); a vector of the extents
10 and 3

Shape:

1802

44 Intel® Fortran Compiler User and Reference Guides

The following example shows other valid ways to declare this array:

DIMENSION L(2:11,3)

INTEGER, DIMENSION(2:11,3) :: L

COMMON L(2:11,3)

The following example shows references to array elements, array sections, and a whole array:

REAL B(10) ! Declares a rank-one array with 10 elements

INTEGER C(5,8) ! Declares a rank-two array with 5 elements in

! dimension one and 8 elements in dimension two

...

B(3) = 5.0 ! Reference to an array element

B(2:5) = 1.0 ! Reference to an array section consisting of
! elements: B(2), B(3), B(4), B(5)

...

C(4,8) = I ! Reference to an array element

C(1:3,3:4) = J ! Reference to an array section consisting of
! elements: C(1,3) C(1,4)

! C(2,3) C(2,4)

! C(3,3) C(3,4)/

B = 99 ! Reference to a whole array consisting of

! elements: B(1), B(2), B(3), B(4), B(5),

! B(6), B(7), B(8), B(9), and B(10)

Whole Arrays

A whole array is a named array; it is either a named constant or a variable. It is referenced
by using the array name (without any subscripts).

If a whole array appears in a nonexecutable statement, the statement applies to the entire
array. For example:
INTEGER, DIMENSION(2:11,3) :: L ! Specifies the type and

! dimensions of array L

1803

44

If a whole array appears in an executable statement, the statement applies to all of the elements
in the array. For example:
L = 10 ! The value 10 is assigned to all the

! elements in array L

WRITE *, L ! Prints all the elements in array L

Array Elements

An array element is one of the scalar data items that make up an array. A subscript list
(appended to the array or array component) determines which element is being referred to. A
reference to an array element takes the following form:

array(subscript-list)

Is the name of the array.array

Is a list of one or more subscripts separated by commas. The number
of subscripts must equal the rank of the array.

subscript-list

Each subscript must be a scalar integer (or other numeric) expression
with a value that is within the bounds of its dimension.

Description

Each array element inherits the type, kind type parameter, and certain attributes (INTENT,
PARAMETER, and TARGET) of the parent array. An array element cannot inherit the POINTER
attribute.

If an array element is of type character, it can be followed by a substring range in parentheses;
for example:

ARRAY_D(1,2) (1:3) ! Elements are substrings of length 3

However, by convention, such an object is considered to be a substring rather than an array
element.

The following are some valid array element references for an array declared as REAL B(10,20):
B(1,3), B(10,10), and B(5,8).

1804

44 Intel® Fortran Compiler User and Reference Guides

You can use functions and array elements as subscripts. For example:

REAL A(3, 3)

REAL B(3, 3), C(89), R

B(2, 2) = 4.5 ! Assigns the value 4.5 to element B(2, 2)

R = 7.0

C(INT(R)*2 + 1) = 2.0 ! Element 15 of C = 2.0

A(1,2) = B(INT(C(15)), INT(SQRT(R))) ! Element A(1,2) = element B(2,2) = 4.5

For information on forms for array specifications, see

Declaration Statements for Arrays.

Array Element Order

The elements of an array form a sequence known as array element order. The position of an
element in this sequence is its subscript order value.

The elements of an array are stored as a linear sequence of values. A one-dimensional array
is stored with its first element in the first storage location and its last element in the last storage
location of the sequence. A multidimensional array is stored so that the leftmost subscripts
vary most rapidly. This is called the order of subscript progression.

1805

44

The following figure shows array storage in one, two, and three dimensions:

Figure 27: Array Storage

1806

44 Intel® Fortran Compiler User and Reference Guides

For example, in two-dimensional array BAN, element BAN(1,2) has a subscript order value of
4; in three-dimensional array BOS, element BOS(1,1,1) has a subscript order value of 1.

In an array section, the subscript order of the elements is their order within the section itself.
For example, if an array is declared as B(20), the section B(4:19:4) consists of elements B(4),
B(8), B(12), and B(16). The subscript order value of B(4) in the array section is 1; the subscript
order value of B(12) in the section is 3.

See Also
• Arrays
• Array association
• Character Constants
• Structure Components
• Storage Association
Array Sections

An array section is a portion of an array that is an array itself. It is an array subobject. A
section subscript list (appended to the array or array component) determines which portion is
being referred to. A reference to an array section takes the following form:

array(sect-subscript-list)

Is the name of the array.array

Is a list of one or more section subscripts (subscripts, subscript triplets,
or vector subscripts) indicating a set of elements along a particular
dimension.

sect-subscript-list

At least one of the items in the section subscript list must be a subscript
triplet or vector subscript. A subscript triplet specifies array elements
in increasing or decreasing order at a given stride. A vector subscript
specifies elements in any order.
Each subscript and subscript triplet must be a scalar integer (or other
numeric) expression. Each vector subscript must be a rank-one integer
expression.

Description

If no section subscript list is specified, the rank and shape of the array section is the same as
the parent array.

Otherwise, the rank of the array section is the number of vector subscripts and subscript triplets
that appear in the list. Its shape is a rank-one array where each element is the number of
integer values in the sequence indicated by the corresponding subscript triplet or vector
subscript.

1807

44

If any of these sequences is empty, the array section has a size of zero. The subscript order
of the elements of an array section is that of the array object that the array section represents.

Each array section inherits the type, kind type parameter, and certain attributes (INTENT,
PARAMETER, and TARGET) of the parent array. An array section cannot inherit the POINTER
attribute.

If an array (or array component) is of type character, it can be followed by a substring range
in parentheses. Consider the following declaration:

CHARACTER(LEN=15) C(10,10)

In this case, an array section referenced as C(:,:) (1:3) is an array of shape (10,10), whose
elements are substrings of length 3 of the corresponding elements of C.

The following shows valid references to array sections. Note that the syntax (/.../) denotes an
array constructor.

REAL, DIMENSION(20) :: B

...

PRINT *, B(2:20:5) ! The section consists of elements

! B(2), B(7), B(12), and B(17)

K = (/3, 1, 4/)

B(K) = 0.0 ! Section B(K) is a rank-one array with shape (3) and

! size 3. (0.0 is assigned to B(1), B(3), and B(4).)

See Also
• Arrays
• Subscript Triplets
• Vector Subscripts
• INTENT
• PARAMETER
• TARGET
• Array constructors
• Character Substrings
• Structure components

1808

44 Intel® Fortran Compiler User and Reference Guides

Subscript Triplets

A subscript triplet is a set of three values representing the lower bound of the array section,
the upper bound of the array section, and the increment (stride) between them. It takes the
following form:

[first-bound] : [last-bound] [:stride]

Is a scalar integer (or other numeric) expression representing the first
value in the subscript sequence. If omitted, the declared lower bound
of the dimension is used.

first-bound

Is a scalar integer (or other numeric) expression representing the last
value in the subscript sequence. If omitted, the declared upper bound
of the dimension is used.

last-bound

When indicating sections of an assumed-size array, this subscript must
be specified.

Is a scalar integer (or other numeric) expression representing the
increment between successive subscripts in the sequence. It must have
a nonzero value. If it is omitted, it is assumed to be 1.

stride

The stride has the following effects:

• If the stride is positive, the subscript range starts with the first subscript and is incremented
by the value of the stride, until the largest value less than or equal to the second subscript
is attained.

For example, if an array has been declared as B(6,3,2), the array section specified as
B(2:4,1:2,2) is a rank-two array with shape (3,2) and size 6. It consists of the following six
elements:

B(2,1,2) B(2,2,2)

B(3,1,2) B(3,2,2)

B(4,1,2) B(4,2,2)

If the first subscript is greater than the second subscript, the range is empty.

• If the stride is negative, the subscript range starts with the value of the first subscript and
is decremented by the absolute value of the stride, until the smallest value greater than or
equal to the second subscript is attained.

For example, if an array has been declared as A(15), the array section specified as A(10:3:-2)
is a rank-one array with shape (4) and size 4. It consists of the following four elements:

A(10)

A(8)

A(6)

A(4)

1809

44

If the second subscript is greater than the first subscript, the range is empty.

If a range specified by the stride is empty, the array section has a size of zero.

A subscript in a subscript triplet need not be within the declared bounds for that dimension if
all values used to select the array elements are within the declared bounds. For example, if an
array has been declared as A(15), the array section specified as A(4:16:10) is valid. The section
is a rank-one array with shape (2) and size 2. It consists of elements A(4) and A(14).

If the subscript triplet does not specify bounds or stride, but only a colon (:), the entire declared
range for the dimension is used.

If you leave out all subscripts, the section defaults to the entire extent in that dimension. For
example:
REAL A(10)

A(1:5:2) = 3.0 ! Sets elements A(1), A(3), A(5) to 3.0

A(:5:2) = 3.0 ! Same as the previous statement

! because the lower bound defaults to 1

A(2::3) = 3.0 ! Sets elements A(2), A(5), A(8) to 3.0

! The upper bound defaults to 10

A(7:9) = 3.0 ! Sets elements A(7), A(8), A(9) to 3.0

! The stride defaults to 1

A(:) = 3.0 ! Same as A = 3.0; sets all elements of

! A to 3.0

See Also
• Array Sections
• Array Sections
Vector Subscripts

A vector subscript is a one-dimensional (rank one) array of integer values (within the declared
bounds for the dimension) that selects a section of a whole (parent) array. The elements in the
section do not have to be in order and the section can contain duplicate values.

For example, A is a rank-two array of shape (4,6). B and C are rank-one arrays of shape (2)
and (3), respectively, with the following values:
B = (/1,4/) ! Syntax (/.../) denotes an array constructor

C = (/2,1,1/) ! This constructor produces a many-one array section

1810

44 Intel® Fortran Compiler User and Reference Guides

Array section A(3,B) consists of elements A(3,1) and A(3,4). Array section A(C,1) consists of
elements A(2,1), A(1,1), and A(1,1). Array section A(B,C) consists of the following elements:

A(1,2) A(1,1) A(1,1)

A(4,2) A(4,1) A(4,1)

An array section with a vector subscript that has two or more elements with the same value is
called a many-one array section. For example:

REAL A(3, 3), B(4)

INTEGER K(4)

! Vector K has repeated values

K = (/3, 1, 1, 2/)

! Sets all elements of A to 5.0

A = 5.0

B = A(3, K)

The array section A(3,K) consists of the elements:
A(3, 3) A(3, 1) A(3, 1) A(3, 2)

A many-one section must not appear on the left of the equal sign in an assignment statement,
or as an input item in a READ statement.

The following assignments to C also show examples of vector subscripts:
INTEGER A(2), B(2), C(2)

...

B = (/1,2/)

C(B) = A(B)

C = A((/1,2/))

An array section with a vector subscript must not be any of the following:

• An internal file

• An actual argument associated with a dummy array that is defined or redefined (if the
INTENT attribute is specified, it must be INTENT(IN))

• The target in a pointer assignment statement

If the sequence specified by the vector subscript is empty, the array section has a size of zero.

1811

44

See Also
• Array Sections
• Array sections
• Array constructors
Array Constructors

An array constructor can be used to create and assign values to rank-one arrays (and array
constants). An array constructor takes the following form:

(/ac-value-list/)

Is a list of one or more expressions or implied-DO loops. Each ac-value
must have the same type and kind parameters, and be separated by
commas.

ac-value-list

An implied-DO loop in an array constructor takes the following form:

(ac-value-list, do-variable = expr1, expr2 [,expr3])

Is the name of a scalar integer variable. Its scope is that of the
implied-DO loop.

do-variable

Is a scalar integer expression. The expr1 and expr2 specify a range of
values for the loop; expr3 specifies the stride. The expr3 must be a
nonzero value; if it is omitted, it is assumed to be 1.

expr

Description

The array constructed has the same type as the ac-value-list expressions.

If the sequence of values specified by the array constructor is empty (an empty array expression
or the implied-DO loop produces no values), the rank-one array has a size of zero.

An ac-value is interpreted as follows:

ResultForm of ac-value

Its value is an element of the new array.A scalar expression

The values of the elements in the expression
(in array element order) are the
corresponding sequence of elements in the
new array.

An array expression

1812

44 Intel® Fortran Compiler User and Reference Guides

ResultForm of ac-value

It is expanded to form a list of array elements
under control of the DO variable (like a DO
construct).

An implied-DO loop

The following shows the three forms of an ac-value:

C1 = (/4,8,7,6/) ! A scalar expression

C2 = (/B(I, 1:5), B(I:J, 7:9)/) ! An array expression

C3 = (/(I, I=1, 4)/) ! An implied-DO loop

You can also mix these forms, for example:

C4 = (/4, A(1:5), (I, I=1, 4), 7/)

If every expression in an array constructor is a constant expression, the array constructor is a
constant expression.

If the expressions are of type character, Fortran 95/90 requires each expression to have the
same character length.

However, Intel Fortran allows the character expressions to be of different character lengths.
The length of the resultant character array is the maximum of the lengths of the individual
character expressions. For example:

print *,len ((/'a','ab','abc','d'/))

print *,'++'//(/'a','ab','abc','d'/)//'--'

This causes the following to be displayed:

3

++a --++ab --++abc--++d --

If an implied-DO loop is contained within another implied-DO loop (nested), they cannot have
the same DO variable (do-variable).

To define arrays of more than one dimension, use the RESHAPE intrinsic function.

The following are alternative forms for array constructors:

1813

44

• Square brackets (instead of parentheses and slashes) to enclose array constructors; for
example, the following two array constructors are equivalent:

INTEGER C(4)

C = (/4,8,7,6/)

C = [4,8,7,6]

• A colon-separated triplet (instead of an implied-DO loop) to specify a range of values and
a stride; for example, the following two array constructors are equivalent:

INTEGER D(3)

D = (/1:5:2/) ! Triplet form

D = (/(I, I=1, 5, 2)/) ! implied-DO loop form

Examples

The following example shows an array constructor using an implied-DO loop:

INTEGER ARRAY_C(10)

ARRAY_C = (/(I, I=30, 48, 2)/)

The values of ARRAY_C are the even numbers 30 through 48.

Implied-DO expressions and values can be mixed in the value list of an array constructor. For example:

INTEGER A(10)

A = (/1, 0, (I, I = -1, -6, -1), -7, -8 /)

!Mixed values and implied-DO in value list.

This example sets the elements of A to the values, in order, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8.

The following example shows an array constructor of derived type that uses a structure constructor:

TYPE EMPLOYEE

INTEGER ID

CHARACTER(LEN=30) NAME

END TYPE EMPLOYEE

TYPE(EMPLOYEE) CC_4T(4)

CC_4T = (/EMPLOYEE(2732,"JONES"), EMPLOYEE(0217,"LEE"), &

EMPLOYEE(1889,"RYAN"), EMPLOYEE(4339,"EMERSON")/)

1814

44 Intel® Fortran Compiler User and Reference Guides

The following example shows how the RESHAPE intrinsic function can be used to create a
multidimensional array:

E = (/2.3, 4.7, 6.6/)

D = RESHAPE(SOURCE = (/3.5, (/2.0, 1.0/), E/), SHAPE = (/2,3/))

D is a rank-two array with shape (2,3) containing the following elements:

3.5 1.0 4.7

2.0 2.3 6.6

The following shows another example:

INTEGER B(2,3), C(8)

! Assign values to a (2,3) array.

B = RESHAPE((/1, 2, 3, 4, 5, 6/),(/2,3/))

! Convert B to a vector before assigning values to

! vector C.

C = (/ 0, RESHAPE(B,(/6/)), 7 /)

See Also
• Arrays
• DO construct
• Subscript triplets
• Derived types
• Structure constructors
• Array Elements
• Array Assignment Statements
• Declaration Statements for Arrays

1815

44

45Expressions and Assignment
Statements

This section contains information on expressions and assignment statements.

Expressions

An expression represents either a data reference or a computation, and is formed from operators,
operands, and parentheses. The result of an expression is either a scalar value or an array of scalar
values.

If the value of an expression is of intrinsic type, it has a kind type parameter. (If the value is of
intrinsic type CHARACTER, it also has a length parameter.) If the value of an expression is of derived
type, it has no kind type parameter.

An operand is a scalar or array. An operator can be either intrinsic or defined. An intrinsic operator
is known to the compiler and is always available to any program unit. A defined operator is described
explicitly by a user in a function subprogram and is available to each program unit that uses the
subprogram.

The simplest form of an expression (a primary) can be any of the following:

• A constant; for example, 4.2

• A subobject of a constant; for example, 'LMNOP' (2:4)

• A variable; for example, VAR_1

• A structure constructor; for example, EMPLOYEE(3472, "JOHN DOE")

• An array constructor; for example, (/12.0,16.0/)

• A function reference; for example, COS(X)

• Another expression in parentheses; for example, (I+5)

Any variable or function reference used as an operand in an expression must be defined at the time
the reference is executed. If the operand is a pointer, it must be associated with a target object that
is defined. An integer operand must be defined with an integer value rather than a statement label
value. All of the characters in a character data object reference must be defined.

When a reference to an array or an array section is made, all of the selected elements must be
defined. When a structure is referenced, all of the components must be defined.

1817

In an expression that has intrinsic operators with an array as an operand, the operation is
performed on each element of the array. In expressions with more than one array operand,
the arrays must be conformable (they must have the same shape). The operation is applied to
corresponding elements of the arrays, and the result is an array of the same shape (the same
rank and extents) as the operands.

In an expression that has intrinsic operators with a pointer as an operand, the operation is
performed on the value of the target associated with the pointer.

For defined operators, operations on arrays and pointers are determined by the procedure
defining the operation.

A scalar is conformable with any array. If one operand of an expression is an array and another
operand is a scalar, it is as if the value of the scalar were replicated to form an array of the
same shape as the array operand. The result is an array of the same shape as the array operand.

The following sections describe numeric, character, relational, and logical expressions; defined
operations; a summary of operator precedence; and initialization and specification expressions.

Numeric Expressions

Numeric expressions express numeric computations, and are formed with numeric operands
and numeric operators. The evaluation of a numeric operation yields a single numeric value.

The term numeric includes logical data, because logical data is treated as integer data when
used in a numeric context. The default for .TRUE. is -1; .FALSE. is 0. Note that the default can
change if compiler option fpscomp logicals is used.

Numeric operators specify computations to be performed on the values of numeric operands.
The result is a scalar numeric value or an array whose elements are scalar numeric values. The
following are numeric operators:

FunctionOperator

Exponentiation**

Multiplication*

Division/

Addition or unary plus (identity)+

Subtraction or unary minus (negation)-

1818

45 Intel® Fortran Compiler User and Reference Guides

Unary operators operate on a single operand. Binary operators operate on a pair of operands.
The plus and minus operators can be unary or binary. When they are unary operators, the plus
or minus operators precede a single operand and denote a positive (identity) or negative
(negation) value, respectively. The exponentiation, multiplication, and division operators are
binary operators.

Valid numeric operations must have results that are defined by the arithmetic used by the
processor. For example, raising a negative-valued base to a real power is invalid.

Numeric expressions are evaluated in an order determined by a precedence associated with
each operator, as follows (see also Summary of Operator Precedence):

PrecedenceOperator

Highest**

.* and /

.Unary + and -

LowestBinary + and -

Operators with equal precedence are evaluated in left-to-right order. However, exponentiation
is evaluated from right to left. For example, A**B**C is evaluated as A**(B**C). B**C is
evaluated first, then A is raised to the resulting power.

Normally, two operators cannot appear together. However, Intel® Fortran allows two consecutive
operators if the second operator is a plus or minus.

Examples

In the following example, the exponentiation operator is evaluated first because it takes precedence
over the multiplication operator:

A**B*C is evaluated as (A**B)*C

Ordinarily, the exponentiation operator would be evaluated first in the following example. However,
because Intel Fortran allows the combination of the exponentiation and minus operators, the
exponentiation operator is not evaluated until the minus operator is evaluated:

A**-B*C is evaluated as A**(-(B*C))

Note that the multiplication operator is evaluated first, since it takes precedence over the minus
operator.

1819

45

When consecutive operators are used with constants, the unary plus or minus before the constant
is treated the same as any other operator. This can produce unexpected results. In the following
example, the multiplication operator is evaluated first, since it takes precedence over the minus
operator:

X/-15.0*Y is evaluated as X/-(15.0*Y)

Using Parentheses in Numeric Expressions

You can use parentheses to force a particular order of evaluation. When part of an expression
is enclosed in parentheses, that part is evaluated first. The resulting value is used in the
evaluation of the remainder of the expression.

In the following examples, the numbers below the operators indicate a possible order of
evaluation. Alternative evaluation orders are possible in the first three examples because they
contain operators of equal precedence that are not enclosed in parentheses. In these cases,
the compiler is free to evaluate operators of equal precedence in any order, as long as the
result is the same as the result gained by the algebraic left-to-right order of evaluation.

4 + 3 * 2 - 6/2 = 7

^ ^ ^ ^

2 1 4 3

(4 + 3) * 2 - 6/2 = 11

^ ^ ^ ^

1 2 4 3

(4 + 3 * 2 - 6)/2 = 2

^ ^ ^ ^

2 1 3 4

((4 + 3) * 2 - 6)/2 = 4

^ ^ ^ ^

1 2 3 4

Expressions within parentheses are evaluated according to the normal order of precedence. In
expressions containing nested parentheses, the innermost parentheses are evaluated first.

Nonessential parentheses do not affect expression evaluation, as shown in the following example:
4 + (3 * 2) - (6/2)

1820

45 Intel® Fortran Compiler User and Reference Guides

However, using parentheses to specify the evaluation order is often important in high-accuracy
numerical computations. In such computations, evaluation orders that are algebraically equivalent
may not be computationally equivalent when processed by a computer (because of the way
intermediate results are rounded off).

Parentheses can be used in argument lists to force a given argument to be treated as an
expression, rather than as the address of a memory item.

Data Type of Numeric Expressions

If every operand in a numeric expression is of the same data type, the result is also of that
type.

If operands of different data types are combined in an expression, the evaluation of that
expression and the data type of the resulting value depend on the ranking associated with each
data type. The following table shows the ranking assigned to each data type:

RankingData Type

LowestLOGICAL(1) and BYTE

.LOGICAL(2)

.LOGICAL(4)

.LOGICAL(8)

.INTEGER(1)

.INTEGER(2)

.INTEGER(4)

.INTEGER(8)

.REAL(4)

.REAL(8)1

.REAL(16)

.COMPLEX(4)

.COMPLEX(8)2

HighestCOMPLEX(16)

1821

45

RankingData Type

1 DOUBLE PRECISION
2 DOUBLE COMPLEX

The data type of the value produced by an operation on two numeric operands of different data
types is the data type of the highest-ranking operand in the operation. For example, the value
resulting from an operation on an integer and a real operand is of real type. However, an
operation involving a COMPLEX(4) or COMPLEX(8) data type and a DOUBLE PRECISION data
type produces a COMPLEX(8) result.

The data type of an expression is the data type of the result of the last operation in that
expression, and is determined according to the following conventions:

• Integer operations: Integer operations are performed only on integer operands. (Logical
entities used in a numeric context are treated as integers.) In integer arithmetic, any fraction
resulting from division is truncated, not rounded. For example, the result of 9/10 is 0, not
1.

• Real operations: Real operations are performed only on real operands or combinations of
real, integer, and logical operands. Any integer operands present are converted to real data
type by giving each a fractional part equal to zero. The expression is then evaluated using
real arithmetic. However, in the statement Y = (I /J)*X, an integer division operation is
performed on I and J, and a real multiplication is performed on that result and X.

If one operand is a higher-precision real (REAL(8) or REAL(16)) type, the other operand is
converted to that higher-precision real type before the expression is evaluated.

When a single-precision real operand is converted to a double-precision real operand,
low-order binary digits are set to zero. This conversion does not increase accuracy; conversion
of a decimal number does not produce a succession of decimal zeros. For example, a REAL
variable having the value 0.3333333 is converted to approximately 0.3333333134651184D0.
It is not converted to either 0.3333333000000000D0 or 0.3333333333333333D0.

• Complex operations: In operations that contain any complex operands, integer operands
are converted to real type, as previously described. The resulting single-precision or
double-precision operand is designated as the real part of a complex number and the
imaginary part is assigned a value of zero. The expression is then evaluated using complex
arithmetic and the resulting value is of complex type. Operations involving a COMPLEX(4)
or COMPLEX(8) operand and a DOUBLE PRECISION operand are performed as COMPLEX(8)
operations; the DOUBLE PRECISION operand is not rounded.

1822

45 Intel® Fortran Compiler User and Reference Guides

These rules also generally apply to numeric operations in which one of the operands is a constant.
However, if a real or complex constant is used in a higher-precision expression, additional
precision will be retained for the constant. The effect is as if a DOUBLE PRECISION (REAL(8))
or REAL(16) representation of the constant were given. For example, the expression 1.0D0 +
0.3333333 is treated as if it is 1.0D0 + dble(0.3333333).

Character Expressions

A character expression consists of a character operator (//) that concatenates two operands
of type character. The evaluation of a character expression produces a single value of that type.

The result of a character expression is a character string whose value is the value of the left
character operand concatenated to the value of the right operand. The length of a character
expression is the sum of the lengths of the values of the operands. For example, the value of
the character expression 'AB'//'CDE' is 'ABCDE', which has a length of five.

Parentheses do not affect the evaluation of a character expression; for example, the following
character expressions are equivalent:
('ABC'//'DE')//'F'

'ABC'//('DE'//'F')

'ABC'//'DE'//'F'

Each of these expressions has the value ' ABCDEF'.

If a character operand in a character expression contains blanks, the blanks are included in the
value of the character expression. For example, 'ABC '//'D E'//'F ' has a value of 'ABC
D EF '.

Relational Expressions

A relational expression consists of two or more expressions whose values are compared to
determine whether the relationship stated by the relational operator is satisfied. The following
are relational operators:

RelationshipOperator

Less than.LT. or <

Less than or
equal to

.LE. or <=

Equal to.EQ. or = =

Not equal to.NE. or /=

1823

45

RelationshipOperator

Greater than.GT. or >

Greater than or
equal to

.GE. or >=

The result of the relational expression is .TRUE. if the relation specified by the operator is
satisfied; the result is .FALSE. if the relation specified by the operator is not satisfied.

Relational operators are of equal precedence. Numeric operators and the character operator
// have a higher precedence than relational operators.

In a numeric relational expression, the operands are numeric expressions. Consider the following
example:
APPLE+PEACH > PEAR+ORANGE

This expression states that the sum of APPLE and PEACH is greater than the sum of PEAR and
ORANGE. If this relationship is valid, the value of the expression is .TRUE.; if not, the value is
.FALSE.

Operands of type complex can only be compared using the equal operator (= = or .EQ.) or the
not equal operator (/= or .NE.). Complex entities are equal if their corresponding real and
imaginary parts are both equal.

In a character relational expression, the operands are character expressions. In character
relational expressions, less than (< or .LT.) means the character value precedes in the ASCII
collating sequence, and greater than (> or .GT.) means the character value follows in the ASCII
collating sequence. For example:
'AB'//'ZZZ' .LT. 'CCCCC'

This expression states that 'ABZZZ' is less than 'CCCCC'. In this case, the relation specified
by the operator is satisfied, so the result is .TRUE..

Character operands are compared one character at a time, in order, starting with the first
character of each operand. If the two character operands are not the same length, the shorter
one is padded on the right with blanks until the lengths are equal; for example:
'ABC' .EQ. 'ABC '

'AB' .LT. 'C'

The first relational expression has the value .TRUE. even though the lengths of the expressions
are not equal, and the second has the value .TRUE. even though 'AB' is longer than 'C'.

A relational expression can compare two numeric expressions of different data types. In this
case, the value of the expression with the lower-ranking data type is converted to the
higher-ranking data type before the comparison is made.

1824

45 Intel® Fortran Compiler User and Reference Guides

See Also
• Expressions
• Data Type of Numeric Expressions

Logical Expressions

A logical expression consists of one or more logical operators and logical, numeric, or relational
operands. The following are logical operators:

MeaningExampleOperator

Logical conjunction: the
expression is true if both A
and B are true.

A .AND. B.AND.

Logical disjunction (inclusive
OR): the expression is true if
either A, B, or both, are true.

A .OR. B.OR.

Logical inequivalence
(exclusive OR): the
expression is true if either A
or B is true, but false if both
are true.

A .NEQV. B.NEQV.

Same as .NEQV.A .XOR. B.XOR.

Logical equivalence: the
expression is true if both A
and B are true, or both are
false.

A .EQV. B.EQV.

Logical negation: the
expression is true if A is false
and false if A is true.

.NOT. A.NOT.1

1 .NOT. is a unary operator.

Periods cannot appear consecutively except when the second operator is .NOT. For example,
the following logical expression is valid:
A+B/(A-1) .AND. .NOT. D+B/(D-1)

1825

45

Data Types Resulting from Logical Operations

Logical operations on logical operands produce single logical values (.TRUE. or .FALSE.) of
logical type.

Logical operations on integers produce single values of integer type. The operation is carried
out bit-by-bit on corresponding bits of the internal (binary) representation of the integer
operands.

Logical operations on a combination of integer and logical values also produce single values of
integer type. The operation first converts logical values to integers, then operates as it does
with integers.

Logical operations cannot be performed on other data types.

Evaluation of Logical Expressions

Logical expressions are evaluated according to the precedence of their operators. Consider the
following expression:

A*B+C*ABC == X*Y+DM/ZZ .AND. .NOT. K*B > TT

This expression is evaluated in the following sequence:

(((A*B)+(C*ABC)) == ((X*Y)+(DM/ZZ))) .AND. (.NOT. ((K*B) > TT))

As with numeric expressions, you can use parentheses to alter the sequence of evaluation.

When operators have equal precedence, the compiler can evaluate them in any order, as long
as the result is the same as the result gained by the algebraic left-to-right order of evaluation
(except for exponentiation, which is evaluated from right to left).

You should not write logical expressions whose results might depend on the evaluation order
of subexpressions. The compiler is free to evaluate subexpressions in any order. In the following
example, either (A(I)+1.0) or B(I)*2.0 could be evaluated first:

(A(I)+1.0) .GT. B(I)*2.0

Some subexpressions might not be evaluated if the compiler can determine the result by testing
other subexpressions in the logical expression. Consider the following expression:

A .AND. (F(X,Y) .GT. 2.0) .AND. B

If the compiler evaluates A first, and A is false, the compiler might determine that the expression
is false and might not call the subprogram F(X,Y).

See Also
• Expressions

1826

45 Intel® Fortran Compiler User and Reference Guides

• Summary of Operator Precedence

Defined Operations

When operators are defined for functions, the functions can then be referenced as defined
operations.

The operators are defined by using a generic interface block specifying OPERATOR, followed
by the defined operator (in parentheses).

A defined operation is not an intrinsic operation. However, you can use a defined operation to
extend the meaning of an intrinsic operator.

For defined unary operations, the function must contain one argument. For defined binary
operations, the function must contain two arguments.

Interpretation of the operation is provided by the function that defines the operation.

A Fortran 95/90 defined operator can contain up to 31 letters, and is enclosed in periods (.).
Its name cannot be the same name as any of the following:

• The intrinsic operators (.NOT., .AND., .OR., .XOR., .EQV., .NEQV., .EQ., .NE., .GT., .GE.,
.LT., and .LE.)

• The logical literal constants (.TRUE. or .FALSE.)

An intrinsic operator can be followed by a defined unary operator.

The result of a defined operation can have any type. The type of the result (and its value) must
be specified by the defining function.

Examples

The following examples show expressions containing defined operators:

.COMPLEMENT. A

X .PLUS. Y .PLUS. Z

M * .MINUS. N

See Also
• Expressions
• Defining Generic Operators
• Summary of Operator Precedence

Summary of Operator Precedence

The following table shows the precedence of all intrinsic and defined operators:

1827

45

Precedence of Expression Operators

PrecedenceOperatorCategory

HighestDefined Unary Operators

.**Numeric

.* or /Numeric

.Unary + or -Numeric

.Binary + or -Numeric

.//Character

..EQ., .NE., .LT., .LE., .GT.,
.GE., = =, /=, <, <=, >, >=

Relational

..NOT.Logical

..AND.Logical

..OR.Logical

..XOR., .EQV., .NEQV.Logical

LowestDefined Binary Operators

Initialization and Specification Expressions

A constant expression contains intrinsic operations and parts that are all constants. An
initialization expression is a constant expression that is evaluated when a program is compiled.
A specification expression is a scalar, integer expression that is restricted to declarations of
array bounds and character lengths.

Initialization and specification expressions can appear in specification statements, with some
restrictions.

Initialization Expressions

An initialization expression must evaluate at compile time to a constant. It is used to specify
an initial value for an entity.

1828

45 Intel® Fortran Compiler User and Reference Guides

In an initialization expression, each operation is intrinsic and each operand is one of the
following:

• A constant or subobject of a constant

• An array constructor where each element and the bounds and strides of each implied-DO,
are expressions whose primaries are initialization expressions

• A structure constructor whose components are initialization expressions

• An elemental intrinsic function reference of type integer or character, whose arguments are
initialization expressions of type integer or character

• A reference to one of the following inquiry functions:

MINEXPONENTBIT_SIZE

PRECISIONDIGITS

RADIXEPSILON

RANGEHUGE

SHAPEILEN

SIZEKIND

TINYLBOUND

UBOUNDLEN

MAXEXPONENT

Each function argument must be one of the following:

• An initialization expression

• A variable whose kind type parameter and bounds are not assumed or defined by an
ALLOCATE statement, pointer assignment, or an expression that is not an initialization
expression

• A reference to one of the following transformational functions (each argument must be an
initialization expression):

SELECTED_REAL_KINDREPEAT

TRANSFERRESHAPE

TRIMSELECTED_CHAR_KIND

1829

45

SELECTED_INT_KIND

• A reference to the transformational function NULL

• An implied-DO variable within an array constructor where the bounds and strides of the
corresponding implied-DO are initialization expressions

• Another initialization expression enclosed in parentheses

Each subscript, section subscript, and substring starting and ending point must be an initialization
expression.

In an initialization expression, the exponential operator (**) must have a power of type integer.

If an initialization expression invokes an inquiry function for a type parameter or an array bound
of an object, the type parameter or array bound must be specified in a prior specification
statement (or to the left of the inquiry function in the same statement).

Examples

Table 567: Valid Initialization (Constant) Expressions

-1 + 3

! B is a named constantSIZE(B)

7_2

! J is a named constantINT(J, 4)

SELECTED_INT_KIND (2)

Table 568: Invalid Initialization (Constant) Expressions

Not an allowed function.SUM(A)

Exponential does not have integer power (A and
K are named constants).

A/4.1 - K**1.2

Argument is not an integer.HUGE(4.0)

See Also
• Initialization and Specification Expressions
• Array constructors

1830

45 Intel® Fortran Compiler User and Reference Guides

• Structure constructors
• Intrinsic procedures
Specification Expressions

A specification expression is a restricted expression that is of type integer and has a scalar
value. This type of expression appears only in the declaration of array bounds and character
lengths.

In a restricted expression, each operation is intrinsic and each operand is one of the following:

• A constant or subobject of a constant

• A variable that is one of the following:

• A dummy argument that does not have the OPTIONAL or INTENT (OUT) attribute (or the
subobject of such a variable)

• In a common block (or the subobject of such a variable)

• Made accessible by use or host association (or the subobject of such a variable)

• A structure constructor whose components are restricted expressions

• An implied-DO variable within an array constructor, where the bounds and strides of the
corresponding implied-DO are restricted expressions

• A reference to one of the following inquiry functions:

MINEXPONENTBIT_SIZE

PRECISIONDIGITS

RADIXEPSILON

RANGEHUGE

SHAPEILEN

SIZEKIND

SIZEOFLBOUND

TINYLEN

UBOUNDMAXEXPONENT

Each function argument must be one of the following:

• A restricted expression

1831

45

• A variable whose properties inquired about are not dependent on the upper bound of the
last dimension of an assumed-size array, are not defined by an expression that is not a
restricted expression, or are not definable by an ALLOCATE or pointer assignment
statement.

• A reference to any other intrinsic function where each argument is a restricted expression.

• A reference to a specification function where each argument is a restricted expression

• An array constructor where each element and the bounds and strides of each implied-DO,
are expressions whose primaries are restricted expressions

• Another restricted expression enclosed in parentheses

Each subscript, section subscript, and substring starting and ending point must be a restricted
expression.

Specification functions can be used in specification expressions to indicate the attributes
of data objects. A specification function is a pure function. It cannot have a dummy procedure
argument or be any of the following:

• An intrinsic function

• An internal function

• A statement function

• Defined as RECURSIVE

A variable in a specification expression must have its type and type parameters (if any) specified
in one of the following ways:

• By a previous declaration in the same scoping unit

• By the implicit typing rules currently in effect for the scoping unit

• By host or use association

If a variable in a specification expression is typed by the implicit typing rules, its appearance
in any subsequent type declaration statement must confirm the implied type and type
parameters.

If a specification expression invokes an inquiry function for a type parameter or an array bound
of an object, the type parameter or array bound must be specified in a prior specification
statement (or to the left of the inquiry function in the same statement).

In a specification expression, the number of arguments for a function reference is limited to
255.

1832

45 Intel® Fortran Compiler User and Reference Guides

Examples

The following shows valid specification expressions:

MAX(I) + J ! I and J are scalar integer variables

UBOUND(ARRAY_B,20) ! ARRAY_B is an assumed-shape dummy array

See Also
• Initialization and Specification Expressions
• Array constructors
• Structure constructors
• Intrinsic procedures
• Implicit typing rules
• Use and host association
• PURE procedures

Assignment Statements

An assignment statement causes variables to be defined or redefined. This section describes
the following kinds of assignment statements: intrinsic, defined, pointer, masked array (WHERE),
and element array (FORALL).

The ASSIGN statement assigns a label to an integer variable. It is discussed elsewhere.

Intrinsic Assignments

Intrinsic assignment is used to assign a value to a nonpointer variable. In the case of pointers,
intrinsic assignment is used to assign a value to the target associated with the pointer variable.
The value assigned to the variable (or target) is determined by evaluation of the expression to
the right of the equal sign.

An intrinsic assignment statement takes the following form:

variable = expression

Is the name of a scalar or array of intrinsic or derived type (with no
defined assignment). The array cannot be an assumed-size array, and
neither the scalar nor the array can be declared with the PARAMETER
or INTENT(IN) attribute.

variable

Is of intrinsic type or the same derived type as variable. Its shape
must conform with variable. If necessary, it is converted to the same
type and kind as variable.

expression

1833

45

Description

Before a value is assigned to the variable, the expression part of the assignment statement
and any expressions within the variable are evaluated. No definition of expressions in the
variable can affect or be affected by the evaluation of the expression part of the assignment
statement.

NOTE. When the run-time system assigns a value to a scalar integer or character variable
and the variable is shorter than the value being assigned, the assigned value may be
truncated and significant bits (or characters) lost. This truncation can occur without
warning, and can cause the run-time system to pass incorrect information back to the
program.

If the variable is a pointer, it must be associated with a definable target. The shape of the
target and expression must conform and their type and kind parameters must match.

The following sections discuss numeric, logical, character, derived- type, and array intrinsic
assignment.

Numeric Assignment Statements

For numeric assignment statements, the variable and expression must be numeric type.

The expression must yield a value that conforms to the range requirements of the variable. For
example, a real expression that produces a value greater than 32767 is invalid if the entity on
the left of the equal sign is an INTEGER(2) variable.

Significance can be lost if an INTEGER(4) value, which can exactly represent values of
approximately the range -2*10**9 to +2*10**9, is converted to REAL(4) (including the real
part of a complex constant), which is accurate to only about seven digits.

If the variable has the same data type as that of the expression on the right, the statement
assigns the value directly. If the data types are different, the value of the expression is converted
to the data type of the variable before it is assigned.

The following table summarizes the data conversion rules for numeric assignment statements.

Table 570: Conversion Rules for Numeric Assignment Statements

Expression (E)Scalar Memory Reference
(V)

ComplexInteger, Logical or Real

V=INT(REAL(E))V=INT(E)Integer or Logical

1834

45 Intel® Fortran Compiler User and Reference Guides

Expression (E)Scalar Memory Reference
(V)

ComplexInteger, Logical or Real

Imaginary part of E is not
used.

V=REAL(REAL(E))V=REAL(E)REAL

(KIND=4) Imaginary part of E is not
used.

V=DBLE(REAL(E))V=DBLE(E)REAL

(KIND=8) Imaginary part of E is not
used.

V=QEXT(REAL(E))V=QEXT(E)REAL

(KIND=16) Imaginary part of E is not
used.

V=CMPLX(REAL(REAL(E)),
REAL(AIMAG(E)))

V=CMPLX(REAL(E), 0.0)COMPLEX

(KIND=4)

V=CMPLX(DBLE(REAL(E)),
DBLE(AIMAG(E)))

V=CMPLX(DBLE(E), 0.0)COMPLEX

(KIND=8)

V=CMPLX(QEXT(REAL(E)),
QEXT(AIMAG(E)))

V=CMPLX(QEXT(E), 0.0)COMPLEX

(KIND=16)

Examples

Table 571: Valid Numeric Assignment Statements

BETA = -1./(2.*X)+A*A /(4.*(X*X))

PI = 3.14159

SUM = SUM + 1.

! Valid if all arrays conform in shapeARRAY_A = ARRAY_B + ARRAY_C + SCALAR_I

1835

45

Table 572: Invalid Numeric Assignment Statements

Entity on the left must be a variable.3.14 = A - B

Implicitly typed data types do not match.ICOUNT = A//B(3:7)

Shapes do not match.SCALAR_I = ARRAY_A(:)

See Also
• Intrinsic Assignments
• INT
• REAL
• DBLE
• QEXT
• CMPLX
• AIMAG
Logical Assignment Statements

For logical assignment statements, the variable must be of logical type and the expression can
be of logical or numeric type.

If necessary, the expression is converted to the same type and kind as the variable.

Examples

The following examples demonstrate valid logical assignment statements:

PAGEND = .FALSE.

PRNTOK = LINE .LE. 132 .AND. .NOT. PAGEND

ABIG = A.GT.B .AND. A.GT.C .AND. A.GT.D

LOGICAL_VAR = 123 ! Moves binary value of 123 to LOGICAL_VAR

Character Assignment Statements

For character assignment statements, the variable and expression must be of character type
and have the same kind parameter.

The variable and expression can have different lengths. If the length of the expression is greater
than the length of the variable, the character expression is truncated on the right. If the length
of the expression is less than the length of the variable, the character expression is filled on
the right with blank characters.

1836

45 Intel® Fortran Compiler User and Reference Guides

If you assign a value to a character substring, you do not affect character positions in any part
of the character scalar variable not included in the substring. If a character position outside of
the substring has a value previously assigned, it remains unchanged. If the character position
is undefined, it remains undefined.

Examples

Table 573: Valid Character Assignment Statements. (All variables are of type character.)

FILE = 'PROG2'

REVOL(1) = 'MAR'//'CIA'

LOCA(3:8) = 'PLANT5'

TEXT(I,J+1)(2:N-1) = NAME/ /X

Table 574: Invalid Character Assignment Statements

Left element must be a character variable, array
element, or substring reference.

'ABC' = CHARS

Expression does not have a character data type.CHARS = 25

Expression does not have a character data type.
(Hollerith constants are numeric, not character.)

STRING=5HBEGIN

Derived-Type Assignment Statements

In derived-type assignment statements, the variable and expression must be of the same
derived type. There must be no accessible interface block with defined assignment for objects
of this derived type.

The derived-type assignment is performed as if each component of the expression is assigned
to the corresponding component of the variable. Pointer assignment is performed for pointer
components, and intrinsic assignment is performed for nonpointer components.

1837

45

Examples

The following example shows derived-type assignment:

TYPE DATE

LOGICAL(1) DAY, MONTH

INTEGER(2) YEAR

END TYPE DATE

TYPE(DATE) TODAY, THIS_WEEK(7)

TYPE APPOINTMENT

...

TYPE(DATE) APP_DATE

END TYPE

TYPE(APPOINTMENT) MEETING

DO I = 1,7

CALL GET_DATE(TODAY)

THIS_WEEK(I) = TODAY

END DO

MEETING%APP_DATE = TODAY

See Also
• Intrinsic Assignments
• Derived types
• Pointer assignments
Array Assignment Statements

Array assignment is permitted when the array expression on the right has the same shape as
the array variable on the left, or the expression on the right is a scalar.

If the expression is a scalar, and the variable is an array, the scalar value is assigned to every
element of the array.

If the expression is an array, the variable must also be an array. The array element values of
the expression are assigned (element by element) to corresponding elements of the array
variable.

1838

45 Intel® Fortran Compiler User and Reference Guides

A many-one array section is a vector-valued subscript that has two or more elements with
the same value. In intrinsic assignment, the variable cannot be a many-one array section
because the result of the assignment is undefined.

Examples

In the following example, X and Y are arrays of the same shape:

X = Y

The corresponding elements of Y are assigned to those of X element by element; the first element
of Y is assigned to the first element of X, and so forth. The processor can perform the
element-by-element assignment in any order.

The following example shows a scalar assigned to an array:

B(C+1:N, C) = 0

This sets the elements B (C+1,C), B (C+2,C),...B (N,C) to zero.

The following example causes the values of the elements of array A to be reversed:

REAL A(20)

...

A(1:20) = A(20:1:-1)

See Also
• Intrinsic Assignments
• Arrays
• Array constructors
• WHERE
• FORALL

Defined Assignments

Defined assignment specifies an assignment operation. It is defined by a subroutine subprogram
containing a generic interface block with the specifier ASSIGNMENT(=). The subroutine is
specified by a SUBROUTINE or ENTRY statement that has two nonoptional dummy arguments.

Defined elemental assignment is indicated by specifying ELEMENTAL in the SUBROUTINE
statement.

The dummy arguments represent the variable and expression, in that order. The rank (and
shape, if either or both are arrays), type, and kind parameters of the variable and expression
in the assignment statement must match those of the corresponding dummy arguments.

1839

45

The dummy arguments must not both be numeric, or of type logical or character with the same
kind parameter.

If the variable in an elemental assignment is an array, the defined assignment is performed
element-by-element, in any order, on corresponding elements of the variable and expression.
If the expression is scalar, it is treated as if it were an array of the same shape as the variable
with every element of the array equal to the scalar value of the expression.

See Also
• Assignment Statements
• Subroutines
• Derived data types
• Defining Generic Assignment
• Numeric Expressions
• Character Expressions

Pointer Assignments

In ordinary assignment involving pointers, the pointer is an alias for its target. In pointer
assignment, the pointer is associated with a target. If the target is undefined or disassociated,
the pointer acquires the same status as the target. The pointer assignment statement has the
following form:

pointer-object => target

Is a variable name or structure component declared with the POINTER
attribute.

pointer-object

Is a variable or expression. Its type and kind parameters, and rank
must be the same as pointer-object. It cannot be an array section
with a vector subscript.

target

Description

If the target is a variable, it must have the POINTER or TARGET attribute, or be a subobject
whose parent object has the TARGET attribute.

If the target is an expression, the result must be a pointer.

If the target is not a pointer (it has the TARGET attribute), the pointer object is associated with
the target.

If the target is a pointer (it has the POINTER attribute), its status determines the status of the
pointer object, as follows:

1840

45 Intel® Fortran Compiler User and Reference Guides

• If the pointer is associated, the pointer object is associated with the same object as the
target

• If the pointer is disassociated, the pointer object becomes disassociated

• If the pointer is undefined, the pointer object becomes undefined

A pointer must not be referenced or defined unless it is associated with a target that can be
referenced or defined.

When pointer assignment occurs, any previous association between the pointer object and a
target is terminated.

Pointers can also be assigned for a pointer structure component by execution of a derived-type
intrinsic assignment statement or a defined assignment statement.

Pointers can also become associated by using the ALLOCATE statement to allocate the pointer.

Pointers can become disassociated by deallocation, nullification of the pointer (using the
DEALLOCATE or NULLIFY statements), or by reference to the NULL intrinsic function.

Examples

The following are examples of pointer assignments:

HOUR => MINUTES(1:60) ! target is an array

M_YEAR => MY_CAR%YEAR ! target is a structure component

NEW_ROW%RIGHT => CURRENT_ROW ! pointer object is a structure component

PTR => M ! target is a variable

POINTER_C => NULL () ! reference to NULL intrinsic

The following example shows a target as a pointer:

INTEGER, POINTER :: P, N

INTEGER, TARGET :: M

INTEGER S

M = 14

N => M ! N is associated with M

P => N ! P is associated with M through N

S = P + 5

The value assigned to S is 19 (14 + 5).

1841

45

You can use the intrinsic function ASSOCIATED to find out if a pointer is associated with a target or
if two pointers are associated with the same target. For example:

REAL C (:), D(:), E(5)

POINTER C, D

TARGET E

LOGICAL STATUS

! Pointer assignment.

C => E

! Pointer assignment.

D => E

! Returns TRUE; C is associated.

STATUS = ASSOCIATED (C)

! Returns TRUE; C is associated with E.

STATUS = ASSOCIATED (C, E)

! Returns TRUE; C and D are associated with the

! same target.

STATUS = ASSOCIATED (C, D)

See Also
• Assignment Statements
• Arrays
• ALLOCATE
• DEALLOCATE
• NULLIFY
• NULL
• POINTER
• TARGET
• Defined assignments
• Intrinsic Assignments

1842

45 Intel® Fortran Compiler User and Reference Guides

WHERE Statement and Construct Overview

You can perform an array operation on selected elements by using masked array assignment.
For more information, see WHERE.

See Also
• Assignment Statements
• FORALL

FORALL Statement and Construct Overview

The FORALL statement and construct is a generalization of the Fortran 95/90 masked array
assignment. It allows more general array shapes to be assigned, especially in construct form.
For more information, see FORALL.

See Also
• Assignment Statements
• WHERE

1843

45

46Specification Statements

A specification statement is a nonexecutable statement that declares the attributes of data objects. In
Fortran 95/90, many of the attributes that can be defined in specification statements can also be optionally
specified in type declaration statements.

The following are specification statements:

• Type declaration statement

Explicitly specifies the properties (for example: data type, rank, and extent) of data objects.

• ALLOCATABLE attribute and statement

Specifies a list of array names that are allocatable (have a deferred-shape).

• ASYNCHRONOUS attribute and statement

Specifies that a variable can be used for asynchronous input and output.

• AUTOMATIC and STATIC attributes and statements

Control the storage allocation of variables in subprograms.

• BIND attribute and statement

Specifies that an object is interoperable with C and has external linkage.

• COMMON statement

Defines one or more contiguous areas, or blocks, of physical storage (called common blocks).

• DATA statement

Assigns initial values to variables before program execution.

• DIMENSION attribute and statement

Specifies that an object is an array, and defines the shape of the array.

• EQUIVALENCE statement

Specifies that a storage area is shared by two or more objects in a program unit.

• EXTERNAL attribute and statement

Allows external (user-supplied) procedures to be used as arguments to other subprograms.

• IMPLICIT statement

Overrides the implicit data type of names.

• INTENT attribute and statement

Specifies the intended use of a dummy argument.

1845

• INTRINSIC attribute and statement

Allows intrinsic procedures to be used as arguments to subprograms.

• NAMELIST statement

Associates a name with a list of variables. This group name can be referenced in some input/output
operations.

• OPTIONAL attribute and statement

Allows a procedure reference to omit arguments.

• PARAMETER attribute and statement

Defines a named constant.

• POINTER attribute and statement

Specifies that an object is a pointer.

• PRIVATE and PUBLIC and attributes and statements

Declare the accessibility of entities in a module.

• PROTECTED attribute and statement

Specifies limitations on the use of module entities.

• SAVE attribute and statement

Causes the definition and status of objects to be retained after the subprogram in which they are
declared completes execution.

• TARGET attribute and statement

Specifies a pointer target.

• VALUE attribute and statement

Specifies a type of argument association for a dummy argument.

• VOLATILE attribute and statement

Prevents optimizations from being performed on specified objects.

Type Declaration Statements

A type declaration statement explicitly specifies the properties of data objects or functions. For
more information, see Type Declarations.

See Also
• Specification Statements

1846

46 Intel® Fortran Compiler User and Reference Guides

• Declaration Statements for Noncharacter Types
• Declaration Statements for Character Types
• Declaration Statements for Derived Types
• Declaration Statements for Arrays
• Declaration Statements for Noncharacter Types
• Declaration Statements for Character Types
• Declaration Statements for Derived Types
• Declaration Statements for Arrays
• Derived data types
• DATA
• Initialization expressions
• Intrinsic Data Types
• Implicit Typing Rules
• Specification of Data Type

Declaration Statements for Noncharacter Types

The following table shows the data types that can appear in noncharacter type declaration
statements.

Noncharacter Data Types

BYTE1

LOGICAL2

LOGICAL([KIND=]1) (or LOGICAL*1)

LOGICAL([KIND=]2) (or LOGICAL*2)

LOGICAL([KIND=]4) (or LOGICAL*4)

LOGICAL([KIND=]8) (or LOGICAL*8)

INTEGER3

INTEGER([KIND=]1) (or INTEGER*1)

INTEGER([KIND=]2) (or INTEGER*2)

INTEGER([KIND=]4) (or INTEGER*4)

1847

46

Noncharacter Data Types

INTEGER([KIND=]8) (or INTEGER*8)

REAL4

REAL([KIND=]4) (or REAL*4)

DOUBLE PRECISION (REAL([KIND=]8) or REAL*8)

REAL([KIND=]16) (or REAL*16)

COMPLEX5

COMPLEX([KIND=]4) (or COMPLEX*8)

DOUBLE COMPLEX (COMPLEX([KIND=]8) or COMPLEX*16)

COMPLEX([KIND=]16) (or COMPLEX*32)

1 Same as INTEGER(1).
2 This is treated as default logical.
3 This is treated as default integer.
4 This is treated as default real.
5 This is treated as default complex.

In noncharacter type declaration statements, you can optionally specify the name of the data
object or function as v*n, where n is the length (in bytes) of v. The length specified overrides
the length implied by the data type.

The value for n must be a valid length for the type of v. The type specifiers BYTE, DOUBLE
PRECISION, and DOUBLE COMPLEX have one valid length, so the n specifier is invalid for them.

For an array specification, the n must be placed immediately following the array name; for
example, in an INTEGER declaration statement, IVEC*2(10) is an INTEGER(2) array of 10
elements.

Note that certain compiler options can affect the defaults for numeric and logical data types.

1848

46 Intel® Fortran Compiler User and Reference Guides

Examples

In a noncharacter type declaration statement, a subsequent kind parameter overrides any initial kind
parameter. For example, consider the following statements:

INTEGER(KIND=2) I, J, K, M12*4, Q, IVEC*4(10)

REAL(KIND=8) WX1, WXZ, WX3*4, WX5, WX6*4

REAL(KIND=8) PI/3.14159E0/, E/2.72E0/, QARRAY(10)/5*0.0,5*1.0/

In the first statement, M12*4 and IVEC*4 override the KIND=2 specification. In the second statement,
WX3*4 and WX6*4 override the KIND=8 specification. In the third statement, QARRAY is initialized
with implicit conversion of the REAL(4) constants to a REAL(8) data type.

See Also
• Type Declaration Statements
• Type Declarations

Declaration Statements for Character Types

A CHARACTER type specifier can be immediately followed by the length of the character object
or function. It takes one of the following forms:

Keyword Forms

CHARACTER [([LEN=]len)]

CHARACTER [([LEN=]len [, [KIND=]n])]

CHARACTER [(KIND=n [, LEN=len])]

Nonkeyword Form

CHARACTER*len[,]

Is one of the following:len

• In keyword forms

The len is a specification expression or an asterisk (*). If no length
is specified, the default length is 1.

If the length evaluates to a negative value, the length of the
character entity is zero.

• In nonkeyword form

1849

46

The len is a specification expression or an asterisk enclosed in
parentheses, or a scalar integer literal constant (with no kind
parameter). The comma is permitted only if no double colon (::)
appears in the type declaration statement.

This form can also (optionally) be specified following the name of
the data object or function (v*len). In this case, the length specified
overrides any length following the CHARACTER type specifier.

The largest valid value for len in both forms is 2**31-1 on IA-32
architecture; 2**63-1 on Intel® 64 architecture and IA-64 architecture.
Negative values are treated as zero.

Is a scalar integer initialization expression specifying a valid kind
parameter. Currently the only kind available is 1.

n

Description

An automatic object can appear in a character declaration. The object cannot be a dummy
argument, and its length must be declared with a specification expression that is not a constant
expression.

The length specified for a character-valued statement function or statement function dummy
argument of type character must be an integer constant expression.

When an asterisk length specification *(*) is used for a function name or dummy argument, it
assumes the length of the corresponding function reference or actual argument. Similarly, when
an asterisk length specification is used for a named constant, the name assumes the length of
the actual constant it represents. For example, STRING assumes a 9-byte length in the following
statements:

CHARACTER*(*) STRING

PARAMETER (STRING = 'VALUE IS:')

A function name must not be declared with a * length, if the function is an internal or module
function, or if it is array-valued, pointer-valued, recursive, or pure.

The form CHARACTER*(*) is an obsolescent feature in Fortran 95.

Examples

In the following example, the character string last_name is given a length of 20:

CHARACTER (LEN=20) last_name

1850

46 Intel® Fortran Compiler User and Reference Guides

In the following example, stri is given a length of 12, while the other two variables retain a length
of 8.

CHARACTER *8 strg, strh, stri*12

In the following example, as a dummy argument strh is given the length of an assigned string when
it is assigned, while the other two variables retain a length of 8:

CHARACTER *8 strg, strh(*), stri

The following examples show ways to specify strings of known length:

CHARACTER*32 string

CHARACTER string*32

The following examples show ways to specify strings of unknown length:

CHARACTER string*(*)

CHARACTER*(*) string

The following example declares an array NAMES containing 100 32-character elements, an array
SOCSEC containing 100 9-character elements, and a variable NAMETY that is 10 characters long and
has an initial value of 'ABCDEFGHIJ'.

CHARACTER*32 NAMES(100),SOCSEC(100)*9,NAMETY*10 /'ABCDEFGHIJ'/

The following example includes a CHARACTER statement declaring two 8-character variables, LAST
and FIRST.

INTEGER, PARAMETER :: LENGTH=4

CHARACTER*(4+LENGTH) LAST, FIRST

The following example shows a CHARACTER statement declaring an array LETTER containing 26
one-character elements. It also declares a dummy argument BUBBLE that has a passed length defined
by the calling program.

CHARACTER LETTER(26), BUBBLE*(*)

In the following example, NAME2 is an automatic object:

SUBROUTINE AUTO_NAME(NAME1)

CHARACTER(LEN = *) NAME1

CHARACTER(LEN = LEN(NAME1)) NAME2

See Also
• Type Declaration Statements
• Obsolescent features in Fortran 95

1851

46

• Data Types of Scalar Variables
• Assumed-Length Character Arguments
• Type Declarations

Declaration Statements for Derived Types

The derived-type (TYPE) declaration statement specifies the properties of objects and functions
of derived (user-defined) type.

The derived type must be defined before you can specify objects of that type in a TYPE type
declaration statement.

An object of derived type must not have the PUBLIC attribute if its type is PRIVATE.

A structure constructor specifies values for derived-type objects.

Examples

The following are examples of derived-type declaration statements:

TYPE(EMPLOYEE) CONTRACT

...

TYPE(SETS), DIMENSION(:,:), ALLOCATABLE :: SUBSET_1

The following example shows a public type with private components:

TYPE LIST_ITEMS

PRIVATE

...

TYPE(LIST_ITEMS), POINTER :: NEXT, PREVIOUS

END TYPE LIST_ITEMS

See Also
• Type Declaration Statements
• TYPE
• Use and host association
• PUBLIC
• PRIVATE
• Structure constructors
• Type Declarations

1852

46 Intel® Fortran Compiler User and Reference Guides

Declaration Statements for Arrays

An array declaration (or array declarator) declares the shape of an array. It takes the following
form:

(a-spec)

Is one of the following array specifications:a-spec

• Explicit-shape

• Assumed-shape

• Assumed-size

• Deferred-shape

The array specification can be appended to the name of the array when the array is declared.

Examples

The following examples show array declarations:

SUBROUTINE SUB(N, C, D, Z)

REAL, DIMENSION(N, 15) :: IARRY ! An explicit-shape array

REAL C(:), D(0:) ! An assumed-shape array

REAL, POINTER :: B(:,:) ! A deferred-shape array pointer

REAL, ALLOCATABLE, DIMENSION(:) :: K ! A deferred-shape allocatable array

REAL :: Z(N,*) ! An assumed-size array

See Also
• Type Declaration Statements
• Explicit-Shape Specifications
• Assumed-Shape Specifications
• Assumed-Size Specifications
• Deferred-Shape Specifications
• Type Declarations
Explicit-Shape Specifications

An explicit-shape array is declared with explicit values for the bounds in each dimension of
the array. An explicit-shape specification takes the following form:

([dl:] du[, [dl:] du] ...)

1853

46

Is a specification expression indicating the lower bound of the
dimension. The expression can have a positive, negative, or zero value.
If necessary, the value is converted to integer type.

dl

If the lower bound is not specified, it is assumed to be 1

Is a specification expression indicating the upper bound of the
dimension. The expression can have a positive, negative, or zero value.
If necessary, the value is converted to integer type.

du

The bounds can be specified as constant or nonconstant expressions,
as follows:

• If the bounds are constant expressions, the subscript range of the
array in a dimension is the set of integer values between and
including the lower and upper bounds. If the lower bound is greater
than the upper bound, the range is empty, the extent in that
dimension is zero, and the array has a size of zero.

• If the bounds are nonconstant expressions, the array must be
declared in a procedure. The bounds can have different values each
time the procedure is executed, since they are determined when
the procedure is entered.

The bounds are not affected by any redefinition or undefinition of
the variables in the specification expression that occurs while the
procedure is executing.

The following explicit-shape arrays can specify nonconstant bounds:

• An automatic array (the array is a local variable)

• An adjustable array (the array is a dummy argument to a
subprogram)

The following are examples of explicit-shape specifications:
INTEGER I(3:8, -2:5) ! Rank-two array; range of dimension
one is

... ! 3 to 8, range of dimension two is -2
to 5

SUBROUTINE SUB(A, B, C)

INTEGER :: B, C

REAL, DIMENSION(B:C) :: A ! Rank-one array; range is B to C

1854

46 Intel® Fortran Compiler User and Reference Guides

Consider the following:
INTEGER M(10, 10, 10)

INTEGER K(-3:6, 4:13, 0:9)

M and K are both explicit-shape arrays with a rank of 3, a size of 1000,
and the same shape (10,10,10). Array M uses the default lower bound
of 1 for each of its dimensions. So, when it is declared only the upper
bound needs to be specified. Each of the dimensions of array K has a
lower bound other than the default, and the lower bounds as well as
the upper bounds are declared.

Automatic Arrays

An automatic array is an explicit-shape array that is a local variable. Automatic arrays are
only allowed in function and subroutine subprograms, and are declared in the specification part
of the subprogram. At least one bound of an automatic array must be a nonconstant specification
expression. The bounds are determined when the subprogram is called.

The following example shows automatic arrays:

SUBROUTINE SUB1 (A, B)

INTEGER A, B, LOWER

COMMON /BOUND/ LOWER

...

INTEGER AUTO_ARRAY1(B)

...

INTEGER AUTO_ARRAY2(LOWER:B)

...

INTEGER AUTO_ARRAY3(20, B*A/2)

END SUBROUTINE

Consider the following:

SUBROUTINE EXAMPLE (N, R1, R2)

DIMENSION A (N, 5), B(10*N)

...

N = IFIX(R1) + IFIX(R2)

1855

46

When the subroutine is called, the arrays A and B are dimensioned on entry into the subroutine
with the value of the passed variable N. Later changes to the value of N have no effect on the
dimensions of array A or B.

Adjustable Arrays

An adjustable array is an explicit-shape array that is a dummy argument to a subprogram. At
least one bound of an adjustable array must be a nonconstant specification expression. The
bounds are determined when the subprogram is called.

The array specification can contain integer variables that are either dummy arguments or
variables in a common block.

When the subprogram is entered, each dummy argument specified in the bounds must be
associated with an actual argument. If the specification includes a variable in a common block,
the variable must have a defined value. The array specification is evaluated using the values
of the actual arguments, as well as any constants or common block variables that appear in
the specification.

The size of the adjustable array must be less than or equal to the size of the array that is its
corresponding actual argument.

To avoid possible errors in subscript evaluation, make sure that the bounds expressions used
to declare multidimensional adjustable arrays match the bounds as declared by the caller.

In the following example, the function computes the sum of the elements of a rank-two array.
Notice how the dummy arguments M and N control the iteration:

FUNCTION THE_SUM(A, M, N)

DIMENSION A(M, N)

SUMX = 0.0

DO J = 1, N

DO I = 1, M

SUMX = SUMX + A(I, J)

END DO

END DO

THE_SUM = SUMX

END FUNCTION

1856

46 Intel® Fortran Compiler User and Reference Guides

The following are examples of calls on THE_SUM:

DIMENSION A1(10,35), A2(3,56)

SUM1 = THE_SUM(A1,10,35)

SUM2 = THE_SUM(A2,3,56)

The following example shows how the array bounds determined when the procedure is entered
do not change during execution:

DIMENSION ARRAY(9,5)

L = 9

M = 5

CALL SUB(ARRAY,L,M)

END

SUBROUTINE SUB(X,I,J)

DIMENSION X(-I/2:I/2,J)

X(I/2,J) = 999

J = 1

I = 2

END

The assignments to I and J do not affect the declaration of adjustable array X as X(-4:4,5) on
entry to subroutine SUB.

See Also
• Declaration Statements for Arrays
• Specification expressions
Assumed-Shape Specifications

An assumed-shape array is a dummy argument array that assumes the shape of its associated
actual argument array. An assumed-shape specification takes the following form:

([dl]:[, [dl]:] ...)

Is a specification expression indicating the lower bound of the
dimension. The expression can have a positive, negative, or zero value.
If necessary, the value is converted to integer type.

dl

If the lower bound is not specified, it is assumed to be 1.

The rank of the array is the number of colons (:) specified.

1857

46

The value of the upper bound is the extent of the corresponding dimension of the associated
actual argument array + lower-bound - 1.

Examples

The following is an example of an assumed-shape specification:

INTERFACE

SUBROUTINE SUB(M)

INTEGER M(:, 1:, 5:)

END SUBROUTINE

END INTERFACE

INTEGER L(20, 5:25, 10)

CALL SUB(L)

SUBROUTINE SUB(M)

INTEGER M(:, 1:, 5:)

END SUBROUTINE

Array M has the same extents as array L, but array M has bounds (1:20, 1:21, 5:14).

Note that an explicit interface is required when calling a routine that expects an assumed-shape or
pointer array.

Consider the following:

SUBROUTINE ASSUMED(A)

REAL A(:, :, :)

Array A has rank 3, indicated by the three colons (:) separated by commas (,). However, the extent
of each dimension is unspecified. When the subroutine is called, A takes its shape from the array
passed to it. For example, consider the following:

REAL X (4, 7, 9)

...

CALL ASSUMED(X)

This gives A the dimensions (4, 7, 9). The actual array and the assumed-shape array must have the
same rank.

1858

46 Intel® Fortran Compiler User and Reference Guides

Consider the following:

SUBROUTINE ASSUMED(A)

REAL A(3:, 0:, -2:)

...

If the subroutine is called with the same actual array X(4, 7, 9), as in the previous example, the
lower and upper bounds of A would be:

A(3:6, 0:6, -2:6)

Assumed-Size Specifications

An assumed-size array is a dummy argument array that assumes the size (only) of its
associated actual argument array; the rank and extents can differ for the actual and dummy
arrays. An assumed-size specification takes the following form:

([expli-shape-spec,] [expli-shape-spec,] ... [dl:] *)

Is an explicit-shape specification.expli-shape-spec

Is a specification expression indicating the lower bound of the
dimension. The expression can have a positive, negative, or zero value.
If necessary, the value is converted to integer type.

dl

If the lower bound is not specified, it is assumed to be 1.

Is the upper bound of the last dimension.*

The rank of the array is the number of explicit-shape specifications plus 1.

The size of the array is assumed from the actual argument associated with the assumed-size
dummy array as follows:

• If the actual argument is an array of type other than default character, the size of the dummy
array is the size of the actual array.

• If the actual argument is an array element of type other than default character, the size of
the dummy array is a + 1 - s, where s is the subscript order value and a is the size of
the actual array.

• If the actual argument is a default character array, array element, or array element substring,
and it begins at character storage unit b of an array with n character storage units, the size
of the dummy array is as follows:

MAX(INT((n + 1 - b)/y), 0)

The y is the length of an element of the dummy array.

An assumed-size array can only be used as a whole array reference in the following cases:

• When it is an actual argument in a procedure reference that does not require the shape

1859

46

• In the intrinsic function LBOUND

Because the actual size of an assumed-size array is unknown, an assumed-size array cannot
be used as any of the following in an I/O statement:

• An array name in the I/O list

• A unit identifier for an internal file

• A run-time format specifier

Examples

The following is an example of an assumed-size specification:

SUBROUTINE SUB(A, N)

REAL A, N

DIMENSION A(1:N, *)

...

The following example shows that you can specify lower bounds for any of the dimensions of an
assumed-size array, including the last:

SUBROUTINE ASSUME(A)

REAL A(-4:-2, 4:6, 3:*)

See Also
• Declaration Statements for Arrays
• Array Elements
Deferred-Shape Specifications

A deferred-shape array is an array pointer or an allocatable array.

The array specification contains a colon (:) for each dimension of the array. No bounds are
specified. The bounds (and shape) of allocatable arrays and array pointers are determined
when space is allocated for the array during program execution.

An array pointer is an array declared with the POINTER attribute. Its bounds and shape are
determined when it is associated with a target by pointer assignment, or when the pointer is
allocated by execution of an ALLOCATE statement.

In pointer assignment, the lower bound of each dimension of the array pointer is the result of
the LBOUND intrinsic function applied to the corresponding dimension of the target. The upper
bound of each dimension is the result of the UBOUND intrinsic function applied to the
corresponding dimension of the target.

1860

46 Intel® Fortran Compiler User and Reference Guides

A pointer dummy argument can be associated only with a pointer actual argument. An actual
argument that is a pointer can be associated with a nonpointer dummy argument.

A function result can be declared to have the pointer attribute.

An allocatable array is declared with the ALLOCATABLE attribute. Its bounds and shape are
determined when the array is allocated by execution of an ALLOCATE statement.

Examples

The following are examples of deferred-shape specifications:

REAL, ALLOCATABLE :: A(:,:) ! Allocatable array

REAL, POINTER :: C(:), D (:,:,:) ! Array pointers

If a deferred-shape array is declared in a DIMENSION or TARGET statement, it must be given the
ALLOCATABLE or POINTER attribute in another statement. For example:

DIMENSION P(:, :, :)

POINTER P

TARGET B(:,:)

ALLOCATABLE B

If the deferred-shape array is an array of pointers, its size, shape, and bounds are set in an ALLOCATE
statement or in the pointer assignment statement when the pointer is associated with an allocated
target. A pointer and its target must have the same rank.

For example:

REAL, POINTER :: A(:,:), B(:), C(:,:)

INTEGER, ALLOCATABLE :: I(:)

REAL, ALLOCATABLE, TARGET :: D(:, :), E(:)

...

ALLOCATE (A(2, 3), I(5), D(SIZE(I), 12), E(98))

C => D ! Pointer assignment statement

B => E(25:56) ! Pointer assignment to a section

! of a target

See Also
• Declaration Statements for Arrays
• POINTER

1861

46

• ALLOCATABLE
• ALLOCATE
• Pointer assignment
• LBOUND
• UBOUND

ALLOCATABLE Attribute and Statement Overview

The ALLOCATABLE attribute specifies that an array is an allocatable array with a deferred shape.
The shape of an allocatable array is determined when an ALLOCATE statement is executed,
dynamically allocating space for the array. For more information, see ALLOCATABLE.

ASYNCHRONOUS Attribute and Statement Overview

The ASYNCHRONOUS attribute specifies that a variable can be used for asynchronous input
and output. For more information, see ASYNCHRONOUS.

AUTOMATIC and STATIC Attributes and Statements Overview

The AUTOMATIC and STATIC attributes control the storage allocation of variables in subprograms.
For more information, see AUTOMATIC and STATIC.

BIND Attribute and Statement Overview

The BIND statement specifies that an object is interoperable with C and has external linkage.
For more information, see BIND.

COMMON Statement Overview

A COMMON statement defines one or more contiguous areas, or blocks, of physical storage
(called common blocks) that can be accessed by any of the scoping units in an executable
program. COMMON statements also define the order in which variables and arrays are stored
in each common block, which can prevent misaligned data items. For more information, see
COMMON.

1862

46 Intel® Fortran Compiler User and Reference Guides

DATA Statement Overview

The DATA statement assigns initial values to variables before program execution. For more
information, see DATA.

DIMENSION Attribute and Statement Overview

The DIMENSION attribute specifies that an object is an array, and defines the shape of the
array. For more information, see DIMENSION.

EQUIVALENCE Statement Overview

The EQUIVALENCE statement specifies that a storage area is shared by two or more objects in
a program unit. This causes total or partial storage association of the objects that share the
storage area. For more information, see EQUIVALENCE.

See Also
• Specification Statements
• Making Arrays Equivalent
• Making Substrings Equivalent
• EQUIVALENCE and COMMON Interaction
• Making Arrays Equivalent
• Making Substrings Equivalent
• EQUIVALENCE and COMMON Interaction

Making Arrays Equivalent

When you make an element of one array equivalent to an element of another array, the
EQUIVALENCE statement also sets equivalences between the other elements of the two arrays.
Thus, if the first elements of two equal-sized arrays are made equivalent, both arrays share
the same storage. If the third element of a 7-element array is made equivalent to the first
element of another array, the last five elements of the first array overlap the first five elements
of the second array.

Two or more elements of the same array should not be associated with each other in one or
more EQUIVALENCE statements. For example, you cannot use an EQUIVALENCE statement to
associate the first element of one array with the first element of another array, and then attempt
to associate the fourth element of the first array with the seventh element of the other array.

1863

46

Consider the following example:

DIMENSION TABLE (2,2), TRIPLE (2,2,2)

EQUIVALENCE(TABLE(2,2), TRIPLE(1,2,2))

These statements cause the entire array TABLE to share part of the storage allocated to TRIPLE.
The following table shows how these statements align the arrays:

Table 576: Equivalence of Array Storage

Array TABLEArray TRIPLE

Element NumberArray ElementElement NumberArray Element

1TRIPLE(1,1,1)

2TRIPLE(2,1,1)

3TRIPLE(1,2,1)

1TABLE(1,1)4TRIPLE(2,2,1)

2TABLE(2,1)5TRIPLE(1,1,2)

3TABLE(1,2)6TRIPLE(2,1,2)

4TABLE(2,2)7TRIPLE(1,2,2)

8TRIPLE(2,2,2)

Each of the following statements also aligns the two arrays as shown in the above table:
EQUIVALENCE(TABLE, TRIPLE(2,2,1))

EQUIVALENCE(TRIPLE(1,1,2), TABLE(2,1))

You can also make arrays equivalent with nonunity lower bounds. For example, an array defined
as A(2:3,4) is a sequence of eight values. A reference to A(2,2) refers to the third element in
the sequence. To make array A(2:3,4) share storage with array B(2:4,4), you can use the
following statement:
EQUIVALENCE(A(3,4), B(2,4))

The entire array A shares part of the storage allocated to array B. The following table shows
how these statements align the arrays. The arrays can also be aligned by the following
statements:
EQUIVALENCE(A, B(4,1))

EQUIVALENCE(B(3,2), A(2,2))

1864

46 Intel® Fortran Compiler User and Reference Guides

Table 577: Equivalence of Arrays with Nonunity Lower Bounds

Array AArray B

Element NumberArray ElementElement NumberArray Element

1B(2,1)

2B(3,1)

1A(2,1)3B(4,1)

2A(3,1)4B(2,2)

3A(2,2)5B(3,2)

4A(3,2)6B(4,2)

5A(2,3)7B(2,3)

6A(3,3)8B(3,3)

7A(2,4)9B(4,3)

8A(3,4)10B(2,4)

11B(3,4)

12B(4,4)

Only in the EQUIVALENCE statement can you identify an array element with a single subscript
(the linear element number), even though the array was defined as multidimensional. For
example, the following statements align the two arrays as shown in the above table:
DIMENSION B(2:4,1:4), A(2:3,1:4)

EQUIVALENCE(B(6), A(4))

Making Substrings Equivalent

When you make one character substring equivalent to another character substring, the
EQUIVALENCE statement also sets associations between the other corresponding characters in
the character entities; for example:
CHARACTER NAME*16, ID*9

EQUIVALENCE(NAME(10:13), ID(2:5))

1865

46

These statements cause character variables NAME and ID to share space (see the following
figure). The arrays can also be aligned by the following statement:
EQUIVALENCE(NAME(9:9), ID(1:1))

Figure 28: Equivalence of Substrings

1866

46 Intel® Fortran Compiler User and Reference Guides

If the character substring references are array elements, the EQUIVALENCE statement sets
associations between the other corresponding characters in the complete arrays.

1867

46

Character elements of arrays can overlap at any character position. For example, the following
statements cause character arrays FIELDS and STAR to share storage (see the following figure).
CHARACTER FIELDS(100)*4, STAR(5)*5

EQUIVALENCE(FIELDS(1)(2:4), STAR(2)(3:5))

1868

46 Intel® Fortran Compiler User and Reference Guides

Figure 29: Equivalence of Character Arrays

1869

46

The EQUIVALENCE statement cannot assign the same storage location to two or more substrings
that start at different character positions in the same character variable or character array.
The EQUIVALENCE statement also cannot assign memory locations in a way that is inconsistent
with the normal linear storage of character variables and arrays.

EQUIVALENCE and COMMON Interaction

A common block can extend beyond its original boundaries if variables or arrays are associated
with entities stored in the common block. However, a common block can only extend beyond
its last element; the extended portion cannot precede the first element in the block.

1870

46 Intel® Fortran Compiler User and Reference Guides

Examples
The following two figures demonstrate valid and invalid extensions of the common block,
respectively.

Figure 30: A Valid Extension of a Common Block

Figure 31: An Invalid Extension of a Common Block

The second example is invalid because the extended portion, B(1), precedes the first element
of the common block.

1871

46

The following example shows a valid EQUIVALENCE statement and an invalid EQUIVALENCE
statement in the context of a common block.
COMMON A, B, C

DIMENSION D(3)

EQUIVALENCE(B, D(1)) ! Valid, because common block is extended

! from the end.

COMMON A, B, C

DIMENSION D(3)

EQUIVALENCE(B, D(3)) ! Invalid, because D(1) would extend common

! block to precede A's location.

EXTERNAL Attribute and Statement Overview

The EXTERNAL attribute allows an external or dummy procedure to be used as an actual
argument. For more information, see EXTERNAL.

IMPLICIT Statement Overview

The IMPLICIT statement overrides the default implicit typing rules for names. For more
information, see IMPLICIT.

INTENT Attribute and Statement Overview

The INTENT attribute specifies the intended use of one or more dummy arguments. For more
information, see INTENT.

INTRINSIC Attribute and Statement Overview

The INTRINSIC attribute allows the specific name of an intrinsic procedure to be used as an
actual argument. Certain specific function names cannot be used; these are indicated in table
Intrinsic Functions Not Allowed as Actual Arguments.

For more information, see INTRINSIC.

1872

46 Intel® Fortran Compiler User and Reference Guides

NAMELIST Statement Overview

The NAMELIST statement associates a name with a list of variables. This group name can be
referenced in some input/output operations. For more information, see NAMELIST.

OPTIONAL Attribute and Statement Overview

The OPTIONAL attribute permits dummy arguments to be omitted in a procedure reference.
For more information, see OPTIONAL.

PARAMETER Attribute and Statement Overview

The PARAMETER attribute defines a named constant. For more information, see PARAMETER.

POINTER Attribute and Statement Overview

The POINTER attribute specifies that an object is a pointer (a dynamic variable). For more
information, see POINTER.

PROTECTED Attribute and Statement Overview

The PROTECTED attribute specifies limitations on the use of module entities. For more
information, see PROTECTED.

PUBLIC and PRIVATE Attributes and Statements Overview

The PRIVATE and PUBLIC attributes specify the accessibility of entities in a module. (These
attributes are also called accessibility attributes.) For more information, see PUBLIC and PRIVATE.

SAVE Attribute and Statement Overview

The SAVE attribute causes the values and definition of objects to be retained after execution
of a RETURN or END statement in a subprogram. For more information, see SAVE.

1873

46

TARGET Attribute and Statement Overview

The TARGET attribute specifies that an object can become the target of a pointer. For more
information, see TARGET.

IMPORT Statement Overview

The IMPORT statement makes host entities accessible in the interface body of an interface
block. For more information, see IMPORT.

VOLATILE Attribute and Statement Overview

The VOLATILE attribute specifies that the value of an object is entirely unpredictable, based
on information local to the current program unit. For more information, see VOLATILE.

1874

46 Intel® Fortran Compiler User and Reference Guides

47Dynamic Allocation

Data objects can be static or dynamic. If a data object is static, a fixed amount of memory storage is
created for it at compile time and is not freed until the program exits. If a data object is dynamic, memory
storage for the object can be created (allocated), altered, or freed (deallocated) as a program executes.

In Fortran 95/90, pointers, allocatable arrays, and automatic arrays are dynamic data objects.

No storage space is created for a pointer until it is allocated with an ALLOCATE statement or until it is
assigned to a allocated target. A pointer can be dynamically disassociated from a target by using a NULLIFY
statement.

An ALLOCATE statement can also be used to create storage for an allocatable array. A DEALLOCATE
statement is used to free the storage space reserved in a previous ALLOCATE statement.

Automatic arrays differ from allocatable arrays in that they are automatically allocated and deallocated
whenever you enter or leave a procedure, respectively.

NOTE. Dynamic memory allocation is limited by several factors, including swap file size and
memory requirements of other applications that are running. Dynamic allocations that are
too large or otherwise attempt to use the protected memory of other applications result in
General Protection Fault errors. If you encounter an unexpectedly low limit, you might need
to reset your virtual memory size through the Control Panel or redefine the swap file size.

Some programming techniques can help minimize memory requirements, such as using one
large array instead of two or more individual arrays. Allocated arrays that are no longer
needed should be deallocated.

ALLOCATE Statement Overview

The ALLOCATE statement dynamically creates storage for allocatable arrays and pointer targets.
The storage space allocated is uninitialized. For more information, see ALLOCATE.

See Also
• Dynamic Allocation
• Allocation of Allocatable Arrays
• Allocation of Pointer Targets
• Allocation of Allocatable Arrays
• Allocation of Pointer Targets

1875

Allocation of Allocatable Arrays

The bounds (and shape) of an allocatable array are determined when it is allocated. Subsequent
redefinition or undefinition of any entities in the bound expressions does not affect the array
specification.

If the lower bound is greater than the upper bound, that dimension has an extent of zero, and
the array has a size of zero. If the lower bound is omitted, it is assumed to be 1.

When an array is allocated, it is definable. If you try to allocate a currently allocated allocatable
array, an error occurs.

The intrinsic function ALLOCATED can be used to determine whether an allocatable array is
currently allocated; for example:
REAL, ALLOCATABLE :: E(:,:)

...

IF (.NOT. ALLOCATED(E)) ALLOCATE(E(2:4,7))

Allocation Status

During program execution, the allocation status of an allocatable array is one of the following:

• Not currently allocated

The array was never allocated or the last operation on it was a deallocation. Such an array
must not be referenced or defined.

• Currently allocated

The array was allocated by an ALLOCATE statement. Such an array can be referenced,
defined, or deallocated.

If an allocatable array has the SAVE attribute, it has an initial status of "not currently allocated".
If the array is then allocated, its status changes to "currently allocated". It keeps that status
until the array is deallocated.

If an allocatable array does not have the SAVE attribute, it has the status of "not currently
allocated" at the beginning of each invocation of the procedure. If the array's status changes
to "currently allocated", it is deallocated if the procedure is terminated by execution of a RETURN
or END statement.

1876

47 Intel® Fortran Compiler User and Reference Guides

Example: Allocating Virtual Memory

The following example shows a program that performs virtual memory allocation. This program uses
Fortran 95/90 standard-conforming statements instead of calling an operating system memory
allocation routine.

! Program accepts an integer and displays square root values

INTEGER(4) :: N

READ (5,*) N ! Reads an integer value

CALL MAT(N)

END

! Subroutine MAT uses the typed integer value to display the square

! root values of numbers from 1 to N (the number read)

SUBROUTINE MAT(N)

REAL(4), ALLOCATABLE :: SQR(:) ! Declares SQR as a one-dimensional

! allocatable array

ALLOCATE (SQR(N)) ! Allocates array SQR

DO J=1,N

SQR(J) = SQRT(FLOATJ(J)) ! FLOATJ converts integer to REAL

ENDDO

WRITE (6,*) SQR ! Displays calculated values

DEALLOCATE (SQR) ! Deallocates array SQR

END SUBROUTINE MAT

See Also
• ALLOCATE Statement Overview
• ALLOCATED intrinsic function
• ALLOCATE statement

Allocation of Pointer Targets

When a pointer is allocated, the pointer is associated with a target and can be used to reference
or define the target. (The target can be an array or a scalar, depending on how the pointer was
declared.)

1877

47

Other pointers can become associated with the pointer target (or part of the pointer target) by
pointer assignment.

In contrast to allocatable arrays, a pointer can be allocated a new target even if it is currently
associated with a target. The previous association is broken and the pointer is then associated
with the new target.

If the previous target was created by allocation, it becomes inaccessible unless it can still be
referred to by other pointers that are currently associated with it.

The intrinsic function ASSOCIATED can be used to determine whether a pointer is currently
associated with a target. (The association status of the pointer must be defined.) For example:

REAL, TARGET :: TAR(0:50)

REAL, POINTER :: PTR(:)

PTR => TAR

...

IF (ASSOCIATED(PTR,TAR))...

See Also
• ALLOCATE Statement Overview
• POINTER statement and attribute
• Pointer assignments
• ASSOCIATED intrinsic function

DEALLOCATE Statement Overview

The DEALLOCATE statement frees the storage allocated for allocatable arrays and pointer targets
(and causes the pointers to become disassociated). For more information, see DEALLOCATE.

See Also
• Dynamic Allocation
• Deallocation of Allocatable Arrays
• Deallocation of Pointer Targets
• Deallocation of Allocatable Arrays
• Deallocation of Pointer Targets

Deallocation of Allocatable Arrays

If the DEALLOCATE statement specifies an array that is not currently allocated, an error occurs.

1878

47 Intel® Fortran Compiler User and Reference Guides

If an allocatable array with the TARGET attribute is deallocated, the association status of any
pointer associated with it becomes undefined.

If a RETURN or END statement terminates a procedure, an allocatable array has one of the
following allocation statuses:

• It keeps its previous allocation and association status if the following is true:

• It has the SAVE attribute.

• It is in the scoping unit of a module that is accessed by another scoping unit which is
currently executing.

• It is accessible by host association.

• It remains allocated if it is accessed by use association.

• Otherwise, its allocation status is deallocated.

The intrinsic function ALLOCATED can be used to determine whether an allocatable array is
currently allocated; for example:
SUBROUTINE TEST

REAL, ALLOCATABLE, SAVE :: F(:,:)

REAL, ALLOCATABLE :: E(:,:,:)

...

IF (.NOT. ALLOCATED(E)) ALLOCATE(E(2:4,7,14))

END SUBROUTINE TEST

Note that when subroutine TEST is exited, the allocation status of F is maintained because F
has the SAVE attribute. Since E does not have the SAVE attribute, it is deallocated. On the next
invocation of TEST, E will have the status of "not currently allocated".

See Also
• DEALLOCATE Statement Overview
• Host association
• TARGET statement and attribute
• RETURN statement
• END statement
• SAVE statement

1879

47

Deallocation of Pointer Targets

A pointer must not be deallocated unless it has a defined association status. If the DEALLOCATE
statement specifies a pointer that has undefined association status, or a pointer whose target
was not created by allocation, an error occurs.

A pointer must not be deallocated if it is associated with an allocatable array, or it is associated
with a portion of an object (such as an array element or an array section).

If a pointer is deallocated, the association status of any other pointer associated with the target
(or portion of the target) becomes undefined.

Execution of a RETURN or END statement in a subprogram causes the pointer association status
of any pointer declared (or accessed) in the procedure to become undefined, unless any of the
following applies to the pointer:

• It has the SAVE attribute.

• It is in the scoping unit of a module that is accessed by another scoping unit which is currently
executing.

• It is accessible by host association.

• It is in blank common.

• It is in a named common block that appears in another scoping unit that is currently
executing.

• It is the return value of a function declared with the POINTER attribute.

If the association status of a pointer becomes undefined, it cannot subsequently be referenced
or defined.

Examples

The following example shows deallocation of a pointer:

INTEGER ERR

REAL, POINTER :: PTR_A(:)

...

ALLOCATE (PTR_A(10), STAT=ERR)

...

DEALLOCATE(PTR_A)

See Also
• DEALLOCATE Statement Overview

1880

47 Intel® Fortran Compiler User and Reference Guides

• POINTER statement and attribute
• COMMON statement
• NULL intrinsic function
• Host association
• TARGET statement and attribute
• RETURN statement
• END statement
• SAVE statement

NULLIFY Statement Overview

The NULLIFY statement disassociates a pointer from its target. For more information, see
NULLIFY.

1881

47

48Execution Control

A program normally executes statements in the order in which they are written. Executable control
constructs and statements modify this normal execution by transferring control to another statement in
the program, or by selecting blocks (groups) of constructs and statements for execution or repetition.

In Fortran 95/90, control constructs (CASE, DO, and IF) can be named. The name must be a unique
identifier in the scoping unit, and must appear on the initial line and terminal line of the construct. On the
initial line, the name is separated from the statement keyword by a colon (:).

A block can contain any executable Fortran statement except an END statement. You can transfer control
out of a block, but you cannot transfer control into another block.

DO loops cannot partially overlap blocks. The DO statement and its terminal statement must appear
together in a statement block.

Branch Statements

Branching affects the normal execution sequence by transferring control to a labeled statement in
the same scoping unit. The transfer statement is called the branch statement, while the statement
to which the transfer is made is called the branch target statement.

Any executable statement can be a branch target statement, except for the following:

• CASE statement

• ELSE statement

• ELSE IF statement

Certain restrictions apply to the following statements:

RestrictionStatement

The branch must be taken from within its
nonblock DO construct1.

DO terminal statement

The branch must be taken from within its block
DO construct.

END DO

The branch should be taken from within its IF
construct2.

END IF

The branch must be taken from within its CASE
construct.

END SELECT

1883

RestrictionStatement

1 If the terminal statement is shared by more than one nonblock DO construct, the branch
can only be taken from within the innermost DO construct
2 You can branch to an END IF statement from outside the IF construct; this is a deleted
feature in Fortran 95. Intel® Fortran fully supports features deleted in Fortran 95.

See Also
• Execution Control
• Unconditional GO TO Statement Overview
• Computed GO TO Statement Overview
• The ASSIGN and Assigned GO TO Statements Overview
• Arithmetic IF Statement Overview
• Unconditional GO TO
• Computed GO TO
• Assigned GO TO
• Arithmetic IF
• IF constructs
• CASE constructs
• DO constructs

Unconditional GO TO Statement Overview

The unconditional GO TO statement transfers control to the same branch target statement
every time it executes. For more information, see GOTO - Unconditional.

Computed GO TO Statement Overview

The computed GO TO statement transfers control to one of a set of labeled branch target
statements based on the value of an expression. For more information, see GOTO - COMPUTED.

The ASSIGN and Assigned GO TO Statements Overview

The ASSIGN statement assigns a label to an integer variable. Subsequently, this variable can
be used as a branch target statement by an assigned GO TO statement or as a format specifier
in a formatted input/output statement.

The ASSIGN and assigned GO TO statements are deleted features in Fortran 95; they were
obsolescent features in Fortran 90. Intel® Fortran fully supports features deleted in Fortran 95.

1884

48 Intel® Fortran Compiler User and Reference Guides

Arithmetic IF Statement Overview

The arithmetic IF statement conditionally transfers control to one of three statements, based
on the value of an arithmetic expression. For more information, see IF - Arithmetic.

CALL Statement Overview

The CALL statement transfers control to a subroutine subprogram. For more information, see
CALL.

CASE Constructs Overview

The CASE construct conditionally executes one block of constructs or statements depending on
the value of a scalar expression in a SELECT CASE statement. For more information, see CASE.

CONTINUE Statement Overview

The CONTINUE statement is primarily used to terminate a labeled DO construct when the
construct would otherwise end improperly with either a GO TO, arithmetic IF, or other prohibited
control statement. For more information, see CONTINUE.

DO Constructs Overview

The DO construct controls the repeated execution of a block of statements or constructs. For
more information, see DO.

See Also
• Execution Control
• Forms for DO Constructs
• Execution of DO Constructs
• DO WHILE Statement Overview
• CYCLE Statement Overview
• EXIT Statement Overview
• Forms for DO Constructs
• Execution of DO Constructs
• DO WHILE Statement
• CYCLE Statement

1885

48

• EXIT Statement

Forms for DO Constructs

A DO construct can be in block or nonblock form. For more information, see DO.

Execution of DO Constructs

The range of a DO construct includes all the statements and constructs that follow the DO
statement, up to and including the terminal statement. If the DO construct contains another
construct, the inner (nested) construct must be entirely contained within the DO construct.

Execution of a DO construct differs depending on how the loop is controlled, as follows:

• For simple DO constructs, there is no loop control. Statements in the DO range are repeated
until the DO statement is terminated explicitly by a statement within the range.

• For iterative DO statements, loop control is specified as do-var = expr1, expr2 [,expr3].
An iteration count specifies the number of times the DO range is executed. (For more
information, see Iteration Loop Control.)

• For DO WHILE statements, loop control is specified as a DO range. The DO range is repeated
as long as a specified condition remains true. Once the condition is evaluated as false, the
DO construct terminates. (For more information, see the DO WHILE statement.)

See Also
• DO Constructs Overview
• Iteration Loop Control
• Nested DO Constructs
• Extended Range
• Nested DO Constructs
• Extended Range
Iteration Loop Control

DO iteration loop control takes the following form:

do-var = expr1, expr2 [, expr3]

Is the name of a scalar variable of type integer or real. It cannot be
the name of an array element or structure component.

do-var

Is a scalar numeric expression of type integer, logical, or real. If it is
not the same type as do-var, it is converted to that type.

expr

1886

48 Intel® Fortran Compiler User and Reference Guides

Description

A DO variable or expression of type real is a deleted feature in Fortran 95; it was obsolescent
in Fortran 90. Intel® Fortran fully supports features deleted in Fortran 95.

The following steps are performed in iteration loop control:

1. The expressions expr1, expr2, and expr3 are evaluated to respectively determine the initial,
terminal, and increment parameters.

The increment parameter (expr3) is optional and must not be zero. If an increment parameter
is not specified, it is assumed to be of type default integer with a value of 1.

2. The DO variable (do-var) becomes defined with the value of the initial parameter (expr1).

3. The iteration count is determined as follows:

MAX(INT((expr2 - expr1 + expr3)/expr3), 0)

The iteration count is zero if either of the following is true:

expr1 > expr2 and expr3 > 0

expr1 < expr2 and expr3 < 0

4. The iteration count is tested. If the iteration count is zero, the loop terminates and the DO
construct becomes inactive. (Compiler option f66 can affect this.) If the iteration count is
nonzero, the range of the loop is executed.

5. The iteration count is decremented by one, and the DO variable is incremented by the value
of the increment parameter, if any.

After termination, the DO variable retains its last value (the one it had when the iteration count
was tested and found to be zero).

The DO variable must not be redefined or become undefined during execution of the DO range.

If you change variables in the initial, terminal, or increment expressions during execution of
the DO construct, it does not affect the iteration count. The iteration count is fixed each time
the DO construct is entered.

Examples

The following example specifies 25 iterations:

DO 100 K=1,50,2

K=49 during the final iteration, K=51 after the loop.

1887

48

The following example specifies 27 iterations:

DO 350 J=50,-2,-2

J=-2 during the final iteration, J=-4 after the loop.

The following example specifies 9 iterations:

DO NUMBER=5,40,4

NUMBER=37 during the final iteration, NUMBER=41 after the loop. The terminating statement of
this DO loop must be END DO.

See Also
• Execution of DO Constructs
• Obsolescent and Deleted Language Features
• f66
Nested DO Constructs

A DO construct can contain one or more complete DO constructs (loops). The range of an inner
nested DO construct must lie completely within the range of the next outer DO construct. Nested
nonblock DO constructs can share a labeled terminal statement.

1888

48 Intel® Fortran Compiler User and Reference Guides

The following figure shows correctly and incorrectly nested DO constructs:

1889

48

Figure 32: Nested DO Constructs

1890

48 Intel® Fortran Compiler User and Reference Guides

In a nested DO construct, you can transfer control from an inner construct to an outer construct.
However, you cannot transfer control from an outer construct to an inner construct.

If two or more nested DO constructs share the same terminal statement, you can transfer
control to that statement only from within the range of the innermost construct. Any other
transfer to that statement constitutes a transfer from an outer construct to an inner construct,
because the shared statement is part of the range of the innermost construct.

Extended Range

A DO construct has an extended range if both of the following are true:

• The DO construct contains a control statement that transfers control out of the construct.

• Another control statement returns control back into the construct after execution of one or
more statements.

The range of the construct is extended to include all executable statements between the
destination statement of the first transfer and the statement that returns control to the construct.

The following rules apply to a DO construct with extended range:

• A transfer into the range of a DO statement is permitted only if the transfer is made from
the extended range of that DO statement.

• The extended range of a DO statement must not change the control variable of the DO
statement.

1891

48

The following figure shows valid and invalid extended range control transfers:

1892

48 Intel® Fortran Compiler User and Reference Guides

Figure 33: Control Transfers and Extended Range

1893

48

DO WHILE Statement Overview

The DO WHILE statement executes the range of a DO construct while a specified condition
remains true. For more information, see DO WHILE.

CYCLE Statement Overview

The CYCLE statement interrupts the current execution cycle of the innermost (or named) DO
construct. For more information, see CYCLE.

EXIT Statement Overview

The EXIT statement terminates execution of a DO construct. For more information, see EXIT.

END Statement Overview

The END statement marks the end of a program unit. For more information, see END.

IF Construct and Statement Overview

The IF construct conditionally executes one block of statements or constructs.

The IF statement conditionally executes one statement.

The decision to transfer control or to execute the statement or block is based on the evaluation
of a logical expression within the IF statement or construct.

IF Construct Overview

The IF construct conditionally executes one block of constructs or statements depending on
the evaluation of a logical expression. For more information, see IF construct.

IF Statement Overview

The IF statement conditionally executes one statement based on the value of a logical expression.
For more information, see IF - Logical.

PAUSE Statement Overview

The PAUSE statement temporarily suspends program execution until the user or system resumes
execution. For more information, see PAUSE.

1894

48 Intel® Fortran Compiler User and Reference Guides

The PAUSE statement is a deleted feature in Fortran 95; it was an obsolescent feature in Fortran
90. Intel Fortran fully supports features deleted in Fortran 95.

See Also
• Execution Control
For alternate methods of pausing while reading from and writing to a device, see
READ and WRITE.

RETURN Statement Overview

The RETURN statement transfers control from a subprogram to the calling program unit. For
more information, see RETURN.

STOP Statement Overview

The STOP statement terminates program execution before the end of the program unit. For
more information, see STOP.

1895

48

49Program Units and Procedures

A Fortran 95/90 program consists of one or more program units. There are four types of program units:

• Main program

The program unit that denotes the beginning of execution. It may or may not have a PROGRAM
statement as its first statement.

• External procedures

Program units that are either user-written functions or subroutines.

• Modules

Program units that contain declarations, type definitions, procedures, or interfaces that can be shared
by other program units.

• Block data program units

Program units that provide initial values for variables in named common blocks.

A program unit does not have to contain executable statements; for example, it can be a module containing
interface blocks for subroutines.

A procedure can be invoked during program execution to perform a specific task. There are several kinds
of procedures, as follows:

DescriptionKind of Procedure

A procedure that is not part of any other program
unit.

External Procedure

A procedure defined within a moduleModule Procedure

A procedure (other than a statement function)
contained within a main program, function, or
subroutine

Internal Procedure1

A procedure defined by the Fortran languageIntrinsic Procedure

A dummy argument specified as a procedure or
appearing in a procedure reference

Dummy Procedure

A computing procedure defined by a single
statement

Statement function

1897

DescriptionKind of Procedure

1 The program unit that contains an internal procedure is called its host.

A function is invoked in an expression using the name of the function or a defined operator. It returns
a a single value (function result) that is used to evaluate the expression.

A subroutine is invoked in a CALL statement or by a defined assignment statement. It does not
directly return a value, but values can be passed back to the calling program unit through arguments
(or variables) known to the calling program.

Recursion (direct or indirect) is permitted for functions and subroutines.

A procedure interface refers to the properties of a procedure that interact with or are of concern to
the calling program. A procedure interface can be explicitly defined in interface blocks. All program
units, except block data program units, can contain interface blocks.

Main Program

A main program is a program unit whose first statement is not a SUBROUTINE, FUNCTION,
MODULE, or BLOCK DATA statement. Program execution always begins with the first executable
statement in the main program, so there must be exactly one main program unit in every
executable program. For more information, see PROGRAM.

Modules and Module Procedures Overview

A module program unit contains specifications and definitions that can be made accessible to
other program units. There are two types of modules, intrinsic and nonintrinsic. Intrinsic modules
are included in the Fortran library; nonintrinsic modules are user-defined.

For the module to be accessible, the other program units must reference its name in a USE
statement, and the module entities must be public. For more information, see MODULE.

A module procedure is a procedure declared and defined in a module, between its CONTAINS
and END statements. For more information, see MODULE PROCEDURE.

See Also
• Program Units and Procedures
• Module References
• USE Statement Overview
• Module References
• USE Statement

1898

49 Intel® Fortran Compiler User and Reference Guides

Module References

A program unit references a module in a USE statement. This module reference lets the program
unit access the public definitions, specifications, and procedures in the module.

Entities in a module are public by default, unless the USE statement specifies otherwise or the
PRIVATE attribute is specified for the module entities.

A module reference causes use association between the using program unit and the entities in
the module.

See Also
• Modules and Module Procedures Overview
• USE statement
• PRIVATE attribute
• PUBLIC attribute
• Use association

USE Statement Overview

The USE statement gives a program unit accessibility to public entities in a module. For more
information, see USE.

Examples

Entities in modules can be accessed either through their given name, or through aliases declared in
the USE statement of the main program unit. For example:

USE MODULE_LIB, XTABS => CROSSTABS

This statement accesses the routine called CROSSTABS in MODULE_LIB by the name XTABS. This way,
if two modules have routines called CROSSTABS, one program can use them both simultaneously by
assigning a local name in its USE statement.

When a program or subprogram renames a module entity, the local name (XTABS, in the preceding
example) is accessible throughout the scope of the program unit that names it.

The ONLY option also allows public variables to be renamed. Consider the following:

USE MODULE_A, ONLY: VARIABLE_A => VAR_A

In this case, the host program accesses only VAR_A from module A, and refers to it by the name
VARIABLE_A.

1899

49

Consider the following example:

MODULE FOO

integer foos_integer

PRIVATE

integer foos_my_integer

END MODULE FOO

PRIVATE, in this case, makes the PRIVATE attribute the default for the entire module FOO. To make
foos_integer accessible to other program units, add the line:

PUBLIC :: foos_integer

Alternatively, to make only foos_my_integer inaccessible outside the module, rewrite the module
as follows:

MODULE FOO

integer foos_integer

integer, private::foos_my_integer

END MODULE FOO

Intrinsic Modules

Intrinsic modules, like other module program units, contain specifications and definitions that
can be made accessible to other program units. The intrinsic modules are part of the Fortran
library. They are Fortran 2003 features.

An intrinsic module is specified in a USE statement, as follows:

USE, INTRINSIC :: mod-name [, rename-list] ...

USE, INTRINSIC :: mod-name, ONLY : [, only-list]

Is the name of the intrinsic module.mod-name

See the description in USE.rename-list

See the description in USE.only-list

Procedures and types defined in an intrinsic module are not themselves intrinsic.

An intrinsic module can have the same name as other global entities, such as program units,
common blocks, or external procedures. A scoping unit must not be able to access both an
intrinsic module and a non-intrinsic module with the same name.

The following intrinsic modules are included in the Fortran library:

1900

49 Intel® Fortran Compiler User and Reference Guides

• ISO_C_BINDING

• ISO_FORTRAN_ENV

• IEEE Intrinsic Modules

ISO_C_BINDING Module

The ISO_C_BINDING intrinsic module provides access to data entities that are useful in
mixed-language programming. It takes the following form:

USE, INTRINSIC :: ISO_C_BINDING

This intrinsic module provides access to the following data entities:

• Named Constants

• Derived Types

Derived type C_PTR is interoperable with any C object pointer type. Derived type C_FUNPTR
is interoperable with any C function pointer type.

• Intrinsic Module Procedures

Named Constants

The ISO_C_BINDING named constants represent kind type parameters of data representations
compatible with C types.

Intrinsic-Type Constants

The following table shows interoperable Fortran types and C Types.

C TypeNamed Constant for the KINDFortran Type

intC_INTINTEGER

short intC_SHORT

long intC_LONG

long long intC_LONG_LONG

signed char, unsigned charC_SIGNED_CHAR

size_tC_SIZE_T

1901

49

C TypeNamed Constant for the KINDFortran Type

int8_tC_INT8_T

int16_tC_INT16_T

int32_tC_INT32_T

int64_tC_INT64_T

int_least8_tC_INT_LEAST8_T

int_least16_tC_INT_LEAST16_T

int_least32_tC_INT_LEAST32_T

int_least64_tC_INT_LEAST64_T

int_fast8_tC_INT_FAST8_T

int_fast16_tC_INT_FAST16_T

int_fast32_tC_INT_FAST32_T

int_fast64_tC_INT_FAST64_T

intmax_tC_INTMAX_T

intptr_tC_INTPTR_T

floatC_FLOATREAL

doubleC_DOUBLE

long doubleC_LONG_DOUBLE

float _ComplexC_FLOAT_COMPLEXCOMPLEX

double _ComplexC_DOUBLE_COMPLEX

long double _ComplexC_LONG_DOUBLE_COMPLEX

1902

49 Intel® Fortran Compiler User and Reference Guides

C TypeNamed Constant for the KINDFortran Type

_BoolC_BOOL

charC_CHARCHARACTER1

1For character type, the length type parameter must be omitted or it must be specified by
an initialization expression whose value is one.

For example, an integer type with the kind type parameter C_LONG is interoperable with the
C integer type "long" or any C type derived from "long".

The value of C_INT will be a valid value for an integer kind type parameter on the processor.
The values for the other integer named constants (C_INT*) will be a valid value for an integer
kind type parameter on the processor, if any, or one of the following:

• -1 if the C processor defines the corresponding C type and there is no interoperating Fortran
processor kind

• -2 if the C processor does not define the corresponding C type

The values of C_FLOAT, C_DOUBLE, and C_LONGDOUBLE will be a valid value for a real kind
type parameter on the processor, if any, or one of the following:

• -1 if the C processor's type does not have a precision equal to the precision of any of the
Fortran processor's real kinds

• -2 if the C processor's type does not have a range equal to the range of any of the Fortran
processor's real kinds

• -3 if the C processor's type has neither the precision or range equal to the precision or range
of any of the Fortran processor's real kinds

• -4 if there is no interoperating Fortran processor or kind for other reasons

The values of C_FLOAT_COMPLEX, C_DOUBLE_COMPLEX, and C_LONG_DOUBLE_COMPLEX will
be the same as those of C_FLOAT, C_DOUBLE, and C_LONG_DOUBLE, respectively.

The value of C_BOOL will be a valid value for a logical kind parameter on the processor, if any,
or -1.

The value of C_CHAR is the character kind.

1903

49

Character Constants

The following table shows interoperable named constants and C characters:

C CharacterDefinitionFortran Named Constant

'\0'null characterC_NULL_CHAR

'\a'alertC_ALERT

'\b'backspaceC_BACKSPACE

'\f'form feedC_FORM_FEED

'\n'new lineC_NEW_LINE

'\r'carriage returnC_CARRIAGE_RETURN

'\t'horizontal tabC_HORIZONTAL_TAB

'\v'vertical tabC_VERTICAL_TAB

Derived-Type Constants

The constant C_NULL_PTR is of type C_PTR; it has the value of a C null data pointer. The
constant C_NULL_FUNPTR is of type C_FUNPTR; it has the value of a C null function pointer.

Intrinsic Module Procedures

The following procedures are provided with the ISO_C_BINDING intrinsic module:

• C_ASSOCIATED

• C_F_POINTER

• C_F_PROCPOINTER

• C_FUNLOC

• C_LOC

None of the procedures are pure.

ISO_FORTRAN_ENV Module

The ISO_FORTRAN_ENV intrinsic module provides information about the Fortran run-time
environment. It takes the following form:

1904

49 Intel® Fortran Compiler User and Reference Guides

USE, INTRINSIC :: ISO_FORTRAN_ENV

This intrinsic module provides the named constants you can use to get information on the
Fortran environment. They are all scalars of type default integer.

DefinitionNamed Constant

Is the size of the character storage unit
expressed in bits.

CHARACTER_STORAGE_SIZE

Identifies the preconnected external unit used
for error reporting.

ERROR_UNIT

Is the size of the file storage unit expressed
in bits. To use this constant, compiler option
assume byterecl must be enabled.

FILE_STORAGE_SIZE

Identifies the preconnected external unit as
the one specified by an asterisk in a READ
statement. To use this constant, compiler
option assume noold_unit_star must be
enabled.

INPUT_UNIT

Is the value assigned to the variable specified
in an IOSTAT= specifier if an end-of-file
condition occurs during execution of an
input/output statement and no error condition
occurs.

IOSTAT_END

Is the value assigned to the variable specified
in an IOSTAT= specifier if an end-of-record
condition occurs during execution of an
input/output statement and no error condition
occurs.

IOSTAT_EOR

Is the size of the numeric storage unit
expressed in bits.

NUMERIC_STORAGE_SIZE

Identifies the preconnected external unit as
the one specified by an asterisk in a WRITE
statement. To use this constant, compiler
option assume noold_unit_star must be
enabled.

OUTPUT_UNIT

1905

49

IEEE Intrinsic Modules and Procedures

Intel Fortran includes IEEE intrinsic modules that support IEEE arithmetic and exception handling.
The modules contain derived data types that include named constants for controlling the level
of support, and intrinsic module procedures. The modules and procedures are Fortran 2003
features.

To include an IEEE module in your program, specify the intrinsic module name in a USE
statement; for example:

USE, INTRINSIC :: IEEE_ARITHMETIC

You must include the INTRINSIC attribute or the processor will look for a non-intrinsic module.
Once you include a module, all related intrinsic procedures are defined.

There are three IEEE intrinsic modules described in this section:

• IEEE_ARITHMETIC

• IEEE_EXCEPTIONS

• IEEE_FEATURES

Determining Availability of IEEE Features

Before using a particular IEEE feature, you can determine whether your processor supports it
by using the IEEE inquiry functions (listed in Table 1).

For example:

• To determine whether IEEE arithmetic is available for a particular kind of real, use intrinsic
module function IEEE_SUPPORT_DATATYPE

• To determine whether you can change a rounding mode, use intrinsic module function
IEEE_SUPPORT_ROUNDING.

• To determine whether a divide operation will be supported with the accuracy specified by
the IEEE standard, use intrinsic module function IEEE_SUPPORT_DIVIDE.

• To determine whether you can control halting after an exception has occurred, use intrinsic
module function IEEE_SUPPORT_HALTING.

• To determine which exceptions are supported in a scoping unit, use intrinsic module function
IEEE_SUPPORT_FLAG.

• To determine whether all IEEE features are supported, use intrinsic module function
IEEE_SUPPORT_STANDARD.

1906

49 Intel® Fortran Compiler User and Reference Guides

Restrictions for IEEE Intrinsic Procedures

The following intrinsic procedures can only be invoked if IEEE_SUPPORT_DATATYPE is true for
their arguments:

IEEE_SUPPORT_DENORMALIEEE_CLASS

IEEE_SUPPORT_DIVIDEIEEE_COPY_SIGN

IEEE_SUPPORT_INRIEEE_IS_FINITE

IEEE_SUPPORT_IOIEEE_NEGATIVE

IEEE_SUPPORT_NANIEEE_IS_NORMAL

IEEE_SUPPORT_ROUNDINGIEEE_LOGB

IEEE_SUPPORT_SQRTIEEE_NEXT_AFTER

IEEE_SUPPORT_UNORDEREDIEEE_REM

IEEE_SUPPORT_VALUEIEEE_RINT

IEEE_VALUEIEEE_SCALB

IEEE_SUPPORT_ROUNDINGIEEE_SET_ROUNDING_MODE1

1: IEEE_SUPPORT_ROUNDING(ROUND_VALUE, X) must also be true.

1907

49

For example, the IEEE_IS_NORMAL(X) function can only be invoked if
IEEE_SUPPORT_DATATYPE(X) has the value true. Consider the following:
USE, INTRINSIC :: IEEE_ARITHMETIC

...

IF IEEE_SUPPORT_DATATYPE(X) THEN

IF IEEE_IS_NORMAL(X) THEN

PRINT *, ' X is a 'normal' '

ELSE

PRINT *, ' X is not 'normal' '

ELSE

PRINT *, ' X is not a supported IEEE type '

ENDIF

...

Certain other IEEE intrinsic module procedures have similar restrictions:

• IEEE_IS_NAN(X) can only be invoked if IEEE_SUPPORT_NAN(X) has the value true.

• IEEE_SET_HALTING_MODE(FLAG, HALTING) can only be invoked if
IEEE_SUPPORT_HALTING(FLAG) has the value true.

• IEEE_GET_UNDERFLOW_MODE(GRADUAL) can only be invoked if
IEEE_SUPPORT_UNDERFLOW_CONTROL(X) is true for some X.

For intrinsic module function IEEE_CLASS(X), some of the possible return values also have
restrictions. These restrictions are also true for argument CLASS in intrinsic module function
IEEE_VALUE(X, CLASS):

• IEEE_POSITIVE_INF and IEEE_NEGATIVE_INF can only be returned if IEEE_SUPPORT_INF(X)
has the value true.

• IEEE_POSITIVE_DENORMAL and IEEE_NEGATIVE_DENORMAL can only be returned if
IEEE_SUPPORT_DENORMAL(X) has the value true.

• IEEE_SIGNALING_NAN and IEEE_QUIET_NAN can only be returned if IEEE_SUPPORT_NAN(X)
has the value true.

IEEE_ARITHMETIC Intrinsic Module

The IEEE_ARITHMETIC module contains derived data types that include named constants for
controlling the level of support, and intrinsic module procedures. This module and its procedures
are Fortran 2003 features.

1908

49 Intel® Fortran Compiler User and Reference Guides

The derived types in the intrinsic modules have components that are private. The
IEEE_ARITHMETIC intrinsic module supports IEEE arithmetic and features. It defines the following
derived types:

• IEEE_CLASS_TYPE: Identifies a class of floating-point values. Its values are the following
named constants:

IEEE_NEGATIVE_NORMALIEEE_SIGNALING_NAN

IEEE_POSITIVE_DENORMALIEEE_QUIET_NAN

IEEE_NEGATIVE_DENORMALIEEE_POSITIVE_INF

IEEE_POSITIVE_ZEROIEEE_NEGATIVE_INF

IEEE_NEGATIVE_ZEROIEEE_POSITIVE_NORMAL

IEEE_OTHER_VALUE

• IEEE_ROUND_TYPE: Identifies a rounding mode. Its values are the following named constants:

IEEE_TO_ZEROIEEE_NEAREST

IEEE_OTHER1IEEE_UP

IEEE_DOWN

1: Specifies the rounding mode does not conform to the IEEE standard.

The IEEE_ARITHMETIC intrinsic module also defines the following operators:

• Elemental operator = = for two values of one of the above types to return true if the values
are the same; otherwise, false.

• Elemental operator /= for two values of one of the above types to return true if the values
differ; otherwise, false.

The IEEE_ARITHMETIC module includes support for IEEE_EXCEPTIONS module, and public
entities in IEEE_EXCEPTIONS module are also public in the IEEE_ARITHMETIC module.

IEEE_EXCEPTIONS Intrinsic Module

The IEEE_EXCEPTIONS module contains derived data types that include named constants for
controlling the level of support, and intrinsic module procedures. This module and its procedures
are Fortran 2003 features.

1909

49

The derived types in the intrinsic modules have components that are private. The
IEEE_EXCEPTIONS intrinsic module supports the setting, clearing, saving, restoring, or testing
of exception flags. It defines the following derived types:

• IEEE_FLAG_TYPE: Identifies an exception flag for errors that occur during an IEEE arithmetic
operation or assignment. Its values are the following named constants:

IEEE_DIVIDE_BY_ZEROIEEE_INVALID

IEEE_INEXACTIEEE_OVERFLOW

IEEE_UNDERFLOW

Each of the above exceptions has a flag whose value is either quiet or signaling. The initial
value is quiet and it signals when the associated exception occurs. To determine the value
of a flag, use intrinsic module subroutine IEEE_GET_FLAG. To change the status for a flag,
use intrinsic module subroutine IEEE_SET_FLAG or IEEE_SET_STATUS.

If a flag is signaling on entry to a procedure, the processor sets it to quiet on entry and
restores it to signaling on return.

If a flag is quiet on entry to a procedure with access to modules IEEE_ARITHMETIC or
IEEE_EXCEPTIONS, and is signaling on return, the processor will not restore it to quiet.

The IEEE_FLAG_TYPE module also defines the following named array constants:

• IEEE_USUAL=(/IEEE_OVERFLOW,IEEE_DIVIDE_BY_ZERO, IEEE_INVALID/)

• IEEE_ALL=(/IEEE_USUAL,IEEE_UNDERFLOW,IEEE_INEXACT/)

• IEEE_STATUS_TYPE: Saves the current floating-point status.

The IEEE_ARITHMETIC module includes support for IEEE_EXCEPTIONS module, and public
entities in IEEE_EXCEPTIONS module are also public in the IEEE_ARITHMETIC module.

IEEE_FEATURES Intrinsic Module

The IEEE_FEATURES module contains derived data types that include named constants for
controlling the level of support, and intrinsic module procedures. This module and its procedures
are Fortran 2003 features.

The derived types in the intrinsic modules have components that are private. The
IEEE_FEATURES intrinsic module supports specification of essential IEEE features. It defines
the following derived types:

• IEEE_FEATURES_TYPE: Specifies IEEE features. Its values are the following named constants:

IEEE_INFIEEE_DATATYPE

1910

49 Intel® Fortran Compiler User and Reference Guides

IEEE_NANIEEE_DIVIDE

IEEE_INEXACT_FLAGIEEE_ROUNDING

IEEE_INVALID_FLAGIEEE_SQRT

IEEE_UNDERFLOW_FLAGIEEE_DENORMAL

IEEE_HALTING

• IEEE_STATUS_TYPE: Saves the current floating-point status.

IEEE Intrinsic Modules Quick Reference Tables

This topic contains quick reference tables for categories of IEEE intrinsic modules.

Table 588: Categories of Intrinsic Module Functions
DescriptionSub-categoryCategory

Test IEEE values or provide features:ArithmeticIEEE

IEEE_CLASS, IEEE_COPY_SIGN, IEEE_IS_FINITE,
IEEE_IS_NAN, IEEE_IS_NORMAL,
IEEE_IS_NEGATIVE, IEEE_LOGB,
IEEE_NEXT_AFTER, IEEE_REM, IEEE_RINT,
IEEE_SCALB, IEEE_UNORDERED, IEEE_VALUE

Returns whether the processor supports certain
exceptions or IEEE features:

Inquiry

IEEE_SUPPORT_DATATYPE,
IEEE_SUPPORT_DENORMAL,
IEEE_SUPPORT_DIVIDE, IEEE_SUPPORT_FLAG,
IEEE_SUPPORT_HALTING, IEEE_SUPPORT_INF,
IEEE_SUPPORT_IO, IEEE_SUPPORT_NAN,
IEEE_SUPPORT_ROUNDING,
IEEE_SUPPORT_SQRT,
IEEE_SUPPORT_STANDARD,
IEEE_SUPPORT_UNDERFLOW_CONTROL

Returns the kind type parameter of an IEEE
value:

Transformational

IEEE_SELECTED_REAL_KIND

1911

49

Table 589: Summary of Generic Module Intrinsic Functions
Value ReturnedClassGeneric Function

The IEEE classEIEEE_CLASS (X)

An argument with a copied sign; the
IEEE copysign functionEIEEE_COPY_SIGN (X, Y)

Whether a value is finiteEIEEE_IS_FINITE (X)

Whether a value is NaNEIEEE_IS_NAN (X)

Whether a value is negativeEIEEE_IS_NEGATIVE (X)

Whether a value is normalEIEEE_IS_NORMAL (X)

An exponent in IEEE floating-point
format; the IEEE logb functionEIEEE_LOGB (X)

The next representable value after X
toward Y; the IEEE nextafter functionEIEEE_NEXT_AFTER (X, Y)

The result of a remainder operation; the
IEEE rem functionEIEEE_REM (X, Y)

An integer value rounded according to
the current rounding modeEIEEE_RINT (X)

The value of X multiplied by 2**I; the
IEEE scalb functionEIEEE_SCALB (X, I)

The kind type parameter for an IEEE realTIEEE_SELECTED_REAL_KIND ([P] [, R])

Whether IEEE arithmetic is supportedIIEEE_SUPPORT_DATATYPE ([X])

Whether denormalized numbers are
supportedIIEEE_SUPPORT_DENORMAL ([X])

Whether divide accuracy compares to
IEEE standardIIEEE_SUPPORT_DIVIDE ([X])

Whether an exception is supportedIIEEE_SUPPORT_FLAG (FLAG [, X])

Whether halting after and exception is
supportedIIEEE_SUPPORT_HALTING (FLAG)

1912

49 Intel® Fortran Compiler User and Reference Guides

Value ReturnedClassGeneric Function

Whether IEEE infinities are supportedIIEEE_SUPPORT_INF ([X])

Whether IEEE base conversion rounding
is supported during formatted I/OIIEEE_SUPPORT_IO ([X])

Whether IEEE Not-A-Number is
supportedIIEEE_SUPPORT_NAN ([X])

Whether a particular rounding mode is
supportedIIEEE_SUPPORT_ROUNDING

(ROUND_VALUE [, X])

Whether IEEE square root is supportedIIEEE_SUPPORT_SQRT ([X])

Whether all IEEE capabilities are
supportedIIEEE_SUPPORT_STANDARD ([X])

Whether control of underflow mode is
supportedIIEEE_SUPPORT_UNDERFLOW_CONTROL(X)

Whether one or both arguments are
NaN; the IEEE unordered functionEIEEE_UNORDERED (X, Y)

An IEEE valueEIEEE_VALUE (X, CLASS)

Table 590: Intrinsic Modules Subroutines
Value Returned or ResultSubroutine

Whether an exception flag is signallingIEEE_GET_FLAG (FLAG, FLAG_VALUE)1

The current halting mode for an exceptionIEEE_GET_HALTING_MODE (FLAG,
HALTING)1

The current IEEE rounding modeIEEE_GET_ROUNDING_MODE
(ROUND_VALUE)

The current state of the floating-point
environment

IEEE_GET_STATUS (STATUS_VALUE)

The current underflow modeIEEE_GET_UNDERFLOW_MODE (GRADUAL)

Assigns a value to an exception flagIEEE_SET_FLAG (FLAG, FLAG_VALUE)1

Controls the halting mode after an exceptionIEEE_SET_HALTING_MODE (FLAG, HALTING)1

1913

49

Value Returned or ResultSubroutine

Sets the IEEE rounding modeIEEE_SET_ROUNDING_MODE
(ROUND_VALUE)

Restores the state of the floating-point
environment

IEEE_SET_STATUS (STATUS_VALUE)

1 : An elemental subroutine

Block Data Program Units Overview

A block data program unit provides initial values for nonpointer variables in named common
blocks. For more information, see BLOCK DATA.

Examples

An example of a block data program unit follows:

BLOCK DATA WORK

COMMON /WRKCOM/ A, B, C (10,10)

DATA A /1.0/, B /2.0/, C /100*0.0/

END BLOCK DATA WORK

Functions, Subroutines, and Statement Functions

Functions, subroutines, and statement functions are user-written subprograms that perform
computing procedures. The computing procedure can be either a series of arithmetic operations
or a series of Fortran statements. A single subprogram can perform a computing procedure in
several places in a program, to avoid duplicating a series of operations or statements in each
place.

The following table shows the statements that define these subprograms, and how control is
transferred to the subprogram:

Control Transfer MethodDefining StatementsSubprogram

Function reference1FUNCTION or ENTRYFunction

CALL statement2SUBROUTINE or ENTRYSubroutine

Function referenceStatement function definitionStatement function

1914

49 Intel® Fortran Compiler User and Reference Guides

Control Transfer MethodDefining StatementsSubprogram

1 A function can also be invoked by a defined operation (see Defining Generic Operators).
2 A subroutine can also be invoked by a defined assignment (see Defining Generic
Assignment).

A function reference is used in an expression to invoke a function; it consists of the function
name and its actual arguments. The function reference returns a value to the calling expression
that is used to evaluate the expression.

See Also
• Program Units and Procedures
• General Rules for Function and Subroutine Subprograms
• Functions Overview
• Subroutines Overview
• Statement Functions Overview
• General rules for function and subroutine subprograms
• Functions
• Subroutines
• Statement functions
• ENTRY statement
• CALL statement

General Rules for Function and Subroutine Subprograms

A subprogram can be an external, module, or internal subprogram. The END statement for an
internal or module subprogram must be END SUBROUTINE [name] for a subroutine, or END
FUNCTION [name] for a function. In an external subprogram, the SUBROUTINE and FUNCTION
keywords are optional.

If a subprogram name appears after the END statement, it must be the same as the name
specified in the SUBROUTINE or FUNCTION statement.

Function and subroutine subprograms can change the values of their arguments, and the calling
program can use the changed values.

A SUBROUTINE or FUNCTION statement can be optionally preceded by an OPTIONS statement.

Dummy arguments (except for dummy pointers or dummy procedures) can be specified with
an intent and can be made optional.

1915

49

Recursive Procedures

A recursive procedure is a function or subroutine that references itself, either directly or
indirectly. For more information, see RECURSIVE.

Pure Procedures

A pure procedure is a user-defined procedure that has no side effects. Pure procedures are a
feature of Fortran 95. For more information, see PURE.

Elemental Procedures

An elemental procedure is a user-defined procedure that is a restricted form of pure procedure.
For more information, see PURE and ELEMENTAL.

Functions Overview

A function subprogram is invoked in an expression and returns a single value (a function result)
that is used to evaluate the expression. For more information, see FUNCTION.

See Also
• Functions, Subroutines, and Statement Functions
• RESULT Keyword Overview
• Function References
• RESULT Keyword
• Function References
RESULT Keyword Overview

If you use the RESULT keyword in a FUNCTION statement, you can specify a local variable
name for the function result. For more information, see RESULT.

Function References

Functions are invoked by a function reference in an expression or by a defined operation.

A function reference takes the following form:

fun ([a-arg [, a-arg] ...])

Is the name of the function subprogram.fun

Is an actual argument optionally preceded by [keyword=], where
keyword is the name of a dummy argument in the explicit interface for
the function. The keyword is assigned a value when the procedure is
invoked.

a-arg

Each actual argument must be a variable, an expression, or the name
of a procedure. (It must not be the name of an internal procedure,
statement function, or the generic name of a procedure.)

1916

49 Intel® Fortran Compiler User and Reference Guides

Description

When a function is referenced, each actual argument is associated with the corresponding
dummy argument by its position in the argument list or by the name of its keyword. The
arguments must agree in type and kind parameters.

Execution of the function produces a result that is assigned to the function name or to the result
name, depending on whether the RESULT keyword was specified.

The program unit uses the result value to complete the evaluation of the expression containing
the function reference.

If positional arguments and argument keywords are specified, the argument keywords must
appear last in the actual argument list.

If a dummy argument is optional, the actual argument can be omitted.

If a dummy argument is specified with the INTENT attribute, its use may be limited. A dummy
argument whose intent is not specified is subject to the limitations of its associated actual
argument.

An actual argument associated with a dummy procedure must be the specific name of a
procedure, or be another dummy procedure. Certain specific intrinsic function names must not
be used as actual arguments (see Functions Not Allowed as Actual Arguments).

Examples

Consider the following example:

X = 2.0

NEW_COS = COS(X) ! A function reference

Intrinsic function COS calculates the cosine of 2.0. The value -0.4161468 is returned (in place of
COS(X)) and assigned to NEW_COS.

See Also
• Functions Overview
• INTENT attribute
• Defining Generic Operators
• Dummy Procedure Arguments
• Intrinsic Procedures
• Optional arguments
• RESULT keyword
• FUNCTION statement

1917

49

• Argument Association

Subroutines Overview

A subroutine subprogram is invoked in a CALL statement or by a defined assignment statement,
and does not return a particular value. For more information, see SUBROUTINE.

Statement Functions Overview

A statement function is a procedure defined by a single statement in the same program unit
in which the procedure is referenced. For more information, see Statement Function.

External Procedures

External procedures are user-written functions or subroutines. They are located outside of the
main program and can't be part of any other program unit.

External procedures can be invoked by the main program or any procedure of an executable
program.

In Fortran 95/90, external procedures can include internal subprograms (defining internal
procedures). Internal subprograms are placed after a CONTAINS statement.

An external procedure can reference itself (directly or indirectly).

The interface of an external procedure is implicit unless an interface block is supplied for the
procedure.

See Also
• Program Units and Procedures
• Functions, Subroutines, and Statement Functions
• Procedure Interfaces

Building Applications for details on passing arguments

Internal Procedures

Internal procedures are functions or subroutines that follow a CONTAINS statement in a program
unit. The program unit in which the internal procedure appears is called its host.

Internal procedures can appear in the main program, in an external subprogram, or in a module
subprogram.

An internal procedure takes the following form:

1918

49 Intel® Fortran Compiler User and Reference Guides

CONTAINS

internal-subprogram

[internal-subprogram] ...

Is a function or subroutine subprogram that defines the procedure. An
internal subprogram must not contain any other internal subprograms.

internal-subprogram

Description

Internal procedures are the same as external procedures, except for the following:

• Only the host program unit can use an internal procedure.

• An internal procedure has access to host entities by host association; that is, names declared
in the host program unit are useable within the internal procedure.

• In Fortran 95/90, the name of an internal procedure must not be passed as an argument
to another procedure. However, Intel® Fortran allows an internal procedure name to be
passed as an actual argument to another procedure.

• An internal procedure must not contain an ENTRY statement.

An internal procedure can reference itself (directly or indirectly); it can be referenced in the
execution part of its host and in the execution part of any internal procedure contained in the
same host (including itself).

The interface of an internal procedure is always explicit.

Examples

The following example shows an internal procedure:

PROGRAM COLOR_GUIDE

...

CONTAINS

FUNCTION HUE(BLUE) ! An internal procedure

...

END FUNCTION HUE

END PROGRAM

1919

49

The following example program contains an internal subroutine find, which performs calculations
that the main program then prints. The variables a, b, and c declared in the host program are also
known to the internal subroutine.

program INTERNAL

! shows use of internal subroutine and CONTAINS statement

real a,b,c

call find

print *, c

contains

subroutine find

read *, a,b

c = sqrt(a**2 + b**2)

end subroutine find

end

See Also
• Program Units and Procedures
• Functions, Subroutines, and Statement Functions
• Host association
• Procedure Interfaces
• CONTAINS

Argument Association

Procedure arguments provide a way for different program units to access the same data.

When a procedure is referenced in an executable program, the program unit invoking the
procedure can use one or more actual arguments to pass values to the procedure's dummy
arguments. The dummy arguments are associated with their corresponding actual arguments
when control passes to the subprogram.

In general, when control is returned to the calling program unit, the last value assigned to a
dummy argument is assigned to the corresponding actual argument.

An actual argument can be a variable, expression, or procedure name. The type and kind
parameters, and rank of the actual argument must match those of its associated dummy
argument.

1920

49 Intel® Fortran Compiler User and Reference Guides

A dummy argument is either a dummy data object, a dummy procedure, or an alternate return
specifier (*). Except for alternate return specifiers, dummy arguments can be optional.

If argument keywords are not used, argument association is positional. The first dummy
argument becomes associated with the first actual argument, and so on. If argument keywords
are used, arguments are associated by the keyword name, so actual arguments can be in a
different order than dummy arguments.

A keyword is required for an argument only if a preceding optional argument is omitted or if
the argument sequence is changed.

A scalar dummy argument can be associated with only a scalar actual argument.

If a dummy argument is an array, it must be no larger than the array that is the actual argument.
You can use adjustable arrays to process arrays of different sizes in a single subprogram.

An actual argument associated with a dummy argument that is allocatable or a pointer must
have the same type parameters as the dummy argument.

A dummy argument referenced as a subprogram must be associated with an actual argument
that has been declared EXTERNAL or INTRINSIC in the calling routine.

If a scalar dummy argument is of type character, its length must not be greater than the length
of its associated actual argument.

If the character dummy argument's length is specified as *(*) (assumed length), it uses the
length of the associated actual argument.

Once an actual argument has been associated with a dummy argument, no action can be taken
that affects the value or availability of the actual argument, except indirectly through the dummy
argument. For example, if the following statement is specified:
CALL SUB_A (B(2:6), B(4:10))

B(4:6) must not be defined, redefined, or become undefined through either dummy argument,
since it is associated with both arguments. However, B(2:3) is definable through the first
argument, and B(7:10) is definable through the second argument.

1921

49

Similarly, if any part of the actual argument is defined through a dummy argument, the actual
argument can only be referenced through that dummy argument during execution of the
procedure. For example, if the following statements are specified:
MODULE MOD_A

REAL :: A, B, C, D

END MODULE MOD_A

PROGRAM TEST

USE MOD_A

CALL SUB_1 (B)

...

END PROGRAM TEST

SUBROUTINE SUB_1 (F)

USE MOD_A

...

WRITE (*,*) F

END SUBROUTINE SUB_1

Variable B must not be directly referenced during the execution of SUB_1 because it is being
defined through dummy argument F. However, B can be indirectly referenced through F (and
directly referenced when SUB_1 completes execution).

The following sections provide more details on arguments:

• Optional arguments

• The different kinds of arguments:

• Array arguments

• Pointer arguments

• Assumed-length character arguments

• Character constant and Hollerith arguments

• Alternate return arguments

• Dummy procedure arguments

• References to generic procedures

• References to non-Fortran procedures (%REF, %VAL, and %LOC)

1922

49 Intel® Fortran Compiler User and Reference Guides

Optional Arguments

Dummy arguments can be made optional if they are declared with the OPTIONAL attribute. In
this case, an actual argument does not have to be supplied for it in a procedure reference.

If argument keywords are not used, argument association is positional. The first dummy
argument becomes associated with the first actual argument, and so on. If argument keywords
are used, arguments are associated by the keyword name, so actual arguments can be in a
different order than dummy arguments. A keyword is required for an argument only if a
preceding optional argument is omitted or if the argument sequence is changed.

Positional arguments (if any) must appear first in an actual argument list, followed by keyword
arguments (if any). If an optional argument is the last positional argument, it can simply be
omitted if desired.

However, if the optional argument is to be omitted but it is not the last positional argument,
keyword arguments must be used for any subsequent arguments in the list.

Optional arguments must have explicit procedure interfaces so that appropriate argument
associations can be made.

The PRESENT intrinsic function can be used to determine if an actual argument is associated
with an optional dummy argument in a particular reference.

The following example shows optional arguments:
PROGRAM RESULT

TEST_RESULT = LGFUNC(A, B=D)

...

CONTAINS

FUNCTION LGFUNC(G, H, B)

OPTIONAL H, B

...

END FUNCTION

END

In the function reference, A is a positional argument associated with required dummy argument
G. The second actual argument D is associated with optional dummy argument B by its keyword
name (B). No actual argument is associated with optional argument H.

1923

49

The following shows another example:
! Arguments can be passed out of order, but must be

! associated with the correct dummy argument.

CALL EXT1 (Z=C, X=A, Y=B)

. . .

END

SUBROUTINE EXT1(X,Y,Z)

REAL X, Y

REAL, OPTIONAL :: Z

. . .

END SUBROUTINE

In this case, argument A is associated with dummy argument X by explicit assignment. Once
EXT1 executes and returns, A is no longer associated with X, B is no longer associated with Y,
and C is no longer associated with Z.

See Also
• Argument Association
• OPTIONAL attribute
• PRESENT intrinsic function
• Argument association
• CALL
• Function References

Array Arguments

Arrays are sequences of elements. Each element of an actual array is associated with the
element of the dummy array that has the same position in array element order.

If the dummy argument is an explicit-shape or assumed-size array, the size of the dummy
argument array must not exceed the size of the actual argument array.

The type and kind parameters of an explicit-shape or assumed-size dummy argument must
match the type and kind parameters of the actual argument, but their ranks need not match.

If the dummy argument is an assumed-shape array, the size of the dummy argument array is
equal to the size of the actual argument array. The associated actual argument must not be
an assumed-size array or a scalar (including a designator for an array element or an array
element substring).

1924

49 Intel® Fortran Compiler User and Reference Guides

If the actual argument is an array section with a vector subscript, the associated dummy
argument must not be defined.

The declaration of an array used as a dummy argument can specify the lower bound of the
array.

If a dummy argument is allocatable, the actual argument must be allocatable and the type
parameters and ranks must agree. An example of an allocatable function with allocatable arrays
appears in FUNCTION.

Dummy argument arrays declared as assumed-shape, deferred-shape, or pointer arrays require
an explicit interface visible to the caller.

See Also
• Argument Association
• Arrays
• Array association
• Argument association
• Array Elements
• Explicit-Shape Specifications
• Assumed-Shape Specifications
• Assumed-Size Specifications

Pointer Arguments

An argument is a pointer if it is declared with the POINTER attribute.

When a procedure is invoked, the dummy argument pointer receives the pointer association
status of the actual argument. If the actual argument is currently associated, the dummy
argument becomes associated with the same target.

The pointer association status of the dummy argument can change during the execution of the
procedure, and any such changes are reflected in the actual argument.

If both the dummy and actual arguments are pointers, an explicit interface is required.

A dummy argument that is a pointer can be associated only with an actual argument that is a
pointer. However, an actual argument that is a pointer can be associated with a nonpointer
dummy argument. In this case, the actual argument is associated with a target and the dummy
argument, through argument association, also becomes associated with that target.

If the dummy argument does not have the TARGET or POINTER attribute, any pointers associated
with the actual argument do not become associated with the corresponding dummy argument
when the procedure is invoked.

1925

49

If the dummy argument has the TARGET attribute, and is either a scalar or assumed-shape
array, and the corresponding actual argument has the TARGET attribute but is not an array
section with a vector subscript, the following occurs:

• Any pointer associated with the actual argument becomes associated with the corresponding
dummy argument when the procedure is invoked.

• Any pointers associated with the dummy argument remain associated with the actual
argument when execution of the procedure completes.

If the dummy argument has the TARGET attribute, and is an explicit-shape or assumed-size
array, and the corresponding actual argument has the TARGET attribute but is not an array
section with a vector subscript, association of actual and corresponding dummy arguments
when the procedure is invoked or when execution is completed is processor dependent.

If the dummy argument has the TARGET attribute and the corresponding actual argument does
not have that attribute or is an array section with a vector subscript, any pointer associated
with the dummy argument becomes undefined when execution of the procedure completes.

See Also
• Argument Association
• POINTER statement and attribute
• Pointer assignments
• TARGET statement and attribute
• Argument association

Assumed-Length Character Arguments

An assumed-length character argument is a dummy argument that assumes the length attribute
of its corresponding actual argument. An asterisk (*) specifies the length of the dummy character
argument.

A character array dummy argument can also have an assumed length. The length of each
element in the dummy argument is the length of the elements in the actual argument. The
assumed length and the array declarator together determine the size of the assumed-length
character array.

1926

49 Intel® Fortran Compiler User and Reference Guides

The following example shows an assumed-length character argument:
INTEGER FUNCTION ICMAX(CVAR)

CHARACTER*(*) CVAR

ICMAX = 1

DO I=2,LEN(CVAR)

IF (CVAR(I:I) .GT. CVAR(ICMAX:ICMAX)) ICMAX=I

END DO

RETURN

END

The function ICMAX finds the position of the character with the highest ASCII code value. It
uses the length of the assumed-length character argument to control the iteration. Intrinsic
function LEN determines the length of the argument.

The length of the dummy argument is determined each time control transfers to the function.
The length of the actual argument can be the length of a character variable, array element,
substring, or expression. Each of the following function references specifies a different length
for the dummy argument:
CHARACTER VAR*10, CARRAY(3,5)*20

...

I1 = ICMAX(VAR)

I2 = ICMAX(CARRAY(2,2))

I3 = ICMAX(VAR(3:8))

I4 = ICMAX(CARRAY(1,3)(5:15))

I5 = ICMAX(VAR(3:4)//CARRAY(3,5))

See Also
• Argument Association
• LEN intrinsic function
• Argument association

Character Constant and Hollerith Arguments

If an actual argument is a character constant (for example, 'ABCD'), the corresponding dummy
argument must be of type character. If an actual argument is a Hollerith constant (for example,
4HABCD), the corresponding dummy argument must have a numeric data type.

1927

49

The following example shows character and Hollerith constants being used as actual arguments:
SUBROUTINE S(CHARSUB, HOLLSUB, A, B)

EXTERNAL CHARSUB, HOLLSUB

...

CALL CHARSUB(A, 'STRING')

CALL HOLLSUB(B, 6HSTRING)

The subroutines CHARSUB and HOLLSUB are themselves dummy arguments of the subroutine
S. Therefore, the actual argument 'STRING' in the call to CHARSUB must correspond to a
character dummy argument, and the actual argument 6HSTRING in the call to HOLLSUB must
correspond to a numeric dummy argument.

See Also
• Argument Association
• Argument association

Alternate Return Arguments

Alternate return (dummy) arguments can appear in a subroutine argument list. They cause
execution to transfer to a labeled statement rather than to the statement immediately following
the statement that called the routine. The alternate return is indicated by an asterisk (*). (An
alternate return is an obsolescent feature in Fortran 90 and Fortran 95.)

There can be any number of alternate returns in a subroutine argument list, and they can be
in any position in the list.

An actual argument associated with an alternate return dummy argument is called an alternate
return specifier; it is indicated by an asterisk (*) or ampersand (&) followed by the label of an
executable branch target statement in the same scoping unit as the CALL statement.

Alternate returns cannot be declared optional.

In Fortran 90, you can also use the RETURN statement to specify alternate returns.

The following example shows alternate return actual and dummy arguments:
CALL MINN(X, Y, *300, *250, Z)

....

SUBROUTINE MINN(A, B, *, *, C)

See Also
• Argument Association
• Argument association

1928

49 Intel® Fortran Compiler User and Reference Guides

• SUBROUTINE
• CALL
• RETURN
• Obsolescent and Deleted Language Features

Dummy Procedure Arguments

If an actual argument is a procedure, its corresponding dummy argument is a dummy procedure.
Dummy procedures can appear in function or subroutine subprograms.

The actual argument must be the specific name of an external, module, intrinsic, or another
dummy procedure. If the specific name is also a generic name, only the specific name is
associated with the dummy argument. Not all specific intrinsic procedures can appear as actual
arguments. (For more information, see table Intrinsic Functions Not Allowed as Actual
Arguments.)

The actual argument and corresponding dummy procedure must both be subroutines or both
be functions.

If the interface of the dummy procedure is explicit, the type and kind parameters, and rank of
the associated actual procedure must be the same as that of the dummy procedure.

If the interface of the dummy procedure is implicit and the procedure is referenced as a
subroutine, the actual argument must be a subroutine or a dummy procedure.

If the interface of the dummy procedure is implicit and the procedure is referenced as a function
or is explicitly typed, the actual argument must be a function or a dummy procedure.

Dummy procedures can be declared optional, but they must not be declared with an intent.

The following is an example of a procedure used as an argument:
REAL FUNCTION LGFUNC(BAR)

INTERFACE

REAL FUNCTION BAR(Y)

REAL, INTENT(IN) :: Y

END

END INTERFACE

...

LGFUNC = BAR(2.0)

...

END FUNCTION LGFUNC

1929

49

See Also
• Argument Association
• Argument association

References to Generic Procedures

Generic procedures are procedures with different specific names that can be accessed under
one generic (common) name. In FORTRAN 77, generic procedures were limited to intrinsic
procedures. In the current Fortran standard, you can use generic interface blocks to specify
generic properties for intrinsic and user-defined procedures.

If you refer to a procedure by using its generic name, the selection of the specific routine is
based on the number of arguments and the type and kind parameters, and rank of each
argument.

All procedures given the same generic name must be subroutines, or all must be functions.
Any two must differ enough so that any invocation of the procedure is unambiguous.

The following sections describe references to generic intrinsic functions and show an example
of using intrinsic function names.

References to Generic Intrinsic Functions

The generic intrinsic function name COS lists six specific intrinsic functions that calculate cosines:
COS, DCOS, QCOS, CCOS, CDCOS, and CQCOS. These functions return different values:
REAL(4), REAL(8), REAL(16), COMPLEX(4), COMPLEX(8), and COMPLEX(16) respectively.

If you invoke the cosine function by using the generic name COS, the compiler selects the
appropriate routine based on the arguments that you specify. For example, if the argument is
REAL(4), COS is selected; if it is REAL(8), DCOS is selected; and if it is COMPLEX(4), CCOS is
selected.

You can also explicitly refer to a particular routine. For example, you can invoke the
double-precision cosine function by specifying DCOS.

Procedure selection occurs independently for each generic reference, so you can use a generic
reference repeatedly in the same program unit to access different intrinsic procedures.

You cannot use generic function names to select intrinsic procedures if you use them as follows:

• The name of a statement function

• A dummy argument name, a common block name, or a variable or array name

When an intrinsic function is passed as an actual argument to a procedure, its specific name
must be used, and when called, its arguments must be scalar. Not all specific intrinsic functions
can appear as actual arguments. (For more information, see Intrinsic Functions Not Allowed
as Actual Arguments.)

1930

49 Intel® Fortran Compiler User and Reference Guides

A reference to a generic intrinsic procedure name in a program unit does not prevent use of
the name for other purposes elsewhere in the program.

Normally, an intrinsic procedure name refers to the Fortran library procedure with that name.
However, the name can refer to a user-defined procedure when the name appears in an
EXTERNAL statement.

NOTE. If you call an intrinsic procedure by using the wrong number of arguments or
an incorrect argument type, the compiler assumes you are referring to an external
procedure. For example, intrinsic procedure SIN requires one argument; if you specify
two arguments, such as SIN(10,4), the compiler assumes SIN is external and not intrinsic.

The data type of an intrinsic procedure does not change if you use an IMPLICIT statement to
change the implied data type rules.

Intrinsic and user-defined procedures cannot have the same name if they appear in the same
program unit.

Examples

The following example shows the local and global properties of an intrinsic function name. It uses
the name SIN in different procedures as follows:

• The name of a statement function

• The generic name of an intrinsic function

• The specific name of an intrinsic function

• The name of a user-defined function

1931

49

Using and Redefining an Intrinsic Function Name

! Compare ways of computing sine

PROGRAM SINES

DOUBLE PRECISION X, PI

PARAMETER (PI=3.141592653589793238D0)

COMMON V(3)

! Define SIN as a statement function

SIN(X) = COS(PI/2-X)

print *

print *, " Way of computing SIN(X)"

print *

print *, " X Statement Intrinsic Intrinsic User's "

print *, " function DSIN SIN as arg SIN "

print *

DO X = -PI, PI, PI/2

CALL COMPUT(X)

! References the statement function SIN

WRITE (6,100) X, SIN(X), V

END DO

100 FORMAT (5F12.7)

END

SUBROUTINE COMPUT(Y)

DOUBLE PRECISION Y

! Use intrinsic function SIN - double-precision DSIN will be passed as an actual argument

INTRINSIC SIN

COMMON V(3)

1932

49 Intel® Fortran Compiler User and Reference Guides

! Makes the generic name SIN reference the double-precision sine DSIN

V(1) = SIN(Y)

! Use intrinsic function SIN as an actual argument - will pass DSIN

CALL SUB(REAL(Y),SIN)

END

SUBROUTINE SUB(A,S)

! Declare SIN as name of a user function

EXTERNAL SIN

! Declare SIN as type DOUBLE PRECISION

DOUBLE PRECISION SIN

COMMON V(3)

! Evaluate intrinsic function SIN passed as the dummy argument

V(2) = S(A)

! Evaluate user-defined SIN function

V(3) = SIN(A)

END

! Define the user SIN function

DOUBLE PRECISION FUNCTION SIN(X)

INTEGER FACTOR

SIN = X - X**3/FACTOR(3) + X**5/FACTOR(5) &

- X**7/FACTOR(7)

END

! Compute the factorial of N

INTEGER FUNCTION FACTOR(N)

FACTOR = 1

DO I=N,1,-1

1933

49

FACTOR = FACTOR * I

END DO

END

The statement function named SIN is defined in terms of the generic function name COS. Because
the argument of COS is double precision, the double-precision cosine function is evaluated. The
statement function SIN is itself single precision.

The statement function SIN is called.

The name SIN is declared intrinsic so that the single-precision intrinsic sine function can be passed
as an actual argument at 5.

The generic function name SIN is used to refer to the double-precision sine function.

The single-precision intrinsic sine function is used as an actual argument.

The name SIN is declared a user-defined function name.

The type of SIN is declared double precision.

The single-precision sine function passed at 5 is evaluated.

The user-defined SIN function is evaluated.

The user-defined SIN function is defined as a simple Taylor series using a user-defined function
FACTOR to compute the factorial function.

See Also
• References to Generic Procedures
• EXTERNAL attribute
• INTRINSIC attribute
• Intrinsic procedures
• Names
References to Elemental Intrinsic Procedures

An elemental intrinsic procedure has scalar dummy arguments that can be called with scalar
or array actual arguments. If actual arguments are array-valued, they must have the same
shape. There are many elemental intrinsic functions, but only one elemental intrinsic subroutine
(MVBITS).

1934

49 Intel® Fortran Compiler User and Reference Guides

If the actual arguments are scalar, the result is scalar. If the actual arguments are array-valued,
the scalar-valued procedure is applied element-by-element to the actual argument, resulting
in an array that has the same shape as the actual argument.

The values of the elements of the resulting array are the same as if the scalar-valued procedure
had been applied separately to the corresponding elements of each argument.

For example, if A and B are arrays of shape (5,6), MAX(A, 0.0, B) is an array expression of
shape (5,6) whose elements have the value MAX(A (i, j), 0.0, B (i, j)), where i = 1, 2,..., 5,
and j = 1, 2,..., 6.

A reference to an elemental intrinsic procedure is an elemental reference if one or more actual
arguments are arrays and all array arguments have the same shape.

Examples

Consider the following:

REAL, DIMENSION (2) :: a, b

a(1) = 4; a(2) = 9

b = SQRT(a) ! sets b(1) = SQRT(a(1)), and b(2) = SQRT(a(2))

See Also
• References to Generic Procedures
• Arrays
• Intrinsic Procedures

References to Non-Fortran Procedures

When a procedure is called, Fortran (by default) passes the address of the actual argument,
and its length if it is of type character. To call non-Fortran procedures, you may need to pass
the actual arguments in a form different from that used by Fortran.

The built-in functions %REF and %VAL let you change the form of an actual argument. You
must specify these functions in the actual argument list of a CALL statement or function
reference. You cannot use them in any other context.

%LOC computes the internal address of a storage item.

Procedure Interfaces

Every procedure has an interface, which consists of the name and characteristics of a procedure,
the name and characteristics of each dummy argument, and the generic identifier (if any) by
which the procedure can be referenced. The characteristics of a procedure are fixed, but the
remainder of the interface can change in different scoping units.

1935

49

If these properties are all known within the scope of the calling program, the procedure interface
is explicit; otherwise it is implicit (deduced from its reference and declaration). The following
table shows which procedures have implicit or explicit interfaces:

InterfaceKind of Procedure

Implicit 1External procedure

ExplicitModule procedure

ExplicitInternal procedure

ExplicitIntrinsic procedure

Implicit 1Dummy procedure

ImplicitStatement function

1 Unless an interface block is supplied for the procedure.

The interface of a recursive subroutine or function is explicit within the subprogram that defines
it.

An explicit interface can appear in a procedure's definition, in an interface block, or both.
(Internal procedures must not appear in an interface block.)

The following sections describe when explicit interfaces are required, how to define explicit
interfaces, and how to define generic names, operators, and assignment.

1936

49 Intel® Fortran Compiler User and Reference Guides

Examples

An example of an interface block follows:

INTERFACE

SUBROUTINE Ext1 (x, y, z)

REAL, DIMENSION (100,100) :: x, y, z

END SUBROUTINE Ext1

SUBROUTINE Ext2 (x, z)

REAL x

COMPLEX (KIND = 4) z (2000)

END SUBROUTINE Ext2

FUNCTION Ext3 (p, q)

LOGICAL Ext3

INTEGER p (1000)

LOGICAL q (1000)

END FUNCTION Ext3

END INTERFACE

Determining When Procedures Require Explicit Interfaces

A procedure must have an explicit interface in the following cases:

• If the procedure has any of the following:

• A dummy argument that has the ALLOCATABLE, ASYNCHRONOUS, OPTIONAL, POINTER,
TARGET, VALUE, or VOLATILE attribute

• A dummy argument that is an assumed-shape array

• A result that is an array, or a pointer, or is allocatable (functions only)

• A result whose length is neither assumed nor a constant (character functions only)

• If a reference to the procedure appears as follows:

• With an argument keyword

• As a reference by its generic name

• As a defined assignment (subroutines only)

1937

49

• In an expression as a defined operator (functions only)

• In a context that requires it to be pure

• If the procedure is elemental

See Also
• Procedure Interfaces
• Optional arguments
• Array arguments
• Pointer arguments
• CALL
• Function references
• Pure procedures
• Elemental procedures
• Defining Generic Names for Procedures
• Defining Generic Operators
• Defining Generic Assignment

Defining Explicit Interfaces

Interface blocks define explicit interfaces for external or dummy procedures. They can also be
used to define a generic name for procedures, a new operator for functions, and a new form
of assignment for subroutines.

See Also
• Procedure Interfaces
• INTERFACE

Defining Generic Names for Procedures

An interface block can be used to specify a generic name to reference all of the procedures
within the interface block.

The initial line for such an interface block takes the following form:

INTERFACE generic-name

Is the generic name. It can be the same as any of the procedure names
in the interface block, or the same as any accessible generic name
(including a generic intrinsic name).

generic-name

1938

49 Intel® Fortran Compiler User and Reference Guides

This kind of interface block can be used to extend or redefine a generic intrinsic procedure.

The procedures that are given the generic name must be the same kind of subprogram: all
must be functions, or all must be subroutines.

Any procedure reference involving a generic procedure name must be resolvable to one specific
procedure; it must be unambiguous. For more information, see Unambiguous Generic Procedure
References.

The following is an example of a procedure interface block defining a generic name:
INTERFACE GROUP_SUBS

SUBROUTINE INTEGER_SUB (A, B)

INTEGER, INTENT(INOUT) :: A, B

END SUBROUTINE INTEGER_SUB

SUBROUTINE REAL_SUB (A, B)

REAL, INTENT(INOUT) :: A, B

END SUBROUTINE REAL_SUB

SUBROUTINE COMPLEX_SUB (A, B)

COMPLEX, INTENT(INOUT) :: A, B

END SUBROUTINE COMPLEX_SUB

END INTERFACE

The three subroutines can be referenced by their individual specific names or by the group
name GROUP_SUBS.

The following example shows a reference to INTEGER_SUB:
INTEGER V1, V2

CALL GROUP_SUBS (V1, V2)

1939

49

Consider the following:
INTERFACE LINE_EQUATION

SUBROUTINE REAL_LINE_EQ(X1,Y1,X2,Y2,M,B)

REAL,INTENT(IN) :: X1,Y1,X2,Y2

REAL,INTENT(OUT) :: M,B

END SUBROUTINE REAL_LINE_EQ

SUBROUTINE INT_LINE_EQ(X1,Y1,X2,Y2,M,B)

INTEGER,INTENT(IN) :: X1,Y1,X2,Y2

INTEGER,INTENT(OUT) :: M,B

END SUBROUTINE INT_LINE_EQ

END INTERFACE

In this example, LINE_EQUATION is the generic name which can be used for either
REAL_LINE_EQ or INT_LINE_EQ. Fortran selects the appropriate subroutine according to the
nature of the arguments passed to LINE_EQUATION. Even when a generic name exists, you
can always invoke a procedure by its specific name. In the previous example, you can call
REAL_LINE_EQ by its specific name (REAL_LINE_EQ), or its generic name LINE_EQUATION.

See Also
• Procedure Interfaces
• INTERFACE

Defining Generic Operators

An interface block can be used to define a generic operator. The only procedures allowed in
the interface block are functions that can be referenced as defined operations.

The initial line for such an interface block takes the following form:

INTERFACE OPERATOR (op)

Is one of the following:op

• A defined unary operator (one argument)

• A defined binary operator (two arguments)

• An extended intrinsic operator (number of arguments must be
consistent with the intrinsic uses of that operator)

1940

49 Intel® Fortran Compiler User and Reference Guides

The functions within the interface block must have one or two nonoptional arguments with
intent IN, and the function result must not be of type character with assumed length. A defined
operation is treated as a reference to the function.

The following shows the form (and an example) of a defined unary and defined binary operation:

ExampleFormOperation

.MINUS. C.defined-operator. operand1Defined Unary

B .MINUS. Coperand2 .defined-operator.
operand3

Defined Binary

1 The operand corresponds to the function's dummy argument.
2 The left operand corresponds to the first dummy argument of the function.
3 The right operand corresponds to the second argument.

For intrinsic operator symbols, the generic properties include the intrinsic operations they
represent. Both forms of each relational operator have the same interpretation, so extending
one form (such as >=) defines both forms (>= and .GE.).

The following is an example of a procedure interface block defining a new operator:
INTERFACE OPERATOR(.BAR.)

FUNCTION BAR(A_1)

INTEGER, INTENT(IN) :: A_1

INTEGER :: BAR

END FUNCTION BAR

END INTERFACE

The following example shows a way to reference function BAR by using the new operator:
INTEGER B

I = 4 + (.BAR. B)

1941

49

The following is an example of a procedure interface block with a defined operator extending
an existing operator:
INTERFACE OPERATOR(+)

FUNCTION LGFUNC (A, B)

LOGICAL, INTENT(IN) :: A(:), B(SIZE(A))

LOGICAL :: LGFUNC(SIZE(A))

END FUNCTION LGFUNC

END INTERFACE

The following example shows two equivalent ways to reference function LGFUNC:
LOGICAL, DIMENSION(1:10) :: C, D, E

N = 10

E = LGFUNC(C(1:N), D(1:N))

E = C(1:N) + D(1:N)

See Also
• Procedure Interfaces
• INTENT attribute
• INTERFACE
• Expressions
• Defined Operations

Defining Generic Assignment

An interface block can be used to define generic assignment. The only procedures allowed in
the interface block are subroutines that can be referenced as defined assignments.

The initial line for such an interface block takes the following form:

INTERFACE ASSIGNMENT (=)

The subroutines within the interface block must have two nonoptional arguments, the first with
intent OUT or INOUT, and the second with intent IN.

A defined assignment is treated as a reference to a subroutine. The left side of the assignment
corresponds to the first dummy argument of the subroutine; the right side of the assignment
corresponds to the second argument.

The ASSIGNMENT keyword extends or redefines an assignment operation if both sides of the
equal sign are of the same derived type.

1942

49 Intel® Fortran Compiler User and Reference Guides

Defined elemental assignment is indicated by specifying ELEMENTAL in the SUBROUTINE
statement.

Any procedure reference involving generic assignment must be resolvable to one specific
procedure; it must be unambiguous. For more information, see Unambiguous Generic Procedure
References.

The following is an example of a procedure interface block defining assignment:
INTERFACE ASSIGNMENT (=)

SUBROUTINE BIT_TO_NUMERIC (NUM, BIT)

INTEGER, INTENT(OUT) :: NUM

LOGICAL, INTENT(IN) :: BIT(:)

END SUBROUTINE BIT_TO_NUMERIC

SUBROUTINE CHAR_TO_STRING (STR, CHAR)

USE STRING_MODULE ! Contains definition of type STRING

TYPE(STRING), INTENT(OUT) :: STR ! A variable-length string

CHARACTER(*), INTENT(IN) :: CHAR

END SUBROUTINE CHAR_TO_STRING

END INTERFACE

The following example shows two equivalent ways to reference subroutine BIT_TO_NUMERIC:
CALL BIT_TO_NUMERIC(X, (NUM(I:J)))

X = NUM(I:J)

The following example shows two equivalent ways to reference subroutine CHAR_TO_STRING:
CALL CHAR_TO_STRING(CH, '432C')

CH = '432C'

See Also
• Procedure Interfaces
• Defined Assignments
• INTENT attribute
• INTERFACE statement

1943

49

CONTAINS Statement Overview

This statement introduces internal or module procedures. For more information, see CONTAINS.

ENTRY Statement Overview

The ENTRY statement provides multiple entry points within a subprogram. It is not executable
and must precede any CONTAINS statement (if any) within the subprogram. For more
information, see ENTRY.

See Also
• Program Units and Procedures
• ENTRY Statements in Function Subprograms
• ENTRY Statements in Subroutine Subprograms
• ENTRY Statements in Function Subprograms
• ENTRY Statements in Subroutine Subprograms

ENTRY Statements in Function Subprograms

If the ENTRY statement is contained in a function subprogram, it defines an additional function.
The name of the function is the name specified in the ENTRY statement, and its result variable
is the entry name or the name specified by RESULT (if any).

If the entry result variable has the same characteristics as the FUNCTION statement's result
variable, their result variables identify the same variable, even if they have different names.
Otherwise, the result variables are storage associated and must all be nonpointer scalars of
intrinsic type, in one of the following groups:

Type default integer, default real, double
precision real, default complex, double
complex, or default logical

Group 1

Type REAL(16) and COMPLEX(16)Group 2

Type default character (with identical lengths)Group 3

All entry names within a function subprogram are associated with the name of the function
subprogram. Therefore, defining any entry name or the name of the function subprogram
defines all the associated names with the same data type. All associated names with different
data types become undefined.

1944

49 Intel® Fortran Compiler User and Reference Guides

If RESULT is specified in the ENTRY statement and RECURSIVE is specified in the FUNCTION
statement, the interface of the function defined by the ENTRY statement is explicit within the
function subprogram.

Examples

The following example shows a function subprogram that computes the hyperbolic functions SINH,
COSH, and TANH:

REAL FUNCTION TANH(X)

TSINH(Y) = EXP(Y) - EXP(-Y)

TCOSH(Y) = EXP(Y) + EXP(-Y)

TANH = TSINH(X)/TCOSH(X)

RETURN

ENTRY SINH(X)

SINH = TSINH(X)/2.0

RETURN

ENTRY COSH(X)

COSH = TCOSH(X)/2.0

RETURN

END

See Also
• ENTRY Statement Overview
• RESULT keyword

ENTRY Statements in Subroutine Subprograms

If the ENTRY statement is contained in a subroutine subprogram, it defines an additional
subroutine. The name of the subroutine is the name specified in the ENTRY statement.

If RECURSIVE is specified on the SUBROUTINE statement, the interface of the subroutine defined
by the ENTRY statement is explicit within the subroutine subprogram.

1945

49

Examples

The following example shows a main program calling a subroutine containing an ENTRY statement:

PROGRAM TEST

...

CALL SUBA(A, B, C) ! A, B, and C are actual arguments

... ! passed to entry point SUBA

END

SUBROUTINE SUB(X, Y, Z)

...

ENTRY SUBA(Q, R, S) ! Q, R, and S are dummy arguments

... ! Execution starts with this statement

END SUBROUTINE

The following example shows an ENTRY statement specifying alternate returns:

CALL SUBC(M, N, *100, *200, P)

...

SUBROUTINE SUB(K, *, *)

...

ENTRY SUBC(J, K, *, *, X)

...

RETURN 1

RETURN 2

END

Note that the CALL statement for entry point SUBC includes actual alternate return arguments. The
RETURN 1 statement transfers control to statement label 100 and the RETURN 2 statement transfers
control to statement label 200 in the calling program.

IMPORT Statement Overview

The IMPORT statement makes host entities accessible in the interface body of an interface
block. For more information, see IMPORT.

1946

49 Intel® Fortran Compiler User and Reference Guides

50Intrinsic Procedures

Intrinsic procedures are functions and subroutines that are included in the Fortran library. There are four
classes of these intrinsic procedures, as follows:

• Elemental procedures

These procedures have scalar dummy arguments that can be called with scalar or array actual
arguments. There are many elemental intrinsic functions and one elemental intrinsic subroutine
(MVBITS).

If the arguments are all scalar, the result is scalar. If an actual argument is array-valued, the intrinsic
procedure is applied to each element of the actual argument, resulting in an array that has the same
shape as the actual argument.

If there is more than one array-valued argument, they must all have the same shape.

Many algorithms involving arrays can now be written conveniently as a series of computations with
whole arrays. For example, consider the following:
a = b + c

... ! a, b, c, and s are all arrays of similar shape

s = sum(a)

The above statements can replace entire DO loops.

Consider the following:
real, dimension (5,5) x,y

. . . !Assign values to x.

y = sin(x) !Pass the entire array as an argument.

In this example, since the SIN(X) function is an elemental procedure, it operates element-by-element
on the array x when you pass it the name of the whole array.

• Inquiry functions

These functions have results that depend on the properties of their principal argument, not the value
of the argument (the argument value can be undefined).

• Transformational functions

These functions have one or more array-valued dummy or actual arguments, an array result, or both.
The intrinsic function is not applied elementally to an array-valued actual argument; instead it changes
(transforms) the argument array into another array.

• Nonelemental procedures

1947

These procedures must be called with only scalar arguments; they return scalar results. All
subroutines (except MVBITS) are nonelemental.

Intrinsic procedures are invoked the same way as other procedures, and follow the same rules of
argument association.

The intrinsic procedures have generic (or common) names, and many of the intrinsic functions have
specific names. (Some intrinsic functions are both generic and specific.)

In general, generic functions accept arguments of more than one data type; the data type of the
result is the same as that of the arguments in the function reference. For elemental functions with
more than one argument, all arguments must be of the same type (except for the function MERGE).

When an intrinsic function is passed as an actual argument to a procedure, its specific name must
be used, and when called, its arguments must be scalar. Some specific intrinsic functions are not
allowed as actual arguments in all circumstances. The following table lists specific functions that
cannot be passed as actual arguments.

Table 595: Specific Intrinsic Functions Not Allowed as Actual Arguments

LOCIZEXTFLOATIAIMAX0

MAX0JFIXFLOATJAIMIN0

MAX1JIDINTFLOATKAJMAX0

MIN0JIFIXFP_CLASSAJMIN0

MIN1JINTHFIXAKMAX0

MULT_HIGHJIQINTIADDRAKMIN0

MULT_HIGH_SIGNEDJMAX0IARGCAMAX0

NARGSJMAX1ICHARAMAX1

QCMPLXJMIN0IDINTAMIN0

QEXTJMIN1IFIXAMIN1

QEXTDJNUMIIDINTCHAR

QMAX1JZEXTIIFIXCMPLX

QMIN1KIDINTIINTDBLE

QNUMKIFIXIIQINTDBLEQ

1948

50 Intel® Fortran Compiler User and Reference Guides

QREALKINTIJINTDCMPLX

RANKIQINTIMAX0DFLOTI

REALKMAX0IMAX1DFLOTJ

RNUMKMAX1IMIN0DFLOTK

SECNDSKMIN0IMIN1DMAX1

SHIFTLKMIN1INTDMIN1

SHIFTRKNUMINT1DNUM

SNGLKZEXTINT2DPROD

SNGLQLGEINT4DREAL

ZEXTLGTINT8DSHIFTL

LLEINUMDSHIFTR

LLTIQINTFLOAT

Note that none of the intrinsic subroutines can be passed as actual arguments.

This chapter also contains information on the following topics:

• Argument keywords in intrinsic procedures

• Overview of bit functions

• Categories and Lists of intrinsic procedures

The A to Z Reference contains the descriptions of all intrinsics listed in alphabetical order. Each
reference entry indicates whether the procedure is inquiry, elemental, transformational, or
nonelemental, and whether it is a function or a subroutine.

Argument Keywords in Intrinsic Procedures

For all intrinsic procedures, the arguments shown are the names you must use as keywords
when using the keyword form for actual arguments. For example, a reference to function
CMPLX(X, Y, KIND) can be written as follows:

CMPLX(F, G, L)Using positional arguments:

1949

50

CMPLX(KIND=L, Y=G, X=F)Using argument keywords: 1

1 Note that argument keywords can be written in any order.

Some argument keywords are optional (denoted by square brackets). The following describes
some of the most commonly used optional arguments:

Specifies that a string scan is to be in reverse
order (right to left).

BACK

Specifies a selected dimension of an array
argument.

DIM

Specifies the kind type parameter of the
function result.

KIND

Specifies that a mask can be applied to the
elements of the argument array to exclude
the elements that are not to be involved in
an operation.

MASK

Examples

The syntax for the DATE_AND_TIME intrinsic subroutine shows four optional positional arguments:
DATE, TIME, ZONE, and VALUES. The following shows some valid ways to specify these arguments:

! Keyword example

CALL DATE_AND_TIME (ZONE=Z)

! Positional example
CALL DATE_AND_TIME (DATE, TIME, ZONE)

See Also
• Intrinsic Procedures
• CALL
• Function references
• Argument Association

1950

50 Intel® Fortran Compiler User and Reference Guides

Overview of Bit Functions

Integer data types are represented internally in binary two's complement notation. Bit positions
in the binary representation are numbered from right (least significant bit) to left (most
significant bit); the rightmost bit position is numbered 0.

The intrinsic functions IAND, IOR, IEOR, and NOT operate on all of the bits of their argument
(or arguments). Bit 0 of the result comes from applying the specified logical operation to bit 0
of the argument. Bit 1 of the result comes from applying the specified logical operation to bit
1 of the argument, and so on for all of the bits of the result.

The functions ISHFT and ISHFTC shift binary patterns.

The functions IBSET, IBCLR, BTEST, and IBITS and the subroutine MVBITS operate on bit fields.

A bit field is a contiguous group of bits within a binary pattern. Bit fields are specified by a
starting bit position and a length. A bit field must be entirely contained in its source operand.

For example, the integer 47 is represented by the following:

0...0101111Binary pattern:

n...6543210Bit position:

Where n is the number of bit positions in the
numeric storage unit.

You can refer to the bit field contained in bits 3 through 6 by specifying a starting position of
3 and a length of 4.

Negative integers are represented in two's complement notation. For example, the integer -47
is represented by the following:

1...1010001Binary pattern:

n...6543210Bit position:

Where n is the number of bit positions in the
numeric storage unit.

The value of bit position n is as follows:
1 for a negative number

0 for a non-negative number

All the high-order bits in the pattern from the last significant bit of the value up to bit n are the
same as bit n.

1951

50

IBITS and MVBITS operate on general bit fields. Both the starting position of a bit field and its
length are arguments to these intrinsics. IBSET, IBCLR, and BTEST operate on 1-bit fields. They
do not require a length argument.

For IBSET, IBCLR, and BTEST, the bit position range is as follows:

• 0 to 63 for INTEGER(8) and LOGICAL(8)

• 0 to 31 for INTEGER(4) and LOGICAL(4)

• 0 to 15 for INTEGER(2) and LOGICAL(2)

• 0 to 7 for BYTE, INTEGER(1), and LOGICAL(1)

For IBITS, the bit position can be any number. The length range is 0 to 63 on Intel® 64
architecture and IA-64 architecture; 0 to 31 on IA-32 architecture.

The following example shows IBSET, IBCLR, and BTEST:
I = 4

J = IBSET (I,5)

PRINT *, 'J = ',J

K = IBCLR (J,2)

PRINT *, 'K = ',K

PRINT *, 'Bit 2 of K is ',BTEST(K,2)

END

The results are: J = 36, K = 32, and Bit 2 of K is F.

For optimum selection of performance and memory requirements, Intel Fortran provides the
following integer data types:

Storage Required (in bytes)Data Type

1INTEGER(1)

2INTEGER(2)

4INTEGER(4)

8INTEGER(8)

The bit manipulation functions each have a generic form that operates on all of these integer
types and a specific form for each type.

1952

50 Intel® Fortran Compiler User and Reference Guides

When you specify the intrinsic functions that refer to bit positions or that shift binary patterns
within a storage unit, be careful that you do not create a value that is outside the range of
integers representable by the data type. If you shift by an amount greater than or equal to the
size of the object you're shifting, the result is 0.

Consider the following:
INTEGER(2) I,J

I = 1

J = 17

I = ISHFT(I,J)

The variables I and J have INTEGER(2) type. Therefore, the generic function ISHFT maps to
the specific function IISHFT, which returns an INTEGER(2) result. INTEGER(2) results must be
in the range -32768 to 32767, but the value 1, shifted left 17 positions, yields the binary pattern
1 followed by 17 zeros, which represents the integer 131072. In this case, the result in I is 0.

The previous example would be valid if I was INTEGER(4), because ISHFT would then map to
the specific function JISHFT, which returns an INTEGER(4) value.

If ISHFT is called with a constant first argument, the result will either be the default integer
size or the smallest integer size that can contain the first argument, whichever is larger.

Categories and Lists of Intrinsic Procedures

This section describes the categories of generic intrinsic functions (including a summarizing
table) and lists the intrinsic subroutines.

Intrinsic procedures are fully described (in alphabetical order) in the A to Z Reference.

Categories of Intrinsic Functions

Generic intrinsic functions can be divided into categories, as shown in the following table:

Table 601: Categories of Intrinsic Functions

DescriptionSubcategoryCategory

Elemental functions that
perform type conversions or
simple numeric operations:

ComputationNumeric

ABS, AIMAG, AINT, AMAX0,
AMIN0, ANINT, CEILING,
CMPLX, CONJG, DBLE,
DCMPLX, DFLOAT, DIM,
DNUM, DPROD, DREAL,

1953

50

DescriptionSubcategoryCategory

FLOAT, FLOOR, IFIX, IMAG,
INT, INUM, JNUM, KNUM
MAX, MAX1, MIN, MIN1,
MOD, MODULO, NINT,
QCMPLX, QEXT, QFLOAT,
QNUM, QREAL, REAL, RNUM,
SIGN, SNGL, ZEXT

Nonelemental function that
provides a pseudorandom
number RAN

Elemental functions that
return values related to the
components of the model

Manipulation1

values associated with the
actual value of the argument:
EXPONENT, FRACTION,
NEAREST, RRSPACING,
SCALE, SET_EXPONENT,
SPACING

Functions that return scalar
values from the models
associated with the type and

Inquiry1

kind parameters of their
arguments2: DIGITS,
EPSILON, HUGE, ILEN,
MAXEXPONENT,
MINEXPONENT, PRECISION,
RADIX, RANGE, SIZEOF, TINY

Functions that perform vector
and matrix multiplication:
DOT_PRODUCT, MATMUL

Transformational

Functions that return
information about a process
or processor: MCLOCK,
SECNDS

System

1954

50 Intel® Fortran Compiler User and Reference Guides

DescriptionSubcategoryCategory

Functions that return kind
type parameters: KIND,
SELECTED_CHAR_KIND,
SELECTED_INT_KIND,
SELECTED_REAL_KIND

Kind type

Elemental functions that
perform mathematical
operations: ACOS, ACOSD,

Mathematical

ACOSH, ASIN, ASIND,
ASINH, ATAN, ATAN2,
ATAN2D, ATAND, ATANH,
COS, COSD, COSH, COTAN,
COTAND, EXP, LOG, LOG10,
SIN, SIND, SINH, SQRT, TAN,
TAND, TANH

Elemental functions that
perform single-bit processing,
logical and shift operations,

ManipulationBit

and allow bit subfields to be
referenced: AND, BTEST,
DSHIFTL, DSHIFTR, IAND,
IBCHNG, IBCLR, IBITS,
IBSET, IEOR, IOR, ISHA,
ISHC, ISHFT, ISHFTC, ISHL,
IXOR, LSHIFT, NOT, OR,
RSHIFT, SHIFTL, SHIFTR,
XOR

Function that lets you
determine parameter s (the
bit size) in the bit model3:
BIT_SIZE

Inquiry

Elemental functions that
return information on bit
representation of integers:
LEADZ, POPCNT, POPPAR,
TRAILZ

Representation

1955

50

DescriptionSubcategoryCategory

Elemental functions that
make a lexical comparison of
the character-string

ComparisonCharacter

arguments and return a
default logical result: LGE,
LGT, LLE, LLT

Elemental functions that take
character arguments and
return integer, ASCII, or
character values4: ACHAR,
CHAR, IACHAR, ICHAR

Conversion

Functions that perform
operations on character
strings, return lengths of

String handling

arguments, and search for
certain arguments:
Elemental: ADJUSTL,
ADJUSTR, INDEX, LEN_TRIM,
SCAN, VERIFY;
Nonelemental: REPEAT, TRIM

Functions that return the
length of an argument or
information about

Inquiry

command-line arguments:
COMMAND_ARGUMENT_COUNT,
IARG, IARGC, LEN, NARGS,
NUMARG

Functions that construct new
arrays from the elements of
existing arrays: Elemental:
MERGE; Nonelemental:
PACK, SPREAD, UNPACK

ConstructionArray

Functions that let you
determine if an array
argument is allocated, and

Inquiry

return the size or shape of an
array, and the lower and

1956

50 Intel® Fortran Compiler User and Reference Guides

DescriptionSubcategoryCategory

upper bounds of subscripts
along each dimension:
ALLOCATED, LBOUND,
SHAPE, SIZE, UBOUND

Transformational functions
that find the geometric
locations of the maximum
and minimum values of an
array: MAXLOC, MINLOC

Location

Transformational functions
that shift an array, transpose
an array, or change the

Manipulation

shape of an array: CSHIFT,
EOSHIFT, RESHAPE,
TRANSPOSE

Transformational functions
that perform operations on
arrays. The functions

Reduction

"reduce" elements of a whole
array to produce a scalar
result, or they can be applied
to a specific dimension of an
array to produce a result
array with a rank reduced by
one: ALL, ANY, COUNT,
MAXVAL, MINVAL, PRODUCT,
SUM

Functions that do the
following:

Miscellaneous

• Check for pointer
association (ASSOCIATED)

• Return an address
(BADDRESS or IADDR)

• Return the size of a level
of the memory cache
(CACHESIZE)5

1957

50

DescriptionSubcategoryCategory

• Check for end-of-file
(EOF)

• Return error functions
(ERF and ERFC)

• Return the class of a
floating-point argument
(FP_CLASS)

• Return the INTEGER KIND
that will hold an address
(INT_PTR_KIND)

• Test for Not-a-Number
values (ISNAN)

• Return the internal
address of a storage item
(LOC)

• Return a logical value of
an argument (LOGICAL)

• Allocate memory
(MALLOC)

• Return the upper 64 bits
of a 128-bit unsigned
result (MULT_HIGH)5

• Return the upper 64 bits
of a 128-bit signed result
(MULT_HIGH_SIGNED)5

• Return a new line
character (NEW_LINE)

• Return a disassociated
pointer (NULL)

• Check for argument
presence (PRESENT)

• Convert a bit pattern
(TRANSFER)

• Check for end-of-file
condition
(IS_IOSTAT_END)

1958

50 Intel® Fortran Compiler User and Reference Guides

DescriptionSubcategoryCategory

• Check for end-of-record
condition
(IS_IOSTAT_EOR)

1 All of the numeric manipulation, and many of the numeric inquiry functions are defined by
the model sets for integers and reals.
2 The value of the argument does not have to be defined.
3 For more information on bit functions, see Bit functions.
4 The Intel® Fortran processor character set is ASCII, so ACHAR = CHAR and IACHAR =
ICHAR.
5 i64 only

The following table summarizes the generic intrinsic functions and indicates whether they are
elemental, inquiry, or transformational functions. Optional arguments are shown within square
brackets.

Some intrinsic functions are specific with no generic association. These functions are listed
below.

Table 602: Summary of Generic Intrinsic Functions

Value ReturnedClassGeneric Function

The absolute value of an
argument

EABS (A)

The character in the specified
position of the ASCII
character set

EACHAR (I)

The arccosine (in radians) of
the argument

EACOS (X)

The arccosine (in degrees) of
the argument

EACOSD (X)

The hyperbolic arccosine of
the argument

EACOSH (X)

1959

50

Value ReturnedClassGeneric Function

The specified string with
leading blanks removed and
placed at the end of the
string

EADJUSTL (STRING)

The specified string with
trailing blanks removed and
placed at the beginning of the
string

EADJUSTR (STRING)

The imaginary part of a
complex argument

EAIMAG (Z)

A real value truncated to a
whole number

EAINT (A [,KIND])

.TRUE. if all elements of the
masked array are true

TALL (MASK [,DIM])

The allocation status of the
argument array

IALLOCATED (ARRAY)

The maximum value in a list
of integers (returned as a
real value)

EAMAX0 (A1, A2 [, A3,...])

The minimum value in a list
of integers (returned as a
real value)

EAMIN0 (A1, A2 [, A3,...])

See IANDEAND (I, J)

A real value rounded to a
whole number

EANINT (A [, KIND])

.TRUE. if any elements of the
masked array are true

TANY (MASK [, DIM])

The arcsine (in radians) of
the argument

EASIN (X)

1960

50 Intel® Fortran Compiler User and Reference Guides

Value ReturnedClassGeneric Function

The arcsine (in degrees) of
the argument

EASIND (X)

The hyperbolic arcsine of the
argument

EASINH (X)

.TRUE. if the pointer
argument is associated or the
pointer is associated with the
specified target

IASSOCIATED (POINTER
[,TARGET])

The arctangent (in radians)
of the argument

EATAN (X)

The arctangent (in radians)
of the arguments

EATAN2 (Y, X)

The arctangent (in degrees)
of the arguments

EATAN2D (Y, X)

The arctangent (in degrees)
of the argument

EATAND (X)

The hyperbolic arctangent of
the argument

EATANH (X)

The address of the argumentIBADDRESS (X)

The number of bits (s) in the
bit model

IBIT_SIZE (I)

.TRUE. if the specified
position of argument I is one

EBTEST (I, POS)

The smallest integer greater
than or equal to the
argument value

ECEILING (A [,KIND])

The character in the specified
position of the processor
character set

ECHAR (I [,KIND])

1961

50

Value ReturnedClassGeneric Function

The number of command
arguments

ICOMMAND_ARGUMENT_COUNT
()

The conjugate of a complex
number

ECONJG (Z)

The cosine of the argument,
which is in radians

ECOS (X)

The cosine of the argument,
which is in degrees

ECOSD (X)

The hyperbolic cosine of the
argument

ECOSH (X)

The cotangent of the
argument, which is in radians

ECOTAN (X)

The cotangent of the
argument, which is in
degrees

ECOTAND (X)

The number of .TRUE.
elements in the argument
array

TCOUNT (MASK [,DIM]
[,KIND])

An array that has the
elements of the argument
array circularly shifted

TCSHIFT (ARRAY, SHIFT
[,DIM])

The corresponding double
precision value of the
argument

EDBLE (A)

The corresponding double
precision value of the integer
argument

EDFLOAT (A)

The number of significant
digits in the model for the
argument

IDIGITS (X)

1962

50 Intel® Fortran Compiler User and Reference Guides

Value ReturnedClassGeneric Function

The positive difference
between the two arguments

EDIM (X, Y)

The dot product of two
rank-one arrays (also called
a vector multiply function)

TDOT_PRODUCT (VECTOR_A,
VECTOR_B)

The corresponding
double-precision value of the
double complex argument

EDREAL (A)

The upper (leftmost) 64 bits
of a left-shifted 128-bit
integer

EDSHIFTL (ILEFT, IRIGHT,
ISHIFT)

The lower (rightmost) 64 bits
of a right-shifted 128-bit
integer

EDSHIFTR (ILEFT, IRIGHT,
ISHIFT)

.TRUE. or .FALSE. depending
on whether a file is beyond
the end-of-file record

IEOF (A)

An array that has the
elements of the argument
array end-off shifted

TEOSHIFT (ARRAY, SHIFT
[,BOUNDARY] [,DIM])

The number that is almost
negligible when compared to
one

IEPSILON (X)

The error function of an
argument

EERF (X)

The complementary error
function of an argument

EERFC (X)

The exponential ex for the
argument x

EEXP (X)

The value of the exponent
part of a real argument

EEXPONENT (X)

1963

50

Value ReturnedClassGeneric Function

The corresponding real value
of the integer argument

EFLOAT (X)

The largest integer less than
or equal to the argument
value

EFLOOR (A [,KIND])

The class of the IEEE
floating-point argument

EFP_CLASS (X)

The fractional part of a real
argument

EFRACTION (X)

The largest number in the
model for the argument

IHUGE (X)

The position of the specified
character in the ASCII
character set

EIACHAR (C)

See BADDRESSEIADDR (X)

The logical AND of the two
arguments

EIAND (I, J)

The specified position of
argument I cleared (set to
zero)

EIBCLR (I, POS)

The reversed value of a
specified bit

EIBCHNG (I, POS)

The specified substring of bits
of argument I

EIBITS (I, POS, LEN)

The specified bit in argument
I set to one

EIBSET (I, POS)

The position of the specified
character in the processor
character set

EICHAR (C [, KIND])

1964

50 Intel® Fortran Compiler User and Reference Guides

Value ReturnedClassGeneric Function

The logical exclusive OR of
the corresponding bit
arguments

EIEOR (I, J)

The corresponding integer
value of the real argument
rounded as if it were an
implied conversion in an
assignment

EIFIX (X)

The length (in bits) in the
two's complement
representation of an integer

IILEN (I)

See AIMAGEIMAG (Z)

The position of the specified
substring in a character
expression

EINDEX (STRING, SUBSTRING
[, BACK] [,KIND])

The corresponding integer
value (truncated) of the
argument

EINT (A [, KIND])

The logical inclusive OR of
the corresponding bit
arguments

EIOR (I, J)

Argument I shifted left or
right by a specified number
of bits

EISHA (I, SHIFT)

Argument I rotated left or
right by a specified number
of bits

EISHC (I, SHIFT)

The logical end-off shift of
the bits in argument I

EISHFT (I, SHIFT)

The logical circular shift of
the bits in argument I

EISHFTC (I, SHIFT [,SIZE])

1965

50

Value ReturnedClassGeneric Function

Argument I logically shifted
left or right by a specified
number of bits

EISHL (I, SHIFT)

Tests for Not-a-Number
(NaN) values

EISNAN (X)

See IEOREIXOR (I, J)

The kind type parameter of
the argument

IKIND (X)

The lower bounds of an array
(or one of its dimensions)

ILBOUND (ARRAY [,DIM]
[,KIND])

The number of leading zero
bits in an integer

ELEADZ (I)

The length (number of
characters) of the argument
character string

ILEN (STRING [,KIND])

The length of the specified
string without trailing blanks

ELEN_TRIM (STRING [,KIND])

A logical value determined by
a > or = comparison of the
arguments

ELGE (STRING_A, STRING_B)

A logical value determined by
a > comparison of the
arguments

ELGT (STRING_A, STRING_ B)

A logical value determined by
a < or = comparison of the
arguments

ELLE (STRING_A, STRING_B)

A logical value determined by
a < comparison of the
arguments

ELLT (STRING_A, STRING_B)

1966

50 Intel® Fortran Compiler User and Reference Guides

Value ReturnedClassGeneric Function

The internal address of the
argument.

ILOC (A)

The natural logarithm of the
argument

ELOG (X)

The common logarithm (base
10) of the argument

ELOG10 (X)

The logical value of the
argument converted to a
logical of type KIND

ELOGICAL (L [,KIND])

See ISHFTELSHIFT (I, POSITIVE_SHIFT)

Same as LSHIFT; see ISHFTELSHFT (I, POSITIVE_SHIFT)

The starting address for the
block of memory allocated

EMALLOC (I)

The result of matrix
multiplication (also called a
matrix multiply function)

TMATMUL (MATRIX_A,
MATRIX_B)

The maximum value in the
set of arguments

EMAX (A1, A2 [, A3,...])

The maximum value in the
set of real arguments
(returned as an integer)

EMAX1 (A1, A2 [, A3,...])

The maximum exponent in
the model for the argument

IMAXEXPONENT (X)

The rank-one array that has
the location of the maximum
element in the argument
array

TMAXLOC (ARRAY [,DIM]
[,MASK] [,KIND])

The maximum value of the
elements in the argument
array

TMAXVAL (ARRAY [,DIM]
[,MASK])

1967

50

Value ReturnedClassGeneric Function

An array that is the
combination of two
conformable arrays (under a
mask)

EMERGE (TSOURCE, FSOURCE,
MASK)

The minimum value in the set
of arguments

EMIN (A1, A2 [, A3,...])

The minimum value in the set
of real arguments (returned
as an integer)

EMIN1 (A1, A2 [, A3,...])

The minimum exponent in
the model for the argument

IMINEXPONENT (X)

The rank-one array that has
the location of the minimum
element in the argument
array

TMINLOC (ARRAY [,DIM]
[,MASK] [,KIND])

The minimum value of the
elements in the argument
array

TMINVAL (ARRAY [,DIM]
[,MASK])

The remainder of the
arguments (has the sign of
the first argument)

EMOD (A, P)

The modulo of the arguments
(has the sign of the second
argument)

EMODULO (A, P)

The nearest different
machine-representable
number in a given direction

ENEAREST (X, S)

A new line characterINEW_LINE (A)

A real value rounded to the
nearest integer

ENINT (A [,KIND])

1968

50 Intel® Fortran Compiler User and Reference Guides

Value ReturnedClassGeneric Function

The logical complement of
the argument

ENOT (I)

A disassociated pointerTNULL ([MOLD])

See IOREOR (I, J)

A packed array of rank one
(under a mask)

TPACK (ARRAY, MASK
[,VECTOR])

The number of 1 bits in the
integer argument

EPOPCNT (I)

The parity of the integer
argument

EPOPPAR (I)

The decimal precision (real
or complex) of the argument

IPRECISION (X)

.TRUE. if an actual argument
has been provided for an
optional dummy argument

IPRESENT (A)

The product of the elements
of the argument array

TPRODUCT (ARRAY [,DIM]
[,MASK])

The corresponding REAL(16)
precision value of the
argument

EQEXT (A)

The corresponding REAL(16)
precision value of the integer
argument

EQFLOAT (A)

The base of the model for the
argument

IRADIX (X)

The decimal exponent range
of the model for the
argument

IRANGE (X)

1969

50

Value ReturnedClassGeneric Function

The corresponding real value
of the argument

EREAL (A [, KIND])

The concatenation of zero or
more copies of the specified
string

TREPEAT (STRING, NCOPIES)

An array that has a different
shape than the argument
array, but the same elements

TRESHAPE (SOURCE, SHAPE
[,PAD] [,ORDER])

The reciprocal of the relative
spacing near the argument

ERRSPACING (X)

See ISHFTERSHIFT (I, NEGATIVE_SHIFT)

Same as RSHIFT; see ISHFTERSHFT (I, NEGATIVE_SHIFT)

The value of the exponent
part (of the model for the
argument) changed by a
specified value

ESCALE (X, I)

The position of the specified
character (or set of
characters) within a string

ESCAN (STRING, SET [,BACK]
[,KIND])

The value of the kind type
parameter of the character
set named by the argument

TSELECTED_CHAR_KIND
(NAME)

The integer kind parameter
of the argument

TSELECTED_INT_KIND (R)

The real kind parameter of
the argument; one of the
optional arguments must be
specified

TSELECTED_REAL_KIND ([P]
[, R])

1970

50 Intel® Fortran Compiler User and Reference Guides

Value ReturnedClassGeneric Function

The value of the exponent
part (of the model for the
argument) set to a specified
value

ESET_EXPONENT (X, I)

The shape (rank and extents)
of an array or scalar

ISHAPE (SOURCE [,KIND])

Argument IVALUE shifted left
by a specified number of bits

ESHIFTL (IVALUE, ISHIFT)

Argument IVALUE shifted
right by a specified number
of bits

ESHIFTR (IVALUE, ISHIFT)

A value with the sign
transferred from its second
argument

ESIGN (A, B)

The sine of the argument,
which is in radians

ESIN (X)

The sine of the argument,
which is in degreess

ESIND (X)

The hyperbolic sine of the
argument

ESINH (X)

The size (total number of
elements) of the argument
array (or one of its
dimensions)

ISIZE (ARRAY [,DIM] [,KIND])

The bytes of storage used by
the argument

ISIZEOF (X)

The corresponding real value
of the argument

ESNGL (X)

The value of the absolute
spacing of model numbers
near the argument

ESPACING (X)

1971

50

Value ReturnedClassGeneric Function

A replicated array that has an
added dimension

TSPREAD (SOURCE, DIM,
NCOPIES)

The square root of the
argument

ESQRT (X)

The sum of the elements of
the argument array

TSUM (ARRAY [,DIM] [,MASK])

The tangent of the argument,
which is in radians

ETAN (X)

The tangent of the argument,
which is in degrees

ETAND (X)

The hyperbolic tangent of the
argument

ETANH (X)

The smallest positive number
in the model for the
argument

ITINY (X)

The number of trailing zero
bits in an integer

ETRAILZ (I)

The bit pattern of SOURCE
converted to the type and
kind parameters of MOLD

TTRANSFER (SOURCE, MOLD
[,SIZE])

The matrix transpose for the
rank-two argument array

TTRANSPOSE (MATRIX)

The argument with trailing
blanks removed

TTRIM (STRING)

The upper bounds of an array
(or one of its dimensions)

IUBOUND (ARRAY [,DIM]
[,KIND])

An array (under a mask)
unpacked from a rank-one
array

TUNPACK (VECTOR, MASK,
FIELD)

1972

50 Intel® Fortran Compiler User and Reference Guides

Value ReturnedClassGeneric Function

The position of the first
character in a string that
does not appear in the given
set of characters

EVERIFY (STRING, SET
[,BACK] [,KIND])

See IEOREXOR (I, J)

A zero-extended value of the
argument

EZEXT (X [,KIND])

Key to Classes

E-Elemental

I-Inquiry

T-Transformational

The following table lists specific functions that have no generic function associated with them
and indicates whether they are elemental, nonelemental, or inquiry functions. Optional arguments
are shown within square brackets.

Table 603: Specific Functions with No Generic Association

Value ReturnedClassGeneric Function

The size of a level of the
memory cache

ICACHESIZE (N)1

The corresponding complex
value of the argument

ECMPLX (X [,Y] [,KIND])

The corresponding double
complex value of the
argument

EDCMPLX (X, Y)

The corresponding REAL(8)
value of a character string

EDNUM (I)

The double-precision product
of two real arguments

EDPROD (X, Y)

The corresponding
double-precision value of the
double-complex argument

EDREAL (A)

1973

50

Value ReturnedClassGeneric Function

See IARGCIIARG ()

The index of the last
command-line argument

IIARGC ()

The INTEGER kind that will
hold an address

IINT_PTR_KIND ()

The corresponding
INTEGER(2) value of a
character string

EINUM (I)

The corresponding
INTEGER(4) value of a
character string

EJNUM (I)

The corresponding
INTEGER(8) value of a
character string

EKNUM (I)

The sum of the current
process's user time and the
user and system time of all
its child processes

IMCLOCK ()

The upper (leftmost) 64 bits
of the 128-bit unsigned result

EMULT_HIGH (I, J)1

The upper (leftmost) 64 bits
of the 128-bit signed result

EMULT_HIGH_SIGNED (I, J)1

The total number of
command-line arguments,
including the command

INARGS ()

See IARGCINUMARG ()

The corresponding
COMPLEX(16) value of the
argument

EQCMPLX (X, Y)

1974

50 Intel® Fortran Compiler User and Reference Guides

Value ReturnedClassGeneric Function

The corresponding REAL(16)
value of a character string

EQNUM (I)

The corresponding REAL(16)
value of the real part of a
COMPLEX(16) argument

EQREAL (A)

The next number from a
sequence of pseudorandom
numbers (uniformly
distributed in the range 0 to
1)

NRAN (I)

The corresponding REAL(4)
value of a character string

ERNUM (I)

The system time of day (or
elapsed time) as a
floating-point value in
seconds

ESECNDS (X)

Key to Classes

E-Elemental

I-Inquiry

N-Nonelemental

1i64 only

Intrinsic Subroutines

The following table lists the intrinsic subroutines. Optional arguments are shown within square
brackets. All these subroutines are nonelemental except for MVBITS. None of the intrinsic
subroutines can be passed as actual arguments.

Table 604: Intrinsic Subroutines

Value Returned or ResultSubroutine

The processor time in secondsCPU_TIME (TIME)

1975

50

Value Returned or ResultSubroutine

The ASCII representation of the current date
(in dd-mmm-yy form)

DATE (BUF)

Date and time information from the real-time
clock

DATE_AND_TIME ([DATE] [,TIME] [,ZONE]
[,VALUES])

Information about the most recently detected
error condition

ERRSNS ([IO_ERR] [,SYS_ERR] [,STAT]
[,UNIT] [,COND])

Image exit status is optionally returned; the
program is terminated, all files closed, and
control is returned to the operating system

EXIT ([STATUS])

Frees memory that is currently allocatedFREE (A)

The specified command line argument (where
the command itself is argument number zero)

GETARG (N, BUFFER [,STATUS])

The entire command that was used to invoke
the program

GET_COMMAND ([command, length, status])

A command line argument of the command
that invoked the program

GET_COMMAND_ARGUMENT (n [, value,
length, status])

The value of an environment variableGET_ENVIRONMENT_VARIABLE (name [,
value, length, status, trim_name])

Three integer values representing the current
month, day, and year

IDATE (I, J, K)

Data from the specified address on one
memory cache line

MM_PREFETCH (ADDRESS [,HINT] [,FAULT]
[,EXCLUSIVE])

An allocation is moved from one allocatable
object to another.

MOVE_ALLOC (FROM, TO)

A sequence of bits (bit field) is copied from
one location to another

MVBITS (FROM, FROMPOS, LEN, TO, TOPOS)1

1976

50 Intel® Fortran Compiler User and Reference Guides

Value Returned or ResultSubroutine

A pseudorandom number taken from a
sequence of pseudorandom numbers
uniformly distributed within the range 0.0 to
1.0

RANDOM_NUMBER (HARVEST)

The initialization or retrieval of the
pseudorandom number generator seed value

RANDOM_SEED ([SIZE] [,PUT] [,GET])

A pseudorandom number as a single-
precision value (within the range 0.0 to 1.0)

RANDU (I1, I2, X)

Data from the processors real-time clockSYSTEM_CLOCK ([COUNT] [,COUNT_RATE]
[,COUNT_MAX])

The ASCII representation of the current time
(in hh:mm:ss form)

TIME (BUF)

1 An elemental subroutine

1977

50

51Data Transfer I/O Statements

Input/Output (I/O) statements can be used for data transfer, file connection, file inquiry, and file positioning.

This section discusses data transfer and contains information on the following topics:

• An overview of records and files

• Components of data transfer statements

• Data transfer input statements:

• READ statement

• ACCEPT statement

• Data transfer output statements:

• WRITE statement

• PRINT and TYPE statements

• REWRITE statement

File connection, file inquiry, and file positioning I/O statements are discussed in File Operation I/O
Statements.

Records and Files

A record is a sequence of values or a sequence of characters. There are three kinds of Fortran
records, as follows:

• Formatted

A record containing formatted data that requires translation from internal to external form.
Formatted I/O statements have explicit format specifiers (which can specify list-directed formatting)
or namelist specifiers (for namelist formatting). Only formatted I/O statements can read formatted
data.

• Unformatted

A record containing unformatted data that is not translated from internal form. An unformatted
record can also contain no data. The internal representation of unformatted data is processor-
dependent. Only unformatted I/O statements can read unformatted data.

• Endfile

1979

The last record of a file. An endfile record can be explicitly written to a sequential file by an
ENDFILE statement.

A file is a sequence of records. There are two types of Fortran files, as follows:

• External

A file that exists in a medium (such as computer disks or terminals) external to the executable
program.

Records in an external file must be either all formatted or all unformatted. There are two
ways to access records in external files: sequential and direct access.

In sequential access, records are processed in the order in which they appear in the file. In
direct access, records are selected by record number, so they can be processed in any order.

• Internal

Memory (internal storage) that behaves like a file. This type of file provides a way to transfer
and convert data in memory from one format to another. The contents of these files are
stored as scalar character variables.

See Also
• Data Transfer I/O Statements

Building Applications for details on formatted and unformatted data transfers and external file
access methods

Components of Data Transfer Statements

Data transfer statements take one of the following forms:

io-keyword (io-control-list) [io-list]

io-keyword format [, io-list]

Is one of the following: ACCEPT, PRINT (or TYPE), READ, REWRITE, or
WRITE.

io-keyword

Is one or more of the following input/output (I/O) control specifiers:io-control-list

SIZEERRADVANCE[UNIT=]io-unit

IOSTATEND[FMT=]format

RECEOR[NML=]group

1980

51 Intel® Fortran Compiler User and Reference Guides

Is an I/O list, which can contain variables (except for assumed-size
arrays) or implied-DO lists. Output statements can contain constants
or expressions.

io-list

Is the nonkeyword form of a control-list format specifier (no FMT=).format

If a format specifier ([FMT=]format) or namelist specifier ([NML=]group) is present, the data
transfer statement is called a formatted I/O statement; otherwise, it is an unformatted I/O
statement.

If a record specifier (REC=) is present, the data transfer statement is a direct-access I/O
statement; otherwise, it is a sequential-access I/O statement.

If an error, end-of-record, or end-of-file condition occurs during data transfer, file positioning
and execution are affected, and certain control-list specifiers (if present) become defined. (For
more information, see Branch Specifiers.)

Following sections describe the I/O control list and I/O lists.

I/O Control List

The I/O control list specifies one or more of the following:

• The I/O unit to act upon ([UNIT=]io-unit)

This specifier must be present; the rest are optional.

• The format (explicit or list-directed) to use for data editing; if explicit, the keyword form
must appear ([FMT=]

• The namelist group name to act upon ([NML=]group)

• The number of a record to access (REC)

• The name of a variable that contains the completion status of an I/O operation (IOSTAT)

• The label of the statement that receives control if an error (ERR), end-of-file (END), or
end-of-record (EOR) condition occurs

• Whether you want to use advancing or nonadvancing I/O (ADVANCE)

• The number of characters read from a record (SIZE) by a nonadvancing READ statement

• Whether you want to use asynchronous or synchronous I/O (ASYNCHRONOUS)

• The identifier for a pending data transfer operation (ID)

• The identifier for the file position in file storage units in a stream file (POS)

No control specifier can appear more than once, and the list must not contain both a format
specifier and namelist group name specifier.

Control specifiers can take any of the following forms:

1981

51

• Keyword form

When the keyword form (for example, UNIT=io-unit) is used for all control-list specifiers in
an I/O statement, the specifiers can appear in any order.

• Nonkeyword form

When the nonkeyword form (for example, io-unit) is used for all control-list specifiers in an
I/O statement, the io-unit specifier must be the first item in the control list. If a format
specifier or namelist group name specifier is used, it must immediately follow the io-unit
specifier.

• Mixed form

When a mix of keyword and nonkeyword forms is used for control-list specifiers in an I/O
statement, the nonkeyword values must appear first. Once a keyword form of a specifier is
used, all specifiers to the right must also be keyword forms.

See Also
• Components of Data Transfer Statements
• Unit Specifier
• Format Specifier
• Namelist Specifier
• Record Specifier
• I/O Status Specifier
• Branch Specifiers
• Advance Specifier
• Asynchronous Specifier
• Character Count Specifier
• ID Specifier
• POS Specifier
• Unit Specifier
• Format Specifier
• Namelist Specifier
• Record Specifier
• I/O Status Specifier
• Branch Specifiers
• Advance Specifier
• Asynchronous Specifier
• Character Count Specifier

1982

51 Intel® Fortran Compiler User and Reference Guides

• ID Specifier
• POS Specifier
Unit Specifier

The unit specifier identifies the I/O unit to be accessed. It takes the following form:

[UNIT=]io-unit

For external files, it identifies a logical unit and is one of the following:io-unit

• A scalar integer expression that refers to a specific file, I/O device,
or pipe. If necessary, the value is converted to integer data type
before use. The integer is in the range 0 through 2,147,483,643.
Note that the predefined parameters FOR_K_PRINT_UNITNO,
FOR_K_TYPE_UNITNO, FOR_K_ACCEPT_UNITNO, and
FOR_K_READ_UNITNO may not be in that range.

Units 5, 6, and 0 are associated with preconnected units.

• An asterisk (*). This is the default (or implicit) external unit, which
is preconnected for formatted sequential access. You can also
preconnect files by using an environment variable.

For internal files, io-unit identifies a scalar or array character variable that is an internal file.
An internal file is designated internal storage space (a variable buffer) that is used with formatted
(including list-directed) sequential READ and WRITE statements.

The io-unit must be specified in a control list. If the keyword UNIT is omitted, the io-unit
must be first in the control list.

A unit number is assigned either explicitly through an OPEN statement or implicitly by the
system. If a READ statement implicitly opens a file, the file's status is STATUS='OLD'. If a
WRITE statement implicitly opens a file, the file's status is STATUS='UNKNOWN'.

If the internal file is a scalar character variable, the file has only one record; its length is equal
to that of the variable.

If the internal file is an array character variable, the file has a record for each element in the
array; each record's length is equal to one array element.

An internal file can be read only if the variable has been defined and a value assigned to each
record in the file. If the variable representing the internal file is a pointer, it must be associated;
if the variable is an allocatable array, it must be currently allocated.

Before data transfer, an internal file is always positioned at the beginning of the first character
of the first record.

1983

51

See Also
• I/O Control List
• OPEN statement

Building Applications for details on implicit logical assignments, details on preconnected units,
details on using internal files, and details on using environmental variables

Format Specifier

The format specifier indicates the format to use for data editing. It takes the following form:

[FMT=]format

Is one of the following:format

• The statement label of a FORMAT statement

The FORMAT statement must be in the same scoping unit as the
data transfer statement.

• An asterisk (*), indicating list-directed formatting

• A scalar default integer variable that has been assigned the label of
a FORMAT statement (through an ASSIGN statement)

The FORMAT statement must be in the same scoping unit as the
data transfer statement.

• A character expression (which can be an array or character constant)
containing the run-time format

A default character expression must evaluate to a valid format
specification. If the expression is an array, it is treated as if all the
elements of the array were specified in array element order and
were concatenated.

• The name of a numeric array (or array element) containing the
format

If the keyword FMT is omitted, the format specifier must be the second specifier in the control
list; the io-unit specifier must be first.

If a format specifier appears in a control list, a namelist group specifier must not appear.

See Also
• I/O Control List
• FORMAT statement
• Interaction between FORMAT statements and I/O lists
• Rules for List-Directed Sequential READ Statements

1984

51 Intel® Fortran Compiler User and Reference Guides

• Rules for List-Directed Sequential WRITE Statements
Namelist Specifier

The namelist specifier indicates namelist formatting and identifies the namelist group for data
transfer. It takes the following form:

[NML=]group

Is the name of a namelist group previously declared in a NAMELIST
statement.

group

If the keyword NML is omitted, the namelist specifier must be the second specifier in the control
list; the io-unit specifier must be first.

If a namelist specifier appears in a control list, a format specifier must not appear.

See Also
• I/O Control List
• Rules for Namelist Sequential READ Statements
• Rules for Namelist Sequential WRITE Statements
• READ
• WRITE
Record Specifier

The record specifier identifies the number of the record for data transfer in a file connected for
direct access. It takes the following form:

REC=r

Is a scalar numeric expression indicating the record number. The value
of the expression must be greater than or equal to 1, and less than or
equal to the maximum number of records allowed in the file.

r

If necessary, the value is converted to integer data type before use.

If REC is present, no END specifier, * format specifier, or namelist group name can appear in
the same control list.

See Also
• I/O Control List
• Alternative Syntax for a Record Specifier
I/O Status Specifier

The I/O status specifier designates a variable to store a value indicating the status of a data
transfer operation. It takes the following form:

IOSTAT=i-var

1985

51

Is a scalar integer variable. When a data transfer statement is executed,
i-var is set to one of the following values:

i-var

Indicating an error condition
occurred.

A positive integer

Indicating an end-of-file or
end-of-record condition occurred.
The negative integers differ
depending on which condition
occurred.

A negative integer

Indicating no error, end-of-file,
or end-of-record condition
occurred.

Zero

Execution continues with the statement following the data transfer statement, or the statement
identified by a branch specifier (if any).

An end-of-file condition occurs only during execution of a sequential READ statement; an
end-of-record condition occurs only during execution of a nonadvancing READ statement.

See Also
• I/O Control List
• CLOSE
• READ
• WRITE

Building Applications for details on the error numbers returned by IOSTAT

Branch Specifiers

A branch specifier identifies a branch target statement that receives control if an error,
end-of-file, or end-of-record condition occurs. There are three branch specifiers, taking the
following forms:

ERR=label

END=label

EOR=label

Is the label of the branch target statement that receives control when
the specified condition occurs.

label

The branch target statement must be in the same scoping unit as the
data transfer statement.

1986

51 Intel® Fortran Compiler User and Reference Guides

The following rules apply to these specifiers:

• ERR

The error specifier can appear in a sequential access READ or WRITE statement, a
direct-access READ statement, or a REWRITE statement.

If an error condition occurs, the position of the file is indeterminate, and execution of the
statement terminates.

If IOSTAT was specified, the IOSTAT variable becomes defined as a positive integer value.
If SIZE was specified (in a nonadvancing READ statement), the SIZE variable becomes
defined as an integer value. If a label was specified, execution continues with the labeled
statement.

• END

The end-of-file specifier can appear only in a sequential access READ statement.

An end-of-file condition occurs when no more records exist in a file during a sequential read,
or when an end-of-file record produced by the ENDFILE statement is encountered. End-of-file
conditions do not occur in direct-access READ statements.

If an end-of-file condition occurs, the file is positioned after the end-of-file record, and
execution of the statement terminates.

If IOSTAT was specified, the IOSTAT variable becomes defined as a negative integer value.
If a label was specified, execution continues with the labeled statement.

• EOR

The end-of-record specifier can appear only in a formatted, sequential access READ statement
that has the specifier ADVANCE='NO'(nonadvancing input).

An end-of-record condition occurs when a nonadvancing READ statement tries to transfer
data from a position after the end of a record.

If an end-of-record condition occurs, the file is positioned after the current record, and
execution of the statement terminates.

If IOSTAT was specified, the IOSTAT variable becomes defined as a negative integer value.
If PAD='YES' was specified for file connection, the record is padded with blanks (as necessary)
to satisfy the input item list and the corresponding data edit descriptor. If SIZE was specified,
the SIZE variable becomes defined as an integer value. If a label was specified, execution
continues with the labeled statement.

If one of the conditions occurs, no branch specifier appears in the control list, but an IOSTAT
specifier appears, execution continues with the statement following the I/O statement. If neither
a branch specifier nor an IOSTAT specifier appears, the program terminates.

1987

51

See Also
• I/O Control List
• I/O Status Specifier
• Branch Statements

Building Applications: Using the IOSTAT Specifier and Fortran Exit Codes for more details on
the IOSTAT specifier

Building Applications: Using the END, EOR, and ERR Branch Specifiers for more details on
branch target statements

Building Applications for details on error processing

Advance Specifier

The advance specifier determines whether nonadvancing I/O occurs for a data transfer statement.
It takes the following form:

ADVANCE=c-expr

Is a scalar character expression that evaluates to 'YES' for advancing
I/O or 'NO' for nonadvancing I/O. The default value is 'YES'.

c-expr

Trailing blanks in the expression are ignored. The values specified are
without regard to case.

The ADVANCE specifier can appear only in a formatted, sequential data transfer statement that
specifies an external unit. It must not be specified for list-directed or namelist data transfer.

Advancing I/O always positions a file at the end of a record, unless an error condition occurs.
Nonadvancing I/O can position a file at a character position within the current record.

For details on advancing and nonadvancing I/O, see Building Applications.

See Also
• I/O Control List

Building Applications for details on advancing and nonadvancing I/O

Asynchronous Specifier

The asynchronous specifier determines whether asynchronous I/O occurs for a data transfer
statement. It takes the following form:

ASYNCHRONOUS=i-expr

Is a scalar character initialization expression that evaluates to 'YES' for
asynchronous I/O or 'NO' for synchronous I/O. The value 'YES' should
not appear unless the data transfer statement specifies a file unit
number for io-unit. The default value is 'NO'.

i-expr

1988

51 Intel® Fortran Compiler User and Reference Guides

Trailing blanks in the expression are ignored. The values specified are
without regard to case.

Asynchronous I/O is permitted only for external files opened with an OPEN statement that
specifies ASYNCHRONOUS='YES'.

When an asynchronous I/O statement is executed, the pending I/O storage sequence for the
data transfer operation is defined to be:

• The set of storage units specified by the I/O item list or by the NML= specifier

• The storage units specified by the SIZE= specifier

Character Count Specifier

The character count specifier defines a variable to contain the count of how many characters
are read when a nonadvancing READ statement terminates. It takes the following form:

SIZE=i-var

Is a scalar integer variable.i-var

If PAD='YES' was specified for file connection, blanks inserted as padding are not counted.

The SIZE specifier can appear only in a formatted, sequential READ statement that has the
specifier ADVANCE='NO' (nonadvancing input). It must not be specified for list-directed or
namelist data transfer.

ID Specifier

The ID specifier identifies a pending data transfer operation for a specified unit. It takes the
following form:

ID=id-var

Is a scalar integer variable to be used as an identifier.id-var
This specifier can only be used if the value of ASYNCHRONOUS=i-expr
is 'YES'.

If an ID specifier is used in a data transfer statement, a wait operation is performed for the
operation. If it is omitted, wait operations are performed for all pending data transfers for the
specified unit.

If an error occurs during the execution of a data transfer statement containing an ID specifier,
the variable specified becomes undefined.

POS Specifier

The POS specifier identifies the file position in file storage units in a stream file
(ACCESS='STREAM'). It takes the following form:

POS=p

1989

51

Is a scalar integer expression that specifies the file position. It can only
be specified on a file opened for stream access. If omitted, the stream
I/O occurs starting at the next file position after the current file position.

p

Each file storage unit has a unique file position, represented by a positive integer. The first file
storage unit is a file is at file position 1. The position of each subsequent file storage unit is one
greater than that of its preceding file storage unit.

For a formatted file, the file storage unit is an eight-bit byte. For an unformatted file, the file
storage unit is an eight-bit byte (if option assume byterecl is specified) or a 32-bit word (if
option assume nobyterecl, the default, is specified).

I/O Lists

In a data transfer statement, the I/O list specifies the entities whose values will be transferred.
The I/O list is either an implied-do list or a simple list of variables (except for assumed-size
arrays).

In input statements, the I/O list cannot contain constants and expressions because these do
not specify named memory locations that can be referenced later in the program.

However, constants and expressions can appear in the I/O lists for output statements because
the compiler can use temporary memory locations to hold these values during the execution
of the I/O statement.

If an input item is a pointer, it must be currently associated with a definable target; data is
transferred from the file to the associated target. If an output item is a pointer, it must be
currently associated with a target; data is transferred from the target to the file.

If an input or output item is an array, it is treated as if the elements (if any) were specified in
array element order. For example, if ARRAY_A is an array of shape (2,1), the following input
statements are equivalent:
READ *, ARRAY_A

READ *, ARRAY_A(1,1), ARRAY_A(2,1)

However, no element of that array can affect the value of any expression in the input list, nor
can any element appear more than once in an input list. For example, the following input
statements are invalid:
INTEGER B(50)

...

READ *, B(B)

READ *, B(B(1):B(10))

If an input or output item is an allocatable array, it must be currently allocated.

1990

51 Intel® Fortran Compiler User and Reference Guides

If an input or output item is a derived type, the following rules apply:

• Any derived-type component must be in the scoping unit containing the I/O statement.

• The derived type must not have a pointer component.

• In a formatted I/O statement, a derived type is treated as if all of the components of the
structure were specified in the same order as in the derived-type definition.

• In an unformatted I/O statement, a derived type is treated as a single object.

Simple List Items in I/O Lists

In a data transfer statement, a simple list of items takes the following form:

item [, item] ...

Is one of the following:item

• For input statements: a variable name

The variable must not be an assumed-size array, unless one of the
following appears in the last dimension: a subscript, a vector
subscript, or a section subscript specifying an upper bound.

• For output statements: a variable name, expression, or constant

Any expression must not attempt further I/O operations on the same
logical unit. For example, it must not refer to a function subprogram
that performs I/O on the same logical unit.

The data transfer statement assigns values to (or transfers values from) the list items in the
order in which the items appear, from left to right.

When multiple array names are used in the I/O list of an unformatted input or output statement,
only one record is read or written, regardless of how many array name references appear in
the list.

Examples

The following example shows a simple I/O list:

WRITE (6,10) J, K(3), 4, (L+4)/2, N

When you use an array name reference in an I/O list, an input statement reads enough data to fill
every item of the array. An output statement writes all of the values in the array.

Data transfer begins with the initial item of the array and proceeds in the order of subscript
progression, with the leftmost subscript varying most rapidly. The following statement defines a
two-dimensional array:

DIMENSION ARRAY(3,3)

1991

51

If the name ARRAY appears with no subscripts in a READ statement, that statement assigns values
from the input record(s) to ARRAY(1,1), ARRAY(2,1), ARRAY(3,1), ARRAY(1,2), and so on through
ARRAY(3,3).

An input record contains the following values:

1,3,721.73

The following example shows how variables in the I/O list can be used in array subscripts later in
the list:

DIMENSION ARRAY(3,3)

...

READ (1,30) J, K, ARRAY(J,K)

When the READ statement is executed, the first input value is assigned to J and the second to K,
establishing the subscript values for ARRAY(J,K). The value 721.73 is then assigned to ARRAY(1,3).
Note that the variables must appear before their use as array subscripts.

Consider the following derived-type definition and structure declaration:

TYPE EMPLOYEE

INTEGER ID

CHARACTER(LEN=40) NAME

END TYPE EMPLOYEE

...

TYPE(EMPLOYEE) :: CONTRACT ! A structure of type EMPLOYEE

The following statements are equivalent:

READ *, CONTRACT

READ *, CONTRACT%ID, CONTRACT%NAME

1992

51 Intel® Fortran Compiler User and Reference Guides

The following shows more examples:

! A variable and array element in iolist:

REAL b(99)

READ (*, 300) n, b(n) ! n and b(n) are the iolist

300 FORMAT (I2, F10.5) ! FORMAT statement telling what form the input data has

! A derived type and type element in iolist:

TYPE YOUR_DATA

REAL a

CHARACTER(30) info

COMPLEX cx

END TYPE YOUR_DATA

TYPE (YOUR_DATA) yd1, yd2

yd1.a = 2.3

yd1.info = "This is a type demo."

yd1.cx = (3.0, 4.0)

yd2.cx = (4.5, 6.7)

! The iolist follows the WRITE (*,500).

WRITE (*, 500) yd1, yd2.cx

! The format statement tells how the iolist will be output.

500 FORMAT (F5.3, A21, F5.2, ',', F5.2, ' yd2.cx = (', F5.2,

',',F5.2, ')')

! The output looks like:

! 2.300This is a type demo 3.00, 4.00 yd2.cx = (4.50, 6.70)

1993

51

The following example uses an array and an array section:

! An array in the iolist:

INTEGER handle(5)

DATA handle / 5*0 /

WRITE (*, 99) handle

99 FORMAT (5I5)

! An array section in the iolist.

WRITE (*, 100) handle(2:3)

100 FORMAT (2I5)

The following shows another example:

PRINT *,'(I5)', 2*3 ! The iolist is the expression 2*3.

1994

51 Intel® Fortran Compiler User and Reference Guides

The following example uses a namelist:

! Namelist I/O:

INTEGER int1

LOGICAL log1

REAL r1

CHARACTER (20) char20

NAMELIST /mylist/ int1, log1, r1, char20

int1 = 1

log1 = .TRUE.

r1 = 1.0

char20 = 'NAMELIST demo'

OPEN (UNIT = 4, FILE = 'MYFILE.DAT', DELIM = 'APOSTROPHE')

WRITE (UNIT = 4, NML = mylist)

! Writes the following:

! &MYLIST

! INT1 = 1,

! LOG1 = T,

! R1 = 1.000000,

! CHAR20 = 'NAMELIST demo '

! /

REWIND(4)

READ (4, mylist)

See Also
• I/O Lists
• I/O Lists
Implied-DO Lists in I/O Lists

In a data transfer statement, an implied-DO list acts as though it were a part of an I/O statement
within a DO loop. It takes the following form:

(list, do-var = expr 1, expr 2 [, expr 3])

1995

51

Is a list of variables, expressions, or constants (see Simple List Items
in I/O Lists).

list

Is the name of a scalar integer or real variable. The variable must not
be one of the input items in list.

do-var

Are scalar numeric expressions of type integer or real. They do not all
have to be the same type, or the same type as the DO variable.

expr

The implied-DO loop is initiated, executed, and terminated in the same way as a DO construct.

The list is the range of the implied-DO loop. Items in that list can refer to do-var, but they
must not change the value of do-var.

Two nested implied-DO lists must not have the same (or an associated) DO variable.

Use an implied-DO list to do the following:

• Specify iteration of part of an I/O list

• Transfer part of an array

• Transfer array items in a sequence different from the order of subscript progression

If the I/O statement containing an implied-DO list terminates abnormally (with an END, EOR,
or ERR branch or with an IOSTAT value other than zero), the DO variable becomes undefined.

Examples

The following two output statements are equivalent:

WRITE (3,200) (A,B,C, I=1,3) ! An implied-DO list

WRITE (3,200) A,B,C,A,B,C,A,B,C ! A simple item list

The following example shows nested implied-DO lists. Execution of the innermost list is repeated
most often:

WRITE (6,150) ((FORM(K,L), L=1,10), K=1,10,2)

The inner DO loop is executed 10 times for each iteration of the outer loop; the second subscript (L)
advances from 1 through 10 for each increment of the first subscript (K). This is the reverse of the
normal array element order. Note that K is incremented by 2, so only the odd-numbered rows of the
array are output.

In the following example, the entire list of the implied-DO list (P(1), Q(1,1), Q(1,2)...,Q(1,10)) are
read before I is incremented to 2:

READ (5,999) (P(I), (Q(I,J), J=1,10), I=1,5)

1996

51 Intel® Fortran Compiler User and Reference Guides

The following example uses fixed subscripts and subscripts that vary according to the implied-DO
list:

READ (3,5555) (BOX(1,J), J=1,10)

Input values are assigned to BOX(1,1) through BOX(1,10), but other elements of the array are not
affected.

The following example shows how a DO variable can be output directly:

WRITE (6,1111) (I, I=1,20)

Integers 1 through 20 are written.

Consider the following:

INTEGER mydata(25)

READ (10, 9000) (mydata(I), I=6,10,1)

9000 FORMAT (5I3)

In this example, the iolist specifies to put the input data into elements 6 through 10 of the array
called mydata. The third value in the implied-DO loop, the increment, is optional. If you leave it out,
the increment value defaults to 1.

See Also
• I/O Lists
• DO constructs
• I/O Lists

READ Statements Overview

The READ statement is a data transfer input statement. Data can be input from external
sequential or direct-access records, or from internal records. For more information, see READ.

See Also
• Data Transfer I/O Statements
• Forms for Sequential READ Statements
• Forms for Direct-Access READ Statements
• Forms for Stream READ Statements
• Forms and Rules for Internal READ Statements
• Forms for Sequential READ Statements
• Forms for Direct-Access READ Statements

1997

51

• Forms for STREAM READ Statements
• Forms and Rules for Internal READ Statements

Forms for Sequential READ Statements

Sequential READ statements transfer input data from external sequential-access records. The
statements can be formatted with format specifiers (which can use list-directed formatting) or
namelist specifiers (for namelist formatting), or they can be unformatted.

A sequential READ statement takes one of the following forms:

Formatted:

READ (eunit, format [, advance] [, asynchronous] [, id] [, pos] [, size] [, iostat] [, err]
[, end] [, eor]) [io-list]

READ form [, io-list]

Formatted - List-Directed:

READ (eunit, * [, asynchronous] [, id] [, pos] [, iostat] [, err] [, end]) [io-list]

READ * [, io-list]

Formatted - Namelist:

READ (eunit, nml-group [, iostat] [, err] [, end])

READ nml

Unformatted:

READ (eunit [, asynchronous] [, id] [, pos] [, iostat] [, err] [, end]) [io-list]

See Also
• READ Statements Overview
• Rules for Formatted Sequential READ Statements
• Rules for List-Directed Sequential READ Statements
• Rules for Namelist Sequential READ Statement
• Rules for Unformatted Sequential READ Statements
• READ

1998

51 Intel® Fortran Compiler User and Reference Guides

• Rules for Formatted Sequential READ Statements
• Rules for List-Directed Sequential READ Statements
• Rules for Namelist Sequential READ Statements
• Rules for Unformatted Sequential READ Statements
• I/O control-list specifiers
• I/O lists
Rules for Formatted Sequential READ Statements

Formatted, sequential READ statements translate data from character to binary form by using
format specifications for editing (if any). The translated data is assigned to the entities in the
I/O list in the order in which the entities appear, from left to right.

Values can be transferred to objects of intrinsic or derived types. For derived types, values of
intrinsic types are transferred to the components of intrinsic types that ultimately make up
these structured objects.

For data transfer, the file must be positioned so that the record read is a formatted record or
an end-of-file record.

If the number of I/O list items is less than the number of fields in an input record, the statement
ignores the excess fields.

If the number of I/O list items is greater than the number of fields in an input record, the input
record is padded with blanks. However, if PAD='NO' was specified for file connection, the input
list and file specification must not require more characters from the record than it contains. If
more characters are required and nonadvancing input is in effect, an end-of-record condition
occurs.

If the file is connected for unformatted I/O, formatted data transfer is prohibited.

Examples

The following example shows formatted, sequential READ statements:

READ (*, '(B)', ADVANCE='NO') C

READ (FMT="(E2.4)", UNIT=6, IOSTAT=IO_STATUS) A, B, C

See Also
• Forms for Sequential READ Statements
• READ statement
• Forms for Sequential READ Statements

1999

51

Rules for List-Directed Sequential READ Statements

List-directed, sequential READ statements translate data from character to binary form by using
the data types of the corresponding I/O list item to determine the form of the data. The
translated data is then assigned to the entities in the I/O list in the order in which they appear,
from left to right.

If a slash (/) is encountered during execution, the READ statement is terminated, and any
remaining input list items are unchanged.

If the file is connected for unformatted I/O, list-directed data transfer is prohibited.

List-Directed Records

A list-directed external record consists of a sequence of values and value separators. A value
can be any of the following:

• A constant

Each constant must be a literal constant of type integer, real, complex, logical, or character;
or a nondelimited character string. Binary, octal, hexadecimal, Hollerith, and named constants
are not permitted.

In general, the form of the constant must be acceptable for the type of the list item. The
data type of the constant determines the data type of the value and the translation from
external to internal form. The following rules also apply:

• A numeric list item can correspond only to a numeric constant, and a character list item
can correspond only to a character constant. If the data types of a numeric list element
and its corresponding numeric constant do not match, conversion is performed according
to the rules for arithmetic assignment (see the table in Numeric Assignment Statements).

• A complex constant has the form of a pair of real or integer constants separated by a
comma and enclosed in parentheses. Blanks can appear between the opening parenthesis
and the first constant, before and after the separating comma, and between the second
constant and the closing parenthesis.

• A logical constant represents true values (.TRUE. or any value beginning with T, .T, t, or
.t) or false values (.FALSE. or any value beginning with F, .F, f, or .f).

A character string does not need delimiting apostrophes or quotation marks if the
corresponding I/O list item is of type default character, and the following is true:

• The character string does not contain a blank, comma (,), or slash (/).

• The character string is not continued across a record boundary.

2000

51 Intel® Fortran Compiler User and Reference Guides

• The first nonblank character in the string is not an apostrophe or a quotation mark.

• The leading character is not a string of digits followed by an asterisk.

A nondelimited character string is terminated by the first blank, comma, slash, or
end-of-record encountered. Apostrophes and quotation marks within nondelimited character
strings are transferred as is.

• A null value

A null value is specified by two consecutive value separators (such as,,) or a nonblank initial
value separator. (A value separator before the end of the record does not signify a null
value.)

A null value indicates that the corresponding list element remains unchanged. A null value
can represent an entire complex constant, but cannot be used for either part of a complex
constant.

• A repetition of a null value (r*) or a constant (r*constant), where r is an unsigned, nonzero,
integer literal constant with no kind parameter, and no embedded blanks.

A value separator is any number of blanks, or a comma or slash, preceded or followed by any
number of blanks. When any of these appear in a character constant, they are considered part
of the constant, not value separators.

The end of a record is equivalent to a blank character, except when it occurs in a character
constant. In this case, the end of the record is ignored, and the character constant is continued
with the next record (the last character in the previous record is immediately followed by the
first character of the next record).

Blanks at the beginning of a record are ignored unless they are part of a character constant
continued from the previous record. In this case, the blanks at the beginning of the record are
considered part of the constant.

Examples

Suppose the following statements are specified:

CHARACTER*14 C

DOUBLE PRECISION T

COMPLEX D,E

LOGICAL L,M

READ (1,*) I,R,D,E,L,M,J,K,S,T,C,A,B

2001

51

Then suppose the following external record is read:

4 6.3 (3.4,4.2), (3, 2), T,F,,3*14.6,'ABC,DEF/GHI''JK'/

The following values are assigned to the I/O list items:

Value AssignedI/O List Item

4I

6.3R

(3.4,4.2)D

(3.0,2.0)E

.TRUE.L

.FALSE.M

UnchangedJ

14K

14.6S

14.6D0T

ABC,DEF/GHI' JKC

UnchangedA

UnchangedB

2002

51 Intel® Fortran Compiler User and Reference Guides

The following example shows list-directed input and output:

REAL a

INTEGER i

COMPLEX c

LOGICAL up, down

DATA a /2358.2E-8/, i /91585/, c /(705.60,819.60)/

DATA up /.TRUE./, down /.FALSE./

OPEN (UNIT = 9, FILE = 'listout', STATUS = 'NEW')

WRITE (9, *) a, i

WRITE (9, *) c, up, down

REWIND (9)

READ (9, *) a, i

READ (9, *) c, up, down

WRITE (*, *) a, i

WRITE (*, *) c, up, down

END

The preceding program produces the following output:

2.3582001E-05 91585

(705.6000,819.6000) T F

See Also
• Forms for Sequential READ Statements
• READ
• Forms for Sequential READ Statements
• Intrinsic Data Types
• Rules for List-Directed Sequential WRITE Statements
Rules for Namelist Sequential READ Statement

Namelist, sequential READ statements translate data from external to internal form by using
the data types of the objects in the corresponding NAMELIST statement to determine the form
of the data. The translated data is assigned to the specified objects in the namelist group in
the order in which they appear, from left to right.

2003

51

If a slash (/) is encountered during execution, the READ statement is terminated, and any
remaining input list items are unchanged.

If the file is connected for unformatted I/O, namelist data transfer is prohibited.

Namelist Records

A namelist external record takes the following form:

&group-name object = value [, object = value] .../

Is the name of the group containing the objects to be given values.
The name must have been previously defined in a NAMELIST statement
in the scoping unit. The name cannot contain embedded blanks and
must be contained within a single record.

group-name

Is the name (or subobject designator) of an entity defined in the
NAMELIST declaration of the group name. The object name must not
contain embedded blanks except within the parentheses of a subscript
or substring specifier. Each object must be contained in a single record.

object

Is any of the following:value

• A constant

Each constant must be a literal constant of type integer, real,
complex, logical, or character; or a nondelimited character string.
Binary, octal, hexadecimal, Hollerith, and named constants are not
permitted.

In general, the form of the constant must be acceptable for the type
of the list item. The data type of the constant determines the data
type of the value and the translation from external to internal form.
The following rules also apply:

• A numeric list item can correspond only to a numeric constant,
and a character list item can correspond only to a character
constant. If the data types of a numeric list element and its
corresponding numeric constant do not match, conversion is
performed according to the rules for arithmetic assignment (see
the table in Numeric Assignment Statements). Logical list items
and logical constants are not considered numeric, unless the
compiler option assume old_logical_ldio is specified.

2004

51 Intel® Fortran Compiler User and Reference Guides

• A complex constant has the form of a pair of real or integer
constants separated by a comma and enclosed in parentheses.
Blanks can appear between the opening parenthesis and the first
constant, before and after the separating comma, and between
the second constant and the closing parenthesis.

• A logical constant represents true values (.TRUE. or any value
beginning with T, .T, t, or .t) or false values (.FALSE. or any value
beginning with F, .F, f, or .f).

A character string does not need delimiting apostrophes or quotation
marks if the corresponding NAMELIST item is of type default
character, and the following is true:

• The character string does not contain a blank, comma (,), slash
(/), exclamation point(!), ampersand (&), dollar sign ($), left
parenthesis, equal sign (=), percent sign (%), or period (.).

The character string is not continued across a record boundary.

• The first nonblank character in the string is not an apostrophe
or a quotation mark.

• The leading characters are not a string of digits followed by an
asterisk.

A nondelimited character string is terminated by the first blank,
comma, slash, end-of-record, exclamation, ampersand, or dollar
sign encountered. Apostrophes and quotation marks within
nondelimited character strings are transferred as is.

If an equal sign, percent sign, or period is encountered while
scanning for a nondelimited character string, the string is treated
as a variable name (or part of one) and not as a nondelimited
character string.

• A null value

A null value is specified by two consecutive value separators (such
as,,) or a nonblank initial value separator. (A value separator before
the end of the record does not signify a null value.)

A null value indicates that the corresponding list element remains
unchanged. A null value can represent an entire complex constant,
but cannot be used for either part of a complex constant.

2005

51

• A repetition of a null value (r*) or a constant (r*constant), where
r is an unsigned, nonzero, integer literal constant with no kind
parameter, and no embedded blanks.

Blanks can precede or follow the beginning ampersand (&), follow the group name, precede or
follow the equal sign, or precede the terminating slash.

Comments (beginning with ! only) can appear anywhere in namelist input. The comment extends
to the end of the source line.

If an entity appears more than once within the input record for a namelist data transfer, the
last value is the one that is used.

If there is more than one object = value pair, they must be separated by value separators.

A value separator is any number of blanks, or a comma or slash, preceded or followed by any
number of blanks. When any of these appear in a character constant, they are considered part
of the constant, not value separators.

The end of a record is equivalent to a blank character, except when it occurs in a character
constant. In this case, the end of the record is ignored, and the character constant is continued
with the next record (the last character in the previous record is immediately followed by the
first character of the next record).

Blanks at the beginning of a record are ignored unless they are part of a character constant
continued from the previous record. In this case, the blanks at the beginning of the record are
considered part of the constant.

Prompting for Namelist Group Information

During execution of a program containing a namelist READ statement, you can specify a question
mark character (?) or a question mark character preceded by an equal sign (=?) to get
information about the namelist group. The ? or =? must follow one or more blanks.

If specified for a unit capable of both input and output, the ? causes display of the group name
and the objects in that group. The =? causes display of the group name, objects within that
group, and the current values for those objects (in namelist output form). If specified for another
type of unit, the symbols are ignored.

2006

51 Intel® Fortran Compiler User and Reference Guides

For example, consider the following statements:

NAMELIST /NLIST/ A,B,C

REAL A /1.5/

INTEGER B /2/

CHARACTER*5 C /'ABCDE'/

READ (5,NML=NLIST)

WRITE (6,NML=NLIST)

END

During execution, if a blank followed by ? is entered on a terminal device, the following values
are displayed:

&NLIST

A

B

C

/

If a blank followed by =? is entered, the following values are displayed:

&NLIST

A = 1.500000,

B = 2,

C = ABCDE

/

Examples

Suppose the following statements are specified:

NAMELIST /CONTROL/ TITLE, RESET, START, STOP, INTERVAL

CHARACTER*10 TITLE

REAL(KIND=8) START, STOP

LOGICAL(KIND=4) RESET

INTEGER(KIND=4) INTERVAL

READ (UNIT=1, NML=CONTROL)

2007

51

The NAMELIST statement associates the group name CONTROL with a list of five objects. The
corresponding READ statement reads the following input data from unit 1:

&CONTROL

TITLE='TESTT002AA',

INTERVAL=1,

RESET=.TRUE.,

START=10.2,

STOP =14.5

/

The following values are assigned to objects in group CONTROL:

Value AssignedNamelist Object

TESTT002AATITLE

TRESET

10.2START

14.5STOP

1INTERVAL

It is not necessary to assign values to all of the objects declared in the corresponding NAMELIST
group. If a namelist object does not appear in the input statement, its value (if any) is unchanged.

Similarly, when character substrings and array elements are specified, only the values of the specified
variable substrings and array elements are changed. For example, suppose the following input is
read:

&CONTROL TITLE(9:10)='BB' /

The new value for TITLE is TESTT002BB; only the last two characters in the variable change.

The following example shows an array as an object:

DIMENSION ARRAY_A(20)

NAMELIST /ELEM/ ARRAY_A

READ (UNIT=1,NML=ELEM)

2008

51 Intel® Fortran Compiler User and Reference Guides

Suppose the following input is read:

&ELEM

ARRAY_A=1.1, 1.2,, 1.4

/

The following values are assigned to the ARRAY_A elements:

Value AssignedArray Element

1.1ARRAY_A(1)

1.2ARRAY_A(2)

UnchangedARRAY_A(3)

1.4ARRAY_A(4)

UnchangedARRAY_A(5)...ARRAY(20)

When a list of values is assigned to an array element, the assignment begins with the specified array
element, rather than with the first element of the array. For example, suppose the following input
is read:

&ELEM

ARRAY_A(3)=34.54, 45.34, 87.63, 3*20.00

/

New values are assigned only to array ARRAY_A elements 3 through 8. The other element values
are unchanged.

2009

51

The following shows another example:

INTEGER a, b

NAMELIST /mynml/ a, b

...

! The following are all valid namelist variable assignments:

&mynml a = 1 /

$mynml a = 1 $

$mynml a = 1 $end

&mynml a = 1 &

&mynml a = 1 $END

&mynml

a = 1

b = 2

/

Nondelimited character strings that are written out by using a NAMELIST write may not be read in
as expected by a corresponding NAMELIST read. Consider the following:

NAMELIST/TEST/ CHARR

CHARACTER*3 CHARR(4)

DATA CHARR/'AAA', 'BBB', 'CCC', 'DDD'/

OPEN (UNIT=1, FILE='NMLTEST.DAT')

WRITE (1, NML=TEST)

END

The output file NMLTEST.DAT will contain:

&TESTCHARR = AAABBBCCCDDD/

2010

51 Intel® Fortran Compiler User and Reference Guides

If an attempt is then made to read the data in NMLTEST.DAT with a NAMELIST read using nondelimited
character strings, as follows:

NAMELIST/TEST/ CHARR

CHARACTER*3 CHARR(4)

DATA CHARR/4*' '/

OPEN (UNIT=1, FILE='NMLTEST.DAT')

READ (1, NML=TEST)

PRINT *, 'CHARR read in >', CHARR(1),'< >',CHARR(2),'< >',

1 CHARR(3), '< >', CHARR(4), '<'

END

The result is the following:

CHARR read in >AAA< > < > < > <

See Also
• Forms for Sequential READ Statements
• NAMELIST
• Rules for Formatted Sequential READ Statements
• Alternative Form for Namelist External Records
• Rules for Namelist Sequential WRITE Statements
Rules for Unformatted Sequential READ Statements

Unformatted, sequential READ statements transfer binary data (without translation) between
the current record and the entities specified in the I/O list. Only one record is read.

Objects of intrinsic or derived types can be transferred.

For data transfer, the file must be positioned so that the record read is an unformatted record
or an end-of-file record.

The unformatted, sequential READ statement reads a single record. Each value in the record
must be of the same type as the corresponding entity in the input list, unless the value is real
or complex.

If the value is real or complex, one complex value can correspond to two real list entities, or
two real values can correspond to one complex list entity. The corresponding values and entities
must have the same kind parameter.

If the number of I/O list items is less than the number of fields in an input record, the statement
ignores the excess fields. If the number of I/O list items is greater than the number of fields
in an input record, an error occurs.

2011

51

If a statement contains no I/O list, it skips over one full record, positioning the file to read the
following record on the next execution of a READ statement.

If the file is connected for formatted, list-directed, or namelist I/O, unformatted data transfer
is prohibited.

Examples

The following example shows an unformatted, sequential READ statement:

READ (UNIT=6, IOSTAT=IO_STATUS) A, B, C

See Also
• Forms for Sequential READ Statements
• READ statement
• Forms for Sequential READ Statements

Forms for Direct-Access READ Statements

Direct-access READ statements transfer input data from external records with direct access.
(The attributes of a direct-access file are established by the OPEN statement.)

A direct-access READ statement can be formatted or unformatted, and takes one of the following
forms:

Formatted:

READ (eunit, format, rec [, asynchronous] [, id] [, pos] [, iostat] [, err]) [io-list]

Unformatted:

READ (eunit, rec [, asynchronous] [, id] [, pos] [, iostat] [, err]) [io-list]

See Also
• READ Statements Overview
• Rules for Formatted Direct-Access READ Statements
• Rules for Unformatted Direct-Access READ Statements
• READ
• Rules for Formatted Direct-Access READ Statements
• Rules for Unformatted Direct-Access READ Statements
• I/O control-list specifiers
• I/O lists

2012

51 Intel® Fortran Compiler User and Reference Guides

Building Applications for details on file sharing

Rules for Formatted Direct-Access READ Statements

Formatted, direct-access READ statements translate data from character to binary form by
using format specifications for editing (if any). The translated data is assigned to the entities
in the I/O list in the order in which the entities appear, from left to right.

Values can be transferred to objects of intrinsic or derived types. For derived types, values of
intrinsic types are transferred to the components of intrinsic types that ultimately make up
these structured objects.

For data transfer, the file must be positioned so that the record read is a formatted record or
an end-of-file record.

If the number of I/O list items is less than the number of fields in an input record, the statement
ignores the excess fields.

If the number of I/O list items is greater than the number of fields in an input record, the
input record is padded with blanks. However, if PAD='NO' was specified for file connection, the
input list and file specification must not require more characters from the record than it contains.
If more characters are required and nonadvancing input is in effect, an end-of-record condition
occurs.

If the format specification specifies another record, the record number is increased by one as
each subsequent record is read by that input statement.

Examples

The following example shows a formatted, direct-access READ statement:

READ (2, REC=35, FMT=10) (NUM(K), K=1,10)

Rules for Unformatted Direct-Access READ Statements

Unformatted, direct-access READ statements transfer binary data (without translation) between
the current record and the entities specified in the I/O list. Only one record is read.

Objects of intrinsic or derived types can be transferred.

For data transfer, the file must be positioned so that the record read is an unformatted record
or an end-of-file record.

The unformatted, direct-access READ statement reads a single record. Each value in the record
must be of the same type as the corresponding entity in the input list, unless the value is real
or complex.

If the value is real or complex, one complex value can correspond to two real list entities, or
two real values can correspond to one complex list entity. The corresponding values and entities
must have the same kind parameter.

2013

51

If the number of I/O list items is less than the number of fields in an input record, the statement
ignores the excess fields. If the number of I/O list items is greater than the number of fields
in an input record, an error occurs.

If the file is connected for formatted, list-directed, or namelist I/O, unformatted data transfer
is prohibited.

Examples

The following example shows unformatted, direct-access READ statements:

READ (1, REC=10) LIST(1), LIST(8)

READ (4, REC=58, IOSTAT=K, ERR=500) (RHO(N), N=1,5)

Forms for Stream READ Statements

The forms for stream READ statements take the same forms as sequential READ statements.
A POS specifier may be present to specify at what file position the READ will start.

You can impose a record structure on a formatted, sequential stream by using a new-line
character as a record terminator (see intrinsic function NEW_LINE). There is no record structure
in an unformatted, sequential stream.

The INQUIRE statement can be used with the POS specifier to determine the current file position
in a stream file.

Examples

The following example shows stream READ statements:

READ (12) I !stream reading without POS= specifier

READ (12,POS=10) J !stream reading with POS= specifier

See Also
• READ Statements Overview
• NEW_LINE

Forms and Rules for Internal READ Statements

Internal READ statements transfer input data from an internal file.

An internal READ statement can only be formatted. It must include format specifiers (which
can use list-directed formatting). Namelist formatting is not permitted.

An internal READ statement takes the following form:

READ (iunit, format [, iostat] [, err] [, end]) [io-list]

2014

51 Intel® Fortran Compiler User and Reference Guides

For more information on syntax, see READ.

Formatted, internal READ statements translate data from character to binary form by using
format specifications for editing (if any). The translated data is assigned to the entities in the
I/O list in the order in which the entities appear, from left to right.

This form of READ statement behaves as if the format begins with a BN edit descriptor. (You
can override this behavior by explicitly specifying the BZ edit descriptor.)

Values can be transferred to objects of intrinsic or derived types. For derived types, values of
intrinsic types are transferred to the components of intrinsic types that ultimately make up
these structured objects.

Before data transfer occurs, the file is positioned at the beginning of the first record. This record
becomes the current record.

If the number of I/O list items is less than the number of fields in an input record, the statement
ignores the excess fields.

If the number of I/O list items is greater than the number of fields in an input record, the
input record is padded with blanks. However, if PAD='NO' was specified for file connection, the
input list and file specification must not require more characters from the record than it contains.

In list-directed formatting, character strings have no delimiters.

2015

51

Examples

The following program segment reads a record and examines the first character to determine whether
the remaining data should be interpreted as decimal, octal, or hexadecimal. It then uses internal
READ statements to make appropriate conversions from character string representations to binary.

INTEGER IVAL

CHARACTER TYPE, RECORD*80

CHARACTER*(*) AFMT, IFMT, OFMT, ZFMT

PARAMETER (AFMT='(Q,A)', IFMT= '(I10)', OFMT= '(O11)', & ZFMT= '(Z8)')

ACCEPT AFMT, ILEN, RECORD

TYPE = RECORD(1:1)

IF (TYPE .EQ. 'D') THEN

READ (RECORD(2:MIN(ILEN, 11)), IFMT) IVAL

ELSE IF (TYPE .EQ. 'O') THEN

READ (RECORD(2:MIN(ILEN, 12)), OFMT) IVAL

ELSE IF (TYPE .EQ. 'X') THEN

READ (RECORD(2:MIN(ILEN, 9)),ZFMT) IVAL

ELSE

PRINT *, 'ERROR'

END IF

END

See Also
• READ Statements Overview
• I/O control-list specifiers
• I/O lists
• Rules for List-Directed Sequential READ Statements

Building Applications for details on using internal files

2016

51 Intel® Fortran Compiler User and Reference Guides

ACCEPT Statement Overview

The ACCEPT statement is a data transfer input statement. This statement is the same as a
formatted, sequential READ statement, except that an ACCEPT statement must never be
connected to user-specified I/O units. You can override this restriction by using an environment
variable. For more information, see Building Applications: Logical Devices.

WRITE Statements Overview

The WRITE statement is a data transfer output statement. Data can be output to external
sequential or direct-access records, or to internal records. For more information, see WRITE.

See Also
• Data Transfer I/O Statements
• Forms for Sequential WRITE Statements
• Forms for Direct-Access WRITE Statements
• Forms for Stream WRITE Statements
• Forms and Rules for Internal WRITE Statements
• Forms for Sequential WRITE Statements
• Forms for Direct-Access WRITE Statements
• Forms for STREAM WRITE Statements
• Forms and Rules for Internal WRITE Statements

Forms for Sequential WRITE Statements

Sequential WRITE statements transfer output data to external sequential access records. The
statements can be formatted by using format specifiers (which can use list-directed formatting)
or namelist specifiers (for namelist formatting), or they can be unformatted.

A sequential WRITE statement takes one of the following forms:

Formatted:

WRITE (eunit, format [, advance] [, asynchronous] [, id] [, pos] [, iostat] [, err]) [io-list]

Formatted - List-Directed:

WRITE (eunit, * [, asynchronous] [, id] [, pos] [, iostat] [, err]) [io-list]

2017

51

Formatted - Namelist:

WRITE (eunit, nml-group [, asynchronous] [, id] [, pos] [, iostat] [, err])

Unformatted:

WRITE (eunit [, asynchronous] [, id] [, pos] [, iostat] [, err]) [io-list]

See Also
• WRITE Statements Overview
• Rules for Formatted Sequential WRITE Statements
• Rules for List-Directed Sequential WRITE Statements
• Rules for Namelist Sequential WRITE Statements
• Rules for Unformatted Sequential WRITE Statements
• WRITE
• Rules for Formatted Sequential WRITE Statements
• Rules for List-Directed Sequential WRITE Statements
• Rules for Namelist Sequential WRITE Statements
• Rules for Unformatted Sequential WRITE Statements
• I/O control-list specifiers
• I/O lists
Rules for Formatted Sequential WRITE Statements

Formatted, sequential WRITE statements translate data from binary to character form by using
format specifications for editing (if any). The translated data is written to an external file that
is connected for sequential access.

Values can be transferred from objects of intrinsic or derived types. For derived types, values
of intrinsic types are transferred from the components of intrinsic types that ultimately make
up these structured objects.

The output list and format specification must not specify more characters for a record than the
record size. (Record size is specified by RECL in an OPEN statement.)

If the file is connected for unformatted I/O, formatted data transfer is prohibited.

Examples

The following example shows formatted, sequential WRITE statements:

WRITE (UNIT=8, FMT='(B)', ADVANCE='NO') C

WRITE (*, "(F6.5)", ERR=25, IOSTAT=IO_STATUS) A, B, C

2018

51 Intel® Fortran Compiler User and Reference Guides

See Also
• Forms for Sequential WRITE Statements
• WRITE statement
• Forms for Sequential WRITE Statements
Rules for List-Directed Sequential WRITE Statements

List-directed, sequential WRITE statements transfer data from binary to character form by using
the data types of the corresponding I/O list item to determine the form of the data. The
translated data is then written to an external file.

In general, values transferred as output have the same forms as values transferred as input.

The following table shows the default output formats for each intrinsic data type:

Table 610: Default Formats for List-Directed Output

Output FormatData Type

I5BYTE

L2LOGICAL(1)

L2LOGICAL(2)

L2LOGICAL(4)

L2LOGICAL(8)

I5INTEGER(1)

I7INTEGER(2)

I12INTEGER(4)

I22INTEGER(8)

1PG15.7E2REAL(4)

1PG24.15E3REAL(8)

1PG43.33E4REAL(16)

'(',1PG14.7E2,',',1PG14.7E2,')'COMPLEX(4)

'(',1PG23.15E3,',',1PG23.15E3,')'COMPLEX(8)

2019

51

Output FormatData Type

'(',1PG42.33E4,',',1PG42.33E4,')'COMPLEX(16)

Aw 1CHARACTER

1 Where w is the length of the character expression.

By default, character constants are not delimited by apostrophes or quotation marks, and each
internal apostrophe or quotation mark is represented externally by one apostrophe or quotation
mark.

This behavior can be changed by the DELIM specifier (in an OPEN statement) as follows:

• If the file is opened with the DELIM='QUOTE' specifier, character constants are delimited
by quotation marks and each internal quotation mark is represented externally by two
consecutive quotation marks.

• If the file is opened with the DELIM='APOSTROPHE' specifier, character constants are
delimited by apostrophes and each internal apostrophe is represented externally by two
consecutive apostrophes.

Each output statement writes one or more complete records.

A literal character constant or complex constant can be longer than an entire record. For complex
constants, the end of the record can occur between the comma and the imaginary part, if the
imaginary part and closing right parenthesis cannot fit in the current record. For literal constants
that are longer than an entire record, the constant is continued onto as many records as
necessary.

Each output record begins with a blank character for carriage control.

Slashes, octal values, null values, and repeated forms of values are not output.

If the file is connected for unformatted I/O, list-directed data transfer is prohibited.

Examples

Suppose the following statements are specified:

DIMENSION A(4)

DATA A/4*3.4/

WRITE (1,*) 'ARRAY VALUES FOLLOW'

WRITE (1,*) A,4

2020

51 Intel® Fortran Compiler User and Reference Guides

The following records are then written to external unit 1:

ARRAY VALUES FOLLOW

3.400000 3.400000 3.400000 3.400000 4

The following shows another example:

INTEGER i, j

REAL a, b

LOGICAL on, off

CHARACTER(20) c

DATA i /123456/, j /500/, a /28.22/, b /.0015555/

DATA on /.TRUE./, off/.FALSE./

DATA c /'Here''s a string'/

WRITE (*, *) i, j

WRITE (*, *) a, b, on, off

WRITE (*, *) c

END

The preceding example produces the following output:

123456 500

28.22000 1.555500E-03 T F

Here's a string

See Also
• Forms for Sequential WRITE Statements
• Rules for Formatted Sequential WRITE Statements
• Rules for List-Directed Sequential READ Statements
Rules for Namelist Sequential WRITE Statements

Namelist, sequential WRITE statements translate data from internal to external form by using
the data types of the objects in the corresponding NAMELIST statement to determine the form
of the data. The translated data is then written to an external file.

In general, values transferred as output have the same forms as values transferred as input.

By default, character constants are not delimited by apostrophes or quotation marks, and each
internal apostrophe or quotation mark is represented externally by one apostrophe or quotation
mark.

2021

51

This behavior can be changed by the DELIM specifier (in an OPEN statement) as follows:

• If the file is opened with the DELIM='QUOTE' specifier, character constants are delimited
by quotation marks and each internal quotation mark is represented externally by two
consecutive quotation marks.

• If the file is opened with the DELIM='APOSTROPHE' specifier, character constants are
delimited by apostrophes and each internal apostrophe is represented externally by two
consecutive apostrophes.

Each output statement writes one or more complete records.

A literal character constant or complex constant can be longer than an entire record. In the
case of complex constants, the end of the record can occur between the comma and the
imaginary part, if the imaginary part and closing right parenthesis cannot fit in the current
record.

Each output record begins with a blank character for carriage control, except for literal character
constants that are continued from the previous record.

Slashes, octal values, null values, and repeated forms of values are not output.

If the file is connected for unformatted I/O, namelist data transfer is prohibited.

Examples

Consider the following statements:

CHARACTER*19 NAME(2)/2*' '/

REAL PITCH, ROLL, YAW, POSITION(3)

LOGICAL DIAGNOSTICS

INTEGER ITERATIONS

NAMELIST /PARAM/ NAME, PITCH, ROLL, YAW, POSITION, &

DIAGNOSTICS, ITERATIONS

... READ (UNIT=1,NML=PARAM)

WRITE (UNIT=2,NML=PARAM)

2022

51 Intel® Fortran Compiler User and Reference Guides

Suppose the following input is read:

&PARAM

NAME(2)(10:)='HEISENBERG',

PITCH=5.0, YAW=0.0, ROLL=5.0,

DIAGNOSTICS=.TRUE.

ITERATIONS=10

/

The following is then written to the file connected to unit 2:

&PARAM

NAME = ' ', ' HEISENBERG',

PITCH = 5.000000,

ROLL = 5.000000,

YAW = 0.0000000E+00,

POSITION = 3*0.0000000E+00,

DIAGNOSTICS = T,

ITERATIONS = 10

/

Note that character values are not enclosed in apostrophes unless the output file is opened with
DELIM='APOSTROPHE'. The value of POSITION is not defined in the namelist input, so the current
value of POSITION is written.

2023

51

The following example declares a number of variables, which are placed in a namelist, initialized,
and then written to the screen with namelist I/O:

INTEGER(1) int1

INTEGER int2, int3, array(3)

LOGICAL(1) log1

LOGICAL log2, log3

REAL real1

REAL(8) real2

COMPLEX z1, z2

CHARACTER(1) char1

CHARACTER(10) char2

NAMELIST /example/ int1, int2, int3, log1, log2, log3, &

& real1, real2, z1, z2, char1, char2, array

int1 = 11

int2 = 12

int3 = 14

log1 = .TRUE.

log2 = .TRUE.

log3 = .TRUE.

real1 = 24.0

real2 = 28.0d0

z1 = (38.0,0.0)

z2 = (316.0d0,0.0d0)

char1 = 'A'

char2 = '0123456789'

array(1) = 41

array(2) = 42

array(3) = 43

WRITE (*, example)

2024

51 Intel® Fortran Compiler User and Reference Guides

The preceding example produces the following output:

&EXAMPLE

INT1 = 11,

INT2 = 12,

INT3 = 14,

LOG1 = T,

LOG2 = T,

LOG3 = T,

REAL1 = 24.00000,

REAL2 = 28.0000000000000,

Z1 = (38.00000,0.0000000E+00),

Z2 = (316.0000,0.0000000E+00),

CHAR1 = A,

CHAR2 = 0123456789,

ARRAY = 41, 42, 43

/

See Also
• Forms for Sequential WRITE Statements
• NAMELIST
• Rules for Formatted Sequential WRITE Statements
• Rules for Namelist Sequential READ Statements
Rules for Unformatted Sequential WRITE Statements

Unformatted, sequential WRITE statements transfer binary data (without translation) between
the entities specified in the I/O list and the current record. Only one record is written.

Objects of intrinsic or derived types can be transferred.

This form of WRITE statement writes exactly one record. If there is no I/O item list, the
statement writes one null record.

If the file is connected for formatted, list-directed, or namelist I/O, unformatted data transfer
is prohibited.

2025

51

Examples

The following example shows an unformatted, sequential WRITE statement:

WRITE (UNIT=6, IOSTAT=IO_STATUS) A, B, C

Forms for Direct-Access WRITE Statements

Direct-access WRITE statements transfer output data to external records with direct access.
(The attributes of a direct-access file are established by the OPEN statement.)

A direct-access WRITE statement can be formatted or unformatted, and takes one of the
following forms:

Formatted:

WRITE (eunit, format, rec [, asynchronous] [, id] [, pos] [, iostat] [, err]) [io-list]

Unformatted:

WRITE (eunit, rec [, asynchronous] [, id] [, pos] [, iostat] [, err]) [io-list]

See Also
• WRITE Statements Overview
• Rules for Formatted Direct-Access WRITE Statements
• Rules for Unformatted Direct-Access WRITE Statements
• WRITE
• Rules for Formatted Direct-Access WRITE Statements
• Rules for Unformatted Direct-Access WRITE Statements
• I/O control-list specifiers
• I/O lists
Rules for Formatted Direct-Access WRITE Statements

Formatted, direct-access WRITE statements translate data from binary to character form by
using format specifications for editing (if any). The translated data is written to an external file
that is connected for direct access.

Values can be transferred from objects of intrinsic or derived types. For derived types, values
of intrinsic types are transferred from the components of intrinsic types that ultimately make
up these structured objects.

If the values specified by the I/O list do not fill a record, blank characters are added to fill the
record. If the I/O list specifies too many characters for the record, an error occurs.

2026

51 Intel® Fortran Compiler User and Reference Guides

If the format specification specifies another record, the record number is increased by one as
each subsequent record is written by that output statement.

Examples

The following example shows a formatted, direct-access WRITE statement:

WRITE (2, REC=35, FMT=10) (NUM(K), K=1,10)

Rules for Unformatted Direct-Access WRITE Statements

Unformatted, direct-access WRITE statements transfer binary data (without translation) between
the entities specified in the I/O list and the current record. Only one record is written.

Objects of intrinsic or derived types can be transferred.

If the values specified by the I/O list do not fill a record, blank characters are added to fill the
record. If the I/O list specifies too many characters for the record, an error occurs.

If the file is connected for formatted, list-directed, or namelist I/O, unformatted data transfer
is prohibited.

Examples

The following example shows unformatted, direct-access WRITE statements:

WRITE (1, REC=10) LIST(1), LIST(8)

WRITE (4, REC=58, IOSTAT=K, ERR=500) (RHO(N), N=1,5)

Forms for Stream WRITE Statements

The forms for stream WRITE statements take the same forms as sequential WRITE statements.
A POS specifier may be present to specify at what file position the WRITE will start.

You can impose a record structure on a formatted, sequential stream by using a new-line
character as a record terminator (see intrinsic function NEW_LINE). There is no record structure
in an unformatted, sequential stream.

The INQUIRE statement can be used with the POS specifier to determine the current file position
in a stream file.

See Also
• WRITE Statements Overview
• NEW_LINE

Forms and Rules for Internal WRITE Statements

Internal WRITE statements transfer output data to an internal file.

2027

51

An internal WRITE statement can only be formatted. It must include format specifiers (which
can use list-directed formatting). Namelist formatting is not permitted.

An internal WRITE statement takes the following form:

WRITE (iunit, format [, iostat] [, err]) [io-list]

For more information on syntax, see WRITE.

Formatted, internal WRITE statements translate data from binary to character form by using
format specifications for editing (if any). The translated data is written to an internal file.

Values can be transferred from objects of intrinsic or derived types. For derived types, values
of intrinsic types are transferred from the components of intrinsic types that ultimately make
up these structured objects.

If the number of characters written in a record is less than the length of the record, the rest
of the record is filled with blanks. The number of characters to be written must not exceed the
length of the record.

Character constants are not delimited by apostrophes or quotation marks, and each internal
apostrophe or quotation mark is represented externally by one apostrophe or quotation mark.

Examples

The following example shows an internal WRITE statement:

INTEGER J, K, STAT_VALUE

CHARACTER*50 CHAR_50

...

WRITE (FMT=*, UNIT=CHAR_50, IOSTAT=STAT_VALUE) J, K

See Also
• WRITE Statements Overview
• I/O control-list specifiers
• I/O lists
• Rules for List-Directed Sequential WRITE Statements

Building Applications for details on using internal files

PRINT and TYPE Statements Overview

The PRINT statement is a data transfer output statement. TYPE is a synonym for PRINT. All
forms and rules for the PRINT statement also apply to the TYPE statement.

2028

51 Intel® Fortran Compiler User and Reference Guides

The PRINT statement is the same as a formatted, sequential WRITE statement, except that the
PRINT statement must never transfer data to user-specified I/O units. You can override this
restriction by using an environment variable. For more information, see Building Applications:
Logical Devices.

REWRITE Statement Overview

The REWRITE statement is a data transfer output statement that rewrites the current record.

A REWRITE statement can be formatted or unformatted. For more information, see REWRITE
in the A to Z Reference.

2029

51

52I/O Formatting

A format appearing in an input or output (I/O) statement specifies the form of data being transferred and
the data conversion (editing) required to achieve that form. The format specified can be explicit or implicit.

Explicit format is indicated in a format specification that appears in a FORMAT statement or a character
expression (the expression must evaluate to a valid format specification).

The format specification contains edit descriptors, which can be data edit descriptors, control edit
descriptors, or string edit descriptors.

Implicit format is determined by the processor and is specified using list-directed or namelist formatting.

List-directed formatting is specified with an asterisk (*); namelist formatting is specified with a namelist
group name.

List-directed formatting can be specified for advancing sequential files and internal files. Namelist formatting
can be specified only for advancing sequential files.

This chapter contains information on the following topics:

• Format specifications

• Data edit descriptors

• Control edit descriptors

• Character string edit descriptors

• Nested and group repeat specifications

• Variable Format Expressions

• Printing of formatted records

• Interaction between FORMAT statements and I/O lists

Format Specifications

A format specification can appear in a FORMAT statement or character expression. In a FORMAT
statement, it is preceded by the keyword FORMAT. A format specification takes the following form:

(format-list)

Is a list of one or more of the following edit descriptors, separated by
commas or slashes (/):

format-list

I, B, O, Z, F, E, EN, ES, D, G, L,
and A

Data edit descriptors:

2031

T, TL, TR, X, S, SP, SS, BN, BZ,
P, :, /, $, \, and Q

Control edit descriptors:

H, 'c', and "c", where c is a
character constant

String edit descriptors:

A comma can be omitted in the following cases:

• Between a P edit descriptor and an immediately following F, E, EN,
ES, D, or G edit descriptor

• Before a slash (/) edit descriptor when the optional repeat
specification is not present

• After a slash (/) edit descriptor

• Before or after a colon (:) edit descriptor

Edit descriptors can be nested and a repeat specification can precede
data edit descriptors, the slash edit descriptor, or a parenthesized list
of edit descriptors.

Description

A FORMAT statement must be labeled.

Named constants are not permitted in format specifications.

If the associated I/O statement contains an I/O list, the format specification must contain at
least one data edit descriptor or the control edit descriptor Q.

Blank characters can precede the initial left parenthesis, and additional blanks can appear
anywhere within the format specification. These blanks have no meaning unless they are within
a character string edit descriptor.

When a formatted input statement is executed, the setting of the BLANK specifier (for the
relevant logical unit) determines the interpretation of blanks within the specification. If the BN
or BZ edit descriptors are specified for a formatted input statement, they supersede the default
interpretation of blanks. (For more information on BLANK defaults, see BLANK Specifier in OPEN
statements.)

For formatted input, use the comma as an external field separator. The comma terminates the
input of fields (for noncharacter data types) that are shorter than the number of characters
expected. It can also designate null (zero-length) fields.

2032

52 Intel® Fortran Compiler User and Reference Guides

The first character of a record transmitted to a line printer or terminal is typically used for
carriage control; it is not printed. The first character of such a record should be a blank, 0, 1,
$, +, or ASCII NUL. Any other character is treated as a blank.

A format specification cannot specify more output characters than the external record can
contain. For example, a line printer record cannot contain more than 133 characters, including
the carriage control character.

The following table summarizes the edit descriptors that can be used in format specifications.

Table 612: Summary of Edit Descriptors

EffectFormCode

Transfers character or
Hollerith values.

A[w]A

Transfers binary values.Bw[.m]B

Ignores embedded and
trailing blanks in a numeric
input field.

BNBN

Treats embedded and trailing
blanks in a numeric input
field as zeros.

BZBZ

Transfers real values with D
exponents.

Dw.dD

Transfers real values with E
exponents.

Ew.d[Ee]E

Transfers real values with
engineering notation.

ENw.d[Ee]EN

Transfers real values with
scientific notation.

ESw.d[Ee]ES

Transfers real values with no
exponent.

Fw.dF

2033

52

EffectFormCode

Transfers values of all
intrinsic types.

Gw.d[Ee]G

Transfers characters following
the H edit descriptor to an
output record.

nHch[ch...]H

Transfers decimal integer
values.

Iw[.m]I

Transfers logical values: on
input, transfers characters;
on output, transfers T or F.

LwL

Transfers octal values.Ow[.m]O

Interprets certain real
numbers with a specified
scale factor.

kPP

Returns the number of
characters remaining in an
input record.

QQ

Reinvokes optional plus sign
(+) in numeric output fields;
counters the action of SP and
SS.

SS

Writes optional plus sign (+)
into numeric output fields.

SPSP

Suppresses optional plus sign
(+) in numeric output fields.

SSSS

Tabs to specified position.TnT

Tabs left the specified
number of positions.

TLnTL

2034

52 Intel® Fortran Compiler User and Reference Guides

EffectFormCode

Tabs right the specified
number of positions.

TRnTR

Skips the specified number
of positions.

nXX

Transfers hexadecimal
values.

Zw[.m]Z

Suppresses trailing carriage
return during interactive I/O.

$$

Terminates format control if
there are no more items in
the I/O list.

::

Terminates the current record
and moves to the next
record.

[r]//

Continues the same record;
same as $.

\\

Transfers the character literal
constant (between the
delimiters) to an output
record.

'c''c' 1

1 These delimiters can also be quotation marks (").

Character Format Specifications

In data transfer I/O statements, a format specifier ([FMT=]format) can be a character expression
that is a character array, character array element, or character constant. This type of format
is also called a run-time format because it can be constructed or altered during program
execution.

The expression must evaluate to a character string whose leading part is a valid format
specification (including the enclosing parentheses).

2035

52

If the expression is a character array element, the format specification must be contained
entirely within that element.

If the expression is a character array, the format specification can continue past the first element
into subsequent consecutive elements.

If the expression is a character constant delimited by apostrophes, use two consecutive
apostrophes ('') to represent an apostrophe character in the format specification; for example:

PRINT '("NUM can''t be a real number")'

Similarly, if the expression is a character constant delimited by quotation marks, use two
consecutive quotation marks ("") to represent a quotation mark character in the format
specification.

To avoid using consecutive apostrophes or quotation marks, you can put the character constant
in an I/O list instead of a format specification, as follows:

PRINT "(A)", "NUM can't be a real number"

The following shows another character format specification:

WRITE (6, '(I12, I4, I12)') I, J, K

2036

52 Intel® Fortran Compiler User and Reference Guides

In the following example, the format specification changes with each iteration of the DO loop:

SUBROUTINE PRINT(TABLE)

REAL TABLE(10,5)

CHARACTER*5 FORCHR(0:5), RPAR*1, FBIG, FMED, FSML

DATA FORCHR(0),RPAR /'(',')'/

DATA FBIG,FMED,FSML /'F8.2,','F9.4,','F9.6,'/

DO I=1,10

DO J=1,5

IF (TABLE(I,J) .GE. 100.) THEN

FORCHR(J) = FBIG

ELSE IF (TABLE(I,J) .GT. 0.1) THEN

FORCHR(J) = FMED

ELSE

FORCHR(J) = FSML

END IF

END DO

FORCHR(5)(5:5) = RPAR

WRITE (6,FORCHR) (TABLE(I,J), J=1,5)

END DO

END

The DATA statement assigns a left parenthesis to character array element FORCHR(0), and
(for later use) a right parenthesis and three F edit descriptors to character variables.

Next, the proper F edit descriptors are selected for inclusion in the format specification. The
selection is based on the magnitude of the individual elements of array TABLE.

A right parenthesis is added to the format specification just before the WRITE statement uses
it.

2037

52

NOTE. Format specifications stored in arrays are recompiled at run time each time they
are used. If a Hollerith or character run-time format is used in a READ statement to read
data into the format itself, that data is not copied back into the original array, and the
array is unavailable for subsequent use as a run-time format specification.

Examples

The following example shows a format specification:

WRITE (*, 9000) int1, real1(3), char1

9000 FORMAT (I5, 3F4.5, A16)

! I5, 3F5.2, A16 is the format list.

In the following example, the integer-variable name MYFMT refers to the FORMAT statement 9000,
as assigned just before the FORMAT statement.

ASSIGN 9000 TO MYFMT

9000 FORMAT (I5, 3F4.5, A16)

! I5, 3F5.2, A16 is the format list.

WRITE (*, MYFMT) iolist

The following shows a format example using a character expression:

WRITE (*, '(I5, 3F5.2, A16)')iolist

! I5, 3F4.5, A16 is the format list.

In the following example, the format list is put into an 80-character variable called MYLIST:

CHARACTER(80) MYLIST

MYLIST = '(I5, 3F5.2, A16)'

WRITE (*, MYLIST) iolist

Consider the following two-dimensional array:

1 2 3

4 5 6

In this case, the elements are stored in memory in the order: 1, 4, 2, 5, 3, 6 as follows:

CHARACTER(6) array(3)

DATA array / '(I5', ',3F5.2', ',A16)' /

WRITE (*, array) iolist

2038

52 Intel® Fortran Compiler User and Reference Guides

In the following example, the WRITE statement uses the character array element array(2) as the
format specifier for data transfer:

CHARACTER(80) array(5)

array(2) = '(I5, 3F5.2, A16)'

WRITE (*, array(2)) iolist

See Also
• I/O Formatting
• Data edit descriptors
• Control edit descriptors
• Character string edit descriptors
• Nested and group repeats
• Printing of formatted records

Data Edit Descriptors

A data edit descriptor causes the transfer or conversion of data to or from its internal
representation.

The part of a record that is input or output and formatted with data edit descriptors (or character
string edit descriptors) is called a field.

See Also
• I/O Formatting
• Forms for Data Edit Descriptors
• General Rules for Numeric Editing
• Integer Editing
• Real and Complex Editing
• Logical Editing (L)
• Character Editing (A)
• Default Widths for Data Edit Descriptors
• Terminating Short Fields of Input Data
• Forms for Data Edit Descriptors
• General Rules for Numeric Editing
• Integer Editing
• Real and Complex Editing

2039

52

• Logical Editing (L)
• Character Editing (A)
• Default Widths for Data Edit Descriptors
• Terminating Short Fields of Input Data

Forms for Data Edit Descriptors

A data edit descriptor takes one of the following forms:

[r]c

[r]cw

[r]cw.m

[r]cw.d

[r]cw.d[Ee]

Is a repeat specification. The range of r is 1 through 2147483647
(2**31-1). If r is omitted, it is assumed to be 1.

r

Is one of the following format codes: I, B, O, Z, F, E, EN, ES, D, G, L,
or A.

c

Is the total number of digits in the field (the field width). If omitted,
the system applies default values (see Default Widths for Data Edit
Descriptors). The range of w is 1 through 2147483647 (2**31-1) on

w

Intel® 64 architecture and IA-64 architecture; 1 through 32767
(2**15-1) on IA-32 architecture. For I, B, O, Z, and F, the range can
start at zero.

Is the minimum number of digits that must be in the field (including
leading zeros). The range of m is 0 through 32767 (2**15-1) on Intel®
64 architecture and IA-64 architecture; 0 through 255 (2**8-1) on
IA-32 architecture.

m

Is the number of digits to the right of the decimal point (the significant
digits). The range of d is 0 through 32767 (2**15-1) on Intel® 64
architecture and IA-64 architecture; 0 through 255 (2**8-1) on IA-32
architecture.

d

The number of significant digits is affected if a scale factor is specified
for the data edit descriptor.

Identifies an exponent field.E

Is the number of digits in the exponent. The range of e is 1 through
32767 (2**15-1) on Intel® 64 architecture and IA-64 architecture; 1
through 255 (2**8-1) on IA-32 architecture.

e

2040

52 Intel® Fortran Compiler User and Reference Guides

Description

Fortran 95/90 (and the previous standard) allows the field width to be omitted only for the A
descriptor. However, Intel® Fortran allows the field width to be omitted for any data edit
descriptor.

The r, w, m, d, and e must all be positive, unsigned, integer literal constants; or variable format
expressions -- no kind parameter can be specified. They must not be named constants.

Actual useful ranges for r, w, m, d, and e may be constrained by record sizes (RECL) and the
file system.

The data edit descriptors have the following specific forms:

Iw[.m], Bw[.m], Ow[.m], and Zw[.m]Integer:

Fw.d, Ew.d[Ee], ENw.d[Ee], ESw.d[Ee], Dw.d,
and Gw.d[Ee]

Real and complex:

LwLogical:

A[w]Character:

The d must be specified with F, E, D, and G field descriptors even if d is zero. The decimal point
is also required. You must specify both w and d, or omit them both.

A repeat specification can simplify formatting. For example, the following two statements are
equivalent:

20 FORMAT (E12.4,E12.4,E12.4,I5,I5,I5,I5)

20 FORMAT (3E12.4,4I5)

2041

52

Examples
! This WRITE outputs three integers, each in a five-space field

! and four reals in pairs of F7.2 and F5.2 values.

INTEGER(2) int1, int2, int3

REAL(4) r1, r2, r3, r4

DATA int1, int2, int3 /143, 62, 999/

DATA r1, r2, r3, r4 /2458.32, 43.78, 664.55, 73.8/

WRITE (*,9000) int1, int2, int3, r1, r2, r3, r4

9000 FORMAT (3I5, 2(1X, F7.2, 1X, F5.2))

The following output is produced:

143 62 999 2458.32 43.78 664.55 73.80

See Also
• Data Edit Descriptors
• General rules for numeric editing
• Nested and group repeats

General Rules for Numeric Editing

The following rules apply to input and output data for numeric editing (data edit descriptors I,
B, O, Z, F, E, EN, ES, D, and G).

Rules for Input Processing

Leading blanks in the external field are ignored. If BLANK='NULL' is in effect (or the BN edit
descriptor has been specified) embedded and trailing blanks are ignored; otherwise, they are
treated as zeros. An all-blank field is treated as a value of zero.

The following table shows how blanks are interpreted by default:

DefaultType of Unit or File

BLANK='NULL'An explicitly OPENed unit

BLANK='NULL'An internal file

BLANK='NULL'A preconnected file1

2042

52 Intel® Fortran Compiler User and Reference Guides

DefaultType of Unit or File

1 For interactive input from preconnected files, you should explicitly specify the BN or BZ
edit descriptor to ensure desired behavior.

A minus sign must precede a negative value in an external field; a plus sign is optional before
a positive value.

In input records, constants can include any valid kind parameter. Named constants are not
permitted.

If the data field in a record contains fewer than w characters, an input statement will read
characters from the next data field in the record. You can prevent this by padding the short
field with blanks or zeros, or by using commas to separate the input data. The comma terminates
the data field, and can also be used to designate null (zero-length) fields. For more information,
see Terminating Short Fields of Input Data.

Rules for Output Processing

The field width w must be large enough to include any leading plus or minus sign, and any
decimal point or exponent. For example, the field width for an E data edit descriptor must be
large enough to contain the following:

• For positive numbers: d + 5 or d + e + 3 characters

• For negative numbers: d + 6 or d + e + 4 characters

A positive or zero value (zero is allowed for I, B, O, Z, and F descriptors) can have a plus sign,
depending on which sign edit descriptor is in effect. If a value is negative, the leftmost nonblank
character is a minus sign.

If the value is smaller than the field width specified, leading blanks are inserted (the value is
right-justified). If the value is too large for the field width specified, the entire output field is
filled with asterisks (*).

When the value of the field width is zero, the compiler selects the smallest possible positive
actual field width that does not result in the field being filled with asterisks.

See Also
• Data Edit Descriptors
• Forms for data edit descriptors
• Format Specifications

2043

52

Compiler Options for details on compiler options

Integer Editing

Integer editing is controlled by the I (decimal), B (binary), O (octal), and Z (hexadecimal) data
edit descriptors.

I Editing

The I edit descriptor transfers decimal integer values. It takes the following form:

Iw[.m]

The value of m (the minimum number of digits in the constant) must not exceed the value of
w (the field width). The m has no effect on input, only output.

The specified I/O list item must be of type integer or logical.

The G edit descriptor can be used to edit integer data; it follows the same rules as Iw.

Rules for Input Processing

On input, the I data edit descriptor transfers w characters from an external field and assigns
their integer value to the corresponding I/O list item. The external field data must be an integer
constant.

If the value exceeds the range of the corresponding input list item, an error occurs.

The following shows input using the I edit descriptor (the symbol ^ represents a nonprinting
blank character):

Format Input Value

I4 2788 2788

I3 -26 -26

I9 ^^^^^^312 312

Rules for Output Processing

On output, the I data edit descriptor transfers the value of the corresponding I/O list item,
right-justified, to an external field that is w characters long.

The field consists of zero or more blanks, followed by a sign (a plus sign is optional for positive
values, a minus sign is required for negative values), followed by an unsigned integer constant
with no leading zeros.

2044

52 Intel® Fortran Compiler User and Reference Guides

If m is specified, the unsigned integer constant must have at least m digits. If necessary, it is
padded with leading zeros.

If m is zero, and the output list item has the value zero, the external field is filled with blanks.

The following shows output using the I edit descriptor (the symbol ^ represents a nonprinting
blank character):

Format Value Output

I3 284 284

I4 -284 -284

I4 0 ^^^0

I5 174 ^^174

I2 3244 **

I3 -473 ***

I7 29.812 An error; the decimal point is invalid

I4.0 0 ^^^^

I4.2 1 ^^01

I4.4 1 0001

See Also
• Integer Editing
• Forms for data edit descriptors
• General rules for numeric editing
B Editing

The B data edit descriptor transfers binary (base 2) values. It takes the following form:

Bw[.m]

The value of m (the minimum number of digits in the constant) must not exceed the value of
w (the field width). The m has no effect on input, only output.

The specified I/O list item can be of type integer, real, or logical.

2045

52

Rules for Input Processing

On input, the B data edit descriptor transfers w characters from an external field and assigns
their binary value to the corresponding I/O list item. The external field must contain only binary
digits (0 or 1) or blanks.

If the value exceeds the range of the corresponding input list item, an error occurs.

The following shows input using the B edit descriptor:

Format Input Value

B4 1001 9

B1 1 1

B2 0 0

Rules for Output Processing

On output, the B data edit descriptor transfers the binary value of the corresponding I/O list
item, right-justified, to an external field that is w characters long.

The field consists of zero or more blanks, followed by an unsigned integer constant (consisting
of binary digits) with no leading zeros. A negative value is transferred in internal form.

If m is specified, the unsigned integer constant must have at least m digits. If necessary, it is
padded with leading zeros.

If m is zero, and the output list item has the value zero, the external field is filled with blanks.

The following shows output using the B edit descriptor (the symbol ^ represents a nonprinting
blank character):

Format Value Output

B4 9 1001

B2 0 ^0

See Also
• Integer Editing
• Forms for data edit descriptors
• General rules for numeric editing
O Editing

The O data edit descriptor transfers octal (base 8) values. It takes the following form:

Ow[.m]

2046

52 Intel® Fortran Compiler User and Reference Guides

The value of m (the minimum number of digits in the constant) must not exceed the value of
w (the field width). The m has no effect on input, only output.

The specified I/O list item can be of type integer, real, or logical.

Rules for Input Processing

On input, the O data edit descriptor transfers w characters from an external field and assigns
their octal value to the corresponding I/O list item. The external field must contain only octal
digits (0 through 7) or blanks.

If the value exceeds the range of the corresponding input list item, an error occurs.

The following shows input using the O edit descriptor (the symbol ^ represents a nonprinting
blank character):

Format Input Value

O5 32767 32767

O4 16234 1623

O3 97^ An error; the 9 is invalid in octal notation

Rules for Output Processing

On output, the O data edit descriptor transfers the octal value of the corresponding I/O list
item, right-justified, to an external field that is w characters long.

The field consists of zero or more blanks, followed by an unsigned integer constant (consisting
of octal digits) with no leading zeros. A negative value is transferred in internal form without
a leading minus sign.

If m is specified, the unsigned integer constant must have at least m digits. If necessary, it is
padded with leading zeros.

If m is zero, and the output list item has the value zero, the external field is filled with blanks.

2047

52

The following shows output using the O edit descriptor (the symbol ^ represents a nonprinting
blank character):

Format Value Output

O6 32767 ^77777

O12 -32767 ^37777700001

O2 14261 **

O4 27 ^^33

O5 10.5 41050

O4.2 7 ^^07

O4.4 7 0007

See Also
• Integer Editing
• Forms for data edit descriptors
• General rules for numeric editing
Z Editing

The Z data edit descriptor transfers hexadecimal (base 16) values. It takes the following form:

Zw[.m]

The value of m (the minimum number of digits in the constant) must not exceed the value of
w (the field width). The m has no effect on input, only output.

The specified I/O list item can be of type integer, real, or logical.

Rules for Input Processing

On input, the Z data edit descriptor transfers w characters from an external field and assigns
their hexadecimal value to the corresponding I/O list item. The external field must contain only
hexadecimal digits (0 though 9 and A (a) through F(f)) or blanks.

If the value exceeds the range of the corresponding input list item, an error occurs.

2048

52 Intel® Fortran Compiler User and Reference Guides

The following shows input using the Z edit descriptor:

Format Input Value

Z3 A94 A94

Z5 A23DEF A23DE

Z5 95.AF2 An error; the decimal point is invalid

Rules for Output Processing

On output, the Z data edit descriptor transfers the hexadecimal value of the corresponding I/O
list item, right-justified, to an external field that is w characters long.

The field consists of zero or more blanks, followed by an unsigned integer constant (consisting
of hexadecimal digits) with no leading zeros. A negative value is transferred in internal form
without a leading minus sign.

If m is specified, the unsigned integer constant must have at least m digits. If necessary, it is
padded with leading zeros.

If m is zero, and the output list item has the value zero, the external field is filled with blanks.

The following shows output using the Z edit descriptor (the symbol ^ represents a nonprinting
blank character):

Format Value Output

Z4 32767 7FFF

Z9 -32767 ^FFFF8001

Z2 16 10

Z4 -10.5 ****

Z3.3 2708 A94

Z6.4 2708 ^^0A94

See Also
• Integer Editing
• Forms for data edit descriptors
• General rules for numeric editing

Real and Complex Editing

Real and complex editing is controlled by the F, E, D, EN, ES, and G data edit descriptors.

2049

52

If no field width (w) is specified for a real data edit descriptor, the system supplies default
values.

Real data edit descriptors can be affected by specified scale factors.

NOTE. Do not use the real data edit descriptors when attempting to parse textual input.
These descriptors accept some forms that are purely textual as valid numeric input
values. For example, input values T and F are treated as values -1.0 and 0.0, respectively,
for .TRUE. and .FALSE.

F Editing

The F data edit descriptor transfers real values. It takes the following form:

Fw.d

The value of d (the number of places after the decimal point) must not exceed the value of w
(the field width).

The specified I/O list item must be of type real, or it must be the real or imaginary part of a
complex type.

Rules for Input Processing

On input, the F data edit descriptor transfers w characters from an external field and assigns
their real value to the corresponding I/O list item. The external field data must be an integer
or real constant.

If the input field contains only an exponent letter or decimal point, it is treated as a zero value.

If the input field does not contain a decimal point or an exponent, it is treated as a real number
of w digits, with d digits to the right of the decimal point. (Leading zeros are added, if necessary.)

If the input field contains a decimal point, the location of that decimal point overrides the
location specified by the F descriptor.

If the field contains an exponent, that exponent is used to establish the magnitude of the value
before it is assigned to the list element.

2050

52 Intel® Fortran Compiler User and Reference Guides

The following shows input using the F edit descriptor:

Format Input Value

F8.5 123456789 123.45678

F8.5 -1234.567 -1234.56

F8.5 24.77E+2 2477.0

F5.2 1234567.89 123.45

Rules for Output Processing

On output, the F data edit descriptor transfers the real value of the corresponding I/O list item,
right-justified and rounded to d decimal positions, to an external field that is w characters long.

The w must be greater than or equal to d+3 to allow for the following:

• A sign (optional if the value is positive and descriptor SP is not in effect)

• At least one digit to the left of the decimal point

• The decimal point

• The d digits to the right of the decimal point

The following shows output using the F edit descriptor (the symbol ^ represents a nonprinting
blank character):

Format Value Output

F8.5 2.3547188 ^2.35472

F9.3 8789.7361 ^8789.736

F2.1 51.44 **

F10.4 -23.24352 ^^-23.2435

F5.2 325.013 ******

F5.2 -.2 -0.20

See Also
• Real and Complex Editing
• Forms for data edit descriptors
• General rules for numeric editing

2051

52

E and D Editing

The E and D data edit descriptors transfer real values in exponential form. They take the
following form:

Ew.d[Ee]

Dw.d

For the E edit descriptor, the value of d (the number of places after the decimal point) plus e
(the number of digits in the exponent) must not exceed the value of w (the field width).

For the D edit descriptor, the value of d must not exceed the value of w.

The specified I/O list item must be of type real, or it must be the real or imaginary part of a
complex type.

Rules for Input Processing

On input, the E and D data edit descriptors transfer w characters from an external field and
assigns their real value to the corresponding I/O list item. The E and D descriptors interpret
and assign input data in the same way as the F data edit descriptor.

The following shows input using the E and D edit descriptors (the symbol ^ represents a
nonprinting blank character):

Format Input Value

E9.3 734.432E3 734432.0

E12.4 ^^1022.43E 1022.43E-6

E15.3 52.3759663^^^^^ 52.3759663

E12.5 210.5271D+10 210.5271E10

BZ,D10.2 12345^^^^^ 12345000.0D0

D10.2 ^^123.45^^ 123.45D0

D15.3 367.4981763D+04 3.674981763D+06

If the I/O list item is single-precision real, the E edit descriptor treats the D exponent indicator
as an E indicator.

Rules for Output Processing

On output, the E and D data edit descriptors transfer the real value of the corresponding I/O
list item, right-justified and rounded to d decimal positions, to an external field that is w
characters long.

2052

52 Intel® Fortran Compiler User and Reference Guides

The w should be greater than or equal to d+7 to allow for the following:

• A sign (optional if the value is positive and descriptor SP is not in effect)

• An optional zero to the left of the decimal point

• The decimal point

• The d digits to the right of the decimal point

• The exponent

The exponent takes one of the following forms:

Negative Form of
Exponent

Positive Form of
Exponent

Absolute Value of
Exponent

Edit Descriptor

E-nnE+nn|exp| 99Ew.d

-nnn+nnn99 < |exp| 999

E-n1n2...neE+n1n2...ne|exp| 10e - 1Ew.dEe

D-nn or E-nnD+nn or E+nn|exp| 99Dw.d

-nnn+nnn99 < |exp| 999

If the exponent value is too large to be converted into one of these forms, an error occurs.

The exponent field width (e) is optional for the E edit descriptor; if omitted, the default value
is 2. If e is specified, the w should be greater than or equal to d+e+5.

NOTE. The w can be as small as d + 5 or d + e + 3, if the optional fields for the sign
and the zero are omitted.

2053

52

The following shows output using the E and D edit descriptors (the symbol ^ represents a
nonprinting blank character):

Format Value Output

E11.2 475867.222 ^^^0.48E+06

E11.5 475867.222 0.47587E+06

E12.3 0.00069 ^^^0.690E

E10.3 -0.5555 -0.556E+00

E5.3 56.12 *****

E14.5E4 -1.001 -0.10010E+0001

E13.3E6 0.000123 0.123E-000003

D14.3 0.0363 ^^^^^0.363D-01

D23.12 5413.87625793 ^^^^^0.541387625793D+04

D9.6 1.2 *********

See Also
• Real and Complex Editing
• Forms for data edit descriptors
• General rules for numeric editing
• Scale Factor Editing (P)
EN Editing

The EN data edit descriptor transfers values by using engineering notation. It takes the following
form:

ENw.d[Ee]

The value of d (the number of places after the decimal point) plus e (the number of digits in
the exponent) must not exceed the value of w (the field width).

The specified I/O list item must be of type real, or it must be the real or imaginary part of a
complex type.

Rules for Input Processing

On input, the EN data edit descriptor transfers w characters from an external field and assigns
their real value to the corresponding I/O list item. The EN descriptor interprets and assigns
input data in the same way as the F data edit descriptor.

2054

52 Intel® Fortran Compiler User and Reference Guides

The following shows input using the EN edit descriptor (the symbol ^ represents a nonprinting
blank character):

Format Input Value

EN11.3 ^^5.321E+00 5.32100

EN11.3 -600.00E-03 -.60000

EN12.3 ^^^3.150E-03 .00315

EN12.3 ^^^3.829E+03 3829.0

Rules for Output Processing

On output, the EN data edit descriptor transfers the real value of the corresponding I/O list
item, right-justified and rounded to d decimal positions, to an external field that is w characters
long. The real value is output in engineering notation, where the decimal exponent is divisible
by 3 and the absolute value of the significand is greater than or equal to 1 and less than 1000
(unless the output value is zero).

The w should be greater than or equal to d+9 to allow for the following:

• A sign (optional if the value is positive and descriptor SP is not in effect)

• One to three digits to the left of the decimal point

• The decimal point

• The d digits to the right of the decimal point

• The exponent

The exponent takes one of the following forms:

Negative Form of
Exponent

Positive Form of
Exponent

Absolute Value of
Exponent

Edit Descriptor

E-nnE+nn|exp| 99ENw.d

-nnn+nnn99 < |exp| 999

E-n1n2...neE+n1n2...ne|exp| 10e - 1ENw.dEe

If the exponent value is too large to be converted into one of these forms, an error occurs.

The exponent field width (e) is optional; if omitted, the default value is 2. If e is specified, the
w should be greater than or equal to d + e + 5.

2055

52

The following shows output using the EN edit descriptor (the symbol ^ represents a nonprinting
blank character):

Format Value Output

EN11.2 475867.222 ^475.87E+03

EN11.5 475867.222 ***********

EN12.3 0.00069 ^690.000E-06

EN10.3 -0.5555 **********

EN11.2 0.0 ^000.00E-03

See Also
• Real and Complex Editing
• Forms for data edit descriptors
• General rules for numeric editing
ES Editing

The ES data edit descriptor transfers values by using scientific notation. It takes the following
form:

ESw.d[Ee]

The value of d (the number of places after the decimal point) plus e (the number of digits in
the exponent) must not exceed the value of w (the field width).

The specified I/O list item must be of type real, or it must be the real or imaginary part of a
complex type.

Rules for Input Processing

On input, the ES data edit descriptor transfers w characters from an external field and assigns
their real value to the corresponding I/O list item. The ES descriptor interprets and assigns
input data in the same way as the F data edit descriptor.

2056

52 Intel® Fortran Compiler User and Reference Guides

The following shows input using the ES edit descriptor (the symbol ^ represents a nonprinting
blank character):

Format Input Value

ES11.3 ^^5.321E+00 5.32100

ES11.3 -6.000E-03 -.60000

ES12.3 ^^^3.150E-03 .00315

ES12.3 ^^^3.829E+03 3829.0

Rules for Output Processing

On output, the ES data edit descriptor transfers the real value of the corresponding I/O list
item, right-justified and rounded to d decimal positions, to an external field that is w characters
long. The real value is output in scientific notation, where the absolute value of the significand
is greater than or equal to 1 and less than 10 (unless the output value is zero).

The w should be greater than or equal to d+7 to allow for the following:

• A sign (optional if the value is positive and descriptor SP is not in effect)

• One digit to the left of the decimal point

• The decimal point

• The d digits to the right of the decimal point

• The exponent

The exponent takes one of the following forms:

Negative Form of
Exponent

Positive Form of
Exponent

Absolute Value of
Exponent

Edit Descriptor

E-nnE+nn|exp| 99ESw.d

-nnn+nnn99 < |exp| 999

E-n1n2...neE+n1n2...ne|exp| 10e - 1ESw.dEe

If the exponent value is too large to be converted into one of these forms, an error occurs.

The exponent field width (e) is optional; if omitted, the default value is 2. If e is specified, the
w should be greater than or equal to d + e + 5.

2057

52

The following shows output using the ES edit descriptor (the symbol ^ represents a nonprinting
blank character):

Format Value Output

ES11.2 473214.356 ^^^4.73E+05

ES11.5 473214.356 4.73214E+05

ES12.3 0.00069 ^^^6.900E-04

ES10.3 -0.5555 -5.555E-01

ES11.2 0.0 ^0.000E+00

See Also
• Real and Complex Editing
• Forms for data edit descriptors
• General rules for numeric editing
G Editing

The G data edit descriptor generally transfers values of real type, but it can be used to transfer
values of any intrinsic type. It takes the following form:

Gw.d[Ee]

The value of d (the number of places after the decimal point) plus e (the number of digits in
the exponent) must not exceed the value of w (the field width).

The specified I/O list item can be of any intrinsic type.

When used to specify I/O for integer, logical, or character data, the edit descriptor follows the
same rules as Iw, Lw, and Aw, respectively, and d and e have no effect.

Rules for Real Input Processing

On input, the G data edit descriptor transfers w characters from an external field and assigns
their real value to the corresponding I/O list item. The G descriptor interprets and assigns input
data in the same way as the F data edit descriptor.

Rules for Real Output Processing

On output, the G data edit descriptor transfers the real value of the corresponding I/O list item,
right-justified and rounded to d decimal positions, to an external field that is w characters long.

The form in which the value is written is a function of the magnitude of the value, as described
in the following table:

2058

52 Intel® Fortran Compiler User and Reference Guides

Table 618: Effect of Data Magnitude on G Format Conversions

Effective ConversionData Magnitude

Ew.d[Ee]0 < m < 0.1 - 0.5 x 10-d-1

F(w - n).(d -1), n('b')m = 0

F(w - n).d, n('b')0.1 - 0.5 x 10-d-1 m < 1 - 0.5 x 10-d

F(w - n).(d -1), n('b')1 - 0.5 x 10-d m < 10 - 0.5 x 10-d+1

F(w - n).(d -2), n('b')10 - 0.5 x 10-d+1 m < 100 - 0.5 x 10-d+2

..

..

..

F(w - n).1, n('b')10d-2 - 0.5 x 10-2 m < 10d-1 - 0.5 x 10-1

(w - n).0, n('b')10d-1 - 0.5 x 10-1 m < 10d - 0.5

Ew.d[Ee]m 10d - 0.5

The 'b' is a blank following the numeric data representation. For Gw.d, n('b') is 4 blanks. For
Gw.dEe, n('b') is e+2 blanks.

The w should be greater than or equal to d+7 to allow for the following:

• A sign (optional if the value is positive and descriptor SP is not in effect)

• One digit to the left of the decimal point

• The decimal point

• The d digits to the right of the decimal point

• The 4-digit or e+2-digit exponent

If e is specified, the w should be greater than or equal to d + e + 5.

2059

52

The following shows output using the G edit descriptor and compares it to output using equivalent
F editing (the symbol ^ represents a nonprinting blank character):

Value Format Output with G Format Output with F

0.01234567 G13.6 ^0.123457E-01 F13.6 ^^^^^0.012346

-0.12345678 G13.6 -0.123457^^^^ F13.6 ^^^^-0.123457

1.23456789 G13.6 ^^1.23457^^^^ F13.6 ^^^^^1.234568

12.34567890 G13.6 ^^12.3457^^^^ F13.6 ^^^^12.345679

123.45678901 G13.6 ^^123.457^^^^ F13.6 ^^^123.456789

-1234.56789012 G13.6 ^-1234.57^^^^ F13.6 ^-1234.567890

12345.67890123 G13.6 ^^12345.7^^^^ F13.6 ^12345.678901

123456.78901234 G13.6 ^^123457.^^^^ F13.6 123456.789012

-1234567.89012345 G13.6 -0.123457E+07 F13.6 *************

See Also
• Real and Complex Editing
• Forms for data edit descriptors
• General rules for numeric editing
• I data edit descriptor
• L data edit descriptor
• A data edit descriptor
• Scale Factor Editing (P)
Complex Editing

A complex value is an ordered pair of real values. Complex editing is specified by a pair of real
edit descriptors, using any combination of the forms: Fw.d, Ew.d[Ee], Dw.d, ENw.d[Ee],
ESw.d[Ee], or Gw.d[Ee].

Rules for Input Processing

On input, the two successive fields are read and assigned to the corresponding complex I/O
list item as its real and imaginary part, respectively.

2060

52 Intel® Fortran Compiler User and Reference Guides

The following shows input using complex editing:

Format Input Value

F8.5,F8.5 1234567812345.67 123.45678, 12345.67

E9.1,F9.3 734.432E8123456789 734.432E8, 123456.789

Rules for Output Processing

On output, the two parts of the complex value are transferred under the control of repeated
or successive real edit descriptors. The two parts are transferred consecutively without
punctuation or blanks, unless control or character string edit descriptors are specified between
the pair of real edit descriptors.

The following shows output using complex editing (the symbol ^ represents a nonprinting blank
character):

Format Value Output

2F8.5 2.3547188, 3.456732 ^2.35472 ^3.45673

E9.2,'^,^',E5.3 47587.222, 56.123 ^0.48E+06^,^*****

See Also
• Real and Complex Editing
• Forms for data edit descriptors
• General rules for numeric editing
• General Rules for Complex Constants

Logical Editing (L)

The L data edit descriptor transfers logical values. It takes the following form:

Lw

The specified I/O list item must be of type logical or integer.

The G edit descriptor can be used to edit logical data; it follows the same rules as Lw.

Rules for Input Processing

On input, the L data edit descriptor transfers w characters from an external field and assigns
their logical value to the corresponding I/O list item. The value assigned depends on the external
field data, as follows:

2061

52

• .TRUE. is assigned if the first nonblank character is .T, T, .t, or t. The logical constant .TRUE.
is an acceptable input form.

• .FALSE. is assigned if the first nonblank character is .F, F. .f, or f, or the entire field is filled
with blanks. The logical constant .FALSE. is an acceptable input form.

If an other value appears in the external field, an error occurs.

Rules for Output Processing

On output, the L data edit descriptor transfers the following to an external field that is w
characters long: w - 1 blanks, followed by a T or F (if the value is .TRUE. or .FALSE.,
respectively).

The following shows output using the L edit descriptor (the symbol ^ represents a nonprinting
blank character):

Format Value Output

L5 .TRUE. ^^^^T

L1 .FALSE. F

See Also
• Data Edit Descriptors
• Forms for data edit descriptors

Character Editing (A)

The A data edit descriptor transfers character or Hollerith values. It takes the following form:

A[w]

If the corresponding I/O list item is of type character, character data is transferred. If the list
item is of any other type, Hollerith data is transferred.

The G edit descriptor can be used to edit character data; it follows the same rules as Aw.

Rules for Input Processing

On input, the A data edit descriptor transfers w characters from an external field and assigns
them to the corresponding I/O list item.

The maximum number of characters that can be stored depends on the size of the I/O list item,
as follows:

2062

52 Intel® Fortran Compiler User and Reference Guides

• For character data, the maximum size is the length of the corresponding I/O list item.

• For noncharacter data, the maximum size depends on the data type, as shown in the following
table:

Table 619: Size Limits for Noncharacter Data Using A Editing

Maximum Number of CharactersI/O List Element

1BYTE

1LOGICAL(1) or LOGICAL*1

2LOGICAL(2) or LOGICAL*2

4LOGICAL(4) or LOGICAL*4

8LOGICAL(8) or LOGICAL*8

1INTEGER(1) or INTEGER*1

2INTEGER(2) or INTEGER*2

4INTEGER(4) or INTEGER*4

8INTEGER(8) or INTEGER*8

4REAL(4) or REAL*4

8DOUBLE PRECISION

8REAL(8) or REAL*8

16REAL(16) or REAL*16

8COMPLEX(4) or COMPLEX*81

16DOUBLE COMPLEX1

16COMPLEX(8) or COMPLEX*161

32COMPLEX(16) or COMPLEX*321

2063

52

Maximum Number of CharactersI/O List Element

1 Complex values are treated as pairs of real numbers, so complex editing requires a pair
of edit descriptors. (See Complex Editing.)

If w is equal to or greater than the length (len) of the input item, the rightmost characters are
assigned to that item. The leftmost excess characters are ignored.

If w is less than len, or less than the number of characters that can be stored, w characters are
assigned to the list item, left-justified, and followed by trailing blanks.

The following shows input using the A edit descriptor (the symbol ^ represents a nonprinting
blank character):

Format Input Value Data Type

A6 PAGE^# # CHARACTER(LEN=1)

A6 PAGE^# E^# CHARACTER(LEN=3)

A6 PAGE^# PAGE^# CHARACTER(LEN=6)

A6 PAGE^# PAGE^#^^ CHARACTER(LEN=8)

A6 PAGE^# # LOGICAL(1)

A6 PAGE^# ^# INTEGER(2)

A6 PAGE^# GE^# REAL(4)

A6 PAGE^# PAGE^#^^ REAL(8)

Rules for Output Processing

On output, the A data edit descriptor transfers the contents of the corresponding I/O list item
to an external field that is w characters long.

If w is greater than the size of the list item, the data is transferred to the output field,
right-justified, with leading blanks. If w is less than or equal to the size of the list item, the
leftmost w characters are transferred.

2064

52 Intel® Fortran Compiler User and Reference Guides

The following shows output using the A edit descriptor (the symbol ^ represents a nonprinting
blank character):

Format Value Output

A5 OHMS ^OHMS

A5 VOLTS VOLTS

A5 AMPERES AMPER

See Also
• Data Edit Descriptors
• Forms for data edit descriptors

Default Widths for Data Edit Descriptors

If w (the field width) is omitted for the data edit descriptors, the system applies default values.
For the real data edit descriptors, the system also applies default values for d (the number of
characters to the right of the decimal point), and e (the number of characters in the exponent).

These defaults are based on the data type of the I/O list item, and are listed in the following
table:

Table 620: Default Widths for Data Edit Descriptors

wData Type of I/O List ItemEdit Descriptor

7BYTEI, B, O, Z, G

7INTEGER(1), LOGICAL(1)

7INTEGER(2), LOGICAL(2)

12INTEGER(4), LOGICAL(4)

23INTEGER(8), LOGICAL(8)

12REAL(4)O, Z

23REAL(8)

44REAL(16)

MAX(7, 3*len)CHARACTER*len

2065

52

wData Type of I/O List ItemEdit Descriptor

2LOGICAL(1), LOGICAL(2),
LOGICAL(4), LOGICAL(8)

L, G

15 d: 7 e: 2REAL(4), COMPLEX(4)F, E, EN, ES, G, D

25 d: 16 e: 2REAL(8), COMPLEX(8)

42 d: 33 e: 3REAL(16), COMPLEX(16)

1LOGICAL(1)A1, G

2LOGICAL(2), INTEGER(2)

4LOGICAL(4), INTEGER(4)

8LOGICAL(8), INTEGER(8)

4REAL(4), COMPLEX(4)

8REAL(8), COMPLEX(8)

16REAL(16), COMPLEX(16)

lenCHARACTER*len

1 The default is the actual length of the corresponding I/O list item.

Terminating Short Fields of Input Data

On input, an edit descriptor such as Fw.d specifies that w characters (the field width) are to be
read from the external field.

If the field contains fewer than w characters, the input statement will read characters from the
next data field in the record. You can prevent this by padding the short field with blanks or
zeros, or by using commas to separate the input data.

2066

52 Intel® Fortran Compiler User and Reference Guides

Padding Short Fields

You can use the OPEN statement specifier PAD='YES' to indicate blank padding for short fields
of input data. However, blanks can be interpreted as blanks or zeros, depending on which
default behavior is in effect at the time. Consider the following:

READ (2, '(I5)') J

If 3 is input for J, the value of J will be 30000 or 3 depending on which default behavior is in
effect (BLANK='NULL' or BLANK='ZERO'). This can give unexpected results.

To ensure that the desired behavior is in effect, explicitly specify the BN or BZ edit descriptor.
For example, the following ensures that blanks are interpreted as blanks (and not as zeros):

READ (2, '(BN, I5)') J

Using Commas to Separate Input Data

You can use a comma to terminate a short data field. The comma has no effect on the d part
(the number of characters to the right of the decimal point) of the specification.

The comma overrides the w specified for the I, B, O, Z, F, E, D, EN, ES, G, and L edit descriptors.
For example, suppose the following statements are executed:

READ (5,100) I,J,A,B

100 FORMAT (2I6,2F10.2)

Suppose a record containing the following values is read:

1, -2, 1.0, 35

The following assignments occur:

I = 1

J = -2

A = 1.0

B = 0.35

A comma can only terminate fields less than w characters long. If a comma follows a field of w
or more characters, the comma is considered part of the next field.

A null (zero-length) field is designated by two successive commas, or by a comma after a field
of w characters. Depending on the field descriptor specified, the resulting value assigned is 0,
0.0, 0.0D0, 0.0Q0, or .FALSE..

2067

52

See Also
• Data Edit Descriptors
• General Rules for Numeric Editing

Control Edit Descriptors

A control edit descriptor either directly determines how text is displayed or affects the
conversions performed by subsequent data edit descriptors.

See Also
• I/O Formatting
• Forms for Control Edit Descriptors
• Positional Editing
• Sign Editing
• Blank Editing
• Scale-Factor Editing (P)
• Slash Editing (/)
• Colon Editing (:)
• Dollar-Sign ($) and Backslash (\) Editing
• Character Count Editing (Q)
• Forms for Control Edit Descriptors
• Positional Editing
• Sign Editing
• Blank Editing
• Scale Factor Editing (P)
• Slash Editing (/)
• Colon Editing (:)
• Dollar Sign ($) and Backslash (\) Editing
• Character Count Editing (Q)

Forms for Control Edit Descriptors

A control edit descriptor takes one of the following forms:

c

cn

2068

52 Intel® Fortran Compiler User and Reference Guides

nc

Is one of the following format codes: T, TL, TR, X, S, SP, SS, BN, BZ,
P, :, /, \, $, and Q.

c

Is a number of character positions. It must be a positive integer literal
constant or a variable format expression. No kind parameter can be
specified. It cannot be a named constant.

n

The range of n is 1 through 2147483647 (2**31-1) on Intel® 64
architecture and IA-64 architecture; 1 through 32767 (2**15-1) on
IA-32 architecture. Actual useful ranges may be constrained by record
sizes (RECL) and the file system.

Description

In general, control edit descriptors are nonrepeatable. The only exception is the slash (/) edit
descriptor, which can be preceded by a repeat specification.

The control edit descriptors have the following specific forms:

Tn, TLn, TRn, and nXPositional:

S, SP, and SSSign:

BN and BZBlank interpretation:

kPScale factor:

:, /, \, $, and QMiscellaneous:

The P edit descriptor is an exception to the general control edit descriptor syntax. It is preceded
by a scale factor, rather than a character position specifier.

Control edit descriptors can be grouped in parentheses and preceded by a group repeat
specification.

See Also
• Control Edit Descriptors
• Group repeat specifications
• Format Specifications

2069

52

Positional Editing

The T, TL, TR, and X edit descriptors specify the position where the next character is transferred
to or from a record.

On output, these descriptors do not themselves cause characters to be transferred and do not
affect the length of the record. If characters are transferred to positions at or after the position
specified by one of these descriptors, positions skipped and not previously filled are filled with
blanks. The result is as if the entire record was initially filled with blanks.

The TR and X edit descriptors produce the same results.

T Editing

The T edit descriptor specifies a character position in an I/O record. It takes the following form:

Tn

The n is a positive integer literal constant (with no kind parameter) indicating the character
position of the record, relative to the left tab limit.

On input, the T descriptor positions the external record at the character position specified by
n. On output, the T descriptor indicates that data transfer begins at the nth character position
of the external record.

Examples

In the following examples, the symbol ^ represents a nonprinting blank character.

Suppose a file has a record containing the value ABC^^^XYZ, and the following statements are
executed:

READ (11,10) VALUE1, VALUE2

10 FORMAT (T7,A3,T1,A3)

The values read first are XYZ, then ABC.

Suppose the following statements are executed:

PRINT 25

25 FORMAT (T51,'COLUMN 2',T21,'COLUMN 1')

The following line is printed at the positions indicated:

Position 20 Position 50

| |

COLUMN 1 COLUMN 2

Note that the first character of the record printed was reserved as a control character.

2070

52 Intel® Fortran Compiler User and Reference Guides

See Also
• Positional Editing
• Printing of Formatted Records
TL Editing

The TL edit descriptor specifies a character position to the left of the current position in an
I/O record. It takes the following form:

TLn

The n is a positive integer literal constant (with no kind parameter) indicating the nth character
position to the left of the current character.

If n is greater than or equal to the current position, the next character accessed is the first
character of the record.

TR Editing

The TR edit descriptor specifies a character position to the right of the current position in an
I/O record. It takes the following form:

TRn

The n is a positive integer literal constant (with no kind parameter) indicating the nth character
position to the right of the current character.

X Editing

The X edit descriptor specifies a character position to the right of the current position in an I/O
record. It takes the following form:

nX

The n is a positive integer literal constant (with no kind parameter) indicating the nth character
position to the right of the current character.

On output, the X edit descriptor does not output any characters when it appears at the end of
a format specification; for example:

WRITE (6,99) K

99 FORMAT ('^K=',I6,5X)

Note that the symbol ^ represents a nonprinting blank character. This example writes a record
of only 9 characters. To cause n trailing blanks to be output at the end of a record, specify a
format of n('^').

Sign Editing

The S, SP, and SS edit descriptors control the output of the optional plus (+) sign within numeric
output fields. These descriptors have no effect during execution of input statements.

2071

52

Within a format specification, a sign editing descriptor affects all subsequent I, F, E, EN, ES,
D, and G descriptors until another sign editing descriptor occurs.

Examples
INTEGER i

REAL r

! The following statements write:

! 251 +251 251 +251 251

i = 251

WRITE (*, 100) i, i, i, i, i

100 FORMAT (I5, SP, I5, SS, I5, SP, I5, S, I5)

! The following statements write:

! 0.673E+4 +.673E+40.673E+4 +.673E+40.673E+4

r = 67.3E2

WRITE (*, 200) r, r, r, r, r

200 FORMAT (E8.3E1, 1X, SP, E8.3E1, SS, E8.3E1, 1X, SP, &

& E8.3E1, S, E8.3E1)

SP Editing

The SP edit descriptor causes the processor to produce a plus sign in any subsequent position
where it would be otherwise optional. It takes the following form:

SP

SS Editing

The SS edit descriptor causes the processor to suppress a plus sign in any subsequent position
where it would be otherwise optional. It takes the following form:

SS

S Editing

The S edit descriptor restores the plus sign as optional for all subsequent positive numeric
fields. It takes the following form:

S

The S edit descriptor restores to the processor the discretion of producing plus characters on
an optional basis.

2072

52 Intel® Fortran Compiler User and Reference Guides

Blank Editing

The BN and BZ descriptors control the interpretation of embedded and trailing blanks within
numeric input fields. These descriptors have no effect during execution of output statements.

Within a format specification, a blank editing descriptor affects all subsequent I, B, O, Z, F, E,
EN, ES, D, and G descriptors until another blank editing descriptor occurs.

The blank editing descriptors override the effect of the BLANK specifier during execution of a
particular input data transfer statement. (For more information, see the BLANK specifier in
OPEN statements.)

BN Editing

The BN edit descriptor causes the processor to ignore all embedded and trailing blanks in
numeric input fields. It takes the following form:

BN

The input field is treated as if all blanks have been removed and the remainder of the field is
right-justified. An all-blank field is treated as zero.

Examples

If an input field formatted as a six-digit integer (I6) contains '2 3 4', it is interpreted as ' 234'.

Consider the following code:

READ (*, 100) n

100 FORMAT (BN, I6)

If you enter any one of the following three records and terminate by pressing Enter, the READ
statement interprets that record as the value 123:

123

123

123 456

Because the repeatable edit descriptor associated with the I/O list item n is I6, only the first six
characters of each record are read (three blanks followed by 123 for the first record, and 123 followed
by three blanks for the last two records). Because blanks are ignored, all three records are interpreted
as 123.

The following example shows the effect of BN editing with an input record that has fewer characters
than the number of characters specified by the edit descriptors and iolist. Suppose you enter 123
and press Enter in response to the following READ statement:

READ (*, '(I6)') n

2073

52

The I/O system is looking for six characters to interpret as an integer number. You have entered
only three, so the first thing the I/O system does is to pad the record 123 on the right with three
blanks. With BN editing in effect, the nonblank characters (123) are right-aligned, so the record is
equal to 123.

BZ Editing

The BZ edit descriptor causes the processor to interpret all embedded and trailing blanks in
numeric input fields as zeros. It takes the following form:

BZ

Examples

The input field ' 23 4 ' would be interpreted as ' 23040'. If ' 23 4' were entered, the formatter would
add one blank to pad the input to the six-digit integer format (I6), but this extra space would be
ignored, and the input would be interpreted as ' 2304 '. The blanks following the E or D in real-number
input are ignored, regardless of the form of blank interpretation in effect.

Suppose you enter 123 and press Enter in response to the following READ statement:

READ (*, '(I6)') n

The I/O system is looking for six characters to interpret as an integer number. You have entered
only three, so the first thing the I/O system does is to pad the record 123 on the right with three
blanks. If BZ editing is in effect, those three blanks are interpreted as zeros, and the record is equal
to 123000.

Scale-Factor Editing (P)

The P edit descriptor specifies a scale factor, which moves the location of the decimal point in
real values and the two real parts of complex values. It takes the following form:

kP

The k is a signed (sign is optional if positive), integer literal constant specifying the number of
positions, to the left or right, that the decimal point is to move (the scale factor). The range of
k is -128 to 127.

At the beginning of a formatted I/O statement, the value of the scale factor is zero. If a scale
editing descriptor is specified, the scale factor is set to the new value, which affects all
subsequent real edit descriptors until another scale editing descriptor occurs.

To reinstate a scale factor of zero, you must explicitly specify 0P.

Format reversion does not affect the scale factor. (For more information on format reversion,
see Interaction Between Format Specifications and I/O Lists.)

2074

52 Intel® Fortran Compiler User and Reference Guides

Rules for Input Processing

On input, a positive scale factor moves the decimal point to the left, and a negative scale factor
moves the decimal point to the right. (On output, the effect is the reverse.)

On input, when an input field using an F, E, D, EN, ES, or G real edit descriptor contains an
explicit exponent, the scale factor has no effect. Otherwise, the internal value of the
corresponding I/O list item is equal to the external field data multiplied by 10-k. For example,
a 2P scale factor multiplies an input value by .01, moving the decimal point two places to the
left. A -2P scale factor multiplies an input value by 100, moving the decimal point two places
to the right.

The following shows input using the P edit descriptor (the symbol ^ represents a nonprinting
blank character):

Format Input Value

3PE10.5 ^^^37.614^ .037614

3PE10.5 ^^37.614E2 3761.4

-3PE10.5 ^^^^37.614 37614.0

The scale factor must precede the first real edit descriptor associated with it, but it need not
immediately precede the descriptor. For example, the following all have the same effect:

(3P, I6, F6.3, E8.1)

(I6, 3P, F6.3, E8.1)

(I6, 3PF6.3, E8.1)

Note that if the scale factor immediately precedes the associated real edit descriptor, the comma
separator is optional.

Rules for Output Processing

On output, a positive scale factor moves the decimal point to the right, and a negative scale
factor moves the decimal point to the left. (On input, the effect is the reverse.)

On output, the effect of the scale factor depends on which kind of real editing is associated
with it, as follows:

• For F editing, the external value equals the internal value of the I/O list item multiplied by
10k. This changes the magnitude of the data.

• For E and D editing, the external decimal field of the I/O list item is multiplied by 10k, and
k is subtracted from the exponent. This changes the form of the data.

2075

52

A positive scale factor decreases the exponent; a negative scale factor increases the exponent.

For a positive scale factor, k must be less than d + 2 or an output conversion error occurs.

• For G editing, the scale factor has no effect if the magnitude of the data to be output is
within the effective range of the descriptor (the G descriptor supplies its own scaling).

If the magnitude of the data field is outside G descriptor range, E editing is used, and the
scale factor has the same effect as E output editing.

• For EN and ES editing, the scale factor has no effect.

The following shows output using the P edit descriptor (the symbol ^ represents a nonprinting
blank character):

Format Value Output

1PE12.3 -270.139 ^^-2.701E+02

1P,E12.2 -270.139 ^^^-2.70E+02

-1PE12.2 -270.139 ^^^-0.03E+04

Examples

The following shows a FORMAT statement containing a scale factor:

DIMENSION A(6)

DO 10 I=1,6

10 A(I) = 25.

WRITE (6, 100) A

100 FORMAT(' ', F8.2, 2PF8.2, F8.2)

The preceding statements produce the following results:

25.00 2500.00 2500.00

2500.00 2500.00 2500.00

The following code uses scale-factor editing when reading:

READ (*, 100) a, b, c, d

100 FORMAT (F10.6, 1P, F10.6, F10.6, -2P, F10.6)

WRITE (*, 200) a, b, c, d

200 FORMAT (4F11.3)

2076

52 Intel® Fortran Compiler User and Reference Guides

If the following data is entered:

12340000 12340000 12340000 12340000

12.34 12.34 12.34 12.34

12.34e0 12.34e0 12.34e0 12.34e0

12.34e3 12.34e3 12.34e3 12.34e3

The program's output is:

12.340 1.234 1.234 1234.000

12.340 1.234 1.234 1234.000

12.340 12.340 12.340 12.340

12340.000 12340.000 12340.000 12340.000

The next code shows scale-factor editing when writing:

a = 12.34

WRITE (*, 100) a, a, a, a, a, a

100 FORMAT (1X, F9.4, E11.4E2, 1P, F9.4, E11.4E2, &

& -2P, F9.4, E11.4E2)

This program's output is:

12.3400 0.1234E+02 123.4000 1.2340E+01 0.1234 0.0012E+04

See Also
• Control Edit Descriptors
• Forms for Control Edit Descriptors

Slash Editing (/)

The slash edit descriptor terminates data transfer for the current record and starts data transfer
for a new record. It takes the following form:

[r]/

The r is a repeat specification. It must be a positive default integer literal constant; no kind
parameter can be specified.

The range of r is 1 through 2147483647 (2**31-1) on Intel® 64 architecture and IA-64
architecture; 1 through 32767 (2**15-1) on IA-32 architecture. If r is omitted, it is assumed
to be 1.

Multiple slashes cause the system to skip input records or to output blank records, as follows:

2077

52

• When n consecutive slashes appear between two edit descriptors, n - 1 records are skipped
on input, or n - 1 blank records are output. The first slash terminates the current record.
The second slash terminates the first skipped or blank record, and so on.

• When n consecutive slashes appear at the beginning or end of a format specification, n
records are skipped or n blank records are output, because the opening and closing
parentheses of the format specification are themselves a record initiator and terminator,
respectively. For example, suppose the following statements are specified:

WRITE (6,99)

99 FORMAT ('1',T51,'HEADING LINE'//T51,'SUBHEADING LINE'//)

The following lines are written:
Column 50, top of page | HEADING LINE

(blank line) SUBHEADING LINE

(blank line)

(blank line)

Note that the first character of the record printed was reserved as a control character (see
Printing of Formatted Records).

Examples
! The following statements write spreadsheet column and row labels:

WRITE (*, 100)

100 FORMAT (' A B C D E' &

& /,' 1',/,' 2',/,' 3',/,' 4',/,' 5')

This example generates the following output:

A B C D E

1

2

3

4

5

See Also
• Control Edit Descriptors
• Forms for Control Edit Descriptors

2078

52 Intel® Fortran Compiler User and Reference Guides

Colon Editing (:)

The colon edit descriptor terminates format control if no more items are in the I/O list.

Examples

Suppose the following statements are specified:

PRINT 1,3

PRINT 2,13

1 FORMAT (' I=',I2,' J=',I2)

2 FORMAT (' K=',I2,:,' L=',I2)

The following lines are written (the symbol ^ represents a nonprinting blank character):

I=^3^J=

K=13

! The following example writes a= 3.20 b= .99

REAL a, b, c, d

DATA a /3.2/, b /.9871515/

WRITE (*, 100) a, b

100 FORMAT (' a=', F5.2, :, ' b=', F5.2, :, &

& ' c=', F5.2, :, ' d=', F5.2)

END

See Also
• Control Edit Descriptors
• Forms for Control Edit Descriptors

Dollar-Sign ($) and Backslash (\) Editing

The dollar sign and backslash edit descriptors modify the output of carriage control specified
by the first character of the record. They only affect carriage control for formatted files, and
have no effect on input.

If the first character of the record is a blank or a plus sign (+), the dollar sign and backslash
descriptors suppress carriage return (after printing the record).

2079

52

For terminal device I/O, when this trailing carriage return is suppressed, a response follows
output on the same line. For example, suppose the following statements are specified:

TYPE 100

100 FORMAT (' ENTER RADIUS VALUE ',$)

ACCEPT 200, RADIUS

200 FORMAT (F6.2)

The following prompt is displayed:
ENTER RADIUS VALUE

Any response (for example, "12.") is then displayed on the same line:
ENTER RADIUS VALUE 12.

If the first character of the record is 0, 1, or ASCII NUL, the dollar sign and backslash descriptors
have no effect.

Consider the following:
CHARACTER(20) MYNAME

WRITE (*,9000)

9000 FORMAT ('0Please type your name:',\)

READ (*,9001) MYNAME

9001 FORMAT (A20)

WRITE (*,9002) ' ',MYNAME

9002 FORMAT (1X,A20)

This example advances two lines, prompts for input, awaits input on the same line as the
prompt, and prints the input.

See Also
• Control Edit Descriptors
• Forms for Control Edit Descriptors

Character Count Editing (Q)

The character count edit descriptor returns the remaining number of characters in the current
input record.

2080

52 Intel® Fortran Compiler User and Reference Guides

The corresponding I/O list item must be of type integer or logical. For example, suppose the
following statements are specified:

READ (4,1000) XRAY, KK, NCHRS, (ICHR(I), I=1,NCHRS)

1000 FORMAT (E15.7,I4,Q,(80A1))

Two fields are read into variables XRAY and KK. The number of characters remaining in the
record is stored in NCHRS, and exactly that many characters are read into the array ICHR.
(This instruction can fail if the record is longer than 80 characters.)

If you place the character count descriptor first in a format specification, you can determine
the length of an input record.

On output, the character count edit descriptor causes the corresponding I/O list item to be
skipped.

Examples

Consider the following:

CHARACTER ICHAR(80)

READ (4, 1000) XRAY, K, NCHAR, (ICHAR(I), I= 1, NCHAR)

1000 FORMAT (E15.7, I4, Q, 80A1)

The preceding input statement reads the variables XRAY and K. The number of characters remaining
in the record is NCHAR, specified by the Q edit descriptor. The array ICHAR is then filled by reading
exactly the number of characters left in the record. (Note that this instruction will fail if NCHAR is
greater than 80, the length of the array ICHAR.) By placing Q in the format specification, you can
determine the actual length of an input record.

Note that the length returned by Q is the number of characters left in the record, not the number of
reals or integers or other data types. The length returned by Q can be used immediately after it is
read and can be used later in the same format statement or in a variable format expression. (See
Variable Format Expressions.)

Assume the file Q.DAT contains:

1234.567Hello, Q Edit

2081

52

The following program reads in the number REAL1, determines the characters left in the record, and
reads those into STR:

CHARACTER STR(80)

INTEGER LENGTH

REAL REAL1

OPEN (UNIT = 10, FILE = 'Q.DAT')

100 FORMAT (F8.3, Q, 80A1)

READ (10, 100) REAL1, LENGTH, (STR(I), I=1, LENGTH)

WRITE(*,'(F8.3,2X,I2,2X,<LENGTH>A1)') REAL1, LENGTH, (STR(I), &

& I= 1, LENGTH)

END

The output on the screen is:

1234.567 13 Hello, Q Edit

A READ statement that contains only a Q edit descriptor advances the file to the next record. For
example, consider that Q.DAT contains the following data:

abcdefg

abcd

Consider it is then READ with the following statements:

OPEN (10, FILE = "Q.DAT")

READ(10, 100) LENGTH

100 FORMAT(Q)

WRITE(*,'(I2)') LENGTH

READ(10, 100) LENGTH

WRITE(*,'(I2)') LENGTH

END

The output to the screen would be:

7

4

2082

52 Intel® Fortran Compiler User and Reference Guides

See Also
• Control Edit Descriptors
• Forms for Control Edit Descriptors

Character String Edit Descriptors

Character string edit descriptors control the output of character strings. The character string
edit descriptors are the character constant and H edit descriptor.

Although no string edit descriptor can be preceded by a repeat specification, a parenthesized
group of string edit descriptors can be preceded by a repeat specification.

See Also
• I/O Formatting
• Character Constant Editing
• H Editing
• Nested and Group Repeat Specifications

Character Constant Editing

The character constant edit descriptor causes a character string to be output to an external
record. It takes one of the following forms:

'string'

"string"

The string is a character literal constant; no kind parameter can be specified. Its length is the
number of characters between the delimiters; two consecutive delimiters are counted as one
character.

To include an apostrophe in a character constant that is enclosed by apostrophes, place two
consecutive apostrophes ('') in the format specification; for example:
50 FORMAT ('TODAY''S^DATE^IS:^',I2,'/',I2,'/',I2)

Note that the symbol ^ represents a nonprinting blank character.

Similarly, to include a quotation mark in a character constant that is enclosed by quotation
marks, place two consecutive quotation marks ("") in the format specification.

On input, the character constant edit descriptor transfers length of string characters to the edit
descriptor.

2083

52

Examples

Consider the following '(3I5)' format in the WRITE statement:

WRITE (10, '(3I5)') I1, I2, I3

This is equivalent to:

WRITE (10, 100) I1, I2, I3

100 FORMAT(3I5)

The following shows another example:

! These WRITE statements both output ABC'DEF

! (The leading blank is a carriage-control character).

WRITE (*, 970)

970 FORMAT (' ABC''DEF')

WRITE (*, '('' ABC''''DEF'')')

! The following WRITE also outputs ABC'DEF. No carriage-

! control character is necessary for list-directed I/O.

WRITE (*,*) 'ABC''DEF'

Alternatively, if the delimiter is quotation marks, the apostrophe in the character constant ABC'DEF
requires no special treatment:

WRITE (*,*) "ABC'DEF"

See Also
• Character String Edit Descriptors
• Character constants
• Format Specifications

H Editing

The H edit descriptor transfers data between the external record and the H edit descriptor itself.
The H edit descriptor is a deleted feature in Fortran 95; it was obsolescent in Fortran 90. Intel®
Fortran fully supports features deleted in Fortran 95.

An H edit descriptor has the form of a Hollerith constant, as follows:

nHstring

2084

52 Intel® Fortran Compiler User and Reference Guides

Is an unsigned, positive default integer literal constant (with no kind
parameter) indicating the number of characters in string (including
blanks and tabs).

n

The range of n is 1 through 2147483647 (2**31-1) on Intel® 64
architecture and IA-64 architecture; 1 through 32767 (2**15-1) on
IA-32 architecture. Actual useful ranges may be constrained by record
sizes (RECL) and the file system.

Is a string of printable ASCII characters.string

On input, the H edit descriptor transfers n characters from the external field to the edit
descriptor. The first character appears immediately after the letter H. Any characters in the
edit descriptor before input are replaced by the input characters.

On output, the H edit descriptor causes n characters following the letter H to be output to an
external record.

Examples
! These WRITE statements both print "Don't misspell 'Hollerith'"

! (The leading blanks are carriage-control characters).

! Hollerith formatting does not require you to embed additional

! single quotation marks as shown in the second example.

!

WRITE (*, 960)

960 FORMAT (27H Don't misspell 'Hollerith')

WRITE (*, 961)

961 FORMAT (' Don''t misspell ''Hollerith''')

See Also
• Character String Edit Descriptors
• Obsolescent and Deleted Language Features
• Format Specifications

2085

52

Nested and Group Repeat Specifications

Format specifications can include nested format specifications enclosed in parentheses; for
example:
15 FORMAT (E7.2,I8,I2,(A5,I6))

35 FORMAT (A6,(L8(3I2)),A)

A group repeat specification can precede a nested group of edit descriptors. For example, the
following statements are equivalent, and the second statement shows a group repeat
specification:
50 FORMAT (I8,I8,F8.3,E15.7,F8.3,E15.7,F8.3,E15.7,I5,I5)

50 FORMAT (2I8,3(F8.3,E15.7),2I5)

If a nested group does not show a repeat count, a default count of 1 is assumed.

Normally, the string edit descriptors and control edit descriptors cannot be repeated (except
for slash), but any of these descriptors can be enclosed in parentheses and preceded by a group
repeat specification. For example, the following statements are valid:
76 FORMAT ('MONTHLY',3('TOTAL'))

100 FORMAT (I8,4(T7),A4)

See Also
• I/O Formatting
• string edit descriptors
• control edit descriptors
• Forms for Data Edit Descriptors
• Interaction Between Format Specifications and I/O Lists

Variable Format Expressions

A variable format expression is a numeric expression enclosed in angle brackets (< >) that can
be used in a FORMAT statement or in character format specifications.

The numeric expression can be any valid Fortran expression, including function calls and
references to dummy arguments.

If the expression is not of type integer, it is converted to integer type before being used.

If the value of a variable format expression does not obey the restrictions on magnitude applying
to its use in the format, an error occurs.

2086

52 Intel® Fortran Compiler User and Reference Guides

Variable format expressions cannot be used with the H edit descriptor, and they are not allowed
in character format specifications.

Variable format expressions are evaluated each time they are encountered in the scan of the
format. If the value of the variable used in the expression changes during the execution of the
I/O statement, the new value is used the next time the format item containing the expression
is processed.

Examples

Consider the following statement:

FORMAT (I<J+1>)

When the format is scanned, the preceding statement performs an I (integer) data transfer with a
field width of J+1. The expression is reevaluated each time it is encountered in the normal format
scan.

Consider the following statements:

DIMENSION A(5)

DATA A/1.,2.,3.,4.,5./

DO 10 I=1,10

WRITE (6,100) I

100 FORMAT (I<MAX(I,5)>)

10 CONTINUE

DO 20 I=1,5

WRITE (6,101) (A(I), J=1,I)

101 FORMAT (<I>F10.<I-1>)

20 CONTINUE

END

2087

52

On execution, these statements produce the following output:

1

2

3

4

5

6

7

8

9

10

1.

2.0 2.0

3.00 3.00 3.00

4.000 4.000 4.000 4.000

5.0000 5.0000 5.0000 5.0000 5.0000

The following shows another example:

WRITE(6,20) INT1

20 FORMAT(I<MAX(20,5)>)

WRITE(6,FMT=30) REAL2(10), REAL3

30 FORMAT(<J+K>X, <2*M>F8.3)

The value of the expression is reevaluated each time an input/output item is processed during the
execution of the READ, WRITE, or PRINT statement. For example:

INTEGER width, value

width=2

READ (*,10) width, value

10 FORMAT(I1, I <width>)

PRINT *, value

END

2088

52 Intel® Fortran Compiler User and Reference Guides

When given input 3123, the program will print 123 and not 12.

See Also
• I/O Formatting
• Interaction Between Format Specifications and I/O Lists

Printing of Formatted Records

On output, if a file was opened with CARRIAGECONTROL='FORTRAN' in effect or the file is being
processed by the fortpr format utility, the first character of a record transmitted to a line
printer or terminal is typically a character that is not printed, but used to control vertical spacing.

The following table lists the valid control characters for printing:

Table 622: Control Characters for Printing

EffectMeaningCharacter

Outputs the record (at the
current position in the current
line) and a carriage return.

Overprinting+

Outputs the record (at the
beginning of the following
line) and a carriage return.

One line feed-

Outputs the record (after
skipping a line) and a
carriage return.

Two line feeds0

Outputs the record (at the
beginning of a new page) and
a carriage return.

Next page1

Outputs the record (at the
beginning of the following
line), but no carriage return.

Prompting$

Outputs the record (at the
current position in the current
line), but no carriage return.

Overprinting with no advanceASCII NUL1

Specify as CHAR(0).

2089

52

Any other character is interpreted as a blank and is deleted from the print line. If you do not
specify a control character for printing, the first character of the record is not printed.

Interaction Between Format Specifications and I/O Lists

Format control begins with the execution of a formatted I/O statement. Each action of format
control depends on information provided jointly by the next item in the I/O list (if one exists)
and the next edit descriptor in the format specification.

Both the I/O list and the format specification are interpreted from left to right, unless repeat
specifications or implied-DO lists appear.

If an I/O list specifies at least one list item, at least one data edit descriptor (I, B, O, Z, F, E,
EN, ES, D, G, L, or A) or the Q edit descriptor must appear in the format specification; otherwise,
an error occurs.

Each data edit descriptor (or Q edit descriptor) corresponds to one item in the I/O list, except
that an I/O list item of type complex requires the interpretation of two F, E, EN, ES, D, or G
edit descriptors. No I/O list item corresponds to a control edit descriptor (X, P, T, TL, TR, SP,
SS, S, BN, BZ, $, or :), or a character string edit descriptor (H and character constants). For
character string edit descriptors, data transfer occurs directly between the external record and
the format specification.

When format control encounters a data edit descriptor in a format specification, it determines
whether there is a corresponding I/O list item specified. If there is such an item, it is transferred
under control of the edit descriptor, and then format control proceeds. If there is no
corresponding I/O list item, format control terminates.

If there are no other I/O list items to be processed, format control also terminates when the
following occurs:

• A colon edit descriptor is encountered.

• The end of the format specification is reached.

If additional I/O list items remain, part or all of the format specification is reused in format
reversion.

In format reversion, the current record is terminated and a new one is initiated. Format control
then reverts to one of the following (in order) and continues from that point:

1. The group repeat specification whose opening parenthesis matches the next-to-last closing
parenthesis of the format specification

2. The initial opening parenthesis of the format specification

Format reversion has no effect on the scale factor (P), the sign control edit descriptors (S, SP,
or SS), or the blank interpretation edit descriptors (BN or BZ).

2090

52 Intel® Fortran Compiler User and Reference Guides

Examples

The data in file FOR002.DAT is to be processed 2 records at a time. Each record starts with a number
to be put into an element of a vector B, followed by 5 numbers to be put in a row in matrix A.

FOR002.DAT contains the following data:

001 0101 0102 0103 0104 0105

002 0201 0202 0203 0204 0205

003 0301 0302 0303 0304 0305

004 0401 0402 0403 0404 0405

005 0501 0502 0503 0504 0505

006 0601 0602 0603 0604 0605

007 0701 0702 0703 0704 0705

008 0801 0802 0803 0804 0805

009 0901 0902 0903 0904 0905

010 1001 1002 1003 1004 1005

The following example shows how several different format specifications interact with I/O lists to
process data in file FOR002.DAT:

Figure 34: Interaction Between Format Specifications and I/O Lists

INTEGER I, J, A(2,5), B(2)

OPEN (unit=2, access='sequential', file='FOR002.DAT')

READ (2,100) (B(I), (A(I,J), J=1,5),I=1,2)

100 FORMAT (2 (I3, X, 5(I4,X), /))

WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2)

2091

52

999 FORMAT (' B is ', 2(I3, X), '; A is', /

1 (' ', 5 (I4, X)))

READ (2,200) (B(I), (A(I,J), J=1,5),I=1,2)

200 FORMAT (2 (I3, X, 5(I4,X), :/))

WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2)

READ (2,300) (B(I), (A(I,J), J=1,5),I=1,2)

300 FORMAT ((I3, X, 5(I4,X)))

WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2)

READ (2,400) (B(I), (A(I,J), J=1,5),I=1,2)

400 FORMAT (I3, X, 5(I4,X))

WRITE (6,999) B, ((A(I,J),J=1,5),I=1,2)

2092

52 Intel® Fortran Compiler User and Reference Guides

END

This statement reads B(1); then A(1,1) through A(1,5); then B(2) and A(2,1) through A(2,5).

The first record read (starting with 001) starts the processing of the I/O list.

There are two records, each in the format I3, X, 5(I4, X). The slash (/) forces the reading of the
second record after A(1,5) is processed. It also forces the reading of the third record after A(2,5) is
processed; no data is taken from that record.

This statement produces the following output:

B is 1 2 ; A is 101 102 103 104 105 201 202 203 204 205

This statement reads the record starting with 004. The slash (/) forces the reading of the next
record after A(1,5) is processed. The colon (:) stops the reading after A(2,5) is processed, but before
the slash (/) forces another read.

This statement produces the following output:

B is 4 5 ; A is 401 402 403 404 405 501 502 503 504 505

This statement reads the record starting with 006. After A(1,5) is processed, format reversion
causes the next record to be read and starts format processing at the left parenthesis before the I3.

This statement produces the following output:

B is 6 7 ; A is 601 602 603 604 605 701 702 703 704 705

This statement reads the record starting with 008. After A(1,5) is processed, format reversion
causes the next record to be read and starts format processing at the left parenthesis before the I4.

This statement produces the following output:

B is 8 90 ; A is 801 802 803 804 805 9010 9020 9030 9040 100

The record 009 0901 0902 0903 0904 0905 is processed with I4 as "009 " for B(2), which is 90. X
skips the next "0". Then "901 " is processed for A(2,1), which is 9010, "902 " for A(2,2), "903 " for
A(2,3), and "904 " for A(2,4). The repeat specification of 5 is now exhausted and the format ends.
Format reversion causes another record to be read and starts format processing at the left parenthesis
before the I4, so "010 " is read for A(2,5), which is 100.

See Also

2093

52

• I/O Formatting
• Data edit descriptors
• Control edit descriptors
• Q edit descriptor
• Character string edit descriptors
• Scale Factor Editing (P)

2094

52 Intel® Fortran Compiler User and Reference Guides

53File Operation I/O Statements

The following are file connection, inquiry, and positioning I/O statements:

• BACKSPACE

Positions a sequential file at the beginning of the preceding record.

• CLOSE

Terminates the connection between a logical unit and a file or device.

• DELETE

Deletes a record from a relative file.

• ENDFILE

For sequential files, writes an end-of-file record to the file and positions the file after this record. For
direct access files, truncates the file after the current record.

• FLUSH

Causes data written to a file to become available to other processes or causes data written to a file
outside of Fortran to be accessible to a READ statement.

• INQUIRE

Requests information on the status of specified properties of a file or logical unit.

• OPEN

Connects a Fortran logical unit to a file or device; declares attributes for read and write operations.

• REWIND

Positions a sequential file at the beginning of the file.

• WAIT

Performs a wait operation for a specified pending asynchronous data transfer operation.

The following table summarizes I/O statement specifiers:

I/O Specifiers

Used with:DescriptionValuesSpecifier

INQUIRE, OPENSpecifies the method of
file access.

'SEQUENTIAL',
'DIRECT', 'STREAM', or
'APPEND'

ACCESS=access

2095

I/O Specifiers

Used with:DescriptionValuesSpecifier

INQUIRE, OPENSpecifies file I/O
mode.

'READ', 'WRITE' or
'READWRITE' (default
is 'READWRITE')

ACTION=permission

READSpecifies formatted
sequential data input
as advancing, or
non-advancing.

'NO' or 'YES' (default
is 'YES')

ADVANCE=c-expr

OPENSpecifies a variable to
be updated to reflect
the record number of
the next sequential
record in the file.

Integer variableASSOCIATEVARIABLE=var

INQUIRE, OPENSpecifies whether or
not the I/O is done
asynchronously

'YES' or 'NO' (default
is 'NO')

ASYNCHRONOUS=asynch

INQUIREReturns whether file
format is binary.

'NO' or 'YES'BINARY=bin

INQUIRE, OPENSpecifies whether
blanks are ignored in
numeric fields or
interpreted as zeros.

'NULL' or 'ZERO'
(default is 'NULL')

BLANK=blank_control

INQUIRE, OPENSpecifies or returns
the internal buffer size
used in I/O.

Positive integer
variable or expression

BLOCKSIZE=blocksize

OPENSpecifies the number
of buffers to be
associated with the
unit for multibuffered
I/O.

Numeric expressionBUFFERCOUNT=bc

2096

53 Intel® Fortran Compiler User and Reference Guides

I/O Specifiers

Used with:DescriptionValuesSpecifier

INQUIRE, OPENSpecifies run-time
library behavior
following WRITE
operations.

'YES' or 'NO' (default
is 'NO')

BUFFERED=bf

INQUIRE, OPENSpecifies carriage
control processing.

'FORTRAN', 'LIST', or
'NONE'

CARRIAGECONTROL=
control

INQUIRE, OPENSpecifies a numeric
format for unformatted
data.

'LITTLE_ENDIAN',
'BIG_ENDIAN', 'CRAY',
'FDX', 'FGX', 'IBM',
'VAXD', 'VAXG', or
'NATIVE' (default is
'NATIVE')

CONVERT=form

INQUIRE, OPENSpecifies a default file
pathname string.

Character expressionDEFAULTFILE=var

INQUIRE, OPENSpecifies the delimiting
character for
list-directed or
namelist data.

'APOSTROPHE',
'QUOTE' or 'NONE'
(default is 'NONE')

DELIM=delimiter

INQUIREReturns whether file is
connected for direct
access.

'NO' or 'YES'DIRECT=dir

OPEN, CLOSESpecifies the status of
a file after the unit is
closed.

'KEEP', 'SAVE',
'DELETE', 'PRINT',
'PRINT/DELETE',
'SUBMIT', or

DISPOSE=dis (or
DISP=dis)

'SUBMIT/DELETE'
(default is 'DELETE' for
scratch files; 'KEEP' for
all other files)

FORMAT, PRINT,
READ, WRITE

Lists edit descriptors.
Used in FORMAT
statements and format

Character variable or
expression

formatlist

specifiers (the

2097

53

I/O Specifiers

Used with:DescriptionValuesSpecifier

FMT=formatspec
option) to describe the
format of data.

READWhen an end of file is
encountered, transfers
control to the
statement whose label
is specified.

Integer between 1 and
99999

END=endlabel

READWhen an end of record
is encountered,
transfers to the
statement whose label
is specified.

Integer between 1 and
99999

EOR=eorlabel

All except PRINTSpecifies the label of
an executable
statement where

Integer between 1 and
99999

ERR=errlabel

execution is
transferred after an
I/O error.

INQUIREReturns whether a file
exists and can be
opened.

.TRUE. or .FALSE.EXIST=ex

INQUIRE, OPENSpecifies the name of
a file

Character variable or
expression. Length
and format of the

FILE=file (or
NAME=name)

name are determined
by the operating
system

PRINT, READ, WRITESpecifies an editlist
to use to format data.

Character variable or
expression

[FMT=]formatspec

INQUIRE, OPENSpecifies a file's
format.

'FORMATTED',
'UNFORMATTED', or
'BINARY'

FORM=form

2098

53 Intel® Fortran Compiler User and Reference Guides

I/O Specifiers

Used with:DescriptionValuesSpecifier

INQUIREReturns whether a file
is connected for
formatted data
transfer.

'NO' or 'YES'FORMATTED=fmt

INQUIRE, OPENSpecifies whether a
unit is the active
window in a QuickWin
application.

.TRUE. or .FALSE.
(default is .TRUE.
unless unit '*' is
specified)

IOFOCUS=iof

PRINT, READ, WRITESpecifies items to be
input or output.

List of variables of any
type, character
expression, or
NAMELIST

iolist

All except PRINTSpecifies a variable
whose value indicates
whether an I/O error
has occurred.

Integer variableIOSTAT=iostat

OPENSpecifies the
maximum number of
records that can be
transferred to or from
a direct access file.

Numeric expressionMAXREC=var

INQUIRE, OPENSame as ACTION.'READ', 'WRITE' or
'READWRITE' (default
is 'READWRITE')

MODE=permission

INQUIREReturns whether a file
is named.

.TRUE. or .FALSE.NAMED=var

INQUIREReturns where the
next record can be
read or written in a
file.

Integer variableNEXTREC=nr

2099

53

I/O Specifiers

Used with:DescriptionValuesSpecifier

PRINT, READ, WRITESpecifies a namelist
group to be input or
output.

Namelist name[NML=]nmlspec

INQUIREReturns the number of
the unit connected to
a file.

Integer variableNUMBER=num

INQUIREReturns whether a file
is connected.

.TRUE. or .FALSE.OPENED=od

INQUIRE, OPENSpecifies the internal
organization of a file.

'SEQUENTIAL' or
'RELATIVE' (default is
'SEQUENTIAL')

ORGANIZATION=org

INQUIRE, OPENSpecifies whether an
input record is padded
with blanks when the

'YES' or 'NO' (default
is 'YES')

PAD=pad_switch

input list or format
requires more data
than the record holds,
or whether the input
record is required to
contain the data
indicated.

INQUIRE, READ,
WRITE

Specifies the file
storage unit position in
a stream file.

Positive integerPOS=pos

INQUIRE, OPENSpecifies position in a
file.

'ASIS', 'REWIND' or
'APPEND' (default is
'ASIS')

POSITION=file_pos

INQUIREReturns whether a file
can be read.

'NO' or 'YES'READ=rd

2100

53 Intel® Fortran Compiler User and Reference Guides

I/O Specifiers

Used with:DescriptionValuesSpecifier

OPENSpecifies that only
READ statements can
refer to this
connection.

READONLY

INQUIREReturns whether a file
can be both read and
written to.

'NO' or 'YES'READWRITE=rdwr

READ, WRITESpecifies the first (or
only) record of a file to
be read from, or
written to.

Positive integer
variable or expression

REC=rec

INQUIRE, OPENSpecifies the record
length in direct access
files, or the maximum
record length in
sequential files.

Positive integer
variable or expression

RECL=length (or
RECORDSIZE=length)

INQUIRE, OPENSpecifies the type of
records in a file.

'FIXED', 'VARIABLE',
'SEGMENTED',
'STREAM',
'STREAM_LF', or
'STREAM_CR'

RECORDTYPE=typ

INQUIREReturns whether file is
connected for
sequential access.

'NO' or 'YES'SEQUENTIAL=seq

INQUIRE, OPENControls how other
processes can
simultaneously access
a file on networked
systems.

'COMPAT',
'DENYNONE',
'DENYWR', 'DENYRD',
or 'DENYRW' (default
is 'DENYNONE')

SHARE=share

2101

53

I/O Specifiers

Used with:DescriptionValuesSpecifier

OPENSpecifies that a file is
connected for shared
access by more than
one program executing
simultaneously.

SHARED

READReturns the number of
characters read in a
nonadvancing READ

Integer variableSIZE=size

before an
end-of-record
condition occurred.

CLOSE, OPENSpecifies the status of
a file on opening
and/or closing.

'OLD', 'NEW',
'UNKNOWN' or
'SCRATCH' (default is
'UNKNOWN')

STATUS=status (or
TYPE=status)

OPENSpecifies the name of
a child window in a
QuickWin application.

Character expressionTITLE=name

INQUIREReturns whether a file
is connected for
unformatted data
transfer.

'NO' or 'YES'UNFORMATTED=unf

All except PRINTSpecifies the unit to
which a file is
connected.

Integer variable or
expression

[UNIT=]unitspec

OPENSpecifies an external
function that controls
the opening of a file.

Name of a user-written
function

USEROPEN=fname

INQUIREReturns whether a file
can be written to.

'NO' or 'YES'WRITE=rd

2102

53 Intel® Fortran Compiler User and Reference Guides

BACKSPACE Statement Overview

The BACKSPACE statement positions a file at the beginning of the preceding record, making it
available for subsequent I/O processing.

CLOSE Statement Overview

The CLOSE statement disconnects a file from a unit.

DELETE Statement Overview

The DELETE statement deletes a record from a relative file.

ENDFILE Statement Overview

The ENDFILE statement writes an end-of-file record to a sequential file and positions the file
after this record (the terminal point), or it causes a direct access file to be truncated after the
current record.

FLUSH Statement Overview

The FLUSH statement makes data written to a file become available to other processes or
causes data written to a file outside of Fortran to be accessible to a READ statement. For more
information, see FLUSH.

INQUIRE Statement Overview

The INQUIRE statement returns information on the status of specified properties of a file or
logical unit. For more information, see INQUIRE.

The following are inquiry specifiers:

READNAMEDDELIMACCESS

READWRITENEXTRECDIRECTACTION

RECLNUMBEREXISTASYNCHRONOUS

RECORDTYPEOPENEDFORMBINARY

2103

53

SEQUENTIALORGANIZATIONFORMATTEDBLANK

SHAREPADIDBLOCKSIZE

UNFORMATTEDPENDINGIOFOCUSBUFFERED

WRITEPOSMODECARRIAGECONTROL

POSITIONNAMECONVERT

INQUIRE: ACCESS Specifier

The ACCESS specifier asks how a file is connected. It takes the following form:

ACCESS = acc

Is a scalar default character variable that is assigned one of the following
values:

acc

If the file is connected for
sequential access

'SEQUENTIAL'

If the file is connected for stream
access

'STREAM'

If the file is connected for direct
access

'DIRECT'

If the file is not connected'UNDEFINED'

INQUIRE: ACTION Specifier

The ACTION specifier asks which I/O operations are allowed for a file. It takes the following
form:

ACTION = act

Is a scalar default character variable that is assigned one of the following
values:

act

If the file is connected for input
only

'READ'

If the file is connected for output
only

'WRITE'

2104

53 Intel® Fortran Compiler User and Reference Guides

If the file is connected for both
input and output

'READWRITE'

If the file is not connected'UNDEFINED'

INQUIRE: ASYNCHRONOUS Specifier

The ASYNCHRONOUS specifier asks whether asynchronous I/O is in effect. It takes the following
form:

ASYNCHRONOUS = asyn

Is a scalar default character variable that is assigned one of the following
values:

asyn

If the file or unit is connected and
asynchronous input/output is not
in effect.

'NO'

If the file or unit is connected and
asynchronous input/output is in
effect.

'YES'

If the file or unit is not
connected.

'UNKNOWN'

INQUIRE: BINARY Specifier (W*32, W*64)

The BINARY specifier asks whether a file is connected to a binary file. It takes the following
form:

BINARY = bin

Is a scalar default character variable that is assigned one of the following
values:

bin

If the file is connected to a binary
file

'YES'

If the file is connected to a
nonbinary file

'NO'

If the file is not connected'UNKNOWN'

2105

53

INQUIRE: BLANK Specifier

The BLANK specifier asks what type of blank control is in effect for a file. It takes the following
form:

BLANK = blnk

Is a scalar default character variable that is assigned one of the following
values:

blnk

If null blank control is in effect
for the file

'NULL'

If zero blank control is in effect
for the file

'ZERO'

If the file is not connected, or it
is not connected for formatted
data transfer

'UNDEFINED'

INQUIRE: BLOCKSIZE Specifier

The BLOCKSIZE specifier asks about the I/O buffer size. It takes the following form:

BLOCKSIZE = bks

Is a scalar integer variable.bks
The bks is assigned the current size of the I/O buffer. If the unit or file
is not connected, the value assigned is zero.

INQUIRE: BUFFERED Specifier

The BUFFERED specifier asks whether run-time buffering is in effect. It takes the following
form:

BUFFERED = bf

Is a scalar default character variable that is assigned one of the following
values:

bf

If the file or unit is connected and
buffering is not in effect.

'NO'

If the file or unit is connected and
buffering is in effect.

'YES'

2106

53 Intel® Fortran Compiler User and Reference Guides

If the file or unit is not
connected.

'UNKNOWN'

INQUIRE: CARRIAGECONTROL Specifier

The CARRIAGECONTROL specifier asks what type of carriage control is in effect for a file. It
takes the following form:

CARRIAGECONTROL = cc

Is a scalar default character variable that is assigned one of the following
values:

cc

If the file is connected with
Fortran carriage control in effect

'FORTRAN'

If the file is connected with
implied carriage control in effect

'LIST'

If the file is connected with no
carriage control in effect

'NONE'

If the file is not connected'UNKNOWN'

INQUIRE: CONVERT Specifier

The CONVERT specifier asks what type of data conversion is in effect for a file. It takes the
following form:

CONVERT = fm

Is a scalar default character variable that is assigned one of the following
values:

fm

If the file is connected with little
endian integer and IEEE*
floating-point data conversion in
effect

'LITTLE_ENDIAN'

If the file is connected with big
endian integer and IEEE
floating-point data conversion in
effect

'BIG_ENDIAN'

2107

53

If the file is connected with big
endian integer and CRAY*
floating-point data conversion in
effect

'CRAY'

If the file is connected with little
endian integer and VAX*
processor F_floating, D_floating,
and IEEE X_floating data
conversion in effect

'FDX'

If the file is connected with little
endian integer and VAX processor
F_floating, G_floating, and IEEE
X_floating data conversion in
effect

'FGX'

If the file is connected with big
endian integer and IBM*
System\370 floating-point data
conversion in effect

'IBM'

If the file is connected with little
endian integer and VAX processor
F_floating, D_floating, and
H_floating in effect

'VAXD'

If the file is connected with little
endian integer and VAX processor
F_floating, G_floating, and
H_floating in effect

'VAXG'

If the file is connected with no
data conversion in effect

'NATIVE'

If the file or unit is not connected
for unformatted data transfer

'UNKNOWN'

INQUIRE: DELIM Specifier

The DELIM specifier asks how character constants are delimited in list-directed and namelist
output. It takes the following form:

2108

53 Intel® Fortran Compiler User and Reference Guides

DELIM = del

Is a scalar default character variable that is assigned one of the following
values:

del

If apostrophes are used to delimit
character constants in
list-directed and namelist output

'APOSTROPHE'

If quotation marks are used to
delimit character constants in
list-directed and namelist output

'QUOTE'

If no delimiters are used'NONE'

If the file is not connected, or is
not connected for formatted data
transfer

'UNDEFINED'

INQUIRE: DIRECT Specifier

The DIRECT specifier asks whether a file is connected for direct access. It takes the following
form:

DIRECT = dir

Is a scalar default character variable that is assigned one of the following
values:

dir

If the file is connected for direct
access

'YES'

If the file is not connected for
direct access

'NO'

If the file is not connected'UNKNOWN'

INQUIRE: EXIST Specifier

The EXIST specifier asks whether a file exists and can be opened. It takes the following form:

EXIST = ex

Is a scalar default logical variable that is assigned one of the following
values:

ex

2109

53

If the specified file exists and can
be opened, or if the specified unit
exists

.TRUE.

If the specified file or unit does
not exist or if the file exists but
cannot be opened

.FALSE.

The unit exists if it is a number in the range allowed by the processor.

INQUIRE: FORM Specifier

The FORM specifier asks whether a file is connected for formatted, unformatted, or binary
(W*32, W*64) data transfer. It takes the following form:

FORM = fm

Is a scalar default character variable that is assigned one of the following
values:

fm

If the file is connected for
formatted data transfer

'FORMATTED'

If the file is connected for
unformatted data transfer

'UNFORMATTED'

If the file is connected for binary
data transfer

'BINARY'

If the file is not connected'UNDEFINED'

INQUIRE: FORMATTED Specifier

The FORMATTED specifier asks whether a file is connected for formatted data transfer. It takes
the following form:

FORMATTED = fmt

Is a scalar default character variable that is assigned one of the following
values:

fmt

If the file is connected for
formatted data transfer

'YES'

2110

53 Intel® Fortran Compiler User and Reference Guides

If the file is not connected for
formatted data transfer

'NO'

If the processor cannot
determine whether the file is
connected for formatted data
transfer

'UNKNOWN'

INQUIRE: ID Specifier

The ID specifier identifies a pending asynchronous data transfer. It takes the following form:

ID=iexp

Is a scalar integer expression identifying a data transfer operation that
was returned using the ID= specifier in a previous asynchronous READ
or WRITE statement.

iexp

This specifier is used with the PENDING specifier to determine whether a specific asynchronous
pending data transfer is completed.

See Also
• INQUIRE Statement Overview
• PENDING specifier

INQUIRE: IOFOCUS Specifier (W*32, W*64)

The IOFOCUS specifier asks if the indicated unit is the active window in a QuickWin application.
It takes the following form:

IOFOCUS = iof

Is a scalar default logical variable that is assigned one of the following
values:

iof

If the specified unit is the active
window in a QuickWin application

.TRUE.

If the specified unit is not the
active window in a QuickWin
application

.FALSE.

If unit '*' is specified, the default is .FALSE.; otherwise, the default is .TRUE..

2111

53

A value of .TRUE. causes a call to FOCUSQQ immediately before any READ, WRITE, or PRINT
statement to that window.

If you use this specifier with a non-Windows application, an error occurs.

INQUIRE: MODE Specifier

MODE is a nonstandard synonym for ACTION.

INQUIRE: NAME Specifier

The NAME specifier returns the name of a file. It takes the following form:

NAME = nme

Is a scalar default character variable that is assigned the name of the
file to which the unit is connected. If the file does not have a name,
nme is undefined.

nme

The value assigned to nme is not necessarily the same as the value
given in the FILE specifier. However, the value that is assigned is always
valid for use with the FILE specifier in an OPEN statement, unless the
value has been truncated in a way that makes it unacceptable. (Values
are truncated if the declaration of nme is too small to contain the entire
value.)

NOTE. The FILE and NAME specifiers are synonyms when used with the OPEN statement,
but not when used with the INQUIRE statement.

See Also
• INQUIRE Statement Overview

The appropriate manual in your operating system documentation set for details on the maximum
size of file pathnames

INQUIRE: NAMED Specifier

The NAMED specifier asks whether a file is named. It takes the following form:

NAMED = nmd

Is a scalar default logical variable that is assigned one of the following
values:

nmd

If the file has a name.TRUE.

2112

53 Intel® Fortran Compiler User and Reference Guides

If the file does not have a name.FALSE.

INQUIRE: NEXTREC Specifier

The NEXTREC specifier asks where the next record can be read or written in a file connected
for direct access. It takes the following form:

NEXTREC = nr

Is a scalar integer variable that is assigned a value as follows:nr

• If the file is connected for direct access and a record (r) was
previously read or written, the value assigned is r + 1.

• If no record has been read or written, the value assigned is 1.

• If the file is not connected for direct access, or if the file position
cannot be determined because of an error condition, the value
assigned is zero.

• If the file is connected for direct access and a REWIND has been
performed on the file, the value assigned is 1.

INQUIRE: NUMBER Specifier

The NUMBER specifier asks the number of the unit connected to a file. It takes the following
form:

NUMBER = num

Is a scalar integer variable.num
The num is assigned the number of the unit currently connected to the
specified file. If there is no unit connected to the file, the value assigned
is -1.

INQUIRE: OPENED Specifier

The OPENED specifier asks whether a file is connected. It takes the following form:

OPENED = od

Is a scalar default logical variable that is assigned one of the following
values:

od

If the specified file or unit is
connected

.TRUE.

2113

53

If the specified file or unit is not
connected

.FALSE.

INQUIRE: ORGANIZATION Specifier

The ORGANIZATION specifier asks how the file is organized. It takes the following form:

ORGANIZATION = org

Is a scalar default character variable that is assigned one of the following
values:

org

If the file is a sequential file'SEQUENTIAL'

If the file is a relative file'RELATIVE'

If the processor cannot
determine the file's organization

'UNKNOWN'

INQUIRE: PAD Specifier

The PAD specifier asks whether blank padding was specified for the file. It takes the following
form:

PAD = pd

Is a scalar default character variable that is assigned one of the following
values:

pd

If the file or unit was connected
with PAD='NO'

'NO'

If the file or unit is not
connected, or it was connected
with PAD='YES'

'YES'

INQUIRE: PENDING Specifier

The PENDING specifier asks whether previously pending asynchronous data transfers are
complete. A data transfer is previously pending if it is not complete at the beginning of execution
of the INQUIRE statement. It takes the following form:

PENDING = pnd

2114

53 Intel® Fortran Compiler User and Reference Guides

Is a scalar default logical variable that is assigned the value .TRUE. or
.FALSE..

pnd

The value is assigned as follows:

• If an ID specifier appears in the INQUIRE statement, the following occurs:

• If the data transfer specified by ID is complete, then variable pnd is set to .FALSE. and
INQUIRE performs the WAIT operation for the specified data transfer.

• If the data transfer specified by ID is not complete, then variable pnd is set to .TRUE.
and no WAIT operation is performed. The previously pending data transfer remains
pending after the execution of the INQUIRE statement.

• If an ID specifier does not appear in the INQUIRE statement, the following occurs:

• If all previously pending data transfers for the specified unit are complete, then variable
pnd is set to .FALSE. and the INQUIRE statement performs WAIT operations for all
previously pending data transfers for the specified unit.

• If there are data transfers for the specified unit that are not complete, then variable pnd
is set to .TRUE. and no WAIT operations are performed. The previously pending data
transfers remain pending after the execution of the INQUIRE statement.

See Also
• INQUIRE Statement Overview
• INQUIRE: ID Specifier
• Example in INQUIRE Statement

INQUIRE: POS Specifier

The POS specifier identifies the file position in file storage units in a stream file. It takes the
following form:

POS = p

Is a scalar integer variable that is assigned the number of the file
storage unit immediately following the current position of a file
connected for stream access (ACCESS='STREAM').

p

If the file is positioned at its terminal position, p is assigned a value one greater than the number
of the highest-numbered file storage unit in the file.

If the file is not connected for stream access or if the position of the file is indeterminate because
of previous error conditions, p is assigned the value one.

2115

53

INQUIRE: POSITION Specifier

The POSITION specifier asks the position of the file. It takes the following form:

POSITION = pos

Is a scalar default character variable that is assigned one of the following
values:

pos

If the file is connected with its
position at its initial point

'REWIND'

If the file is connected with its
position at its terminal point (or
before its end-of-file record, if
any)

'APPEND'

If the file is connected without
changing its position

'ASIS'

If the file is not connected, or is
connected for direct access data
transfer and a REWIND
statement has not been
performed on the unit

'UNDEFINED'

See Also
• INQUIRE Statement Overview

Building Applications for details on record position, advancement, and transfer

INQUIRE: READ Specifier

The READ specifier asks whether a file can be read. It takes the following form:

READ = rd

Is a scalar default character variable that is assigned one of the following
values:

rd

If the file can be read'YES'

If the file cannot be read'NO'

2116

53 Intel® Fortran Compiler User and Reference Guides

If the processor cannot
determine whether the file can
be read

'UNKNOWN'

INQUIRE: READWRITE Specifier

The READWRITE specifier asks whether a file can be both read and written to. It takes the
following form:

READWRITE = rdwr

Is a scalar default character variable that is assigned one of the following
values:

rdwr

If the file can be both read and
written to

'YES'

If the file cannot be both read
and written to

'NO'

If the processor cannot
determine whether the file can
be both read and written to

'UNKNOWN'

INQUIRE: RECL Specifier

The RECL specifier asks the maximum record length for a file. It takes the following form:

RECL = rcl

Is a scalar integer variable that is assigned a value as follows:rcl

• If the file or unit is connected, the value assigned is the maximum
record length allowed.

• If the file does not exist, or is not connected, the value assigned is
zero.

The assigned value is expressed in 4-byte units if the file is currently (or was previously)
connected for unformatted data transfer; otherwise, the value is expressed in bytes.

INQUIRE: RECORDTYPE Specifier

The RECORDTYPE specifier asks which type of records are in a file. It takes the following form:

2117

53

RECORDTYPE = rtype

Is a scalar default character variable that is assigned one of the following
values:

rtype

If the file is connected for
fixed-length records

'FIXED'

If the file is connected for
variable-length records

'VARIABLE'

If the file is connected for
unformatted sequential data
transfer using segmented records

'SEGMENTED'

If the file's records are not
terminated

'STREAM'

If the file's records are
terminated with a carriage return

'STREAM_CR'

If the file's records are
terminated with a line feed

'STREAM_LF'

If the file's records are
terminated with a carriage
return/line feed pair

'STREAM_CRLF'

If the file is not connected'UNKNOWN'

INQUIRE: SEQUENTIAL Specifier

The SEQUENTIAL specifier asks whether a file is connected for sequential access. It takes the
following form:

SEQUENTIAL = seq

Is a scalar default character variable that is assigned one of the following
values:

seq

If the file is connected for
sequential access

'YES'

If the file is not connected for
sequential access

'NO'

2118

53 Intel® Fortran Compiler User and Reference Guides

If the processor cannot
determine whether the file is
connected for sequential access

'UNKNOWN'

INQUIRE: SHARE Specifier

The SHARE specifier asks the current share status of a file or unit. It takes the following form:

SHARE = shr

Is a scalar default character variable.shr
On Windows* systems, this variable is assigned one of the following
values:

If the file is connected for
deny-read/write mode

'DENYRW'

If the file is connected for
deny-write mode

'DENYWR'

If the file is connected for
deny-read mode

'DENYRD'

If the file is connected for
deny-none mode

'DENYNONE'

If the file or unit is not connected'UNKNOWN'

On Linux* and Mac OS* X systems, this variable is assigned one of the
following values:

If the file is connected for
exclusive access

'DENYRW'

If the file is connected for shared
access

'DENYNONE'

If the file is connected with
default locking

'NODENY'

If the file or unit is not connected'UNKNOWN'

2119

53

INQUIRE: UNFORMATTED Specifier

The UNFORMATTED specifier asks whether a file is connected for unformatted data transfer. It
takes the following form:

UNFORMATTED = unf

Is a scalar default character variable that is assigned one of the following
values:

unf

If the file is connected for
unformatted data transfer

'YES'

If the file is not connected for
unformatted data transfer

'NO'

If the processor cannot
determine whether the file is
connected for unformatted data
transfer

'UNKNOWN'

INQUIRE: WRITE Specifier

The WRITE specifier asks whether a file can be written to. It takes the following form:

WRITE = wr

Is a scalar default character variable that is assigned one of the following
values:

wr

If the file can be written to'YES'

If the file cannot be written to'NO'

If the processor cannot
determine whether the file can
be written to

'UNKNOWN'

OPEN Statement Overview

The OPEN statement connects an external file to a unit, creates a new file and connects it to a
unit, creates a preconnected file, or changes certain properties of a connection. For more
information, see OPEN.

2120

53 Intel® Fortran Compiler User and Reference Guides

The following table summarizes the OPEN statement specifiers and their values (and contains
links to their descriptions):

Table 652: OPEN Statement Specifiers and Values

DefaultFunctionValuesSpecifier

'SEQUENTIAL'Access mode'SEQUENTIAL'

'DIRECT'

ACCESS

'APPEND'

'READWRITE'File access'READ'

'WRITE'

ACTION

(or MODE)

'READWRITE'

No defaultNext direct access
record

varASSOCIATEVARIABLE

'NULL'Interpretation of
blanks

'NULL'

'ZERO'

BLANK

Filesystem defaultPhysical block sizen_exprBLOCKSIZE

OneNumber of I/O
buffers

n_exprBUFFERCOUNT

'NO'Buffering for WRITE
operations

'YES'

'NO'

BUFFERED

Formatted: 'LIST'1Print control'FORTRAN'

'LIST'

CARRIAGECONTROL

Unformatted: 'NONE'

'NONE'

'NATIVE'Numeric format
specification

'LITTLE_ENDIAN'

'BIG_ENDIAN'

CONVERT

'CRAY'

'FDX'

'FGX'

'IBM'

2121

53

DefaultFunctionValuesSpecifier

'VAXD'

'VAXG'

'NATIVE'

Current working
directory

Default file pathnamec_exprDEFAULTFILE

'NONE'Delimiter for
character constants

'APOSTROPHE'

'QUOTE'

DELIM

'NONE'

'KEEP'File disposition at
close

'KEEP' or 'SAVE'

'DELETE'

DISPOSE (or DISP)

'PRINT'

'PRINT/DELETE'

'SUBMIT'

'SUBMIT/DELETE'

No defaultError transfer controllabelERR

fort.n 2File pathname (file
name)

c_exprFILE (or NAME)

Depends on ACCESS
setting

Format type'FORMATTED'

'UNFORMATTED'

FORM

'BINARY'

.TRUE.3Active window in
QuickWin application

.TRUE.

.FALSE.

IOFOCUS

No defaultI/O statusvarIOSTAT

No limitDirect access record
limit

n_exprMAXREC

L*X, M*X: SHAREDFile sharing
disallowed

No valueNOSHARED 4

2122

53 Intel® Fortran Compiler User and Reference Guides

DefaultFunctionValuesSpecifier

W*32, W*64: Not
shared

'SEQUENTIAL'File organization'SEQUENTIAL'

'RELATIVE'

ORGANIZATION

'YES'Record padding'YES' 'NO'PAD

'ASIS'File positioning'ASIS'

'REWIND'

POSITION

'APPEND'

No defaultWrite protectionNo valueREADONLY

Depends on
RECORDTYPE,
ORGANIZATION, and
FORM settings 5

Record lengthn_exprRECL

(or RECORDSIZE)

Depends on
ORGANIZATION,
CARRIAGECONTROL,
ACCESS, and FORM
settings

Record type'FIXED'

'VARIABLE'

'SEGMENTED'

'STREAM'

RECORDTYPE

'STREAM_CR'

'STREAM_LF'

'DENYWR' 7File locking'DENYRW'

'DENYWR'6
SHARE 4

'DENYRD'6

'DENYNONE'

L*X, M*X: SHAREDFile sharing allowedNo valueSHARED 4

W*32, W*64: Not
shared

2123

53

DefaultFunctionValuesSpecifier

'UNKNOWN' 8File status at open'OLD'

'NEW'

STATUS (or TYPE)

'SCRATCH'

'REPLACE'

'UNKNOWN'

No defaultTitle for child window
in QuickWin
application

c_exprTITLE

No default; an io-unit
must be specified

Logical unit numbern_exprUNIT

No defaultUser program optionfuncUSEROPEN

1 If you use the compiler option specifying OpenVMS defaults, and the unit is connected to
a terminal, the default is 'FORTRAN'.
2 n is the unit number.
3 If unit '*' is specified, the default is .FALSE.; otherwise, the default is .TRUE..
4 For information on file sharing, see Building Applications.
5 On Linux* and Mac OS* X systems, the default depends only on the FORM setting.
6 W*32, W*64
7 The default differs under certain conditions (see SHARE Specifier).
8 The default differs under certain conditions (see STATUS Specifier).

Key to Values
c_expr: A scalar default character expression

func: An external function

label: A statement label

n_expr: A scalar numeric expression

var: A scalar integer variable

2124

53 Intel® Fortran Compiler User and Reference Guides

OPEN: ACCESS Specifier

The ACCESS specifier indicates the access method for the connection of the file. It takes the
following form:

ACCESS = acc

Is a scalar default character expression that evaluates to one of the
following values:

acc

Indicates direct access.'DIRECT'

Indicates sequential access.'SEQUENTIAL'

Indicates stream access, where
the file storage units of the file
are accessible sequentially or by
position.

'STREAM'

Indicates sequential access, but
the file is positioned at the
end-of-file record.

'APPEND'

The default is 'SEQUENTIAL'.

There are limitations on record access by file organization and record type. For more information,
see Building Applications.

OPEN: ACTION Specifier

The ACTION specifier indicates the allowed I/O operations for the file connection. It takes the
following form:

ACTION = act

Is a scalar default character expression that evaluates to one of the
following values:

act

Indicates that only READ
statements can refer to this
connection.

'READ'

Indicates that only WRITE,
DELETE, and ENDFILE statements
can refer to this connection.

'WRITE'

2125

53

Indicates that READ, WRITE,
DELETE, and ENDFILE statements
can refer to this connection.

'READWRITE'

The default is 'READWRITE'.

However, if compiler option fpscomp general is specified on the command line and action is
omitted, the system first attempts to open the file with 'READWRITE'. If this fails, the system
tries to open the file again, first using 'READ', then using 'WRITE'.

Note that in this case, omitting action is not the same as specifying ACTION='READWRITE'.
If you specify ACTION='READWRITE' and the file cannot be opened for both read and write
access, the attempt to open the file fails. You can use the INQUIRE statement to determine the
actual access mode selected.

See Also
• OPEN Statement Overview
• fpscomp compiler option

OPEN: ASSOCIATEVARIABLE Specifier

The ASSOCIATEVARIABLE specifier indicates a variable that is updated after each direct access
I/O operation, to reflect the record number of the next sequential record in the file. It takes
the following form:

ASSOCIATEVARIABLE = asv

Is a scalar integer variable. It cannot be a dummy argument to the
routine in which the OPEN statement appears.

asv

Direct access READs, direct access WRITEs, and the FIND, DELETE, and REWRITE statements
can affect the value of asv.

This specifier is valid only for direct access; it is ignored for other access modes.

OPEN: ASYNCHRONOUS Specifier

The ASYNCHRONOUS specifier indicates whether asynchronous I/O is allowed for a unit. It
takes the following form:

ASYNCHRONOUS = asyn

Is a scalar expression of type default character that evaluates to one
of the following values:

asyn

2126

53 Intel® Fortran Compiler User and Reference Guides

Indicates that asynchronous I/O
is allowed for a unit.

'YES'

Indicates that asynchronous I/O
is not allowed for a unit.

'NO'

The default is 'NO'.

OPEN: BLANK Specifier

The BLANK specifier indicates how blanks are interpreted in a file. It takes the following form:

BLANK = blnk

Is a scalar default character expression that evaluates to one of the
following values:

blnk

Indicates all blanks are ignored,
except for an all-blank field
(which has a value of zero).

'NULL'

Indicates all blanks (other than
leading blanks) are treated as
zeros.

'ZERO'

The default is 'NULL' (for explicitly OPENed files, preconnected files, and internal files). If you
specify compiler option f66 (or OPTIONS/NOF77), the default is 'ZERO'.

If the BN or BZ edit descriptors are specified for a formatted input statement, they supersede
the default interpretation of blanks.

See Also
• OPEN Statement Overview
• Blank Editing
• f66

OPEN: BLOCKSIZE Specifier

The BLOCKSIZE specifier indicates the physical I/O transfer size for the file. It takes the following
form:

BLOCKSIZE = bks

2127

53

Is a scalar numeric expression. If necessary, the value is converted to
integer data type before use.

bks

If you specify a nonzero number for bks, it is rounded up to a multiple of 512 byte blocks.

If you do not specify BLOCKSIZE or you specify zero for bks, the filesystem default value is
assumed.

Note that blocksize is meaningful for sequential access only.

OPEN: BUFFERCOUNT Specifier

The BUFFERCOUNT specifier indicates the number of buffers to be associated with the unit for
multibuffered I/O. It takes the following form:

BUFFERCOUNT = bc

Is a scalar numeric expression in the range 1 through 127. If necessary,
the value is converted to integer data type before use.

bc

The BLOCKSIZE specifier determines the size of each buffer. For example, if BUFFERCOUNT=3
and BLOCKSIZE=2048, the total number of bytes allocated for buffers is 3*2048, or 6144
bytes.

If you do not specify BUFFERCOUNT or you specify zero for bc, the default is 1.

See Also
• OPEN Statement Overview
• BLOCKSIZE specifier

Optimizing Applications for details on obtaining optimal run-time performance

OPEN: BUFFERED Specifier

The BUFFERED specifier indicates run-time library behavior following WRITE operations. It takes
the following form:

BUFFERED = bf

Is a scalar default character expression that evaluates to one of the
following values:

bf

Requests that the run-time
library send output data to the
file system after each WRITE
operation.

'NO'

2128

53 Intel® Fortran Compiler User and Reference Guides

Requests that the run-time
library accumulate output data
in its internal buffer, possibly

'YES'

across several WRITE operations,
before the data is sent to the file
system.

Buffering may improve run-time
performance for output-intensive
applications.

The default is 'NO'.

If BUFFERED='YES' is specified, the request may or may not be honored, depending on the
output device and other file or connection characteristics.

For direct access, you should specify BUFFERED='YES', although using direct-access I/O to a
network file system may be much slower.

If BLOCKSIZE and BUFFERCOUNT have been specified for OPEN, their product determines the
size in bytes of the internal buffer. Otherwise, the default size of the internal buffer is 8192
bytes.

NOTE. On Windows systems, the default size of the internal buffer is 1024 bytes if
compiler option fpscomp general is used.

The internal buffer will grow to hold the largest single record but will never shrink.

OPEN: CARRIAGECONTROL Specifier

The CARRIAGECONTROL specifier indicates the type of carriage control used when a file is
displayed at a terminal. It takes the following form:

CARRIAGECONTROL = cc

Is a scalar default character expression that evaluates to one of the
following values:

cc

Indicates normal Fortran
interpretation of the first
character.

'FORTRAN'

Indicates one line feed between
records.

'LIST'

2129

53

Indicates no carriage control
processing.

'NONE'

The default for binary (W*32, W*64) and unformatted files is 'NONE'. The default for formatted
files is 'LIST'. However, if you specify compiler option vms or fpscomp general, and the unit is
connected to a terminal, the default is 'FORTRAN'.

On output, if a file was opened with CARRIAGECONTROL='FORTRAN' in effect or the file was
processed by the fortpr format utility, the first character of a record transmitted to a line
printer or terminal is typically a character that is not printed, but is used to control vertical
spacing.

See Also
• OPEN Statement Overview
• Printing of Formatted Records
• vms
• fpscomp

OPEN: CONVERT Specifier

The CONVERT specifier indicates a nonnative numeric format for unformatted data. It takes
the following form:

CONVERT = fm

Is a scalar default character expression that evaluates to one of the
following values:

fm

Little endian integer data 2 and
IEEE* floating-point data. 3

'LITTLE_ENDIAN'1

Big endian integer data 2 and
IEEE floating-point data. 3

'BIG_ENDIAN' 1

Big endian integer data 2 and
CRAY* floating-point data of size
REAL(8) or COMPLEX(8).

'CRAY'

Little endian integer data 2 and
VAX* processor floating-point
data of format F_floating for

'FDX'

REAL(4) or COMPLEX(4),

2130

53 Intel® Fortran Compiler User and Reference Guides

D_floating for size REAL(8) or
COMPLEX(8), and IEEE X_floating
for REAL(16) or COMPLEX(16).

Little endian integer data 2 and
VAX processor floating-point data
of format F_floating for REAL(4)

'FGX'

or COMPLEX(4), G_floating for
size REAL(8) or COMPLEX(8), and
IEEE X_floating for REAL(16) or
COMPLEX(16).

Big endian integer data 2 and
IBM* System\370 floating-point
data of size REAL(4) or

'IBM'

COMPLEX(4) (IBM short 4), and
size REAL(8) or COMPLEX(8)
(IBM long 8).

Little endian integer data 2 and
VAX processor floating-point data
of format F_floating for size

'VAXD'

REAL(4) or COMPLEX(4),
D_floating for size REAL(8) or
COMPLEX(8), and H_floating for
REAL(16) or COMPLEX(16).

Little endian integer data 2 and
VAX processor floating-point data
of format F_floating for size

'VAXG'

REAL(4) or COMPLEX(4),
G_floating for size REAL(8) or
COMPLEX(8), and H_floating for
REAL(16) or COMPLEX(16).

No data conversion. This is the
default.

'NATIVE'

1 INTEGER(1) data is the same for little endian and big endian.
2 Of the appropriate size: INTEGER(1), INTEGER(2), INTEGER(4),
or INTEGER(8)
3 Of the appropriate size and type: REAL(4), REAL(8), REAL(16),
COMPLEX(4), COMPLEX(8), or COMPLEX(16)

2131

53

You can use CONVERT to specify multiple formats in a single program, usually one format for
each specified unit number.

When reading a nonnative format, the nonnative format on disk is converted to native format
in memory. If a converted nonnative value is outside the range of the native data type, a
run-time message appears.

There are other ways to specify numeric format for unformatted files: you can specify an
environment variable, compiler option convert, or OPTIONS/CONVERT. The following shows
the order of precedence:

PrecedenceMethod Used

HighestAn environment variable

.OPEN (CONVERT=)

.OPTIONS/CONVERT

LowestThe convert compiler option

Compiler option convert and OPTIONS/CONVERT affect all unit numbers used by the program,
while environment variables and OPEN (CONVERT=) affect specific unit numbers.

The following example shows how to code the OPEN statement to read unformatted CRAY*
numeric data from unit 15, which might be processed and possibly written in native little endian
format to unit 20:

OPEN (CONVERT='CRAY', FILE='graph3.dat', FORM='UNFORMATTED',

1 UNIT=15)

...

OPEN (FILE='graph3_native.dat', FORM='UNFORMATTED', UNIT=20)

See Also
• OPEN Statement Overview
• Data Types, Constants, and Variables
• convert compiler option

Building Applications: Setting Environment Variables

Building Applications: Run-Time Environment Variables

Building Applications for details on supported ranges for data types

2132

53 Intel® Fortran Compiler User and Reference Guides

OPEN: DEFAULTFILE Specifier

The DEFAULTFILE specifier indicates a default file pathname string. It takes the following form:

DEFAULTFILE = def

Is a character expression indicating a default file pathname string.def
The default file pathname string is used primarily when accepting file
pathnames interactively. File pathnames known to a user program
normally appear in the FILE specifier.

DEFAULTFILE supplies a value to the Fortran I/O system that is prefixed to the name that
appears in FILE.

If def does not end in a slash (/), a slash is added.

If DEFAULTFILE is omitted, the Fortran I/O system uses the current working directory.

OPEN: DELIM Specifier

The DELIM specifier indicates what characters (if any) are used to delimit character constants
in list-directed and namelist output. It takes the following form:

DELIM = del

Is a scalar default character expression that evaluates to one of the
following values:

del

Indicates apostrophes delimit
character constants. All internal
apostrophes are doubled.

'APOSTROPHE'

Indicates quotation marks delimit
character constants. All internal
quotation marks are doubled.

'QUOTE'

Indicates character constants
have no delimiters. No internal
apostrophes or quotation marks
are doubled.

'NONE'

The default is 'NONE'.

The DELIM specifier is only allowed for files connected for formatted data transfer; it is ignored
during input.

2133

53

OPEN: DISPOSE Specifier

The DISPOSE (or DISP) specifier indicates the status of the file after the unit is closed. It takes
one of the following forms:

DISPOSE = dis

DISP = dis

Is a scalar default character expression that evaluates to one of the
following values:

dis

Retains the file after the unit
closes.

'KEEP' or 'SAVE'

Deletes the file after the unit
closes.

'DELETE'

Submits the file to the line
printer spooler and retains it.

'PRINT' 1

Submits the file to the line
printer spooler and then deletes
it.

'PRINT/DELETE' 1

Forks a process to execute the
file.

'SUBMIT'

Forks a process to execute the
file, and then deletes the file
after the fork is completed.

'SUBMIT/DELETE'

1 Use only on sequential files.

The default is 'DELETE' for scratch files. For all other files, the default is 'KEEP'.
1 Use only on sequential files.

The default is 'DELETE' for scratch files. For all other files, the default is 'KEEP'.

OPEN: FILE Specifier

The FILE specifier indicates the name of the file to be connected to the unit. It takes the following
form:

FILE = name

2134

53 Intel® Fortran Compiler User and Reference Guides

Is a character or numeric expression.name
The name can be any pathname allowed by the operating system.
Any trailing blanks in the name are ignored.

If the following conditions occur:

• FILE is omitted

• The unit is not connected to a file

• STATUS='SCRATCH' is not specified

• The corresponding FORTn environment variable is not set for the unit number

then Intel® Fortran generates a file name in the form fort.n, where n is the logical unit number.
On Windows systems, if compiler option fpscomp general is specified, omitting FILE implies
STATUS='SCRATCH'.

If the file name is stored in a numeric scalar or array, the name must consist of ASCII characters
terminated by an ASCII null character (zero byte). However, if it is stored in a character scalar
or array, it must not contain a zero byte.

On Windows systems, if the filename is 'USER' or 'CON', input and output are directed to the
console. For a complete list of device names, see Physical Devices in Building Applications.

In a Windows* QuickWin application, you can specify FILE='USER' to open a child window. All
subsequent I/O statements directed to that unit appear in the child window.

On Windows systems, the name can be blank (FILE=' ') if the compatibility compiler option
fpscomp filesfromcmd is specified. If the name is blank, the following occurs:

1. The program reads a filename from the list of arguments (if any) in the command line that
started the program. If the argument is a null or blank string (" "), you are prompted for
the corresponding filename. Each successive OPEN statement that specifies a blank name
reads the next following command-line argument.

2. If no command-line arguments are specified or there are no more arguments in the list, you
are prompted for additional filenames.

Assume the following command line started the program MYPROG (note that quotation
marks (") are used):

myprog first.fil " " third.txt

MYPROG contains four OPEN statements with blank filenames, in the following order:
OPEN (2, FILE = ' ')

OPEN (4, FILE = ' ')

OPEN (5, FILE = ' ')

OPEN (10, FILE = ' ')

2135

53

Unit 2 is associated with the file FIRST.FIL. Because a blank argument was specified on the
command line for the second filename, the OPEN statement for unit 4 produces the following
prompt:
Filename missing or blank - Please enter name UNIT 4?

Unit 5 is associated with the file THIRD.TXT. Because no fourth file was specified on the
command line, the OPEN statement for unit 10 produces the following prompt:
Filename missing or blank - Please enter name UNIT 10?

See Also
• OPEN Statement Overview
• fpscomp compiler option

Building Applications: Physical Devices

Building Applications for details on default file name conventions

The appropriate manual in your system documentation set for details on allowable file pathnames

OPEN: FORM Specifier

The FORM specifier indicates whether the file is being connected for formatted, unformatted,
or binary (W*32, W*64) data transfer. It takes the following form:

FORM = fm

Is a scalar default character expression that evaluates to one of the
following values:

fm

Indicates formatted data transfer'FORMATTED'

Indicates unformatted data
transfer

'UNFORMATTED'

Indicates binary data transfer'BINARY'

The default is 'FORMATTED' for sequential access files, and 'UNFORMATTED' for direct access
files.

The data is stored and retrieved in a file according to the file's access (set by the ACCESS
specifier) and the form of the data the file contains.

A formatted file is a sequence of formatted records. Formatted records are a series of ASCII
characters terminated by an end-of-record mark (a carriage return and line feed sequence).
The records in a formatted direct-access file must all be the same length. The records in a
formatted sequential file can have varying lengths. All internal files must be formatted.

2136

53 Intel® Fortran Compiler User and Reference Guides

An unformatted file is a sequence of unformatted records. An unformatted record is a sequence
of values. Unformatted direct files contain only this data, and each record is padded to a fixed
length with undefined bytes. Unformatted sequential files contain the data plus information
that indicates the boundaries of each record.

Binary sequential files are sequences of bytes with no internal structure. There are no records.
The file contains only the information specified as I/O list items in WRITE statements referring
to the file.

Binary direct files have very little structure. A record length is assigned by the RECL specifier
in an OPEN statement. This establishes record boundaries, which are used only for repositioning
and padding before and after read and write operations and during BACKSPACE operations.
Record boundaries do not restrict the number of bytes that can be transferred during a read
or write operation. If an I/O operation attempts to read or write more values than are contained
in a record, the read or write operation is continued on the next record.

OPEN: IOFOCUS Specifier (W*32, W*64)

The IOFOCUS specifier indicates whether a particular unit is the active window in a QuickWin
application. It takes the following form:

IOFOCUS = iof

Is a scalar default logical expression that evaluates to one of the
following values:

iof

Indicates the QuickWin child
window is the active window

.TRUE.

Indicates the QuickWin child
window is not the active window

.FALSE.

If unit '*' is specified, the default is .FALSE.; otherwise, the default is .TRUE..

A value of .TRUE. causes a call to FOCUSQQ immediately before any READ, WRITE, or PRINT
statement to that window. OUTTEXT, OUTGTEXT, or any other graphics routine call does not
cause the focus to shift.

See Also
• OPEN Statement Overview

Building Applications: Giving a Window Focus and Setting the Active Window

2137

53

OPEN: MAXREC Specifier

The MAXREC specifier indicates the maximum number of records that can be transferred from
or to a direct access file while the file is connected. It takes the following form:

MAXREC = mr

Is a scalar numeric expression. If necessary, the value is converted to
integer data type before use.

mr

The default is an unlimited number of records.

OPEN: MODE Specifier

MODE is a nonstandard synonym for ACTION.

OPEN: NAME Specifier

NAME is a nonstandard synonym for FILE.

OPEN: NOSHARED Specifier

The NOSHARED specifier indicates that the file is connected for exclusive access by the program.
It takes the following form:

NOSHARED

See Also
• OPEN Statement Overview

Building Applications for details on file sharing

OPEN: ORGANIZATION Specifier

The ORGANIZATION specifier indicates the internal organization of the file. It takes the following
form:

ORGANIZATION = org

Is a scalar default character expression that evaluates to one of the
following values

org

Indicates a sequential file.'SEQUENTIAL'

Indicates a relative file.'RELATIVE'

2138

53 Intel® Fortran Compiler User and Reference Guides

The default is 'SEQUENTIAL'.

OPEN: PAD Specifier

The PAD specifier indicates whether a formatted input record is padded with blanks when an
input list and format specification requires more data than the record contains.

The PAD specifier takes the following form:

PAD = pd

Is a scalar default character expression that evaluates to one of the
following values:

pd

Indicates the record will be
padded with blanks when
necessary.

'YES'

Indicates the record will not be
padded with blanks. The input
record must contain the data
required by the input list and
format specification.

'NO'

The default is 'YES'.

This behavior is different from FORTRAN 77, which never pads short records with blanks. For
example, consider the following:
READ (5,'(I5)') J

If you enter 123 followed by a carriage return, FORTRAN 77 turns the I5 into an I3 and J is
assigned 123.

However, Intel Fortran pads the 123 with 2 blanks unless you explicitly open the unit with
PAD='NO'.

You can override blank padding by explicitly specifying the BN edit descriptor.

The PAD specifier is ignored during output.

OPEN: POSITION Specifier

The POSITION specifier indicates the position of a file connected for sequential access. It takes
the following form:

POSITION = pos

Is a scalar default character expression that evaluates to one of the
following values:

pos

2139

53

Indicates the file position is
unchanged if the file exists and
is already connected. The
position is unspecified if the file
exists but is not connected.

'ASIS'

Indicates the file is positioned at
its initial point.

'REWIND'

Indicates the file is positioned at
its terminal point (or before its
end-of-file record, if any).

'APPEND'

The default is 'ASIS'. (On Fortran I/O systems, this is the same as 'REWIND'.)

A new file (whether specified as new explicitly or by default) is always positioned at its initial
point.

In addition to the POSITION specifier, you can use position statements. The BACKSPACE
statement positions a file back one record. The REWIND statement positions a file at its initial
point. The ENDFILE statement writes an end-of-file record at the current position and positions
the file after it. Note that ENDFILE does not go the end of an existing file, but creates an
end-of-file where it is.

See Also
• OPEN Statement Overview

Building Applications for details on record position, advancement, and transfer

OPEN: READONLY Specifier

The READONLY specifier indicates only READ statements can refer to this connection. It takes
the following form:

READONLY

READONLY is similar to specifying ACTION='READ', but READONLY prevents deletion of the file
if it is closed with STATUS='DELETE' in effect.

The Fortran I/O system's default privileges for file access are READWRITE. If access is denied,
the I/O system automatically retries accessing the file for READ access.

However, if you use compiler option vms, the I/O system does not retry accessing for READ
access. So, run-time I/O errors can occur if the file protection does not permit WRITE access.
To prevent such errors, if you wish to read a file for which you do not have write access, specify
READONLY.

2140

53 Intel® Fortran Compiler User and Reference Guides

OPEN: RECL Specifier

The RECL specifier indicates the length of each record in a file connected for direct access, or
the maximum length of a record in a file connected for sequential access.

The RECL specifier takes the following form:

RECL = rl

Is a positive numeric expression indicating the length of records in the
file. If necessary, the value is converted to integer data type before
use.

rl

If the file is connected for formatted data transfer, the value must be expressed in bytes
(characters). Otherwise, the value is expressed in 4-byte units (longwords). If the file is
connected for unformatted data transfer, the value can be expressed in bytes if compiler option
assume byterecl is specified.

Except for segmented records, the rl is the length for record data only, it does not include
space for control information. If rl is too large, you can exhaust your program's virtual memory
resources trying to create room for the record.

The length specified is interpreted depending on the type of records in the connected file, as
follows:

• For segmented records, RECL indicates the maximum length for any segment (including the
four bytes of control information).

• For fixed-length records, RECL indicates the size of each record; it must be specified. If the
records are unformatted, the size must be expressed as an even multiple of four.

You can use the RECL specifier in an INQUIRE statement to get the record length before
opening the file.

• For variable-length records, RECL indicates the maximum length for any record.

If you read a fixed-length file with a record length different from the one used to create the
file, indeterminate results can occur.

The maximum length for rl depends on the record type and the setting of the
CARRIAGECONTROL specifier, as shown in the following table:

Table 668: Maximum Record Lengths (RECL)

Formatted (size in bytes)CARRIAGECONTROLRecord Type

2147483647 (2**31-1) 1'NONE'Fixed-length

2147483640 (2**31-8)'NONE'Variable-length

2141

53

Formatted (size in bytes)CARRIAGECONTROLRecord Type

32764 (2**15-4)'NONE'Segmented

2147483647 (2**31-1)'NONE'Stream

2147483647 (2**31-1)'LIST'Stream_CR

2147483646 (2**31-2)'FORTRAN'

2147483647 (2**31-1) 2'LIST'Stream_LF

2147483646 (2**31-2)'FORTRAN'

1Subtract 1 if compiler option vms is used.
2 L*X only

The default value depends on the setting of the RECORDTYPE specifier, as shown in the following
table:

Table 669: Default Record Lengths (RECL)

RECL valueRECORDTYPE

None; value must be explicitly specified.'FIXED'

132 bytes for formatted records; 510
longwords for unformatted records.1

All other settings

1To change the default record length values, you can use environment variable
FORT_FMT_RECL or FORT_UFMT_RECL.

For formatted records with other than RECORDTYPE='FIXED', the default RECL is 132. For
example, you can write record lengths of 132 characters without a "maximum record length
exceeded" error. However, after 80 characters, the remaining characters will wrap to the next
line. Therefore, writing 100 characters will produce two lines of output. This is a property of
terminal format files called the right margin. If you do not specify a RECL, this right margin is
set to 80; otherwise, it is set to the value of the RECL.

See Also
• OPEN Statement Overview
• assume byterecl compiler option
• vms compiler option

2142

53 Intel® Fortran Compiler User and Reference Guides

OPEN: RECORDSIZE Specifier

RECORDSIZE is a nonstandard synonym for RECL.

OPEN: RECORDTYPE Specifier

The RECORDTYPE specifier indicates the type of records in a file. It takes the following form:

RECORDTYPE = typ

Is a scalar default character expression that evaluates to one of the
following values:

typ

Indicates fixed-length records.'FIXED'

Indicates variable-length records.'VARIABLE'

Indicates segmented records.'SEGMENTED'

Indicates stream-type variable
length data with no record
terminators.

'STREAM'

Indicates stream-type variable
length records, terminated with
a line feed.

'STREAM_LF'

Indicates stream-type variable
length records, terminated with
a carriage return.

'STREAM_CR'

Indicates stream-type variable
length records, terminated with
a carriage return/line feed pair.

'STREAM_CRLF'

When you open a file, default record types are as follows:

For relative files'FIXED'

For direct access sequential files'FIXED'

For formatted sequential access files on
Linux* and Mac OS* X systems

'STREAM_LF'

2143

53

For formatted sequential access files on
Windows systems

'STREAM_CRLF'

For unformatted sequential access files'VARIABLE'

A segmented record is a logical record consisting of segments that are physical records. Since
the length of a segmented record can be greater than 65,535 bytes, only use segmented records
for unformatted sequential access to disk or raw magnetic tape files.

Files containing segmented records can be accessed only by unformatted sequential data
transfer statements.

If an output statement does not specify a full record for a file containing fixed-length records,
the following occurs:

• In formatted files, the record is filled with blanks

• In unformatted files, the record is filled with zeros

See Also
• OPEN Statement Overview

Building Applications for details on record types and file organization

OPEN: SHARE Specifier

The SHARE specifier indicates whether file locking is implemented while the unit is open. It
takes the following form:

SHARE = shr

Is a scalar default character expression.shr
On Windows* systems, this expression evaluates to one of the following
values:

Indicates deny-read/write mode.
No other process can open the
file.

'DENYRW'

Indicates deny-write mode. No
process can open the file with
write access.

'DENYWR'

Indicates deny-read mode. No
process can open the file with
read access.

'DENYRD'

2144

53 Intel® Fortran Compiler User and Reference Guides

Indicates deny-none mode. Any
process can open the file in any
mode.

'DENYNONE'

On Linux* and Mac OS* X systems, this expression evaluates to one
of the following values:

Indicates exclusive access for
cooperating processes.

'DENYRW'

Indicates shared access for
cooperating processes.

'DENYNONE'

On Windows systems, the default is 'DENYWR'. However, if you specify compiler option fpscomp
general or the SHARED specifier, the default is 'DENYNONE'.

On Linux and Mac OS X systems, no restrictions are applied to file opening if you do not use a
locking mechanism.

'COMPAT' is accepted for compatibility with previous versions. It is equivalent to 'DENYNONE'.

Use the ACCESS specifier in an INQUIRE statement to determine the access permission for a
file.

Be careful not to permit other users to perform operations that might cause problems. For
example, if you open a file intending only to read from it, and want no other user to write to
it while you have it open, you could open it with ACTION='READ' and SHARE='DENYRW'. Other
users would not be able to open it with ACTION='WRITE' and change the file.

Suppose you want several users to read a file, and you want to make sure no user updates the
file while anyone is reading it. First, determine what type of access to the file you want to allow
the original user. Because you want the initial user to read the file only, that user should open
the file with ACTION='READ'. Next, determine what type of access the initial user should allow
other users; in this case, other users should be able only to read the file. The first user should
open the file with SHARE='DENYWR'. Other users can also open the same file with
ACTION='READ' and SHARE='DENYWR'.

See Also
• OPEN Statement Overview
• fpscomp compiler option

Building Applications for details about limitations on record access

2145

53

OPEN: SHARED Specifier

The SHARED specifier indicates that the file is connected for shared access by more than one
program executing simultaneously. It takes the following form:

SHARED

On Linux* and Mac OS* X systems, shared access is the default for the Fortran I/O system.
On Windows* systems, it is the default if SHARED or compiler option fpscomp general is
specified.

See Also
• OPEN Statement Overview
• fpscomp general compiler option

Building Applications for details on file sharing

OPEN: STATUS Specifier

The STATUS specifier indicates the status of a file when it is opened. It takes the following
form:

STATUS = sta

Is a scalar default character expression that evaluates to one of the
following values:

sta

Indicates an existing file.'OLD'

Indicates a new file; if the file
already exists, an error occurs.
Once the file is created, its status
changes to 'OLD'.

'NEW'

Indicates a new file that is
unnamed (called a scratch file).
When the file is closed or the
program terminates, the scratch
file is deleted.

'SCRATCH'

Indicates the file replaces
another. If the file to be replaced
exists, it is deleted and a new file

'REPLACE'

is created with the same name.

2146

53 Intel® Fortran Compiler User and Reference Guides

If the file to be replaced does not
exist, a new file is created and
its status changes to 'OLD'.

Indicates the file may or may not
exist. If the file does not exist, a
new file is created and its status
changes to 'OLD'.

'UNKNOWN'

Scratch files go into a temporary directory and are visible while they are open. Scratch files
are deleted when the unit is closed or when the program terminates normally, whichever occurs
first.

To specify the path for scratch files, you can use one of the following environment variables:

• On Windows* OS: FORT_TMPDIR, TMP, or TEMP, searched in that order

• On Linux* OS and Mac OS X: FORT_TMPDIR or TMPDIR, searched in that order

If no environment variable is defined, the default is the current directory.

The default is 'UNKNOWN'. This is also the default if you implicitly open a file by using WRITE.
However, if you implicitly open a file using READ, the default is 'OLD'. If you specify compiler
option f66 (or OPTIONS/NOF77), the default is 'NEW'.

NOTE. The STATUS specifier can also appear in CLOSE statements to indicate the file's
status after it is closed. However, in CLOSE statements the STATUS values are the same
as those listed for the DISPOSE specifier.

See Also
• OPEN Statement Overview
• f66 compiler option

OPEN: TITLE Specifier (W*32, W*64)

The TITLE specifier indicates the name of a child window in a QuickWin application. It takes
the following form:

TITLE = name

Is a character expression.name

If TITLE is specified in a non-Quickwin application, a run-time error occurs.

2147

53

See Also
• OPEN Statement Overview

Building Applications: Using QuickWin Overview

OPEN: TYPE Specifier

TYPE is a nonstandard synonym for STATUS.

OPEN: USEROPEN Specifier

The USEROPEN specifier lets you pass control to a routine that directly opens a file. The file
can use system calls or library routines to establish a special context that changes the effect
of subsequent Fortran I/O statements.

The USEROPEN specifier takes the following form:

USEROPEN = function-name

Is the name of an external function; it must be of type INTEGER(4)
(INTEGER*4).
The external function can be written in Fortran, C, or other languages.

function-name

If the function is written in Fortran, do not execute a Fortran OPEN statement to open the file
named in USEROPEN.

The Intel® Fortran Run-time Library (RTL) I/O support routines call the function named in
USEROPEN in place of the system calls normally used when the file is first opened for I/O.

On Windows* systems, the Fortran RTL normally calls CreateFile() to open a file. When
USEROPEN is specified, the called function opens the file (or pipe, etc.) by using CreateFile()
and returns the handle of the file (return value from CreateFile()) when it returns control to
the calling Fortran program.

On Linux* and Mac OS* X systems, the Fortran RTL normally calls the open function to open
a file. When USEROPEN is specified, the called function opens the file by calling open and returns
the file descriptor of the file when it returns control to the calling Fortran program.

When opening the file, the called function usually specifies options different from those provided
by a normal Fortran OPEN statement.

Examples

The following shows an example on Linux and Mac OS X systems and an example on Windows
systems.

2148

53 Intel® Fortran Compiler User and Reference Guides

Example on Linux and Mac OS X systems:

PROGRAM UserOpenMain

IMPLICIT NONE

EXTERNAL UOPEN

INTEGER(4) UOPEN

CHARACTER(10) :: FileName="UOPEN.DAT"

INTEGER :: IOS

CHARACTER(255):: InqFullName

CHARACTER(100):: InqFileName

INTEGER :: InqLun

CHARACTER(30) :: WriteOutBuffer="Write_One_Record_to_the_File. "

CHARACTER(30) :: ReadInBuffer ="??????????????????????????????"

110 FORMAT(X,"FortranMain: ",A," Created (iostat=",I0,")")

115 FORMAT(X,"FortranMain: ",A,": Creation Failed (iostat=",I0,")")

120 FORMAT(X,"FortranMain: ",A,": ERROR: INQUIRE Returned Wrong FileName")

130 FORMAT(X,"FortranMain: ",A,": ERROR: ReadIn and WriteOut Buffers Do Not Match")

WRITE(*,'(X,"FortranMain: Test the USEROPEN Facility of Open")')

OPEN(UNIT=10,FILE='UOPEN.DAT',STATUS='REPLACE',USEROPEN=UOPEN, &

IOSTAT=ios, ACTION='READWRITE')

! When the OPEN statement is executed, the uopen_ function receives control.

! The uopen_ function opens the file by calling open(), and subsequently

! returns control with the handle returned by open().

IF (IOS .EQ. 0) THEN

WRITE(*,110) TRIM(FileName), IOS

INQUIRE(10, NAME=InqFullName)

CALL ParseForFileName(InqFullName,InqFileName)

IF (InqFileName .NE. FileName) THEN

2149

53

WRITE(*,120) TRIM(FileName)

END IF

ELSE

WRITE(*,115) TRIM(FileName), IOS

GOTO 9999

END IF

WRITE(10,*) WriteOutBuffer

REWIND(10)

READ(10,*) ReadInBuffer

IF (ReadinBuffer .NE. WriteOutbuffer) THEN

WRITE(*,130) TRIM(FileName)

END IF

CLOSE(10)

WRITE(*,'(X,"FortranMain: Test of USEROPEN Completed")')

9999 CONTINUE

END

!---

! SUBROUTINE: ParseForFileName

! Takes a full pathname and returns the filename

! with its extension.

2150

53 Intel® Fortran Compiler User and Reference Guides

!---

SUBROUTINE ParseForFileName(FullName,FileName)

CHARACTER(255):: FullName

CHARACTER(255):: FileName

INTEGER :: P

P = INDEX(FullName,'/',.TRUE.)

FileName = FullName(P+1:)

END

//

// File: UserOpen_Sub.c

//

// This routine opens a file using data passed from the Intel(c) Fortran OPEN statement.

//

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <sys/file.h>

#include <errno.h>

int uopen_ (char *file_name, /* access read: name of the file to open (null terminated) */

int *open_flags, /* access read: READ/WRITE, see file.h or open(2) */

int *create_mode, /* access read: set if the file is to be created */

int *unit_num, /* access read: logical unit number to be opened */

int filenam_len) /* access read: number of characters in file_name */

{

/*

** The returned value is the following:

2151

53

** value >= 0 is a valid file descriptor

** value < 0 is an error

*/

int return_value;

printf(" %s: Opening FILENAME = %s\n", __FILE__, file_name);

printf(" %s: open_flags = 0x%8.8x\n", __FILE__, *open_flags);

if (*open_flags & O_CREAT) {

printf(" %s: the file is being created, create_mode = 0x%8.8x\n", __FILE__, *create_mode);

}

printf(" %s: open() ", __FILE__);

return_value = open(file_name, *open_flags, *create_mode);

if (return_value < 0) {

printf("FAILED.\n");

} else {

printf("SUCCEEDED.\n");

}

return (return_value);

} /* end of uopen_() */

Example on Windows systems:

In the calling Fortran program, the function named in USEROPEN must first be declared in an
EXTERNAL statement. For example, the following Fortran code might be used to call the USEROPEN
procedure UOPEN:

IMPLICIT INTEGER (A-Z)

EXTERNAL UOPEN

...

OPEN(UNIT=10,FILE='UOPEN.DAT',STATUS='NEW',USEROPEN=UOPEN)

When the OPEN statement is executed, the UOPEN function receives control. The function opens the
file by calling CreateFile(), performs whatever operations were specified, and subsequently returns
control (with the handle returned by CreateFile()) to the calling Fortran program.

2152

53 Intel® Fortran Compiler User and Reference Guides

Here is what the UOPEN function might look like:

INTEGER FUNCTION UOPEN(FILENAME, &

DESIRED_ACCESS, &

SHARE_MODE, &

A_NULL, &

CREATE_DISP, &

FLAGS_ATTR, &

B_NULL, &

UNIT, &

FLEN)

!DEC$ ATTRIBUTES C, ALIAS:'_UOPEN' :: UOPEN

!DEC$ ATTRIBUTES REFERENCE :: FILENAME

!DEC$ ATTRIBUTES REFERENCE :: DESIRED_ACCESS

!DEC$ ATTRIBUTES REFERENCE :: SHARE_MODE

!DEC$ ATTRIBUTES REFERENCE :: CREATE_DISP

!DEC$ ATTRIBUTES REFERENCE :: FLAGS_ATTR

!DEC$ ATTRIBUTES REFERENCE :: UNIT

USE IFWIN

IMPLICIT INTEGER (A-Z)

CHARACTER*(FLEN) FILENAME

TYPE(T_SECURITY_ATTRIBUTES), POINTER :: NULL_SEC_ATTR

! Set the FILE_FLAG_WRITE_THROUGH bit in the flag attributes to CreateFile()

! (for whatever reason)

FLAGS_ATTR = FLAGS_ATTR + FILE_FLAG_WRITE_THROUGH

! Do the CreateFile() call and return the status to the Fortran rtl

STS = CreateFile(FILENAME, &

DESIRED_ACCESS, &

SHARE_MODE, &

NULL_SEC_ATTR, &

2153

53

CREATE_DISP, &

FLAGS_ATTR, &

0)

UOPEN = STS

RETURN

END

The UOPEN function is declared to use the cdecl calling convention, so it matches the Fortran rtl
declaration of a useropen routine.

The following function definition and arguments are passed from the Intel Fortran Run-time Library
to the function named in USEROPEN:

INTEGER FUNCTION UOPEN(FILENAME, &

DESIRED_ACCESS, &

SHARE_MODE, &

A_NULL, &

CREATE_DISP, &

FLAGS_ATTR, &

B_NULL, &

UNIT, &

FLEN)

!DEC$ ATTRIBUTES C, ALIAS:'_UOPEN' :: UOPEN

!DEC$ ATTRIBUTES REFERENCE :: DESIRED_ACCESS

!DEC$ ATTRIBUTES REFERENCE :: SHARE_MODE

!DEC$ ATTRIBUTES REFERENCE :: CREATE_DISP

!DEC$ ATTRIBUTES REFERENCE :: FLAGS_ATTR

!DEC$ ATTRIBUTES REFERENCE :: UNIT

The first 7 arguments correspond to the CreateFile() api arguments. The value of these arguments
is set according the caller's OPEN() arguments:

Is the address of a null terminated character string that is the name of the
file.

FILENAME

Is the desired access (read-write) mode passed by reference.DESIRED_ACCESS

2154

53 Intel® Fortran Compiler User and Reference Guides

Is the file sharing mode passed by reference.SHARE_MODE

Is always null. The Fortran runtime library always passes a NULL for the
pointer to a SECURITY_ATTRIBUTES structure in its CreateFile() call.

A_NULL

Is the creation disposition specifying what action to take on files that exist,
and what action to take on files that do not exist. It is passed by reference.

CREATE_DISP

Specifies the file attributes and flags for the file. It is passed by reference.FLAGS_ATTR

Is always null. The Fortran runtime library always passes a NULL for the
handle to a template file in it's CreateFile() call.

B_NULL

The last 2 arguments are the Fortran unit number and length of the file name:

Is the Fortran unit number on which this OPEN is being done. It is passed
by reference.

UNIT

Is the length of the file name, not counting the terminating null, and passed
by value.

FLEN

REWIND Statement Overview

The REWIND statement positions a sequential or direct access file at the beginning of the file
(the initial point). For more information, see REWIND.

WAIT Statement Overview

The WAIT statement performs a wait operation for specified pending asynchronous data transfer
operations. For more information, see WAIT.

2155

53

54Compilation Control Lines and
Statements

In addition to specifying options on the compiler command line, you can specify the following lines anjd
statements in a program unit to influence compilation:

• The INCLUDE Line

Incorporates external source code into programs.

• The OPTIONS Statement

Sets options usually specified in the compiler command line. OPTIONS statement settings override
command line options.

2157

55Directive Enhanced Compilation

Directive enhanced compilation is performed by using compiler directives. Compiler directives are special
commands that let you perform various tasks during compilation. They are similar to compiler options,
but can provide more control within your program.

Compiler directives are preceded by a special prefix that identifies them to the compiler.

Syntax Rules for Compiler Directives

The following syntax rules apply to all general and OpenMP* Fortran compiler directives. You must
follow these rules precisely to compile your program properly and obtain meaningful results.

A directive prefix (tag) takes one of the following forms:

cDEC$General compiler
directives:

c$OMPOpenMP Fortran compiler
directives:

Is one of the following: C (or c), !, or *.c

The following prefix forms can be used in place of cDEC$: cDIR$ or !MS$.

The following are source form rules for directive prefixes:

• In fixed and tab source forms, prefixes begin with C (or c), *, or !.

The prefix must appear in columns 1 through 5; column 6 must be a blank or a tab3. From column
7 on, blanks are insignificant, so the directive can be positioned anywhere on the line after column
6.

• In free source form, prefixes begin with !.

The prefix can appear in any column, but it cannot be preceded by any nonblank, nontab characters
on the same line.

• In all source forms, directives spelled with two keywords can be separated by an optional space;
for example, "LOOP COUNT" and "LOOPCOUNT" are both valid spellings for the same directive.
However, when a directive name is preceded by the prefix "NO", this is not considered to be two
keywords. For example, "NO PREFETCH" is not a valid spelling; the only valid spelling for this
directive is "NOPREFETCH".

A compiler directive ends in column 72 (or column 132, if compiler option extend-source is specified).

3 Except for prefix !MS$

2159

General compiler directives cannot be continued. OpenMP Fortran directives can be continued.

A comment beginning with an ! can follow a compiler directive on the same line.

Additional Fortran statements (or directives) cannot appear on the same line as the compiler
directive.

Compiler directives cannot appear within a continued Fortran statement.

Blank common used in a compiler directive is specified by two slashes (/ /).

If the source line starts with a valid directive prefix but the directive is not recognized, the
compiler displays an informational message and ignores the line.

General Compiler Directives

Intel® Fortran provides several general-purpose compiler directives to perform tasks during
compilation. You do not need to specify a compiler option to enable general directives.

The following general compiler directives are available:

• ALIAS

Specifies an alternate external name to be used when referring to external subprograms.

• ASSUME_ALIGNED

Specifies that an entity in memory is aligned.

• ATTRIBUTES

Specifies properties for data objects and procedures.

• DECLARE and NODECLARE

Generates or disables warnings for variables that have been used but not declared.

• DEFINE and UNDEFINE

Defines (or undefines) a symbolic variable whose existence (or value) can be tested during
conditional compilation.

• DISTRIBUTE POINT

Specifies distribution for a DO loop.

• FIXEDFORMLINESIZE

Sets the line length for fixed-form source code.

• FREEFORM and NOFREEFORM

Specifies free-format or fixed-format source code.

• IDENT

2160

55 Intel® Fortran Compiler User and Reference Guides

Specifies an identifier for an object module.

• IF and IF DEFINED

Specifies a conditional compilation construct.

• INTEGER

Specifies the default integer kind.

• IVDEP

Assists the compiler's dependence analysis of iterative DO loops.

• LOOP COUNT

Specifies the loop count for a DO loop; this assists the optimizer.

• MEMORYTOUCH

Ensures that a specific memory location is updated dynamically.

• MEMREF_CONTROL

Lets you provide cache hints on prefetches, loads, and stores.

• MESSAGE

Specifies a character string to be sent to the standard output device during the first compiler
pass.

• OBJCOMMENT

Specifies a library search path in an object file.

• OPTIMIZE and NOOPTIMIZE

Enables or disables optimizations.

• OPTIONS

Affects data alignment and warnings about data alignment.

• PACK

Specifies the memory starting addresses of derived-type items.

• PARALLEL and NOPARALLEL

Facilitates or prevents auto-parallelization for the immediately following DO loop.

• PREFETCH and NOPREFETCH

Enables or disables a data prefetch from memory.

• PSECT

Modifies certain characteristics of a common block.

• REAL

2161

55

Specifies the default real kind.

• STRICT and NOSTRICT

Disables or enables language features not found in the language standard specified on the
command line (Fortran 2003, Fortran 95, or Fortran 90).

• SWP and NOSWP

Enables or disables software pipelining for a DO loop.

• UNROLL and NOUNROLL

Tells the compiler's optimizer how many times to unroll a DO loop or disables the unrolling
of a DO loop.

• UNROLL_AND_JAM and NOUNROLL_AND_JAM

Enables or disables loop unrolling and jamming.

• VECTOR ALIGNED and VECTOR UNALIGNED

Specifies that all data is aligned or no data is aligned in a DO loop.

• VECTOR ALWAYS and NOVECTOR

Enables or disables vectorization of a DO loop.

• VECTOR TEMPORAL and VECTOR NONTEMPORAL

Controls how the 'stores' of register contents to storage are performed (streaming versus
non-streaming).

Rules for General Directives that Affect DO Loops

This table lists the general directives that affect DO loops:

VECTOR ALIGNEDNOUNROLL_AND_JAMDISTRIBUTE POINT

VECTOR ALWAYSNOVECTOR1IVDEP

VECTOR NONTEMPORAL1PARALLELLOOP COUNT

VECTOR NOVECTORPREFETCHNOPARALLEL

VECTOR TEMPORAL1SWP2NOPREFETCH

VECTOR UNALIGNEDUNROLLNOSWP2

UNROLL_AND_JAMNOUNROLL

1 i32, i64em

2162

55 Intel® Fortran Compiler User and Reference Guides

2 i64 only

The following rules apply to all of these directives:

• The directive must precede the DO statement for each DO loop it affects.

• No source code lines, other than the following, can be placed between the directive statement
and the DO statement:

• One of the other general directives that affect DO loops

• An OpenMP* Fortran PARALLEL DO directive

• Comment lines

• Blank lines

Other rules may apply to these directives. For more information, see the description of each
directive.

Rules for Loop Directives that Affect Array Assignment Statements

When certain loop directives precede an array assignment statement, they affect the implicit
loops that are generated by the compiler.

The following loop directives can affect array assignment statements:

VECTOR ALIGNEDNOVECTOR1IVDEP

VECTOR ALWAYSPARALLELLOOP COUNT

VECTOR NONTEMPORAL1PREFETCHNOPARALLEL

VECTOR NOVECTOR1SWP2NOPREFETCH

VECTOR TEMPORAL1UNROLLNOSWP2

VECTOR UNALIGNEDUNROLL_AND_JAMNOUNROLL

1 i32, i64em
2 i64 only

Only one of the above directives can precede the array assignment statement
(one-dimensional-array = expression) to affect it.

Other rules may apply to these directives. For more information, see the description of each
directive.

2163

55

Examples

Consider the following:

REAL A(10), B(10)

...

!DEC$ IVDEP

A = B + 3

This has the same effect as writing the following explicit loop:

!DEC$ IVDEP

DO I = 1, 10

A (I) = B (I) + 3

END DO

OpenMP* Fortran Compiler Directives

Intel® Fortran provides OpenMP* Fortran compiler directives that comply with OpenMP Fortran
Application Program Interface (API) specification Version 1.1 and most of Version 2.0.

To use these directives, you must specify compiler option -openmp (Linux and Mac OS X) or
/Qopenmp (Windows).

This section discusses data scope attribute clauses, conditional compilation rules, nesting and
binding rules, and the following directives:

• ATOMIC directive

Specifies that a specific memory location is to be updated dynamically.

• BARRIER directive

Synchronizes all the threads in a team.

• CRITICAL directive

Restricts access for a block of code to only one thread at a time.

• DO directive

Specifies that the iterations of the immediately following DO loop must be executed in
parallel.

• FLUSH directive

Specifies synchronization points where the implementation must have a consistent view of
memory.

2164

55 Intel® Fortran Compiler User and Reference Guides

• MASTER directive

Specifies a block of code to be executed by the master thread of the team.

• ORDERED directive

Specifies a block of code to be executed sequentially.

• PARALLEL directive

Defines a parallel region.

• PARALLEL DO directive

Defines a parallel region that contains a single DO directive.

• PARALLEL SECTIONS directive

Defines a parallel region that contains SECTIONS directives.

• PARALLEL WORKSHARE directive

Defines a parallel region that contains a single WORKSHARE directive.

• SECTIONS directive

Specifies a block of code to be divided among threads in a team (a worksharing area).

• SINGLE directive

Specifies a block of code to be executed by only one thread in a team.

• TASK directive

Defines a task region.

• TASKWAIT directive

Specifies a wait on the completion of child tasks generated since the beginning of the current
task.

• THREADPRIVATE directive

Makes named common blocks private to a thread but global within the thread.

• WORKSHARE directive

Divides the work of executing a block of statements or constructs into separate units.

The OpenMP parallel directives can be grouped into the categories shown in the following table:

Table 677: Categories of OpenMP Fortran Parallel Directives

DescriptionCategory

Defines a parallel region: PARALLELParallel region

Defines a task region: TASKTask region

2165

55

DescriptionCategory

Divide the execution of the enclosed block of
code among the members of the team that
encounter it: DO and SECTIONS

Work-sharing

Shortcut for denoting a parallel region that
contains only one work-sharing construct:
PARALLEL DO and PARALLEL SECTIONS

Combined parallel work-sharing

Provide various aspects of synchronization;
for example, access to a block of code, or
execution order of statements within a block
of code: ATOMIC, BARRIER, CRITICAL,
FLUSH, MASTER, ORDERED, and TASKWAIT.

Synchronization

Control the data environment during the
execution of parallel constructs:
THREADPRIVATE

Data Environment

Note that certain general directives and rules can affect DO loops. For more information, see
Rules for General Directives that Affect DO Loops.

Data Scope Attribute Clauses

Some of the OpenMP* Fortran directives have clauses (or options) you can specify to control
the scope attributes of variables for the duration of the directive.

Other clauses (or options) are available for some OpenMP Fortran directives. For more
information, see each directive description.

See Also
• OpenMP* Fortran Compiler Directives
• COPYIN
• COPYPRIVATE
• DEFAULT
• FIRSTPRIVATE
• LASTPRIVATE
• PRIVATE
• REDUCTION
• SHARED

2166

55 Intel® Fortran Compiler User and Reference Guides

Conditional Compilation Rules

The OpenMP* Fortran API lets you conditionally compile Intel® Fortran statements if you use
the appropriate directive prefix.

The prefix depends on which source form you are using, although !$ is valid in all forms.

The prefix must be followed by a valid Intel Fortran statement on the same line.

Free Source Form

The free source form conditional compilation prefix is !$. This prefix can appear in any column
as long as it is preceded only by white space. It must appear as a single word with no intervening
white space. Free-form source rules apply to the directive line.

Initial lines must have a space after the prefix. Continued lines must have an ampersand as
the last nonblank character on the line. Continuation lines can have an ampersand after the
prefix with optional white space before and after the ampersand.

Fixed Source Form

For fixed source form programs, the conditional compilation prefix is one of the following: !$,
C$ (or c$), or *$.

The prefix must start in column one and appear as a single string with no intervening white
space. Fixed-form source rules apply to the directive line.

Initial lines must have a space or zero in column six, and continuation lines must have a
character other than a space or zero in column six. For example, the following forms for
specifying conditional compilation are equivalent:

c23456789

!$ IAM = OMP_GET_THREAD_NUM() +

!$ * INDEX

#IFDEF _OPENMP

IAM = OMP_GET_THREAD_NUM() +

* INDEX

#ENDIF

2167

55

Nesting and Binding Rules

This section describes the dynamic nesting and binding rules for OpenMP* Fortran API directives.

Binding Rules

The following rules apply to dynamic binding:

• The DO, SECTIONS, SINGLE, MASTER, and BARRIER directives bind to the dynamically
enclosing PARALLEL directive, if one exists.

• The ORDERED directive binds to the dynamically enclosing DO directive.

• The ATOMIC directive enforces exclusive access with respect to ATOMIC directives in all
threads, not just the current team.

• The CRITICAL directive enforces exclusive access with respect to CRITICAL directives in all
threads, not just the current team.

• A directive can never bind to any directive outside the closest enclosing PARALLEL directive.

Nesting Rules

The following rules apply to dynamic nesting:

• A PARALLEL directive dynamically inside another PARALLEL directive logically establishes a
new team, which is composed of only the current thread unless nested parallelism is enabled.

• DO, SECTIONS, and SINGLE directives that bind to the same PARALLEL directive are not
allowed to be nested one inside the other.

• DO, SECTIONS, and SINGLE directives are not permitted in the dynamic extent of CRITICAL
and MASTER directives.

• BARRIER directives are not permitted in the dynamic extent of DO, SECTIONS, SINGLE,
MASTER, and CRITICAL directives.

• MASTER directives are not permitted in the dynamic extent of DO, SECTIONS, and SINGLE
directives.

• ORDERED sections are not allowed in the dynamic extent of CRITICAL sections.

• Any directive set that is legal when executed dynamically inside a PARALLEL region is also
legal when executed outside a parallel region. When executed dynamically outside a
user-specified parallel region, the directive is executed with respect to a team composed of
only the master thread.

2168

55 Intel® Fortran Compiler User and Reference Guides

Examples

The following example shows nested PARALLEL regions:

c$OMP PARALLEL DEFAULT(SHARED)

c$OMP DO

DO I =1, N

c$OMP PARALLEL SHARED(I,N)

c$OMP DO

DO J =1, N

CALL WORK(I,J)

END DO

c$OMP END PARALLEL

END DO

c$OMP END PARALLEL

Note that the inner and outer DO directives bind to different PARALLEL regions.

2169

55

The following example shows a variation of the preceding example:

c$OMP PARALLEL DEFAULT(SHARED)

c$OMP DO

DO I =1, N

CALL SOME_WORK(I,N)

END DO

c$OMP END PARALLEL

...

SUBROUTINE SOME_WORK(I,N)

c$OMP PARALLEL DEFAULT(SHARED)

c$OMP DO

DO J =1, N

CALL WORK(I,J)

END DO

c$OMP END PARALLEL

RETURN

END

2170

55 Intel® Fortran Compiler User and Reference Guides

56Scope and Association

Program entities are identified by names, labels, input/output unit numbers, operator symbols, or
assignment symbols. For example, a variable, a derived type, or a subroutine is identified by its name.

Scope refers to the area in which a name is recognized. A scoping unit is the program or part of a program
in which a name is defined or known. It can be any of the following:

• An entire executable program

• A single scoping unit

• A single statement (or part of a statement)

The region of the program in which a name is known and accessible is referred to as the scope of that
name. These different scopes allow the same name to be used for different things in different regions of
the program.

Association is the language concept that allows different names to refer to the same entity in a particular
region of a program.

Scope

Program entities have the following kinds of scope (as shown in the table below):

• Global

Entities that are accessible throughout an executable program. The name of a global entity must
be unique. It cannot be used to identify any other global entity in the same executable program.

• Scoping unit (Local scope)

Entities that are declared within a scoping unit. These entities are local to that scoping unit. The
names of local entities are divided into classes (see the table below).

A scoping unit is one of the following:

• A derived-type definition

• A procedure interface body (excluding any derived-type definitions and interface bodies
contained within it)

• A program unit or subprogram (excluding any derived-type definitions, interface bodies, and
subprograms contained within it)

A scoping unit that immediately surrounds another scoping unit is called the host scoping unit.
Named entities within the host scoping unit are accessible to the nested scoping unit by host
association. (For information about host association, see Use and Host Association.)

2171

Once an entity is declared in a scoping unit, its name can be used throughout that scoping
unit. An entity declared in another scoping unit is a different entity even if it has the same
name and properties.

Within a scoping unit, a local entity name that is not generic must be unique within its class.
However, the name of a local entity in one class can be used to identify a local entity of
another class.

Within a scoping unit, a generic name can be the same as any one of the procedure names
in the interface block.

A component name has the same scope as the derived type of which it is a component. It
can appear only within a component designator of a structure of that type.

For information on interactions between local and global names, see the table below.

• Statement

Entities that are accessible only within a statement or part of a statement; such entities
cannot be referenced in subsequent statements.

The name of a statement entity can also be the name of a global or local entity in the same
scoping unit; in this case, the name is interpreted within the statement as that of the
statement entity.

Table 678: Scope of Program Entities

ScopeEntity

GlobalProgram units

GlobalCommon blocks1

GlobalExternal procedures

Global2Intrinsic procedures

Class ILocalModule procedures

Class ILocalInternal procedures

Class ILocalDummy procedures

Class ILocalStatement functions

Class ILocalDerived types

Class IILocalComponents of derived types

2172

56 Intel® Fortran Compiler User and Reference Guides

ScopeEntity

Class ILocalNamed constants

Class ILocalNamed constructs

Class ILocalNamelist group names

Class ILocalGeneric identifiers

Class IIILocalArgument keywords in
procedures

Class ILocalVariables that can be
referenced throughout a
subprogram

StatementVariables that are dummy
arguments in statement
functions

StatementDO variables in an
implied-DO list3 of a DATA or
FORALL statement, or an
array constructor

GlobalIntrinsic operators

LocalDefined operators

LocalStatement labels

GlobalExternal I/O unit numbers

Global4Intrinsic assignment

LocalDefined assignment

1 Names of common blocks can also be used to identify local entities.
2 If an intrinsic procedure is not used in a scoping unit, its name can be used as a local entity
within that scoping unit. For example, if intrinsic function COS is not used in a program unit,
COS can be used as a local variable there.
3 The DO variable in an implied-DO list of an I/O list has local scope.

2173

56

ScopeEntity
4 The scope of the assignment symbol (=) is global, but it can identify additional operations
(see Defining Generic Assignment).

Scoping units can contain other scoping units. For example, the following shows six scoping
units:
MODULE MOD_1 ! Scoping unit 1

... ! Scoping unit 1

CONTAINS ! Scoping unit 1

FUNCTION FIRST ! Scoping unit 2

TYPE NAME ! Scoping unit 3

... ! Scoping unit 3

END TYPE NAME ! Scoping unit 3

... ! Scoping unit 2

CONTAINS ! Scoping unit 2

SUBROUTINE SUB_B ! Scoping unit 4

TYPE PROCESS ! Scoping unit 5

... ! Scoping unit 5

END TYPE PROCESS ! Scoping unit 5

INTERFACE ! Scoping unit 5

SUBROUTINE SUB_A ! Scoping unit 6

... ! Scoping unit 6

END SUBROUTINE SUB_A ! Scoping unit 6

END INTERFACE ! Scoping unit 5

END SUBROUTINE SUB_B ! Scoping unit 4

END FUNCTION FIRST ! Scoping unit 2

END MODULE ! Scoping unit 1

See Also
• Scope and Association
• Derived data types

2174

56 Intel® Fortran Compiler User and Reference Guides

• Defining Generic Names for Procedures
• Intrinsic procedures
• Program Units and Procedures
• Use and host association
• Defining Generic Operators
• Defining Generic Assignment
• PRIVATE and PUBLIC Attributes and Statements

Unambiguous Generic Procedure References

When a generic procedure reference is made, a specific procedure is invoked. If the following
rules are used, the generic reference will be unambiguous:

• Within a scoping unit, two procedures that have the same generic name must both be
subroutines (or both be functions). One of the procedures must have a nonoptional dummy
argument that is one of the following:

• Not present by position or argument keyword in the other argument list

• Is present, but has different type and kind parameters, or rank

• Within a scoping unit, two procedures that have the same generic operator must both have
the same number of arguments or both define assignment. One of the procedures must
have a dummy argument that corresponds by position in the argument list to a dummy
argument of the other procedure that has a different type and kind parameters, or rank.

When an interface block extends an intrinsic procedure, operator, or assignment, the rules
apply as if the intrinsic consists of a collection of specific procedures, one for each allowed set
of arguments.

When a generic procedure is accessed from a module, the rules apply to all the specific versions,
even if some of them are inaccessible by their specific names.

See Also
• Scope and Association
• Defining Generic Names for Procedures

Resolving Procedure References

The procedure name in a procedure reference is either established to be generic or specific, or
is not established. The rules for resolving a procedure reference differ depending on whether
the procedure is established and how it is established.

2175

56

This section discusses the following topics:

• References to Generic Names

• References to Specific Names

• References to Nonestablished Names

References to Generic Names

Within a scoping unit, a procedure name is established to be generic if any of the following is
true:

• The scoping unit contains an interface block with that procedure name.

• The procedure name matches the name of a generic intrinsic procedure, and it is specified
with the INTRINSIC attribute in that scoping unit.

• The procedure name is established to be generic in a module, and the scoping unit contains
a USE statement making that procedure name accessible.

• The scoping unit contains no declarations for that procedure name, but the procedure name
is established to be generic in a host scoping unit.

To resolve a reference to a procedure name established to be generic, the following rules are
used in the order shown:

1. If an interface block with that procedure name appears in one of the following, the reference
is to the specific procedure providing that interface:

a. The scoping unit that contains the reference

b. A module made accessible by a USE statement in the scoping unit

The reference must be consistent with one of the specific interfaces of the interface block.

2. If the procedure name is specified with the INTRINSIC attribute in one of the following, the
reference is to that intrinsic procedure:

a. The same scoping unit

b. A module made accessible by a USE statement in the scoping unit

The reference must be consistent with the interface of that intrinsic procedure.

3. If the following is true, the reference is resolved by applying rules 1 and 2 to the host scoping
unit:

a. The procedure name is established to be generic in the host scoping unit

b. There is agreement between the scoping unit and the host scoping unit as to whether
the procedure is a function or subroutine name.

2176

56 Intel® Fortran Compiler User and Reference Guides

4. If none of the preceding rules apply, the reference must be to the generic intrinsic procedure
with that name. The reference must be consistent with the interface of that intrinsic
procedure.

2177

56

Examples

The following example shows how a module can define three separate procedures, and a main
program give them a generic name DUP through an interface block. Although the main program calls
all three by the generic name, there is no ambiguity since the arguments are of different data types,
and DUP is a function rather than a subroutine. The module UN_MOD must give each procedure a
different name.

MODULE UN_MOD

!

CONTAINS

subroutine dup1(x,y)

real x,y

print *, ' Real arguments', x, y

end subroutine dup1

subroutine dup2(m,n)

integer m,n

print *, ' Integer arguments', m, n

end subroutine dup2

character function dup3 (z)

character(len=2) z

dup3 = 'String argument '// z

end function dup3

END MODULE

program unclear

!

! shows how to use generic procedure references

USE UN_MOD

INTERFACE DUP

MODULE PROCEDURE dup1, dup2, dup3

END INTERFACE

2178

56 Intel® Fortran Compiler User and Reference Guides

real a,b

integer c,d

character (len=2) state

a = 1.5

b = 2.32

c = 5

d = 47

state = 'WA'

call dup(a,b)

call dup(c,d)

print *, dup(state) !actual output is 'S' only

END

Note that the function DUP3 only prints one character, since module UN_MOD specifies no length
parameter for the function result.

If the dummy arguments x and y for DUP were declared as integers instead of reals, then any calls
to DUP would be ambiguous. If this is the case, a compile-time error results.

The subroutine definitions, DUP1, DUP2, and DUP3, must have different names. The generic name
is specified in the first line of the interface block, and in the example is DUP.

References to Specific Names

In a scoping unit, a procedure name is established to be specific if it is not established to be
generic and any of the following is true:

• The scoping unit contains an interface body with that procedure name.

• The scoping unit contains an internal procedure, module procedure, or statement function
with that procedure name.

• The procedure name is the same as the name of a generic intrinsic procedure, and it is
specified with the INTRINSIC attribute in that scoping unit.

• The procedure name is specified with the EXTERNAL attribute in that scoping unit.

• The procedure name is established to be specific in a module, and the scoping unit contains
a USE statement making that procedure name accessible.

• The scoping unit contains no declarations for that procedure name, but the procedure name
is established to be specific in a host scoping unit.

2179

56

To resolve a reference to a procedure name established to be specific, the following rules are
used in the order shown:

1. If either of the following is true, the dummy argument is a dummy procedure and the
reference is to that dummy procedure:

a. The scoping unit is a subprogram, and it contains an interface body with that procedure
name.

b. The procedure name has been declared EXTERNAL, and the procedure name is a dummy
argument of that subprogram.

The procedure invoked by the reference is the one supplied as the corresponding actual
argument.

2. If the scoping unit contains an interface body or the procedure name has been declared
EXTERNAL, and Rule 1 does not apply, the reference is to an external procedure with that
name.

3. If the scoping unit contains an internal procedure or statement function with that procedure
name, the reference is to that entity.

4. If the procedure name has been declared INTRINSIC in the scoping unit, the reference is
to the intrinsic procedure with that name.

5. If the scoping unit contains a USE statement that makes the name of a module procedure
accessible, the reference is to that procedure. (The USE statement allows renaming, so the
name referenced may differ from the name of the module procedure.)

6. If none of the preceding rules apply, the reference is resolved by applying these rules to
the host scoping unit.

References to Nonestablished Names

In a scoping unit, a procedure name is not established if it is not determined to be generic or
specific.

To resolve a reference to a procedure name that is not established, the following rules are used
in the order shown:

1. If both of the following are true, the dummy argument is a dummy procedure and the
reference is to that dummy procedure:

a. The scoping unit is a subprogram.

b. The procedure name is a dummy argument of that subprogram.

The procedure invoked by the reference is the one supplied as the corresponding actual
argument.

2180

56 Intel® Fortran Compiler User and Reference Guides

2. If both of the following are true, the procedure is an intrinsic procedure and the reference
is to that intrinsic procedure:

a. The procedure name matches the name of an intrinsic procedure.

b. There is agreement between the intrinsic procedure definition and the reference of the
name as a function or subroutine.

3. If neither of the preceding rules apply, the reference is to an external procedure with that
name.

See Also
• Resolving Procedure References
• Function references
• USE statement
• CALL Statement
• Defining Generic Names for Procedures

Association

Association allows different program units to access the same value through different names.
Entities are associated when each is associated with the same storage location.

There are three kinds of association:

• Name association

• Pointer association

• Storage association

The following example shows name, pointer, and storage association between an external
program unit and an external procedure.

2181

56

Example of Name, Pointer, and Storage Association
! Scoping Unit 1: An external program unit

REAL A, B(4)

REAL, POINTER :: M(:)

REAL, TARGET :: N(12)

COMMON /COM/...

EQUIVALENCE (A, B(1)) ! Storage association between A and B(1)

M => N ! Pointer association

CALL P (actual-arg,...)

...

! Scoping Unit 2: An external procedure

SUBROUTINE P (dummy-arg,...) ! Name and storage association between
! these arguments and the calling
! routine's arguments in scoping unit 1

COMMON /COM/... ! Storage association with common block COM

! in scoping unit 1

REAL Y

CALL Q (actual-arg,...)

CONTAINS

SUBROUTINE Q (dummy-arg,...) ! Name and storage association between

! these arguments and the calling

! routine's arguments in host procedure
! P (subprogram Q has host association
! with procedure P)

Y = 2.0*(Y-1.0) ! Name association with Y in host procedure P

...

2182

56 Intel® Fortran Compiler User and Reference Guides

Name Association

Name association allows an entity to be accessed from different scoping units by the same
name or by different names. There are three types of name association: argument, use, and
host.

Argument Association

Arguments are the values passed to and from functions and subroutines through calling program
argument lists.

Execution of a procedure reference establishes argument association between an actual argument
and its corresponding dummy argument. The name of a dummy argument can be different
from the name of its associated actual argument (if any).

When the procedure completes execution, the argument association is terminated.

See Also
• Name Association
• Argument Association
Use and Host Association

Use association allows the entities in a module to be accessible to other scoping units. The
mechanism for use association is the USE statement. The USE statement provides access to
all public entities in the module, unless ONLY is specified. In this case, only the entities named
in the ONLY list can be accessed.

Host association allows the entities in a host scoping unit to be accessible to an internal
procedure, derived-type definition, or module procedure contained within the host. The accessed
entities are known by the same name and have the same attributes as in the host. Entities that
are local to a procedure are not accessible to its host.

Use or host association remains in effect throughout the execution of the executable program.

If an entity that is accessed by use association has the same nongeneric name as a host entity,
the host entity is inaccessible. A name that appears in the scoping unit as an external name in
an EXTERNAL statement is a global name, and any entity of the host that has this as its
nongeneric name is inaccessible.

An interface body does not access named entities by host association, but it can access entities
by use association.

If a procedure gains access to a pointer by host association, the association of the pointer with
a target that is current at the time the procedure is invoked remains current within the
procedure. This pointer association can be changed within the procedure. After execution of
the procedure, the pointer association remains current, unless the execution caused the target
to become undefined. If this occurs, the host associated pointer becomes undefined.

2183

56

NOTE. Implicit declarations can cause problems for host association. It is recommended
that you use IMPLICIT NONE in both the host and the contained procedure, and that you
explicitly declare all entities.

When all entities are explicitly declared, local declarations override host declarations,
and host declarations that are not overridden are available in the contained procedure.

Examples

The following example shows host and use association:

MODULE SHARE_DATA

REAL Y, Z

END MODULE

PROGRAM DEMO

USE SHARE_DATA ! All entities in SHARE_DATA are available

REAL B, Q ! through use association.

...

CALL CONS (Y)

CONTAINS

SUBROUTINE CONS (Y) ! Y is a local entity (dummy argument).

REAL C, Y

...

Y = B + C + Q + Z ! B and Q are available through host association.

... ! C is a local entity, explicitly declared. Z

END SUBROUTINE CONS ! is available through use association.

END PROGRAM DEMO

2184

56 Intel® Fortran Compiler User and Reference Guides

The following example shows how a host and an internal procedure can use host-associated entities:

program INTERNAL

! shows use of internal subroutine and CONTAINS statement

real a,b,c

call find

print *, c

contains

subroutine find

read *, a,b

c = sqrt(a**2 + b**2)

end subroutine find

end

In this example, the variables a, b, and c are available to the internal subroutine find through host
association. They do not have to be passed as arguments to the internal procedure. In fact, if they
are, they become local variables to the subroutine and hide the variables declared in the host program.

Conversely, the host program knows the value of c, when it returns from the internal subroutine
that has defined c.

See Also
• Name Association
• USE statement
• Scope

Pointer Association

A pointer can be associated with a target. At different times during the execution of a program,
a pointer can be undefined, associated with different targets, or be disassociated. The initial
association status of a pointer is undefined. A pointer can become associated by the following:

• By pointer assignment (pointer => target)

The target must be associated, or specified with the TARGET attribute. If the target is
allocatable, it must be currently allocated.

• By allocation (successful execution of an ALLOCATE statement)

The ALLOCATE statement must reference the pointer.

2185

56

A pointer becomes disassociated if any of the following occur:

• The pointer is nullified by a NULLIFY statement.

• The pointer is deallocated by a DEALLOCATE statement.

• The pointer is assigned a disassociated pointer (or the NULL intrinsic function).

When a pointer is associated with a target, the definition status of the pointer is defined or
undefined, depending on the definition status of the target. A target is undefined in the following
cases:

• If it was never allocated

• If it is not deallocated through the pointer

• If a RETURN or END statement causes it to become undefined

If a pointer is associated with a definable target, the definition status of the pointer can be
defined or undefined, according to the rules for a variable.

If the association status of a pointer is disassociated or undefined, the pointer must not be
referenced or deallocated.

Whatever its association status, a pointer can always be nullified, allocated, or associated with
a target. When a pointer is nullified, it is disassociated. When a pointer is allocated, it becomes
associated, but is undefined. When a pointer is associated with a target, its association and
definition status are determined by its target.

See Also
• Association
• Pointer assignments
• NULL intrinsic function
• Dynamic Allocation

Storage Association

Storage association is the association of two or more data objects. It occurs when two or more
storage sequences share (or are aligned with) one or more storage units. Storage sequences
are used to describe relationships among variables, common blocks, and result variables.

Storage Units and Storage Sequence

A storage unit is a fixed unit of physical memory allocated to certain data. A storage sequence
is a sequence of storage units. The size of a storage sequence is the number of storage units
in the storage sequence. A storage unit can be numeric, character, or unspecified.

2186

56 Intel® Fortran Compiler User and Reference Guides

A nonpointer scalar of type default real, integer, or logical occupies one numeric storage unit.
A nonpointer scalar of type double precision real or default complex occupies two contiguous
numeric storage units. In Intel® Fortran, one numeric storage unit corresponds to 4 bytes of
memory.

A nonpointer scalar of type default character with character length 1 occupies one character
storage unit. A nonpointer scalar of type default character with character length len occupies
len contiguous character storage units. In Intel Fortran, one character storage unit corresponds
to 1 byte of memory.

A nonpointer scalar of nondefault data type occupies a single unspecified storage unit. The
number of bytes corresponding to the unspecified storage unit differs depending on the data
type.

The following table lists the storage requirements (in bytes) for the intrinsic data types:

Table 679: Data Type Storage Requirements

Storage Requirements (in bytes)Data Type

1BYTE

2, 4, or 8 1LOGICAL

1LOGICAL(1)

2LOGICAL(2)

4LOGICAL(4)

8LOGICAL(8)

2, 4, or 8 1INTEGER

1INTEGER(1)

2INTEGER(2)

4INTEGER(4)

8INTEGER(8)

4, 8, or 16 2REAL

4REAL(4)

8DOUBLE PRECISION

2187

56

Storage Requirements (in bytes)Data Type

8REAL(8)

16REAL(16)

8, 16, or 32 2COMPLEX

8COMPLEX(4)

16DOUBLE COMPLEX

16COMPLEX(8)

32COMPLEX(16)

1CHARACTER

len 3CHARACTER*len

assumed-length 4CHARACTER*(*)

1 Depending on default integer, LOGICAL and INTEGER can have 2, 4, or 8 bytes. The default
allocation is four bytes.
2 Depending on default real, REAL can have 4, 8, or 16 bytes and COMPLEX can have 8, 16,
or 32 bytes. The default allocations are four bytes for REAL and eight bytes for COMPLEX.
3 The value of len is the number of characters specified. The largest valid value is 2**31-1
on IA-32 architecture; 2**63-1 on Intel® 64 architecture and IA-64 architecture. Negative
values are treated as zero.
4 The assumed-length format *(*) applies to dummy arguments, PARAMETER statements,
or character functions, and indicates that the length of the actual argument or function is
used. (See Assumed-Length Character Arguments and Building Applications.)

A nonpointer scalar of sequence derived type occupies a sequence of storage sequences
corresponding to the components of the structure, in the order they occur in the derived-type
definition. (A sequence derived type has a SEQUENCE statement.)

A pointer occupies a single unspecified storage unit that is different from that of any nonpointer
object and is different for each combination of type, type parameters, and rank.

The definition status and value of a data object affects the definition status and value of any
storage-associated entity.

2188

56 Intel® Fortran Compiler User and Reference Guides

When two objects occupy the same storage sequence, they are totally storage-associated.
When two objects occupy parts of the same storage sequence, they are partially associated.
An EQUIVALENCE statement, a COMMON statement, or an ENTRY statement can cause total
or partial storage association of storage sequences.

See Also
• Storage Association
• Assumed-Length Character Arguments
• COMMON
• ENTRY
• EQUIVALENCE

Building Applications for details on the hardware representations of data types

Array Association

A nonpointer array occupies a sequence of contiguous storage sequences, one for each array
element, in array element order.

Two or more arrays are associated when each one is associated with the same storage location.
They are partially associated when part of the storage associated with one array is the same
as part or all of the storage associated with another array.

If arrays with different data types are associated (or partially associated) with the same storage
location, and the value of one array is defined (for example, by assignment), the value of the
other array becomes undefined. This happens because an element of an array is considered
defined only if the storage associated with it contains data of the same type as the array name.

An array element, array section, or whole array is defined by a DATA statement before program
execution. (The array properties must be declared in a previous specification statement.) During
program execution, array elements and sections are defined by an assignment or input
statement, and entire arrays are defined by input statements.

See Also
• Storage Association
• Arrays
• DATA statement
• Array Elements

2189

56

57Deleted and Obsolescent
Language Features

Fortran 90 identified some FORTRAN 77 features to be obsolescent. Fortran 95 deletes some of these
features, and identifies a few more language features to be obsolescent. Features considered obsolescent
may be removed from future revisions of the Fortran Standard.

To have these features flagged, you can specify compiler option stand.

NOTE. Intel® Fortran fully supports features deleted from Fortran 95.

Deleted Language Features in Fortran 95

Some language features, considered redundant in FORTRAN 77, are not included in Fortran 95.
However, they are still fully supported by Intel® Fortran:

• ASSIGN and assigned GO TO statements

• Assigned FORMAT specifier

• Branching to an END IF statement from outside its IF block

• H edit descriptor

• PAUSE statement

• Real and double precision DO control variables and DO loop control expressions

Intel Fortran flags these features if you specify compiler option stand.

See Also
• Deleted and Obsolescent Language Features
• Obsolescent Language Features in Fortran 90

Obsolescent Language Features in Fortran 95

Some language features, considered redundant in Fortran 90 are identified as obsolescent in Fortran
95.

Intel® Fortran flags these features if you specify compiler option stand.

Other methods are suggested to achieve the functionality of the following obsolescent features:

2191

• Alternate returns

To replace this functionality, it is recommended that you use an integer variable to return
a value to the calling program, and let the calling program use a CASE construct to test the
value and perform operations.

• Arithmetic IF

To replace this functionality, it is recommended that you use an IF statement or construct.

• Assumed-length character functions

To replace this functionality, it is recommended that you use one of the following:

• An automatic character-length function, where the length of the function result is declared
in a specification expression

• A subroutine whose arguments correspond to the function result and the function
arguments

Dummy arguments of a function can still have assumed character length; this feature is not
obsolescent.

• CHARACTER*(*) form of CHARACTER declaration

To replace this functionality, it is recommended that you use the Fortran 90 forms of
specifying a length selector in CHARACTER declarations (see Declaration Statements for
Character Types).

• Computed GO TO statement

To replace this functionality, it is recommended that you use a CASE construct.

• DATA statements among executable statements

This functionality has been included since FORTRAN 66, but is considered to be a potential
source of errors.

• Fixed source form

Newer methods of entering data have made this source form obsolescent and error-prone.

The recommended method for coding is to use free source form.

• Shared DO termination and termination on a statement other than END DO or CONTINUE

To replace this functionality, it is recommended that you use an END DO statement (see
Forms for DO Constructs) or a CONTINUE statement.

• Statement functions

To replace this functionality, it is recommended that you use an internal function.

2192

57 Intel® Fortran Compiler User and Reference Guides

Obsolescent Language Features in Fortran 90

Fortran 90 did not delete any of the features in FORTRAN 77, but some FORTRAN 77 features
were identified as obsolescent.

Intel® Fortran flags these features if you specify compiler option stand.

Other methods are suggested to achieve the functionality of the following obsolescent features:

• Alternate return (labels in an argument list)

To replace this functionality, it is recommended that you use an integer variable to return
a value to the calling program, and let the calling program test the value and perform
operations, using a computed GO TO statement or CASE construct.

• Arithmetic IF

To replace this functionality, it is recommended that you use an IF statement or construct.

• ASSIGN and assigned GO TO statements

These statements are usually used to simulate internal procedures, which can now be coded
directly.

• Assigned FORMAT specifier (label of a FORMAT statement assigned to an integer variable)

To replace this functionality, it is recommended that you use character expressions to define
format specifications.

• Branching to an END IF statement from outside its IF block

To replace this functionality, it is recommended that you branch to the statement following
the END IF statement (see IF Construct).

• H edit descriptor

To replace this functionality, it is recommended that you use the character constant edit
descriptor (see Character Constant Editing).

• PAUSE statement

To replace this functionality, it is recommended that you use a READ statement that awaits
input data.

• Real and double precision DO control variables and DO loop control expressions

To replace this functionality, it is recommended that you use integer DO variables and
expressions (see DO Constructs).

• Shared DO termination and termination on a statement other than END DO or CONTINUE

To replace this functionality, it is recommended that you use an END DO statement (see
Forms for DO Constructs) or a CONTINUE statement.

2193

57

58Additional Language Features

To facilitate compatibility with older versions of Fortran, Intel® Fortran provides the following additional
language features:

• The DEFINE FILE statement

• The ENCODE and DECODE statements

• The FIND statement

• The INTERFACE TO statement

• FORTRAN 66 Interpretation of the EXTERNAL Statement

• An alternative syntax for the PARAMETER statement

• The VIRTUAL statement

• An alternative syntax for octal and hexadecimal constants

• An alternative syntax for a record specifier

• An alternate syntax for the DELETE statement

• An alternative form for namelist external records

• The integer POINTER statement

• Record structures

These language features are particularly useful in porting older Fortran programs to Fortran 95/90.
However, you should avoid using them in new programs on these systems, and in new programs for which
portability to other Fortran 95/90 implementations is important.

FORTRAN 66 Interpretation of the EXTERNAL Statement

If you specify compiler option f66, the EXTERNAL statement is interpreted in a way that facilitates
compatibility with older versions of Fortran. (The Fortran 95/90 interpretation is incompatible with
previous Fortran standards and previous Compaq* implementations.)

The FORTRAN 66 interpretation of the EXTERNAL statement combines the functionality of the
INTRINSIC statement with that of the EXTERNAL statement.

This lets you use subprograms as arguments to other subprograms. The subprograms to be used
as arguments can be either user-supplied functions or Fortran 95/90 library functions.

The FORTRAN 66 EXTERNAL statement takes the following form:

EXTERNAL [*]v [, [*]v] ...

2195

Specifies that a user-supplied function is to be used instead of a Fortran
95/90 library function having the same name.

*

Is the name of a subprogram or the name of a dummy argument
associated with the name of a subprogram.

v

Description

The FORTRAN 66 EXTERNAL statement declares that each name in its list is an external function
name. Such a name can then be used as an actual argument to a subprogram, which then can
use the corresponding dummy argument in a function reference or CALL statement.

However, when used as an argument, a complete function reference represents a value, not a
subprogram name; for example, SQRT(B) in CALL SUBR(A, SQRT(B), C). It is not, therefore,
defined in an EXTERNAL statement (as would be the incomplete reference SQRT).

2196

58 Intel® Fortran Compiler User and Reference Guides

Examples

The following example shows the FORTRAN 66 EXTERNAL statement:

Main Program Subprograms

EXTERNAL SIN, COS, *TAN, SINDEG SUBROUTINE TRIG(X,F,Y)

. Y = F(X)

. RETURN

. END

CALL TRIG(ANGLE, SIN, SINE)

.

. FUNCTION TAN(X)

. TAN = SIN(X)/COS(X)

CALL TRIG(ANGLE, COS, COSINE) RETURN

. END

.

.

CALL TRIG(ANGLE, TAN, TANGNT) FUNCTION SINDEG(X)/

. SINDEG = SIN(X*3.1459/180)

. RETURN

. END

CALL TRIG(ANGLED, SINDEG, SINE)

The CALL statements pass the name of a function to the subroutine TRIG. The function reference
F(X) subsequently invokes the function in the second statement of TRIG. Depending on which CALL
statement invoked TRIG, the second statement is equivalent to one of the following:

Y = SIN(X)

Y = COS(X)

Y = TAN(X)

Y = SINDEG(X)

2197

58

The functions SIN and COS are examples of trigonometric functions supplied in the Fortran 95/90
library. The function TAN is also supplied in the library, but the asterisk (*) in the EXTERNAL statement
specifies that the user-supplied function be used, instead of the library function. The function SINDEG
is also a user-supplied function. Because no library function has the same name, no asterisk is
required.

See Also
• Additional Language Features
• f66 compiler option

Alternative Syntax for the PARAMETER Statement

The PARAMETER statement discussed here is similar to the one discussed in PARAMETER; they
both assign a name to a constant. However, this PARAMETER statement differs from the other
one in the following ways:

• Its list is not bounded with parentheses.

• The form of the constant, rather than implicit or explicit typing of the name, determines the
data type of the variable.

This PARAMETER statement takes the following form:

PARAMETER c = expr [, c = expr] ...

Is the name of the constant.c

Is an initialization expression. It can be of any data type.expr

Description

Each name c becomes a constant and is defined as the value of expression expr. Once a name
is defined as a constant, it can appear in any position in which a constant is allowed. The effect
is the same as if the constant were written there instead of the name.

The name of a constant cannot appear as part of another constant, except as the real or
imaginary part of a complex constant. For example:

PARAMETER I=3

PARAMETER M=I.25 ! Not allowed

PARAMETER N=(1.703, I) ! Allowed

2198

58 Intel® Fortran Compiler User and Reference Guides

The name used in the PARAMETER statement identifies only the name's corresponding constant
in that program unit. Such a name can be defined only once in PARAMETER statements within
the same program unit.

The name of a constant assumes the data type of its corresponding constant expression. The
data type of a parameter constant cannot be specified in a type declaration statement. Nor
does the initial letter of the constant's name implicitly affect its data type.

Examples

The following are valid examples of this form of the PARAMETER statement:

PARAMETER PI=3.1415927, DPI=3.141592653589793238D0

PARAMETER PIOV2=PI/2, DPIOV2=DPI/2

PARAMETER FLAG=.TRUE., LONGNAME='A STRING OF 25 CHARACTERS'

See Also
• Additional Language Features
• PARAMETER

Alternative Syntax for Binary, Octal, and Hexadecimal Constants

In Intel Fortran, you can use an alternative syntax for binary, octal, and hexadecimal constants.
The following table shows the alternative syntax and equivalents:

EquivalentAlternative SyntaxConstant

B'0..1''0..1'BBinary

O'0..7''0..7'OOctal

Z'0..F''0..F'X

X'0..F'

Hexadecimal

You can use a quotation mark (") in place of an apostrophe in all the above syntax forms.

For information on the # syntax for integers not in base 10, see Integer Constants.

See Also
• Additional Language Features
• Binary constants
• Octal constants

2199

58

• Hexadecimal constants

Alternative Syntax for a Record Specifier

In Intel® Fortran, you can specify the following form for a record specifier in an I/O control list:

'r

Is a numeric expression with a value that represents the position of
the record to be accessed using direct access I/O.

r

The value must be greater than or equal to 1, and less than or equal to the maximum number
of records allowed in the file. If necessary, a record number is converted to integer data type
before being used.

If this nonkeyword form is used in an I/O control list, it must immediately follow the nonkeyword
form of the io-unit specifier.

Alternative Syntax for the DELETE Statement

In Intel® Fortran, you can specify the following form of the DELETE statement when deleting
records from a relative file:

DELETE (io-unit 'r [, ERR=label] [, IOSTAT=i-var])

Is the number of the logical unit containing the record to be deleted.io-unit

Is the positional number of the record to be deleted.r

Is the label of an executable statement that receives control if an error
condition occurs.

label

Is a scalar integer variable that is defined as a positive integer if an
error occurs and zero if no error occurs.

i-var

This form deletes the direct access record specified by r.

See Also
• Additional Language Features
• DELETE statement

Alternative Form for Namelist External Records

In Intel® Fortran, you can use the following form for an external record:

$group-name object = value [object = value] ...$[END]

2200

58 Intel® Fortran Compiler User and Reference Guides

Is the name of the group containing the objects to be given values.
The name must have been previously defined in a NAMELIST statement
in the scoping unit.

group-name

Is the name (or subobject designator) of an entity defined in the
NAMELIST declaration of the group name. The object name must not
contain embedded blanks, but it can be preceded or followed by blanks.

object

Is a null value, a constant (or list of constants), a repetition of constants
in the form r*c, or a repetition of null values in the form r*.

value

If more than one object=value or more than one value is specified, they must be separated
by value separators.

A value separator is any number of blanks, or a comma or slash, preceded or followed by any
number of blanks.

See Also
• Additional Language Features
• NAMELIST statement
• Rules for Namelist Sequential READ Statements
• Rules for Namelist Sequential WRITE Statements

Record Structures

The record structure was defined in earlier versions of Intel® Fortran as a language extension.
It is still supported, although its functionality has been replaced by standard Fortran 95/90
derived data types. Record structures in existing code can be easily converted to Fortran 95/90
derived type structures for portability, but can also be left in their old form. In most cases, an
Intel Fortran record and a Fortran 95/90 derived type can be used interchangeably.

Intel Fortran record structures are similar to Fortran 95/90 derived types.

A record structure is an aggregate entity containing one or more elements. (Record elements
are also called fields or components.) You can use records when you need to declare and operate
on multi-field data structures in your programs.

Creating a record is a two-step process:

1. You must define the form of the record with a multistatement structure declaration.

2. You must use a RECORD statement to declare the record as an entity with a name. (More
than one RECORD statement can refer to a given structure.)

2201

58

Examples

Intel Fortran record structures, using only intrinsic types, easily convert to Fortran 95/90 derived
types. The conversion can be as simple as replacing the keyword STRUCTURE with TYPE and removing
slash (/) marks. The following shows an example conversion:

Fortran 95/90 Derived-TypeRecord Structure

TYPE employee_name

CHARACTER*25 last_name

CHARACTER*15 first_name

END TYPE

TYPE employee_addr

CHARACTER*20 street_name

INTEGER(2) street_number

INTEGER(2) apt_number

CHARACTER*20 city

CHARACTER*2 state

INTEGER(4) zip

END TYPE

STRUCTURE /employee_name/

CHARACTER*25 last_name

CHARACTER*15 first_name

END STRUCTURE

STRUCTURE /employee_addr/

CHARACTER*20 street_name

INTEGER(2) street_number

INTEGER(2) apt_number

CHARACTER*20 city

CHARACTER*2 state

INTEGER(4) zip

END STRUCTURE

The record structures can be used as subordinate record variables within another record, such as
the employee_data record. The equivalent Fortran 90 derived type would use the derived-type
objects as components in a similar manner, as shown below:

Fortran 95/90 Derived-TypeRecord Structure

TYPE employee_data

TYPE (employee_name) name

TYPE (employee_addr) addr

INTEGER(4) telephone

INTEGER(2) date_of_birth

INTEGER(2) date_of_hire

INTEGER(2) social_security(3)

STRUCTURE /employee_data/

RECORD /employee_name/ name

RECORD /employee_addr/ addr

INTEGER(4) telephone

INTEGER(2) date_of_birth

INTEGER(2) date_of_hire

INTEGER(2) social_security(3)

2202

58 Intel® Fortran Compiler User and Reference Guides

Fortran 95/90 Derived-TypeRecord Structure

LOGICAL(2) married

INTEGER(2) dependents

END TYPE

LOGICAL(2) married

INTEGER(2) dependents

END STRUCTURE

See Also
• Additional Language Features
• Structure Declarations
• References to Record Fields
• Aggregate Assignment
• Structure Declarations
• RECORD Statement
• References to Record Fields
• Aggregate Assignment

Structure Declarations

A structure declaration defines the field names, types of data within fields, and order and
alignment of fields within a record. Fields and structures can be initialized, but records cannot
be initialized. For more information, see STRUCTURE.

Type Declarations within Record Structures

The syntax of a type declaration within a record structure is identical to that of a normal Fortran
type statement.

The following rules and behavior apply to type declarations in record structures:

• %FILL can be specified in place of a field name to leave space in a record for purposes such
as alignment. This creates an unnamed field.

%FILL can have an array specification; for example:
INTEGER %FILL (2,2)

Unnamed fields cannot be initialized. For example, the following statement is invalid and
generates an error message:
INTEGER %FILL /1980/

• Initial values can be supplied in field declaration statements. Unnamed fields cannot be
initialized; they are always undefined.

2203

58

• Field names must always be given explicit data types. The IMPLICIT statement does not
affect field declarations.

• Any required array dimensions must be specified in the field declaration statements.
DIMENSION statements cannot be used to define field names.

• Adjustable or assumed sized arrays and assumed-length CHARACTER declarations are not
allowed in field declarations.

Substructure Declarations

A field within a structure can itself be a structured item composed of other fields, other
structures, or both. You can declare a substructure in two ways:

• By nesting structure declarations within other structure or union declarations (with the
limitation that you cannot refer to a structure inside itself at any level of nesting).

One or more field names must be defined in the STRUCTURE statement for the substructure,
because all fields in a structure must be named. In this case, the substructure is being used
as a field within a structure or union.

Field names within the same declaration nesting level must be unique, but an inner structure
declaration can include field names used in an outer structure declaration without conflict.

• By using a RECORD statement that specifies another previously defined record structure,
thereby including it in the structure being declared.

See the example in STRUCTURE for a sample structure declaration containing both a nested
structure declaration (TIME) and an included structure (DATE).

References to Record Fields

References to record fields must correspond to the kind of field being referenced. Aggregate
field references refer to composite structures (and substructures). Scalar field references refer
to singular data items, such as variables.

An operation on a record can involve one or more fields.

Record field references take one of the following forms:

Aggregate Field Reference:

record-name [.aggregate-field-name] ...

Scalar Field Reference:

record-name [.aggregate-field-name]scalar-field-name

2204

58 Intel® Fortran Compiler User and Reference Guides

Is the name used in a RECORD statement to identify a record.record-name

Is the name of a field that is a substructure (a record or a nested
structure declaration) within the record structure identified by the record
name.

aggregate-field-name

Is the name of a data item (having a data type) defined within a
structure declaration.

scalar-field-name

Description

Records and record fields cannot be used in DATA statements, but individual fields can be
initialized in the STRUCTURE definition.

An automatic array cannot be a record field.

A scalar field reference consists of the name of a record (as specified in a RECORD statement)
and zero or more levels of aggregate field names followed by the name of a scalar field. A scalar
field reference refers to a single data item (having a data type) and can be treated like a normal
reference to a Fortran variable or array element.

You can use scalar field references in statement functions and in executable statements.
However, they cannot be used in COMMON, SAVE, NAMELIST, or EQUIVALENCE statements,
or as the control variable in an indexed DO-loop.

Type conversion rules for scalar field references are the same as those for variables and array
elements.

An aggregate field reference consists of the name of a record (as specified in a RECORD
statement) and zero or more levels of aggregate field names.

You can only assign an aggregate field to another aggregate field (record = record) if the
records have the same structure. Intel® Fortran supports no other operations (such as arithmetic
or comparison) on aggregate fields.

Intel Fortran requires qualification on all levels. While some languages allow omission of
aggregate field names when there is no ambiguity as to which field is intended, Intel Fortran
requires all aggregate field names to be included in references.

You can use aggregate field references in unformatted I/O statements; one I/O record is written
no matter how many aggregate and array name references appear in the I/O list. You cannot
use aggregate field references in formatted, namelist, and list-directed I/O statements.

2205

58

You can use aggregate field references as actual arguments and record dummy arguments.
The declaration of the dummy record in the subprogram must match the form of the aggregate
field reference passed by the calling program unit; each structure must have the same number
and types of fields in the same order. The order of map fields within a union declaration is
irrelevant.

Records are passed by reference. Aggregate field references are treated like normal variables.
You can use adjustable arrays in RECORD statements that are used as dummy arguments.

Examples

The following examples show record and field references. Consider the following structure declarations:

Structure DATE:

STRUCTURE /DATE/

INTEGER*1 DAY, MONTH

INTEGER*2 YEAR

STRUCTURE

Structure APPOINTMENT:

STRUCTURE /APPOINTMENT/

RECORD /DATE/ APP_DATE

STRUCTURE /TIME/ APP_TIME(2)

INTEGER*1 HOUR, MINUTE

END STRUCTURE

CHARACTER*20 APP_MEMO(4)

LOGICAL*1 APP_FLAG

END STRUCTURE

The following RECORD statement creates a variable named NEXT_APP and a 10-element array named
APP_LIST. Both the variable and each element of the array take the form of the structure
APPOINTMENT.

RECORD /APPOINTMENT/ NEXT_APP,APP_LIST(10)

Each of the following examples of record and field references are derived from the previous structure
declarations and RECORD statement:

2206

58 Intel® Fortran Compiler User and Reference Guides

Aggregate Field References

• The record NEXT_APP:

NEXT_APP

• The field APP_DATE, a 4-byte array field in the record array APP_LIST(3):

APP_LIST(3).APP_DATE

Scalar Field References

• The field APP_FLAG, a LOGICAL field of the record NEXT_APP:

NEXT_APP.APP_FLAG

• The first character of APP_MEMO(1), a CHARACTER*20 field of the record NEXT_APP:

NEXT_APP.APP_MEMO(1)(1:1)

NOTE. Because periods are used in record references to separate fields, you should
avoid using relational operators (.EQ., .XOR.), logical constants (.TRUE., .FALSE.), and
logical expressions (.AND., .NOT., .OR.) as field names in structure declarations. Dots
can also be used instead of % to separate fields of a derived type.

2207

58

Consider the following example:
module mod

type T1_t

integer :: i

end type T1_t

type T2_t

type (T1_t) :: eq

integer :: i

end type T2_t

interface operator (.eq.)

module procedure eq_func

end interface operator (.eq.)

contains

function eq_func(t2, i) result (rslt)

type(T2_t), intent (in) :: t2

integer, intent (in) :: i

rslt = t2%eq%i + i

end function eq_func

end module mod

use mod

type(T2_t) :: t2

integer :: i

t2%eq%i = 0

t2%i = -10

i = -10

print *, t2.eq.i, (t2).eq.i

end

In this case, the reference "t2.eq.i" prints 0. The reference "(t2).eq.i" will invoke eq_func and
will print -10.

2208

58 Intel® Fortran Compiler User and Reference Guides

See Also
• Record Structures
• RECORD statement
• STRUCTURE
• UNION

Building Applications for details on alignment of data

Aggregate Assignment

For aggregate assignment statements, the variable and expression must have the same structure
as the aggregate they reference.

The aggregate assignment statement assigns the value of each field of the aggregate on the
right of an equal sign to the corresponding field of the aggregate on the left. Both aggregates
must be declared with the same structure.

2209

58

Examples

The following example shows valid aggregate assignments:

STRUCTURE /DATE/

INTEGER*1 DAY, MONTH

INTEGER*2 YEAR

END STRUCTURE

RECORD /DATE/ TODAY, THIS_WEEK(7)

STRUCTURE /APPOINTMENT/

...

RECORD /DATE/ APP_DATE

END STRUCTURE

RECORD /APPOINTMENT/ MEETING

DO I = 1,7

CALL GET_DATE (TODAY)

THIS_WEEK(I) = TODAY

THIS_WEEK(I).DAY = TODAY.DAY + 1

END DO

MEETING.APP_DATE = TODAY

2210

58 Intel® Fortran Compiler User and Reference Guides

59Additional Character Sets

This topic contains information about the following additional character sets:

• Character and Key Code Charts for Windows* OS

• The ASCII Character Set for Linux* OS and Mac OS* X

Character and Key Code Charts for Windows* OS

This topic contains the ASCII and ANSI character code charts, and the Key code charts that are
available on Windows* OS.

ASCII Character Codes for Windows* Systems

The ASCII character code charts contain the decimal and hexadecimal values of the extended ASCII
(American Standards Committee for Information Interchange) character set. The extended character
set includes the ASCII character set (Chart 1) and 128 other characters for graphics and line
drawing (Chart 2), often called the "IBM* character set".

2211

ASCII Character Codes Chart 1 (W*32, W*64)

2212

59 Intel® Fortran Compiler User and Reference Guides

ASCII Character Codes Chart 2: IBM* Character Set (W*32, W*64)

2213

59

ANSI Character Codes for Windows* Systems

The ANSI character code chart lists the extended character set of most of the programs used
by Windows* systems. The codes of the ANSI (American National Standards Institute) character
set from 32 through 126 are displayable characters from the ASCII character set. The ANSI
characters displayed as solid blocks are undefined characters and may appear differently on
output devices.

2214

59 Intel® Fortran Compiler User and Reference Guides

ANSI Character Codes Chart (W*32, W*64)

2215

59

Key Codes for Windows* Systems

Some keys, such as function keys, cursor keys, and ALT+KEY combinations, have no ASCII
code. When a key is pressed, a microprocessor within the keyboard generates an "extended
scan code" of two bytes.

The first (low-order) byte contains the ASCII code, if any. The second (high-order) byte has
the scan code--a unique code generated by the keyboard when a key is either pressed or
released. Because the extended scan code is more extensive than the standard ASCII code,
programs can use it to identify keys which do not have an ASCII code.

For more details on key codes, see:

• Key Codes Chart 1

• Key Codes Chart 2

2216

59 Intel® Fortran Compiler User and Reference Guides

Key Codes Chart 1 (W*32, W*64)

2217

59

Key Codes Chart 2 (W*32, W*64)

2218

59 Intel® Fortran Compiler User and Reference Guides

ASCII Character Set for Linux* OS and Mac OS* X

This topic describes the ASCII character set that is available on Linux* OS and Mac OS* X.

The ASCII character set contains characters with decimal values 0 through 127. The first half
of each of the numbered columns identifies the character as you would enter it on a terminal
or as you would see it on a printer. Except for SP and HT, the characters with names are
nonprintable. In the figure, the characters with names are defined as follows:

Device Control 1
(XON)

DC1NullNUL

Device Control 2DC2Start of HeadingSOH

Device Control 1
(XOFF)

DC3Start of TextSTX

Device Control 4DC4End of TextETX

Negative
Acknowledge

NAKEnd of TransmissionEOT

Synchronous IdleSYNEnquiryENQ

End of Transmission
Block

ETBAcknowledgeACK

CancelCANBellBEL

End of MediumEMBackspaceBS

SubstituteSUBHorizontal TabHT

EscapeESCLine FeedLF

File SeparatorFSVertical TabVT

Group SeparatorGSForm FeedFF

Record SeparatorRSCarriage ReturnCR

Unit SeparatorUSShift OutSO

SpaceSPShift InSI

2219

59

DeleteDELData Link EscapeDLE

2220

59 Intel® Fortran Compiler User and Reference Guides

The remaining half of each column identifies the character by the binary value of the byte; the
value is stated in three radixes—octal, decimal, and hexadecimal. For example, the uppercase
letter A has, under ASCII conventions, a storage value of hexadecimal 41 (a bit configuration
of 01000001), equivalent to 101 in octal notation and 65 in decimal notation.

2221

59

Figure 35: ASCII Character Set (L*X, M*X)

2222

59 Intel® Fortran Compiler User and Reference Guides

60Data Representation Models

Several of the numeric intrinsic functions are defined by a model set for integers (for each intrinsic kind
used) and reals (for each real kind used). The bit functions are defined by a model set for bits (binary
digits).

The following intrinsic functions provide information on the data representation models:

Value returnedModelIntrinsic function

The number of bits (s) in the bit
model

BitBIT_SIZE

The number of significant digits
in the model for the argument

Integer or RealDIGITS

The number that is almost
negligible when compared to one

RealEPSILON

The value of the exponent part
of a real argument

RealEXPONENT

The fractional part of a real
argument

RealFRACTION

The largest number in the model
for the argument

Integer or RealHUGE

The maximum exponent in the
model for the argument

RealMAXEXPONENT

The minimum exponent in the
model for the argument

RealMINEXPONENT

The nearest different
machine-representable number
in a given direction

RealNEAREST

The decimal precision (real or
complex) of the argument

RealPRECISION

The base of the model for the
argument

Integer or RealRADIX

2223

Value returnedModelIntrinsic function

The decimal exponent range of
the model for the argument

Integer or RealRANGE

The reciprocal of the relative
spacing near the argument

RealRRSPACING

The value of the exponent part
(of the model for the
argument) changed by a
specified value

RealSCALE

The value of the exponent part
(of the model for the
argument) set to a specified
value

RealSET_EXPONENT

The value of the absolute
spacing of model numbers near
the argument

RealSPACING

The smallest positive number
in the model for the argument

RealTINY

For more information on the range of values for each data type (and kind), see Building Applications.

This appendix discusses the following topics:

• The model for Integer Data

• The model for Real Data

• The model for Bit Data

Model for Integer Data

In general, the model set for integers is defined as follows:

The following values apply to this model set:

2224

60 Intel® Fortran Compiler User and Reference Guides

• i is the integer value.

• s is the sign (either +1 or -1).

• q is the number of digits (a positive integer).

• r is the radix (an integer greater than 1).

• wk is a nonnegative number less than r.

The model for INTEGER(4) follows:

The following example shows the general integer model for i = -20 using a base (r) of 2:

Model for Real Data

The model set for reals, in general, is defined as one of the following:

The following values apply to this model set:

• x is the real value.

• s is the sign (either +1 or -1).

• b is the base (real radix; an integer greater than 1; b = 2 in Intel® Fortran).

2225

60

• p is the number of mantissa digits (an integer greater than 1). The number of digits differs
depending on the real format, as follows:

24IEEE S_floatingREAL(4)

53IEEE T_floatingREAL(8)

113IEEE X_floatingREAL(16)

• e is an integer in the range emin to emax inclusive. This range differs depending on the real
format, as follows:

emaxemin

128-125IEEE S_floatingREAL(4)

1024-1021IEEE T_floatingREAL(8)

16384-16381IEEE X_floatingREAL(16)

• fk is a nonnegative number less than b (f1 is also nonzero).

For x = 0, its exponent e and digits fk are defined to be zero.

The model set for single-precision real (REAL(4)) is defined as one of the following:

The following example shows the general real model for x = 20.0 using a base (b) of 2:

2226

60 Intel® Fortran Compiler User and Reference Guides

Model for Bit Data

The model set for bits (binary digits) interprets a nonnegative scalar data object of type integer
as a sequence, as follows:

The following values apply to this model set:

• j is the integer value.

• s is the number of bits.

• wk is a bit value of 0 or 1.

The bits are numbered from right to left beginning with 0.

The following example shows the bit model for j = 1001 (integer 9) using a bit number (s) of
4:

2227

60

61Run-Time Library Routines

Intel® Fortran provides the following run-time library routines, which are summarized in this appendix:

• Module routines

• OpenMP* Fortran routines

Module Routines

Intel® Fortran provides library modules containing the following routines:

• Routines that help you write programs for graphics, QuickWin, and other applications (in modules
IFQWIN, IFLOGM, and IFCORE):

• QuickWin routines (W*32, W*64)

• Graphics routines (W*32, W*64)

• Dialog routines (W*32, W*64)

• Miscellaneous run-time routines

• Routines systems that help you write programs using Component Object Model (COM) and
Automation servers (in modules IFCOM and IFAUTO):

• COM routines (W*32, W*64)

• AUTO routines (W*32, W*64)

• Portability routines that help you port your programs to or from other systems, or help you
perform basic I/O to serial ports on Windows* systems (in module IFPORT).

• National Language Support routines that help you write foreign language programs for international
markets (in module IFNLS). These routines are only available on Windows* systems.

• POSIX routines that help you write Fortran programs that comply with the POSIX* Standard (in
module IFPOSIX).

When you include the statement USE module-name in your program, these library routines are
automatically linked to your program if called.

You can restrict what is accessed from a USE module by adding ONLY clauses to the USE statement.

See Also
• Run-Time Library Routines

2229

• USE

Building Applications: Calling Library Routines

OpenMP* Fortran Routines

The following table summarizes the OpenMP Fortran API run-time library routines you can use
for directed parallel decomposition. These routines are all external procedures.

To use these routines, you must add a USE OMP_LIB statement to the program unit containing
the routine.

Table 687: Summary of OpenMP Fortran Parallel Routines

DescriptionName

Sets the number of threads to use for the
next parallel region.

OMP_SET_NUM_THREADS

Gets the number of threads currently in the
team executing the parallel region from which
the routine is called.

OMP_GET_NUM_THREADS

Gets the maximum value that can be returned
by calls to the OMP_GET_NUM_THREADS
function.

OMP_GET_MAX_THREADS

Gets the thread number, within the team, in
the range from zero to
OMP_GET_NUM_THREADS minus one.

OMP_GET_THREAD_NUM

Gets the number of processors that are
available to the program.

OMP_GET_NUM_PROCS

Informs whether or not a region is executing
in parallel.

OMP_IN_PARALLEL

Enables or disables dynamic adjustment of
the number of threads available for execution
of parallel regions.

OMP_SET_DYNAMIC

Informs whether or not dynamic thread
adjustment is enabled.

OMP_GET_DYNAMIC

Enables or disables nested parallelism.OMP_SET_NESTED

2230

61 Intel® Fortran Compiler User and Reference Guides

DescriptionName

Informs whether or not nested parallelism is
enabled.

OMP_GET_NESTED

Initializes a lock to be used in subsequent
calls.

OMP_INIT_LOCK

Disassociates a lock variable from any locks.OMP_DESTROY_LOCK

Makes the executing thread wait until the
specified lock is available.

OMP_SET_LOCK

Releases the executing thread from ownership
of a lock.

OMP_UNSET_LOCK

Tries to set the lock associated with a lock
variable.

OMP_TEST_LOCK

Initializes a nested lock for use in subsequent
calls.

OMP_INIT_NEST_LOCK

Disassociates a lock variable from a nested
lock.

OMP_DESTROY_NEST_LOCK

Makes the executing thread wait until the
specified nested lock is available.

OMP_SET_NEST_LOCK

Releases the executing thread from ownership
of a nested lock if the nesting count is zero.

OMP_UNSET_NEST_LOCK

Tries to set the nested lock associated with
a lock variable.

OMP_TEST_NEST_LOCK

Returns a double-precision value equal to the
elapsed wallclock time (in seconds) relative
to an arbitrary reference time.

OMP_GET_WTIME

Returns a double-precision value equal to the
number of seconds between successive clock
ticks.

OMP_GETWTICK

Intel® Fortran Extensions:

2231

61

DescriptionName

Returns the number of bytes that will be
allocated for each parallel thread to use as
its private stack.

KMP_GET_STACKSIZE_S1

Sets the number of bytes that will be
allocated for each parallel thread to use as
its private stack.

KMP_SET_STACKSIZE_S2

Returns the number of milliseconds that a
thread should wait, after completing the
execution of a parallel region, before sleeping.

KMP_GET_BLOCKTIME

Sets the number of milliseconds that a thread
should wait, after completing the execution
of a parallel region, before sleeping.

KMP_SET_BLOCKTIME

Allocates a memory block of a specified size
(in bytes) from the thread-local heap.

KMP_MALLOC

Allocates an array of a specified number of
elements and size from the thread-local heap.

KMP_CALLOC

Reallocates a memory block at a specified
address and of a specified size from the
thread-local heap.

KMP_REALLOC

Frees a memory block at a specified address
from the thread-local heap.

KMP_FREE

1 For backwards compatibility, this can also be specified as KMP_GET_STACKSIZE.
2 For backwards compatibility, this can also be specified as KMP_SET_STACKSIZE.

For more information on a specific routine, see the appropriate reference page; for example,
for more information on OMP_SET_LOCK, see omp_set_lock(3f).

See Also
• Run-Time Library Routines
• OpenMP Fortran Compiler Directives

Optimizing Applications: Intel Extension Routines/Functions

2232

61 Intel® Fortran Compiler User and Reference Guides

62Summary of Language
Extensions

This appendix summarizes the Intel® Fortran language extensions to the ANSI/ISO Fortran 95 Standard.

Most extensions are available on all supported operating systems. However, some extensions are limited
to one or more platforms. If an extension is limited, it is labeled.

Extensions related to the following topics are discussed:

• Source Forms

• Names

• Character Sets

• Intrinsic Data Types

• Constants

• Expressions and Assignment

• Specification Statements

• Execution Control

• Program Units and Procedures

• Compilation Control Statements

• Built-In Functions

• I/O Statements

• I/O Formatting

• File Operation Statements

• Compiler Directives

• Intrinsic Procedures

• Additional Language Features

• Run-Time Library Routines

Language Extensions: Source Forms

The following are extensions to the methods and rules for source forms:

• Tab-formatting as a method to code lines

• The letter D as a debugging statement indicator in column 1 of fixed or tab source form

2233

• An optional statement field width of 132 columns for fixed or tab source form

• An optional sequence number field for fixed source form

• Up to 511 continuation lines in a source program

Language Extensions: Names

The following are extensions to the Fortran 90 rules for names (see names):

• Names can contain up to 63 characters

• The dollar sign ($) is a valid character in names, and can be the first character

Language Extensions: Character Sets

The following are extensions to the Fortran 90 character set:

• The Tab (<Tab>) character (see Character Sets)

• ASCII Character Code Chart 2 -- IBM* Character Set

• ANSI Character Code Chart

• Key Code Charts

Language Extensions: Intrinsic Data Types

The following are data-type extensions:

REAL*16INTEGER*1BYTE

COMPLEX*8INTEGER*2DOUBLE COMPLEX

COMPLEX*16INTEGER*4LOGICAL*1

COMPLEX*32INTEGER*8LOGICAL*2

REAL*4LOGICAL*4

REAL*8LOGICAL*8

2234

62 Intel® Fortran Compiler User and Reference Guides

See Also
• Summary of Language Extensions
• Intrinsic Data Types

Language Extensions: Constants

Hollerith constants are allowed as an extension.

C Strings are allowed as extensions in character constants.

Language Extensions: Expressions and Assignment

When operands of different intrinsic data types are combined in expressions, conversions are
performed as necessary (see Data Type of Numeric Expressions).

Binary, octal, hexadecimal, and Hollerith constants can appear wherever numeric constants
are allowed.

The following are extensions allowed in logical expressions:

• .XOR. as a synonym for .NEQV.

• Integers as valid logical items

• Logical operators applied to integers bit-by-bit

Language Extensions: Specification Statements

The following specification attributes and statements are extensions:

• AUTOMATIC attribute and statement

• PROTECTED attribute and statement

• STATIC attribute and statement

• VOLATILE attribute and statement

A double colon is now optional for the INTRINSIC, SAVE, STATIC, AUTOMATIC, EXTERNAL, and
VOLATILE statements.

Language Extensions: Execution Control

The following control statements are extensions to Fortran 95:

2235

62

• ASSIGN

• Assigned GO TO

• PAUSE

These are older Fortran features that have been deleted in Fortran 95. Intel® Fortran fully
supports these features.

Language Extensions: Program Units and Procedures

The following program units and statement are extensions:

• Intrinsic modules

• The IMPORT statement

Language Extensions: Compilation Control Lines and Statements

The following line option and statement are extensions that can influence compilation:

• [/[NO]LIST], which can be specified in an INCLUDE line

• The OPTIONS statement

Language Extensions: Built-In Functions

The following built-in functions are extensions:

• %VAL, %REF, and %LOC, which facilitate references to non-Fortran procedures

• %FILL, which can be used in record structure type definitions

Language Extensions: I/O Statements

The following I/O statements are extensions:

• The ACCEPT statement

• The FLUSH statement

• The REWRITE statement

• The TYPE statement, which is a synonym for the PRINT statement

• The WAIT statement

2236

62 Intel® Fortran Compiler User and Reference Guides

Language Extensions: I/O Formatting

The following are extensions allowed in I/O Formatting:

• The Q edit descriptor

• The dollar sign ($) edit descriptor and carriage-control character

• The backslash (\) edit descriptor

• The ASCII NUL carriage-control character

• Variable format expressions

• The H edit descriptor

This is an older Fortran feature that has been deleted in Fortran 95. Intel® Fortran fully
supports this feature.

Language Extensions: File Operation Statements

The following statement specifiers and statements are extensions:

• CLOSE statement specifiers:

• STATUS values: 'SAVE' (as a synonym for 'KEEP'), 'PRINT', 'PRINT/DELETE', 'SUBMIT',
'SUBMIT/DELETE'

• DISPOSE (or DISP)

• DELETE statement

• INQUIRE statement specifiers:

• ASYNCHRONOUS

• BINARY (W*32, W*64)

• BLOCKSIZE

• BUFFERED

• CARRIAGECONTROL

• CONVERT

• DEFAULTFILE

• FORM values: 'UNKNOWN', 'BINARY' (W*32, W*64)

• IOFOCUS (W*32, W*64)

2237

62

• MODE as a synonym for ACTION

• ORGANIZATION

• PENDING

• POS

• RECORDTYPE

• SHARE (W*32, W*64)

See also INQUIRE Statement.

• OPEN statement specifiers:

• ACCESS values: 'APPEND'

• ASSOCIATEVARIABLE

• ASYNCHRONOUS

• BLOCKSIZE

• BUFFERCOUNT

• BUFFERED

• CARRIAGECONTROL

• CONVERT

• DEFAULTFILE

• DISPOSE (or DISP)

• FORM value: 'BINARY' (W*32, W*64)

• IOFOCUS (W*32, W*64)

• MAXREC

• MODE as a synonym for ACTION

• NAME as a synonym for FILE

• NOSHARED

• ORGANIZATION

• READONLY

• RECORDSIZE as a synonym for RECL

• RECORDTYPE

• SHARE (W*32, W*64)

• SHARED

• TITLE (W*32, W*64)

2238

62 Intel® Fortran Compiler User and Reference Guides

• TYPE as a synonym for STATUS

• USEROPEN

See also OPEN Statement.

Language Extensions: Compiler Directives

The following General Directives are extensions:

• ALIAS

• ASSUME_ALIGNED

• ATTRIBUTES

• DECLARE and NODECLARE

• DEFINE and UNDEFINE

• DISTRIBUTE POINT

• FIXEDFORMLINESIZE

• FREEFORM and NOFREEFORM

• IDENT

• IF and IF DEFINED

• INTEGER

• IVDEP

• LOOP COUNT

• MEMORYTOUCH (i64 only)

• MEMREF_CONTROL (i64 only)

• MESSAGE

• OBJCOMMENT

• OPTIMIZE and NOOPTIMIZE

• OPTIONS

• PACK

• PARALLEL and NOPARALLEL (loop)

• PREFETCH and NOPREFETCH

• PSECT

• REAL

2239

62

• STRICT and NOSTRICT

• SWP and NOSWP (i64 only)

• UNROLL and NOUNROLL

• UNROLL_AND_JAM and NOUNROLL_AND_JAM

• VECTOR ALIGNED and VECTOR UNALIGNED

• VECTOR ALWAYS and NOVECTOR

• VECTOR TEMPORAL and VECTOR NONTEMPORAL (i32, i64em)

The following OpenMP* Fortran directives are extensions:

• ATOMIC

• BARRIER

• CRITICAL

• DO

• FLUSH

• MASTER

• ORDERED

• PARALLEL

• PARALLEL DO

• PARALLEL SECTIONS

• PARALLEL WORKSHARE

• SECTIONS

• SINGLE

• TASK

• TASKWAIT

• THREADPRIVATE

• WORKSHARE

Language Extensions: Intrinsic Procedures

The following intrinsic procedures are extensions available on all platforms:

Table 689: A to D

DCMPLXCOMMAND_ARGUMENT_COUNTBIANDACOSD

2240

62 Intel® Fortran Compiler User and Reference Guides

DCONJGCOSDBIEORACOSH

DCOSDCOTANDBITESTAIMIN0

DCOTANCQABSBIORAJMAX0

DCOTANDCQCOSBJTESTAJMIN0

DERFCQEXPBKTESTAKMAX0

DERFCCQLOGBMODAKMIN0

DFLOATCQSINBMVBITSAND

DFLOTICQSQRTBNOTASIND

DFLOTJCQTANBSHFTASINH

DFLOTKCTANBSHFTCATAN2D

DIMAGDACOSDBSIGNATAND

DNUMDACOSHCACHESIZEATANH

DREALDASINDCDABSBABS

DSHIFTLDASINHCDCOSBADDRESS

DSHIFTRDATAN2DCDEXPBBCLR

DSINDDATANDCDLOGBBITS

DTANDDATANCDSINBBSET

COTANBIORAIMAX0

DATECDSQRTBBTEST

DBLEQCDTANBDIM

Table 690: E to I

ININTIIDINTHIEOREOF

INOTIIDNNTHIORERF

2241

62

INT1IIEORHIXORERFC

INT2IIFIXHMODERRSNS

INT4IINTHMVBITSEXIT

INT8IIORHNOTFLOATI

INT_PTR_KINDIIQINTHSHFTFLOATJ

INUMIIQNNTHSHFTCFLOATK

IQINTIISHFTHSIGNFP_CLASS

IQNINTIISHFTCHTESTFREE

IS_IOSTAT_ENDIISIGNIADDRGETARG

IS_IOSTAT_EORIIXORIARGGET_COMMAND

ISHAIJINTIARGCGET_COMMAND
ARGUMENT

ISHCILENIBCHNGGET_ENVIRONMENT_VARIABLE

ISHLIMAGIDATEHABS

ISNANIMAX0IIABSHBCLR

IXORIMAX1IIANDHBITS

IZEXTIMIN0IIBCLRHBSET

IMIN1IIBITSHDIM

IMODIIBSETHFIX

IMVBITSIIDIMHIAND

Table 691: J to P

LEADZKIEORJMAX0JFIX

LOCKIFIXJMAX1JIABS

2242

62 Intel® Fortran Compiler User and Reference Guides

LSHIFTKINTJMIN0JIAND

LSHFTKIORJMIN1JIBCLR

MALLOCKIQINTJMODJIBITS

MCLOCKKIQNNTJMVBITSJIBSET

MM_PREFETCHKISHFTJNINTJIDIM

MOVE_ALLOCKISHFTCJNOTJIDINT

MULT_HIGHKISIGNJNUMJIDNNT

MULT_HIGH_SIGNEDKMAX0JZEXTJIEOR

NARGSKMAX1KDIMJIFIX

NEW_LINEKMIN0KIABSJINT

NUMARGKMIN1KIANDJIOR

ORKMODKIBCLRJIQINT

POPCNTKMVBITSKIBITSJIQNNT

POPPARKNINTKIBSETJISHFT

KNOTKIDIMJISHFTC

KNUMKIDINTJISIGN

KZEXTKIDNNTJIXOR

Table 692: Q to Z

SHIFTLQNINTQCOSHQABS

SHIFTRQNUMQCOTANQACOS

SINDQREALQCOTANDQACOSD

SIZEOFQSIGNQDIMQACOSH

SNGLQQSINQERFQARCOS

2243

62

TANDQSINDQERFCQASIN

TIMEQSINHQEXPQASIND

TRAILZQSQRTQEXTQASINH

XORQTANQEXTDQATAN

ZABSQTANDQFLOATQATAN2

ZCOSQTANHQIMAGQATAN2D

ZEXPRANQINTQATAND

ZEXTRANDUQLOGQATANH

ZLOGRNUMQLOG10QCMPLX

ZSINRSHIFTQMAX1QCONJG

ZSQRTRSHFTQMIN1QCOS

ZTANSECNDSQMODQCOSD

The argument KIND is an extension available in the following intrinsic procedures:

SIZEMAXLOCINDEXACHAR

UBOUNDMINLOCLBOUNDCOUNT

VERIFYSCANLENIACHAR

SHAPELEN_TRIMICHAR

Language Extensions: Additional Language Features

The following are language extensions that facilitate compatibility with other versions of Fortran:

• DEFINE FILE statement

• ENCODE and DECODE statements

• FIND statement

• The INTERFACE TO statement

2244

62 Intel® Fortran Compiler User and Reference Guides

• FORTRAN 66 Interpretation of the EXTERNAL statement

• An alternative syntax for the PARAMETER statement

• VIRTUAL statement

• AND, OR, XOR, IMAG, LSHIFT, RSHIFT intrinsics (see the A to Z Reference)

• An alternative syntax for octal and hexadecimal constants

• An alternative syntax for an I/O record specifier

• An alternate syntax for the DELETE statement

• An alternative form for namelist external records

• The integer POINTER statement

• Record structures

Language Extensions: Run-Time Library Routines

The following run-time library routines are available as extensions:

• Module routines

• OpenMP* Fortran routines

2245

62

63A to Z Reference

This section contains the following:

• Language Summary Tables

This section organizes the functions, subroutines, and statements available in Intel® Fortran by the
operations they perform. You can use the tables to locate a particular routine for a particular task.

• The descriptions of all Intel Fortran statements, intrinsics, directives, and module library routines,
which are listed in alphabetical order.

In the description of routines, pointers and handles are INTEGER(4) on IA-32 architecture and
INTEGER(8) on Intel® 64 architecture and IA-64 architecture.

The Fortran compiler understands statements and intrinsic functions in your program without any additional
information, such as that provided in modules.

However, modules must be included in programs that contain the following routines:

• Quickwin routines and graphics routines (W*32, W*64)

These routines require a USE IFQWIN statement to include the library and graphics modules.

• Portability routines and serial port I/O routines

These routines require a USE IFPORT statement to access the portability library. The serial port I/O
routines are only available on Windows* systems.

• NLS routines (W*32, W*64)

These routines require a USE IFNLS statement to access the NLS library.

• POSIX* routines

These routines require a USE IFPOSIX statement to access the POSIX library.

• Dialog routines (W*32, W*64)

These routines require a USE IFLOGM statement to access the dialog library.

• Component Object Module (COM) routines (W*32, W*64)

These routines require a USE IFCOM statement to access the COM library.

• Automation server routines (W*32, W*64)

These routines require a USE IFAUTO statement to access the AUTO library.

• Miscellaneous Run-Time Routines

Most of these routines require a USE IFCORE statement to obtain the proper interfaces.

2247

Whenever required, these USE module statements are prominent in the A to Z Reference.

In addition to the appropriate USE statement, for some routines you must specify the types of libraries
to be used when linking.

Language Summary Tables

The Fortran procedures and statements have been organized into the following tables:

• Statements for Program Unit Calls and Definition

• Statements Affecting Variables

• Statements for Input and Output

• Compiler Directives

• Program Control Statements and Procedures

• Inquiry Intrinsic Procedures

• Random Number Intrinsic Procedures

• Date and Time Intrinsic Subroutines

• Keyboard and Speaker Library Routines

• Statements and Intrinsic Procedures Memory Allocation and Deallocation

• Intrinsic Functions for Arrays

• Intrinsic Functions for Numeric and Type Conversion

• Trigonometric, Exponential, Root, and Logarithmic Intrinsic Procedures

• Intrinsic Functions for Floating-Point Inquiry and Control

• Character Intrinsic Functions

• Intrinsic Procedures for Bit Operation and Representation

• QuickWin Library Routines

• Graphics Library Routines

• Portability Library Routines

• National Language Standard Library Routines

• POSIX* Library Routines

• Dialog Library Routines

• COM and Automation Library Routines

• Miscellaneous Run-Time Library Routines

• Functions Not Allowed as Actual Arguments

2248

63 Intel® Fortran Compiler User and Reference Guides

See Also
• A to Z Reference
• Statements for Program Unit Calls and Definitions
• Statements Affecting Variables
• Statements for Input and Output
• Compiler Directives
• Program Control Statements and Procedures
• Inquiry Intrinsic Functions
• Random Number Intrinsic Procedures
• Date and Time Intrinsic Subroutines
• Keyboard and Speaker Library Routines
• Statements and Intrinsic Procedures for Memory Allocation and Deallocation
• Intrinsic Functions for Arrays
• Intrinsic Functions for Numeric and Type Conversion
• Trigonometric, Exponential, Root, and Logarithmic Intrinsic Procedures
• Intrinsic Functions for Floating-Point Inquiry and Control
• Character Intrinsic Functions
• Intrinsic Procedures for Bit Operation and Representation
• QuickWin Library Routines (W*32, W*64)
• Graphics Library Routines (W*32, W*64)
• Portability Library Routines
• National Language Support Library Routines (W*32, W*64)
• POSIX* Library Procedures
• Dialog Library Routines (W*32, W*64)
• COM and Automation Library Routines (W*32, W*64)
• Miscellaneous Run-Time Library Routines
• Intrinsic Functions Not Allowed as Actual Arguments
• Argument Keywords in Intrinsic Procedures
• Program Units and Procedures

Statements for Program Unit Calls and Definitions

The following table lists statements used for program unit calls and definition.

2249

63

DescriptionName

Identifies a block-data subprogram.BLOCK DATA

Executes a subroutine.CALL

Delineates variables shared between program
units.

COMMON

Identifies start of a module within a host
module.

CONTAINS

Specifies a secondary entry point to a
subroutine or external function.

ENTRY

Declares a user-defined subroutine or function
to be passable as an argument.

EXTERNAL

Identifies a program unit as a function.FUNCTION

Inserts the contents of a specified file into
the source file.

INCLUDE

Specifies an explicit interface for external
functions and subroutines.

INTERFACE

Declares a predefined function.INTRINSIC

Identifies a module program unit.MODULE

Identifies a program unit as a main program.PROGRAM

Returns control to the program unit that
called a subroutine or function.

RETURN

Identifies a program unit as a subroutine.SUBROUTINE

Gives a program unit access to a module.USE

Statements Affecting Variables

The following table lists statements that affect variable.

2250

63 Intel® Fortran Compiler User and Reference Guides

DescriptionName

Declares a variable on the stack, rather than
at a static memory location.

AUTOMATIC

Specifies variables as the BYTE data type;
BYTE is equivalent to INTEGER(1).

BYTE

Specifies variables as the CHARACTER data
type.

CHARACTER

Specifies variables as the COMPLEX data type.COMPLEX

Assigns initial values to variables.DATA

Identifies a variable as an array and specifies
the number of elements.

DIMENSION

Specifies variables as the DOUBLE COMPLEX
data type, equivalent to COMPLEX(8).

DOUBLE COMPLEX

Specifies variables as the DOUBLE-PRECISION
real data type, equivalent to REAL(8).

DOUBLE PRECISION

Specifies that two or more variables or arrays
share the same memory location.

EQUIVALENCE

Specifies the default typing for real and
integer variables and functions.

IMPLICIT

Specifies variables as the INTEGER data type.INTEGER

Specifies variables as the LOGICAL data type.LOGICAL

Within a UNION statement, delimits a group
of variable type declarations that are to be
ordered contiguously within memory.

MAP

Declares a group name for a set of variables
to be read or written in a single statement.

NAMELIST

Equates a constant expression with a name.PARAMETER

2251

63

DescriptionName

Specifies limitations on the use of module
entities.

PROTECTED

Specifies variables as the REAL data type.REAL

Declares one or more variables of a
user-defined structure type.

RECORD

Causes variables to retain their values
between invocations of the procedure in
which they are defined.

SAVE

Declares a variable is in a static memory
location, rather than on the stack.

STATIC

Defines a new variable type, composed of a
collection of other variable types.

STRUCTURE

Defines a new variable type, composed of a
collection of other variable types.

TYPE

Within a structure, causes two or more maps
to occupy the same memory locations.

UNION

Specifies that the value of an object is totally
unpredictable based on information available
to the current program unit.

VOLATILE

Statements for Input and Output

The following table lists statements used for input and output.

DescriptionProcedure TypeName

Similar to a formatted,
sequential READ statement.

StatementACCEPT

Positions a file to the
beginning of the previous
record.

StatementBACKSPACE

2252

63 Intel® Fortran Compiler User and Reference Guides

DescriptionProcedure TypeName

Disconnects the specified
unit.

StatementCLOSE

Deletes a record from a
relative file.

StatementDELETE

Writes an end-of-file record
or truncates a file.

StatementENDFILE

Checks for end-of-file record.
.TRUE. if at or past
end-of-file.

Intrinsic FunctionEOF

Returns the properties of a
file or unit.

StatementINQUIRE

Associates a unit number
with an external device or
file.

StatementOPEN

Displays data on the screen.StatementPRINT (or TYPE)

Transfers data from a file to
the items in an I/O list.

StatementREAD

Repositions a file to its first
record.

StatementREWIND

Rewrites the current record.StatementREWRITE

Transfers data from the items
in an I/O list to a file

StatementWRITE

Compiler Directives

The following table lists available compiler directives.

Each general directive name is preceded by the prefix cDEC$; for example, cDEC$ ALIAS. Each
OpenMP* Fortran directive name is preceded by the prefix c$OMP; for example, c$OMP ATOMIC.
The c in either can be a c, C, *, or ! in fixed-form source code; only ! in free-form source code.

2253

63

Table 697: General Directives

DescriptionName

Specifies an alternate external name to be
used when referring to external subprograms.

ALIAS

Specifies that an entity in memory is aligned.ASSUME_ALIGNED

Applies attributes to variables and
procedures.

ATTRIBUTES

Generates warning messages for undeclared
variables.

DECLARE

Creates a variable whose existence can be
tested during conditional compilation.

DEFINE

Specifies distribution for a DO loop.DISTRIBUTE POINT

Marks the beginning of an alternative
conditional-compilation block to an IF
directive construct.

ELSE

Marks the beginning of an alternative
conditional-compilation block to an IF
directive construct.

ELSEIF

Marks the end of a conditional-compilation
block.

ENDIF

Sets fixed-form line length. This directive has
no effect on freeform code.

FIXEDFORMLINESIZE

Uses freeform format for source code.FREEFORM

Specifies an identifier for an object module.IDENT

Marks the beginning of a
conditional-compilation block.

IF

Marks the beginning of a
conditional-compilation block.

IF DEFINED

Selects default integer size.INTEGER

2254

63 Intel® Fortran Compiler User and Reference Guides

DescriptionName

Assists the compiler's dependence analysis
of iterative DO loops.

IVDEP

Specifies the loop count for a DO loop; this
assists the optimizer.

LOOP COUNT

Ensures that a specific memory location is
updated dynamically.

MEMORYTOUCH1

Lets you provide cache hints on prefetches,
loads, and stores.

MEMREF_CONTROL1

Sends a character string to the standard
output device.

MESSAGE

(Default) Turns off warning messages for
undeclared variables.

NODECLARE

(Default) Uses standard FORTRAN 77 code
formatting column rules.

NOFREEFORM

Disables auto-parallelization for an
immediately following DO loop.

NOPARALLEL

Disables optimizations.NOOPTIMIZE

Disables a data prefetch from memory.NOPREFETCH

(Default) Disables a previous STRICT
directive.

NOSTRICT

Disables software pipelining for a DO loop.NOSWP1

Disables the unrolling of a DO loop.NOUNROLL

Disables loop unrolling and jamming.NOUNROLL_AND_JAM

Disables vectorization of a DO loop.NOVECTOR2

Specifies a library search path in an object
file.

OBJCOMMENT

2255

63

DescriptionName

Enables optimizations.OPTIMIZE

Controls whether fields in records and data
items in common blocks are naturally aligned
or packed on arbitrary byte boundaries.

OPTIONS

Specifies the memory starting addresses of
derived-type items.

PACK

Enables auto-parallelization for an
immediately following DO loop.

PARALLEL

Enables a data prefetch from memory.PREFETCH

Modifies certain characteristics of a common
block.

PSECT

Selects default real size.REAL

Disables Intel® Fortran features not in the
language standard specified on the command
line (Fortran 95 or Fortran 90).

STRICT

Enables software pipelining for a DO loop.SWP1

Removes a symbolic variable name created
with the DEFINE directive.

UNDEFINE

Tells the compiler's optimizer how many times
to unroll a DO loop.

UNROLL

Enables loop unrolling and jamming.UNROLL_AND_JAM

Specifies that all data is aligned in a DO loop.VECTOR ALIGNED

Enables vectorization of a DO loop.VECTOR ALWAYS

Directs the compiler to use non-temporal
(that is, streaming) stores.

VECTOR NONTEMPORAL2

Disables vectorization of a DO loop.VECTOR NOVECTOR

2256

63 Intel® Fortran Compiler User and Reference Guides

DescriptionName

Directs the compiler to use temporal (that is,
non-streaming) stores.

VECTOR TEMPORAL2

Specifies that no data is aligned in a DO loop.VECTOR UNALIGNED

1i64 only
2i32, i64em

To use the following directives, you must specify compiler option -openmp (Linux and Mac OS
X) or /Qopenmp (Windows).

Table 698: OpenMP Fortran Directives

DescriptionName

Specifies that a specific memory location is
to be updated dynamically.

ATOMIC

Synchronizes all the threads in a team.BARRIER

Restricts access for a block of code to only
one thread at a time.

CRITICAL

Specifies that the iterations of the
immediately following DO loop must be
executed in parallel.

DO

Specifies synchronization points where the
implementation must have a consistent view
of memory.

FLUSH

Specifies a block of code to be executed by
the master thread of the team.

MASTER

Specifies a block of code to be executed
sequentially.

ORDERED

Defines a parallel region.PARALLEL

Defines a parallel region that contains a single
DO directive.

PARALLEL DO

2257

63

DescriptionName

Defines a parallel region that contains
SECTIONS directives.

PARALLEL SECTIONS

Defines a parallel region that contains a single
WORKSHARE directive.

PARALLEL WORKSHARE

Specifies a block of code to be divided among
threads in a team (a worksharing area).

SECTIONS

Specifies a block of code to be executed by
only one thread in a team.

SINGLE

Defines a task region.TASK

Specifies a wait on the completion of child
tasks generated since the beginning of the
current task.

TASKWAIT

Makes named common blocks private to a
thread but global within the thread.

THREADPRIVATE

Divides the work of executing a block of
statements or constructs into separate units.

WORKSHARE

Program Control Statements and Procedures

The following table lists statements and a procedure that affect program control.

Table 699: Statements

DescriptionName

Within a SELECT CASE structure, marks a
block of statements that are executed if an
associated value matches the SELECT CASE
expression.

CASE

Often used as the target of GOTO or as the
terminal statement in a DO loop; performs
no operation.

CONTINUE

2258

63 Intel® Fortran Compiler User and Reference Guides

DescriptionName

Advances control to the end statement of a
DO loop; the intervening loop statements are
not executed.

CYCLE

Evaluates statements in the DO loop, through
and including the ending statement, a specific
number of times.

DO

Evaluates statements in the DO WHILE loop,
through and including the ending statement,
until a logical condition becomes .FALSE..

DO WHILE

Introduces an ELSE block.ELSE

Introduces an ELSE IF block.ELSE IF

Introduces an ELSEWHERE block.ELSEWHERE

Marks the end of a program unit.END

Marks the end of a series of statements
following a DO or DO WHILE statement.

END DO

Marks the end of a series of statements
following a block FORALL statement.

END FORALL

Marks the end of a series of statements
following a block IF statement.

END IF

Marks the end of a SELECT CASE statement.END SELECT

Marks the end of a series of statements
following a block WHERE statement.

END WHERE

Leaves a DO loop; execution continues with
the first statement that follows.

EXIT

Controls conditional execution of other
statements.

FORALL

Transfers control to a specified part of the
program.

GOTO

2259

63

DescriptionName

Controls conditional execution of other
statements.

IF

Suspends program execution and, optionally,
executes operating-system commands.

PAUSE

Transfers program control to a block of
statements, determined by a controlling
argument.

SELECT CASE

Terminates program execution.STOP

Controls conditional execution of other
statements.

WHERE

Table 700: Procedure

DescriptionName

(Intrinsic Subroutine) Terminates the
program, flushes and closes all open files,
and returns control to the operating system.

EXIT

The portability routines RAISEQQ, SIGNALQQ, and SLEEPQQ also supply this functionality.

Inquiry Intrinsic Functions

The following table lists inquiry intrinsic functions.

DescriptionName

Determines whether an allocatable array is
allocated.

ALLOCATED

Determines whether a the first pointer
argument and the second (optional) pointer
argument are associated.

ASSOCIATED

Returns the number of bits in an integer type.BIT_SIZE

Returns the size of a level of the memory
cache.

CACHESIZE1

2260

63 Intel® Fortran Compiler User and Reference Guides

DescriptionName

Returns the number of command arguments.COMMAND_ARGUMENT_COUNT

Returns number of significant digits for data
of the same type as the argument.

DIGITS

Determines whether a file is at or beyond the
end-of-file record.

EOF

Returns the smallest positive number that
when added to one produces a number
greater than one for data of the same type
as the argument.

EPSILON

Returns the largest number that can be
represented by numbers of type the
argument.

HUGE

Returns the index of the last command-line
argument.

IARGC

Returns the INTEGER KIND that will hold an
address.

INT_PTR_KIND

Returns the value of the kind parameter of
the argument.

KIND

Returns the lower bounds for all dimensions
of an array, or the lower bound for a specified
dimension.

LBOUND

Returns the length of a character expression.LEN

Returns the address of the argument.LOC

Returns the largest positive decimal exponent
for data of the same type as the argument.

MAXEXPONENT

Returns the largest negative decimal
exponent for data of the same type as the
argument.

MINEXPONENT

2261

63

DescriptionName

Returns the total number of command-line
arguments, including the command.

NARGS

Returns the number of significant digits for
data of the same type as the argument.

PRECISION

Determines whether an optional argument is
present.

PRESENT

Returns the base for data of the same type
as the argument.

RADIX

Returns the decimal exponent range for data
of the same type as the argument.

RANGE

Returns the value of the kind parameter of
integers in range r.

SELECTED_INT_KIND

Returns the value of the kind parameter of
reals with (optional) first argument digits and
(optional) second argument exponent range.
At least one optional argument is required.

SELECTED_REAL_KIND

Returns the shape of an array or scalar
argument.

SHAPE

Returns the number of bytes of storage used
by the argument.

SIZEOF

Returns the smallest positive number that
can be represented by numbers of type the
argument.

TINY

Returns the upper bounds for all dimensions
of an array, or the upper bound for a specified
dimension.

UBOUND

1i64 only

Random Number Intrinsic Procedures

The following table lists random number intrinsic procedures.

2262

63 Intel® Fortran Compiler User and Reference Guides

DescriptionProcedure TypeName

Returns the next number
from a sequence of
pseudorandom numbers of
uniform distribution over the
range 0 to 1.

Intrinsic functionRAN

Returns a pseudorandom real
value greater than or equal
to zero and less than one.

Intrinsic subroutineRANDOM_NUMBER

Changes the starting point of
RANDOM_NUMBER; takes
one or no arguments.

Intrinsic subroutineRANDOM_SEED

Computes a pseudorandom
number as a single-precision
value.

Intrinsic subroutineRANDU

The portability routines RANDOM and SEED also supply this functionality.

Date and Time Intrinsic Subroutines

The following table lists date and time intrinsic subroutines.

DescriptionProcedure TypeName

Returns the processor time
in seconds.

Intrinsic subroutineCPU_TIME

Returns the ASCII
representation of the current
date (in dd-mmm-yy form).

Intrinsic subroutineDATE

Returns the date and time.
This is the preferred
procedure for date and time.

Intrinsic subroutineDATE_AND_TIME

Returns three integer values
representing the current
month, day, and year.

Intrinsic subroutineIDATE

2263

63

DescriptionProcedure TypeName

Returns data from the system
clock.

Intrinsic subroutineSYSTEM_CLOCK

Returns the ASCII
representation of the current
time (in hh:mm:ss form).

Intrinsic subroutineTIME

The portability routines GETDAT, GETTIM, SETDAT, and SETTIM also supply this functionality.

Keyboard and Speaker Library Routines

The following table lists keyboard and speaker library routines.

DescriptionRoutine TypeName

Returns the next keyboard
keystroke.

Run-time FunctionGETCHARQQ

Sounds the speaker for a
specified duration in
milliseconds at a specified
frequency in Hertz.

Portability subroutineBEEPQQ

Reads a character string from
the keyboard using buffered
input.

Run-time functionGETSTRQQ

Checks the buffer to see if a
keystroke is waiting.

Run-time functionPEEKCHARQQ

Statements and Intrinsic Procedures for Memory Allocation and Deallocation

The following table lists statements and intrinsic procedures that are used for memory allocation
and deallocation.

DescriptionProcedure TypeName

Dynamically establishes
allocatable array dimensions.

StatementALLOCATE

2264

63 Intel® Fortran Compiler User and Reference Guides

DescriptionProcedure TypeName

Determines whether an
allocatable array is allocated.

Intrinsic FunctionALLOCATED

Frees the storage space
previously reserved in an
ALLOCATE statement.

StatementDEALLOCATE

Frees the memory block
specified by the integer
pointer argument.

Intrinsic SubroutineFREE

Allocates a memory block of
size bytes and returns an
integer pointer to the block.

Intrinsic FunctionMALLOC

Moves an allocation from one
allocatable object to another.

Intrinsic SubroutineMOVE_ALLOC

Intrinsic Functions for Arrays

The following table lists intrinsic functions for arrays.

DescriptionName

Determines whether all array values meet
the conditions in a mask along a (optional)
dimension.

ALL

Determines whether any array values meet
the conditions in a mask along a (optional)
dimension.

ANY

Counts the number of array elements that
meet the conditions in a mask along a
(optional) dimension.

COUNT

Performs a circular shift along a (optional)
dimension.

CSHIFT

Identifies a variable as an array and specifies
the number of elements.

DIMENSION

2265

63

DescriptionName

Performs dot-product multiplication on
vectors (one-dimensional arrays).

DOT_PRODUCT

Shifts elements off one end of array along a
(optional) dimension and copies (optional)
boundary values in other end.

EOSHIFT

Returns lower dimensional bounds of an array
along a (optional) dimension.

LBOUND

Performs matrix multiplication on matrices
(two-dimensional arrays).

MATMUL

Returns the location of the maximum value
in an array meeting conditions in a (optional)
mask along a (optional) dimension.

MAXLOC

Returns the maximum value in an array along
a (optional) dimension that meets conditions
in a (optional) mask.

MAXVAL

Merges two arrays according to conditions in
a mask.

MERGE

Returns the location of the minimum value
in an array meeting conditions in a (optional)
mask along a (optional) dimension.

MINLOC

Returns the minimum value in an array along
a (optional) dimension that meets conditions
in a (optional) mask.

MINVAL

Packs an array into a vector (one-dimensional
array) of an (optional) size using a mask.

PACK

Returns product of elements of an array along
a (optional) dimension that meet conditions
in a (optional) mask.

PRODUCT

Reshapes an array with (optional) subscript
order, padded with (optional) array elements.

RESHAPE

2266

63 Intel® Fortran Compiler User and Reference Guides

DescriptionName

Returns the shape of an array.SHAPE

Returns the extent of an array along a
(optional) dimension.

SIZE

Replicates an array by adding a dimension.SPREAD

Sums array elements along a (optional)
dimension that meet conditions of an
(optional) mask.

SUM

Transposes a two-dimensional array.TRANSPOSE

Returns upper dimensional bounds of an array
along a (optional) dimension.

UBOUND

Unpacks a vector (one-dimensional array)
into an array under a mask padding with
values from a field.

UNPACK

The DIMENSION statement identifies variables as arrays.

Intrinsic Functions for Numeric and Type Conversion

The following table lists intrinsic functions for numeric and type conversion.

DescriptionName

Returns the absolute value of the argument.ABS

Returns imaginary part of complex number
z.

AIMAG

Truncates the argument to a whole number
of a specified (optional) kind.

AINT

Returns largest value among integer
arguments as real.

AMAX0

Returns smallest value among integer
arguments as real.

AMIN0

2267

63

DescriptionName

Rounds to the nearest whole number of a
specified (optional) kind.

ANINT

Returns smallest integer greater than the
argument.

CEILING

Converts the first argument and (optional)
second argument to complex of a (optional)
kind.

CMPLX

Returns the conjugate of a complex number.CONJG

Converts the argument to double precision
type.

DBLE

Converts the argument to double complex
type.

DCMPLX

Converts an integer to double precision type.DFLOAT

Returns the first argument - the second
argument if positive; else 0.

DIM

Returns double-precision product of two
single precision arguments.

DPROD

Converts the argument to REAL(4).FLOAT

Returns the greatest integer less than or
equal to the argument.

FLOOR

Converts a single-precision real argument to
an integer argument by truncating.

IFIX

Same as AIMAG.IMAG

Converts a value to integer type.INT

Converts between logical arguments of
(optional) kind.

LOGICAL

Returns largest value among arguments.MAX

2268

63 Intel® Fortran Compiler User and Reference Guides

DescriptionName

Returns largest value among real arguments
as integer.

MAX1

Returns smallest value among arguments.MIN

Returns smallest value among real arguments
as integer

MIN1

Returns the remainder of the first argument
divided by the second argument.

MOD

Returns the first argument modulo of the
second argument.

MODULO

Returns the nearest integer to the argument.NINT

Converts a value to real type.REAL

Returns absolute value of the first argument
times the sign of the second argument.

SIGN

Converts a double-precision argument to
single-precision real type.

SNGL

Transforms first argument into type of second
argument with (optional) size if an array.

TRANSFER

Extends the argument with zeros.ZEXT

Trigonometric, Exponential, Root, and Logarithmic Intrinsic Procedures

The following table lists intrinsic procedures for trigonometric, exponential, root, and logarithmic
operations.

DescriptionName

Returns the arccosine of the argument,
expressed in radians between 0 and pi.

ACOS

Returns the arccosine of the argument,
expressed in degrees between 0 and 180.

ACOSD

2269

63

DescriptionName

Returns natural log of the argument.ALOG

Returns common log (base 10) of the
argument.

ALOG10

Returns the arcsine of the argument,
expressed in radians between ±pi/2.

ASIN

Returns the arcsine of the argument,
expressed in degrees between ±90°.

ASIND

Returns the arctangent of the argument,
expressed in radians between ±pi/2.

ATAN

Returns the arctangent of the argument,
expressed in degrees between ±90°.

ATAND

Returns the arctangent of the first argument
divided by the second argument, expressed
in radians between ±pi.

ATAN2

Returns the arctangent of the first argument
divided by the second argument, expressed
in degrees between ±180°.

ATAN2D

Returns complex cosine of the argument.CCOS

Returns the double-precision complex cosine
of the argument.

CDCOS

Returns double-precision complex exponential
value of the argument.

CDEXP

Returns the double-precision complex natural
log of the argument.

CDLOG

Returns the double-precision complex sine of
the argument.

CDSIN

Returns the double-precision complex square
root of the argument.

CDSQRT

2270

63 Intel® Fortran Compiler User and Reference Guides

DescriptionName

Returns the complex exponential value of the
argument.

CEXP

Returns the complex natural log of the
argument.

CLOG

Returns the cosine of the argument, which is
in radians.

COS

COSD(x). Returns the cosine of the
argument, which is in degrees.

COSD

Returns the hyperbolic cosine of the
argument.

COSH

Returns the cotangent of the argument, which
is in radians.

COTAN

Returns the cotangent of the argument, which
is in degrees.

COTAND

Returns the complex sine of the argument.CSIN

Returns the complex square root of the
argument.

CSQRT

Returns the double-precision arccosine of the
argument radians between 0 and pi.

DACOS

Returns the arccosine of the argument in
degrees between 0 and 180.

DACOSD

Returns the double-precision arcsine of the
argument in radians between ±pi/2.

DASIN

Returns the double-precision arcsine of the
argument degrees between ±90°.

DASIND

Returns the double-precision arctangent of
the argument radians between ±pi/2.

DATAN

2271

63

DescriptionName

Returns the double-precision arctangent of
the argument degrees between ±90°.

DATAND

Returns the double-precision arctangent of
the second argument divided by the first
argument radians between ±pi.

DATAN2

Returns the double-precision arctangent of
the second argument divided by the first
argument degrees between ±180°.

DATAN2D

Returns the double-precision cosine of the
argument radians.

DCOS

Returns the double-precision cosine of the
argument degrees.

DCOSD

Returns the double-precision hyperbolic
cosine of the argument.

DCOSH

Returns the double-precision cotangent of
the argument.

DCOTAN

Returns the double-precision exponential
value of the argument.

DEXP

Returns the double-precision natural log of
the argument.

DLOG

Returns the double-precision common log
(base 10) of the argument.

DLOG10

Returns the double-precision sin of the
argument radians.

DSIN

Returns the double-precision sin of the
argument degrees.

DSIND

Returns the double-precision hyperbolic sine
of the argument.

DSINH

2272

63 Intel® Fortran Compiler User and Reference Guides

DescriptionName

Returns the double-precision square root of
the argument.

DSQRT

Returns the double-precision tangent of the
argument radians.

DTAN

Returns the double-precision tangent of the
argument degrees.

DTAND

Returns the double-precision hyperbolic
tangent of the argument.

DTANH

Returns the exponential value of the
argument.

EXP

Returns the natural log of the argument.LOG

Returns the common log (base 10) of the
argument.

LOG10

Returns the sine of the argument, which is
in radians.

SIN

Returns the sine of the argument, which is
in degrees.

SIND

Returns the hyperbolic sine of the argument.SINH

Returns the square root of the argument.SQRT

Returns the tangent of the argument, which
is in radians.

TAN

Returns the tangent of the argument, which
is in degrees.

TAND

Returns the hyperbolic tangent of the
argument.

TANH

Intrinsic Functions for Floating-Point Inquiry and Control

The following table lists intrinsic functions for floating-point inquiry and control.

2273

63

Certain functions (EXPONENT, FRACTION, NEAREST, RRSPACING, SCALE, SET_EXPONENT and
SPACING) return values related to components of the model set of real numbers. For a
description of this model, see the Model for Real Data.

DescriptionName

Returns number of significant digits for data
of the same type as the argument.

DIGITS

Returns the smallest positive number that
when added to one produces a number
greater than one for data of the same type
as the argument.

EPSILON

Returns the exponent part of the
representation of x.

EXPONENT

Returns the fractional part of the
representation of the argument.

FRACTION

Returns largest number that can be
represented by data of type the argument.

HUGE

Returns the largest positive decimal exponent
for data of the same type as the argument.

MAXEXPONENT

Returns the largest negative decimal
exponent for data of the same type as the
argument.

MINEXPONENT

Returns the nearest different machine
representable number to the first argument
in the direction of the sign of the second
argument.

NEAREST

Returns the number of significant digits for
data of the same type as the argument.

PRECISION

Returns the base for data of the same type
as the argument.

RADIX

Returns the decimal exponent range for data
of the same type as the argument.

RANGE

2274

63 Intel® Fortran Compiler User and Reference Guides

DescriptionName

Returns the reciprocal of the relative spacing
of numbers near the argument.

RRSPACING

Multiplies the first argument by 2 raised to
the power of the second argument.

SCALE

Returns a number whose fractional part is
the first argument and whose exponential
part is the second argument.

SET_EXPONENT

Returns the absolute spacing of numbers near
the argument.

SPACING

Returns smallest positive number that can
be represented by data of type of the
argument.

TINY

The portability routines GETCONTROLFPQQ, GETSTATUSFPQQ, LCWRQQ, SCWRQQ,
SETCONTROLFPQQ, and SSWRQQ also supply this functionality.

Character Intrinsic Functions

The following table lists character intrinsic functions.

DescriptionName

Returns character in a specified position in
the ASCII character set.

ACHAR

Adjusts left, removing leading blanks and
inserting trailing blanks.

ADJUSTL

Adjusts right, removing trailing blanks and
inserting leading blanks.

ADJUSTR

Returns character in a specified position in
the processor's character set of (optional)
kind.

CHAR

Returns the position of the argument in the
ASCII character set.

IACHAR

2275

63

DescriptionName

Returns the position of the argument in the
processor's character set.

ICHAR

Returns the starting position of a substring
in a string, leftmost or (optional) rightmost
occurance.

INDEX

Returns the size of the argument.LEN

Returns the number of characters in the
argument, not counting trailing blanks.

LEN_TRIM

Tests whether the the first argument is
greater than or equal to the second
argument, based on the ASCII collating
sequence.

LGE

Tests whether the first argument is greater
than the second argument, based on the
ASCII collating sequence.

LGT

Tests whether the first argument is less than
or equal to the second argument, based on
the ASCII collating sequence.

LLE

Tests whether the first argument is less than
the second argument, based on the ASCII
collating sequence.

LLT

Concatenates multiple copies of a string.REPEAT

Scans a string for any characters in a set and
returns leftmost or (optional) rightmost
position where a match is found.

SCAN

Removes trailing blanks from a string.TRIM

Returns the position of the leftmost or
(optional) rightmost character in the
argument string not in a set, or zero if all
characters in the set are present.

VERIFY

2276

63 Intel® Fortran Compiler User and Reference Guides

Intrinsic Procedures for Bit Operation and Representation

The following tables list intrinsic procedures for bit operation and representation.

Table 711: Bit Operation

DescriptionProcedure TypeName

Returns the number
of bits in integers of
type the argument.

Intrinsic FunctionBIT_SIZE

Tests a bit in a
position of the
argument; true if bit
is 1.

Intrinsic FunctionBTEST

Performs a logical
AND.

Intrinsic FunctionIAND

Reverses value of bit
in a position of the
argument.

Intrinsic FunctionIBCHNG

Clears the bit in a
position of the
argument to zero.

Intrinsic FunctionIBCLR

Extracts a sequence
of bits of length from
the argument
starting in a position.

Intrinsic FunctionIBITS

Sets the bit in a
position of the
argument to one.

Intrinsic FunctionIBSET

Performs an
exclusive OR.

Intrinsic FunctionIEOR

Performs an inclusive
OR.

Intrinsic FunctionIOR

2277

63

DescriptionProcedure TypeName

Shifts the argument
arithmetically left or
right by shift bits;

Intrinsic FunctionISHA

left if shift positive,
right if shift negative.
Zeros shifted in from
the right, ones
shifted in from the
left.

Performs a circular
shift of the argument
left or right by shift

Intrinsic FunctionISHC

bits; left if shift
positive, right if shift
negative. No bits
lost.

Shifts the argument
logically left or right
by shift bits; left if

Intrinsic FunctionISHFT

shift positive, right if
shift negative. Zeros
shifted in from
opposite end.

Performs a circular
shift of the rightmost
bits of (optional) size
by shift bits. No bits
lost.

Intrinsic FunctionISHFTC

Shifts the argument
logically left or right
by shift bits. Zeros
shifted in from
opposite end.

Intrinsic FunctionISHL

Copies a sequence of
bits from one integer
to another.

Intrinsic SubroutineMVBITS

2278

63 Intel® Fortran Compiler User and Reference Guides

DescriptionProcedure TypeName

Performs a logical
complement.

Intrinsic FunctionNOT

Table 712: Bit Representation

DescriptionProcedure TypeName

Returns leading zero
bits in an integer.

Intrinsic FunctionLEADZ

Returns number of 1
bits in an integer.

Intrinsic FunctionPOPCNT

Returns the parity of
an integer.

Intrinsic FunctionPOPPAR

Returns trailing zero
bits in an integer.

Intrinsic FunctionTRAILZ

QuickWin Library Routines (W*32, W*64)

The following table lists Quickwin library routines.

Programs that use these routines must access the appropriate library with USE IFQWIN. These
routines are restricted to Windows* systems.

DescriptionRoutine TypeName

Adds an About Box with
customized text.

FunctionABOUTBOXQQ

Appends a menu item.FunctionAPPENDMENUQQ

Sends menu click messages
to the application window.

FunctionCLICKMENUQQ

Deletes a menu item.FunctionDELETEMENUQQ

Makes a child window active,
and gives focus to the child
window.

FunctionFOCUSQQ

2279

63

DescriptionRoutine TypeName

Gets the unit number of the
active child window.

FunctionGETACTIVEQQ

Gets the setting for a
QuickWin application's exit
behavior.

FunctionGETEXITQQ

Gets the true windows handle
from window with the
specified unit number.

FunctionGETHWNDQQ

Returns the current window's
properties.

FunctionGETWINDOWCONFIG

Gets the size of the child or
frame window.

FunctionGETWSIZEQQ

Gets the unit number
corresponding to the
specified windows handle.
Inverse of GETHWNDQQ.

FunctionGETUNITQQ

Reads a keyboard input and
return its ASCII value.

FunctionINCHARQQ

Controls initial menu settings
and initial frame window
settings.

FunctionINITIALSETTINGS

Determines which window is
active and has the focus.

FunctionINQFOCUSQQ

Inserts a menu item.FunctionINSERTMENUQQ

Converts a true color value
into its red, green and blue
components.

SubroutineINTEGERTORGB

Displays a message box.FunctionMESSAGEBOXQQ

Modifies a menu item state.FunctionMODIFYMENUFLAGSQQ

2280

63 Intel® Fortran Compiler User and Reference Guides

DescriptionRoutine TypeName

Modifies a menu item's
callback routine.

FunctionMODIFYMENUROUTINEQQ

Changes a menu item's text
string.

FunctionMODIFYMENUSTRINGQQ

Determines the behavior of
direction and page keys.

FunctionPASSDIRKEYSQQ

Registers the
application-defined routines
to be called on mouse events.

FunctionREGISTERMOUSEEVENT

Converts a trio of red, green
and blue values to a true
color value for use with RGB
functions and subroutines.

FunctionRGBTOINTEGER

Makes the specified window
the current active window
without giving it the focus.

FunctionSETACTIVEQQ

Sets a QuickWin application's
exit behavior.

FunctionSETEXITQQ

Changes any QuickWin
message, including status bar
messages, state messages
and dialog box messages.

SubroutineSETMESSAGEQQ

Sets the mouse cursor for the
window in focus.

FunctionSETMOUSECURSOR

Configures the current
window's properties.

FunctionSETWINDOWCONFIG

Sets the Window menu to
which current child window
names will be appended.

FunctionSETWINDOWMENUQQ

Sets the size of the child or
frame window.

FunctionSETWSIZEQQ

2281

63

DescriptionRoutine TypeName

Removes the callback routine
registered by
REGISTERMOUSEEVENT.

FunctionUNREGISTERMOUSEEVENT

Blocks return until a mouse
event occurs.

FunctionWAITONMOUSEEVENT

Graphics Library Routines (W*32, W*64)

The following table lists library routines for graphics.

Programs that use these routines must access the appropriate library with USE IFQWIN. These
routines are restricted to Windows* systems.

DescriptionRoutine TypeName

Draws an arc.FunctionsARC, ARC_W

Clears the screen, viewport,
or text window.

SubroutineCLEARSCREEN

Turns the cursor off and on.FunctionDISPLAYCURSOR

Draws an ellipse or circle.FunctionsELLIPSE, ELLIPSE_W

Fills an enclosed area of the
screen with the current color
index, using the current fill
mask.

FunctionsFLOODFILL, FLOODFILL_W

Fills an enclosed area of the
screen with the current RGB
color, using the current fill
mask.

FunctionsFLOODFILLRGB,
FLOODFILLRGB_W

Determines the end points of
the most recently drawn arc
or pie.

FunctionGETARCINFO

Returns the current
background color index.

FunctionGETBKCOLOR

2282

63 Intel® Fortran Compiler User and Reference Guides

DescriptionRoutine TypeName

Returns the current
background RGB color.

FunctionGETBKCOLORRGB

Returns the current color
index.

FunctionGETCOLOR

Returns the current RGB
color.

FunctionGETCOLORRGB

Returns the coordinates of
the current graphics-output
position.

SubroutinesGETCURRENTPOSITION,
GETCURRENTPOSITION_W

Returns the current fill mask.SubroutineGETFILLMASK

Returns the current font
characteristics.

FunctionGETFONTINFO

Determines the width of the
specified text in the current
font.

FunctionGETGTEXTEXTENT

Get the current text rotation
angle.

FunctionGETGTEXTROTATION

Stores a screen image in
memory.

SubroutinesGETIMAGE, GETIMAGE_W

Returns the current line style.FunctionGETLINESTYLE

Converts viewport
coordinates to physical
coordinates.

SubroutineGETPHYSCOORD

Returns a pixel's color index.FunctionsGETPIXEL, GETPIXEL_W

Returns a pixel's RGB color.FunctionsGETPIXELRGB,
GETPIXELRGB_W

Returns the color indices of
multiple pixels.

FunctionGETPIXELS

2283

63

DescriptionRoutine TypeName

Returns the RGB colors of
multiple pixels.

FunctionGETPIXELSRGB

Returns the current text color
index.

FunctionGETTEXTCOLOR

Returns the current text RGB
color.

FunctionGETTEXTCOLORRGB

Returns the current
text-output position.

SubroutineGETTEXTPOSITION

Returns the boundaries of the
current text window.

SubroutineGETTEXTWINDOW

Converts physical or window
coordinates to viewport
coordinates.

SubroutinesGETVIEWCOORD,
GETVIEWCOORD_W

Converts viewport
coordinates to window
coordinates.

SubroutineGETWINDOWCOORD

Returns the logical write
mode for lines.

FunctionGETWRITEMODE

Returns the status (success
or failure) of the most
recently called graphics
routine.

FunctionGRSTATUS

Returns image size in bytes.FunctionsIMAGESIZE, IMAGESIZE_W

Initializes the font library.FunctionINITIALIZEFONTS

Draws a line from the current
position to a specified point.

FunctionsLINETO, LINETO_W

Draws a line between points
in one array and
corresponding points in
another array.

FunctionLINETOAR

2284

63 Intel® Fortran Compiler User and Reference Guides

DescriptionRoutine TypeName

Similar to LINETOAR, but also
lets you specify color and line
style.

FunctionLINETOAREX

Reads a Windows bitmap file
(.BMP) and displays it at the
specified location.

FunctionsLOADIMAGE, LOADIMAGE_W

Moves the current position to
the specified point.

SubroutinesMOVETO, MOVETO_W

Sends text in the current font
to the screen at the current
position.

SubroutineOUTGTEXT

Sends text to the screen at
the current position.

SubroutineOUTTEXT

Draws a pie slice.FunctionsPIE, PIE_W

Draws one or more Bezier
curves.

FunctionsPOLYBEZIER, POLYBEZIER_W

Draws one or more Bezier
curves.

FunctionsPOLYBEZIERTO,
POLYBEZIERTO_W

Draws a polygon.FunctionsPOLYGON, POLYGON_W

Draws a line between
successive points in an array.

FunctionPOLYLINEQQ

Retrieves an image from
memory and displays it.

SubroutinesPUTIMAGE, PUTIMAGE_W

Draws a rectangle.FunctionsRECTANGLE, RECTANGLE_W

Remaps a set of RGB color
values to indices recognized
by the current video
configuration.

FunctionREMAPALLPALETTERGB

2285

63

DescriptionRoutine TypeName

Remaps a single RGB color
value to a color index.

FunctionREMAPPALETTERGB

Captures a screen image and
saves it as a Windows bitmap
file.

FunctionsSAVEIMAGE, SAVEIMAGE_W

Scrolls the contents of a text
window.

SubroutineSCROLLTEXTWINDOW

Sets the current background
color.

FunctionSETBKCOLOR

Sets the current background
color to a direct color value
rather than an index to a
defined palette.

FunctionSETBKCOLORRGB

Limits graphics output to a
part of the screen.

SubroutineSETCLIPRGN

Sets the current color to a
new color index.

FunctionSETCOLOR

Sets the current color to a
direct color value rather than
an index to a defined palette.

FunctionSETCOLORRGB

Changes the current fill mask
to a new pattern.

SubroutineSETFILLMASK

Finds a single font matching
the specified characteristics
and assigns it to OUTGTEXT.

FunctionSETFONT

Sets the direction in which
text is written to the specified
angle.

SubroutineSETGTEXTROTATION

Changes the current line
style.

SubroutineSETLINESTYLE

2286

63 Intel® Fortran Compiler User and Reference Guides

DescriptionRoutine TypeName

Sets color of a pixel at a
specified location.

FunctionsSETPIXEL, SETPIXEL_W

Sets RGB color of a pixel at
a specified location.

FunctionsSETPIXELRGB,
SETPIXELRGB_W

Sets the color indices of
multiple pixels.

SubroutineSETPIXELS

Sets the RGB color of
multiple pixels.

SubroutineSETPIXELSRGB

Sets the current text color to
a new color index.

FunctionSETTEXTCOLOR

Sets the current text color to
a direct color value rather
than an index to a defined
palette.

FunctionSETTEXTCOLORRGB

Sets the height and width of
the text cursor for the
window in focus.

FunctionSETTEXTCURSOR

Changes the current text
position.

SubroutineSETTEXTPOSITION

Sets the current text display
window.

SubroutineSETTEXTWINDOW

Positions the viewport
coordinate origin.

SubroutineSETVIEWORG

Defines the size and screen
position of the viewport.

SubroutineSETVIEWPORT

Defines the window
coordinate system.

FunctionSETWINDOW

Changes the current logical
write mode for lines.

FunctionSETWRITEMODE

2287

63

DescriptionRoutine TypeName

Turns line wrapping on or off.FunctionWRAPON

Portability Library Routines

The following tables list library routines for portability.

Programs that use these routines must access the portability library with USE IFPORT.

Table 715: Information Retrieval

DescriptionProcedure TypeName

Returns information about a
logical file unit.

FunctionFSTAT

Returns the pathname of the
current working directory.

FunctionGETCWD

Searches the environment for
a given string and returns its
value if found.

FunctionGETENV

Returns the group ID of the
user.

FunctionGETGID

Returns the user's login
name.

SubroutineGETLOG

Returns the process ID of the
process.

FunctionGETPID

Returns the user ID of the
user of the process.

FunctionGETUID

Returns the name of the
user's host.

FunctionHOSTNAM 1

Checks whether a logical unit
number is a terminal.

FunctionISATTY

2288

63 Intel® Fortran Compiler User and Reference Guides

DescriptionProcedure TypeName

Returns information about a
named file. STAT is the
preferred form of this
function.

FunctionLSTAT

Renames a file.FunctionRENAME

Returns information about a
named file.

FunctionSTAT

Deletes the file given by
path.

FunctionUNLINK

Table 716: Process Control

DescriptionProcedure TypeName

Stops execution of the
current process, clears I/O
buffers, and writes a string
to external unit 0.

SubroutineABORT

Executes an external
subroutine after waiting a
specified number of seconds.

FunctionALARM

Sends a signal code to the
process given by ID.

FunctionKILL

Changes the action for signal.FunctionSIGNAL

Suspends program execution
for a specified number of
seconds.

SubroutineSLEEP

Executes a command in a
separate shell.

FunctionSYSTEM

2289

63

Table 717: Numeric Values and Conversion

DescriptionProcedure TypeName

Return single-precision
values of Bessel functions of
the first and second kind of
orders 1, 2, and n,
respectively.

FunctionsBESJ0, BESJ1, BESJN,
BESY0, BESY1, BESYN

Perform bit level clear, set,
and test for integers.

Subroutines

Function

BIC, BIS, BIT

Converts a COMPLEX(4)
argument to DOUBLE
PRECISION type.

FunctionCDFLOAT

Return a BIT-WISE
complement or logical .NOT.
of the argument.

FunctionsCOMPLINT, COMPLREAL,
COMPLLOG

Performs an effective
BIT-WISE store under mask.

FunctionCSMG

Return double-precision
values of Bessel functions of
the first and second kind of
orders 1, 2, and n,
respectively.

FunctionsDBESJ0, DBESJ1, DBESJN,
DBESY0, DBESY1, DBESYN

Convert an integer to
double-precision real type.

FunctionsDFLOATI, DFLOATJ, DFLOATK

Return random numbers
between 0.0 and 1.0.

FunctionsDRAND, DRANDM

Sets the seed for the random
number generator.

SubroutineDRANSET

Converts an INTEGER(4)
argument to double-precision
real type.

FunctionIDFLOAT

Convert an integer to
single-precision real type.

FunctionsIFLOATI, IFLOATJ

2290

63 Intel® Fortran Compiler User and Reference Guides

DescriptionProcedure TypeName

Returns the maximum
positive value for an integer.

FunctionINMAX

Converts an INTEGER(4)
argument to INTEGER(2)
type.

FunctionINTC

Return a positive integer in
the range 0 through 2**31-1
or 2**15-1 if called without
an argument.

FunctionsIRAND, IRANDM

Returns the current seed.SubroutineIRANGET

Sets the seed for the random
number generator.

SubroutineIRANSET

Computes an absolute value.FunctionJABS

Converts an INTEGER(2)
argument to INTEGER(4)
type.

FunctionLONG

Sets the seed for a sequence
of pseudo-random numbers.

SubroutineQRANSET

Return random values in the
range 0 through 1.0.

FunctionsRAND, RANDOM 2

Generates a random number
between 0.0 and RAND_MAX.

FunctionRANF

Returns the current seed.SubroutineRANGET

Sets the seed for the random
number generator.

SubroutineRANSET

Changes the starting point of
RANDOM.

SubroutineSEED

2291

63

DescriptionProcedure TypeName

Converts an INTEGER(4)
argument to INTEGER(2)
type.

FunctionSHORT

Seeds the random number
generator used with IRAND
and RAND.

SubroutineSRAND

Table 718: Input and Output

DescriptionProcedure TypeName

Checks a file for accessibility
according to mode.

FunctionACCESS

Changes file attributes.FunctionCHMOD

Reads a character from an
external unit.

FunctionFGETC

Flushes the buffer for an
external unit to its associated
file.

SubroutineFLUSH

Writes a character to an
external unit.

FunctionFPUTC

Repositions a file on an
external unit.

SubroutineFSEEK

Return the offset, in bytes,
from the beginning of the file.

FunctionFTELL, FTELLI8

Reads a character from unit
5.

FunctionGETC

Return the offset, in bytes,
from the beginning of the file.

FunctionsGETPOS, GETPOSI8

Writes a character to unit 6.FunctionPUTC

2292

63 Intel® Fortran Compiler User and Reference Guides

Table 719: Date and Time

DescriptionProcedure TypeName

Returns current time in
HH:MM:SS format using a
24-hour clock.

FunctionCLOCK

Returns the processor clock
to the nearest microsecond.

SubroutineCLOCKX

Converts system time to a
24-character ASCII string.

FunctionCTIME

Returns the current system
date.

Subroutine or FunctionDATE 3

Returns the current system
date.

SubroutineDATE4

Returns the elapsed time in
seconds since the start of the
current process.

FunctionDCLOCK

Returns CPU time since later
of (1) start of program, or (2)
most recent call to DTIME.

FunctionDTIME

Returns elapsed CPU time
since the start of program
execution.

FunctionETIME

Returns the current date and
time as an ASCII string.

Subroutine or FunctionFDATE

Returns the date.SubroutineGETDAT

Returns the time.SubroutineGETTIM

Returns Greenwich Mean
Time as a 9-element integer
array.

SubroutineGMTIME

2293

63

DescriptionProcedure TypeName

Returns the date either as
one 3-element array or three
scalar parameters (month,
day, year).

SubroutineIDATE 3

Returns the date either as
one 3-element array or three
scalar parameters (month,
day, year).

SubroutineIDATE4

Returns current time as a
3-element array (hour,
minute, second).

SubroutineITIME

Returns current date as an
8-character string with the
Julian date.

FunctionJDATE 3

Returns current date as a
10-character string with the
Julian date.

FunctionJDATE4

Returns local time as a
9-element integer array.

SubroutineLTIME

Returns number of seconds
since 00:00:00 GMT, Jan 1,
1970.

FunctionRTC

Returns number of seconds
since midnight, less the value
of its argument.

FunctionSECNDS

Sets the date.FunctionSETDAT

Sets the time.FunctionSETTIM

As a subroutine, returns time
formatted as HH:MM:SS; as
a function, returns time in
seconds since 00:00:00 GMT,
Jan 1, 1970.

Subroutine or FunctionTIME

2294

63 Intel® Fortran Compiler User and Reference Guides

DescriptionProcedure TypeName

Returns the number of
seconds since the first time
this function was called (or
zero).

FunctionTIMEF

Table 720: Error Handling

DescriptionProcedure TypeName

Returns the last error set.FunctionGETLASTERROR

Returns the last error set by
a run-time function or
subroutine.

FunctionGETLASTERRORQQ

Returns the last code error.FunctionIERRNO

Sets the mode for handling
critical errors.

SubroutineSETERRORMODEQQ

Table 721: Program Control

DescriptionProcedure TypeName

Sends an interrupt to the
executing program,
simulating an interrupt from
the operating system.

FunctionRAISEQQ

Calls another program and
waits for it to execute.

FunctionRUNQQ

Controls signal handling.FunctionSIGNALQQ

Delays execution of the
program for the specified
time.

SubroutineSLEEPQQ

2295

63

Table 722: System, Drive, and Directory

DescriptionProcedure TypeName

Changes the current working
directory.

FunctionCHDIR

Makes the specified directory
the current (default)
directory.

FunctionCHANGEDIRQQ

Makes the specified drive the
current drive.

FunctionCHANGEDRIVEQQ

Deletes a specified directory.FunctionDELDIRQQ

Returns the current drive and
directory path.

FunctionGETDRIVEDIRQQ

Gets the size of the specified
drive.

FunctionGETDRIVESIZEQQ

Reports the drives available
to the system.

FunctionGETDRIVESQQ

Gets a value from the current
environment.

FunctionGETENVQQ

Makes a directory with the
specified directory name.

FunctionMAKEDIRQQ

Adds a new environment
variable, or sets the value of
an existing one.

FunctionSETENVQQ

Executes a command by
passing a command string to
the operating system's
command interpretor.

FunctionSYSTEMQQ

2296

63 Intel® Fortran Compiler User and Reference Guides

Table 723: Speaker

DescriptionProcedure TypeName

Sounds the speaker for a
specified duration in
milliseconds at a specified
frequency in Hertz.

SubroutineBEEPQQ

Table 724: File Management

DescriptionProcedure TypeName

Deletes the specified files in
a specified directory.

FunctionDELFILESQQ

Searches for a file in the
directories specified in the
PATH environment variable.

FunctionFINDFILEQQ

Returns the full path for a
specified file or directory.

FunctionFULLPATHQQ

Returns information about
files with names that match
a request string.

FunctionGETFILEINFOQQ

Packs time values for use by
SETFILETIMEQQ.

SubroutinePACKTIMEQQ

Renames a file.FunctionRENAMEFILEQQ

Sets file-access mode for the
specified file.

FunctionSETFILEACCESSQQ

Sets modification time for a
given file.

FunctionSETFILETIMEQQ

Breaks a full path into four
components.

FunctionSPLITPATHQQ

Unpacks a file's packed time
and date value into its
component parts.

SubroutineUNPACKTIMEQQ

2297

63

Table 725: Arrays

DescriptionProcedure TypeName

Performs a binary search for
a specified element on a
sorted one-dimensional array

FunctionBSEARCHQQ

of non-structure data types
(derived types are not
allowed).

Sorts a one-dimensional
array of non-structure data
types (derived types are not
allowed).

SubroutineSORTQQ

Table 726: Floating-Point Inquiry and Control

DescriptionProcedure TypeName

Clears the exception flags in
the floating-point processor
status word.

SubroutineCLEARSTATUSFPQQ

Returns the value of the
floating-point processor
control word.

SubroutineGETCONTROLFPQQ

Returns the value of the
floating-point processor
status word.

SubroutineGETSTATUSFPQQ

Same as SETCONTROLFPQQ.SubroutineLCWRQQ

Same as GETCONTROLFPQQ.SubroutineSCWRQQ

Sets the value of the
floating-point processor
control word.

SubroutineSETCONTROLFPQQ

Same as GETSTATUSFPQQ.SubroutineSSWRQQ

2298

63 Intel® Fortran Compiler User and Reference Guides

Table 727: IEEE Functionality

DescriptionProcedure TypeName

Sets, gets, or clears IEEE
flags.

FunctionIEEE_FLAGS

Establishes a handler for IEEE
exceptions.

FunctionIEEE_HANDLER

Table 728: Serial Port I/O4

DescriptionProcedure TypeName

Cancels any I/O in progress
to the specified port.

FunctionSPORT_CANCEL_IO

Establishes the connection to
a serial port and defines
certain usage parameters.

FunctionSPORT_CONNECT

Establishes the connection to
a serial port, defines certain
usage parameters, and

FunctionSPORT_CONNECT_EX

defines the size of the
internal buffer for data
reception.

Returns the Windows* handle
associated with the
communications port.

FunctionSPORT_GET_HANDLE

Returns the baud rate, parity,
data bits, and stop bit
settings of the
communications port.

FunctionSPORT_GET_STATE

Returns the baud rate, parity,
data bits setting, stop bits,
and other settings of the
communications port.

FunctionSPORT_GET_STATE_EX

Returns the user selectable
timeouts for the serial port.

FunctionSPORT_GET_TIMEOUTS

2299

63

DescriptionProcedure TypeName

Returns information about
the availability of input data.

FunctionSPORT_PEEK_DATA

Returns information about
the availability of input
records.

FunctionSPORT_PEEK_LINE

Executes a purge function on
the specified port.

FunctionSPORT_PURGE

Reads available data from the
port specified.

FunctionSPORT_READ_DATA

Reads a record from the port
specified.

FunctionSPORT_READ_LINE

Releases a serial port that
has previously been
connected.

FunctionSPORT_RELEASE

Sets the baud rate, parity,
data bits and stop bit settings
of the communications port.

FunctionSPORT_SET_STATE

Sets the baud rate, parity,
data bits setting, stop bits,
and other settings of the
communications port.

FunctionSPORT_SET_STATE_EX

Sets the user selectable
timeouts for the serial port.

FunctionSPORT_SET_TIMEOUTS

Displays the state of a port.FunctionSPORT_SHOW_STATE

Executes a communications
function on a specified port.

FunctionSPORT_SPECIAL_FUNC

Outputs data to a specified
port.

FunctionSPORT_WRITE_DATA

2300

63 Intel® Fortran Compiler User and Reference Guides

DescriptionProcedure TypeName

Outputs data to a specified
port and follows it with a
record terminator.

FunctionSPORT_WRITE_LINE

Table 729: Miscellaneous

DescriptionProcedure TypeName

Returns the index of the last
non-blank character in a
string.

FunctionLNBLNK

Returns a sorted version of a
one-dimensional array of a
specified number of elements
of a named size.

SubroutineQSORT

Returns the index of the last
occurrence of a substring in
a string.

FunctionRINDEX

Scans the environment for
the value of an environment
variable.

SubroutineSCANENV

Checks whether a logical unit
is a terminal.

FunctionTTYNAM

1 This routine can also be specified as HOSTNM.
2 There is also a RANDOM subroutine in the portability library.
3 The two-digit year return value of DATE, IDATE, and JDATE may cause problems with the
year 2000. Use the intrinsic subroutine DATE_AND_TIME instead.
4 W*32, W*64

See Also
• Language Summary Tables

National Language Support Library Routines (W*32, W*64)

The following table lists library routines for National Language Support (NLS).

2301

63

Programs that use these routines must access the NLS library with USE IFNLS. These routines
are restricted to Windows* systems.

Routine names are shown in mixed case to make the names easier to understand. When writing
your applications, you can use any case.

DescriptionRoutine TypeName

Returns the length of the first
multibyte character in a
string.

FunctionMBCharLen

Converts a character string
from a multibyte codepage to
a Unicode string.

FunctionMBConvertMBToUnicode

Converts a Unicode string to
a multibyte character string
of the current codepage.

FunctionMBConvertUnicodeToMB

Returns the longest possible
mutlibyte character for the
current codepage.

FunctionMBCurMax

Same as INCHARQQ, but can
read a single multibyte
character at once.

FunctionMBINCHARQQ

Same as INDEX, except that
multibyte characters can be
included in its arguments.

FunctionMBINDEX

Converts a Japan Industry
Standard (JIS) character to
a Kanji (Shift JIS or JMS)
character.

FunctionMBJISToJMS

Converts a Kanji (Shift JIS or
JMS) character to a Japan
Industry Standard (JIS)
character.

FunctionMBJMSToJIS

Determines whether a given
character is the first byte of
a multibyte character.

FunctionMBLead

2302

63 Intel® Fortran Compiler User and Reference Guides

DescriptionRoutine TypeName

Returns the number of
multibyte characters in a
string, including trailing
spaces.

FunctionMBLen

Returns the number of
multibyte characters in a
string, not including trailing
spaces.

FunctionMBLen_Trim

Same as LGE, LGT, LLE, and
LLT, and the logical operators
.EQ. and .NE., except that
multibyte characters can be
included in their arguments.

FunctionMBLGE, MBLGT, MBLLE,
MBLLT,MBLEQ, MBLNE

Returns the string position of
the first byte of the multibyte
character immediately after
the given string position.

FunctionMBNext

Returns the string position of
the first byte of the multibyte
character immediately before
the given string position.

FunctionMBPrev

Same as SCAN, except that
multibyte characters can be
included. in its arguments

FunctionMBSCAN

Performs a context sensitive
test to determine whether a
given byte in a character
string is a lead byte.

FunctionMBStrLead

Same as VERIFY, except that
multibyte characters can be
included in its arguments.

FunctionMBVERIFY

Returns an array of valid
codepages for the current
console.

FunctionNLSEnumCodepages

2303

63

DescriptionRoutine TypeName

Returns an array of locales
(langauge/country
combinations) installed on
the system.

FunctionNLSEnumLocales

Formats a currency number
according to conventions of
the current locale
(language/country).

FunctionNLSFormatCurrency

Formats a date according to
conventions of the current
locale (language/country).

FunctionNLSFormatDate

Formats a number according
to conventions of the current
locale (language/country).

FunctionNLSFormatNumber

Formats a time according to
conventions of the current
locale (language/country).

FunctionNLSFormatTime

Returns the current codepage
for the system Window or
console.

FunctionNLSGetEnvironmentCodepage

Returns the current
language, country, and/or
codepage.

SubroutineNLSGetLocale

Returns information about
the current locale.

FunctionNLSGetLocaleInfo

Sets the codepage for the
console.

FunctionNLSSetEnvironmentCodepage

Sets the current language,
country, and codepage.

FunctionNLSSetLocale

POSIX* Library Procedures

The following table lists library procedures for POSIX*.

2304

63 Intel® Fortran Compiler User and Reference Guides

Programs that use POSIX procedures must access the appropriate libraries with USE IFPOSIX.
The IPX nnnn routines are functions; the PXF nnnn routines are subroutines, except for the
routines named PXFIS nnnn and PXFWIF nnnn.

DescriptionName

Returns the index of the last commans-line
argument.

IPXFARGC

Returns the value associated with a constant
defined in the C POSIX standard.

IPXFCONST

Returns the index of the last non-blank
character in an input string.

IPXFLENTRIM

Returns the exit code of a child process.IPXFWEXITSTATUS1

Returns the number of the signal that caused
a child process to stop.

IPXFWSTOPSIG 1

Returns the number of the signal that caused
a child process to terminate.

IPXFWTERMSIG 1

Gets the value stored in a component (or
field) of a structure.

PXF(type)GET

Sets the value of a component (or field) of a
structure.

PXF(type)SET

Gets the array values stored in a component
(or field) of a structure.

PXFA(type)GET

Sets the value of an array component (or
field) of a structure.

PXFA(type)SET

Determines the accessibility of a file.PXFACCESS

Schedules an alarm.PXFALARM

Calls the associated subroutine.PXFCALLSUBHANDLE

Returns the input baud rate from a termios
structure.

PXFCFGETISPEED 1

2305

63

DescriptionName

Returns the output baud rate from a termios
structure.

PXFCFGETOSPEED 1

Sets the input baud rate in a termios
structure.

PXFCFSETISPEED 1

Sets the output baud rate in a termios
structure.

PXFCFSETOSPEED 1

Changes the current working directory.PXFCHDIR

Changes the ownership mode of the file.PXFCHMOD

Changes the owner and group of a file.PXFCHOWN 1

Clears the process environment.PXFCLEARENV

Closes the file associated with the descriptor.PXFCLOSE

Closes the directory stream.PXFCLOSEDIR

Manipulates an open file descriptor.PXFCNTL 1

Returns the value associated with a constant.PXFCONST

Creates a new file or rewrites an existing file.PXFCREAT

Generates a terminal pathname.PXFCTERMID 1

Duplicates an existing file descriptor.PXFDUP, PXFDUP2

Gets the value stored in an array element
component (or field) of a structure.

PXFE(type)GET

Sets the value of an array element
component (or field) of a structure.

PXFE(type)SET

Executes a new process by passing
command-line arguments.

PXFEXECV, PXFEXECVE, PXFEXECVP

Exits from a process.PXFEXIT, PXFFASTEXIT

2306

63 Intel® Fortran Compiler User and Reference Guides

DescriptionName

Opens an external unit.PXFFDOPEN

Flushes a file directly to disk.PXFFFLUSH

Reads a character from a file.PXFFGETC

Returns the file descriptor associated with a
specified unit.

PXFFILENO

Creates a child process that differs from the
parent process only in its PID.

PXFFORK 1

Gets the value for a configuration option of
an opened file.

PXFFPATHCONF

Writes a character to a file.PXFFPUTC

Modifies a file position.PXFFSEEK

Gets a file's status information.PXFFSTAT

Returns the relative position in bytes from
the beginning of the file.

PXFFTELL

Gets the specified command-line argument.PXFGETARG

Tests whether a file descriptor is connected
to a terminal.

PXFGETATTY

Reads a character from standard input unit
5.

PXFGETC

Returns the path of the current working
directory.

PXFGETCWD

Gets the effective group ID of the current
process.

PXFGETEGID 1

Gets the setting of an environment variable.PXFGETENV

Gets the effective user ID of the current
process.

PXFGETEUID 1

2307

63

DescriptionName

Gets the real group ID of the current process.PXFGETGID 1

Gets group information for the specified GID.PXFGETGRGID 1

Gets group information for the named group.PXFGETGRNAM 1

Gets supplementary group IDs.PXFGETGROUPS 1

Gets the name of the user.PXFGETLOGIN

Gets the process group ID of the calling
process.

PXFGETPGRP 1

Gets the process ID of the calling process.PXFGETPID

Gets the process ID of the parent of the
calling process.

PXFGETPPID

Gets password information for a specified
name.

PXFGETPWNAM 1

Gets password information for a specified
UID.

PXFGETPWUID 1

Returns a subroutine handle for a subroutine.PXFGETSUBHANDLE

Gets the real user ID of the current process.PXFGETUID 1

Tests for a block special file.PXFISBLK

Tests for a character file.PXFISCHR

Tests whether a string is a valid constant
name.

PXFISCONST

Tests whether a file is a directory.PXFISDIR

Tests whether a file is a special FIFO file.PXFISFIFO

Tests whether a file is a regular file.PXFISREG

Sends a signal to a specified process.PXFKILL

2308

63 Intel® Fortran Compiler User and Reference Guides

DescriptionName

Creates a link to a file or directory.PXFLINK

Converts a given elapsed time in seconds to
local time.

PXFLOCALTIME

Positions a file a specified distance in bytes.PXFLSEEK

Creates a new directory.PXFMKDIR

Creates a new FIFO.PXFMKFIFO 1

Opens or creates a file.PXFOPEN

Opens a directory and associates a stream
with it.

PXFOPENDIR

Gets the value for a configuration option of
an opened file.

PXFPATHCONF

Suspends process execution.PXFPAUSE

Creates a communications pipe between two
processes.

PXFPIPE

Sets the current value of the POSIX I/O flag.PXFPOSIXIO 1

Outputs a character to logical unit 6 (stdout).PXFPUTC

Reads from a file.PXFREAD

Reads the current directory entry.PXFREADDIR

Changes the name of a file.PXFRENAME

Resets the position of the stream to the
beginning of the directory.

PXFREWINDDIR

Removes a directory.PXFRMDIR

Adds a new environment variable or sets the
value of an environment variable.

PXFSETENV

2309

63

DescriptionName

Sets the effective group ID of the current
process.

PXFSETGID 1

Sets the process group ID.PXFSETPGID 1

Creates a session and sets the process group
ID.

PXFSETSID 1

Sets the effective user ID of the current
process.

PXFSETUID 1

Changes the action associated with a specific
signal.

PXFSIGACTION

Adds a signal to a signal set.PXFSIGADDSET 1

Deletes a signal from a signal set.PXFSIGDELSET 1

Empties a signal set.PXFSIGEMPTYSET 1

Fills a signal set.PXFSIGFILLSET 1

Tests whether a signal is a member of a
signal set.

PXFSIGISMEMBER

Examines pending signals.PXFSIGPENDING 1

Changes the list of currently blocked signals.PXFSIGPROCMASK 1

Suspends the process until a signal is
received.

PXFSIGSUSPEND 1

Forces the process to sleep.PXFSLEEP

Gets a file's status information.PXFSTAT

Copies the contents of one structure to
another.

PXFSTRUCTCOPY

Creates an instance of the specified structure.PXFSTRUCTCREATE

Deletes the instance of a structure.PXFSTRUCTFREE

2310

63 Intel® Fortran Compiler User and Reference Guides

DescriptionName

Gets values for system limits or options.PXFSYSCONF

Waits until all output written has been
transmitted.

PXFTCDRAIN 1

Suspends the transmission or reception of
data.

PXFTCFLOW 1

Discards terminal input data, output data, or
both.

PXFTCFLUSH 1

Reads current terminal settings.PXFTCGETATTR 1

Gets the foreground process group ID
associated with the terminal.

PXFTCGETPGRP 1

Sends a break to the terminal.PXFTCSENDBREAK 1

Writes new terminal settings.PXFTCSETATTR 1

Sets the foreground process group associated
with the terminal.

PXFTCSETPGRP 1

Gets the system time.PXFTIME

Gets process times.PXFTIMES

Gets the terminal pathname.PXFTTYNAM 1

Compares two unsigned integers.PXFUCOMPARE

Sets a new file creation mask and gets the
previous one.

PXFUMASK

Gets the operation system name.PXFUNAME

Removes a directory entry.PXFUNLINK

Sets file access and modification times.PXFUTIME

Waits for a child process.PXFWAIT 1

Waits for a specific PID.PXFWAITPID 1

2311

63

DescriptionName

Determines if a child process has exited.PXFWIFEXITED 1

Determines if a child process has exited
because of a signal.

PXFWIFSIGNALED 1

Determines if a child process has stopped.PXFWIFSTOPPED 1

Writes to a file.PXFWRITE

1 L*X, M*X

Dialog Library Routines (W*32, W*64)

The following table lists routines from the dialog library.

Programs that use these routines must access the Dialog library with USE IFLOGM. These
routines are restricted to Windows* systems.

DescriptionRoutine TypeName

Closes an open dialog.SubroutineDLGEXIT

Updates the display of a
dialog box.

SubroutineDLGFLUSH

Retrieves values of dialog
control variables.

FunctionDLGGET

Retrieves values of dialog
control variables of type
Character.

FunctionDLGGETCHAR

Retrieves values of dialog
control variables of type
Integer.

FunctionDLGGETINT

Retrieves values of dialog
control variables of type
Logical.

FunctionDLGGETLOG

Initializes a dialog.FunctionDLGINIT

2312

63 Intel® Fortran Compiler User and Reference Guides

DescriptionRoutine TypeName

Initializes a dialog.FunctionDLGINITWITHRESOURCEHANDLE

Determines whether a
message is intended for a
modeless dialog box and, if
it is, processes it.

FunctionDLGISDLGMESSAGE

Determines whether a
message is intended for a
specific modeless dialog box
and, if it is, processes it.

FunctionDLGISDLGMESSAGEWITHDLG

Displays a dialog and
processes dialog selections
from user.

FunctionDLGMODAL

Displays a dialog in a specific
parent window and processes
dialog selections from user.

FunctionDLGMODALWITHPARENT

Displays a modeless dialog
box.

FunctionDLGMODELESS

Sends a message to a dialog
box control.

FunctionDLGSENDCTRLMESSAGE

Assigns values to dialog
control variables.

FunctionDLGSET

Assigns values to dialog
control variables of type
Character.

FunctionDLGSETCHAR

Assigns your own event
handlers to ActiveX controls
in a dialog box.

FunctionDLGSETCTRLEVENTHANDLER

Assigns values to dialog
control variables of type
Integer.

FunctionDLGSETINT

2313

63

DescriptionRoutine TypeName

Assigns values to dialog
control variables of type
Logical.

FunctionDLGSETLOG

Sets the return value for
DLGMODAL.

SubroutineDLGSETRETURN

Assigns procedures (callback
routines) to dialog controls.

FunctionDLGSETSUB

Sets the title of a dialog box.SubroutineDLGSETTITLE

Deallocates memory occupied
by an initialized dialog.

SubroutineDLGUNINIT

COM and Automation Library Routines (W*32, W*64)

The following tables list COM and Automation libary routines.

Programs that use COM routines must access the appropriate libraries with USE IFCOM. Programs
that use automation routines must access the appropriate libraries with USE IFAUTO. Some
procedures also require the USE IFWINTY module.

The COM and Automation routines are restricted to Windows* systems.

Routine names are shown in mixed case to make the names easier to understand. When writing
your applications, you can use any case.

Table 733: Component Object Model (COM) Procedures (USE IFCOM)

DescriptionRoutine TypeName

Adds a reference to an
object's interface.

FunctionCOMAddObjectReference

Passes a programmatic
identifier and returns the
corresponding class identifier.

SubroutineCOMCLSIDFromProgID1

Passes a class identifier string
and returns the
corresponding class identifier.

SubroutineCOMCLSIDFromString1

2314

63 Intel® Fortran Compiler User and Reference Guides

DescriptionRoutine TypeName

Passes a class identifier,
creates an instance of an
object, and returns a pointer
to the object's interface.

SubroutineCOMCreateObjectByGUID1

Passes a programmatic
identifier, creates an instance
of an object, and returns a
pointer to the object's
IDispatch interface.

SubroutineCOMCreateObjectByProgID

Passes a class identifier and
returns a pointer to the
interface of a currently active
object.

SubroutineCOMGetActiveObjectByGUID1

Passes a programmatic
identifier and returns a
pointer to the IDispatch
interface of a currently active
object.

SubroutineCOMGetActiveObjectByProgID

Passes a file name and
returns a pointer to the
IDispatch interface of an
Automation object that can
manipulate the file.

SubroutineCOMGetFileObject

Initializes the COM library.SubroutineCOMInitialize

Determines whether two
GUIDs are the same.

FunctionCOMIsEqualGUID1

Passes an interface identifier
and returns a pointer to an
object's interface.

SubroutineCOMQueryInterface1

Indicates that the program is
done with a reference to an
object's interface.

FunctionCOMReleaseObject

2315

63

DescriptionRoutine TypeName

Passes a GUID and returns a
string of printable characters.

SubroutineCOMStringFromGUID1

Uninitializes the COM library.SubroutineCOMUninitialize

Table 734: Automation Server Procedures (USE IFAUTO)

DescriptionRoutine TypeName

Passes an argument name
and value and adds the
argument to the argument
list data structure.

SubroutineAUTOAddArg1

Allocates an argument list
data structure that holds the
arguments to be passed to
AUTOInvoke.

FunctionAUTOAllocateInvokeArgs

Deallocates an argument list
data structure.

SubroutineAUTODeallocateInvokeArgs

Retrieves the exception
information when a method
has returned an exception
status.

SubroutineAUTOGetExceptInfo

Passes the name or identifier
of the property and gets the
value of the Automation
object's property.

FunctionAUTOGetProperty1

Passes the member ID of the
property and gets the value
of the Automation object's
property into the argument
list's first argument.

FunctionAUTOGetPropertyByID

Passes an argument list data
structure and gets the value
of the Automation object's

FunctionAUTOGetPropertyInvokeArgs

2316

63 Intel® Fortran Compiler User and Reference Guides

DescriptionRoutine TypeName

property specified in the
argument list's first
argument.

Passes the name or identifier
of an object's method and an
argument list data structure
and invokes the method with
the passed arguments.

FunctionAUTOInvoke

Passes the name or identifier
of the property and a value,
and sets the value of the
Automation object's property.

FunctionAUTOSetProperty1

Passes the member ID of the
property and sets the value
of the Automation object's
property, using the argument
list's first argument.

FunctionAUTOSetPropertyByID

Passes an argument list data
structure and sets the value
of the Automation object's

FunctionAUTOSetPropertyInvokeArgs

property specified in the
argument list's first
argument.

1These routines also require USE IFWINTY.

Miscellaneous Run-Time Library Routines

The following table lists miscellaneous run-time library routines.

Programs that use most of these routines should contain a USE IFCORE statement to obtain
the proper interfaces to these routines. You do not need a USE IFCORE statement for for_rtl_init_
and for_rtl_finish_.

DescriptionProcedure TypeName

Forces the operating system
to execute any pending write
operations for a file.

FunctionCOMMITQQ

2317

63

DescriptionProcedure TypeName

Creates an array descriptor
in memory.

SubroutineFOR_DESCRIPTOR_ASSIGN1

Returns the current settings
of floating-point exception
flags.

FunctionFOR_GET_FPE

Cleans up the Fortran
run-time environment.

Functionfor_rtl_finish_

Initializes the Fortran
run-time environment.

Functionfor_rtl_init_

Sets the floating-point
exception flags.

FunctionFOR_SET_FPE

Controls the type of
reentrancy protection that
the Fortran Run-Time Library
(RTL) exhibits.

FunctionFOR_SET_REENTRANCY

Returns a message for the
last error detected by a
Fortran run-time routine.

SubroutineGERROR

Returns the next keystroke.FunctionGETCHARQQ

Returns a pointer to C
run-time exception
information pointers

FunctionGETEXCEPTIONPTRSQQ1

appropriate for use in signal
handlers established with
SIGNALQQ or direct calls to
the C rtl signal() routine.

Reads a character string from
the keyboard using buffered
input.

FunctionGETSTRQQ

Checks the buffer to see if a
keystroke is waiting.

FunctionPEEKCHARQQ

2318

63 Intel® Fortran Compiler User and Reference Guides

DescriptionProcedure TypeName

Sends a message to the
standard error stream,
preceded by a specified
string, for the last detected
error.

SubroutinePERROR

Provides traceback
information.

SubroutineTRACEBACKQQ

1 W*32, W*64

Intrinsic Functions Not Allowed as Actual Arguments

This table is now located in Intrinsic Procedures.

A to B

ABORT
Portability Subroutine: Flushes and closes I/O
buffers, and terminates program execution.

Module

USE IFPORT

Syntax

CALL ABORT[string]

(Input; optional) Character*(*). Allows you to specify an abort
message at program termination. When ABORT is called, "abort:"
is written to external unit 0, followed by string. If omitted, the
default message written to external unit 0 is "abort: Fortran Abort
Called."

string

This subroutine causes the program to terminate and an exit code value of 134 is returned to
the program that launched it.

2319

63

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

!The following prints "abort: Fortran Abort Called"

CALL ABORT

!The following prints "abort: Out of here!"

Call ABORT ("Out of here!")

See Also
• A to B
• EXIT
• STOP

ABOUTBOXQQ (W*32, W*64)
QuickWin Function: Specifies the information
displayed in the message box that appears when
the user selects the About command from a
QuickWin application's Help menu.

Module

USE IFQWIN

Syntax

result=ABOUTBOXQQ(cstring)

(Input; output) Character*(*). Null-terminated C string.cstring

Results

The value of the result is INTEGER(4). It is zero if successful; otherwise, nonzero.

If your program does not call ABOUTBOXQQ, the QuickWin run-time library supplies a default
string.

Compatibility

QUICKWIN GRAPHICS LIB

2320

63 Intel® Fortran Compiler User and Reference Guides

Example
USE IFQWIN

INTEGER(4) dummy

! Set the About box message

dummy = ABOUTBOXQQ ('Matrix Multiplier\r Version 1.0'C)

See Also
• A to B

Building Applications: Using QuickWin Overview

Building Applications: Defining an About Box

ABS
Elemental Intrinsic Function (Generic):
Computes an absolute value.

Syntax

result=ABS(a)

(Input) Must be of type integer, real, or complex.a

Results

The result has the same type and kind type parameter as a except if a is complex value, the
result type is real. If a is an integer or real value, the value of the result is | a |; if a is a complex
value (X, Y), the result is the real value SQRT (X**2 + Y**2).

Result TypeArgument TypeSpecific Name

INTEGER(1)INTEGER(1)BABS

INTEGER(2)INTEGER(2)IIABS1

INTEGER(4)INTEGER(4)IABS 2

INTEGER(8)INTEGER(8)KIABS

REAL(4)REAL(4)ABS

2321

63

Result TypeArgument TypeSpecific Name

REAL(8)REAL(8)DABS

REAL(16)REAL(16)QABS

REAL(4)COMPLEX(4)CABS 3

REAL(8)COMPLEX(8)CDABS4

REAL(16)COMPLEX(16)CQABS

1Or HABS.
2Or JIABS. For compatibility with older versions of Fortran, IABS can also be specified as a
generic function.
3The setting of compiler options specifying real size can affect CABS.
4This function can also be specified as ZABS.

Example

ABS (-7.4) has the value 7.4.

ABS ((6.0, 8.0)) has the value 10.0.

The following ABS.F90 program calculates two square roots, retaining the sign:

REAL mag(2), sgn(2), result(2)

WRITE (*, '(A)') ' Enter two signed magnitudes: '

READ (*, *) mag

sgn = SIGN((/1.0, 1.0/), mag) ! transfer the signs to 1.0s

result = SQRT (ABS (mag))

! Restore the sign by multiplying by -1 or +1:

result = result * sgn

WRITE (*, *) result

END

2322

63 Intel® Fortran Compiler User and Reference Guides

ACCEPT
Statement: Transfers input data.

Syntax

Formatted:

ACCEPT form[,io-list]

Formatted - List-Directed:

ACCEPT*[,io-list]

Formatted - Namelist:

ACCEPTnml

Is the nonkeyword form of a format specifier (no FMT=).form

Is an I/O list.io-list

Is the format specifier indicating list-directed formatting.*

Is the nonkeyword form of a namelist specifier (no NML=)
indicating namelist formatting.

nml

The ACCEPT statement is the same as a formatted, sequential READ statement, except that
an ACCEPT statement must never be connected to user-specified I/O units. You can override
this restriction by using an environment variable.

Example

In the following example, character data is read from the implicit unit and binary values are
assigned to each of the five elements of array CHARAR:

CHARACTER*10 CHARAR(5)

ACCEPT 200, CHARAR

200 FORMAT (5A10)

See Also
• A to B

Building Applications: Logical Devices

2323

63

ACCESS Function
Portability Function: Determines if a file exists
and how it can be accessed.

Module

USE IFPORT

Syntax

result=ACCESS(name,mode)

(Input) Character*(*). Name of the file whose accessibility is to
be determined.

name

(Input) Character*(*). Modes of accessibility to check for. Must
be a character string of length one or greater containing only the
characters "r", "w", "x", or "" (a blank). These characters are
interpreted as follows.

mode

MeaningCharacter

Tests for read permissionr

Tests for write permissionw

Tests for execute permission.
On Windows* systems, the
extension of name must be
.COM, .EXE, .BAT, .CMD, .PL,
.KSH, or .CSH.

x

Tests for existence(blank)

The characters within mode can appear in any order or combination.
For example, wrx and r are legal forms of mode and represent the
same set of inquiries.

Results

The value of the result is INTEGER(4). It is zero if all inquiries specified by mode are true. If
either argument is invalid, or if the file cannot be accessed in all of the modes specified, one
of the following error codes is returned:

2324

63 Intel® Fortran Compiler User and Reference Guides

• EACCES: Access denied; the file's permission setting does not allow the specified access

• EINVAL: The mode argument is invalid

• ENOENT: File or path not found

For a list of error codes, see IERRNO.

The name argument can contain either forward or backward slashes for path separators.

On Windows* systems, all files are readable. A test for read permission always returns 0.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
! checks for read and write permission on the file "DATAFILE.TXT"

J = ACCESS ("DATAFILE.TXT", "rw")

PRINT *, J

! checks whether "DATAFILE.TXT" is executable. It is not, since

! it does not end in .COM, .EXE, .BAT, or .CMD

J = ACCESS ("DATAFILE.TXT","x")

PRINT *, J

See Also
• A to B
• INQUIRE
• GETFILEINFOQQ

ACHAR
Elemental Intrinsic Function (Generic):
Returns the character in a specified position of the
ASCII character set, even if the processor's default
character set is different. It is the inverse of the
IACHAR function. In Intel ® Fortran, ACHAR is
equivalent to the CHAR function.

Syntax

result = ACHAR (i [, kind])

2325

63

(Input) Is of type integer.i

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result type is character with length 1. If kind is present, the kind parameter of the result
is that specified by kind; otherwise, the kind parameter of the result is that of default character.
If the processor cannot represent the result value in the kind of the result, the result is undefined.

If i has a value within the range 0 to 127, the result is the character in position i of the ASCII
character set; otherwise, it is processor defined. ACHAR (IACHAR(C)) has the value C for any
character C capable of representation in the default character set. For a complete list of ASCII
character codes, see Character and Key Code Charts.

Example

ACHAR (71) has the value 'G'.

ACHAR (63) has the value '?'.

See Also
• A to B
• CHAR
• IACHAR
• ICHAR

ACOS
Elemental Intrinsic Function (Generic):
Produces the arccosine of x.

Syntax

result = ACOS (x)

(Input) Must be of type real. The | x | must be less than or equal
to 1.

x

Results

The result type is the same as x and is expressed in radians. The value lies in the range 0 to
pi.

2326

63 Intel® Fortran Compiler User and Reference Guides

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)ACOS

REAL(8)REAL(8)DACOS

REAL(16)REAL(16)QACOS1

1Or QARCOS.

Example

ACOS (0.68032123) has the value .8225955.

ACOSD
Elemental Intrinsic Function (Generic):
Produces the arccosine of x.

Syntax

result = ACOSD (x)

(Input) Must be of type real. The | x | must be less than or equal
to 1.

x

Results

The result type is the same as x and is expressed in degrees. The value lies in the range −90
to 90 degrees.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)ACOSD

REAL(8)REAL(8)DACOSD

REAL(16)REAL(16)QACOSD

Example

ACOSD (0.886579) has the value 27.55354.

2327

63

ACOSH
Elemental Intrinsic Function (Generic):
Produces the hyperbolic arccosine of x.

Syntax

result = ACOSH (x)

(Input) Must be of type real and must be greater than or equal to
1.

x

Results

The result type is the same as x.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)ACOSH

REAL(8)REAL(8)DACOSH

REAL(16)REAL(16)QACOSH

Example

ACOSH (1.0) has the value 0.0.

ACOSH (180.0) has the value 5.8861.

ADJUSTL
Elemental Intrinsic Function (Generic): Adjusts
a character string to the left, removing leading
blanks and inserting trailing blanks.

Syntax

result = ADJUSTL (string)

(Input) Must be of type character.string

2328

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is character with the same length and kind parameter as string. The value of
the result is the same as string, except that any leading blanks have been removed and
inserted as trailing blanks.

Example
CHARACTER(16) STRING STRING= ADJUSTL(' Fortran 90 ') ! returns 'Fortran 90 '

ADJUSTL (' SUMMERTIME') ! has the value 'SUMMERTIME '

See Also
• A to B
• ADJUSTR

ADJUSTR
Elemental Intrinsic Function (Generic): Adjusts
a character string to the right, removing trailing
blanks and inserting leading blanks.

Syntax

result = ADJUSTR (string)

(Input) Must be of type character.string

Results

The result type is character with the same length and kind parameter as string.

The value of the result is the same as string, except that any trailing blanks have been removed
and inserted as leading blanks.

Example
CHARACTER(16) STRING

STRING= ADJUSTR(' Fortran 90 ') ! returns ' Fortran 90'

ADJUSTR ('SUMMERTIME ') ! has the value ' SUMMERTIME'

See Also
• A to B
• ADJUSTL

2329

63

AIMAG
Elemental Intrinsic Function (Generic):
Returns the imaginary part of a complex number.
This function can also be specified as IMAG.

Syntax

result = AIMAG (z)

(Input) Must be of type complex.z

Results

The result type is real with the same kind parameter as z. If z has the value (x, y), the result
has the value y.

Result TypeArgument TypeSpecific Name

REAL(4)COMPLEX(4)AIMAG 1

REAL(8)COMPLEX(8)DIMAG

REAL(16)COMPLEX(16)QIMAG

1The setting of compiler options specifying real size can affect AIMAG.

To return the real part of complex numbers, use REAL.

Example

AIMAG ((4.0, 5.0)) has the value 5.0.

2330

63 Intel® Fortran Compiler User and Reference Guides

The program AIMAG.F90 applies the quadratic formula to a polynomial and allows for complex
results:

REAL a, b, c

COMPLEX ans1, ans2, d

WRITE (*, 100)

100 FORMAT (' Enter A, b, and c of the ', &

'polynomial ax**2 + bx + c: '\)

READ (*, *) a, b, c

d = CSQRT (CMPLX (b**2 - 4.0*a*c)) ! d is either:

! 0.0 + i root, or

! root + i 0.0

ans1 = (-b + d) / (2.0 * a)

ans2 = (-b + d) / (2.0 * a)

WRITE (*, 200)

200 FORMAT (/ ' The roots are:' /)

WRITE (*, 300) REAL(ans1), AIMAG(ans1), &

REAL(ans2), AIMAG(ans2)

300 FORMAT (' X = ', F10.5, ' + i', F10.5)

END

See Also
• A to B
• CONJG
• DBLE

AINT
Elemental Intrinsic Function (Generic):
Truncates a value to a whole number.

Syntax

result = AINT (a [,kind])

2331

63

(Input) Must be of type real.a

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result type is real. If kind is present, the kind parameter of the result is that specified by
kind; otherwise, the kind parameter is that of a.

The result is defined as the largest integer whose magnitude does not exceed the magnitude
of a and whose sign is the same as that of a. If | a | is less than 1, AINT(a) has the value zero.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)AINT

REAL(8)REAL(8)DINT

REAL(16)REAL(16)QINT

To round rather than truncate, use ANINT.

Example

AINT (3.678) has the value 3.0.

AINT (-1.375) has the value -1.0.

REAL r1, r2

REAL(8) r3(2)

r1 = AINT(2.6) ! returns the value 2.0

r2 = AINT(-2.6) ! returns the value -2.0

r3 = AINT((/1.3, 1.9/), KIND = 8) ! returns the values

! (1.0D0, 1.0D0)

See Also
• A to B
• ANINT

2332

63 Intel® Fortran Compiler User and Reference Guides

ALARM
Portability Function: Causes a subroutine to
begin execution after a specified amount of time
has elapsed.

Module

USE IFPORT

Syntax

result = ALARM (time,proc)

(Input) Integer. Specifies the time delay, in seconds, between the
call to ALARM and the time when proc is to begin execution. If
time is 0, the alarm is turned off and no routine is called.

time

(Input) Name of the procedure to call. The procedure takes no
arguments and must be declared EXTERNAL.

proc

Results

The return value is INTEGER(4). It is zero if no alarm is pending. If an alarm is pending (has
already been set by a previous call to ALARM), it returns the number of seconds remaining until
the previously set alarm is to go off, rounded up to the nearest second.

After ALARM is called and the timer starts, the calling program continues for time seconds. The
calling program then suspends and calls proc, which runs in another thread. When proc finishes,
the alarm thread terminates, the original thread resumes, and the calling program resets the
alarm. Once the alarm goes off, it is disabled until set again.

If proc performs I/O or otherwise uses the Fortran library, you need to compile it with one of
the multithread libraries.

The thread that proc runs in has a higher priority than any other thread in the process. All
other threads are essentially suspended until proc terminates, or is blocked on some other
event, such as I/O.

No alarms can occur after the main process ends. If the main program finishes or any thread
executes an EXIT call, than any pending alarm is deactivated before it has a chance to run.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

2333

63

Example
USE IFPORT

INTEGER(4) numsec, istat

EXTERNAL subprog

numsec = 4

write *, "subprog will begin in ", numsec, " seconds"

ISTAT = ALARM (numsec, subprog)

See Also
• A to B
• RUNQQ
• Creating Multithread Applications Overview

ALIAS Directive
General Compiler Directive: Declares alternate
external names for external subprograms.

Syntax

cDEC$ ALIAS internal-name,external-name

Is a c, C, !, or *. (See Syntax Rules for Compiler Directives.)c

The name of the subprogram as used in the current program unit.internal-name

A name or a character constant, delimited by apostrophes or
quotation marks.

external-name

Description

If a name is specified, the name (in uppercase) is used as the external name for the specified
internal-name. If a character constant is specified, it is used as is; the string is not changed
to uppercase, nor are blanks removed.

The ALIAS directive affects only the external name used for references to the specified
internal-name.

Names that are not acceptable to the linker will cause link-time errors.

See Also
• A to B

2334

63 Intel® Fortran Compiler User and Reference Guides

• ATTRIBUTES- ALIAS option
• General Compiler Directives

ALL
Transformational Intrinsic Function (Generic):
Determines if all values are true in an entire array
or in a specified dimension of an array.

Syntax

result = ALL (mask [,dim])

(Input) Must be a logical array.mask

(Input; optional) Must be a scalar integer with a value in the range
1 to n, where n is the rank of mask.

dim

Results

The result is an array or a scalar of type logical.

The result is a scalar if dim is omitted or mask has rank one. A scalar result is true only if all
elements of mask are true, or mask has size zero. The result has the value false if any element
of mask is false.

An array result has the same type and kind parameters as mask, and a rank that is one less
than mask. Its shape is (d1, d2, ..., ddim-1, ddim+1, ..., dn), where (d1, d2,..., dn) is the shape of
mask.

Each element in an array result is true only if all elements in the one dimensional array defined
by mask(s1, s2, ..., sdim-1, :, sdim+1, ..., sn) are true.

2335

63

Example
LOGICAL mask(2, 3), AR1(3), AR2(2)

mask = RESHAPE((/.TRUE., .TRUE., .FALSE., .TRUE., .FALSE., &

.FALSE./),(/2,3/))

! mask is true false false

! true true false

AR1 = ALL(mask,DIM = 1) ! evaluates the elements column by

! column yielding [true false false]

AR2 = ALL(mask,DIM = 2) ! evaluates the elements row by row

! yielding [false false].

ALL ((/.TRUE., .FALSE., .TRUE./)) has the value false because some elements of MASK are not
true.

ALL ((/.TRUE., .TRUE., .TRUE./)) has the value true because all elements of MASK are true.

A is the array

[1 5 7]

[3 6 8]

and B is the array

[0 5 7]

[2 6 9].

ALL (A .EQ. B, DIM=1) tests to see if all elements in each column of A are equal to the elements
in the corresponding column of B. The result has the value (false, true, false) because only the
second column has elements that are all equal.

ALL (A .EQ. B, DIM=2) tests to see if all elements in each row of A are equal to the elements
in the corresponding row of B. The result has the value (false, false) because each row has
some elements that are not equal.

See Also
• A to B
• ANY
• COUNT

2336

63 Intel® Fortran Compiler User and Reference Guides

ALLOCATABLE
Statement and Attribute: Specifies that an array
is an allocatable array with a deferred shape. The
shape of an allocatable array is determined when
an ALLOCATE statement is executed, dynamically
allocating space for the array.

Syntax

The ALLOCATABLE attribute can be specified in a type declaration statement or an ALLOCATABLE
statement, and takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] ALLOCATABLE [att-ls,] :: a[(d-spec)] [, a[(d-spec)]] ...

Statement:

ALLOCATABLE [::] a[(d-spec)] [, a[(d-spec)]] ...

Is a data type specifier.type

Is an optional list of attribute specifiers.att-ls

Is the name of the allocatable array.a

Is a deferred-shape specification (: [, :] ...). Each colon represents
a dimension of the array.

d-spec

Description

If the array is given the DIMENSION attribute elsewhere in the program, it must be declared
as a deferred-shape array.

When the allocatable array is no longer needed, it can be deallocated by execution of a
DEALLOCATE statement.

An allocatable array cannot be specified in a COMMON, EQUIVALENCE, DATA, or NAMELIST
statement.

Allocatable arrays are not saved by default. If you want to retain the values of an allocatable
array across procedure calls, you must specify the SAVE attribute for the array.

2337

63

Example
!Method for creating and allocating deferred-shape arrays.

INTEGER, ALLOCATABLE :: matrix(:,:)

REAL, ALLOCATABLE :: vector(:)

...

ALLOCATE(matrix(3,5),vector(-2:N+2))

...

The following example shows a type declaration statement specifying the ALLOCATABLE attribute:

REAL, ALLOCATABLE :: Z(:, :, :)

The following is an example of the ALLOCATABLE statement:

REAL A, B(:)

ALLOCATABLE :: A(:,:), B

See Also
• A to B
• Type declaration statements
• Compatible attributes
• DEALLOCATE
• Arrays
• Allocation of Allocatable Arrays
• SAVE

ALLOCATE
Statement: Dynamically creates storage for
allocatable arrays and pointer targets. The storage
space allocated is uninitialized.

Syntax

ALLOCATE (object[(s-spec)] [,object[(s-spec[,s-spec]...)]]...[, alloc-opt])

Is the object to be allocated. It is a variable name or structure
component, and must be a pointer or allocatable array. The object
can be of type character with zero length.

object

2338

63 Intel® Fortran Compiler User and Reference Guides

Is a shape specification in the form [lower-bound:]upper-bound.
Each bound must be a scalar integer expression. The number of
shape specifications must be the same as the rank of the object.

s-spec

(Output) Is one of the following:alloc-opt

sv is a scalar integer variable in which the
status of the allocation is stored.

STAT=sv

ev is a scalar default character value in which
an error condition is stored if such a condition
occurs.

ERRMSG=ev

Description

A bound in s-spec must not be an expression containing an array inquiry function whose
argument is any allocatable object in the same ALLOCATE statement; for example, the following
is not permitted:

INTEGER ERR

INTEGER, ALLOCATABLE :: A(:), B(:)

...

ALLOCATE(A(10:25), B(SIZE(A)), STAT=ERR) ! A is invalid as an argument

! to function SIZE

If a STAT variable or ERRMSG variable is specified, it must not be allocated in the ALLOCATE
statement in which it appears. If the allocation is successful, the variable is set to zero. If the
allocation is not successful, an error condition occurs, and the variable is set to a positive integer
value (representing the run-time error); the ERRMSG variable contains the error condition. If
no STAT variable is specified and an error condition occurs, program execution terminates.

To release the storage for an allocated array, use DEALLOCATE.

To determine whether an allocatable array is currently allocated, use the ALLOCATED intrinsic
function.

To determine whether a pointer is currently associated with a target, use the ASSOCIATED
intrinsic function.

2339

63

Example
!Method for creating and allocating deferred shape arrays.

INTEGER,ALLOCATABLE::matrix(:,:)

REAL, ALLOCATABLE:: vector(:)

. . .

ALLOCATE (matrix(3,5),vector(-2:N+2))

. . .

The following shows another example of the ALLOCATE statement:

INTEGER J, N, ALLOC_ERR

REAL, ALLOCATABLE :: A(:), B(:,:)

...

ALLOCATE(A(0:80), B(-3:J+1, N), STAT = ALLOC_ERR)

See Also
• A to B
• ALLOCATABLE
• ALLOCATED
• DEALLOCATE
• ASSOCIATED
• POINTER
• Dynamic Allocation
• Pointer Assignments

ALLOCATED
Inquiry Intrinsic Function (Generic): Indicates
whether an allocatable array is currently allocated.

Syntax

result = ALLOCATED (array)

(Input) Must be an allocatable array.array

2340

63 Intel® Fortran Compiler User and Reference Guides

Results

The result is a scalar of type default logical.

The result has the value true if array is currently allocated, false if array is not currently
allocated, or undefined if its allocation status is undefined.

Example
REAL, ALLOCATABLE :: A(:)

...

IF (.NOT. ALLOCATED(A)) ALLOCATE (A (5))

Consider the following:

REAL, ALLOCATABLE, DIMENSION (:,:,:) :: E

PRINT *, ALLOCATED (E) ! Returns the value false

ALLOCATE (E (12, 15, 20))

PRINT *, ALLOCATED (E) ! Returns the value true

See Also
• A to B
• ALLOCATABLE
• ALLOCATE
• DEALLOCATE
• Arrays
• Dynamic Allocation

2341

63

AND
Elemental Intrinsic Function (Generic)

Example
INTEGER(1) i, m

INTEGER result

INTEGER(2) result2

i = 1

m = 3

result = AND(i,m) ! returns an integer of default type

! (INTEGER(4) unless reset by user) whose

! value = 1

result2 = AND(i,m) ! returns an INTEGER(2) with value = 1

See Also
• A to B
• IAND

ANINT
Elemental Intrinsic Function (Generic):
Calculates the nearest whole number.

Syntax

result = ANINT (a[,kind])

(Input) Must be of type real.a

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result type is real. If kind is present, the kind parameter is that specified by kind; otherwise,
the kind parameter is that of a. If a is greater than zero, ANINT (a) has the value AINT (a +
0.5); if a is less than or equal to zero, ANINT (a) has the value AINT (a - 0.5).

2342

63 Intel® Fortran Compiler User and Reference Guides

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)ANINT

REAL(8)REAL(8)DNINT

REAL(16)REAL(16)QNINT

To truncate rather than round, use AINT.

Example

ANINT (3.456) has the value 3.0.

ANINT (-2.798) has the value -3.0.

Consider the following:

REAL r1, r2

r1 = ANINT(2.6) ! returns the value 3.0

r2 = ANINT(-2.6) ! returns the value -3.0

! ANINT.F90 Calculates and adds tax to a purchase amount.

REAL amount, taxrate, tax, total

taxrate = 0.081

amount = 12.99

tax = ANINT (amount * taxrate * 100.0) / 100.0

total = amount + tax

WRITE (*, 100) amount, tax, total

100 FORMAT (1X, 'AMOUNT', F7.2 /

+ 1X, 'TAX ', F7.2 /

+ 1X, 'TOTAL ', F7.2)

END

See Also
• A to B
• NINT

2343

63

ANY
Transformational Intrinsic Function (Generic):
Determines if any value is true in an entire array
or in a specified dimension of an array.

Syntax

result = ANY (mask [, dim])

(Input) Must be a logical array.mask

(Input; optional) Must be a scalar integer expression with a value
in the range 1 to n, where n is the rank of mask.

dim

Results

The result is an array or a scalar of type logical.

The result is a scalar if dim is omitted or mask has rank one. A scalar result is true if any elements
of mask are true. The result has the value false if no element of mask is true, or mask has size
zero.

An array result has the same type and kind parameters as mask, and a rank that is one less
than mask. Its shape is (d1, d2, ..., ddim-1, ddim+1, ..., dn), where (d1, d2, ..., dn) is the shape
of mask.

Each element in an array result is true if any elements in the one dimensional array defined by
mask(s1, s2, ..., sdim-1, :, sdim+1, ..., sn) are true.

Example
LOGICAL mask(2, 3), AR1(3), AR2(2)

logical, parameter :: T = .true.
logical, parameter :: F = .false.
DATA mask /T, T, F, T, F, F/

! mask is true false false

! true true false

AR1 = ANY(mask,DIM = 1) ! evaluates the elements column by

! column yielding [true true false]

AR2 = ANY(mask,DIM = 2) ! evaluates the elements row by row

! yielding [true true]

2344

63 Intel® Fortran Compiler User and Reference Guides

ANY ((/.FALSE., .FALSE., .TRUE./)) has the value true because one element is true.

A is the array

[1 5 7]

[3 6 8]

and B is the array

[0 5 7]

[2 6 9].

ANY (A .EQ. B, DIM=1) tests to see if any elements in each column of A are equal to the
elements in the corresponding column of B. The result has the value (false, true, true) because
the second and third columns have at least one element that is equal.

ANY (A .EQ. B, DIM=2) tests to see if any elements in each row of A are equal to the elements
in the corresponding row of B. The result has the value (true, true) because each row has at
least one element that is equal.

See Also
• A to B
• ALL
• COUNT

APPENDMENUQQ (W*32, W*64)
QuickWin Function: Appends a menu item to the
end of a menu and registers its callback subroutine.

Module

USE IFQWIN

Syntax

result = APPENDMENUQQ (menuID, flags, text,routine)

(Input) INTEGER(4). Identifies the menu to which the item is
appended, starting with 1 as the leftmost menu.

menuID

(Input) INTEGER(4). Constant indicating the menu state. Flags
can be combined with an inclusive OR (see the Results section
below). The following constants are available:

flags

• $MENUGRAYED - Disables and grays out the menu item.

2345

63

• $MENUDISABLED - Disables but does not gray out the menu
item.

• $MENUENABLED - Enables the menu item.

• $MENUSEPARATOR - Draws a separator bar.

• $MENUCHECKED - Puts a check by the menu item.

• $MENUUNCHECKED - Removes the check by the menu item.

(Input) Character*(*). Menu item name. Must be a null-terminated
C string, for example, 'WORDS OF TEXT'C.

text

(Input) EXTERNAL. Callback subroutine that is called if the menu
item is selected. All routines take a single LOGICAL parameter that
indicates whether the menu item is checked or not. You can assign
the following predefined routines to menus:

routine

• WINPRINT - Prints the program.

• WINSAVE - Saves the program.

• WINEXIT - Terminates the program.

• WINSELECTTEXT - Selects text from the current window.

• WINSELECTGRAPHICS - Selects graphics from the current
window.

• WINSELECTALL - Selects the entire contents of the current
window.

• WININPUT - Brings to the top the child window requesting input
and makes it the current window.

• WINCOPY - Copies the selected text and/or graphics from the
current window to the Clipboard.

• WINPASTE - Allows the user to paste Clipboard contents (text
only) to the current text window of the active window during a
READ.

• WINCLEARPASTE - Clears the paste buffer.

• WINSIZETOFIT - Sizes output to fit window.

• WINFULLSCREEN - Displays output in full screen.

• WINSTATE - Toggles between pause and resume states of text
output.

2346

63 Intel® Fortran Compiler User and Reference Guides

• WINCASCADE - Cascades active windows.

• WINTILE - Tiles active windows.

• WINARRANGE - Arranges icons.

• WINSTATUS - Enables a status bar.

• WININDEX - Displays the index for QuickWin help.

• WINUSING - Displays information on how to use Help.

• WINABOUT - Displays information about the current QuickWin
application.

• NUL - No callback routine.

Results

The result type is logical. It is .TRUE. if successful; otherwise, .FALSE..

You do not need to specify a menu item number, because APPENDMENUQQ always adds the
new item to the bottom of the menu list. If there is no item yet for a menu, your appended
item is treated as the top-level menu item (shown on the menu bar), and text becomes the
menu title. APPENDMENUQQ ignores the callback routine for a top-level menu item if there are
any other menu items in the menu. In this case, you can set routine to NUL.

If you want to insert a menu item into a menu rather than append to the bottom of the menu
list, use INSERTMENUQQ.

The constants available for flags can be combined with an inclusive OR where reasonable, for
example $MENUCHECKED .OR. $MENUENABLED. Some combinations do not make sense, such
as $MENUENABLED and $MENUDISABLED, and lead to undefined behavior.

You can create quick-access keys in the text strings you pass to APPENDMENUQQ as text by
placing an ampersand (&) before the letter you want underlined. For example, to add a Print
menu item with the r underlined, text should be "P&rint". Quick-access keys allow users of
your program to activate that menu item with the key combination ALT+QUICK-ACCESS-KEY
(ALT+R in the example) as an alternative to selecting the item with the mouse.

For more information about customizing QuickWin menus, see Building Applications: Using
QuickWin Overview.

Compatibility

QUICKWIN GRAPHICS LIB

2347

63

Example
USE IFQWIN

LOGICAL(4) result

CHARACTER(25) str

...

! Append two items to the bottom of the first (FILE) menu

str = '&Add to File Menu'C ! 'A' is a quick-access key

result = APPENDMENUQQ(1, $MENUENABLED, str, WINSTATUS)

str = 'Menu Item &2b'C ! '2' is a quick-access key

result = APPENDMENUQQ(1, $MENUENABLED, str, WINCASCADE)

! Append an item to the bottom of the second (EDIT) menu

str = 'Add to Second &Menu'C ! 'M' is a quick-access key

result = APPENDMENUQQ(2, $MENUENABLED, str, WINTILE)

See Also
• A to B
• INSERTMENUQQ
• DELETEMENUQQ
• MODIFYMENUFLAGSQQ
• MODIFYMENUROUTINEQQ
• MODIFYMENUSTRINGQQ

ARC, ARC_W (W*32, W*64)
Graphics Functions: Draw elliptical arcs using
the current graphics color.

Module

USE IFQWIN

Syntax

result = ARC (x1,y1,x2,y2,x3,y3,x4,y4)

result = ARC_W (wx1,wy1,wx2,wy2,wx3,wy3,wx4,wy4)

2348

63 Intel® Fortran Compiler User and Reference Guides

(Input) INTEGER(2). Viewport coordinates for upper-left corner of
bounding rectangle.

x1, y1

(Input) INTEGER(2). Viewport coordinates for lower-right corner
of bounding rectangle.

x2, y2

(Input) INTEGER(2). Viewport coordinates of start vector.x3, y3

(Input) INTEGER(2). Viewport coordinates of end vector.x4, y4

(Input) REAL(8). Window coordinates for upper-left corner of
bounding rectangle.

wx1,wy1

(Input) REAL(8). Window coordinates for lower-right corner of
bounding rectangle.

wx2, wy2

(Input) REAL(8). Window coordinates of start vector.wx3, wy3

(Input) REAL(8). Window coordinates of end vector.wx4, wy4

Results

The result type is INTEGER(2). It is nonzero if successful; otherwise, 0. If the arc is clipped or
partially out of bounds, the arc is considered successfully drawn and the return is 1. If the arc
is drawn completely out of bounds, the return is 0.

The center of the arc is the center of the bounding rectangle defined by the points (x1, y1) and
(x2, y2) for ARC and (wx1, wy1) and (wx2, wy2) for ARC_W.

The arc starts where it intersects an imaginary line extending from the center of the arc through
(x3, y3) for ARC and (wx3, wy3) for ARC_W. It is drawn counterclockwise about the center of
the arc, ending where it intersects an imaginary line extending from the center of the arc
through (x4, y4) for ARC and (wx4, wy4) for ARC_W.

ARC uses the view-coordinate system. ARC_W uses the window-coordinate system. In each
case, the arc is drawn using the current color.

NOTE. The ARC routine described here is a QuickWin graphics routine. If you are trying
to use the Microsoft* Platform SDK version of the Arc routine by including the IFWIN
module, you need to specify the routine name as MSFWIN$Arc.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

2349

63

Example

This program draws the arc shown below.

USE IFQWIN

INTEGER(2) status, x1, y1, x2, y2, x3, y3, x4, y4

x1 = 80; y1 = 50

x2 = 240; y2 = 150

x3 = 120; y3 = 75

x4 = 90; y4 = 180

status = ARC(x1, y1, x2, y2, x3, y3, x4, y4)

END

ASIN
Elemental Intrinsic Function (Generic):
Produces the arcsine of x.

Syntax

result = ASIN (x)

(Input) Must be of type real. The | x | must be less than or equal
to 1.

x

Results

The result type is the same as x and is expressed in radians. The value lies in the range -pi/2
to pi/2.

2350

63 Intel® Fortran Compiler User and Reference Guides

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)ASIN

REAL(8)REAL(8)DASIN

REAL(16)REAL(16)QASIN

Example

ASIN (0.79345021) has the value 0.9164571.

ASIND
Elemental Intrinsic Function (Generic):
Produces the arcsine of x.

Syntax

result = ASIND (x)

(Input) Must be of type real. The | x | must be less than or equal
to 1.

x

Results

The result type is the same as x and is expressed in degrees. The value lies in the range −90
to 90 degrees.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)ASIND

REAL(8)REAL(8)DASIND

REAL(16)REAL(16)QASIND

Example

ASIND (0.2467590) has the value 14.28581.

2351

63

ASINH
Elemental Intrinsic Function (Generic):
Produces the hyperbolic arcsine of x.

Syntax

result = ASINH (x)

(Input) Must be of type real.x

Results

The result type is the same as x.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)ASINH

REAL(8)REAL(8)DASINH

REAL(16)REAL(16)QASINH

Example

ASINH (1.0) has the value -0.88137.

ASINH (180.0) has the value 5.88611.

ASSIGN - Label Assignment
Statement: Assigns a statement label value to an
integer variable. This feature has been deleted in
Fortran 95; it was obsolescent in Fortran 90. Intel®
Fortran fully supports features deleted in Fortran
95.

Syntax

ASSIGN label TO var

Is the label of a branch target or FORMAT statement in the same
scoping unit as the ASSIGN statement.

label

Is a scalar integer variable.var

2352

63 Intel® Fortran Compiler User and Reference Guides

When an ASSIGN statement is executed, the statement label is assigned to the integer variable.
The variable is then undefined as an integer variable and can only be used as a label (unless
it is later redefined with an integer value).

The ASSIGN statement must be executed before the statements in which the assigned variable
is used.

Indirect branching through integer variables makes program flow difficult to read, especially if
the integer variable is also used in arithmetic operations. Using these statements permits
inconsistent usage of the integer variable, and can be an obscure source of error. The ASSIGN
statement was used to simulate internal procedures, which now can be coded directly.

Example

The value of a label is not the same as its number; instead, the label is identified by a number
assigned by the compiler. In the following example, 400 is the label number (not the value) of
IVBL:

ASSIGN 400 TO IVBL

Variables used in ASSIGN statements are not defined as integers. If you want to use a variable
defined by an ASSIGN statement in an arithmetic expression, you must first define the variable
by a computational assignment statement or by a READ statement, as in the following example:

IVBL = 400

The following example shows ASSIGN statements:

INTEGER ERROR

...

ASSIGN 10 TO NSTART

ASSIGN 99999 TO KSTOP

ASSIGN 250 TO ERROR

Note that NSTART and KSTOP are integer variables implicitly, but ERROR must be previously
declared as an integer variable.

The following statement associates the variable NUMBER with the statement label 100:

ASSIGN 100 TO NUMBER

If an arithmetic operation is subsequently performed on variable NUMBER (such as follows),
the run-time behavior is unpredictable:

NUMBER = NUMBER + 1

2353

63

To return NUMBER to the status of an integer variable, you can use the following statement:

NUMBER = 10

This statement dissociates NUMBER from statement 100 and assigns it an integer value of 10.
Once NUMBER is returned to its integer variable status, it can no longer be used in an assigned
GO TO statement.

See Also
• A to B
• Assignment: intrinsic
• Obsolescent Features in Fortran 90

Assignment(=) - Defined Assignment
Statement: An interface block that defines generic
assignment. The only procedures allowed in the
interface block are subroutines that can be
referenced as defined assignments.

Syntax

The initial line for such an interface block takes the following form:

INTERFACE ASSIGNMENT (=)

Description

The subroutines within the interface block must have two nonoptional arguments, the first with
intent OUT or INOUT, and the second with intent IN.

A defined assignment is treated as a reference to a subroutine. The left side of the assignment
corresponds to the first dummy argument of the subroutine; the right side of the assignment
corresponds to the second argument.

The ASSIGNMENT keyword extends or redefines an assignment operation if both sides of the
equal sign are of the same derived type.

Defined elemental assignment is indicated by specifying ELEMENTAL in the SUBROUTINE
statement.

Any procedure reference involving generic assignment must be resolvable to one specific
procedure; it must be unambiguous. For more information, see Unambiguous Generic Procedure
References.

2354

63 Intel® Fortran Compiler User and Reference Guides

Example

The following is an example of a procedure interface block defining assignment:

INTERFACE ASSIGNMENT (=)

SUBROUTINE BIT_TO_NUMERIC (NUM, BIT)

INTEGER, INTENT(OUT) :: NUM

LOGICAL, INTENT(IN) :: BIT(:)

END SUBROUTINE BIT_TO_NUMERIC

SUBROUTINE CHAR_TO_STRING (STR, CHAR)

USE STRING_MODULE ! Contains definition of type STRING

TYPE(STRING), INTENT(OUT) :: STR ! A variable-length string

CHARACTER(*), INTENT(IN) :: CHAR

END SUBROUTINE CHAR_TO_STRING

END INTERFACE

The following example shows two equivalent ways to reference subroutine BIT_TO_NUMERIC:

CALL BIT_TO_NUMERIC(X, (NUM(I:J)))

X = NUM(I:J)

2355

63

The following example shows two equivalent ways to reference subroutine CHAR_TO_STRING:

CALL CHAR_TO_STRING(CH, '432C')

CH = '432C'

!Converting circle data to interval data.

module mod1

TYPE CIRCLE

REAL radius, center_point(2)

END TYPE CIRCLE

TYPE INTERVAL

REAL lower_bound, upper_bound

END TYPE INTERVAL

CONTAINS

SUBROUTINE circle_to_interval(I,C)

type (interval),INTENT(OUT)::I

type (circle),INTENT(IN)::C

!Project circle center onto the x=-axis

!Note: the length of the interval is the diameter of the circle

I%lower_bound = C%center_point(1) - C%radius

I%upper_bound = C%center_point(1) + C%radius

END SUBROUTINE circle_to_interval

end module mod1

PROGRAM assign

use mod1

TYPE(CIRCLE) circle1

TYPE(INTERVAL) interval1

INTERFACE ASSIGNMENT(=)

module procedure circle_to_interval

END INTERFACE

!Begin executable part of program

2356

63 Intel® Fortran Compiler User and Reference Guides

circle1%radius = 2.5

circle1%center_point = (/3.0,5.0/)

interval1 = circle1

. . .

END PROGRAM

See Also
• A to B
• INTERFACE
• Assignment Statements

Assignment - Intrinsic Computational
Statement: Assigns a value to a nonpointer
variable. In the case of pointers, intrinsic
assignment is used to assign a value to the target
associated with the pointer variable. The value
assigned to the variable (or target) is determined
by evaluation of the expression to the right of the
equal sign.

Syntax

variable=expression

Is the name of a scalar or array of intrinsic or derived type (with
no defined assignment). The array cannot be an assumed-size
array, and neither the scalar nor the array can be declared with
the PARAMETER or INTENT(IN) attribute.

variable

Is of intrinsic type or the same derived type as variable. Its
shape must conform with variable. If necessary, it is converted
to the same type and kind as variable.

expression

Description

Before a value is assigned to the variable, the expression part of the assignment statement
and any expressions within the variable are evaluated. No definition of expressions in the
variable can affect or be affected by the evaluation of the expression part of the assignment
statement.

2357

63

NOTE. When the run-time system assigns a value to a scalar integer or character variable
and the variable is shorter than the value being assigned, the assigned value may be
truncated and significant bits (or characters) lost. This truncation can occur without
warning, and can cause the run-time system to pass incorrect information back to the
program.

If the variable is a pointer, it must be associated with a definable target. The shape of the
target and expression must conform and their type and kind parameters must match.

If the cDEC$ NOSTRICT compiler directive (the default) is in effect, then you can assign a
character expression to a noncharacter variable, and a noncharacter variable or array element
(but not an expression) to a character variable.

2358

63 Intel® Fortran Compiler User and Reference Guides

Example
REAL a, b, c

LOGICAL abigger

CHARACTER(16) assertion

c = .01

a = SQRT (c)

b = c**2

assertion = 'a > b'

abigger = (a .GT. b)

WRITE (*, 100) a, b

100 FORMAT (' a =', F7.4, ' b =', F7.4)

IF (abigger) THEN

WRITE (*, *) assertion, ' is true.'

ELSE

WRITE (*, *) assertion, ' is false.'

END IF

END

! The program above has the following output:

! a = .1000 b = .0001 a > b is true.

! The following code shows legal and illegal

! assignment statements:

! INTEGER i, j

REAL rone(4), rtwo(4), x, y

COMPLEX z

CHARACTER name6(6), name8(8)

i = 4

x = 2.0

z = (3.0, 4.0)

2359

63

rone(1) = 4.0

rone(2) = 3.0

rone(3) = 2.0

rone(4) = 1.0

name8 = 'Hello,'

! The following assignment statements are legal:

i = rone(2); j = rone(i); j = x

y = x; y = z; y = rone(3); rtwo = rone; rtwo = 4.7

name6 = name8

! The following assignment statements are illegal:

name6 = x + 1.0; int = name8//'test'; y = rone

END

See Also
• A to B
• Assignment: defined
• NOSTRICT directive

ASSOCIATED
Inquiry Intrinsic Function (Generic): Returns
the association status of its pointer argument or
indicates whether the pointer is associated with
the target.

Syntax

result = ASSOCIATED (pointer [, target])

(Input) Must be a pointer. It can be of any data type. The pointer
association status must be defined.

pointer

(Input; optional) Must be a pointer or target. If it is a pointer, the
pointer association status must be defined.

target

2360

63 Intel® Fortran Compiler User and Reference Guides

Results

The result is a scalar of type default logical. The setting of compiler options specifying integer
size can affect this function.

If only pointer appears, the result is true if it is currently associated with a target; otherwise,
the result is false.

If target also appears and is a target, the result is true if pointer is currently associated with
target; otherwise, the result is false.

If target is a pointer, the result is true if both pointer and target are currently associated
with the same target; otherwise, the result is false. (If either pointer or target is disassociated,
the result is false.)

Example
REAL C (:), D(:), E(5)

POINTER C, D

TARGET E

LOGICAL STATUS

C => E ! pointer assignment

D => E ! pointer assignment

STATUS = ASSOCIATED(C) ! returns TRUE; C is associated

STATUS = ASSOCIATED(C, E) ! returns TRUE; C is associated with E

STATUS = ASSOCIATED (C, D) ! returns TRUE; C and D are associated

! with the same target

Consider the following:

REAL, TARGET, DIMENSION (0:50) :: TAR

REAL, POINTER, DIMENSION (:) :: PTR

PTR => TAR

PRINT *, ASSOCIATED (PTR, TAR) ! Returns the value true

2361

63

The subscript range for PTR is 0:50. Consider the following pointer assignment statements:

(1) PTR => TAR (:)

(2) PTR => TAR (0:50)

(3) PTR => TAR (0:49)

For statements 1 and 2, ASSOCIATED (PTR, TAR) is true because TAR has not changed (the
subscript range for PTR in both cases is 1:51, following the rules for deferred-shape arrays).
For statement 3, ASSOCIATED (PTR, TAR) is false because the upper bound of TAR has changed.

Consider the following:

REAL, POINTER, DIMENSION (:) :: PTR2, PTR3

ALLOCATE (PTR2 (0:15))

PTR3 => PTR2

PRINT *, ASSOCIATED (PTR2, PTR3) ! Returns the value true

...

NULLIFY (PTR2)

NULLIFY (PTR3)

PRINT *, ASSOCIATED (PTR2, PTR3) ! Returns the value false

See Also
• A to B
• ALLOCATED
• POINTER
• TARGET
• Pointer Assignments

ASSUME_ALIGNED
General Compiler Directive: Specifies that an
entity in memory is aligned.

Syntax

cDEC$ ASSUME_ALIGNED address1:n1 [, address2:n2]...

Is a c, C, !, or *. (See Syntax Rules for Compiler Directives.)c

2362

63 Intel® Fortran Compiler User and Reference Guides

A memory reference. It can be of any data type, kind, or rank. It
cannot be any of the following:

address

• An entity in COMMON (or an entity EQUIVALENCEd to something
in COMMON)

• A component of a variable of derived type or a record field
reference

• An entity accessed by use or host association

A positive integer initialization expression. Its value must be a
power of 2 between 1 and 256, that is, 1, 2, 4, 8, 16,3 2, 64, 128,
256.

n

If you specify more than one address:n item, they must be separated by a comma.

If address is a Cray POINTER or it has the POINTER attribute, it is the POINTER and not the
pointee or the TARGET that is assumed aligned.

If you specify an invalid value for n, an error message is displayed.

See Also
• A to B
• PREFETCH
• ATTRIBUTES ALIGN

ASYNCHRONOUS
Statement and Attribute: Specifies that a
variable can be used for asynchronous input and
output.

Syntax

The ASYNCHRONOUS attribute can be specified in a type declaration statement or an
ASYNCHRONOUS statement, and takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] ASYNCHRONOUS [att-ls,] :: var [, var] ...

Statement:

ASYNCHRONOUS [::] var [, var] ...

Is a data type specifier.type

2363

63

Is an optional list of attribute specifiers.att-ls

Is the name of a variable.var

Description

Asynchronous I/O, or non-blocking I/O, allows a program to continue processing data while
the I/O operation is performed in the background.

A variable can have the ASYNCHRONOUS attribute in a particular scoping unit without necessarily
having it in other scoping units. If an object has the ASYNCHRONOUS attribute, then all of its
subobjects also have the ASYNCHRONOUS attribute.

The ASYNCHRONOUS attribute can also be implied by use of a variable in an asynchronous
READ or WRITE statement.

Examples

The following example shows how the ASYNCHRONOUS attribute can be applied in an OPEN
and READ statement.

program test

integer, asynchronous, dimension(100) :: array

open (unit=1,file='asynch.dat',asynchronous='YES',&

form='unformatted')

write (1) (i,i=1,100)

rewind (1)

read (1,asynchronous='YES') array

wait(1)

write (*,*) array(1:10)

end

See Also
• A to B
• Type Declarations
• Compatible attributes

2364

63 Intel® Fortran Compiler User and Reference Guides

ATAN
Elemental Intrinsic Function (Generic):
Produces the arctangent of x.

Syntax

result = ATAN (x)

(Input) Must be of type real.x

Results

The result type is the same as x and is expressed in radians. The value lies in the range -pi/2
to pi/2.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)ATAN

REAL(8)REAL(8)DATAN

REAL(16)REAL(16)QATAN

Example

ATAN (1.5874993) has the value 1.008666.

ATAN2
Elemental Intrinsic Function (Generic):
Produces an arctangent (inverse tangent). The
result is the principal value of the argument of the
nonzero complex number (x, y).

Syntax

result = ATAN2 (y,x)

(Input) Must be of type real.y

(Input) Must have the same type and kind parameters as y. If y
has the value zero, x cannot have the value zero.

x

2365

63

Results

The result type is the same as x and is expressed in radians. The value lies in the range -pi <=
ATAN2 (y, x) <= pi.

If x is not zero, the result is approximately equal to the value of arctan (y/ x).

If y > zero, the result is positive.

If y < zero, the result is negative.

If y is zero and x > zero, the result is y (so for x>0, ATAN2 ((+0.0), x) is +0.0 and ATAN2
((-0.0), x) is -0.0).

If y is a positive real zero and x < zero, the result is pi.

If y is a negative real zero and x < zero, the result is -pi.

If x is a positive real zero, the result is pi/2.

If y is a negative real zero, the result is -pi/2.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)ATAN2

REAL(8)REAL(8)DATAN2

REAL(16)REAL(16)QATAN2

Example

ATAN2 (2.679676, 1.0) has the value 1.213623.

If Y is an array that has the value

[1 1]

[-1 -1]

and X is an array that has the value

[-1 1]

[-1 1],

then ATAN2 (Y, X) is

2366

63 Intel® Fortran Compiler User and Reference Guides

ATAN2D
Elemental Intrinsic Function (Generic):
Produces an arctangent. The result is the principal
value of the argument of the nonzero complex
number (x, y).

Syntax

result = ATAN2D (y,x)

(Input) Must be of type real.y

(Input) Must have the same type and kind parameters as y. If y
has the value zero, x cannot have the value zero.

x

Results

The result type is the same as x and is expressed in degrees. The value lies in the range -180
degrees to 180 degrees. If x zero, the result is approximately equal to the value of arctan (y/
x).

If y > zero, the result is positive.

If y < zero, the result is negative.

If y = zero, the result is zero (if x > zero) or 180 degrees (if x < zero).

If x = zero, the absolute value of the result is 90 degrees.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)ATAN2D

REAL(8)REAL(8)DATAN2D

REAL(16)REAL(16)QATAN2D

2367

63

Example

ATAN2D (2.679676, 1.0) has the value 69.53546.

ATAND
Elemental Intrinsic Function (Generic):
Produces the arctangent of x.

Syntax

result = ATAND (x)

(Input) Must be of type real and must be greater than or equal to
zero.

x

Results

The result type is the same as x and is expressed in degrees.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)ATAND

REAL(8)REAL(8)DATAND

REAL(16)REAL(16)QATAND

Example

ATAND (0.0874679) has the value 4.998819.

ATANH
Elemental Intrinsic Function (Generic):
Produces the hyperbolic arctangent of x.

Syntax

result = ATANH (x)

(Input) Must be of type real, where | x | is less than or equal to
1.

x

2368

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is the same as x. The value lies in the range -1.0 to 1.0.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)ATANH

REAL(8)REAL(8)DATANH

REAL(16)REAL(16)QATANH

Example

ATANH (-0.77) has the value -1.02033.

ATANH (0.5) has the value 0.549306.

ATOMIC
OpenMP* Fortran Compiler Directive: Ensures
that a specific memory location is updated
dynamically; this prevents the possibility of
multiple, simultaneous writing threads.

Syntax

c$OMP ATOMIC

Is one of the following: C (or c), !, or * (see Syntax Rules for
Compiler Directives).

c

The ATOMIC directive permits optimization beyond that of the critical section around the
assignment. An implementation can replace ATOMIC directives by enclosing each statement in
a critical section. The critical section (or sections) must use the same unique name.

The ATOMIC directive applies only to the immediately following statement, which must have
one of the following forms:

x = x operator expr

x = expr operator x

x = intrinsic (x, expr)

x = intrinsic (expr, x)

In the preceding statements:

2369

63

• x is a scalar variable of intrinsic type

• expr is a scalar expression that does not reference x

• intrinsic is MAX, MIN, IAND, IOR, or IEOR

• operator is +, *, -, /, .AND., .OR., .EQV., or .NEQV.

All references to storage location x must have the same type and type parameters.

Only the loading and storing of x are dynamic; the evaluation of expr is not dynamic. To avoid
race conditions (or concurrency races), all updates of the location in parallel must be protected
using the ATOMIC directive, except those that are known to be free of race conditions. The
function intrinsic, the operator operator, and the assignment must be the intrinsic function,
operator, and assignment.

Example

The following example shows a way to avoid race conditions by using ATOMIC to protect all
simultaneous updates of the location by multiple threads:

c$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X,Y,INDEX,N)

DO I=1,N

CALL WORK(XLOCAL, YLOCAL)

c$OMP ATOMIC

X(INDEX(I)) = X(INDEX(I)) + XLOCAL

Y(I) = Y(I) + YLOCAL

END DO

Since the ATOMIC directive applies only to the statement immediately following it, note that Y
is not updated atomically.

See Also
• A to B
• OpenMP Fortran Compiler Directives

2370

63 Intel® Fortran Compiler User and Reference Guides

ATTRIBUTES
General Compiler Directive: Declares properties
for specified variables.

Syntax

cDEC$ ATTRIBUTES att[,att]...:: object[,object]...

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is one of the following options (or properties):att

NO_ARG_CHECKDEFAULTALIAS

NOINLINEDLLEXPORTALIGN

NOMIXED_STR_LEN_ARGDLLIMPORTALLOCATABLE

REFERENCEEXTERNALLOW_NULL

STDCALLFORCEINLINEARRAY_VISUALIZER

VALUEIGNORE_LOCC

VARYINGINLINEDECORATE

Is the name of a data object or procedure.object

The following table shows which ATTRIBUTES options can be used with various objects:

Subprogram
Specification and
EXTERNAL
Statements

Common Block
Names 1

Variable and Array
Declarations

Option

YesYesNoALIAS

NoNoYesALIGN

NoNoYes2ALLOCATABLE

NoNoYesALLOW_NULL

2371

63

Subprogram
Specification and
EXTERNAL
Statements

Common Block
Names 1

Variable and Array
Declarations

Option

NoNoYes2ARRAY_VISUALIZER

YesYesNoC

YesNoNoDECORATE

YesYesNoDEFAULT

YesYesYes3DLLEXPORT

YesYesYesDLLIMPORT

NoNoYesEXTERN

YesNoNoFORCEINLINE

NoNoYes4IGNORE_LOC

YesNoNoINLINE

Yes5NoYesNO_ARG_CHECK

YesNoNoNOINLINE

YesNoNoNOMIXED_STR_LEN_ARG

YesNoYesREFERENCE

YesYesNoSTDCALL

NoNoYesVALUE

YesNoNoVARYING

1A common block name is specified as [/]common-block-name[/]
2This option can only be applied to arrays.

2372

63 Intel® Fortran Compiler User and Reference Guides

Subprogram
Specification and
EXTERNAL
Statements

Common Block
Names 1

Variable and Array
Declarations

Option

3Module-level variables and arrays only.
4This option can only be applied to INTERFACE blocks.
5This option cannot be applied to EXTERNAL statements.

These options can be used in function and subroutine definitions, in type declarations, and with
the INTERFACE and ENTRY statements.

Options applied to entities available through use or host association are in effect during the
association. For example, consider the following:

MODULE MOD1 INTERFACE

SUBROUTINE SUB1

!DEC$ ATTRIBUTES C, ALIAS:'othername' :: NEW_SUB

END SUBROUTINE

END INTERFACE

CONTAINS

SUBROUTINE SUB2

CALL NEW_SUB

END SUBROUTINE

END MODULE

In this case, the call to NEW_SUB within SUB2 uses the C and ALIAS options specified in the
interface block.

The following are ATTRIBUTES options:

• ALIAS

• ALIGN

• ALLOCATABLE

• ALLOW_NULL

• ARRAY_VISUALIZER

• C and STDCALL

2373

63

• DECORATE

• DEFAULT

• DLLEXPORT and DLLIMPORT

• EXTERN

• IGNORE_LOC

• INLINE, NOINLINE, and FORCEINLINE

• NO_ARG_CHECK

• NOMIXED_STR_LEN_ARG

• REFERENCE and VALUE

• VARYING

Options C, STDCALL, REFERENCE, VALUE, and VARYING affect the calling conventions of
routines:

• You can specify C, STDCALL, REFERENCE, and VARYING for an entire routine.
• You can specify VALUE and REFERENCE for individual arguments.

Examples
INTERFACE

SUBROUTINE For_Sub (I)

!DEC$ ATTRIBUTES C, ALIAS:'_For_Sub' :: For_Sub

INTEGER I

END SUBROUTINE For_Sub

END INTERFACE

You can assign more than one option to multiple variables with the same compiler directive.
All assigned options apply to all specified variables. For example:

!DEC$ ATTRIBUTES REFERENCE, VARYING, C :: A, B, C

In this case, the variables A, B, and C are assigned the REFERENCE, VARYING, and C options.
The only restriction on the number of options and variables is that the entire compiler directive
must fit on one line.

The identifier of the variable or procedure that is assigned one or more options must be a simple
name. It cannot include initialization or array dimensions. For example, the following is not
allowed:

!DEC$ ATTRIBUTES C :: A(10) ! This is illegal.

2374

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

SUBROUTINE ARRAYTEST(arr)

!DEC$ ATTRIBUTES DLLEXPORT :: ARRAYTEST

REAL(4) arr(3, 7)

INTEGER i, j

DO i = 1, 3

DO j = 1, 7

arr (i, j) = 11.0 * i + j

END DO

END DO

END SUBROUTINE

See Also
• A to B
• ATTRIBUTES ALIAS
• ATTRIBUTES ALIGN
• ATTRIBUTES ALLOCATABLE
• ATTRIBUTES ALLOW_NULL
• ATTRIBUTES ARRAY_VISUALIZER (W*32, W*64)
• ATTRIBUTES C and STDCALL
• ATTRIBUTES DECORATE
• ATTRIBUTES DEFAULT
• ATTRIBUTES DLLEXPORT and DLLIMPORT (W*32, W*64)
• ATTRIBUTES DLLEXPORT and DLLIMPORT (W*32, W*64)
• ATTRIBUTES EXTERN
• ATTRIBUTES INLINE, NOINLINE, and FORCEINLINE
• ATTRIBUTES IGNORE_LOC
• ATTRIBUTES INLINE, NOINLINE, and FORCEINLINE
• ATTRIBUTES MIXED_STR_LEN_ARG and NOMIXED_STR_LEN_ARG
• ATTRIBUTES NO_ARG_CHECK
• ATTRIBUTES INLINE, NOINLINE, and FORCEINLINE
• ATTRIBUTES MIXED_STR_LEN_ARG and NOMIXED_STR_LEN_ARG
• ATTRIBUTES REFERENCE and VALUE

2375

63

• ATTRIBUTES C and STDCALL
• ATTRIBUTES REFERENCE and VALUE
• ATTRIBUTES VARYING
• General Compiler Directives
Programming with Mixed Languages Overview
ATTRIBUTES ALIAS
The ATTRIBUTES directive option ALIAS specifies
an alternate external name to be used when
referring to external subprograms. It takes the
following form:

Syntax

cDEC$ ATTRIBUTES ALIAS: external-name:: subprogram

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is a character constant delimited by apostrophes or quotation
marks. The character constant is used as is; the string is not
changed to uppercase, nor are blanks removed.

external-name

Is an external subprogram.subprogram

The ALIAS option overrides the C (and STDCALL) option. If both C and ALIAS are specified for
a subprogram, the subprogram is given the C calling convention, but not the C naming
convention. It instead receives the name given for ALIAS, with no modifications.

ALIAS cannot be used with internal procedures, and it cannot be applied to dummy arguments.

The following example gives the subroutine happy the name "_OtherName@4" outside this
scoping unit:

INTERFACE

SUBROUTINE happy(i)

!DEC$ ATTRIBUTES STDCALL, DECORATE, ALIAS:'OtherName' :: happy

INTEGER i

END SUBROUTINE

END INTERFACE

cDEC$ ATTRIBUTES ALIAS has the same effect as the cDEC$ ALIAS directive.

2376

63 Intel® Fortran Compiler User and Reference Guides

ATTRIBUTES ALIGN
The ATTRIBUTES directive option ALIGN specifies
the byte alignment for a variable. It takes the
following form:

Syntax

cDEC$ ATTRIBUTES ALIGN: n:: var

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the number of bytes for the minimum alignment boundary.n
For allocatable variables, the boundary value must be a power of
2 between 1 and 16384, such as 1, 2, 4, 8, 16, 32, 64, 128, and
so on.
For non-allocatable variables, the boundary value must be a power
of 2 between 1 and 64 on Windows* systems, between 1 and
2**16 on Linux* systems, or between 1 and 2**12 on Mac OS*
X systems.

Is the variable to be aligned.var

ATTRIBUTES ALLOCATABLE
The ATTRIBUTES directive option ALLOCATABLE is
provided for compatibility with older programs. It
lets you delay allocation of storage for a particular
declared entity until some point at run time when
you explicitly call a routine that dynamically
allocates storage for the entity. The ALLOCATABLE
option takes the following form:

Syntax

cDEC$ ATTRIBUTES ALLOCATABLE :: entity

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the name of the entity that should have allocation delayed.entity

The recommended method for dynamically allocating storage is to use the ALLOCATABLE
statement or attribute.

2377

63

ATTRIBUTES ALLOW_NULL
The ATTRIBUTES directive option ALLOW_NULL
enables a corresponding dummy argument to pass
a NULL pointer (defined by a zero or the NULL
intrinsic) by value for the argument. It takes the
following form:

Syntax

cDEC$ ATTRIBUTES ALLOW_NULL :: arg

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the name of the argument.arg

ALLOW_NULL is only valid if the REFERENCE option is also specified; otherwise, it has no effect.

ATTRIBUTES ARRAY_VISUALIZER (W*32, W*64)
The ATTRIBUTES directive option
ARRAY_VISUALIZER enables more efficient memory
sharing between the application and the Intel®
Array Visualizer library. It takes the following form:

Syntax

cDEC$ ATTRIBUTES ARRAY_VISUALIZER :: array

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the array to be used with the Intel® Array Visualizer library.array

The following example shows a way to use this directive option to improve the performance of
the call:

real(4), allocatable :: MyArray(:, :)

!DEC$ ATTRIBUTES array_visualizer :: MyArray

ATTRIBUTES C and STDCALL
The ATTRIBUTES directive options C and STDCALL
specify procedure calling, naming, and argument
passing conventions. They take the following
forms:

Syntax

cDEC$ ATTRIBUTES C :: object[, object] ...

2378

63 Intel® Fortran Compiler User and Reference Guides

cDEC$ ATTRIBUTES STDCALL :: object[, object] ...

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the name of a data object or procedure.object

On W*32 only (see Conventions, Platform labels), C and STDCALL have slightly different
meanings; on all other platforms, they are interpreted as synonyms.

When applied to a subprogram, these options define the subprogram as having a specific set
of calling conventions.

The following table summarizes the differences between the calling conventions:

Default 2STDCALL 1C 1Convention

NoYesYesArguments passed by
value

L*X, M*X: LowercaseL*X, M*X: LowercaseL*X, M*X: LowercaseCase of external
subprogram names W*32, W*64:

Uppercase
W*32, W*64:
Lowercase

W*32, W*64:
Lowercase

L*X, M*X only:

Yes3NoNoTrailing underscore
added

M*X only:

YesNoNoLeading underscore
added

W*32 only:

Yes4YesYesLeading underscore
added

NoYesNoNumber of argument
bytes added to name

YesNoYesCaller stack cleanup

2379

63

Default 2STDCALL 1C 1Convention

YesNoYesVariable number of
arguments

1C and STDCALL are synonyms on Linux systems.
2The Intel Fortran calling convention
3On Linux systems, if there are one or more underscores in the external name, two trailing
underscores are added; if there are no underscores, one is added.
4W*32 only

If C or STDCALL is specified for a subprogram, arguments (except for arrays and characters)
are passed by value. Subprograms using standard Fortran conventions pass arguments by
reference.

On IA-32 architecture, an underscore (_) is placed at the beginning of the external name of
a subprogram. If STDCALL is specified, an at sign (@) followed by the number of argument
bytes being passed is placed at the end of the name. For example, a subprogram named SUB1
that has three INTEGER(4) arguments and is defined with STDCALL is assigned the external
name _sub1@12.

Character arguments are passed as follows:

• By default, hidden lengths are put at the end of the argument list.

On Windows* systems using IA-32 architecture, you can get Compaq* Visual Fortran default
behavior by specifying compiler option iface.

• If C or STDCALL (only) is specified:

On all systems, the first character of the string is passed (and padded with zeros out to
INTEGER(4) length).

• If C or STDCALL is specified, and REFERENCE is specified for the argument:

On all systems, the string is passed with no length.

• If C or STDCALL is specified, and REFERENCE is specified for the routine (but REFERENCE
is not specified for the argument, if any):

On all systems, the string is passed with the length.

2380

63 Intel® Fortran Compiler User and Reference Guides

See Also
• ATTRIBUTES
• ATTRIBUTES
• ATTRIBUTES
• REFERENCE

Building Applications: Adjusting Calling Conventions in Mixed-Language Programming Overview

ATTRIBUTES DECORATE
The ATTRIBUTES directive option DECORATE
specifies that the external name used in cDEC$
ALIAS or cDEC$ ATTRIBUTES ALIAS should have
the prefix and postfix decorations performed on it
that are associated with the calling mechanism
that is in effect. These are the same decorations
performed on the procedure name when ALIAS is
not specified.

Syntax

The DECORATE option takes the following form:

cDEC$ ATTRIBUTES DECORATE :: exname

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is an external name.exname

The case of the ALIAS external name is not modified.

If ALIAS is not specified, this option has no effect.

See Also
• ATTRIBUTES
• The example in the description of the ATTRIBUTES option ALIAS
• The summary of prefix and postfix decorations in the description of the ATTRIBUTES

options C and STDCALL

2381

63

ATTRIBUTES DEFAULT
The ATTRIBUTES directive option DEFAULT
overrides certain compiler options that can affect
external routine and COMMON block declarations.
It takes the following form:

Syntax

cDEC$ ATTRIBUTES DEFAULT :: entity

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is an external procedure or COMMON block.entity

It specifies that the compiler should ignore compiler options that change the default conventions
for external symbol naming and argument passing for routines and COMMON blocks (such as
names, assume underscore, assume 2underscores on Linux systems, and iface on Windows*
systems).

This option can be combined with other ATTRIBUTES options, such as STDCALL, C, REFERENCE,
ALIAS, etc. to specify properties different from the compiler defaults.

This option is useful when declaring INTERFACE blocks for external routines, since it prevents
compiler options from changing calling or naming conventions.

See Also
• ATTRIBUTES
• names compiler option
• assume compiler option
ATTRIBUTES DLLEXPORT and DLLIMPORT (W*32, W*64)
The ATTRIBUTES directive options DLLEXPORT and
DLLIMPORT define a dynamic-link library's (DLL)
interface for processes that use them. The options
can be assigned to module variables, COMMON
blocks, and procedures. They take the following
forms:

Syntax

cDEC$ ATTRIBUTES DLLEXPORT :: object[, object] ...

cDEC$ ATTRIBUTES DLLIMPORT :: object[, object] ...

2382

63 Intel® Fortran Compiler User and Reference Guides

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the name of a module variable, COMMON block, or procedure.
The name of a COMMON block must be enclosed in slashes.

object

DLLEXPORT specifies that procedures or data are being exported to other applications or DLLs.
This causes the compiler to produce efficient code, eliminating the need for a module definition
(.def) file to export symbols.

DLLEXPORT should be specified in the routine to which it applies.

Symbols defined in a DLL are imported by programs that use them. The program must link
with the DLL import library (.lib) and use the DLLIMPORT option inside the program unit that
imports the symbol. DLLIMPORT is specified in a declaration, not a definition, since you cannot
define a symbol you are importing.

See Also
• ATTRIBUTES
• ATTRIBUTES

Building Applications: Creating and Using Fortran DLLs Overview, for details on working with
DLL applications

ATTRIBUTES DLLEXPORT and DLLIMPORT (W*32, W*64)
The ATTRIBUTES directive options DLLEXPORT and
DLLIMPORT define a dynamic-link library's (DLL)
interface for processes that use them. The options
can be assigned to module variables, COMMON
blocks, and procedures. They take the following
forms:

Syntax

cDEC$ ATTRIBUTES DLLEXPORT :: object[, object] ...

cDEC$ ATTRIBUTES DLLIMPORT :: object[, object] ...

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the name of a module variable, COMMON block, or procedure.
The name of a COMMON block must be enclosed in slashes.

object

DLLEXPORT specifies that procedures or data are being exported to other applications or DLLs.
This causes the compiler to produce efficient code, eliminating the need for a module definition
(.def) file to export symbols.

2383

63

DLLEXPORT should be specified in the routine to which it applies.

Symbols defined in a DLL are imported by programs that use them. The program must link
with the DLL import library (.lib) and use the DLLIMPORT option inside the program unit that
imports the symbol. DLLIMPORT is specified in a declaration, not a definition, since you cannot
define a symbol you are importing.

See Also
• ATTRIBUTES
• ATTRIBUTES

Building Applications: Creating and Using Fortran DLLs Overview, for details on working with
DLL applications

ATTRIBUTES EXTERN
The ATTRIBUTES directive option EXTERN specifies
that a variable is allocated in another source file.
EXTERN can be used in global variable declarations,
but it must not be applied to dummy arguments.
It takes the following form:

Syntax

cDEC$ ATTRIBUTES EXTERN :: var

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the variable to be allocated.var

This option must be used when accessing variables declared in other languages.

ATTRIBUTES INLINE, NOINLINE, and FORCEINLINE
The ATTRIBUTES directive options INLINE,
NOINLINE, and FORCEINLINE can be used to
control inlining decisions made by the compiler.
You should place the directive option in the
procedure whose inlining you want to influence.

Syntax

The INLINE option specifies that a function or subroutine can be inlined. The inlining can be
ignored by the compiler if inline heuristics determine it may have a negative impact on
performance or will cause too much of an increase in code size. It takes the following form:

cDEC$ ATTRIBUTES INLINE :: procedure

2384

63 Intel® Fortran Compiler User and Reference Guides

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the function or subroutine that can be inlined.procedure

The NOINLINE option disables inlining of a function. It takes the following form:

cDEC$ ATTRIBUTES NOINLINE :: procedure

See above.c

Is the function or subroutine that must not be inlined.procedure

The FORCEINLINE option specifies that a function or subroutine must be inlined unless it will
cause errors. It takes the following form:

cDEC$ ATTRIBUTES FORCEINLINE :: procedure

See above.c

Is the function or subroutine that must be inlined.procedure

ATTRIBUTES IGNORE_LOC
The ATTRIBUTES directive option IGNORE_LOC
enables %LOC to be stripped from an argument.
It takes the following form:

Syntax

cDEC$ ATTRIBUTES IGNORE_LOC :: arg

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the name of an argument.arg

IGNORE_LOC is only valid if the REFERENCE option is also specified; otherwise, it has no effect.

ATTRIBUTES INLINE, NOINLINE, and FORCEINLINE
The ATTRIBUTES directive options INLINE,
NOINLINE, and FORCEINLINE can be used to
control inlining decisions made by the compiler.
You should place the directive option in the
procedure whose inlining you want to influence.

Syntax

The INLINE option specifies that a function or subroutine can be inlined. The inlining can be
ignored by the compiler if inline heuristics determine it may have a negative impact on
performance or will cause too much of an increase in code size. It takes the following form:

2385

63

cDEC$ ATTRIBUTES INLINE :: procedure

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the function or subroutine that can be inlined.procedure

The NOINLINE option disables inlining of a function. It takes the following form:

cDEC$ ATTRIBUTES NOINLINE :: procedure

See above.c

Is the function or subroutine that must not be inlined.procedure

The FORCEINLINE option specifies that a function or subroutine must be inlined unless it will
cause errors. It takes the following form:

cDEC$ ATTRIBUTES FORCEINLINE :: procedure

See above.c

Is the function or subroutine that must be inlined.procedure

ATTRIBUTES MIXED_STR_LEN_ARG and NOMIXED_STR_LEN_ARG
These ATTRIBUTES directive options specify where
hidden lengths for character arguments and
character-valued functions should be placed.
MIXED_STR_LEN_ARG specifies that hidden lengths
for character arguments and character-valued
functions should be placed immediately following
the argument address in the argument list.
NOMIXED_STR_LEN_ARG specifies that these
hidden lengths should be placed in sequential order
at the end of the argument list. They take the
following form:

Syntax

cDEC$ ATTRIBUTES MIXED_STR_LEN_ARG :: args

cDEC$ ATTRIBUTES NOMIXED_STR_LEN_ARG :: args

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is a list of arguments.args

2386

63 Intel® Fortran Compiler User and Reference Guides

The default is NOMIXED_STR_LEN_ARG. However, If you specify compiler option /iface:CVF
or /iface:mixed_str_len_arg (Windows), or compiler option -mixed-str-len-arg (Linux
and Mac OS X), the default is MIXED_STR_LEN_ARG.

See Also
• ATTRIBUTES
• ATTRIBUTES
• ATTRIBUTES
ATTRIBUTES NO_ARG_CHECK
The ATTRIBUTES directive option NO_ARG_CHECK
specifies that type and shape matching rules
related to explicit interfaces are to be ignored. This
permits the construction of an INTERFACE block
for an external procedure or a module procedure
that accepts an argument of any type or shape;
for example, a memory copying routine. The
NO_ARG_CHECK option takes the following form:

Syntax

cDEC$ ATTRIBUTES NO_ARG_CHECK :: object

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the name of an argument or procedure.object

NO_ARG_CHECK can appear only in an INTERFACE block for a non-generic procedure or in a
module procedure. It can be applied to an individual dummy argument name or to the routine
name, in which case the option is applied to all dummy arguments in that interface.

NO_ARG_CHECK cannot be used for procedures with the PURE or ELEMENTAL prefix.

See Also
• ATTRIBUTES
• ATTRIBUTES

2387

63

ATTRIBUTES INLINE, NOINLINE, and FORCEINLINE
The ATTRIBUTES directive options INLINE,
NOINLINE, and FORCEINLINE can be used to
control inlining decisions made by the compiler.
You should place the directive option in the
procedure whose inlining you want to influence.

Syntax

The INLINE option specifies that a function or subroutine can be inlined. The inlining can be
ignored by the compiler if inline heuristics determine it may have a negative impact on
performance or will cause too much of an increase in code size. It takes the following form:

cDEC$ ATTRIBUTES INLINE :: procedure

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the function or subroutine that can be inlined.procedure

The NOINLINE option disables inlining of a function. It takes the following form:

cDEC$ ATTRIBUTES NOINLINE :: procedure

See above.c

Is the function or subroutine that must not be inlined.procedure

The FORCEINLINE option specifies that a function or subroutine must be inlined unless it will
cause errors. It takes the following form:

cDEC$ ATTRIBUTES FORCEINLINE :: procedure

See above.c

Is the function or subroutine that must be inlined.procedure

ATTRIBUTES MIXED_STR_LEN_ARG and NOMIXED_STR_LEN_ARG
These ATTRIBUTES directive options specify where
hidden lengths for character arguments and
character-valued functions should be placed.
MIXED_STR_LEN_ARG specifies that hidden lengths
for character arguments and character-valued
functions should be placed immediately following
the argument address in the argument list.
NOMIXED_STR_LEN_ARG specifies that these

2388

63 Intel® Fortran Compiler User and Reference Guides

hidden lengths should be placed in sequential order
at the end of the argument list. They take the
following form:

Syntax

cDEC$ ATTRIBUTES MIXED_STR_LEN_ARG :: args

cDEC$ ATTRIBUTES NOMIXED_STR_LEN_ARG :: args

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is a list of arguments.args

The default is NOMIXED_STR_LEN_ARG. However, If you specify compiler option /iface:CVF
or /iface:mixed_str_len_arg (Windows), or compiler option -mixed-str-len-arg (Linux
and Mac OS X), the default is MIXED_STR_LEN_ARG.

See Also
• ATTRIBUTES
• ATTRIBUTES
• ATTRIBUTES
ATTRIBUTES REFERENCE and VALUE
The ATTRIBUTES directive options REFERENCE and
VALUE specify how a dummy argument is to be
passed. They take the following form:

Syntax

cDEC$ ATTRIBUTES REFERENCE :: arg

cDEC$ ATTRIBUTES VALUE :: arg

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the name of a dummy argument.arg

REFERENCE specifies a dummy argument's memory location is to be passed instead of the
argument's value.

VALUE specifies a dummy argument's value is to be passed instead of the argument's memory
location.

2389

63

When VALUE is specified for a dummy argument, the actual argument passed to it can be of a
different type. If necessary, type conversion is performed before the subprogram is called.

When a complex (KIND=4 or KIND=8) argument is passed by value, two floating-point
arguments (one containing the real part, the other containing the imaginary part) are passed
by immediate value.

Character values, substrings, assumed-size arrays, and adjustable arrays cannot be passed by
value.

If REFERENCE (only) is specified for a character argument, the string is passed with no length.

If REFERENCE is specified for a character argument, and C (or STDCALL) has been specified
for the routine, the string is passed with no length. This is true even if REFERENCE is also
specified for the routine.

If REFERENCE and C (or STDCALL) are specified for a routine, but REFERENCE has not been
specified for the argument, the string is passed with the length.

VALUE is the default if the C or STDCALL option is specified in the subprogram definition.

In the following example integer x is passed by value:

SUBROUTINE Subr (x)

INTEGER x

!DEC$ ATTRIBUTES VALUE :: x

See Also
• ATTRIBUTES
• ATTRIBUTES
• C and STDCALL

Building Applications: Adjusting Calling Conventions in Mixed-Language Programming Overview

ATTRIBUTES C and STDCALL
The ATTRIBUTES directive options C and STDCALL
specify procedure calling, naming, and argument
passing conventions. They take the following
forms:

Syntax

cDEC$ ATTRIBUTES C :: object[, object] ...

cDEC$ ATTRIBUTES STDCALL :: object[, object] ...

2390

63 Intel® Fortran Compiler User and Reference Guides

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the name of a data object or procedure.object

On W*32 only (see Conventions, Platform labels), C and STDCALL have slightly different
meanings; on all other platforms, they are interpreted as synonyms.

When applied to a subprogram, these options define the subprogram as having a specific set
of calling conventions.

The following table summarizes the differences between the calling conventions:

Default 2STDCALL 1C 1Convention

NoYesYesArguments passed by
value

L*X, M*X: LowercaseL*X, M*X: LowercaseL*X, M*X: LowercaseCase of external
subprogram names W*32, W*64:

Uppercase
W*32, W*64:
Lowercase

W*32, W*64:
Lowercase

L*X, M*X only:

Yes3NoNoTrailing underscore
added

M*X only:

YesNoNoLeading underscore
added

W*32 only:

Yes4YesYesLeading underscore
added

NoYesNoNumber of argument
bytes added to name

YesNoYesCaller stack cleanup

2391

63

Default 2STDCALL 1C 1Convention

YesNoYesVariable number of
arguments

1C and STDCALL are synonyms on Linux systems.
2The Intel Fortran calling convention
3On Linux systems, if there are one or more underscores in the external name, two trailing
underscores are added; if there are no underscores, one is added.
4W*32 only

If C or STDCALL is specified for a subprogram, arguments (except for arrays and characters)
are passed by value. Subprograms using standard Fortran conventions pass arguments by
reference.

On IA-32 architecture, an underscore (_) is placed at the beginning of the external name of
a subprogram. If STDCALL is specified, an at sign (@) followed by the number of argument
bytes being passed is placed at the end of the name. For example, a subprogram named SUB1
that has three INTEGER(4) arguments and is defined with STDCALL is assigned the external
name _sub1@12.

Character arguments are passed as follows:

• By default, hidden lengths are put at the end of the argument list.

On Windows* systems using IA-32 architecture, you can get Compaq* Visual Fortran default
behavior by specifying compiler option iface.

• If C or STDCALL (only) is specified:

On all systems, the first character of the string is passed (and padded with zeros out to
INTEGER(4) length).

• If C or STDCALL is specified, and REFERENCE is specified for the argument:

On all systems, the string is passed with no length.

• If C or STDCALL is specified, and REFERENCE is specified for the routine (but REFERENCE
is not specified for the argument, if any):

On all systems, the string is passed with the length.

2392

63 Intel® Fortran Compiler User and Reference Guides

See Also
• ATTRIBUTES
• ATTRIBUTES
• ATTRIBUTES
• REFERENCE

Building Applications: Adjusting Calling Conventions in Mixed-Language Programming Overview

ATTRIBUTES REFERENCE and VALUE
The ATTRIBUTES directive options REFERENCE and
VALUE specify how a dummy argument is to be
passed. They take the following form:

Syntax

cDEC$ ATTRIBUTES REFERENCE :: arg

cDEC$ ATTRIBUTES VALUE :: arg

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the name of a dummy argument.arg

REFERENCE specifies a dummy argument's memory location is to be passed instead of the
argument's value.

VALUE specifies a dummy argument's value is to be passed instead of the argument's memory
location.

When VALUE is specified for a dummy argument, the actual argument passed to it can be of a
different type. If necessary, type conversion is performed before the subprogram is called.

When a complex (KIND=4 or KIND=8) argument is passed by value, two floating-point
arguments (one containing the real part, the other containing the imaginary part) are passed
by immediate value.

Character values, substrings, assumed-size arrays, and adjustable arrays cannot be passed by
value.

If REFERENCE (only) is specified for a character argument, the string is passed with no length.

If REFERENCE is specified for a character argument, and C (or STDCALL) has been specified
for the routine, the string is passed with no length. This is true even if REFERENCE is also
specified for the routine.

2393

63

If REFERENCE and C (or STDCALL) are specified for a routine, but REFERENCE has not been
specified for the argument, the string is passed with the length.

VALUE is the default if the C or STDCALL option is specified in the subprogram definition.

In the following example integer x is passed by value:

SUBROUTINE Subr (x)

INTEGER x

!DEC$ ATTRIBUTES VALUE :: x

See Also
• ATTRIBUTES
• ATTRIBUTES
• C and STDCALL

Building Applications: Adjusting Calling Conventions in Mixed-Language Programming Overview

ATTRIBUTES VARYING
The ATTRIBUTES directive option VARYING allows
a variable number of calling arguments. It takes
the following form:

Syntax

cDEC$ ATTRIBUTES VARYING :: var[, var] ...

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the name of a variable.var

Either the first argument must be a number indicating how many arguments to process, or the
last argument must be a special marker (such as -1) indicating it is the final argument. The
sequence of the arguments, and types and kinds must be compatible with the called procedure.

If VARYING is specified, the C option must also be specified.

See Also
• ATTRIBUTES
• ATTRIBUTES
• Syntax Rules for Compiler Directives

2394

63 Intel® Fortran Compiler User and Reference Guides

AUTOAddArg (W*32, W*64)
AUTO Subroutine: Passes an argument name
and value and adds the argument to the argument
list data structure.

Module

USE IFAUTO

USE IFWINTY

Syntax

CALL AUTOAddArg (invoke_args,name,value[,intent_arg][,type])

The argument list data structure. Must be of type
INTEGER(INT_PTR_KIND()).

invoke_args

The argument's name of type CHARACTER*(*).name

The argument's value. Must be of type INTEGER(1), INTEGER(2),
INTEGER(4), REAL(4), REAL(8), LOGICAL(2), CHARACTER*(*), or
a single dimension array of one of these types. Can also be of type
VARIANT, which is defined in the IFWINTY module.

value

Indicates the intended use of the argument by the called method.
Must be one of the following constants defined in the IFAUTO
module:

intent_arg

• AUTO_ARG_IN: The argument's value is read by the called
method, but not written. This is the default value if intent_arg
is not specified.

• AUTO_ARG_OUT: The argument's value is written by the called
method, but not read.

• AUTO_ARG_INOUT: The argument's value is read and written
by the called method.

When the value of intent_arg is AUTO_ARG_OUT or
AUTO_ARG_INOUT, the variable used in the value argument
should be declared using the VOLATILE attribute. This is because
the value of the variable will be changed by the subsequent call
to AUTOInvoke. The compiler's global optimizations need to know
that the value can change unexpectedly.

2395

63

The variant type of the argument. Must be one of the following
constants defined in the IFWINTY module:

type

Value TypeVARIANT Type

INTEGER(1)VT_I1

INTEGER(2)VT_I2

INTEGER(4)VT_I4

REAL(4)VT_R4

REAL(8)VT_R8

REAL(8)VT_CY

REAL(8)VT_DATE

CHARACTER*(*)VT_BSTR

INTEGER(4)VT_DISPATCH

INTEGER(4)VT_ERROR

LOGICAL(2)VT_BOOL

TYPE(VARIANT)VT_VARIANT

INTEGER(4)VT_UNKNOWN

Example

See the example in COMInitialize.

2396

63 Intel® Fortran Compiler User and Reference Guides

AUTOAllocateInvokeArgs (W*32, W*64)
AUTO Function: Allocates an argument list data
structure that holds the arguments to be passed
to AUTOInvoke.

Module

USE IFAUTO

Syntax

result = AUTOAllocateInvokeArgs()

Results

The value returned is an argument list data structure of type INTEGER(INT_PTR_KIND()).

Example

See the example in COMInitialize.

AUTODeallocateInvokeArgs (W*32, W*64)
AUTO Subroutine: Deallocates an argument list
data structure.

Module

USE IFAUTO

Syntax

CALL AUTODeallocateInvokeArgs (invoke_args)

The argument list data structure. Must be of type
INTEGER(INT_PTR_KIND()).

invoke_args

Example

See the example in COMInitialize.

2397

63

AUTOGetExceptInfo (W*32, W*64)
AUTO Subroutine: Retrieves the exception
information when a method has returned an
exception status.

Module

USE IFAUTO

Syntax

CALL AUTOGetExceptInfo
(invoke_args,code,source,description,h_file,h_context,scode)

The argument list data structure. Must be of type
INTEGER(INT_PTR_KIND()).

invoke_args

An output argument that returns the error code. Must be of type
INTEGER(2).

code

An output argument that returns a human-readable name of the
source of the exception. Must be of type CHARACTER*(*).

source

An output argument that returns a human-readable description of
the error. Must be of type CHARACTER*(*).

description

An output argument that returns the fully qualified path of a Help
file with more information about the error. Must be of type
CHARACTER*(*).

h_file

An output argument that returns the Help context of the topic
within the Help file. Must be of type INTEGER(4).

h_context

An output argument that returns an SCODE describing the error.
Must be of type INTEGER(4).

scode

AUTOGetProperty (W*32, W*64)
AUTO Function: Passes the name or identifier of
the property and gets the value of the automation
object's property.

Module

USE IFAUTO

USE IFWINTY

2398

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = AUTOGetProperty (idispatch,id,value[,type])

The object's IDispatch interface pointer. Must be of type
INTEGER(INT_PTR_KIND()).

idispatch

The argument's name of type CHARACTER*(*), or its member ID
of type INTEGER(4).

id

An output argument that returns the argument's value. Must be
of type INTEGER(2), INTEGER(4), REAL(4), REAL(8), LOGICAL(2),
LOGICAL(4), CHARACTER*(*), or a single dimension array of one
of these types.

value

The variant type of the requested argument. Must be one of the
following constants defined in the IFWINTY module:

type

Value TypeVARIANT Type

INTEGER(2)VT_I2

INTEGER(4)VT_I4

REAL(4)VT_R4

REAL(8)VT_R8

REAL(8)VT_CY

REAL(8)VT_DATE

CHARACTER*(*)VT_BSTR

INTEGER(4)VT_DISPATCH

INTEGER(4)VT_ERROR

LOGICAL(2)VT_BOOL

INTEGER(4)VT_UNKNOWN

Results

Returns an HRESULT describing the status of the operation. Must be of type INTEGER(4).

2399

63

AUTOGetPropertyByID (W*32, W*64)
AUTO Function: Passes the member ID of the
property and gets the value of the automation
object's property into the argument list's first
argument.

Module

USE IFAUTO

Syntax

result = AUTOGetPropertyByID (idispatch,memid,invoke_args)

The object's IDispatch interface pointer. Must be of type
INTEGER(INT_PTR_KIND()).

idispatch

Member ID of the property. Must be of type INTEGER(4).memid

The argument list data structure. Must be of type
INTEGER(INT_PTR_KIND()).

invoke_args

Results

Returns an HRESULT describing the status of the operation. Must be of type INTEGER(4).

AUTOGetPropertyInvokeArgs (W*32, W*64)
AUTO Function: Passes an argument list data
structure and gets the value of the automation
object's property specified in the argument list's
first argument.

Module

USE IFAUTO

Syntax

result = AUTOGetPropertyInvokeArgs (idispatch,invoke_args)

The object's IDispatch interface pointer. Must be of type
INTEGER(INT_PTR_KIND()).

idispatch

The argument list data structure. Must be of type
INTEGER(INT_PTR_KIND()).

invoke_args

2400

63 Intel® Fortran Compiler User and Reference Guides

Results

Returns an HRESULT describing the status of the operation. Must be of type
INTEGER(INT_PTR_KIND()).

AUTOInvoke (W*32, W*64)
AUTO Function: Passes the name or identifier of
an object's method and an argument list data
structure and invokes the method with the passed
arguments.

Module

USE IFAUTO

Syntax

result = AUTOInvoke (idispatch,id,invoke_args)

The object's IDispatch interface pointer. Must be of type
INTEGER(INT_PTR_KIND()).

idispatch

The argument's name of type CHARACTER*(*), or its member ID
of type INTEGER(4).

id

The argument list data structure. Must be of type
INTEGER(INT_PTR_KIND()).

invoke_args

Results

Returns an HRESULT describing the status of the operation. Must be of type INTEGER(4).

Example

See the example in COMInitialize.

2401

63

AUTOMATIC
Statement and Attribute: Controls the storage
allocation of variables in subprograms (as does
STATIC). Variables declared as AUTOMATIC and
allocated in memory reside in the stack storage
area, rather than at a static memory location.

Syntax

The AUTOMATIC attribute can be specified in a type declaration statement or an AUTOMATIC
statement, and takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] AUTOMATIC [, att-ls] :: v[, v] ...

Statement:

AUTOMATIC [::] v[, v] ...

Is a data type specifier.type

Is an optional list of attribute specifiers.att-ls

Is the name of a variable or an array specification. It can be of
any type.

v

AUTOMATIC declarations only affect how data is allocated in storage.

If you want to retain definitions of variables upon reentry to subprograms, you must use the
SAVE attribute.

Automatic variables can reduce memory use because only the variables currently being used
are allocated to memory.

Automatic variables allow possible recursion. With recursion, a subprogram can call itself
(directly or indirectly), and resulting values are available upon a subsequent call or return to
the subprogram. For recursion to occur, RECURSIVE must be specified in one of the following
ways:

• As a keyword in a FUNCTION or SUBROUTINE statement

• As a compiler option

• As an option in an OPTIONS statement

2402

63 Intel® Fortran Compiler User and Reference Guides

By default, the compiler allocates local scalar variables on the stack. Other non-allocatable
variables of non-recursive subprograms are allocated in static storage by default. This default
can be changed through compiler options. Appropriate use of the SAVE attribute may be required
if your program assumes that local variables retain their definition across subprogram calls.

To change the default for variables, specify them as AUTOMATIC or specify RECURSIVE (in one
of the ways mentioned above).

To override any compiler option that may affect variables, explicitly specify the variables as
AUTOMATIC.

NOTE. Variables that are data-initialized, and variables in COMMON and SAVE statements
are always static. This is regardless of whether a compiler option specifies recursion.

A variable cannot be specified as AUTOMATIC more than once in the same scoping unit.

If the variable is a pointer, AUTOMATIC applies only to the pointer itself, not to any associated
target.

Some variables cannot be specified as AUTOMATIC. The following table shows these restrictions:

AUTOMATICVariable

NoDummy argument

NoAutomatic object

NoCommon block item

NoUse-associated item

NoFunction result

NoComponent of a derived type

If a variable is in a module's outer scope, it cannot be specified as AUTOMATIC.

Example

The following example shows a type declaration statement specifying the AUTOMATIC attribute:

REAL, AUTOMATIC :: A, B, C

2403

63

The following example uses an AUTOMATIC statement:

...

CONTAINS

INTEGER FUNCTION REDO_FUNC

INTEGER I, J(10), K

REAL C, D, E(30)

AUTOMATIC I, J, K(20)

STATIC C, D, E

...

END FUNCTION

...

C In this example, all variables within the program unit

C are saved, except for "var1" and "var3". These are

C explicitly declared in an AUTOMATIC statement, and thus have

C memory locations on the stack:

SUBROUTINE DoIt (arg1, arg2)

INTEGER(4) arg1, arg2

INTEGER(4) var1, var2, var3, var4

SAVE
AUTOMATIC var1, var3

C var2 and var4 are saved

See Also
• A to B
• STATIC
• SAVE
• Type declaration statements
• Compatible attributes
• RECURSIVE
• OPTIONS
• POINTER

2404

63 Intel® Fortran Compiler User and Reference Guides

• Modules and Module Procedures
• recursive compiler option

AUTOSetProperty (W*32, W*64)
AUTO Function: Passes the name or identifier of
the property and a value, and sets the value of the
automation object's property.

Module

USE IFAUTO

USE IFWINTY

Syntax

result = AUTOSetProperty (idispatch,id,value[,type])

The object's IDispatch interface pointer. Must be of type
INTEGER(INT_PTR_KIND()).

idispatch

The argument's name of type CHARACTER*(*), or its member ID
of type INTEGER(4).

id

The argument's value. Must be of type INTEGER(2), INTEGER(4),
REAL(4), REAL(8), LOGICAL(2), LOGICAL(4), CHARACTER*(*), or
a single dimension array of one of these types.

value

The variant type of the argument. Must be one of the following
constants defined in the IFWINTY module:

type

Value TypeVARIANT Type

INTEGER(2)VT_I2

INTEGER(4)VT_I4

REAL(4)VT_R4

REAL(8)VT_R8

REAL(8)VT_CY

REAL(8)VT_DATE

CHARACTER*(*)VT_BSTR

2405

63

Value TypeVARIANT Type

INTEGER(4)VT_DISPATCH

INTEGER(4)VT_ERROR

LOGICAL(2)VT_BOOL

INTEGER(4)VT_UNKNOWN

Results

Returns an HRESULT describing the status of the operation. Must be of type INTEGER(4).

AUTOSetPropertyByID (W*32, W*64)
AUTO Function: Passes the member ID of the
property and sets the value of the automation
object's property into the argument list's first
argument.

Module

USE IFAUTO

Syntax

result = AUTOSetPropertyByID (idispatch,memid,invoke_args)

The object's IDispatch interface pointer. Must be of type
INTEGER(INT_PTR_KIND()).

idispatch

Member ID of the property. Must be of type INTEGER(4).memid

The argument list data structure. Must be of type
INTEGER(INT_PTR_KIND()).

invoke_args

Results

Returns an HRESULT describing the status of the operation. Must be of type INTEGER(4).

2406

63 Intel® Fortran Compiler User and Reference Guides

AUTOSetPropertyInvokeArgs (W*32, W*64)
AUTO Function: Passes an argument list data
structure and sets the value of the automation
object's property specified in the argument list's
first argument.

Module

USE IFAUTO

Syntax

result = AUTOSetPropertyInvokeArgs (idispatch,invoke_args)

The object's IDispatch interface pointer. Must be of type
INTEGER(INT_PTR_KIND()).

idispatch

The argument list data structure. Must be of type
INTEGER(INT_PTR_KIND()).

invoke_args

Results

Returns an HRESULT describing the status of the operation. Must be of type INTEGER(4).

BACKSPACE
Statement: Positions a sequential file at the
beginning of the preceding record, making it
available for subsequent I/O processing. It takes
one of the following forms:

Syntax

BACKSPACE ([UNIT=]io-unit[, ERR=label] [, IOSTAT=i-var])

BACKSPACE io-unit

(Input) Is an external unit specifier.io-unit

Is the label of the branch target statement that receives control
if an error occurs.

label

(Output) Is a scalar integer variable that is defined as a positive
integer if an error occurs and zero if no error occurs.

i-var

2407

63

Description

The I/O unit number must specify an open file on disk or magnetic tape.

Backspacing from the current record n is performed by rewinding to the start of the file and
then performing n - 1 successive READs to reach the previous record.

A BACKSPACE statement must not be specified for a file that is open for direct or append access,
because n is not available to the Fortran I/O system.

BACKSPACE cannot be used to skip over records that have been written using list-directed or
namelist formatting.

If a file is already positioned at the beginning of a file, a BACKSPACE statement has no effect.

If the file is positioned between the last record and the end-of-file record, BACKSPACE positions
the file at the start of the last record.

Example
BACKSPACE 5

BACKSPACE (5)

BACKSPACE lunit

BACKSPACE (UNIT = lunit, ERR = 30, IOSTAT = ios)

The following statement repositions the file connected to I/O unit 4 back to the preceding
record:

BACKSPACE 4

Consider the following statement:

BACKSPACE (UNIT=9, IOSTAT=IOS, ERR=10)

This statement positions the file connected to unit 9 back to the preceding record. If an error
occurs, control is transferred to the statement labeled 10, and a positive integer is stored in
variable IOS.

See Also
• A to B
• REWIND
• ENDFILE
• Data Transfer I/O Statements
• Branch Specifiers

2408

63 Intel® Fortran Compiler User and Reference Guides

BADDRESS
Inquiry Intrinsic Function (Generic): Returns
the address of x. This function cannot be passed
as an actual argument. This function can also be
specified as IADDR.

Syntax

result = BADDRESS (x)

Is a variable, an array or record field reference, a procedure, or a
constant; it can be of any data type. It must not be the name of
a statement function. If it is a pointer, it must be defined and
associated with a target.

x

Results

The result type is INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 architecture and
IA-64 architecture. The value of the result represents the address of the data object or, in the
case of pointers, the address of its associated target. If the argument is not valid, the result is
undefined.

Example
PROGRAM batest

INTEGER X(5), I

DO I=1, 5

PRINT *, BADDRESS(X(I))

END DO

END

BARRIER
OpenMP* Fortran Compiler Directive:
Synchronizes all the threads in a team. It causes
each thread to wait until all of the other threads
in the team have reached the barrier.

Syntax

c$OMP BARRIER

2409

63

Is one of the following: C (or c), !, or * (see Syntax Rules for
Compiler Directives).

c

The BARRIER directive must be encountered by all threads in a team or by none at all. It must
also be encountered in the same order by all threads in a team.

Example

The directive binding rules call for a BARRIER directive to bind to the closest enclosing PARALLEL
directive. In the following example, the BARRIER directive ensures that all threads have executed
the first loop and that it is safe to execute the second loop:

c$OMP PARALLEL

c$OMP DO PRIVATE(i)

DO i = 1, 100

b(i) = i

END DO

c$OMP BARRIER

c$OMP DO PRIVATE(i)

DO i = 1, 100

a(i) = b(101-i)

END DO

c$OMP END PARALLEL

See Also
• A to B
• OpenMP Fortran Compiler Directives
• Nesting and Binding Rules

BEEPQQ
Portability Subroutine: Sounds the speaker at
the specified frequency for the specified duration
in milliseconds.

Module

USE IFPORT

2410

63 Intel® Fortran Compiler User and Reference Guides

Syntax

CALL BEEPQQ (frequency,duration)

(Input) INTEGER(4). Frequency of the tone in Hz.frequency

(Input) INTEGER(4). Length of the beep in milliseconds.duration

BEEPQQ does not return until the sound terminates.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) frequency, duration

frequency = 4000

duration = 1000

CALL BEEPQQ(frequency, duration)

See Also
• A to B
• SLEEPQQ

BESJ0, BESJ1, BESJN, BESY0, BESY1, BESYN
Portability Functions: Compute the
single-precision values of Bessel functions of the
first and second kinds.

Module

USE IFPORT

Syntax

result = BESJ0 (value)

result = BESJ1 (value)

result = BESJN (n, value)

result = BESY0 (posvalue)

2411

63

result = BESY1 (posvalue)

result = BESYN (n, value)

(Input) REAL(4). Independent variable for a Bessel function.value

(Input) INTEGER(4). Specifies the order of the selected Bessel
function computation.

n

(Input) REAL(4). Independent variable for a Bessel function. Must
be greater than or equal to zero.

posvalue

Results

BESJ0, BESJ1, and BESJN return Bessel functions of the first kind, orders 0, 1, and n,
respectively, with the independent variable posvalue.

BESY0, BESY1, and BESYN return Bessel functions of the second kind, orders 0, 1, and n,
respectively, with the independent variable posvalue.

Negative arguments cause BESY0, BESY1, and BESYN to return QNAN.

Bessel functions are explained more fully in most mathematics reference books, such as the
Handbook of Mathematical Functions (Abramowitz and Stegun. Washington: U.S. Government
Printing Office, 1964). These functions are commonly used in the mathematics of electromagnetic
wave theory.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• A to B
• DBESJ0, DBESJ1, DBESJN

BIC, BIS
Portability Subroutines: Perform a bit-level set
and clear for integers.

Module

USE IFPORT

Syntax

CALL BIC (bitnum, target)

2412

63 Intel® Fortran Compiler User and Reference Guides

CALL BIS (bitnum, target)

(Input) INTEGER(4). Bit number to set. Must be in the range 0
(least significant bit) to 31 (most significant bit) if target is
INTEGER(4). If target is INTEGER(8), bitnum must be in range
0 to 63.

bitnum

(Input) INTEGER(4) or INTEGER(8). Variable whose bit is to be
set.

target

BIC sets bit bitnum of target to 0; BIS sets bit bitnum to 1.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

Consider the following:

USE IFPORT

integer(4) bitnum, target_i4

integer(8) target_i8

target_i4 = Z'AAAA'

bitnum = 1

call BIC(bitnum, target_i4)

target_i8 = Z'FFFFFFFF00000000'

bitnum = 40

call BIC(bitnum, target_i8)

bitnum = 0

call BIS(bitnum, target_i4)

2413

63

bitnum = 1

call BIS(bitnum, target_i8)

print '(" integer*4 result ",Z)', target_i4

print '(" integer*8 result ",Z)', target_i8

end

See Also
• A to B
• BIT

BIND
Statement and Attribute: Specifies that an object
is interoperable with C and has external linkage.

Syntax

The BIND attribute can be specified in a type declaration statement or a BIND statement, and
takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] BIND (C [, NAME=ext-name]) [att-ls,] :: object

Statement:

BIND (C [, NAME=ext-name]) [::] object

Is a data type specifier.type

Is an optional list of attribute specifiers.att-ls

Is a character scalar initialization expression that can be used to
construct the external name.

ext-name

Is the name of a variable, common block, or procedure.object

Description

If a common block is specified in a BIND statement, it must be specified with the same binding
label in each scoping unit in which it is declared.

2414

63 Intel® Fortran Compiler User and Reference Guides

For variables and common blocks, BIND also implies the SAVE attribute, which may be explicitly
confirmed with SAVE.

A variable given the BIND attribute (or declared in a BIND statement) must appear in the
specification part of a module. You cannot specify BIND for a subroutine local variable or a
variable in a main program.

The BIND attribute is similar to directive !DEC$ ATTRIBUTES C as follows:

• The compiler applies the same naming rules, that is, names are lowercase (unless NAME=
specifies otherwise).

• The compiler applies the appropriate platform decoration, such as a leading underscore.

However, procedure argument passing differs. When BIND is specified, procedure arguments
are passed by reference unless the VALUE attribute is also specified.

The BIND attribute can be used in a SUBROUTINE or FUNCTION declaration.

Example

The following example shows the BIND attribute used in a type declaration statement, a
statement, and a SUBROUTINE statement.

INTEGER, BIND(C) :: SOMEVAR

BIND(C,NAME='SharedCommon') :: /SHAREDCOMMON/

INTERFACE

SUBROUTINE FOOBAR, BIND(C, NAME='FooBar')

END SUBROUTINE

See Also
• A to B
• Modules and Module Procedures
• Type Declarations
• Compatible attributes
• Pointer Assignments
• FUNCTION
• SUBROUTINE

2415

63

BIT
Portability Function: Performs a bit-level test for
integers.

Module

USE IFPORT

Syntax

result = BIT (bitnum, source)

(Input) INTEGER(4). Bit number to test. Must be in the range 0
(least significant bit) to 31 (most significant bit).

bitnum

(Input) INTEGER(4) or INTEGER(8). Variable being tested.source

Results

The result type is logical. It is .TRUE. if bit bitnum of source is 1; otherwise, .FALSE..

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• A to B
• BIC, BIS

BIT_SIZE
Inquiry Intrinsic Function (Generic): Returns
the number of bits in an integer type.

Syntax

result = BIT_SIZE (i)

(Input) Must be of type integer or of type logical (which is treated
as an integer).

i

2416

63 Intel® Fortran Compiler User and Reference Guides

Results

The result is a scalar integer with the same kind parameter as i. The result value is the number
of bits (s) defined by the bit model for integers with the kind parameter of the argument. For
information on the bit model, see Model for Bit Data.

Example

BIT_SIZE (1_2) has the value 16 because the KIND=2 integer type contains 16 bits.

See Also
• A to B
• BTEST
• IBCLR
• IBITS
• IBSET

BLOCK DATA
Statement: Identifies a block-data program unit,
which provides initial values for nonpointer
variables in named common blocks.

Syntax

BLOCK DATA [name]

[specification-part]

BLOCK DATA [BLOCK DATA [name]]

Is the name of the block data program unit.name

Is one or more of the following statements:specification-part

STATICINTRINSICCOMMON

TARGETPARAMETERDATA

Type declaration 2POINTERDerived-type
definition

USE 3RECORD1DIMENSION

2417

63

Record structure
declaration1

EQUIVALENCE

SAVEIMPLICIT

1 For more information, see RECORD statement and record
structure declarations.
2 Can only contain attributes: DIMENSION, INTRINSIC,
PARAMETER, POINTER, SAVE, STATIC,or TARGET.
3 Allows access to only named constants.

Description

A block data program unit need not be named, but there can only be one unnamed block data
program unit in an executable program.

If a name follows the END statement, it must be the same as the name specified in the BLOCK
DATA statement.

An interface block must not appear in a block data program unit and a block data program unit
must not contain any executable statements.

If a DATA statement initializes any variable in a named common block, the block data program
unit must have a complete set of specification statements establishing the common block.
However, all of the variables in the block do not have to be initialized.

A block data program unit can establish and define initial values for more than one common
block, but a given common block can appear in only one block data program unit in an executable
program.

The name of a block data program unit can appear in the EXTERNAL statement of a different
program unit to force a search of object libraries for the block data program unit at link time.

2418

63 Intel® Fortran Compiler User and Reference Guides

Example

The following shows a block data program unit:

BLOCK DATA BLKDAT

INTEGER S,X

LOGICAL T,W

DOUBLE PRECISION U

DIMENSION R(3)

COMMON /AREA1/R,S,U,T /AREA2/W,X,Y

DATA R/1.0,2*2.0/, T/.FALSE./, U/0.214537D-7/, W/.TRUE./, Y/3.5/

END

The following shows another example:

C Main Program

CHARACTER(LEN=10) LakeType

REAL X(10), Y(4)

COMMON/Lakes/a,b,c,d,e,family/Blk2/x,y

...

C The following block-data subprogram initializes

C the named common block /Lakes/:

C

BLOCK DATA InitLakes

COMMON /Lakes/ erie, huron, michigan, ontario,

+ superior, fname

DATA erie, huron, michigan, ontario, superior /1, 2, 3, 4, 5/

CHARACTER(LEN=10) fname/'GreatLakes'/

END

See Also
• A to B
• COMMON

2419

63

• DATA
• EXTERNAL
• Program Units and Procedures

BSEARCHQQ
Portability Function: Performs a binary search
of a sorted one-dimensional array for a specified
element. The array elements cannot be derived
types or structures.

Module

USE IFPORT

Syntax

result = BSEARCHQQ (adrkey,adrarray,length,size)

(Input) INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel®

64 architecture and IA-64 architecture. Address of the variable
containing the element to be found (returned by LOC).

adrkey

(Input) INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel®

64 architecture and IA-64 architecture. Address of the array
(returned by LOC).

adrarray

(Input) INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel®

64 architecture and IA-64 architecture. Number of elements in the
array.

length

(Input) INTEGER(4). Positive constant less than 32,767 that
specifies the kind of array to be sorted. The following constants,
defined in IFPORT.F90, specify type and kind for numeric arrays:

size

Type of arrayConstant

INTEGER(1)SRT$INTEGER1

INTEGER(2) or equivalentSRT$INTEGER2

INTEGER(4) or equivalentSRT$INTEGER4

INTEGER(8) or equivalentSRT$INTEGER8

REAL(4) or equivalentSRT$REAL4

2420

63 Intel® Fortran Compiler User and Reference Guides

Type of arrayConstant

REAL(8) or equivalentSRT$REAL8

REAL(16) or equivalentSRT$REAL16

If the value provided in size is not a symbolic constant and is less than 32,767, the array is
assumed to be a character array with size characters per element.

Results

The result type is INTEGER(4). It is an array index of the matched entry, or 0 if the entry is
not found.

The array must be sorted in ascending order before being searched.

CAUTION. The location of the array and the element to be found must both be passed
by address using the LOC function. This defeats Fortran type checking, so you must make
certain that the length and size arguments are correct, and that size is the same for
the element to be found and the array searched.

If you pass invalid arguments, BSEARCHQQ attempts to search random parts of memory.
If the memory it attempts to search is not allocated to the current process, the program
is halted, and you receive a General Protection Violation message.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) array(10), length

INTEGER(4) result, target

length = SIZE(array)

...

result = BSEARCHQQ(LOC(target),LOC(array),length,SRT$INTEGER4)

2421

63

See Also
• A to B
• SORTQQ
• LOC

BTEST
Elemental Intrinsic Function (Generic): Tests
a bit of an integer argument.

Syntax

result = BTEST (i,pos)

(Input) Must be of type integer or of type logical (which is treated
as an integer).

i

(Input) Must be of type integer. It must not be negative and it
must be less than BIT_SIZE(i).

pos

The rightmost (least significant) bit of i is in position 0.

Results

The result type is default logical.

The result is true if bit pos of i has the value 1. The result is false if pos has the value zero.
For more information, see Bit Functions.

For information on the model for the interpretation of an integer value as a sequence of bits,
see Model for Bit Data.

The setting of compiler options specifying integer size can affect this function.

Result TypeArgument TypeSpecific Name

LOGICAL(1)INTEGER(1)BBTEST

LOGICAL(2)INTEGER(2)BITEST1

LOGICAL(4)INTEGER(4)BTEST 2

LOGICAL(8)INTEGER(8)BKTEST

1Or HTEST

2422

63 Intel® Fortran Compiler User and Reference Guides

Result TypeArgument TypeSpecific Name
2Or BJTEST

Example

BTEST (9, 3) has the value true.

If A has the value

[1 2]

[3 4],

the value of BTEST (A, 2) is

[false false]

[false true]

and the value of BTEST (2, A) is

[true false]

[false false].

The following shows more examples:

ResultValue of iFunction reference

.FALSE.00011100 01111000BTEST (i,2)

.TRUE.00011100 01111000BTEST (i,3)

The following shows another example:

INTEGER(1) i(2)

LOGICAL result(2)

i(1) = 2#10101010

i(2) = 2#01010101

result = BTEST(i, (/3,2/)) ! returns (.TRUE.,.TRUE.)

write(*,*) result

See Also
• A to B

2423

63

• IBCLR
• IBSET
• IBCHNG
• IOR
• IEOR
• IAND

BYTE
Statement: Specifies the BYTE data type, which
is equivalent to INTEGER(1).

Example
BYTE count, matrix(4, 4) / 4*1, 4*2, 4(4), 4*8 /

BYTE num / 10 /

See Also
• A to B
• INTEGER
• Integer Data Types

C to D

C_ASSOCIATED
Intrinsic Module Inquiry function (Generic):
Indicates the association status of one argument,
or whether two arguments are associated with the
same entity.

Module

USE, INTRINSIC :: ISO_C_BINDING

Syntax

result = C_ASSOCIATED(c_ptr_1[, c_ptr_2])

(Input) Is a scalar of derived type C_PTR or C_FUNPTR.c_ptr_1

(Optional; input) Is a scalar of the same type as c_ptr_1.c_ptr_2

2424

63 Intel® Fortran Compiler User and Reference Guides

Results

The result is a scalar of type default logical. The result value is one of the following:

• If only c_ptr_1 is specified, the result is false if c_ptr_1 is a C null pointer; otherwise, the
result is true.

• If c_ptr_2 is specified, the result is false if c_ptr_1 is a C null pointer. The result is true
if c_ptr_1 is equal to c_ptr_2; otherwise, the result is false.

See Also
• C to D
• Intrinsic Modules
• ISO_C_BINDING Module

C_F_POINTER
Intrinsic Module Subroutine: Associates a
pointer with the target of a C pointer and specifies
its shape.

Module

USE, INTRINSIC :: ISO_C_BINDING

Syntax

CALL C_F_POINTER(cptr, fptr [,shape])

(Input) Is a scalar of derived type C_PTR. Its value is the C address
of an interoperable data entity, or the result of a reference to
function C_LOC with a noninteroperable argument. If the value of
cptr is the C address of a Fortran variable, it must have the
TARGET attribute.

cptr

(Output) Is a pointer. If it is an array, shape must be specified.fptr

(Optional, input) Must be of type integer and rank one. Its size
equals the rank of fptr.

shape

If the value of cptr is the C address of an interoperable data entity, fptr must be a pointer
with type and type parameters interoperable with the type of the entity. In this case, fptr
becomes pointer-associated with the target of cptr.

If fptr is an array, it has the shape specified by shape and each lower bound is 1.

2425

63

If the value of cptr is the result of a reference to C_LOC with a noninteroperable argument x,
the following rules apply:

• C_LOC argument x (or its target) must not have been deallocated or have become undefined
due to the execution of a RETURN or END statement since the reference to C_LOC.

• fptr is a scalar pointer with the same type and type parameters as x. fptr becomes
pointer-associated with x, or it becomes pointer-associated with its target if x is a pointer.

See Also
• C to D
• Intrinsic Modules
• ISO_C_BINDING Module
• C_LOC

C_F_PROCPOINTER
Intrinsic Module Subroutine: Associates a
Fortran pointer of type INTEGER with the target of
a C function pointer.

Module

USE, INTRINSIC :: ISO_C_BINDING

Syntax

CALL C_F_POINTER(cptr, fptr)

(Input) Is a scalar of derived type C_FUNPTR. Its value is the C
address of a procedure that is interoperable.

cptr

(Output) Is a Fortran pointer of type INTEGER. It becomes
pointer-associated with the target of cptr.

fptr

See Also
• C to D
• Intrinsic Modules
• ISO_C_BINDING Module

2426

63 Intel® Fortran Compiler User and Reference Guides

C_FUNLOC
Intrinsic Module Inquiry function (Generic):
Returns the C address of a function pointer.

Module

USE, INTRINSIC :: ISO_C_BINDING

Syntax

result = C_FUNLOC(x)

(Input) Is an interoperable procedure or a Fortran pointer of type
INTEGER associated with an interoperable procedure.

x

Results

The result is a scalar of derived type C_FUNPTR. The result value represents the C address of
the argument.

See Also
• C to D
• Intrinsic Modules
• ISO_C_BINDING Module

C_LOC
Intrinsic Module Inquiry function (Generic):
Returns the C address of an argument.

Module

USE, INTRINSIC :: ISO_C_BINDING

Syntax

result = C_LOC(x)

(Input) Is one of the following:x

• An interoperable variable that has the TARGET attribute

• An interoperable, allocatable, variable that is allocated, has the
TARGET attribute, and is not an array of size zero

2427

63

• An associated, interoperable scalar pointer

• A scalar that has no length type parameters and is one of the
following:

• A nonallocatable, nonpointer variable that has the TARGET
attribute

• An allocatable variable that is allocated and has the TARGET
attribute

• An associated pointer

Results

The result is a scalar of derived type C_PTR. The result value represents the C address of the
argument.

The result is a value that can be used as an actual CPTR argument in a call to procedure
C_F_POINTER where fptr has attributes that allow the pointer assignment fptr=>x. Such a
call to C_F_POINTER has the effect of the pointer assignment fptr=>x.

If x is a scalar, the result is determined as if C_PTR were a derived type containing a scalar
pointer component PX of the type and type parameters of x and the pointer assignment
CPTR%PX=>x were executed.

If x is an array, the result is determined as if C_PTR were a derived type containing a scalar
pointer component PX of the type and type parameters of x and the pointer assignment
CPTR%PX to the first element of x were executed.

See Also
• C to D
• Intrinsic Modules
• ISO_C_BINDING Module
• C_F_POINTER

2428

63 Intel® Fortran Compiler User and Reference Guides

CACHESIZE
Inquiry Intrinsic Function (Generic): Returns
the size of a level of the memory cache.

Syntax

result = CACHESIZE (n)

(Input) Must be scalar and of type integer.n

Results

The result type is the same as n. The result value is the number of kilobytes in the level n
memory cache.

n = 1 specifies the first level cache; n = 2 specifies the second level cache; etc. If cache level
n does not exist, the result value is 0.

Example

CACHESIZE(1) returns 16 for a processor with a 16KB first level memory cache.

CALL
Statement: Transfers control to a subroutine
subprogram.

Syntax

CALL sub[([a-arg[,a-arg]...])]

Is the name of the subroutine subprogram or other external
procedure, or a dummy argument associated with a subroutine
subprogram or other external procedure.

sub

Is an actual argument optionally preceded by [keyword=], where
keyword is the name of a dummy argument in the explicit interface
for the subroutine. The keyword is assigned a value when the
procedure is invoked.

a-arg

Each actual argument must be a variable, an expression, the name
of a procedure, or an alternate return specifier. (It must not be
the name of an internal procedure, statement function, or the
generic name of a procedure.)

2429

63

An alternate return specifier is an asterisk (*), or ampersand (&)
followed by the label of an executable branch target statement in
the same scoping unit as the CALL statement. (An alternate return
is an obsolescent feature in Fortran 95 and Fortran 90.)

Description

When the CALL statement is executed, any expressions in the actual argument list are evaluated,
then control is passed to the first executable statement or construct in the subroutine. When
the subroutine finishes executing, control returns to the next executable statement following
the CALL statement, or to a statement identified by an alternate return label (if any).

If an argument list appears, each actual argument is associated with the corresponding dummy
argument by its position in the argument list or by the name of its keyword. The arguments
must agree in type and kind parameters.

If positional arguments and argument keywords are specified, the argument keywords must
appear last in the actual argument list.

If a dummy argument is optional, the actual argument can be omitted.

An actual argument associated with a dummy procedure must be the specific name of a
procedure, or be another dummy procedure. Certain specific intrinsic function names must not
be used as actual arguments (see Functions Not Allowed as Actual Arguments).

The procedure invoked by the CALL statement must be a subroutine subprogram and not a
function. Calling a function as if it were a subroutine can cause unpredictable results.

Example

The following example shows valid CALL statements:

CALL CURVE(BASE,3.14159+X,Y,LIMIT,R(LT+2))

CALL PNTOUT(A,N,'ABCD')

CALL EXIT

CALL MULT(A,B,*10,*20,C) ! The asterisks and ampersands denote

CALL SUBA(X,&30,&50,Y) ! alternate returns

2430

63 Intel® Fortran Compiler User and Reference Guides

The following example shows a subroutine with argument keywords:

PROGRAM KEYWORD_EXAMPLE

INTERFACE

SUBROUTINE TEST_C(I, L, J, KYWD2, D, F, KYWD1)

INTEGER I, L(20), J, KYWD1

REAL, OPTIONAL :: D, F

COMPLEX KYWD2

...

END SUBROUTINE TEST_C

END INTERFACE

INTEGER I, J, K

INTEGER L(20)

COMPLEX Z1

CALL TEST_C(I, L, J, KYWD1 = K, KYWD2 = Z1)

...

The first three actual arguments are associated with their corresponding dummy arguments
by position. The argument keywords are associated by keyword name, so they can appear in
any order.

Note that the interface to subroutine TEST has two optional arguments that have been omitted
in the CALL statement.

The following shows another example of a subroutine call with argument keywords:

CALL TEST(X, Y, N, EQUALITIES = Q, XSTART = X0)

The first three arguments are associated by position.

2431

63

The following shows another example:

!Variations on a subroutine call

REAL S,T,X

INTRINSIC NINT

S=1.5

T=2.5

X=14.7

!This calls SUB1 using keywords. NINT is an intrinsic function.

CALL SUB1(B=X,C=S*T,FUNC=NINT,A=4.0)

!Here is the same call using an implicit reference

CALL SUB1(4.0,X,S*T,NINT)

CONTAINS

SUBROUTINE sub1(a,b,c,func)

INTEGER func

REAL a,b,c

PRINT *, a,b,c, func(b)

END SUBROUTINE

END

See Also
• C to D
• SUBROUTINE
• CONTAINS
• RECURSIVE
• USE
• Program Units and Procedures

2432

63 Intel® Fortran Compiler User and Reference Guides

CASE
Statement: Marks the beginning of a CASE
construct. A CASE construct conditionally executes
one block of constructs or statements depending
on the value of a scalar expression in a SELECT
CASE statement.

Syntax

[name:] SELECT CASE (expr)

[CASE (case-value [, case-value] ...) [name]

block]...

[CASE DEFAULT [name]

block]

END SELECT [name]

Is the name of the CASE construct.name

Is a scalar expression of type integer, logical, or character
(enclosed in parentheses). Evaluation of this expression results in
a value called the case index.

expr

Is one or more scalar integer, logical, or character initialization
expressions enclosed in parentheses. Each case-value must be
of the same type and kind parameter as expr. If the type is
character, case-value and expr can be of different lengths, but
their kind parameter must be the same.

case-value

Integer and character expressions can be expressed as a range of
case values, taking one of the following forms:

low:high

low:

:high

Case values must not overlap.

Is a sequence of zero or more statements or constructs.block

2433

63

Description

If a construct name is specified in a SELECT CASE statement, the same name must appear in
the corresponding END SELECT statement. The same construct name can optionally appear in
any CASE statement in the construct. The same construct name must not be used for different
named constructs in the same scoping unit.

The case expression (expr) is evaluated first. The resulting case index is compared to the case
values to find a matching value (there can only be one). When a match occurs, the block
following the matching case value is executed and the construct terminates.

The following rules determine whether a match occurs:

• When the case value is a single value (no colon appears), a match occurs as follows:

A Match Occurs If:Data Type

case-index .EQV. case-valueLogical

case-index = = case-valueInteger or Character

• When the case value is a range of values (a colon appears), a match depends on the range
specified, as follows:

A Match Occurs If:Range

case-index >= lowlow :

case-index <= high: high

low <= case-index <= highlow : high

The following are all valid case values:

CASE (1, 4, 7, 11:14, 22) ! Individual values as specified:

! 1, 4, 7, 11, 12, 13, 14, 22

CASE (:-1) ! All values less than zero

CASE (0) ! Only zero

CASE (1:) ! All values above zero

If no match occurs but a CASE DEFAULT statement is present, the block following that statement
is executed and the construct terminates.

2434

63 Intel® Fortran Compiler User and Reference Guides

If no match occurs and no CASE DEFAULT statement is present, no block is executed, the
construct terminates, and control passes to the next executable statement or construct following
the END SELECT statement.

2435

63

The following figure shows the flow of control in a CASE construct:

2436

63 Intel® Fortran Compiler User and Reference Guides

Figure 47: Flow of Control in CASE Constructs

2437

63

You cannot use branching statements to transfer control to a CASE statement. However,
branching to a SELECT CASE statement is allowed. Branching to the END SELECT statement is
allowed only from within the CASE construct.

Example

The following are examples of CASE constructs:

INTEGER FUNCTION STATUS_CODE (I)

INTEGER I

CHECK_STATUS: SELECT CASE (I)

CASE (:-1)

STATUS_CODE = -1

CASE (0)

STATUS_CODE = 0

CASE (1:)

STATUS_CODE = 1

END SELECT CHECK_STATUS

END FUNCTION STATUS_CODE

SELECT CASE (J)

CASE (1, 3:7, 9) ! Values: 1, 3, 4, 5, 6, 7, 9

CALL SUB_A

CASE DEFAULT

CALL SUB_B

END SELECT

2438

63 Intel® Fortran Compiler User and Reference Guides

The following three examples are equivalent:

1. SELECT CASE (ITEST .EQ. 1)

CASE (.TRUE.)

CALL SUB1 ()

CASE (.FALSE.)

CALL SUB2 ()

END SELECT

2. SELECT CASE (ITEST)

CASE DEFAULT

CALL SUB2 ()

CASE (1)

CALL SUB1 ()

END SELECT

3. IF (ITEST .EQ. 1) THEN

CALL SUB1 ()

ELSE

CALL SUB2 ()

END IF

2439

63

The following shows another example:

CHARACTER*1 cmdchar

GET_ANSWER: SELECT CASE (cmdchar)

CASE ('0')

WRITE (*, *) "Must retrieve one to nine files"

CASE ('1':'9')

CALL RetrieveNumFiles (cmdchar)

CASE ('A', 'a')

CALL AddEntry

CASE ('D', 'd')

CALL DeleteEntry

CASE ('H', 'h')

CALL Help

CASE DEFAULT

WRITE (*, *) "Command not recognized; please use H for help"

END SELECT GET_ANSWER

See Also
• C to D
• Execution Control

CDFLOAT
Portability Function: Converts a COMPLEX(4)
argument to double-precision real type.

Module

USE IFPORT

Syntax

result = CDFLOAT (input)

(Input) COMPLEX(4). The value to be converted.input

2440

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is REAL(8).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

CEILING
Elemental Intrinsic Function (Generic):
Returns the smallest integer greater than or equal
to its argument.

Syntax

result = CEILING (a[,kind])

(Input) Must be of type real.a

(Input; optional) Must be a scalar integer initialization expression.
This argument is a Fortran 95 feature.

kind

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified
by kind; otherwise, the kind parameter of the result is that of default integer. If the processor
cannot represent the result value in the kind of the result, the result is undefined.

The value of the result is equal to the smallest integer greater than or equal to a.

The setting of compiler options specifying integer size can affect this function.

Example

CEILING (4.8) has the value 5.

CEILING (-2.55) has the value -2.0.

The following shows another example:

INTEGER I, IARRAY(2)

I = CEILING(8.01) ! returns 9

I = CEILING(-8.01) ! returns -8

IARRAY = CEILING((/8.01,-5.6/)) ! returns (9, -5)

2441

63

See Also
• C to D
• FLOOR

CHANGEDIRQQ
Portability Function: Makes the specified
directory the current, default directory.

Module

USE IFPORT

Syntax

result = CHANGEDIRQQ (dir)

(Input) Character*(*). Directory to be made the current directory.dir

Results

The result type is LOGICAL(4). It is .TRUE. if successful; otherwise, .FALSE..

If you do not specify a drive in the dir string, the named directory on the current drive becomes
the current directory. If you specify a drive in dir, the named directory on the specified drive
becomes the current directory.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

LOGICAL(4) status

status = CHANGEDIRQQ('d:\fps90\bin\bessel')

See Also
• C to D
• GETDRIVEDIRQQ
• MAKEDIRQQ
• DELDIRQQ
• CHANGEDRIVEQQ

2442

63 Intel® Fortran Compiler User and Reference Guides

CHANGEDRIVEQQ
Portability Function: Makes the specified drive
the current, default drive.

Module

USE IFPORT

Syntax

result = CHANGEDRIVEQQ (drive)

(Input) Character*(*). String beginning with the drive letter.drive

Results

The result type is LOGICAL(4). On Windows* systems, the result is .TRUE. if successful;
otherwise, .FALSE. On Linux* and Mac OS* X systems, the result is always .FALSE..

Because drives are identified by a single alphabetic character, CHANGEDRIVEQQ examines only
the first character of drive. The drive letter can be uppercase or lowercase.

CHANGEDRIVEQQ changes only the current drive. The current directory on the specified drive
becomes the new current directory. If no current directory has been established on that drive,
the root directory of the specified drive becomes the new current directory.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

LOGICAL(4) status

status = CHANGEDRIVEQQ('d')

See Also
• C to D
• GETDRIVESQQ
• GETDRIVESIZEQQ
• GETDRIVEDIRQQ
• CHANGEDIRQQ

2443

63

CHAR
Elemental Intrinsic Function (Generic):
Returns the character in the specified position of
the processor's character set. It is the inverse of
the function ICHAR.

Syntax

result = CHAR (i[,kind])

(Input) Must be of type integer with a value in the range 0 to n -
1, where n is the number of characters in the processor's character
set.

i

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result is of type character with length 1. If kind is present, the kind parameter of the result
is that specified by kind; otherwise, the kind parameter of the result is that of default character.
If the processor cannot represent the result value in the kind of the result, the result is undefined.

The result is the character in position i of the processor's character set. ICHAR(CHAR (i, kind(
c))) has the value I for 0 to n - 1 and CHAR(ICHAR(c), kind(c)) has the value c for any
character c capable of representation in the processor.

Result TypeArgument TypeSpecific Name

CHARACTERINTEGER(1)

CHARACTERINTEGER(2)

CHARACTERINTEGER(4)CHAR 1

CHARACTERINTEGER(8)

1This specific function cannot be passed as an actual argument.

Example

CHAR (76) has the value 'L'.

CHAR (94) has the value '^'.

2444

63 Intel® Fortran Compiler User and Reference Guides

See Also
• C to D
• ACHAR
• IACHAR
• ICHAR
• Character and Key Code Charts

CHARACTER
Statement: Specifies the CHARACTER data type.

Syntax

CHARACTER

CHARACTER([KIND=] n)

CHARACTER*len

Is kind 1.n

Is a string length (not a kind). For more information, see
Declaration Statements for Character Types.

len

If no kind type parameter is specified, the kind of the constant is
default character.

2445

63

Example
C

C Length of wt and vs is 10, city is 80, and ch is 1

C

CHARACTER wt*10, city*80, ch

CHARACTER (LEN = 10), PRIVATE :: vs

CHARACTER*(*) arg !declares a dummy argument

C name and plume are ten-element character arrays

C of length 20

CHARACTER name(10)*20

CHARACTER(len=20), dimension(10):: plume

C

C Length of susan, patty, and dotty are 2, alice is 12,

C jane is a 79-member array of length 2

C

CHARACTER(2) susan, patty, alice*12, dotty, jane(79)

See Also
• C to D
• Character Data Type
• Character Constants
• Character Substrings
• C Strings
• Declaration Statements for Character Types

CHDIR
Portability Function: Changes the default
directory.

Module

USE IFPORT

2446

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = CHDIR(dir_name)

(Input) Character*(*). Name of a directory to become the default
directory.

dir_name

Results

The result type is INTEGER(4). It returns zero if the directory was changed successfully;
otherwise, an error code. Possible error codes are:

• ENOENT: The named directory does not exist.

• ENOTDIR: The dir_name parameter is not a directory.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

2447

63

Example
use ifport

integer(4) istatus, enoent, enotdir

character(255) newdir

character(300) prompt, errmsg

prompt = 'Please enter directory name: '

10 write(*,*) TRIM(prompt)

read *, newdir

ISTATUS = CHDIR(newdir)

select case (istatus)

case (2) ! ENOENT

errmsg = 'The directory '//TRIM(newdir)//' does not exist'

case (20) ! ENOTDIR

errmsg = TRIM(newdir)//' is not a directory'

case (0) ! NO error

goto 40

case default

write (errmsg,*) 'Error with code ', istatus

end select

write(*,*) TRIM(errmsg)

goto 10

40 write(*,*) 'Default directory successfully changed.'

end

See Also
• C to D
• CHANGEDIRQQ

2448

63 Intel® Fortran Compiler User and Reference Guides

CHMOD
Portability Function: Changes the access mode
of a file.

Module

USE IFPORT

Syntax

result = CHMOD (name,mode)

(Input) Character*(*). Name of the file whose access mode is to
be changed. Must have a single path.

name

(Input) Character*(*). File permission: either Read, Write, or
Execute. The mode parameter can be either symbolic or absolute.
An absolute mode is specified with an octal number, consisting of
any combination of the following permission bits ORed together:

mode

ActionDescriptionPermission bit

W*32, W*64:
Ignored; never true

Set user ID on
execution

4000

L*X, M*X: Settable

W*32, W*64:
Ignored; never true

Set group ID on
execution

2000

L*X, M*X: Settable

W*32, W*64:
Ignored; never true

Sticky bit1000

L*X, M*X: Settable

W*32, W*64:
Ignored; always
true

Read by owner0400

L*X, M*X: Settable

SettableWrite by owner0200

2449

63

ActionDescriptionPermission bit

W*32, W*64:
Ignored; based on
file name extension

Execute by owner0100

L*X, M*X: Settable

W*32, W*64:
Ignored; assumes
owner permissions

Read, Write,
Execute by group

0040, 0020, 0010

L*X, M*X: Settable

W*32, W*64:
Ignored; assumes
owner permissions

Read, Write,
Execute by others

0004, 0002, 0001

L*X, M*X: Settable

The following regular expression represents a symbolic mode:

[ugoa]*[+-=] [rwxXst]*

"[ugoa]*" is ignored on Windows* systems. On Linux* and Mac OS* X systems, a combination
of the letters "ugoa" control which users' access to the file will be changed:

The user who owns the fileu

Other users in the group that owns the fileg

Other users not in the group that owns the
file

o

All usersa

"[+ - =]" indicates the operation to carry out:

Add the permission+

Remove the permission-

Absolutely set the permission=

2450

63 Intel® Fortran Compiler User and Reference Guides

"[rwxXst]*" indicates the permission to add, subtract, or set. On Windows systems, only "w"
is significant and affects write permission; all other letters are ignored. On Linux and Mac OS
X systems, all letters are significant.

Results

The result type is INTEGER(4). It is zero if the mode was changed successfully; otherwise, an
error code. Possible error codes are:

• ENOENT: The specified file was not found.

• EINVAL: The mode argument is invalid.

• EPERM: Permission denied; the file's mode cannot be changed.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

integer(4) I,Istatus

I = ACCESS ("DATAFILE.TXT", "w")

if (i) then

ISTATUS = CHMOD ("datafile.txt", "[+w]")

end if

I = ACCESS ("DATAFILE.TXT","w")

print *, i

See Also
• C to D
• SETFILEACCESSQQ

CLEARSCREEN (W*32, W*64)
Graphics Subroutine: Erases the target area and
fills it with the current background color.

Module

USE IFQWIN

2451

63

Syntax

CALL CLEARSCREEN (area)

(Input) INTEGER(4). Identifies the target area. Must be one of the
following symbolic constants (defined in IFQWIN.F90):

area

• $GCLEARSCREEN - Clears the entire screen.

• $GVIEWPORT - Clears only the current viewport.

• $GWINDOW - Clears only the current text window (set with
SETTEXTWINDOW).

All pixels in the target area are set to the color specified with SETBKCOLORRGB. The default
color is black.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
USE IFQWIN

CALL CLEARSCREEN($GCLEARSCREEN)

See Also
• C to D
• GETBKCOLORRGB
• SETBKCOLORRGB
• SETTEXTWINDOW
• SETVIEWPORT

Building Applications: Real Coordinates Sample Program

CLEARSTATUSFPQQ
Portability Subroutine: Clears the exception flags
in the floating-point processor status word.

Module

USE IFPORT

2452

63 Intel® Fortran Compiler User and Reference Guides

Syntax

CALL CLEARSTATUSFPQQ()

Description

The floating-point status word indicates which floating-point exception conditions have occurred.
Intel® Fortran initially clears (sets to 0) all floating-point status flags, but as exceptions occur,
the status flags accumulate until the program clears the flags again. CLEARSTATUSFPQQ will
clear the flags.

CLEARSTATUSFPQQ is appropriate for use in applications that poll the floating-point status
register as the method for detecting a floating-point exception has occurred.

For a full description of the floating-point status word, exceptions, and error handling, see
Floating-Point Operations: Floating-Point Environment.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

2453

63

Example
! Program to demonstrate CLEARSTATUSFPQQ.

! This program uses polling to detect that a

! floating-point exception has occurred.

! So, build this console application with the default

! floating-point exception behavior, fpe3.

! You need to specify compiler option /debug or /Od (Windows)

! or -O0 (Linux) to get the correct results

! PROGRAM CLEARFP

USE IFPORT

REAL*4 A,B,C

INTEGER*2 STS

A = 2.0E0

B = 0.0E0

! Poll and display initial floating point status

CALL GETSTATUSFPQQ(STS)

WRITE(*,'(1X,A,Z4.4)') 'Initial fp status = ',STS

! Cause a divide-by-zero exception

! Poll and display the new floating point status

C = A/B

CALL GETSTATUSFPQQ(STS)

WRITE(*,'(1X,A,Z4.4)') 'After div-by-zero fp status = ',STS

! If a divide by zero error occurred, clear the floating point

! status register so future exceptions can be detected.

IF ((STS .AND. FPSW$ZERODIVIDE) > 0) THEN

CALL CLEARSTATUSFPQQ()

CALL GETSTATUSFPQQ(STS)

WRITE(*,'(1X,A,Z4.4)') 'After CLEARSTATUSFPQQ fp status = ',STS

2454

63 Intel® Fortran Compiler User and Reference Guides

ENDIF

END

This program is available in the online samples.

See Also
• C to D
• GETSTATUSFPQQ
• SETCONTROLFPQQ
• GETCONTROLFPQQ
• SIGNALQQ

CLICKMENUQQ (W*32, W*64)
QuickWin Function: Simulates the effect of
clicking or selecting a menu command. The
QuickWin application responds as though the user
had clicked or selected the command.

Module

USE IFQWIN

Syntax

result = CLICKMENUQQ (item)

(Input) INTEGER(4). Constant that represents the command
selected from the Window menu. Must be one of the following
symbolic constants (defined in IFQWIN.F90):

item

• QWIN$STATUS - Status command

• QWIN$TILE - Tile command

• QWIN$CASCADE - Cascade command

• QWIN$ARRANGE - Arrange Icons command

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, nonzero.

2455

63

Compatibility

QUICKWIN GRAPHICS LIB

See Also
• C to D
• REGISTERMOUSEEVENT
• UNREGISTERMOUSEEVENT
• WAITONMOUSEEVENT

Building Applications: Using QuickWin Overview

CLOCK
Portability Function: Converts a system time
into an 8-character ASCII string.

Module

USE IFPORT

Syntax

result = CLOCK()

Results

The result type is character with a length of 8. The result is the current time in the form
hh:mm:ss, using a 24-hour clock.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

character(8) whatimeisit

whatimeisit = CLOCK ()

print *, 'The current time is ',whatimeisit

See Also
• C to D

2456

63 Intel® Fortran Compiler User and Reference Guides

• DATE_AND_TIME

CLOCKX
Portability Subroutine: Returns the processor
clock to the nearest microsecond.

Module

USE IFPORT

Syntax

CALL CLOCKX (clock)

(Input) REAL(8). The current time.clock

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

CLOSE
Statement: Disconnects a file from a unit.

Syntax

CLOSE ([UNIT=] io-unit[, {STATUS | DISPOSE | DISP} = p] [, ERR= label] [,
IOSTAT=i-var])

(Input) an external unit specifier.io-unit

(Input) a scalar default character expression indicating the status
of the file after it is closed. It has one of the following values:

p

• 'KEEP' or 'SAVE' - Retains the file after the unit closes.

• 'DELETE' - Deletes the file after the unit closes (unless
OPEN(READONLY) is in effect).

• 'PRINT' - Submits the file to the line print spooler, then retains
it (sequential files only).

• 'PRINT/DELETE' - Submits the file to the line print spooler, then
deletes it (sequential files only).

• 'SUBMIT' - Forks a process to execute the file.

2457

63

• 'SUBMIT/DELETE' - Forks a process to execute the file, then
deletes the file after the fork is completed.

The default is 'DELETE' for QuickWin applications (W*32, W*64)
and for scratch files. For all other files, the default is 'KEEP'.
Scratch files are temporary and are always deleted upon normal
program termination; specifying STATUS='KEEP' for scratch files
causes a run-time error.
For Windows* QuickWin applications, STATUS='KEEP' causes the
child window to remain on the screen even after the unit closes.
The default status is 'DELETE', which removes the child window
from the screen.

Is the label of the branch target statement that receives control
if an error occurs.

label

(Output) Is a scalar integer variable that is defined as a positive
integer if an error occurs and zero if no error occurs.

i-var

Description

The CLOSE statement specifiers can appear in any order. An I/O unit must be specified, but
the UNIT= keyword is optional if the unit specifier is the first item in the I/O control list.

The status specified in the CLOSE statement supersedes the status specified in the OPEN
statement, except that a file opened as a scratch file cannot be saved, printed, or submitted,
and a file opened for read-only access cannot be deleted.

If a CLOSE statement is specified for a unit that is not open, it has no effect.

You do not need to explicitly close open files. Normal program termination closes each file
according to its default status. The CLOSE statement does not have to appear in the same
program unit that opened the file.

Closing unit 0 automatically reconnects unit 0 to the keyboard and screen. Closing units 5 and
6 automatically reconnects those units to the keyboard or screen, respectively.Closing the
asterisk (*) unit causes a compile-time error. In Windows QuickWin applications, use CLOSE
with unit 0, 5, or 6 to close the default window. If all of these units have been detached from
the console (through an explicit OPEN), you must close one of these units beforehand to
reestablish its connection with the console. You can then close the reconnect unit to close the
default window.

If a parameter of the CLOSE statement is an expression that calls a function, that function must
not cause an I/O operation or the EOF intrinsic function to be executed, because the results
are unpredictable.

2458

63 Intel® Fortran Compiler User and Reference Guides

Example
C Close and discard file:

CLOSE (7, STATUS = 'DELETE')

Consider the following statement:

CLOSE (UNIT=J, STATUS='DELETE', ERR=99)

This statement closes the file connected to unit J and deletes it. If an error occurs, control is
transferred to the statement labeled 99.

See Also
• C to D
• Data Transfer I/O Statements
• Branch Specifiers

CMPLX
Elemental Intrinsic Function (Specific):
Converts the argument to complex type. This
function cannot be passed as an actual argument.

Syntax

result = CMPLX (x[,y] [,kind])

(Input) Must be of type integer, real, or complex.x

(Input; optional) Must be of type integer or real. It must not be
present if x is of type complex.

y

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result type is complex. If kind is present, the kind parameter is that specified by kind;
otherwise, the kind parameter is that of default real type.

If only one noncomplex argument appears, it is converted into the real part of the result value
and zero is assigned to the imaginary part. If y is not specified and x is complex, the result
value is CMPLX(REAL(x), AIMAG(x)).

If two noncomplex arguments appear, the complex value is produced by converting the first
argument into the real part of the value, and converting the second argument into the imaginary
part.

2459

63

CMPLX(x, y, kind) has the complex value whose real part is REAL(x, kind) and whose
imaginary part is REAL(y, kind).

The setting of compiler options specifying real size can affect this function.

Example

CMPLX (-3) has the value (-3.0, 0.0).

CMPLX (4.1, 2.3) has the value (4.1, 2.3).

The following shows another example:

COMPLEX z1, z2

COMPLEX(8) z3

z1 = CMPLX(3) ! returns the value 3.0 + i 0.0

z2 = CMPLX(3,4) ! returns the value 3.0 + i 4.0

z3 = CMPLX(3,4,8) ! returns a COMPLEX(8) value 3.0D0 + i 4.0D0

See Also
• C to D
• DCMPLX
• FLOAT
• INT
• IFIX
• REAL
• SNGL

COMAddObjectReference (W*32, W*64)
COM Function: Adds a reference to an object's
interface.

Module

USE IFCOM

Syntax

result = COMAddObjectReference (iunknown)

An IUnKnown interface pointer. Must be of type
INTEGER(INT_PTR_KIND()).

iunknown

2460

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is INTEGER(4). It is the object's current reference count.

See Also
• C to D

IUnknown::AddRef in the Microsoft* Platform SDK

COMCLSIDFromProgID (W*32, W*64)
COM Subroutine: Passes a programmatic
identifier and returns the corresponding class
identifier.

Module

USE IFCOM

USE IFWINTY

Syntax

CALL COMCLSIDFromProgID (prog_id,clsid,status)

The programmatic identifier of type CHARACTER*(*).prog_id

The class identifier corresponding to the programmatic identifier.
Must be of type GUID, which is defined in the IFWINTY module.

clsid

The status of the operation. It can be any status returned by
CLSIDFromProgID. Must be of type INTEGER(4).

status

See Also
• C to D

CLSIDFromProgID in the Microsoft* Platform SDK

COMCLSIDFromString (W*32, W*64)
COM Subroutine: Passes a class identifier string
and returns the corresponding class identifier.

Module

USE IFCOM

USE IFWINTY

2461

63

Syntax

CALL COMCLSIDFromString (string,clsid,status)

The class identifier string of type CHARACTER*(*).string

The class identifier corresponding to the identifier string. Must be
of type GUID, which is defined in the IFWINTY module.

clsid

The status of the operation. It can be any status returned by
CLSIDFromString. Must be of type INTEGER(4).

status

See Also
• C to D

CLSIDFromString in the Microsoft* Platform SDK

COMCreateObjectByGUID (W*32, W*64)
COM Subroutine: Passes a class identifier, creates
an instance of an object, and returns a pointer to
the object's interface.

Module

USE IFCOM

USE IFWINTY

Syntax

CALL COMCreateObjectByGUID (clsid,clsctx,iid,interface,status)

The class identifier of the class of object to be created. Must be of
type GUID, which is defined in the IFWINTY module.

clsid

Lets you restrict the types of servers used for the object. Must be
of type INTEGER(4). Must be one of the CLSCTX_* constants
defined in the IFWINTY module.

clsctx

The interface identifier of the interface being requested. Must be
of type GUID, which is defined in the IFWINTY module.

iid

An output argument that returns the object's interface pointer.
Must be of type INTEGER(INT_PTR_KIND()).

interface

The status of the operation. It can be any status returned by
CoCreateInstance. Must be of type INTEGER(4).

status

2462

63 Intel® Fortran Compiler User and Reference Guides

See Also
• C to D

CoCreateInstance in the Microsoft* Platform SDK

Building Applications: Getting a Pointer to an Object's Interface

COMCreateObjectByProgID (W*32, W*64)
COM Subroutine: Passes a programmatic
identifier, creates an instance of an object, and
returns a pointer to the object's IDispatch interface.

Module

USE IFCOM

Syntax

CALL COMCreateObjectByProgID (prog_id,idispatch,status)

The programmatic identifier of type CHARACTER*(*).prog_id

An output argument that returns the object's IDispatch interface
pointer. Must be of type INTEGER(INT_PTR_KIND()).

idispatch

The status of the operation. It can be any status returned by
CLSIDFromProgID or CoCreateInstance. Must be of type
INTEGER(4).

status

See Also
• C to D
• COMCLSIDFromProgID

CoCreateInstance in the OLE section of the Microsoft* Platform SDK

Building Applications: Getting a Pointer to an Object's Interface

COMGetActiveObjectByGUID (W*32, W*64)
COM Subroutine: Passes a class identifier and
returns a pointer to the interface of a currently
active object.

Module

USE IFCOM

2463

63

USE IFWINTY

Syntax

CALL COMGetActiveObjectByGUID (clsid,iid,interface,status)

The class identifier of the class of object to be found. Must be of
type GUID, which is defined in the IFWINTY module.

clsid

The interface identifier of the interface being requested. Must be
of type GUID, which is defined in the IFWINTY module.

iid

An output argument that returns the object's interface pointer.
Must be of type INTEGER(INT_PTR_KIND()).

interface

The status of the operation. It can be any status returned by
GetActiveObject. Must be of type INTEGER(4).

status

See Also
• C to D

GetActiveObject in the Microsoft* Platform SDK

COMGetActiveObjectByProgID (W*32, W*64)
COM Subroutine: Passes a programmatic
identifier and returns a pointer to the IDispatch
interface of a currently active object.

Module

USE IFCOM

Syntax

CALL COMGetActiveObjectByProgID (prog_id,idispatch,status)

The programmatic identifier of type CHARACTER*(*).prog_id

An output argument that returns the object's IDispatch interface
pointer. Must be of type INTEGER(INT_PTR_KIND()).

idispatch

The status of the operation. It can be any status returned by
CLSIDFromProgID or GetActiveObject. Must be of type INTEGER(4).

status

Example

See the example in COMInitialize.

2464

63 Intel® Fortran Compiler User and Reference Guides

See Also
• C to D

CLSIDFromProgID and GetActiveObject in the Microsoft* Platform SDK

COMGetFileObject (W*32, W*64)
COM Subroutine: Passes a file name and returns
a pointer to the IDispatch interface of an
automation object that can manipulate the file.

Module

USE IFCOM

Syntax

CALL COMGetFileObject (filename,idispatch,status)

The path of the file of type CHARACTER*(*).filename

An output argument that returns the object's IDispatch interface
pointer. Must be of type INTEGER(INT_PTR_KIND()).

idispatch

The status of the operation. It can be any status returned by the
CreateBindCtx or MkParseDisplayName routines, or the
IMoniker::BindToObject method. Must be of type INTEGER(4).

status

See Also
• C to D

CreateBindCtx, MkParseDisplayName, and IMonker::BindToObject in the Microsoft* Platform
SDK

COMInitialize (W*32, W*64)
COM Subroutine: Initializes the COM library.

Module

USE IFCOM

Syntax

CALL COMInitialize (status)

2465

63

The status of the operation. It can be any status returned by
OleInitialize. Must be of type INTEGER(4).

status

You must use this routine to initialize the COM library before calling any other COM or AUTO
routine.

2466

63 Intel® Fortran Compiler User and Reference Guides

Example

Consider the following:

program COMExample

use ifwin

use ifcom

use ifauto

implicit none

! Variables

integer(4) word_app

integer(4) status

integer(INT_PTR_KIND()) invoke_args

call COMInitialize(status)

! Call GetActiveObject to get a reference to a running MS WORD application

call COMGetActiveObjectByProgID("Word.Application", word_app, status)

if (status >= 0) then

! Print the active document

invoke_args = AutoAllocateInvokeArgs()

call AutoAddArg(invoke_args, "Copies", 2)

status = AutoInvoke(word_app, "PrintOut", invoke_args)

call AutoDeallocateInvokeArgs(invoke_args)

! Release the reference

status = COMReleaseObject(word_app)

end if

call COMUninitialize()

end program

See Also
• C to D

OleInitialize in the Microsoft* Platform SDK

2467

63

COMIsEqualGUID (W*32, W*64)
COM Function: Determines whether two globally
unique identifiers (GUIDs) are the same.

Module

USE IFCOM

USE IFWINTY

Syntax

result = COMIsEqualGUID (guid1,guid2)

The first GUID. Must be of type GUID, which is defined in the
IFWINTY module. It can be any type of GUID, including a class
identifier (CLSID), or an interface identifier (IID).

guid1

The second GUID, which will be compared to guid1. It must be
the same type of GUID as guid1. For example, if guid1 is a CLSID,
guid2 must also be a CLSID.

guid2

Results

The result type is LOGICAL(4). The result is .TRUE. if the two GUIDs are the same; otherwise,
.FALSE.

See Also
• C to D

IsEqualGUID in the Microsoft* Platform SDK

COMMAND_ARGUMENT_COUNT
Inquiry Intrinsic Function (Generic): Returns
the number of command arguments.

Syntax

result = COMMAND_ARGUMENT_COUNT ()

2468

63 Intel® Fortran Compiler User and Reference Guides

Results

The result is a scalar of type default integer. The result value is equal to the number of command
arguments available. If there are no command arguments available, the result is 0. The command
name does not count as one of the command arguments.

2469

63

Example

Consider the following:

program echo_command_line

integer i, cnt, len, status

character c*30, b*100

call get_command (b, len, status)

if (status .ne. 0) then

write (*,*) 'get_command failed with status = ', status

stop

end if

write (*,*) 'command line = ', b (1:len)

call get_command_argument (0, c, len, status)

if (status .ne. 0) then

write (*,*) 'Getting command name failed with status = ', status

stop

end if

write (*,*) 'command name = ', c (1:len)

cnt = command_argument_count ()

write (*,*) 'number of command arguments = ', cnt

do i = 1, cnt

call get_command_argument (i, c, len, status)

if (status .ne. 0) then

write (*,*) 'get_command_argument failed: status = ', status, ' arg = ', i

stop

end if

write (*,*) 'command arg ', i, ' = ', c (1:len)

end do

write (*,*) 'command line processed'

2470

63 Intel® Fortran Compiler User and Reference Guides

end

If the above program is invoked with the command line " echo_command_line.exe −o 42

−a hello b", the following is displayed:

command line = echo_command_line.exe −o 42 −a hello b

command name = echo_command_line.exe

number of command arguments = 5

command arg 1 = -o

command arg 2= 42

command arg 3 = -a

command arg 4 = hello

command arg 5 = b

command line processed

See Also
• C to D
• GETARG
• NARGS
• IARGC
• GET_COMMAND
• GET_COMMAND_ARGUMENT

COMMITQQ
Run-Time Function: Forces the operating system
to execute any pending write operations for the
file associated with a specified unit to the file's
physical device.

Module

USE IFCORE

Syntax

result = COMMITQQ (unit)

2471

63

(Input) INTEGER(4). A Fortran logical unit attached to a file to be
flushed from cache memory to a physical device.

unit

Results

The result type is LOGICAL(4). If an open unit number is supplied, .TRUE. is returned and
uncommitted records (if any) are written. If an unopened unit number is supplied, .FALSE. is
returned.

Data written to files on physical devices is often initally written into operating-system buffers
and then written to the device when the operating system is ready. Data in the buffer is
automatically flushed to disk when the file is closed. However, if the program or the computer
crashes before the data is transferred from buffers, the data can be lost. COMMITQQ tells the
operating system to write any cached data intended for a file on a physical device to that device
immediately. This is called flushing the file.

COMMITQQ is most useful when you want to be certain that no loss of data occurs at a critical
point in your program; for example, after a long calculation has concluded and you have written
the results to a file, or after the user has entered a group of data items, or if you are on a
network with more than one program sharing the same file. Flushing a file to disk provides the
benefits of closing and reopening the file without the delay.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

2472

63 Intel® Fortran Compiler User and Reference Guides

Example
USE IFCORE

INTEGER unit / 10 /

INTEGER len

CHARACTER(80) stuff

OPEN(unit, FILE='COMMITQQ.TST', ACCESS='Sequential')

DO WHILE (.TRUE.)

WRITE (*, '(A, \)') 'Enter some data (Hit RETURN to &

exit): '

len = GETSTRQQ (stuff)

IF (len .EQ. 0) EXIT

WRITE (unit, *) stuff

IF (.NOT. COMMITQQ(unit)) WRITE (*,*) 'Failed'

END DO

CLOSE (unit)

END

See Also
• C to D
• PRINT
• WRITE

COMMON
Statement: Defines one or more contiguous areas,
or blocks, of physical storage (called common
blocks) that can be accessed by any of the scoping
units in an executable program. COMMON
statements also define the order in which variables
and arrays are stored in each common block, which
can prevent misaligned data items.

Syntax

Common blocks can be named or unnamed (a blank common).

2473

63

COMMON [/[cname]/] var-list[[,] /[cname]/ var-list]...

(Optional) Is the name of the common block. The name can be
omitted for blank common (//).

cname

Is a list of variable names, separated by commas.var-list
The variable must not be a dummy argument, allocatable array,
automatic object, function, function result, a variable with the
BIND attribute,or entry to a procedure. It must not have the
PARAMETER attribute. If an object of derived type is specified, it
must be a sequence type or a type with the BIND attribute.

Description

A common block is a global entity, and must not have the same name as any other global entity
in the program, such as a subroutine or function.

Any common block name (or blank common) can appear more than once in one or more
COMMON statements in a program unit. The list following each successive appearance of the
same common block name is treated as a continuation of the list for the block associated with
that name. Consider the following COMMON statements:

COMMON /ralph/ ed, norton, trixie

COMMON / / fred, ethel, lucy

COMMON /ralph/ audrey, meadows

COMMON /jerry/ mortimer, tom, mickey

COMMON melvin, purvis

They are equivalent to these COMMON statements:

COMMON /ralph/ ed, norton, trixie, audrey, meadows

COMMON fred, ethel, lucy, melvin, purvis

COMMON /jerry/ mortimer, tom, mickey

A variable can appear in only one common block within a scoping unit.

If an array is specified, it can be followed by an explicit-shape array specification, each bound
of which must be a constant specification expression. Such an array must not have the POINTER
attribute.

A pointer can only be associated with pointers of the same type and kind parameters, and rank.

An object with the TARGET attribute can only be associated with another object with the TARGET
attribute and the same type and kind parameters.

2474

63 Intel® Fortran Compiler User and Reference Guides

A nonpointer can only be associated with another nonpointer, but association depends on their
types, as follows:

Type of Associated VariableType of Variable

Can be of any of these typesIntrinsic numeric 1or numeric sequence 2

Can be of either of these typesDefault character or character sequence 2

Must have the same type and kind
parameters

Any other intrinsic type

Must have the same typeAny other sequence type

1Default integer, default real, double precision real, default complex, double complex, or
default logical.
2If an object of numeric sequence or character sequence type appears in a common block,
it is as if the individual components were enumerated directly in the common list.

So, variables can be associated if they are of different numeric type. For example, the following
is valid:

INTEGER A(20)

REAL Y(20)

COMMON /QUANTA/ A, Y

When common blocks from different program units have the same name, they share the same
storage area when the units are combined into an executable program.

Entities are assigned storage in common blocks on a one-for-one basis. So, the data type of
entities assigned by a COMMON statement in one program unit should agree with the data type
of entities placed in a common block by another program unit. For example:

Program Unit BProgram Unit A

INTEGER(2) MONEYCOMMON CENTS

COMMON MONEY. . .

. . .

2475

63

When these program units are combined into an executable program, incorrect results can
occur if the 2-byte integer variable MONEY is made to correspond to the lower-addressed two
bytes of the real variable CENTS.

Named common blocks must be declared to have the same size in each program unit. Blank
common can have different lengths in different program units.

NOTE. If a common block is initialized by a DATA statement, the module containing the
initialization must declare the common block to be its maximum defined length.

This limitation does not apply if you compile all source modules together.

Example
PROGRAM MyProg

COMMON i, j, x, k(10)

COMMON /mycom/ a(3)

...

END

SUBROUTINE MySub

COMMON pe, mn, z, idum(10)

COMMON /mycom/ a(3)

...

END

In the following example, the COMMON statement in the main program puts HEAT and X in
blank common, and KILO and Q in a named common block, BLK1:

SubprogramMain Program

SUBROUTINE FIGURECOMMON HEAT,X /BLK1/KILO,Q

COMMON /BLK1/LIMA,R / /ALFA,BET. . .

. . .

CALL FIGURE

2476

63 Intel® Fortran Compiler User and Reference Guides

SubprogramMain Program

RETURN. . .

END

The COMMON statement in the subroutine makes ALFA and BET share the same storage location
as HEAT and X in blank common. It makes LIMA and R share the same storage location as KILO
and Q in BLK1.

The following example shows how a COMMON statement can be used to declare arrays:

COMMON / MIXED / SPOTTED(100), STRIPED(50,50)

The following example shows a valid association between subroutines in different program
units. The object lists agree in number, type, and kind of data objects:

SUBROUTINE unit1

REAL(8) x(5)

INTEGER J

CHARACTER str*12

TYPE(member) club(50)

COMMON / blocka / x, j, str, club

...

SUBROUTINE unit2

REAL(8) z(5)

INTEGER m

CHARACTER chr*12

TYPE(member) myclub(50)

COMMON / blocka / z, m, chr, myclub

...

See also the example for BLOCK DATA.

See Also
• C to D
• BLOCK DATA

2477

63

• DATA
• MODULE
• EQUIVALENCE
• Specification expressions
• Storage association
• Interaction between COMMON and EQUIVALENCE Statements

COMPLEX Statement
Statement: Specifies the COMPLEX data type.

Syntax

COMPLEX

COMPLEX([KIND=] n)

COMPLEX*s

DOUBLE COMPLEX

Is kind 4, 8, or 16.n

Is 8, 16, or 32. COMPLEX(4) is specified as COMPLEX*8;
COMPLEX(8) is specified as COMPLEX*16; COMPLEX(16) is specified
as COMPLEX*32.

s

If a kind parameter is specified, the complex constant has the kind specified. If no kind parameter
is specified, the kind of both parts is default real, and the constant is of type default complex.

DOUBLE COMPLEX is COMPLEX(8). No kind parameter is permitted for data declared with type
DOUBLE COMPLEX.

Example
COMPLEX ch

COMPLEX (KIND=4),PRIVATE :: zz, yy !equivalent to COMPLEX*8 zz, yy

COMPLEX(8) ax, by !equivalent to COMPLEX*16 ax, by

COMPLEX (kind(4)) y(10)

complex (kind=8) x, z(10)

See Also
• C to D

2478

63 Intel® Fortran Compiler User and Reference Guides

• DOUBLE COMPLEX
• Complex Data Type
• COMPLEX(4) Constants
• COMPLEX(8) or DOUBLE COMPLEX Constants
• Data Types, Constants, and Variables

COMPLINT, COMPLREAL, COMPLLOG
Portability Functions: Return a BIT-WISE
complement or logical .NOT. of the argument.

Module

USE IFPORT

Syntax

result = COMPLINT (intval)

result = COMPREAL (realval)

result = COMPLLOG (logval)

(Input) INTEGER(4).intval

(Input) REAL(4).realval

(Input) LOGICAL(4).logval

Results

The result is INTEGER(4) for COMPLINT, REAL(4) for COMPLREAL and LOGICAL(4) for COMPLLOG
with a value that is the bitwise complement of the argument.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

COMQueryInterface (W*32, W*64)
COM Subroutine: Passes an interface identifier
and returns a pointer to an object's interface.

Module

USE IFCOM

USE IFWINTY

2479

63

Syntax

CALL COMQueryInterface (iunknown,iid,interface,status)

An IUnknown interface pointer. Must be of type INTEGER(4).iunknown

The interface identifier of the interface being requested. Must be
of type GUID, which is defined in the IFWINTY module.

iid

An output argument that returns the object's interface pointer.
Must be of type INTEGER(INT_PTR_KIND()).

interface

The status of the operation. It can be any status returned by the
IUnknown method QueryInterface. Must be of type INTEGER(4).

status

See Also
• C to D

IUnknown::QueryInterface in the Microsoft* Platform SDK

Building Applications: Getting a Pointer to an Object's Interface

COMReleaseObject (W*32, W*64)
COM Function: Indicates that the program is done
with a reference to an object's interface.

Module

USE IFCOM

Syntax

result = COMReleaseObject (iunknown)

An IUnknown interface pointer. Must be of type
INTEGER(INT_PTR_KIND()).

iunknown

Results

The result type is INTEGER(4). It is the object's current reference count.

Example

See the example in COMInitialize.

2480

63 Intel® Fortran Compiler User and Reference Guides

COMStringFromGUID (W*32, W*64)
COM Subroutine: Passes a globally unique
identifier (GUID) and returns a string of printable
characters.

Module

USE IFCOM

USE IFWINTY

Syntax

CALL COMStringFromGUID (guid,string,status)

The GUID to be converted. Must be of type GUID, which is defined
in the IFWINTY module. It can be any type of GUID, including a
class identifier (CLSID), or an interface identifier (IID).

guid

A character variable of type CHARACTER*(*) that receives the
string representation of the GUID. The length of the character
variable should be at least 38.

string

The status of the operation. If the string is too small to contain
the string representation of the GUID, the value is zero. Otherwise,
the value is the number of characters in the string representation
of the GUID. Must be of type INTEGER(4).

status

The string representation of a GUID has a format like that of the following:

[c200e360-38c5-11ce-ae62-08002b2b79ef]

where the successive fields break the GUID into the form
DWORD-WORD-WORD-WORD-WORD.DWORD covering the 128-bit GUID. The string includes
enclosing braces, which are an OLE convention.

See Also
• C to D

StringFromGUID2 in the Microsoft* Platform SDK

2481

63

COMUninitialize (W*32, W*64)
COM Subroutine: Uninitializes the COM library.

Module

USE IFCOM

Syntax

CALL COMUninitialize()

When using COM routines, this must be the last routine called.

Example

See the example in COMInitialize.

CONJG
Elemental Intrinsic Function (Generic):
Calculates the conjugate of a complex number.

Syntax

result = CONJG (z)

(Input) Must be of type complex.z

Results

The result type is the same as z. If z has the value (x, y), the result has the value (x, -y).

Result TypeArgument TypeSpecific Name

COMPLEX(4)COMPLEX(4)CONJG

COMPLEX(8)COMPLEX(8)DCONJG

COMPLEX(16)COMPLEX(16)QCONJG

Example

CONJG ((2.0, 3.0)) has the value (2.0, -3.0).

CONJG ((1.0, -4.2)) has the value (1.0, 4.2).

2482

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

COMPLEX z1

COMPLEX(8) z2

z1 = CONJG((3.0, 5.6)) ! returns (3.0, -5.6)

z2 = DCONJG((3.0D0, 5.6D0)) ! returns (3.0D0, -5.6D0)

See Also
• C to D
• AIMAG

CONTAINS
Statement: Separates the body of a main
program, module, or external subprogram from
any internal or module procedures it may contain.
It is not executable.

Syntax

CONTAINS

Any number of internal procedures can follow a CONTAINS statement, but a CONTAINS statement
cannot appear in the internal procedures themselves.

Example
PROGRAM OUTER

REAL, DIMENSION(10) :: A

. . .

CALL INNER (A)

CONTAINS

SUBROUTINE INNER (B)

REAL, DIMENSION(10) :: B

. . .

END SUBROUTINE INNER

END PROGRAM OUTER

2483

63

See Also
• C to D
• Internal Procedures
• Modules and Module Procedures
• Main Program

CONTINUE
Statement: Primarily used to terminate a labeled
DO construct when the construct would otherwise
end improperly with either a GO TO, arithmetic IF,
or other prohibited control statement.

Syntax

CONTINUE

The statement by itself does nothing and has no effect on program results or execution sequence.

Example

The following example shows a CONTINUE statement:

DO 150 I = 1,40

40 Y = Y + 1

Z = COS(Y)

PRINT *, Z

IF (Y .LT. 30) GO TO 150

GO TO 40

150 CONTINUE

The following shows another example:

DIMENSION narray(10)

DO 100 n = 1, 10

narray(n) = 120

100 CONTINUE

See Also
• C to D

2484

63 Intel® Fortran Compiler User and Reference Guides

• END DO
• DO
• Execution Control

COPYIN
Parallel Directive Clause: Specifies that the data
in the master thread of the team is to be copied
to the thread private copies of the common block
at the beginning of the parallel region.

Syntax

COPYIN (list)

Is the name of one or more variables or common blocks that are
accessible to the scoping unit. Subobjects cannot be specified.
Each name must be separated by a comma, and a named common
block must appear between slashes (/ /).

list

The COPYIN clause applies only to common blocks declared as THREADPRIVATE.

You do not need to specify the whole THREADPRIVATE common block, you can specify named
variables within the common block.

COPYPRIVATE
Parallel Directive Clause: Uses a private variable
to broadcast a value, or a pointer to a shared
object, from one member of a team to the other
members. The COPYPRIVATE clause can only
appear in the END SINGLE directive.

Syntax

COPYPRIVATE (list)

Is the name of one or more variables or common blocks that are
accessible to the scoping unit. Subobjects cannot be specified.
Each name must be separated by a comma, and a named common
block must appear between slashes (/ /).

list

Variables in the list must not appear in a PRIVATE or FIRSTPRIVATE clause for the SINGLE
directive construct.

2485

63

If the directive is encountered in the dynamic extent of a parallel region, variables in the list
must be private in the enclosing context.

If a common block is specified, it must be declared as THREADPRIVATE; the effect is the same
as if the variable names in its common block object list were specified.

The effect of the COPYPRIVATE clause on the variables in its list occurs after the execution of
the code enclosed within the SINGLE construct, and before any threads in the team have left
the barrier at the end of the construct.

COS
Elemental Intrinsic Function (Generic):
Produces the cosine of x.

Syntax

result = COS (x)

(Input) Must be of type real or complex. It must be in radians and
is treated as modulo 2*pi.

x

If x is of type complex, its real part is regarded as a value in
radians.

Results

The result type is the same as x.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)COS

REAL(8)REAL(8)DCOS

REAL(16)REAL(16)QCOS

COMPLEX(4)COMPLEX(4)CCOS 1

COMPLEX(8)COMPLEX(8)CDCOS2

COMPLEX(16)COMPLEX(16)CQCOS

1The setting of compiler options specifying real size can affect CCOS.
2This function can also be specified as ZCOS.

2486

63 Intel® Fortran Compiler User and Reference Guides

Example

COS (2.0) has the value -0.4161468.

COS (0.567745) has the value 0.8431157.

See Also
• C to D

Optimizing Applications: Types of Vectorized Loops

COSD
Elemental Intrinsic Function (Generic):
Produces the cosine of x.

Syntax

result = COSD (x)

(Input) Must be of type real. It must be in degrees and is treated
as modulo 360.

x

Results

The result type is the same as x.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)COSD

REAL(8)REAL(8)DCOSD

REAL(16)REAL(16)QCOSD

Example

COSD (2.0) has the value 0.9993908.

COSD (30.4) has the value 0.8625137.

2487

63

COSH
Elemental Intrinsic Function (Generic):
Produces a hyperbolic cosine.

Syntax

result = COSH (x)

(Input) Must be of type real.x

Results

The result type is the same as x.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)COSH

REAL(8)REAL(8)DCOSH

REAL(16)REAL(16)QCOSH

Example

COSH (2.0) has the value 3.762196.

COSH (0.65893) has the value 1.225064.

COTAN
Elemental Intrinsic Function (Generic):
Produces the cotangent of x.

Syntax

result = COTAN (x)

(Input) Must be of type real; it cannot be zero. It must be in
radians and is treated as modulo 2*pi.

x

Results

The result type is the same as x.

2488

63 Intel® Fortran Compiler User and Reference Guides

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)COTAN

REAL(8)REAL(8)DCOTAN

REAL(16)REAL(16)QCOTAN

Example

COTAN (2.0) has the value -4.576575E-01.

COTAN (0.6) has the value 1.461696.

COTAND
Elemental Intrinsic Function (Generic):
Produces the cotangent of x.

Syntax

result = COTAND (x)

(Input) Must be of type real. It must be in degrees and is treated
as modulo 360.

x

Results

The result type is the same as x.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)COTAND

REAL(8)REAL(8)DCOTAND

REAL(16)REAL(16)QCOTAND

Example

COTAND (2.0) has the value 0.2863625E+02.

COTAND (0.6) has the value 0.9548947E+02.

2489

63

COUNT
Transformational Intrinsic Function (Generic):
Counts the number of true elements in an entire
array or in a specified dimension of an array.

Syntax

result = COUNT (mask[,dim][, kind])

(Input) Must be a logical array.mask

(Input; optional) Must be a scalar integer expression with a value
in the range 1 to n, where n is the rank of mask.

dim

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result is an array or a scalar of type integer. If kind is present, the kind parameter of the
result is that specified by kind; otherwise, the kind parameter of the result is that of default
integer. If the processor cannot represent the result value in the kind of the result, the result
is undefined.

The result is a scalar if dim is omitted or mask has rank one. A scalar result has a value equal
to the number of true elements of mask. If mask has size zero, the result is zero.

An array result has a rank that is one less than mask, and shape (d1, d2, ..., ddim-1, ddim+1, ...,
dn), where (d1, d2,..., dn) is the shape of mask.

Each element in an array result equals the number of elements that are true in the one
dimensional array defined by mask(s1, s2, ..., sdim-1, :, sdim+1, ..., sn).

Example

COUNT ((/.TRUE., .FALSE., .TRUE./)) has the value 2 because two elements are true.

COUNT ((/.TRUE., .TRUE., .TRUE./)) has the value 3 because three elements are true.

A is the array

[1 5 7]

[3 6 8]

and B is the array

[0 5 7]

[2 6 9].

2490

63 Intel® Fortran Compiler User and Reference Guides

COUNT (A .NE. B, DIM=1) tests to see how many elements in each column of A are not equal
to the elements in the corresponding column of B. The result has the value (2, 0, 1) because:

• The first column of A and B have 2 elements that are not equal.

• The second column of A and B have 0 elements that are not equal.

• The third column of A and B have 1 element that is not equal.

COUNT (A .NE. B, DIM=2) tests to see how many elements in each row of A are not equal to
the elements in the corresponding row of B. The result has the value (1, 2) because:

• The first row of A and B have 1 element that is not equal.

• The second row of A and B have 2 elements that are not equal.

The following shows another example:

LOGICAL mask (2, 3)

INTEGER AR1(3), AR2(2), I

mask = RESHAPE((/.TRUE., .TRUE., .FALSE., .TRUE., &

.FALSE., .FALSE./),(/2,3/))

!

! mask is the array true false false

! true true false

!AR1 = COUNT(mask,DIM=1) ! counts true elements by

! column yielding [2 1 0]

AR2 = COUNT(mask,DIM=2) ! counts true elements by row

! yielding [1 2]

I = COUNT(mask) ! returns 3

See Also
• C to D
• ALL
• ANY

2491

63

CPU_TIME
Intrinsic Subroutine (Generic): Returns a
processor-dependent approximation of the
processor time in seconds. This is a new intrinsic
procedure in Fortran 95. Intrinsic subroutines
cannot be passed as actual arguments.

Syntax

CALL CPU_TIME (time)

(Output) Must be scalar and of type real.time

If a meaningful time cannot be returned, a processor-dependent negative value is returned.

Example

Consider the following:

REAL time_begin, time_end

...

CALL CPU_TIME (time_begin)

!

!task to be timed

!

CALL CPU_TIME (time_end)

PRINT (*,*) 'Time of operation was ', time_end - time_begin, ' seconds'

CRITICAL
OpenMP* Fortran Compiler Directive: Restricts
access to a block of code to only one thread at a
time.

Syntax

c$OMP CRITICAL [(name)]

block

c$OMP END CRITICAL [(name)]

2492

63 Intel® Fortran Compiler User and Reference Guides

Is one of the following: C (or c), !, or * (see Syntax Rules for
Compiler Directives).

c

Is the name of the critical section.name

Is a structured block (section) of statements or constructs. You
cannot branch into or out of the block.

block

A thread waits at the beginning of a critical section until no other thread in the team is executing
a critical section having the same name. All unnamed CRITICAL directives map to the same
name.

If a name is specified in the CRITICAL directive, the same name must appear in the
corresponding END CRITICAL directive. If no name appears in the CRITICAL directive, no name
can appear in the corresponding END CRITICAL directive.

Critical section names are global entities of the program. If the name specified conflicts with
any other entity, the behavior of the program is undefined.

Example

The following example shows a queuing model in which a task is dequeued and worked on. To
guard against multiple threads dequeuing the same task, the dequeuing operation is placed in
a critical section.

Because there are two independent queues in this example, each queue is protected by CRITICAL
directives having different names, XAXIS and YAXIS, respectively:

c$OMP PARALLEL DEFAULT(PRIVATE) SHARED(X,Y)

c$OMP CRITICAL(XAXIS)

CALL DEQUEUE(IX_NEXT, X)

c$OMP END CRITICAL(XAXIS)

CALL WORK(IX_NEXT, X)

c$OMP CRITICAL(YAXIS)

CALL DEQUEUE(IY_NEXT,Y)

c$OMP END CRITICAL(YAXIS)

CALL WORK(IY_NEXT, Y)

c$OMP END PARALLEL

See Also
• C to D

2493

63

• OpenMP Fortran Compiler Directives

CSHIFT
Transformational Intrinsic Function (Generic):
Performs a circular shift on a rank-one array, or
performs circular shifts on all the complete
rank-one sections (vectors) along a given
dimension of an array of rank two or greater.

Syntax

Elements shifted off one end are inserted at the other end. Different sections can be shifted by
different amounts and in different directions.

result = CSHIFT (array,shift [,dim])

(Input) Array whose elements are to be shifted. It can be of any
data type.

array

(Input) The number of positions shifted. Must be a scalar integer
or an array with a rank that is one less than array, and shape
(d1, d2, ..., ddim-1, ddim+1, ..., dn), where (d1, d2, ..., dn) is the
shape of array.

shift

(Input; optional) Optional dimension along which to perform the
shift. Must be a scalar integer with a value in the range 1 to n,
where n is the rank of array. If dim is omitted, it is assumed to be
1.

dim

Results

The result is an array with the same type and kind parameters, and shape as array.

If array has rank one, element i of the result is array(1 + MODULO (i + shift- 1, SIZE (
array))). (The same shift is applied to each element.)

If array has rank greater than one, each section (s1,s2, ..., sdim-1, :, sdim+1, ..., sn) of the result
is shifted as follows:

• By the value of shift, if shift is scalar

• According to the corresponding value in shift(s1, s2,..., sdim-1, sdim+1,..., sn), if shift is an
array

2494

63 Intel® Fortran Compiler User and Reference Guides

The value of shift determines the amount and direction of the circular shift. A positive shift
value causes a shift to the left (in rows) or up (in columns). A negative shift value causes a
shift to the right (in rows) or down (in columns). A zero shift value causes no shift.

Example

V is the array (1, 2, 3, 4, 5, 6).

CSHIFT (V, SHIFT=2) shifts the elements in V circularly to the left by 2 positions, producing
the value (3, 4, 5, 6, 1, 2). 1 and 2 are shifted off the beginning and inserted at the end.

CSHIFT (V, SHIFT= -2) shifts the elements in V circularly to the right by 2 positions, producing
the value (5, 6, 1, 2, 3, 4). 5 and 6 are shifted off the end and inserted at the beginning.

M is the array

[1 2 3]

[4 5 6]

[7 8 9].

CSHIFT (M, SHIFT = 1, DIM = 2) produces the result

[2 3 1]

[5 6 4]

[8 9 7].

Each element in rows 1, 2, and 3 is shifted to the left by 2 positions. The elements shifted off
the beginning are inserted at the end.

CSHIFT (M, SHIFT = -1, DIM = 1) produces the result

[7 8 9]

[1 2 3]

[4 5 6].

Each element in columns 1, 2, and 3 is shifted down by 1 position. The elements shifted off
the end are inserted at the beginning.

CSHIFT (M, SHIFT = (/1, -1, 0/), DIM = 2) produces the result

[2 3 1]

[6 4 5]

[7 8 9].

2495

63

Each element in row 1 is shifted to the left by 1 position; each element in row 2 is shifted to
the right by 1 position; no element in row 3 is shifted at all.

The following shows another example:

INTEGER array (3, 3), AR1(3, 3), AR2 (3, 3)

DATA array /1, 4, 7, 2, 5, 8, 3, 6, 9/

!

! array is 1 2 3

! 4 5 6

! 7 8 9

!AR1 = CSHIFT(array, 1, DIM = 1) ! shifts all columns

! by 1 yielding

! 4 5 6

! 7 8 9

! 1 2 3

!

AR2=CSHIFT(array,shift=(/-1, 1, 0/),DIM=2) ! shifts

! each row separately

! by the amount in

! shift yielding

! 3 1 2

! 5 6 4

! 7 8 9

See Also
• C to D
• EOSHIFT
• ISHFT
• ISHFTC

2496

63 Intel® Fortran Compiler User and Reference Guides

CSMG
Portability Function: Performs an effective
BIT-WISE store under mask.

Module

USE IFPORT

Syntax

result = CSMG (x,y,z)

(Input) INTEGER(4).x, y, z

Results

The result type is INTEGER(4). The result is equal to the following expression:

(x & z) | (y & ~z)

where "&" is a bitwise AND operation, | - bitwise OR, ~ - bitwise NOT.

The function returns the value based on the following rule: when a bit in z is 1, the output bit
is taken from x. When a bit in z is zero, the corresponding output bit is taken from y.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

CTIME
Portability Function: Converts a system time
into a 24-character ASCII string.

Module

USE IFPORT

Syntax

result = CTIME (stime)

(Input) INTEGER(4). An elapsed time in seconds since 00:00:00
Greenwich mean time, January 1, 1970.

stime

2497

63

Results

The result is a value in the form Mon Jan 31 04:37:23 1994. Hours are expressed using a
24-hour clock.

The value of stime can be determined by calling the TIME function. CTIME(TIME()) returns
the current time and date.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

character (24) systime

systime = CTIME (TIME())

print *, 'Current date and time is ',systime

See Also
• C to D
• DATE_AND_TIME

CYCLE
Statement: Interrupts the current execution cycle
of the innermost (or named) DO construct.

Syntax

CYCLE [name]

(Optional) Is the name of the DO construct.name

Description

When a CYCLE statement is executed, the following occurs:

1. The current execution cycle of the named (or innermost) DO construct is terminated.

If a DO construct name is specified, the CYCLE statement must be within the range of that
construct.

2. The iteration count (if any) is decremented by 1.

2498

63 Intel® Fortran Compiler User and Reference Guides

3. The DO variable (if any) is incremented by the value of the increment parameter (if any).

4. A new iteration cycle of the DO construct begins.

Any executable statements following the CYCLE statement (including a labeled terminal
statement) are not executed.

A CYCLE statement can be labeled, but it cannot be used to terminate a DO construct.

Example

The following example shows a CYCLE statement:

DO I =1, 10

A(I) = C + D(I)

IF (D(I) < 0) CYCLE ! If true, the next statement is omitted

A(I) = 0 ! from the loop and the loop is tested again.

END DO

2499

63

The following shows another example:

sample_loop: do i = 1, 5

print *,i

if(i .gt. 3) cycle sample_loop

print *,i

end do sample_loop

print *,'done!'

!output:

! 1

! 1

! 2

! 2

! 3

! 3

! 4

! 5

! done!

See Also
• C to D
• DO
• DO WHILE
• DO Constructs

DATA
Statement: Assigns initial values to variables
before program execution.

Syntax

DATA var-list /clist/ [[,] var-list /clist/]...

Is a list of variables or implied-DO lists, separated by commas.var-list

2500

63 Intel® Fortran Compiler User and Reference Guides

Subscript expressions and expressions in substring references
must be initialization expressions.
An implied-DO list in a DATA statement takes the following form:
(do-list, var= expr1, expr2[, expr3])

Is a list of one or more array elements, substrings, scalar structure
components, or implied-DO lists, separated by commas. Any array
elements or scalar structure components must not have a constant
parent.

do-list

Is the name of a scalar integer variable (the implied-DO variable).var

Is a list of variables or implied-DO lists, separated by commas.expr

Is a list of variables or implied-DO lists, separated by commas.clist
A constant can be specified in the form r*constant, where r is a
repeat specification. It is a nonnegative scalar integer constant
(with no kind parameter). If it is a named constant, it must have
been declared previously in the scoping unit or made accessible
through use or host association. If r is omitted, it is assumed to
be 1.

Description

A variable can be initialized only once in an executable program. A variable that appears in a
DATA statement and is typed implicitly can appear in a subsequent type declaration which may
change the implicit typing.

The number of constants in c-list must equal the number of variables in var-list. The
constants are assigned to the variables in the order in which they appear (from left to right).

The following objects cannot be initialized in a DATA statement:

• A dummy argument

• A function

• A function result

• An automatic object

• An allocatable array

• A variable that is accessible by use or host association

• A variable in a named common block (unless the DATA statement is in a block data program
unit)

• A variable in blank common

2501

63

Except for variables in named COMMON blocks, a named variable has the SAVE attribute if any
part of it is initialized in a DATA statement. You can confirm this property by specifying the
variable in a SAVE statement or a type declaration statement containing the SAVE attribute.

When an unsubscripted array name appears in a DATA statement, values are assigned to every
element of that array in the order of subscript progression. If the associated constant list does
not contain enough values to fill the array, a warning is issued and the remaining array elements
become undefined.

Array element values can be initialized in three ways: by name, by element, or by an implied-DO
list (interpreted in the same way as a DO construct).

The following conversion rules and restrictions apply to variable and constant list items:

• If the constant and the variable are both of numeric type, the following conversion occurs:

• The constant value is converted to the data type of the variable being initialized, if
necessary.

• When a binary, octal, or hexadecimal constant is assigned to a variable or array element,
the number of digits that can be assigned depends on the data type of the data item. If
the constant contains fewer digits than the capacity of the variable or array element, the
constant is extended on the left with zeros. If the constant contains more digits than can
be stored, the constant is truncated on the left. An error results if any nonzero digits are
truncated.

• If the constant and the variable are both of character type, the following conversion occurs:

• If the length of the constant is less than the length of the variable, the rightmost character
positions of the variable are initialized with blank characters.

• If the length of the constant is greater than the length of the variable, the character
constant is truncated on the right.

• If the constant is of numeric type and the variable is of character type, the following
restrictions apply:

• The character variable must have a length of one character.

• The constant must be an integer, binary, octal, or hexadecimal constant, and must have
a value in the range 0 through 255.

When the constant and variable conform to these restrictions, the variable is initialized with
the character that has the ASCII code specified by the constant. (This lets you initialize a
character object to any 8-bit ASCII code.)

2502

63 Intel® Fortran Compiler User and Reference Guides

• If the constant is a Hollerith or character constant, and the variable is a numeric variable
or numeric array element, the number of characters that can be assigned depends on the
data type of the data item.

If the Hollerith or character constant contains fewer characters than the capacity of the
variable or array element, the constant is extended on the right with blank characters. If
the constant contains more characters than can be stored, the constant is truncated on the
right.

Example

The following example shows the three ways that DATA statements can initialize array element
values:

DIMENSION A(10,10)

DATA A/100*1.0/ ! initialization by name

DATA A(1,1), A(10,1), A(3,3) /2*2.5, 2.0/ ! initialization by element

DATA ((A(I,J), I=1,5,2), J=1,5) /15*1.0/ ! initialization by implied-DO list

The following example shows DATA statements containing structure components:

TYPE EMPLOYEE

INTEGER ID

CHARACTER(LEN=40) NAME

END TYPE EMPLOYEE

TYPE(EMPLOYEE) MAN_NAME, CON_NAME

DATA MAN_NAME / EMPLOYEE(417, 'Henry Adams') /

DATA CON_NAME%ID, CON_NAME%NAME /891, "David James"/

In the following example, the first DATA statement assigns zero to all 10 elements of array A,
and four asterisks followed by two blanks to the character variable STARS:

INTEGER A(10), B(10)

CHARACTER BELL, TAB, LF, FF, STARS*6

DATA A,STARS /10*0,'****'/

DATA BELL,TAB,LF,FF /7,9,10,12/

DATA (B(I), I=1,10,2) /5*1/

2503

63

In this case, the second DATA statement assigns ASCII control character codes to the character
variables BELL, TAB, LF, and FF. The last DATA statement uses an implied-DO list to assign the
value 1 to the odd-numbered elements in the array B.

The following shows another example:

INTEGER n, order, alpha, list(100)

REAL coef(4), eps(2),

pi(5), x(5,5)

CHARACTER*12 help

COMPLEX*8 cstuff

DATA n /0/, order /3/

DATA alpha /'A'/

DATA coef /1.0, 2*3.0, 1.0/, eps(1) /.00001/

DATA cstuff /(-1.0, -1.0)/

! The following example initializes diagonal and below in

! a 5x5 matrix:

DATA ((x(j,i), i=1,j), j=1,5) / 15*1.0 /

DATA pi / 5*3.14159 /

DATA list / 100*0 /

DATA help(1:4), help(5:8), help(9:12) /3*'HELP'/

Consider the following:

CHARACTER (LEN = 10) NAME

INTEGER, DIMENSION (0:9) :: MILES

REAL, DIMENSION (100, 100) :: SKEW

TYPE (MEMBER) MYNAME, YOURS

DATA NAME / 'JOHN DOE' /, miles / 10*0 /

DATA ((SKEW (k, j), j = 1, k), k = 1, 100) / 5050*0.0 /

DATA ((SKEW (k, j), j = k + 1, 100), k = 1, 99) / 4950*1.0 /

DATA MYNAME / MEMBER (21, 'JOHN SMITH') /

DATA YOURS % age, YOURS % name / 35, 'FRED BROWN' /

2504

63 Intel® Fortran Compiler User and Reference Guides

In this example, the character variable NAME is initialized with the value JOHN DOE with two
trailing blanks to fill out the declared length of the variable. The ten elements of MILES are
initialized to zero. The two-dimensional array SKEW is initialized so that its lower triangle is
zero and its upper triangle is one. The structures MYNAME and YOURS are declared using the
derived type MEMBER. The derived-type variable MYNAME is initialized by a structure constructor.
The derived-type variable YOURS is initialized by supplying a separate value for each component.

The first DATA statement in the previous example could also be written as:

DATA name / 'JOHN DOE' /

DATA miles / 10*0 /

As a Fortran 95 feature, a pointer can be initialized as disassociated by using a DATA statement.
For example:

INTEGER, POINTER :: P

DATA P/NULL()/

END

See Also
• C to D
• CHARACTER
• INTEGER
• REAL
• COMPLEX
• COMMON
• Data Types, Constants, and Variables
• I/O Lists
• Derived Data Types

Building Applications: Allocating Common Blocks

DATE Intrinsic Procedure
Intrinsic Subroutine (Generic): Returns the
current date as set within the system. DATE can
be used as an intrinsic subroutine or as a portability

2505

63

function or subroutine. It is an intrinsic procedure
unless you specify USE IFPORT. Intrinsic
subroutines cannot be passed as actual arguments.

Syntax

CALL DATE (buf)

(Output) Is a variable, array, or arrayelement of any data type,
or a character substring. It must contain at least nine bytes
ofstorage.

buf

The date is returned as a 9-byte ASCII character string taking the form dd-mmm-yy, where:

is the 2-digit datedd

is the 3-letter monthmmm

is the last two digits of the yearyy

If buf is of numeric type and smaller than 9 bytes, data corruption can occur.

If buf is of character type, its associated length is passed to the subroutine. If buf is smaller
than 9 bytes, the subroutine truncates the date to fit in the specified length. If an array of type
character is passed, the subroutine stores the date in the first array element, using the element
length, not the length of the entire array.

CAUTION. The two-digit year return value may cause problems with the year 2000.
Use DATE_AND_TIME instead.

Example
CHARACTER*1 DAY(9)

…

CALL DATE (DAY)

The length of the first array element in CHARACTER array DAY is passed to the DATE subroutine.
The subroutine then truncates the date to fit into the 1-character element, producing an incorrect
result.

See Also
• C to D
• DATE_AND_TIME

2506

63 Intel® Fortran Compiler User and Reference Guides

• DATE portability routine

DATE Portability Routine
Portability Function or Subroutine: Returns the
current system date. DATE can be used as an
intrinsic subroutine or as a portability function or
subroutine. It is an intrinsic procedure unless you
specify USE IFPORT.

Module

USE IFPORT

Syntax

Function Syntax:

result = DATE()

Subroutine Syntax:

CALL DATE (dstring)

(Output) CHARACTER. Is a variable or array containing at least
nine bytes of storage.

dstring

DATE in its function form returns a CHARACTER string of length 8 in the form mm/dd/yy, where
mm, dd, and yy are two-digit representations of the month, day, and year, respectively.

DATE in its subroutine form returns dstring in the form dd-mmm-yy, where dd is a two-digit
representation of the current day of the month, mmm is a three-character abbreviation for the
current month (for example, Jan) and yy are the last two digits of the current year.

CAUTION. The two-digit year return value may cause problems with the year 2000.
Use DATE_AND_TIME instead.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

2507

63

Example
USE IFPORT

!If today's date is March 02, 2000, the following

!code prints "02-Mar-00"

CHARACTER(9) TODAY

CALL DATE(TODAY)

PRINT *, TODAY

!The next line prints "03/02/00"

PRINT *, DATE()

See Also
• C to D
• DATE_AND_TIME
• DATE intrinsic procedure

DATE4
Portability Subroutine: Returns the current
system date.

Module

USE IFPORT

Syntax

CALL DATE4 (datestr)

(Output) CHARACTER.datestr

This subroutine returns datestr in the form dd-mmm-yyyy, where dd is a two-digit
representation of the current day of the month, mmm is a three-character abbreviation for the
current month (for example, Jan) and yyyy are the four digits of the current year.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

2508

63 Intel® Fortran Compiler User and Reference Guides

DATE_AND_TIME
Intrinsic Subroutine (Generic): Returns
character data on the real-time clock and date in
a form compatible with the representations defined
in Standard ISO 8601:1988. Intrinsic subroutines
cannot be passed as actual arguments.

Syntax

CALL DATE_AND_TIME ([date] [,time] [,zone] [,values])

(Output; optional) Must be scalar and of type default character;
its length must be at least 8 to contain the complete value. Its
leftmost 8 characters are set to a value of the form CCYYMMDD,
where:

date

Is the centuryCC

Is the year within the centuryYY

Is the month within the yearMM

Is the day within the monthDD

(Output; optional) Must be scalar and of type default character;
its length must be at least 10 to contain the complete value. Its
leftmost 10 characters are set to a value of the form hhmmss.sss,
where:

time

Is the hour of the dayhh

Is the minutes of the hourmm

Is the seconds and
milliseconds of the minute

ss.sss

(Output; optional) Must be scalar and of type default character;
its length must be at least 5 to contain the complete value. Its
leftmost 5 characters are set to a value of the form hhmm, where

zone

2509

63

hh and mm are the time difference with respect to Coordinated
Universal Time (UTC) in hours and parts of an hour expressed in
minutes, respectively.
UTC (also known as Greenwich Mean Time) is defined by CCIR
Recommendation 460-2.

(Output; optional) Must be of type integer. One-dimensional array
with size of at least 8. The values returned in values are as
follows:

values

Is the 4-digit yearvalues(1)

Is the month of the yearvalues(2)

Is the day of the monthvalues(3)

Is the time difference with
respect to Coordinated
Universal Time (UTC) in
minutes

values(4)

Is the hour of the day (range
0 to 23) - local time

values(5)

Is the minutes of the hour
(range 0 to 59) - local time

values(6)

Is the seconds of the minute
(range 0 to 59) - local time

values(7)

Is the milliseconds of the
second (range 0 to 999) - local
time

values(8)

2510

63 Intel® Fortran Compiler User and Reference Guides

Example

Consider the following example executed on 2000 March 28 at 11:04:14.5:

INTEGER DATE_TIME (8)

CHARACTER (LEN = 12) REAL_CLOCK (3)

CALL DATE_AND_TIME (REAL_CLOCK (1), REAL_CLOCK (2), &

REAL_CLOCK (3), DATE_TIME)

This assigns the value "20000328" to REAL_CLOCK (1), the value "110414.500" to REAL_CLOCK
(2), and the value "-0500" to REAL_CLOCK (3). The following values are assigned to DATE_TIME:
2000, 3, 28, -300, 11, 4, 14, and 500.

The following shows another example:

CHARACTER(10) t

CHARACTER(5) z

CALL DATE_AND_TIME(TIME = t, ZONE = z)

See Also
• C to D
• GETDAT
• GETTIM
• IDATE intrinsic procedure
• FDATE
• TIME intrinsic procedure
• ITIME
• RTC
• CLOCK

DBESJ0, DBESJ1, DBESJN, DBESY0, DBESY1, DBESYN
Portability Functions: Compute the
double-precision values of Bessel functions of the
first and second kinds.

Module

USE IFPORT

2511

63

Syntax

result = DBESJ0 (value)

result = DBESJ1 (value)

result = DBESJN (n, value)

result = DBESY0 (posvalue)

result = DBESY1 (posvalue)

result = DBESYN (n, posvalue)

(Input) REAL(8). Independent variable for a Bessel function.value

(Input) Integer. Specifies the order of the selected Bessel function
computation.

n

(Input) REAL(8). Independent variable for a Bessel function. Must
be greater than or equal to zero.

posvalue

Results

DBESJ0, DBESJ1, and DBESJN return Bessel functions of the first kind, orders 0, 1, and n,
respectively, with the independent variable posvalue.

DBESY0, DBESY1, and DBESYN return Bessel functions of the second kind, orders 0, 1, and n,
respectively, with the independent variable posvalue.

Negative arguments cause DBESY0, DBESY1, and DBESYN to return a huge negative value.

Bessel functions are explained more fully in most mathematics reference books, such as the
Handbook of Mathematical Functions(Abramowitz and Stegun. Washington: U.S. Government
Printing Office, 1964). These functions are commonly used in the mathematics of electromagnetic
wave theory.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

2512

63 Intel® Fortran Compiler User and Reference Guides

Example
USE IFPORT

real(8) besnum, besout

10 read *, besnum

besout = dbesj0(besnum)

print *, 'result is ',besout

goto 10

end

See Also
• C to D
• BESJ0, BESJ1, BESJN, BESY0, BESY1, BESYN

DBLE
Elemental Intrinsic Function (Generic):
Converts a number to double-precision real type.

Syntax

result = DBLE (a)

(Input) Must be of type integer, real, or complex.a

Results

The result type is double precision real (by default, REAL(8) or REAL*8). Functions that cause
conversion of one data type to another type have the same effect as the implied conversion in
assignment statements.

If a is of type double precision, the result is the value of the a with no conversion (DBLE(a) =
a).

If a is of type integer or real, the result has as much precision of the significant part of a as a
double precision value can contain.

If a is of type complex, the result has as much precision of the significant part of the real part
of a as a double precision value can contain.

2513

63

Result TypeArgument TypeSpecific Name 1

REAL(8)INTEGER(1)

REAL(8)INTEGER(2)

REAL(8)INTEGER(4)

REAL(8)INTEGER(8)

REAL(8)REAL(4)DBLE2

REAL(8)REAL(8)

REAL(8)REAL(16)DBLEQ

REAL(8)COMPLEX(4)

REAL(8)COMPLEX(8)

REAL(8)COMPLEX(16)

1These specific functions cannot be passed as actual arguments.
2 The setting of compiler options specifying double size can affect DBLE.

Example

DBLE (4) has the value 4.0.

DBLE ((3.4, 2.0)) has the value 3.4.

See Also
• C to D
• FLOAT
• SNGL
• REAL
• CMPLX

2514

63 Intel® Fortran Compiler User and Reference Guides

DCLOCK
Portability Function: Returns the elapsed time
in seconds since the start of the current process.

Module

USE IFPORT

Syntax

result = DCLOCK()

Results

The result type is REAL(8). This routine provides accurate timing to the nearest microsecond,
taking into account the frequency of the processor where the current process is running. You
can obtain equivalent results using standard Fortran by using the CPU_TIME intrinsic subroutine.

Note that the first call to DCLOCK performs calibration.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

DOUBLE PRECISION START_TIME, STOP_TIME, DCLOCK

EXTERNAL DCLOCK

START_CLOCK = DCLOCK()

CALL FOO()

STOP_CLOCK = DCLOCK()

PRINT *, 'foo took:', STOP_CLOCK - START_CLOCK, 'seconds.'

See Also
• C to D
• DATE_AND_TIME
• CPU_TIME

2515

63

DCMPLX
Elemental Intrinsic Function (Specific):
Converts the argument to double complex type.
This function cannot be passed as an actual
argument.

Syntax

result = DCMPLX (x[,y])

(Input) Must be of type integer, real, or complex.x

(Input; optional) Must be of type integer or real. It must not be
present if x is of type complex.

y

Results

The result type is double complex (COMPLEX(8) or COMPLEX*16).

If only one noncomplex argument appears, it is converted into the real part of the result value
and zero is assigned to the imaginary part. If y is not specified and x is complex, the result
value is CMPLX(REAL(x), AIMAG(x)).

If two noncomplex arguments appear, the complex value is produced by converting the first
argument into the real part of the value, and converting the second argument into the imaginary
part.

DCMPLX(x, y) has the complex value whose real part is REAL(x, KIND=8) and whose imaginary
part is REAL(y, KIND=8).

Example

DCMPLX (-3) has the value (-3.0, 0.0).

DCMPLX (4.1, 2.3) has the value (4.1, 2.3).

See Also
• C to D
• CMPLX
• FLOAT
• INT
• IFIX
• REAL

2516

63 Intel® Fortran Compiler User and Reference Guides

• SNGL

DEALLOCATE
Statement: Frees the storage allocated for
allocatable arrays and pointer targets (and causes
the pointers to become disassociated).

Syntax

DEALLOCATE (object[,object]...[, alloc-opt])

Is a structure component or the name of a variable, and must be
a pointer or allocatable array.

object

(Output) Is one of the following:alloc-opt

sv is a scalar integer variable in which the
status of the deallocation is stored.

STAT=sv

ev is a scalar default character value in which
an error condition is stored if such a condition
occurs.

ERRMSG=ev

Description

If a STAT variableor ERRMSG variable is specified, it must not be deallocated in the DEALLOCATE
statement in which it appears. If the deallocation is successful, the variable is set to zero. If
the deallocation is not successful, an error condition occurs, and the variable is set to a positive
integer value (representing the run-time error); the ERRMSG variable contains the error
condition. If no STAT variable is specified and an error condition occurs, program execution
terminates.

It is recommended that all explicitly allocated storage be explicitly deallocated when it is no
longer needed.

To disassociate a pointer that was not associated with the ALLOCATE statement, use the NULLIFY
statement.

For a list of run-time errors, see Building Applications.

2517

63

Example

The following example shows deallocation of an allocatable array:

INTEGER ALLOC_ERR

REAL, ALLOCATABLE :: A(:), B(:,:)

...

ALLOCATE (A(10), B(-2:8,1:5))

...

DEALLOCATE(A, B, STAT = ALLOC_ERR)

The following shows another example:

INTEGER, ALLOCATABLE :: dataset(:,:,:)

INTEGER reactor, level, points, error

DATA reactor, level, points / 10, 50, 10 /

ALLOCATE (dataset(1:reactor,1:level,1:points), STAT = error)

DEALLOCATE (dataset, STAT = error)

See Also
• C to D
• ALLOCATE
• NULLIFY
• Arrays
• Dynamic Allocation

DECLARE and NODECLARE
General Compiler Directives: DECLARE
generates warnings for variables that have been
used but have not been declared (like the IMPLICIT
NONE statement). NODECLARE (the default)
disables these warnings.

Syntax

cDEC$ DECLARE

cDEC$ NODECLARE

2518

63 Intel® Fortran Compiler User and Reference Guides

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

The DECLARE directive is primarily a debugging tool that locates variables that have not been
properly initialized, or that have been defined but never used.

See Also
• C to D
• IMPLICIT
• General Compiler Directives

Building Applications: Compiler Directives Related to Options

DECODE
Statement: Translates data from character to
internal form. It is comparable to using internal
files in formatted sequential READ statements.

Syntax

DECODE (c,f,b[, IOSTAT=i-var] [, ERR=label]) [io-list]

Is a scalar integer expression. It is the number of characters to
be translated to internal form.

c

Is a format identifier. An error occurs if more than one record is
specified.

f

Is a scalar or array reference. If b is an array reference, its
elements are processed in the order of subscript progression.

b

b contains the characters to be translated to internal form.

Is a scalar integer variable that is defined as a positive integer if
an error occurs and as zero if no error occurs (see I/O Status
Specifier).

i-var

Is the label of an executable statement that receives control if an
error occurs.

label

Is an I/O list. An I/O list is either an implied-DO list or a simple
list of variables (except for assumed-size arrays). The list receives
the data after translation to internal form.

io-list

The interaction between the format specifier and the I/O list is the
same as for a formatted I/O statement.

2519

63

The number of characters that the DECODE statement can translate depends on the data type
of b. For example, an INTEGER(2) array can contain two characters per element, so that the
maximum number of characters is twice the number of elements in that array.

The maximum number of characters a character variable or character array element can contain
is the length of the character variable or character array element.

The maximum number of characters a character array can contain is the length of each element
multiplied by the number of elements.

Example

In the following example, the DECODE statement translates the 12 characters in A to integer
form (as specified by the FORMAT statement):

DIMENSION K(3)

CHARACTER*12 A,B

DATA A/'123456789012'/

DECODE(12,100,A) K

100 FORMAT(3I4)

ENCODE(12,100,B) K(3), K(2), K(1)

The 12 characters are stored in array K:

K(1) = 1234

K(2) = 5678

K(3) = 9012

See Also
• C to D
• READ
• WRITE
• ENCODE

2520

63 Intel® Fortran Compiler User and Reference Guides

DEFAULT Clause
Parallel Directive Clause: Lets you specify a
scope for all variables in the lexical extent of a
parallel region.

Syntax

DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)

The specifications have the following effects:

• PRIVATE - Makes all named objects in the lexical extent of the parallel region, including
common block variables but excluding THREADPRIVATE variables, private to a thread as if
you explicitly listed each variable in a PRIVATE clause.

• FIRSTPRIVATE - Makes all variables in the construct that have implicitly determined
data-sharing attributes firstprivate as if you explicitly listed each variable in a FIRSTPRIVATE
clause.

• SHARED - Makes all named objects in the lexical extent of the parallel region shared among
the threads in a team, as if you explicitly listed each variable in a SHARED clause. If you do
not specify a DEFAULT clause, this is the default.

• NONE - Specifies that there is no implicit default as to whether variables are PRIVATE or
SHARED. In this case, you must specify the PRIVATE, SHARED, FIRSTPRIVATE, LASTPRIVATE,
or REDUCTION property of each variable you use in the lexical extent of the parallel region.

You can specify only one DEFAULT clause in a PARALLEL directive. You can exclude variables
from a defined default by using the PRIVATE, SHARED, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTION clauses.

Variables in THREADPRIVATE common blocks are not affected by this clause.

See Also
• C to D

Optimizing Applications: DEFAULT Clause

2521

63

DEFINE and UNDEFINE
General Compiler Directives: DEFINE creates a
symbolic variable whose existence or value can be
tested during conditional compilation. UNDEFINE
removes a defined symbol.

Syntax

cDEC$ DEFINE name[= val]

cDEC$ UNDEFINE name

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the name of the variable.name

INTEGER(4). The value assigned to name.val

DEFINE creates and UNDEFINE removes symbols for use with the IF (or IF DEFINED) compiler
directive. Symbols defined with DEFINE directive are local to the directive. They cannot be
declared in the Fortran program.

Because Fortran programs cannot access the named variables, the names can duplicate Fortran
keywords, intrinsic functions, or user-defined names without conflict.

To test whether a symbol has been defined, use the IF DEFINED (name) directive. You can
assign an integer value to a defined symbol. To test the assigned value of name, use the IF
directive. IF test expressions can contain most logical and arithmetic operators.

Attempting to undefine a symbol that has not been defined produces a compiler warning.

The DEFINE and UNDEFINE directives can appear anywhere in a program, enabling and disabling
symbol definitions.

2522

63 Intel® Fortran Compiler User and Reference Guides

Example
!DEC$ DEFINE testflag

!DEC$ IF DEFINED (testflag)

write (*,*) 'Compiling first line'

!DEC$ ELSE

write (*,*) 'Compiling second line'

!DEC$ ENDIF

!DEC$ UNDEFINE testflag

See Also
• C to D
• T to Z
• IF Directive Construct
• General Compiler Directives
• D compiler option

Building Applications: Compiler Directives Related to Options

Building Applications: Using Predefined Preprocessor Symbols

DEFINE FILE
Statement: Establishes the size and structure of
files with relative organization and associates them
with a logical unit number.

Syntax

DEFINE FILE u(m,n,U,asv) [,u(m,n,U,asv)] ...

Is a scalar integer constant or variable that specifies the logical
unit number.

u

Is a scalar integer constant or variable that specifies the number
of records in the file.

m

Is a scalar integer constant or variable that specifies the length of
each record in 16-bit words (2 bytes).

n

Specifies that the file is unformatted (binary); this is the only
acceptable entry in this position.

U

2523

63

Is a scalar integer variable, called the associated variable of the
file. At the end of each direct access I/O operation, the record
number of the next higher numbered record in the file is assigned
to asv; asv must not be a dummy argument.

asv

The DEFINE FILE statement is comparable to the OPEN statement. In situations where you can
use the OPENstatement, OPEN is the preferable mechanism for creating and opening files.

The DEFINE FILE statement specifies that a file containing m fixed-length records, each composed
of n16-bit words, exists (or will exist) on the specified logical unit. The records in the file are
numbered sequentially from 1 through m.

A DEFINE FILE statement does not itself open a file. However, the statement must be executed
before the first direct access I/O statement referring to the specified file. The file is opened
when the I/O statement is executed.

If this I/O statement is a WRITE statement, a direct access sequential file is opened, or created
if necessary.

If the I/O statement is a READ or FIND statement, an existing file is opened, unless the specified
file does not exist. If a file does not exist, an error occurs.

The DEFINE FILE statement establishes the variable asv as the associated variable of a file. At
the end of each direct access I/O operation, the Fortran I/O system places in asv the record
number of the record immediately following the one just read or written.

The associated variable always points to the next sequential record in the file (unless the
associated variable is redefined by an assignment, input, or FIND statement). So, direct access
I/O statements can perform sequential processing on the file by using the associated variable
of the file as the record number specifier.

Example
DEFINE FILE 3(1000,48,U,NREC)

In this example, the DEFINE FILE statement specifies that the logical unit 3 is to be connected
to a file of 1000 fixed-length records; each record is forty-eight 16-bit words long. The records
are numbered sequentially from 1 through 1000 and are unformatted.

After each direct access I/O operation on this file, the integer variable NREC will contain the
record number of the record immediately following the record just processed.

See Also
• C to D
• OPEN

2524

63 Intel® Fortran Compiler User and Reference Guides

DELDIRQQ
Portability Function: Deletes a specified
directory.

Module

USE IFPORT

Syntax

result = DELDIRQQ (dir)

(Input) Character*(*). String containing the path of the directory
to be deleted.

dir

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

The directory to be deleted must be empty. It cannot be the current directory, the root directory,
or a directory currently in use by another process.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

See the example for GETDRIVEDIRQQ.

See Also
• C to D
• GETDRIVEDIRQQ
• GETDRIVEDIRQQ
• MAKEDIRQQ
• CHANGEDIRQQ
• CHANGEDRIVEQQ
• UNLINK

2525

63

DELETE
Statement: Deletes a record from a relative file.

Syntax

DELETE ([UNIT=] io-unit, REC= r[, ERR= label] [, IOSTAT=i-var])

Is an external unit specifier.io-unit

Is a scalar numeric expression indicating the record number to be
deleted.

r

Is the label of the branch target statement that receives control
if an error occurs.

label

Is a scalar integer variable that is defined as a positive integer if
an error occurs and zero if no error occurs.

i-var

In a relative file, the DELETE statement deletes the direct access record specified by r. If REC=
r is omitted, the current record is deleted. When the direct access record is deleted, any
associated variable is set to the next record number.

The DELETE statement logically removes the appropriate record from the specified file by
locating the record and marking it as a deleted record. It then frees the position formerly
occupied by the deleted record so that a new record can be written at that position.

NOTE. You must use compiler option vms for READs to detect that a record has been
deleted.

Example

The following statement deletes the fifth record in the file connected to I/O unit 10:

DELETE (10, REC=5)

Suppose the following statement is specified:

DELETE (UNIT=9, REC=10, IOSTAT=IOS, ERR=20)

The tenth record in the file connected to unit 9 is deleted. If an error occurs, control is transferred
to the statement labeled 20, and a positive integer is stored in the variable IOS.

See Also
• C to D

2526

63 Intel® Fortran Compiler User and Reference Guides

• Data Transfer I/O Statements
• Branch Specifiers
• vms compiler option

DELETEMENUQQ (W*32, W*64)
QuickWin Function: Deletes a menu item from
a QuickWin menu.

Module

USE IFQWIN

Syntax

result = DELETEMENUQQ (menuID, itemID)

(Input) INTEGER(4). Identifies the menu that contains the menu
item to be deleted, starting with 1 as the leftmost menu.

menuID

(Input) INTEGER(4). Identifies the menu item to be deleted,
starting with 0 as the top menu item.

itemID

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

Compatibility

QUICKWIN GRAPHICS LIB

2527

63

Example
USE IFQWIN

LOGICAL(4) result

CHARACTER(25) str

str = 'Add to EDIT Menu'C ! Append to 2nd menu

result = APPENDMENUQQ(2, $MENUENABLED, str, WINSTATUS)

! Delete third item (EXIT) from menu 1 (FILE)

result = DELETEMENUQQ(1, 3)

! Delete entire fifth menu (WINDOW)

result = DELETEMENUQQ(5,0)

END

See Also
• C to D
• APPENDMENUQQ
• INSERTMENUQQ
• MODIFYMENUFLAGSQQ
• MODIFYMENUROUTINEQQ
• MODIFYMENUSTRINGQQ

Building Applications: Using QuickWin Overview

Building Applications: Program Control of Menus

DELFILESQQ
Portability Function: Deletes all files matching
the name specification, which can contain wildcards
(* and ?).

Module

USE IFPORT

Syntax

result = DELFILESQQ (files)

2528

63 Intel® Fortran Compiler User and Reference Guides

(Input) Character*(*). Files to be deleted. Can contain wildcards
(* and ?).

files

Results

The result type is INTEGER(2). The result is the number of files deleted.

You can use wildcards to delete more than one file at a time. DELFILESQQ does not delete
directories or system, hidden, or read-only files. Use this function with caution because it can
delete many files at once. If a file is in use by another process (for example, if it is open in
another process), it cannot be deleted.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

USE IFCORE

INTEGER(4) len, count

CHARACTER(80) file

CHARACTER(1) ch

WRITE(*,*) "Enter names of files to delete: "

len = GETSTRQQ(file)

IF (file(1:len) .EQ. '*.*') THEN

WRITE(*,*) "Are you sure (Y/N)?"

ch = GETCHARQQ()

IF ((ch .NE. 'Y') .AND. (ch .NE. 'y')) STOP

END IF

count = DELFILESQQ(file)

WRITE(*,*) "Deleted ", count, " files."

END

See Also
• C to D

2529

63

• FINDFILEQQ

TYPE Statement (Derived Types)
Statement: Declares a variable to be a derived
type. It specifies the name of the user-defined type
and the types of its components.

Syntax

TYPE [[,type-attr-spec-list] ::] name

component-definition

[component-definition]. . .

END TYPE [name]

Is access-spec or BIND (C).type-attr-spec-list

Is the PUBLIC or PRIVATE keyword. The keyword can only be
specified if the derived-type definition is in the specification part
of a module.

access-spec

Is the name of the derived data type. It must not be the same as
the name of any intrinsic type, or the same as the name of a
derived type that can be accessed from a module.

name

Is one or more type declaration statements defining the component
of derived type.

component-definition

The first component definition can be preceded by an optional
PRIVATE or SEQUENCE statement. (Only one PRIVATE or
SEQUENCE statement can appear in a given derived-type
definition.)
If SEQUENCE is present, all derived types specified in component
definitions must be sequence types.
A component definition takes the following form:
type[[, attr] ::] component[(a-spec)] [*char-len] [init-ex]

Is a type specifier. It can be an intrinsic type
or a previously defined derived type. (If the
POINTER attribute follows this specifier, the
type can also be any accessible derived type,
including the type being defined.)

type

2530

63 Intel® Fortran Compiler User and Reference Guides

Is an optional POINTER attribute for a pointer
component, or an optional DIMENSION or
ALLOCATABLE attribute for an array

attr

component. You cannot specify both the
ALLOCATABLE and POINTER attribute. If
DIMENSION is specified, it can be followed by
an array specification.
Each attribute can only appear once in a given
component-definition.

Is the name of the component being defined.component

Is an optional array specification, enclosed in
parentheses. If POINTER or ALLOCATABLE is
specified, the array is deferred shape;

a-spec

otherwise, it is explicit shape. In an
explicit-shape specification, each bound must
be a constant scalar integer expression.
If the array bounds are not specified here,
they must be specified following the
DIMENSION attribute.

Is an optional scalar integer literal constant;
it must be preceded by an asterisk (*). This
parameter can only be specified if the
component is of type CHARACTER.

char-len

Is an initialization expression, or for pointer
components, => NULL(). This is a Fortran 95
feature.

init-ex

If init-ex is specified, a double colon must
appear in the component definition. The equals
assignment symbol (=) can only be specified
for nonpointer components.
The initialization expression is evaluated in
the scoping unit of the type definition.

Description

If a name is specified following the END TYPE statement, it must be the same name that follows
TYPE in the derived type statement.

2531

63

A derived type can be defined only once in a scoping unit. If the same derived-type name
appears in a derived-type definition in another scoping unit, it is treated independently.

A component name has the scope of the derived-type definition only. Therefore, the same name
can be used in another derived-type definition in the same scoping unit.

Two data entities have the same type if they are both declared to be of the same derived type
(the derived-type definition can be accessed from a module or a host scoping unit).

If the entities are in different scoping units, they can also have the same derived type if they
are declared with reference to different derived-type definitions, and if both derived-type
definitions have all of the following:

• The same name

• A SEQUENCE statement (they both have sequence type)

• Components that agree in name, order, and attributes; components cannot be private

If BIND (C) is specified, the following rules apply:

• The derived type cannot be a SEQUENCE type.

• The derived type must have type parameters.

• Each component of the derived type must be a nonpointer, nonallocatable data component
with interoperable type and type parameters.

2532

63 Intel® Fortran Compiler User and Reference Guides

Example
! DERIVED.F90

! Define a derived-type structure,

! type variables, and assign values

TYPE member

INTEGER age

CHARACTER (LEN = 20) name

END TYPE member

TYPE (member) :: george

TYPE (member) :: ernie

george = member(33, 'George Brown')

ernie%age = 56

ernie%name = 'Ernie Brown'

WRITE (*,*) george

WRITE (*,*) ernie

END

2533

63

The following shows another example of a derived type:

TYPE mem_name

SEQUENCE

CHARACTER (LEN = 20) lastn

CHARACTER (LEN = 20) firstn

CHARACTER (len = 3) cos ! this works because COS is a component name

END TYPE mem_name

TYPE member

TYPE (mem_name) :: name

SEQUENCE

INTEGER age

CHARACTER (LEN = 20) specialty

END TYPE member

In the following example, a and b are both variable arrays of derived type pair:

TYPE (pair)

INTEGER i, j

END TYPE

TYPE (pair), DIMENSION (2, 2) :: a, b(3)

2534

63 Intel® Fortran Compiler User and Reference Guides

The following example shows how you can use derived-type objects as components of other
derived-type objects:

TYPE employee_name

CHARACTER(25) last_name

CHARACTER(15) first_name

END TYPE

TYPE employee_addr

CHARACTER(20) street_name

INTEGER(2) street_number

INTEGER(2) apt_number

CHARACTER(20) city

CHARACTER(2) state

INTEGER(4) zip

END TYPE

Objects of these derived types can then be used within a third derived-type specification, such
as:

TYPE employee_data

TYPE (employee_name) :: name

TYPE (employee_addr) :: addr

INTEGER(4) telephone

INTEGER(2) date_of_birth

INTEGER(2) date_of_hire

INTEGER(2) social_security(3)

LOGICAL(2) married

INTEGER(2) dependents

END TYPE

See Also
• C to D
• E to F

2535

63

• T to Z
• DIMENSION
• MAP...END MAP
• PRIVATE
• PUBLIC
• RECORD
• SEQUENCE
• STRUCTURE...END STRUCTURE
• Derived Data Types
• Default Initialization
• Structure Components
• Structure Constructors

Building Applications: Handling User-Defined Types

DFLOAT
Elemental Intrinsic Function (Generic):
Converts an integer to double-precision real type.

Syntax

result = DFLOAT (a)

(Input) Must be of type integer.a

Results

The result type is double-precision real (by default, REAL(8) or REAL*8). Functions that cause
conversion of one data type to another type have the same effect as the implied conversion in
assignment statements.

Result Type 2Argument TypeSpecific Name 1

REAL(8)INTEGER(1)

REAL(8)INTEGER(2)DFLOTI

REAL(8)INTEGER(4)DFLOTJ

REAL(8)INTEGER(8)DFLOTK

2536

63 Intel® Fortran Compiler User and Reference Guides

Result Type 2Argument TypeSpecific Name 1

1These specific functions cannot be passed as actual arguments.
2The setting of compiler options specifying double size can affect DFLOAT.

Example

DFLOAT (-4) has the value -4.0.

See Also
• C to D
• REAL

DFLOATI, DFLOATJ, DFLOATK
Portability Functions: Convert an integer to
double-precision real type.

Module

USE IFPORT

Syntax

result = DFLOATI (i)

result = DFLOATJ (j)

result = DFLOATK (k)

(Input) Must be of type INTEGER(2).i

(Input) Must be of type INTEGER(4).j

(Input) Must be of type INTEGER(8).k

Results

The result type is double-precision real (REAL(8) or REAL*8).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

2537

63

See Also
• C to D
• DFLOAT

DIGITS
Inquiry Intrinsic Function (Generic): Returns
the number of significant digits for numbers of the
same type and kind parameters as the argument.

Syntax

result = DIGITS (x)

(Input) Must be of type integer or real; it can be scalar or array
valued.

x

Results

The result is a scalar of type default integer.

The result has the value q if x is of type integer; it has the value p if x is of type real. Integer
parameter q is defined in Model for Integer Data; real parameter p is defined in Model for Real
Data.

Example

If x is of type REAL(4), DIGITS(x) has the value 24.

See Also
• C to D
• EXPONENT
• RADIX
• FRACTION
• Data Representation Models

2538

63 Intel® Fortran Compiler User and Reference Guides

DIM
Elemental Intrinsic Function (Generic):
Returns the difference between two numbers (if
the difference is positive).

Syntax

result = DIM (x, y)

(Input) Must be of type integer or real.x

(Input) Must have the same type and kind parameters as x.y

Results

The result type is the same as x. The value of the result is x- y if x is greater than y; otherwise,
the value of the result is zero.

The setting of compiler options specifying integer size can affect this function.

Result TypeArgument typeSpecific Name

INTEGER(1)INTEGER(1)BDIM

INTEGER(2)INTEGER(2)IIDIM1

INTEGER(4)INTEGER(4)IDIM 2

INTEGER(8)INTEGER(8)KIDIM

REAL(4)REAL(4)DIM

REAL(8)REAL(8)DDIM

REAL(16)REAL(16)QDIM

1Or HDIM.
2Or JIDIM. For compatibility, IDIM can also be specified as a generic function for integer
types.

Example

DIM (6, 2) has the value 4.

2539

63

DIM (-4.0, 3.0) has the value 0.0.

The following shows another example:

INTEGER i

REAL r

REAL(8) d

i = IDIM(10, 5) ! returns 5

r = DIM (-5.1, 3.7) ! returns 0.0

d = DDIM (10.0D0, -5.0D0) ! returns 15.0D0

See Also
• C to D
• Argument Keywords in Intrinsic Procedures

DIMENSION
Statement and Attribute: Specifies that an object
is an array, and defines the shape of the array.

Syntax

The DIMENSION attribute can be specified in a type declaration statement or a DIMENSION
statement, and takes one of the following forms:

Type Declaration Statement:

type,[att-ls,] DIMENSION (a-spec) [, att-ls] :: a[(a-spec)][, a[(a-spec)]
] ...

Statement:

DIMENSION [::]a(a-spec) [, a(a-spec)] ...

Is a data type specifier.type

Is an optional list of attribute specifiers.att-ls

Is an array specification. It can be any of the following:a-spec

• An explicit-shape specification; for example, a(10,10)

• An assumed-shape specification; for example, a(:)

• A deferred-shape specification; for example, a(:,:)

• An assumed-size specification; for example, a(10,*)

2540

63 Intel® Fortran Compiler User and Reference Guides

For more information on array specifications, see Declaration
Statements for Arrays.
In a type declaration statement, any array specification following
an array overrides any array specification following DIMENSION.

Is the name of the array being declared.a

Description

The DIMENSION attribute allocates a number of storage elements to each array named, one
storage element to each array element in each dimension. The size of each storage element is
determined by the data type of the array.

The total number of storage elements assigned to an array is equal to the number produced
by multiplying together the number of elements in each dimension in the array specification.
For example, the following statement defines ARRAY as having 16 real elements of 4 bytes
each and defines MATRIX as having 125 integer elements of 4 bytes each:

DIMENSION ARRAY(4,4), MATRIX(5,5,5)

An array can also be declared in the following statements: ALLOCATABLE, AUTOMATIC, COMMON,
POINTER, STATIC, TARGET.

Example

The following examples show type declaration statements specifying the DIMENSION attribute:

REAL, DIMENSION(10, 10) :: A, B, C(10, 15) ! Specification following C

! overrides the one following

! DIMENSION

REAL(8), DIMENSION(5,-2:2) :: A,B,C

The following are examples of the DIMENSION statement:

DIMENSION BOTTOM(12,24,10)

DIMENSION X(5,5,5), Y(4,85), Z(100)

DIMENSION MARK(4,4,4,4)

SUBROUTINE APROC(A1,A2,N1,N2,N3)

DIMENSION A1(N1:N2), A2(N3:*)

CHARACTER(LEN = 20) D

DIMENSION A(15), B(15, 40), C(-5:8, 7), D(15)

2541

63

You can also declare arrays by using type and ALLOCATABLE statements, for example:

INTEGER A(2,0:2)

COMPLEX F

ALLOCATABLE F(:,:)

REAL(8), ALLOCATABLE, DIMENSION(:, :, :) :: E

You can specify both the upper and lower dimension bounds. If, for example, one array contains
data from experiments numbered 28 through 112, you could dimension the array as follows:

DIMENSION experiment(28:112)

Then, to refer to the data from experiment 72, you would reference experiment(72).

Array elements are stored in column-major order: the leftmost subscript is incremented first
when the array is mapped into contiguous memory addresses. For example, consider the
following statements:

INTEGER(2) a(2, 0:2)

DATA a /1, 2, 3, 4, 5, 6/

These are equivalent to:

INTEGER(2) a

DIMENSION a(2, 0:2)

DATA a /1, 2, 3, 4, 5, 6/

If ais placed at location 1000 in memory, the preceding DATA statement produces the following
mapping.

ValueAddressArray element

11000a(1,0)

21002a(2,0)

31004a(1,1)

41006a(2,1)

51008a(1,2)

6100Aa(2,2)

2542

63 Intel® Fortran Compiler User and Reference Guides

The following DIMENSION statement defines an assumed-size array in a subprogram:

DIMENSION data (19,*)

At execution time, the array data is given the size of the corresponding array in the calling
program.

The following program fragment dimensions two arrays:

...

SUBROUTINE Subr (matrix, rows, vector)

REAL MATRIX, VECTOR

INTEGER ROWS

DIMENSION MATRIX (ROWS,*), VECTOR (10),

+ LOCAL (2,4,8)

MATRIX (1,1) = VECTOR (5)

...

See Also
• C to D
• ALLOCATE
• Declaration Statements for Arrays
• Arrays

DISPLAYCURSOR (W*32, W*64)
Graphics Function: Controls cursor visibility.

Module

USE IFQWIN

Syntax

result = DISPLAYCURSOR (toggle)

(Input) INTEGER(2). Constant that defines the cursor state. Has
two possible values:

toggle

• $GCURSOROFF - Makes the cursor invisible regardless of its
current shape and mode.

2543

63

• $GCURSORON - Makes the cursor always visible in graphics
mode.

Results

The result type is INTEGER(2). The result is the previous value of toggle.

Cursor settings hold only for the currently active child window. You need to call DISPLAYCURSOR
for each window in which you want the cursor to be visible.

A call to SETWINDOWCONFIG turns off the cursor.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also
• C to D
• SETTEXTCURSOR
• SETWINDOWCONFIG

DISTRIBUTE POINT
General Compiler Directive: Specifies loop
distribution.

Syntax

cDEC$ DISTRIBUTE POINT

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Loop distribution causes large loops to be distributed (split) into smaller ones. The resulting
loops contain a subset of the instructions from the initial loop. Loop distribution can enable
software pipelining to be applied to more loops. It can also reduce register pressure and improve
both instruction and data cache use.

If the directive is placed before a loop, the compiler will determine where to distribute; data
dependencies are observed.

If the directive is placed inside a loop, the distribution is performed after the directive and any
loop-carried dependencies are ignored. Currently only one distribute directive is supported if
the directive is placed inside the loop.

2544

63 Intel® Fortran Compiler User and Reference Guides

Example
!DEC$ DISTRIBUTE POINT

do i =1, m

b(i) = a(i) +1

....

c(i) = a(i) + b(i) ! Compiler will decide

! where to distribute.

! Data dependencies are

! observed

....

d(i) = c(i) + 1

enddo

do i =1, m

b(i) = a(i) +1

....

!DEC$ DISTRIBUTE POINT

call sub(a, n)! Distribution will start here,

! ignoring all loop-carried

! depedencies

c(i) = a(i) + b(i)

....

d(i) = c(i) + 1

enddo

See Also
• C to D
• Rules for General Directives that Affect DO Loops

2545

63

DLGEXIT (W*32, W*64)
Dialog Subroutine: Closes an open dialog box.

Module

USE IFLOGM

Syntax

CALL DLGEXIT (dlg)

(Input) Derived type dialog. Contains dialog box parameters.
The components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the
user.

dlg

If you want to exit a dialog box on a condition other than the user selecting the OK or Cancel
button, you need to include a call to DLGEXIT from within your callback routine. DLGEXIT saves
the data associated with the dialog box controls and then closes the dialog box. The dialog box
is exited after DLGEXIT has returned control back to the dialog manager, not immediately after
the call to DLGEXIT.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
SUBROUTINE EXITSUB (dlg, exit_button_id, callbacktype)

USE IFLOGM

TYPE (DIALOG) dlg

INTEGER exit_button_id, callbacktype

...

CALL DLGEXIT (dlg)

See Also
• C to D
• DLGSETRETURN
• DLGINIT
• DLGMODAL

2546

63 Intel® Fortran Compiler User and Reference Guides

• DLGMODELESS

Building Applications: Setting Return Values and Exiting

DLGFLUSH (W*32, W*64)
Dialog Subroutine: Updates the display of a
dialog box.

Module

USE IFLOGM

Syntax

CALL DLGFLUSH (dlg[,flushall])

(Input) Derived type dialog. Contains dialog box parameters.
The components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the
user.

dlg

(Input; optional) Logical. If .FALSE. (the default), then only the
controls that the dialog routines have marked as changed are
updated. If .TRUE., all controls are updated with the state of the
controls as known by the dialog routines. Normally, you would not
set flushall to .TRUE..

flushall

When your application calls DLGSET to change a property of a control in a dialog box, the
change is not immediately reflected in the displayed dialog box. Changes are applied when the
dialog box is first displayed, and then after every dialog callback to the user's code.

This design expects that, after a call to DLGMODAL or DLGMODELESS, every call to DLGSET
will be made from within a callback routine, and that the callback routine finishes quickly. This
is true most of the time.

However, there may be cases where you want to change a control outside of a dialog callback,
or from within a loop in a dialog callback.

2547

63

In these cases, DLGFLUSH is required, but is not always sufficient, to update the dialog display.
DLGFLUSH sends pending Windows* system messages to the dialog box and the controls that
it contains. However, many display changes do not appear until after the program reads and
processes these messages. A loop that processes the pending messages may be required; for
example:

use IFWINTY

use USER32

use IFLOGM

logical lNotQuit, lret

integer iret

TYPE (T_MSG) mesg

lNotQuit = .TRUE.

do while (lNotQuit .AND. (PeekMessage(mesg, 0, 0, 0, PM_NOREMOVE) <> 0))

lNotQuit = GetMessage(mesg, NULL, 0, 0)

if (lNotQuit) then

if (DLGISDLGMESSAGE(mesg) .EQV. .FALSE) then

lret = TranslateMessage(mesg)

iret = DispatchMessage(mesg)

end if

end if

end do

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• C to D
• DLGINIT
• DLGMODAL
• DLGMODELESS
• DLGSET
• DLGSETSUB

2548

63 Intel® Fortran Compiler User and Reference Guides

DLGGET, DLGGETINT, DLGGETLOG, DLGGETCHAR (W*32, W*64)
Dialog Functions: Return the state of the dialog
control variable.

Module

USE IFLOGM

Syntax

result = DLGGET (dlg,controlid,value[,index])

result = DLGGETINT (dlg,controlid,value[,index])

result = DLGGETLOG (dlg,controlid,value[,index])

result = DLGGETCHAR (dlg,controlid,value[,index])

(Input) Derived type dialog. Contains dialog box parameters.
The components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the
user.

dlg

(Input) Integer. Specifies the identifier of a control within the dialog
box. Can be either the symbolic name for the control or the
identifier number, both listed in the Include file (with extension
.FD).

controlid

(Output) Integer, logical, or character. The value of the control's
variable.

value

(Input; optional) Integer. Specifies the control variable whose
value is retrieved. Necessary if the control has more than one
variable of the same data type and you do not want to get the
value of the default for that type.

index

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, the result is .FALSE..

Use the DLGGET functions to retrieve the values of variables associated with your dialog box
controls. Each control has at least one of the integer, logical, or character variable associated
with it, but not necessarily all. The control variables are listed in the table in Building
Applications: Control Indexes. The types of controls they are associated with are listed in the
table in Building Applications: Available Indexes for Each Dialog Control.

2549

63

You can use DLGGET to retrieve the value of any variable. You can also use DLGGETINT to
retrieve an integer value, or DLGGETLOG and DLGGETCHAR to retrieve logical and character
values, respectively. If you use DLGGET, you do not have to worry about matching the function
to the variable type. If you use the wrong function type for a variable or try to retrieve a variable
type that is not available, the DLGGET functions return .FALSE..

If two or more controls have the same controlid, you cannot use these controls in a DLGGET
operation. In this case the function returns .FALSE..

The dialog box does not need to be open to access its control variables.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFLOGM

INCLUDE "THISDLG.FD"

TYPE (DIALOG) dlg

INTEGER val

LOGICAL retlog, is_checked

CHARACTER(256) text

...

retlog = DLGGET (dlg, IDC_CHECKBOX1, is_checked, dlg_status)

retlog = DLGGET (dlg, IDC_SCROLLBAR2, val, dlg_range)

retlog = DLGGET (dlg, IDC_STATIC_TEXT1, text, dlg_title)

...

See Also
• C to D
• DLGSET
• DLGSETSUB
• DLGINIT
• DLGMODAL
• DLGMODELESS

Building Applications: Using Dialogs for Applications Control Overview

2550

63 Intel® Fortran Compiler User and Reference Guides

Building Applications: Dialog Routines

Building Applications: Using Dialog Controls Overview

Building Applications: Specifying Control Indexes

Building Applications: Using Check Boxes and Radio Buttons

Building Applications: Using Edit Boxes

Building Applications: Using Scroll Bars

DLGINIT, DLGINITWITHRESOURCEHANDLE (W*32, W*64)
Dialog Functions: Initialize a dialog box.

Module

USE IFLOGM

Syntax

result = DLGINIT (id,dlg)

result = DLGINITWITHRESOURCEHANDLE (id,hinst,dlg)

(Input) INTEGER(4). Dialog identifier. Can be either the symbolic
name for the dialog or the identifier number, both listed in the
Include file (with extension .FD).

id

(Output) Derived type dialog. Contains dialog box parameters.dlg

(Input) INTEGER(4). Module instance handle in which the dialog
resource can be found.

hinst

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, the result is .FALSE..

DLGINIT must be called to initialize a dialog box before it can be used with DLGMODAL,
DLGMODELESS, or any other dialog function.

DLGINIT will only search for the dialog box resource in the main application. For example, it
will not find a dialog box resource that has been built into a dynamic link library.

DLGINITWITHRESOURCEHANDLE can be used when the dialog resource is not in the main
application. If the dialog resource is in a dynamic link library (DLL), hinst must be the value
passed as the first argument to the DLLMAIN procedure.

Dialogs can be used from any application, including console, QuickWin, and Windows*
applications.

2551

63

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFLOGM

INCLUDE 'DLG1.FD'

LOGICAL retlog

TYPE (DIALOG) thisdlg

...

retlog = DLGINIT (IDD_DLG3, thisdlg)

IF (.not. retlog) THEN

WRITE (*,*) 'ERROR: dialog not found'

ELSE

...

See Also
• C to D
• DLGEXIT
• DLGMODAL
• DLGMODELESS
• DLGUNINIT

Building Applications: Initializing and Activating the Dialog Bo

DLGISDLGMESSAGE, DLGISDLGMESSAGEWITHDLG (W*32, W*64)
Dialog Functions: Determine whether the
specified message is intended for one of the
currently displayed modeless dialog boxes, or a
specific dialog box.

Module

USE IFLOGM

2552

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = DLGISDLGMESSAGE (mesg)

result = DLGISDLGMESSAGEWITHDLG (mesg, dlg)

(Input) Derived type T_MSG. Contains a Windows message.mesg

(Input) Derived type dialog. Contains dialog box parameters.
The components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the
user.

dlg

Results

The result type is LOGICAL(4). The result is .TRUE. if the message is processed by the dialog
box. Otherwise, the result is .FALSE. and the message should be further processed.

DLGISDLGMESSAGE must be called in the message loop of Windows applications that display
a modeless dialog box using DLGMODELESS. DLGISDGMESSAGE determines whether the
message is intended for one of the currently displayed modeless dialog boxes. If it is, it passes
the message to the dialog box to be processed.

DLGISDLGMESSAGEWITHDLG specifies a particular dialog box to check. Use
DLGISDLGMESSAGEWITHDLG when the message loop is in a main application and the currently
active modeless dialog box was created by a DLL.

Compatibility

WINDOWS

2553

63

Example
use IFLOGM

include 'resource.fd'

type (DIALOG) dlg

type (T_MSG) mesg

integer*4 ret

logical*4 lret

...

! Create the main dialog box and set up the controls and callbacks

lret = DlgInit(IDD_THERM_DIALOG, dlg)

lret = DlgSetSub(dlg, IDD_THERM_DIALOG, ThermSub)

...

lret = DlgModeless(dlg, nCmdShow)

...

! Read and process messsages

do while(GetMessage (mesg, NULL, 0, 0))

! Note that DlgIsDlgMessage must be called in order to give

! the dialog box first chance at the message.

if (DlgIsDlgMessage(mesg) .EQV. .FALSE.) then

lret = TranslateMessage(mesg)

ret = DispatchMessage(mesg)

end if

end do

! Cleanup dialog box memory and exit the application

call DlgUninit(dlg)

WinMain = mesg%wParam

return

2554

63 Intel® Fortran Compiler User and Reference Guides

See Also
• C to D
• DLGMODELESS

Building Applications: Using a Modeless Dialog Box

DLGMODAL, DLGMODALWITHPARENT (W*32, W*64)
Dialog Functions: Display a dialog box and
process user control selections made within the
box.

Module

USE IFLOGM

Syntax

result = DLGMODAL (dlg)

result = DLGMODAL (dlg, hwndParent)

(Input) Derived type dialog. Contains dialog box parameters.
The components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the
user.

dlg

(Input) Integer. Specifies the parent window for the dialog box.
If omitted, the value is determined in this order:

hwndParent

1. If DLGMODAL is called from the callback of a modal or modeless
dialog box, then that dialog box is the parent window.

2. If it is a QuickWin or Standard Graphics application, then the
frame window is the parent window.

3. The Windows* desktop window is the parent window.

Results

The result type is INTEGER(4). By default, if successful, it returns the identifier of the control
that caused the dialog to exit; otherwise, it returns -1. The return value can be changed with
the DLGSETRETURN subroutine.

2555

63

During execution, DLGMODAL displays a dialog box and then waits for user control selections.
When a control selection is made, the callback routine, if any, of the selected control (set with
DLGSETSUB) is called.

The dialog remains active until an exit control is executed: either the default exit associated
with the OK and Cancel buttons, or DLGEXIT within your own control callbacks. DLGMODAL
does not return a value until the dialog box is exited.

The default return value for DLGMODAL is the identifier of the control that caused it to exit (for
example, IDOK for the OK button and IDCANCEL for the Cancel button). You can specify your
own return value with DLGSETRETURN from within one of your dialog control callback routines.
You should not specify -1 as your return value, because this is the error value DLGMODAL
returns if it cannot open the dialog.

Use DLGMODALWITHPARENT when you want the parent window to be other than the default
value (see argument hwndParent above). In particular, in an SDI or MDI Windows application,
you may want the parent window to be the main application window. The parent window is
disabled for user input while the modal dialog box is displayed.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFLOGM

INCLUDE "MYDLG.FD"

INTEGER return

TYPE (DIALOG) mydialog

...

return = DLGMODAL (mydialog)

...

See Also
• C to D
• DLGSETRETURN
• DLGSETSUB
• DLGINIT
• DLGEXIT

2556

63 Intel® Fortran Compiler User and Reference Guides

Building Applications: Dialog Callback Routines

Building Applications: Initializing and Activating the Dialog Box

Building Applications: Setting Return Values and Exiting

DLGMODELESS (W*32, W*64)
Dialog Function: Displays a modeless dialog box.

Module

USE IFLOGM

Syntax

result = DLGMODELESS (dlg[,nCmdShow,hwndParent])

(Input) Derived type dialog. Contains dialog box parameters.
The components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the

dlg

user. The variable passed to this function must remain in memory
for the duration of the dialog box, that is from the DLGINIT call
through the DLGUNINIT call.
The variable can be declared as global data in a module, as a
variable with the STATIC attribute, or in a calling procedure that
is active for the duration of the dialog box. It must not be an
AUTOMATIC variable in the procedure that calls DLGMODELESS.

(Input) Integer. Specifies how the dialog box is to be shown. It
must be one of the following values:

nCmdShow

DescriptionValue

Hides the dialog box.SW_HIDE

Minimizes the dialog box.SW_MINIMIZE

Activates and displays the
dialog box. If the dialog box is
minimized or maximized, the
Windows system restores it to
its original size and position.

SW_RESTORE

2557

63

DescriptionValue

Activates the dialog box and
displays it in its current size
and position.

SW_SHOW

Activates the dialog box and
displays it as a maximized
window.

SW_SHOWMAXIMIZED

Activates the dialog box and
displays it as an icon.

SW_SHOWMINIMIZED

Displays the dialog box as an
icon. The window that is
currently active remains
active.

SW_SHOWMINNOACTIVE

Displays the dialog box in its
current state. The window that
is currently active remains
active.

SW_SHOWNA

Displays the dialog box in its
most recent size and position.
The window that is currently
active remains active.

SW_SHOWNOACTIVATE

Activates and displays the
dialog box. If the dialog box is
minimized or maximized, the
Windows system restores it to
its original size and position.

SW_SHOWNORMAL

The default value is SW_SHOWNORMAL.

(Input) Integer. Specifies the parent window for the dialog box.
The default value is determined in this order:

nCmdShow

1. If DLGMODELESS is called from a callback of a modeless dialog
box, then that dialog box is the parent window.

2558

63 Intel® Fortran Compiler User and Reference Guides

2. The Windows desktop window is the parent window.

Results

The result type is LOGICAL(4). The value is .TRUE. if the function successfully displays the
dialog box. Otherwise the result is .FALSE..

During execution, DLGMODELESS displays a modeless dialog box and returns control to the
calling application. The dialog box remains active until DLGEXIT is called, either explicitly or as
the result of the invocation of a default button callback.

DLGMODELESS is typically used in a Windows application. The application must contain a
message loop that processes Windows messages. The message loop must call
DLGISDLGMESSAGE for each message. See the example below in the Example section. Multiple
modeless dialog boxes can be displayed at the same time. A modal dialog box can be displayed
from a modeless dialog box by calling DLGMODAL from a modeless dialog callback. However,
DLGMODELESS cannot be called from a modal dialog box callback.

DLGMODELESS also can be used in a Console, DLL, or LIB project. However, the requirements
remain that the application must contain a message loop and must call DLGISDLGMESSAGE
for each message. For an example of calling DLGMODELESS in a DLL project, see the Dllprgrs
sample in the ...\SAMPLES\DIALOGfolder.

Use the DLG_INIT callback with DLGSETSUB to perform processing immediately after the dialog
box is created and before it is displayed, and to perform processing immediately before the
dialog box is destroyed.

Compatibility

WINDOWS CONSOLE DLL LIB

2559

63

Example
use IFLOGM

include 'resource.fd'

type (DIALOG) dlg

type (T_MSG) mesg

integer*4 ret

logical*4 lret

...

! Create the main dialog box and set up the controls and callbacks

lret = DlgInit(IDD_THERM_DIALOG, dlg)

lret = DlgSetSub(dlg, IDD_THERM_DIALOG, ThermSub)

...

lret = DlgModeless(dlg, nCmdShow)

...

! Read and process messsages

do while(GetMessage (mesg, NULL, 0, 0))

! Note that DlgIsDlgMessage must be called in order to give

! the dialog box first chance at the message.

if (DlgIsDlgMessage(mesg) .EQV. .FALSE.) then

lret = TranslateMessage(mesg)

ret = DispatchMessage(mesg)

end if

end do

! Cleanup dialog box memory and exit the application

call DlgUninit(dlg)

WinMain = mesg%wParam

return

2560

63 Intel® Fortran Compiler User and Reference Guides

See Also
• C to D
• DLGSETSUB
• DLGINIT
• DLGEXIT
• DLGISDLGMESSAGE

Building Applications: Using a Modeless Dialog Box

DLGSENDCTRLMESSAGE (W*32, W*64)
Dialog Function: Sends a Windows message to
a dialog box control.

Module

USE IFLOGM

Syntax

result = DLGSENDCTRLMESSAGE (dlg,controlid,msg,wparam,lparam)

(Input) Derived type dialog. Contains dialog box parameters.
The components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the
user.

dlg

(Input) Integer. Specifies the identifier of the control within the
dialog box. Can be either the symbolic name for the control or the
identifier number, both listed in the Include file (with extension
.FD).

controlid

(Input) Integer. Derived type T_MSG. Specifies the message to be
sent.

msg

(Input) Integer. Specifies additional message specific information.wparam

(Input) Integer. Specifies additional message specific information.lparam

Results

The result type is INTEGER(4). The value specifies the result of the message processing and
depends upon the message sent.

The dialog box must be currently active by a call to DLGMODAL or DLGMODELESS. This function
does not return until the message has been processed by the control.

2561

63

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
use IFLOGM

include 'resource.fd'

type (dialog) dlg

integer callbacktype

integer cref

integer iret

if (callbacktype == dlg_init) then

! Change the color of the Progress bar to red

! NOTE: The following message succeeds only if Internet Explorer 4.0

! or later is installed

cref = Z'FF' ! Red

iret = DlgSendCtrlMessage(dlg, IDC_PROGRESS1, PBM_SETBARCOLOR, 0, cref)

endif

See Also
• C to D
• DLGINIT
• DLGSETSUB
• DLGMODAL
• DLGMODELESS

DLGSET, DLGSETINT, DLGSETLOG, DLGSETCHAR (W*32, W*64)
Dialog Functions: Set the values of dialog control
variables.

Module

USE IFLOGM

2562

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = DLGSET (dlg,controlid,value[,index])

result = DLGSETINT (dlg,controlid,value[,index])

result = DLGSETLOG (dlg,controlid,value[,index])

result = DLGSETCHAR (dlg,controlid,value[,index])

(Input) Derived type dialog. Contains dialog box parameters.
The components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the
user.

dlg

(Input) Integer. Specifies the identifier of a control within the dialog
box. Can be either the symbolic name for the control or the
identifier number, both listed in the Include file (with extension
.FD).

controlid

(Input) Integer, logical, or character. The value of the control's
variable.

value

(Input; optional) Integer. Specifies the control variable whose
value is set. Necessary if the control has more than one variable
of the same data type and you do not want to set the value of the
default for that type.

index

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, the result is .FALSE..

Use the DLGSET functions to set the values of variables associated with your dialog box controls.
Each control has at least one of the integer, logical, or character variables associated with it,
but not necessarily all. The control variables are listed in the table in Building Applications:
Control Indexes. The types of controls they are associated with are listed in the table in Building
Applications: Available Indexes for Each Dialog Control.

You can use DLGSET to set any control variable. You can also use DLGSETINT to set an integer
variable, or DLGSETLOG and DLGSETCHAR to set logical and character values, respectively. If
you use DLGSET, you do not have to worry about matching the function to the variable type.
If you use the wrong function type for a variable or try to set a variable type that is not available,
the DLGSET functions return .FALSE..

2563

63

Calling DLGSET does not cause a callback routine to be called for the changing value of a control.
In particular, when inside a callback, performing a DLGSET on a control does not cause the
associated callback for that control to be called. Callbacks are invoked automatically only by
user action on the controls in the dialog box. If the callback routine needs to be called, you can
call it manually after the DLGSET is executed.

If two or more controls have the same controlid, you cannot use these controls in a DLGSET
operation. In this case the function returns .FALSE..

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFLOGM

INCLUDE "DLGRADAR.FD"

TYPE (DIALOG) dlg

LOGICAL retlog

...

retlog = DLGSET (dlg, IDC_SCROLLBAR1, 400, dlg_range)

retlog = DLGSET (dlg, IDC_CHECKBOX1, .FALSE., dlg_status)

retlog = DLGSET (dlg, IDC_RADIOBUTTON1, "Hot Button", dlg_title)

...

See Also
• C to D
• DLGSETSUB
• DLGGET

Building Applications: Using Dialogs for Applications Control Overview

Building Applications: Dialog Routines

Building Applications: Using Dialog Controls Overview

Building Applications: Specifying Control Indexes

Building Applications: Using Check Boxes and Radio Buttons

Building Applications: Using Edit Boxes

Building Applications: Using Scroll Bars

2564

63 Intel® Fortran Compiler User and Reference Guides

DLGSETCTRLEVENTHANDLER (W*32, W*64)
Dialog Function: Assigns user-written event
handlers to ActiveX controls in a dialog box.

Module

USE IFLOGM

Syntax

result = DLGSETCTRLEVENTHANDLER (dlg,controlid,handler,dispid[,iid])

(Input) Derived type dialog. Contains dialog box parameters.
The components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the
user.

dlg

(Input) Integer. Specifies the identifier of a control within the dialog
box. Can be the symbolic name for the control or the identifier
number, both listed in the include (with extension .FD) file.

controlid

(Input) Name of the routine to be called when the event occurs.
It must be declared EXTERNAL.

handler

(Input) Integer. Specifies the member id of the method in the
event interface that identifies the event.

dispid

(Input; optional) Derived type GUID, which is defined in the
IFWINTY module. Specifies the interface identifier of the source
(event) interface. If omitted, the default source interface of the
ActiveX control is used.

iid

Results

The result type is INTEGER(4). The result is an HRESULT describing the status of the operation.

When the ActiveX control event occurs, the handler associated with the event is called. You
call DLGSETCTRLEVENTHANDLER to specify the handler to be called.

The events supported by an ActiveX control and the interfaces of the handlers are determined
by the ActiveX control.

You can find this information in one of the following ways:

• By reading the documentation of the ActiveX control.

2565

63

• By using a tool that lets you examine the type information of the ActiveX control;, such as
the OLE-COM Object Viewer.

• By using the Fortran Module Wizard to generate a module that contains Fortran interfaces
to the ActiveX control, and examining the generated module.

The handler that you define in your application must have the interface that the ActiveX control
expects, including calling convention and parameter passing mechanisms. Otherwise, your
application will likely crash in unexpected ways because of the application's stack getting
corrupted.

Note that an object is always the first parameter in an event handler. This object value is a
pointer to the control's source (event) interface, not the IDispatch pointer of the control. You
can use DLGGET with the DLG_IDISPATCH index to retrieve the control's IDispatch pointer.

For more information, see Building Applications: Using ActiveX Controls Overview.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFLOGM

ret = DlgSetCtrlEventHandler(&

dlg, &

IDC_ACTIVEMOVIECONTROL1, & ! Identifies the control

ReadyStateChange, & ! Name of the event handling routine

-609, & ! Member id of the ActiveMovie's

& ! control ReadyStateChange event.

IID_DActiveMovieEvents2) ! Identifer of the source (event)

! interface.

See Also
• C to D
• DLGINIT
• DLGGET
• DLGMODAL
• DLGMODELESS

2566

63 Intel® Fortran Compiler User and Reference Guides

• DLGSETSUB

DLGSETRETURN (W*32, W*64)
Dialog Subroutine: Sets the return value for the
DLGMODAL function from within a callback
subroutine.

Module

USE IFLOGM

Syntax

CALL DLGSETRETURN (dlg,retval)

(Input) Derived type dialog. Contains dialog box parameters.
The components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the
user.

dlg

(Input) Integer. Specifies the return value for DLGMODAL upon
exiting.

retval

DLGSETRETURN overrides the default return value with retval. You can set your own value
as a means of determining the condition under which the dialog box was closed. The default
return value for an error condition is -1, so you should not use -1 as your return value.

DLGSETRETURN should be called from within a callback routine, and is generally used with
DLGEXIT, which causes the dialog box to be exited from a control callback rather than the user
selecting the OK or Cancel button.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

2567

63

Example
SUBROUTINE SETRETSUB (dlg, button_id, callbacktype)

USE IFLOGM

INCLUDE "MYDLG.FD"

TYPE (DIALOG) dlg

LOGICAL is_checked, retlog

INTEGER return, button_id, callbacktype

...

retlog = DLGGET(dlg, IDC_CHECKBOX4, is_checked, dlg_state)

IF (is_checked) THEN

return = 999

ELSE

return = -999

END IF

CALL DLGSETRETURN (dlg, return)

CALL DLGEXIT (dlg)

END SUBROUTINE SETRETSUB

See Also
• C to D
• DLGEXIT
• DLGMODAL

Building Applications: Setting Return Values and Exiting

DLGSETSUB (W*32, W*64)
Dialog Function: Assigns your own callback
subroutines to dialog controls and to the dialog
box.

Module

USE IFLOGM

2568

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = DLGSETSUB (dlg,controlid,value[,index])

(Input) Derived type dialog. Contains dialog box parameters.
The components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the
user.

dlg

(Input) Integer. Specifies the identifier of a control within the dialog
box. Can be the symbolic name for the control or the identifier
number, both listed in the include (with extension .FD) file, or it
can be the identifier of the dialog box.

controlid

(Input) EXTERNAL. Name of the routine to be called when the
callback event occurs.

value

(Input; optional) Integer. Specifies which callback routine is
executed when the callback event occurs. Necessary if the control
has more than one callback routine.

index

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

When a callback event occurs (for example, when you select a check box), the callback routine
associated with that callback event is called. You use DLGSETSUB to specify the subroutine to
be called. All callback routines should have the following interface:

SUBROUTINE callbackname(dlg, control_id, callbacktype)

!DEC$ ATTRIBUTES DEFAULT :: callbackname

Is the name of the callback routine.callbackname

Refers to the dialog box and allows the callback to change values
of the dialog controls.

dlg

Is the name of the control that caused the callback.control_id

(Input; optional) Integer. Specifies which callback routine is
executed when the callback event occurs. Necessary if the control
has more than one callback routine.

callbacktype

2569

63

The control_id and callbacktype parameters let you write a single subroutine that can be
used with multiple callbacks from more than one control. Typically, you do this for controls
comprising a logical group. You can also associate more than one callback routine with the
same control, but you must use then use index parameter to indicate which callback routine
to use.

The control_id can also be the identifier of the dialog box. The dialog box supports two
callbacktype s, DLG_INIT and DLG_SIZECHANGE. The DLG_INIT callback is executed
immediately after the dialog box is created with callbacktypeDLG_INIT, and immediately
before the dialog box is destroyed with callbacktypeDLG_DESTROY. DLG_SIZECHANGE is
called when the size of a dialog is changed.

Callback routines for a control are called after the value of the control has been updated based
on the user's action.

If two or more controls have the same controlid, you cannot use these controls in a
DLGSETSUB operation. In this case, the function returns .FALSE..

For more information, see Building Applications: Dialog Callback Routines.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

2570

63 Intel® Fortran Compiler User and Reference Guides

Example
PROGRAM DLGPROG

USE IFLOGM

INCLUDE "MYDLG.FD"

TYPE (dialog) mydialog

LOGICAL retlog

INTEGER return

EXTERNAL RADIOSUB

retlog = DLGINIT(IDD_mydlg, dlg)

retlog = DLGSETSUB (mydialog, IDC_RADIO_BUTTON1, RADIOSUB)

retlog = DLGSETSUB (mydialog, IDC_RADIO_BUTTON2, RADIOSUB)

return = DLGMODAL(dlg)

END

SUBROUTINE RADIOSUB(dlg, id, callbacktype)

!DEC$ ATTRIBUTES DEFAULT :: callbackname

USE IFLOGM

TYPE (dialog) dlg

INTEGER id, callbacktype

INCLUDE 'MYDLG.FD'

CHARACTER(256) text

INTEGER cel, far, retint

LOGICAL retlog

SELECT CASE (id)

CASE (IDC_RADIO_BUTTON1)

! Radio button 1 selected by user so

! change text accordingly

text = 'Statistics Package A'

retlog = DLGSET(dlg, IDC_STATICTEXT1, text)

2571

63

CASE (IDC_RADIO_BUTTON2)

! Radio button 2 selected by user so

! change text accordingly

text = 'Statistics Package B'

retlog = DLGSET(dlg, IDC_STATICTEXT1, text)

END SELECT

END SUBROUTINE RADIOSUB

See Also
• C to D
• DLGSET
• DLGGET

Building Applications: Initializing and Activating the Dialog Box

DLGSETTITLE (W*32, W*64)
Dialog Subroutine: Sets the title of a dialog box.

Module

USE IFLOGM

Syntax

CALL DLGSETTITLE (dlg,title)

(Input) Derived type dialog. Contains dialog box parameters.
The components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the
user.

dlg

(Input) Character*(*). Specifies text to be the title of the dialog
box.

title

Use this routine when you want to specify the title for a dialog box.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

2572

63 Intel® Fortran Compiler User and Reference Guides

Example
USE IFLOGM

INCLUDE "MYDLG.FD"

TYPE (DIALOG) mydialog

LOGICAL retlog

...

retlog = DLGINIT(IDD_mydlg, mydialog)

...

CALL DLGSETTITLE(mydialog, "New Title")

...

See Also
• C to D
• DLGINIT
• DLGMODAL
• DLGMODELESS

DLGUNINIT (W*32, W*64)
Dialog Subroutine: Deallocates memory
associated with an initialized dialog.

Module

USE IFLOGM

Syntax

CALL DLGUNINIT (dlg)

(Input) Derived type dialog. Contains dialog box parameters.
The components of the type dialog are defined with the PRIVATE
attribute, and cannot be changed or individually accessed by the
user.

dlg

2573

63

You should call DLGUNINIT when a dialog that was successfully initialized by DLGINIT is no
longer needed. DLGUNINIT should only be called on a dialog initialized with DLGINIT. If it is
called on an uninitialized dialog or one that has already been deallocated with DLGUNINIT, the
result is undefined.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFLOGM

INCLUDE "MYDLG.FD"

TYPE (DIALOG) mydialog

LOGICAL retlog

...

retlog = DLGINIT(IDD_mydlg, mydialog)

...

CALL DLGUNINIT (mydialog)

END

See Also
• C to D
• DLGINIT
• DLGMODAL
• DLGMODELESS
• DLGEXIT

Building Applications: Initializing and Activating the Dialog Box

DNUM
Elemental Intrinsic Function (Specific):
Converts a character string to a REAL(8) value.
This function cannot be passed as an actual
argument.

Syntax

result = DNUM (i)

2574

63 Intel® Fortran Compiler User and Reference Guides

(Input) Must be of type character.i

Results

The result type is REAL(8). The result value is the double-precision real value represented by
the character string i.

Example

DNUM ("3.14159") has the value 3.14159 of type REAL(8).

The following sets x to 311.0:

CHARACTER(3) i

DOUBLE PRECISION x

i = "311"

x = DNUM(i)

DO Statement
Statement: Marks the beginning of a DO
construct. The DO construct controls the repeated
execution of a block of statements or constructs.
(This repeated execution is called a loop.)

Syntax

A DO construct takes one of the following forms:

Block Form:

[name:] DO [label[,]] [loop-control]

block

[label] term-stmt

Nonblock Form:

DO label [,] [loop-control]

block

[label] ex-term-stmt

(Optional) Is the name of the DO construct.name

(Optional) Is a statement label identifying the terminal statement.label

2575

63

Is a DO iteration (see Iteration Loop Control) or a DO WHILE
statement.

loop-control

Is a sequence of zero or more statements or constructs.block

Is the terminal statement for the block form of the construct.term-stmt

Is the terminal statement for the nonblock form of the construct.ex-term-stmt

Description

The terminal statement (term-stmt) for a block DO construct is an END DO or CONTINUE
statement. If the block DO statement contains a label, the terminal statement must be identified
with the same label. If no label appears, the terminal statement must be an END DO statement.

If a construct name is specified in a block DO statement, the same name must appear in the
terminal END DO statement. If no construct name is specified in the block DO statement, no
name can appear in the terminal END DO statement.

The terminal statement (ex-term-stmt) for a nonblock DO construct is an executable statement
(or construct) that is identified by the label specified in the nonblock DO statement. A nonblock
DO construct can share a terminal statement with another nonblock DO construct. A block DO
construct cannot share a terminal statement.

The following cannot be terminal statements for nonblock DO constructs:

• CONTINUE (allowed if it is a shared terminal statement)

• CYCLE

• END (for a program or subprogram)

• EXIT

• GO TO (unconditional or assigned)

• Arithmetic IF

• RETURN

• STOP

The nonblock DO construct is an obsolescent feature in Fortran 95 and Fortran 90.

2576

63 Intel® Fortran Compiler User and Reference Guides

Example

The following example shows a simple block DO construct (contains no iteration count or DO
WHILE statement):

DO

READ *, N

IF (N == 0) STOP

CALL SUBN

END DO

The DO block executes repeatedly until the value of zero is read. Then the DO construct
terminates.

The following example shows a named block DO construct:

LOOP_1: DO I = 1, N

A(I) = C * B(I)

END DO LOOP_1

The following example shows a nonblock DO construct with a shared terminal statement:

DO 20 I = 1, N

DO 20 J = 1 + I, N

20 RESULT(I,J) = 1.0 / REAL(I + J)

2577

63

The following two program fragments are also examples of DO statements:

C Initialize the even elements of a 20-element real array

C

DIMENSION array(20)

DO j = 2, 20, 2

array(j) = 12.0

END DO

C

C Perform a function 11 times

C

DO k = -30, -60, -3

int = j / 3

isb = -9 - k

array(isb) = MyFunc (int)

END DO

The following shows the final value of a DO variable (in this case 11):

DO j = 1, 10

WRITE (*, '(I5)') j

END DO

WRITE (*, '(I5)') j

See Also
• C to D
• CONTINUE
• CYCLE
• EXIT
• DO WHILE
• Execution Control
• DO Constructs

2578

63 Intel® Fortran Compiler User and Reference Guides

DO Directive
OpenMP* Fortran Compiler Directive: Specifies
that the iterations of the immediately following DO
loop must be executed in parallel.

Syntax

c$OMP DO [clause[[,] clause] ...]

do_loop

[c$OMP END DO [NOWAIT]]

Is one of the following: C (or c), !, or * (see Syntax Rules for
Compiler Directives).

c

Is one of the following:clause

• FIRSTPRIVATE (list)

• LASTPRIVATE (list)

• ORDERED

Must be used if ordered sections are contained in the dynamic
extent of the DO directive. For more information about ordered
sections, see the ORDERED directive.

• PRIVATE (list)

• REDUCTION (operator | intrinsic : list)

• SCHEDULE (type[, chunk])

Specifies how iterations of the DO loop are divided among the
threads of the team. chunk must be a scalar integer expression.
The following four types are permitted, three of which allow
the optional parameter chunk:

EffectType

Divides iterations into
contiguous pieces by dividing
the number of iterations by

STATIC

the number of threads in the

2579

63

EffectType

team. Each piece is then
dispatched to a thread before
loop execution begins.

If chunk is specified,
iterations are divided into
pieces of a size specified by
chunk. The pieces are
statically dispatched to
threads in the team in a
round-robin fashion in the
order of the thread number.

Can be used to get a set of
iterations dynamically. It
defaults to 1 unless chunk is
specified.

DYNAMIC

If chunk is specified, the
iterations are broken into
pieces of a size specified by
chunk. As each thread
finishes a piece of the
iteration space, it
dynamically gets the next set
of iterations.

Can be used to specify a
minimum number of
iterations. It defaults to 1
unless chunk is specified.

GUIDED

If chunk is specified, the
chunksize is reduced
exponentially with each
succeeding dispatch. The
chunk specifies the minimum
number of iterations to
dispatch each time. If there

2580

63 Intel® Fortran Compiler User and Reference Guides

EffectType

are less than chunk iterations
remaining, the rest are
dispatched.

Delegates the scheduling
decision until compile time or
run time. The schedule is

AUTO1

processor dependent. The
programmer gives the
implementation the freedom
to choose any possible
mapping of iterations to
threads in the team.

Defers the scheduling
decision until run time. You
can choose a schedule type

RUNTIME1

and chunksize at run time by
using the environment
variable OMP_SCHEDULE.

1No chunk is permitted for this type.

If the SCHEDULE clause is not used, the default schedule type
is STATIC.

Is a DO iteration (an iterative DO loop). It cannot be a DO WHILE
or a DO loop without loop control. The DO loop iteration variable
must be of type integer.

do_loop

The iterations of the DO loop are distributed across the existing
team of threads. The values of the loop control parameters of the
DO loop associated with a DO directive must be the same for all
the threads in the team.
You cannot branch out of a DO loop associated with a DO directive.

If used, the END DO directive must appear immediately after the end of the loop. If you do not
specify an END DO directive, an END DO directive is assumed at the end of the DO loop.

2581

63

If you specify NOWAIT in the END DO directive, threads do not synchronize at the end of the
parallel loop. Threads that finish early proceed straight to the instruction following the loop
without waiting for the other members of the team to finish the DO directive.

Parallel DO loop control variables are block-level entities within the DO loop. If the loop control
variable also appears in the LASTPRIVATE list of the parallel DO, it is copied out to a variable
of the same name in the enclosing PARALLEL region. The variable in the enclosing PARALLEL
region must be SHARED if it is specified in the LASTPRIVATE list of a DO directive.

Only a single SCHEDULE clause and ORDERED clause can appear in a DO directive.

DO directives must be encountered by all threads in a team or by none at all. It must also be
encountered in the same order by all threads in a team.

Example

In the following example, the loop iteration variable is private by default, and it is not necessary
to explicitly declare it. The END DO directive is optional:

c$OMP PARALLEL

c$OMP DO

DO I=1,N

B(I) = (A(I) + A(I-1)) / 2.0

END DO

c$OMP END DO

c$OMP END PARALLEL

2582

63 Intel® Fortran Compiler User and Reference Guides

If there are multiple independent loops within a parallel region, you can use the NOWAIT option
to avoid the implied BARRIER at the end of the DO directive, as follows:

c$OMP PARALLEL

c$OMP DO

DO I=2,N

B(I) = (A(I) + A(I-1)) / 2.0

END DO

c$OMP END DO NOWAIT

c$OMP DO

DO I=1,M

Y(I) = SQRT(Z(I))

END DO

c$OMP END DO NOWAIT

c$OMP END PARALLEL

Correct execution sometimes depends on the value that the last iteration of a loop assigns to
a variable. Such programs must list all such variables as arguments to a LASTPRIVATE clause
so that the values of the variables are the same as when the loop is executed sequentially, as
follows:

c$OMP PARALLEL

c$OMP DO LASTPRIVATE(I)

DO I=1,N

A(I) = B(I) + C(I)

END DO

c$OMP END PARALLEL

CALL REVERSE(I)

In this case, the value of I at the end of the parallel region equals N+1, as in the sequential
case.

2583

63

Ordered sections are useful for sequentially ordering the output from work that is done in
parallel. Assuming that a reentrant I/O library exists, the following program prints out the
indexes in sequential order:

c$OMP DO ORDERED SCHEDULE(DYNAMIC)

DO I=LB,UB,ST

CALL WORK(I)

END DO

...

SUBROUTINE WORK(K)

c$OMP ORDERED

WRITE(*,*) K

c$OMP END ORDERED

See Also
• C to D
• OpenMP Fortran Compiler Directives
• Rules for General Directives that Affect DO Loops

DO WHILE
Statement: Executes the range of a DO construct
while a specified condition remains true.

Syntax

DO [label[,]] WHILE (expr)

(Optional) Is a label specifying an executable statement in the
same program unit.

label

Is a scalar logical (test) expression enclosed in parentheses.expr

Description

Before each execution of the DO range, the logical expression is evaluated. If it is true, the
statements in the body of the loop are executed. If it is false, the DO construct terminates and
control transfers to the statement following the loop.

If no label appears in a DO WHILE statement, the DO WHILE loop must be terminated with an
END DO statement.

2584

63 Intel® Fortran Compiler User and Reference Guides

You can transfer control out of a DO WHILE loop but not into a loop from elsewhere in the
program.

Example

The following example shows a DO WHILE statement:

CHARACTER*132 LINE

...

I = 1

DO WHILE (LINE(I:I) .EQ. ' ')

I = I + 1

END DO

The following examples show required and optional END DO statements:

Required Optional

DO WHILE (I .GT. J) DO 10 WHILE (I .GT. J)

ARRAY(I,J) = 1.0 ARRAY(I,J) = 1.0

I = I - 1 I = I - 1

END DO 10 END DO

The following shows another example:

CHARACTER(1) input

input = ' '

DO WHILE ((input .NE. 'n') .AND. (input .NE. 'y'))

WRITE (*, '(A)') 'Enter y or n: '

READ (*, '(A)') input

END DO

See Also
• C to D
• CONTINUE
• CYCLE
• EXIT
• DO

2585

63

• Execution Control
• DO Constructs

DOT_PRODUCT
Transformational Intrinsic Function (Generic):
Performs dot-product multiplication of numeric or
logical vectors (rank-one arrays).

Syntax

result = DOT_PRODUCT (vector_a,vector_b)

(Input) Must be a rank-one array of numeric (integer, real, or
complex) or logical type.

vector_a

(Input) Must be a rank-one array of numeric type if vector_a is
of numeric type, or of logical type if vector_a is of logical type.
It must be the same size as vector_a.

vector_b

Results

The result is a scalar whose type depends on the types of vector_a and vector_b.

If vector_a is of type integer or real, the result value is SUM (vector_a* vector_b).

If vector_a is of type complex, the result value is SUM (CONJG (vector_a)* vector_b).

If vector_a is of type logical, the result has the value ANY (vector_a.AND. vector_b).

If either rank-one array has size zero, the result is zero if the array is of numeric type, and
false if the array is of logical type.

Example

DOT_PRODUCT ((/1, 2, 3/), (/3, 4, 5/)) has the value 26, calculated as follows:

((1 x 3) + (2 x 4) + (3 x 5)) = 26

DOT_PRODUCT ((/ (1.0, 2.0), (2.0, 3.0) /), (/ (1.0, 1.0), (1.0, 4.0) /)) has the value (17.0,
4.0).

DOT_PRODUCT ((/ .TRUE., .FALSE. /), (/ .FALSE., .TRUE. /)) has the value false.

The following shows another example:

I = DOT_PRODUCT((/1,2,3/), (/4,5,6/)) ! returns

! the value 32

2586

63 Intel® Fortran Compiler User and Reference Guides

See Also
• C to D
• PRODUCT
• MATMUL
• TRANSPOSE

DOUBLE COMPLEX
Statement: Specifies the DOUBLE COMPLEX data
type.

Syntax

DOUBLE COMPLEX

A COMPLEX(8) or DOUBLE COMPLEX constant is a pair of constants that represents a complex
number. One of the pair must be a double-precision real constant, the other can be an integer,
single-precision real, or double-precision real constant.

A COMPLEX(8) or DOUBLE COMPLEX constant occupies 16 bytes of memory and is interpreted
as a complex number.

The rules for DOUBLE PRECISION (REAL(8)) constants also apply to the double precision portion
of COMPLEX(KIND=8) or DOUBLE COMPLEX constants. (For more information, see REAL and
DOUBLE PRECISION.)

The DOUBLE PRECISION constants in a COMPLEX(8) or DOUBLE COMPLEX constant have IEEE*
T_floating format.

Example
DOUBLE COMPLEX vector, arrays(7,29)

DOUBLE COMPLEX pi, pi2 /3.141592654,6.283185308/

The following examples demonstrate valid and invalid COMPLEX(KIND=8) or DOUBLE COMPLEX
constants:

Valid

(547.3E0_8,-1.44_8)

(1.7039E0,-1.7039D0)

(+12739D3,0.D0)

2587

63

Second constant missing.(1.23D0,)

Hollerith constants not allowed.(1D1,2H12)

Neither constant is DOUBLE PRECISION; this
is a valid single-precision real constant.

(1,1.2)

See Also
• C to D
• General Rules for Complex Constants
• COMPLEX Statement
• Complex Data Types
• DOUBLE PRECISION
• REAL

DOUBLE PRECISION
Statement: Specifies the DOUBLE PRECISION
data type.

Syntax

DOUBLE PRECISION

A REAL(8) or DOUBLE PRECISION constant has more than twice the accuracy of a REAL(4)
number, and greater range.

A REAL(8) or DOUBLE PRECISION constant occupies eight bytes of memory. The number of
digits that precede the exponent is unlimited, but typically only the leftmost 15 digits are
significant.

IEEE* T_floating format is used.

For more information, see General Rules for Real Constants.

Example
DOUBLE PRECISION varnam

DOUBLE PRECISION,PRIVATE :: zz

Table 789: Valid REAL(8) or DOUBLE PRECISION constants

123456789D+5

2588

63 Intel® Fortran Compiler User and Reference Guides

123456789E+5_8

+2.7843D00

-.522D-12

2E200_8

2.3_8

3.4E7_8

Table 790: Invalid REAL(8) or DOUBLE PRECISION constants

2 is not a valid kind type for reals.-.25D0_2

No D exponent designator is present; this is
a valid single-precision constant.

+2.7182812846182

Too large for any double-precision format.123456789.D400

Too small for any double-precision format.123456789.D-400

See Also
• C to D
• REAL Statement
• REAL(8) or DOUBLE PRECISION Constants
• Data Types, Constants, and Variables
• Real Data Types

DPROD
Elemental Intrinsic Function (Specific):
Produces a higher precision product. This is a
specific function that has no generic function
associated with it. It cannot be passed as an actual
argument.

Syntax

result = DPROD (x, y)

2589

63

(Input) Must be of type REAL(4) or REAL(8).x

(Input) Must have the same type and kind parameters as x.y

Results

If x and y are of type REAL(4), the result type is double-precision real (REAL(8) or REAL*8).
If x and y are of type REAL(8), the result type is REAL(16). The result value is equal to x* y.

The setting of compiler options specifying real size can affect this function.

Example

DPROD (2.0, -4.0) has the value -8.00D0.

DPROD (5.0D0, 3.0D0) has the value 15.00Q0.

The following shows another example:

REAL(4) e

REAL(8) d

e = 123456.7

d = 123456.7D0

! DPROD (e,e) returns 15241557546.4944

! DPROD (d,d) returns 15241556774.8899992813874268904328

DRAND, DRANDM
Portability Functions: Return double-precision
random numbers in the range 0.0 through 1.0.

Module

USE IFPORT

Syntax

result = DRAND (iflag)

result = DRANDM (iflag)

(Input) INTEGER(4). Controls the way the random number is
selected.

iflag

2590

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is REAL(8). Return values are:

Selection processValue of iflag

The generator is restarted and the first
random value is selected.

1

The next random number in the sequence is
selected.

0

The generator is reseeded using iflag, then
restarted, and the first random value is
selected.

Otherwise

There is no difference between DRAND and DRANDM. Both functions are included to insure
portability of existing code that references one or both of them.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

2591

63

Example
USE IFPORT

REAL(8) num

INTEGER(4) f

f=1

CALL print_rand

f=0

CALL print_rand

f=22

CALL print_rand

CONTAINS

SUBROUTINE print_rand

num = drand(f)

print *, 'f= ',f,':',num

END SUBROUTINE

END

See Also
• C to D
• RANDOM_NUMBER
• RANDOM_SEED

DRANSET
Portability Subroutine: Sets the seed for the
random number generator.

Module

USE IFPORT

Syntax

CALL DRANSET (seed)

2592

63 Intel® Fortran Compiler User and Reference Guides

(Input) REAL(8). The reset value for the seed.seed

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• C to D

RANGET

DREAL
Elemental Intrinsic Function (Specific):
Converts the real part of a double complex
argument to double-precision type. This is a
specific function that has no generic function
associated with it. It cannot be passed as an actual
argument.

Syntax

result = DREAL (a)

(Input) Must be of type double complex (COMPLEX(8) or
COMPLEX*16).

a

Results

The result type is double precision real (REAL(8) or REAL*8).

Example

DREAL ((2.0d0, 3.0d0)) has the value 2.0d0.

See Also
• C to D
• REAL

2593

63

DSHIFTL
Elemental Intrinsic Function (Specific): Selects
the left 64 bits after shifting a 128-bit integer value
to the left. This function cannot be passed as an
actual argument.

Syntax

result = DSHIFTL (ileft,iright,ishift)

(Input) INTEGER(8).ileft

(Input) INTEGER(8).iright

(Input) INTEGER(8). Must be nonnegative and less than or equal
to 64. This is the shift count.

ishift

Results

The result type is INTEGER(8). The result value is the 64-bit value starting at bit 128 - ishift
of the 128-bit concatenation of the values of ileft and iright.

Example

Consider the following:

INTEGER(8) ILEFT / Z'111122221111222' /

INTEGER(8) IRIGHT / Z'FFFFFFFFFFFFF' /

PRINT *, DSHIFTL (ILEFT, IRIGHT, 16_8) ! prints 1306643199093243919

DSHIFTR
Elemental Intrinsic Function (Specific): Selects
the left 64 bits after shifting a 128-bit integer value
to the right. This function cannot be passed as an
actual argument.

Syntax

result = DSHIFTR (ileft,iright,ishift)

(Input) INTEGER(8).ileft

(Input) INTEGER(8).iright

2594

63 Intel® Fortran Compiler User and Reference Guides

(Input) INTEGER(8). Must be nonnegative and less than or equal
to 64. This is the shift count.

ishift

Results

The result type is INTEGER(8). The result value is the 64-bit value starting at bit 64 + ishift
of the 128-bit concatenation of the values of ileft and iright.

Example

Consider the following:

INTEGER(8) ILEFT / Z'111122221111222' /

INTEGER(8) IRIGHT / Z'FFFFFFFFFFFFF' /

PRINT *, DSHIFTR (ILEFT, IRIGHT, 16_8) ! prints 1306606910610341887

DTIME
Portability Function: Returns the elapsed CPU
time since the start of program execution when
first called, and the elapsed execution time since
the last call to DTIME thereafter.

Module

USE IFPORT

Syntax

result = DTIME (tarray)

(Output) REAL(4). A rank one array with two elements:tarray

• tarray(1) - Elapsed user time, which is time spent executing
user code. This value includes time running protected Windows
subsystem code.

• tarray(2) - Elapsed system time, which is time spent executing
privileged code (code in the Windows Executive).

Results

The result type is REAL(4). The result is the total CPU time, which is the sum of tarray(1) and
tarray(2). If an error occurs, -1 is returned.

2595

63

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

REAL(4) I, TA(2)

I = DTIME(TA)

write(*,*) 'Program has been running for', I, 'seconds.'

write(*,*) ' This includes', TA(1), 'seconds of user time and', &

& TA(2), 'seconds of system time.'

See Also
• C to D
• DATE_AND_TIME
• CPU_TIME

E to F

ELEMENTAL
Keyword: Asserts that a user-defined procedure
is a restricted form of pure procedure. This is a
Fortran 95 feature.

Description

To specify an elemental procedure, use this keyword in a FUNCTION or SUBROUTINE statement.

An explicit interface must be visible to the caller of an ELEMENTAL procedure.

An elemental procedure can be passed an array, which is acted upon one element at a time.

For functions, the result must be scalar; it cannot have the POINTER or ALLOCATABLE attribute.

Dummy arguments have the following restrictions:

• They must be scalar.

• They cannot have the POINTER or ALLOCATABLE attribute.

2596

63 Intel® Fortran Compiler User and Reference Guides

• They (or their subobjects) cannot appear in a specification expression except as an argument
to one of the intrinsic functions BIT_SIZE, LEN, KIND, or the numeric inquiry functions.

• They cannot be *.

• They cannot be dummy procedures.

If the actual arguments are all scalar, the result is scalar. If the actual arguments are array
valued, the values of the elements (if any) of the result are the same as if the function or
subroutine had been applied separately, in any order, to corresponding elements of each array
actual argument.

Elemental procedures are pure procedures and all rules that apply to pure procedures also
apply to elemental procedures.

Example

Consider the following:

MIN (A, 0, B) ! A and B are arrays of shape (S, T)

In this case, the elemental reference to the MINintrinsic function is an array expression whose
elements have the following values:

MIN (A(I,J), 0, B(I,J)), I = 1, 2, ..., S, J = 1, 2, ..., T

See Also
• E to F
• FUNCTION
• SUBROUTINE
• Determining When Procedures Require Explicit Interfaces
• Optional Arguments

ELLIPSE, ELLIPSE_W (W*32, W*64)
Graphics Functions: Draw a circle or an ellipse
using the current graphics color.

Module

USE IFQWIN

Syntax

result = ELLIPSE (control,x1,y1,x2,y2)

result = ELLIPSE_W (control,wx1,wy1,wx2,wy2)

2597

63

(Input) INTEGER(2). Fill flag. Can be one of the following symbolic
constants:

control

• $GFILLINTERIOR - Fills the figure using the current color and
fill mask.

• $GBORDER - Does not fill the figure.

(Input) INTEGER(2). Viewport coordinates for upper-left corner of
bounding rectangle.

x1, y1

(Input) INTEGER(2). Viewport coordinates for lower-right corner
of bounding rectangle.

x2, y2

(Input) REAL(8). Window coordinates for upper-left corner of
bounding rectangle.

wx1, wy1

(Input) REAL(8). Window coordinates for lower-right corner of
bounding rectangle.

wx2, wy2

Results

The result type is INTEGER(2). The result is nonzero if successful; otherwise, 0. If the ellipse
is clipped or partially out of bounds, the ellipse is considered successfully drawn, and the return
is 1. If the ellipse is drawn completely out of bounds, the return is 0.

The border is drawn in the current color and line style.

When you use ELLIPSE, the center of the ellipse is the center of the bounding rectangle defined
by the viewport-coordinate points (x1, y1) and (x2, y2). When you use ELLIPSE_W, the center
of the ellipse is the center of the bounding rectangle defined by the window-coordinate points
(wx1, wy1) and (wx2, wy2). If the bounding-rectangle arguments define a point or a vertical
or horizontal line, no figure is drawn.

The control option given by $GFILLINTERIOR is equivalent to a subsequent call to the
FLOODFILLRGB function using the center of the ellipse as the start point and the current color
(set by SETCOLORRGB) as the boundary color.

NOTE. The ELLIPSE routine described here is a QuickWin routine. If you are trying to
use the Microsoft* Platform SDK version of the Ellipse routine by including the IFWIN
module, you need to specify the routine name as MSFWIN$Ellipse. For more information,
see Building Applications: Special Naming Convention for Certain QuickWin and Win32
Graphics Routines.

2598

63 Intel® Fortran Compiler User and Reference Guides

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example

This program draws the shape shown below.

! compile as QuickWin or Standard Graphics application

USE IFQWIN

INTEGER(2) dummy, x1, y1, x2, y2

x1 = 80; y1 = 50

x2 = 240; y2 = 150

dummy = ELLIPSE($GFILLINTERIOR, x1, y1, x2, y2)

END

See Also
• E to F
• ARC
• FLOODFILLRGB
• GRSTATUS
• LINETO
• PIE
• POLYGON
• RECTANGLE
• SETCOLORRGB
• SETFILLMASK

2599

63

ELSE Statement
See IF Construct.

ELSE Directive
See IF Directive Construct.

ELSEIF Directive
See IF Directive Construct.

ELSE IF
See IF Construct.

ELSE WHERE
Statement: Marks the beginning of an ELSE
WHERE block within a WHERE construct.

Syntax

[name:]WHERE (mask-expr1)

[where-body-stmt]...

[ELSE WHERE(mask-expr2) [name]

[where-body-stmt]...]

[ELSE WHERE[name]

[where-body-stmt]...]

END WHERE [name]

Is the name of the WHERE construct.name

Are logical array expressions (called mask expressions).mask-expr1, mask-expr2

Is one of the following:where-body-stmt

• An assignment statement of the form: array variable = array
expression.

The assignment can be a defined assignment only if the routine
implementing the defined assignment is elemental.

• A WHERE statement or construct

2600

63 Intel® Fortran Compiler User and Reference Guides

Description

Every assignment statement following the ELSE WHERE is executed as if it were a WHERE
statement with ".NOT. mask-expr1". If ELSE WHERE specifies "mask-expr2", it is executed as
"(.NOT. mask-expr1) .AND. mask-expr2" during the processing of the ELSE WHERE statement.

Example
WHERE (pressure <= 1.0)

pressure = pressure + inc_pressure

temp = temp - 5.0

ELSEWHERE

raining = .TRUE.

END WHERE

The variables temp, pressure, and raining are all arrays.

See Also
• E to F
• WHERE

ENCODE
Statement: Translates data from internal (binary)
form to character form. It is comparable to using
internal files in formatted sequential WRITE
statements.

Syntax

ENCODE (c,f,b[, IOSTAT=i-var] [, ERR=label]) [io-list]

Is a scalar integer expression. It is the number of characters to
be translated to internal form.

c

Is a format identifier. An error occurs if more than one record is
specified.

f

Is a scalar or array reference. If b is an array reference, its
elements are processed in the order of subscript progression.

b

b contains the characters to be translated to internal form.

2601

63

Is a scalar integer variable that is defined as a positive integer if
an error occurs and as zero if no error occurs (see I/O Status
Specifier).

i-var

Is the label of an executable statement that receives control if an
error occurs.

label

Is an I/O list. An I/O list is either an implied-DO list or a simple
list of variables (except for assumed-size arrays). The list contains
the data to be translated to character form.

io-list

The interaction between the format specifier and the I/O list is the
same as for a formatted I/O statement.

The number of characters that the ENCODE statement can translate depends on the data type
of b. For example, an INTEGER(2) array can contain two characters per element, so that the
maximum number of characters is twice the number of elements in that array.

The maximum number of characters a character variable or character array element can contain
is the length of the character variable or character array element.

The maximum number of characters a character array can contain is the length of each element
multiplied by the number of elements.

Example

Consider the following:

DIMENSION K(3)

CHARACTER*12 A,B

DATA A/'123456789012'/

ENCODE(12,100,A) K

100 FORMAT(3I4)

ENCODE(12,100,B) K(3), K(2), K(1)

The 12 characters are stored in array K:

K(1) = 1234

K(2) = 5678

K(3) = 9012

The ENCODE statement translates the values K(3), K(2), and K(1) to character form and stores
the characters in the character variable B.:

B = '901256781234'

2602

63 Intel® Fortran Compiler User and Reference Guides

See Also
• E to F
• READ
• WRITE
• DECODE

END
Statement: Marks the end of a program unit. It
takes one of the following forms:

Syntax

END [PROGRAM [program-name]]

END [FUNCTION [function-name]]

END [SUBROUTINE [subroutine-name]]

END [MODULE [module-name]]

END [BLOCK DATA [block-data-name]]

For internal procedures and module procedures, you must specify the FUNCTION and
SUBROUTINE keywords in the END statement; otherwise, the keywords are optional.

In main programs, function subprograms, and subroutine subprograms, END statements are
executable and can be branch target statements. If control reaches the END statement in these
program units, the following occurs:

• In a main program, execution of the program terminates.

• In a function or subroutine subprogram, a RETURN statement is implicitly executed.

The END statement cannot be continued in a program unit, and no other statement in the
program unit can have an initial line that appears to be the program unit END statement.

The END statements in a module or block data program unit are nonexecutable.

2603

63

Example
C An END statement must be the last statement in a program

C unit:

PROGRAM MyProg

WRITE (*, '("Hello, world!")')

END

C

C An example of a named subroutine

C

SUBROUTINE EXT1 (X,Y,Z)

Real, Dimension (100,100) :: X, Y, Z

END SUBROUTINE EXT1

See Also
• E to F
• Program Units and Procedures
• Branch Statements

END DO
Statement: Marks the end of a DO or DO WHILE
loop.

Syntax

END DO

Description

There must be a matching END DO statement for every DO or DO WHILE statement that does
not contain a label reference.

An END DO statement can terminate only one DO or DO WHILE statement. If you name the
DO or DO WHILE statement, the END DO statement can specify the same name.

2604

63 Intel® Fortran Compiler User and Reference Guides

Example

The following examples both produce the same output:

DO ivar = 1, 10

PRINT ivar

END DO

ivar = 0

do2: DO WHILE (ivar .LT. 10)

ivar = ivar + 1

PRINT ivar

END DO do2

See Also
• E to F
• DO
• DO WHILE
• CONTINUE

ENDIF Directive
See IF Directive Construct.

END IF
See IF Construct.

ENDFILE
Statement: For sequential files, writes an
end-of-file record to the file and positions the file
after this record (the terminal point). For direct
access files, truncates the file after the current
record.

Syntax

It can have either of the following forms:

ENDFILE ([UNIT=] io-unit[, ERR= label] [, IOSTAT=i-var])

ENDFILE io-unit

2605

63

(Input) Is an external unit specifier.io-unit

Is the label of the branch target statement that receives control
if an error occurs.

label

(Output) Is a scalar integer variable that is defined as a positive
integer if an error occurs and zero if no error occurs.

i-var

Description

If the unit specified in the ENDFILE statement is not open, the default file is opened for
unformatted output.

An end-of-file record can be written only to files with sequential organization that are accessed
as formatted-sequential or unformatted-segmented sequential files. An ENDFILE performed on
a direct access file always truncates the file.

End-of-file records should not be written in files that are read by programs written in a language
other than Fortran.

NOTE. If you use compiler option vms and an ENDFILE is performed on a sequential
unit, an actual one byte record containing a CTRL+Zis written to the file. If this option
is not specified, an internal ENDFILE flag is set and the file is truncated. The option does
not affect ENDFILE on relative files; such files are truncated.

If a parameter of the ENDFILE statement is an expression that calls a function, that function
must not cause an I/O statement or the EOF intrinsic functionto be executed, because
unpredictable results can occur.

Example

The following statement writes an end-of-file record to I/O unit 2:

ENDFILE 2

Suppose the following statement is specified:

ENDFILE (UNIT=9, IOSTAT=IOS, ERR=10)

An end-of-file record is written to the file connected to unit 9. If an error occurs, control is
transferred to the statement labeled 10, and a positive integer is stored in variable IOS.

2606

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

WRITE (6, *) x

ENDFILE 6

REWIND 6

READ (6, *) y

See Also
• E to F
• BACKSPACE
• REWIND
• Data Transfer I/O Statements
• Branch Specifiers

2607

63

END FORALL
Statement: Marks the end of a FORALL construct.
See FORALL.

END INTERFACE
Statement: Marks the end of an INTERFACE block.
See INTERFACE.

MAP...END MAP
Statement: Specifies mapped field declarations
that are part of a UNION declaration within a
STRUCTURE declaration. See STRUCTURE.

Example
UNION

MAP

CHARACTER*20 string

END MAP

MAP

INTEGER*2 number(10)

END MAP

END UNION

UNION

MAP

RECORD /Cartesian/ xcoord, ycoord

END MAP

MAP

RECORD /Polar/ length, angle

END MAP

END UNION

2608

63 Intel® Fortran Compiler User and Reference Guides

SELECT CASE...END SELECT
Statement: Transfers program control to a
selected block of statements according to the value
of a controlling expression. CASE.

Example
CHARACTER*1 cmdchar

. . .

Files: SELECT CASE (cmdchar)

CASE ('0')

WRITE (*, *) "Must retrieve one to nine files"

CASE ('1':'9')

CALL RetrieveNumFiles (cmdchar)

CASE ('A', 'a')

CALL AddEntry

CASE ('D', 'd')

CALL DeleteEntry

CASE ('H', 'h')

CALL Help

CASE DEFAULT

WRITE (*, *) "Command not recognized; please re-enter"

END SELECT Files

STRUCTURE...END STRUCTURE
Statement: Defines the field names, types of data
within fields, and order and alignment of fields
within a record structure. Fields and structures can
be initialized, but records cannot be initialized.

Syntax

STRUCTURE [/structure-name/] [field-namelist]

2609

63

field-declaration

[field-declaration]

. . .

[field-declaration]

END STRUCTURE

Is the name used to identify a structure, enclosed by slashes.structure-name
Subsequent RECORD statements use the structure name to refer
to the structure. A structure name must be unique among structure
names, but structures can share names with variables (scalar or
array), record fields, PARAMETER constants, and common blocks.
Structure declarations can be nested (contain one or more other
structure declarations). A structure name is required for the
structured declaration at the outermost level of nesting, and is
optional for the other declarations nested in it. However, if you
wish to reference a nested structure in a RECORD statement in
your program, it must have a name.
Structure, field, and record names are all local to the defining
program unit. When records are passed as arguments, the fields
in the defining structures within the calling and called subprograms
must match in type, order, and dimension.

Is a list of fields having the structure of the associated structure
declaration. A field namelist is allowed only in nested structure
declarations.

field-namelist

Also called the declaration body. A field-declaration consists
of any combination of the following:

field-declaration

• Type declarations

These are ordinary Fortran data type declarations.

• Substructure declarations

A field within a structure can be a substructure composed of
atomic fields, other substructures, or a combination of both.

• Union declarations

A union declaration is composed of one or more mapped field
declarations.

• PARAMETER statements

2610

63 Intel® Fortran Compiler User and Reference Guides

PARAMETER statements can appear in a structure declaration,
but cannot be given a data type within the declaration block.

Type declarations for PARAMETER names must precede the
PARAMETER statement and be outside of a STRUCTURE
declaration, as follows:

INTEGER*4 P

STRUCTURE /ABC/

PARAMETER (P=4)

REAL*4 F

END STRUCTURE

REAL*4 A(P)

The Fortran 90 derived type replaces STRUCTURE and RECORD constructs, and should be used
in writing new code. See Derived Data Types.

Unlike type declaration statements, structure declarations do not create variables. Structured
variables (records) are created when you use a RECORD statement containing the name of a
previously declared structure. The RECORD statement can be considered as a kind of type
declaration statement. The difference is that aggregate items, not single items, are being
defined.

Within a structure declaration, the ordering of both the statements and the field names within
the statements is important, because this ordering determines the order of the fields in records.

In a structure declaration, each field offset is the sum of the lengths of the previous fields, so
the length of the structure is the sum of the lengths of its fields. The structure is packed; you
must explicitly provide any alignment that is needed by including, for example, unnamed fields
of the appropriate length.

By default, fields are aligned on natural boundaries; misaligned fields are padded as necessary.
To avoid padding of records, you should lay out structures so that all fields are naturally aligned.

To pack fields on arbitrary byte boundaries, you must specify a compiler option. You can also
specify alignment for fields by using the OPTIONS or PACK general directive.

A field name must not be the same as any intrinsic or user-defined operator (for example, EQ
cannot be used as a field name).

2611

63

Compatibility

An item can be a RECORD statement that references a previously defined structure type:

STRUCTURE /full_address/

RECORD /full_name/ personsname

RECORD /address/ ship_to

INTEGER*1 age

INTEGER*4 phone

END STRUCTURE

You can specify a particular item by listing the sequence of items required to reach it, separated
by a period (.). Suppose you declare a structure variable, shippingaddress, using the
full_addressstructure defined in the previous example:

RECORD /full_address/ shippingaddress

In this case, the ageitem would then be specified by shippingaddress.age, the first name
of the receiver by shippingaddress.personsname.first_name, and so on.

In the following example, the declaration defines a structure named APPOINTMENT.
APPOINTMENTcontains the structure DATE(field APP_DATE) as a substructure. It also contains
a substructure named TIME(field APP_TIME, an array), a CHARACTER*20 array named APP_MEMO,
and a LOGICAL*1 field named APP_FLAG.

STRUCTURE /DATE/

INTEGER*1 DAY, MONTH

INTEGER*2 YEAR

END STRUCTURE

STRUCTURE /APPOINTMENT/

RECORD /DATE/ APP_DATE

STRUCTURE /TIME/ APP_TIME (2)

INTEGER*1 HOUR, MINUTE

END STRUCTURE

CHARACTER*20 APP_MEMO (4)

LOGICAL*1 APP_FLAG

END STRUCTURE

2612

63 Intel® Fortran Compiler User and Reference Guides

The length of any instance of structure APPOINTMENT is 89 bytes.

2613

63

The following figure shows the memory mapping of any record or record array element with
the structure APPOINTMENT.

2614

63 Intel® Fortran Compiler User and Reference Guides

Figure 54: Memory Map of Structure APPOINTMENT

2615

63

2616

63 Intel® Fortran Compiler User and Reference Guides

See Also
• E to F
• S
• TYPE
• MAP...END MAP
• RECORD
• UNION...END UNION
• PACK Directive
• OPTIONS Directive
• Data Types, Constants, and Variables
• Record Structures

TYPE Statement (Derived Types)
Statement: Declares a variable to be a derived
type. It specifies the name of the user-defined type
and the types of its components.

Syntax

TYPE [[,type-attr-spec-list] ::] name

component-definition

[component-definition]. . .

END TYPE [name]

Is access-spec or BIND (C).type-attr-spec-list

Is the PUBLIC or PRIVATE keyword. The keyword can only be
specified if the derived-type definition is in the specification part
of a module.

access-spec

Is the name of the derived data type. It must not be the same as
the name of any intrinsic type, or the same as the name of a
derived type that can be accessed from a module.

name

Is one or more type declaration statements defining the component
of derived type.

component-definition

The first component definition can be preceded by an optional
PRIVATE or SEQUENCE statement. (Only one PRIVATE or
SEQUENCE statement can appear in a given derived-type
definition.)

2617

63

If SEQUENCE is present, all derived types specified in component
definitions must be sequence types.
A component definition takes the following form:
type[[, attr] ::] component[(a-spec)] [*char-len] [init-ex]

Is a type specifier. It can be an intrinsic type
or a previously defined derived type. (If the
POINTER attribute follows this specifier, the
type can also be any accessible derived type,
including the type being defined.)

type

Is an optional POINTER attribute for a pointer
component, or an optional DIMENSION or
ALLOCATABLE attribute for an array

attr

component. You cannot specify both the
ALLOCATABLE and POINTER attribute. If
DIMENSION is specified, it can be followed by
an array specification.
Each attribute can only appear once in a given
component-definition.

Is the name of the component being defined.component

Is an optional array specification, enclosed in
parentheses. If POINTER or ALLOCATABLE is
specified, the array is deferred shape;

a-spec

otherwise, it is explicit shape. In an
explicit-shape specification, each bound must
be a constant scalar integer expression.
If the array bounds are not specified here,
they must be specified following the
DIMENSION attribute.

Is an optional scalar integer literal constant;
it must be preceded by an asterisk (*). This
parameter can only be specified if the
component is of type CHARACTER.

char-len

Is an initialization expression, or for pointer
components, => NULL(). This is a Fortran 95
feature.

init-ex

2618

63 Intel® Fortran Compiler User and Reference Guides

If init-ex is specified, a double colon must
appear in the component definition. The equals
assignment symbol (=) can only be specified
for nonpointer components.
The initialization expression is evaluated in
the scoping unit of the type definition.

Description

If a name is specified following the END TYPE statement, it must be the same name that follows
TYPE in the derived type statement.

A derived type can be defined only once in a scoping unit. If the same derived-type name
appears in a derived-type definition in another scoping unit, it is treated independently.

A component name has the scope of the derived-type definition only. Therefore, the same name
can be used in another derived-type definition in the same scoping unit.

Two data entities have the same type if they are both declared to be of the same derived type
(the derived-type definition can be accessed from a module or a host scoping unit).

If the entities are in different scoping units, they can also have the same derived type if they
are declared with reference to different derived-type definitions, and if both derived-type
definitions have all of the following:

• The same name

• A SEQUENCE statement (they both have sequence type)

• Components that agree in name, order, and attributes; components cannot be private

If BIND (C) is specified, the following rules apply:

• The derived type cannot be a SEQUENCE type.

• The derived type must have type parameters.

• Each component of the derived type must be a nonpointer, nonallocatable data component
with interoperable type and type parameters.

2619

63

Example
! DERIVED.F90

! Define a derived-type structure,

! type variables, and assign values

TYPE member

INTEGER age

CHARACTER (LEN = 20) name

END TYPE member

TYPE (member) :: george

TYPE (member) :: ernie

george = member(33, 'George Brown')

ernie%age = 56

ernie%name = 'Ernie Brown'

WRITE (*,*) george

WRITE (*,*) ernie

END

2620

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example of a derived type:

TYPE mem_name

SEQUENCE

CHARACTER (LEN = 20) lastn

CHARACTER (LEN = 20) firstn

CHARACTER (len = 3) cos ! this works because COS is a component name

END TYPE mem_name

TYPE member

TYPE (mem_name) :: name

SEQUENCE

INTEGER age

CHARACTER (LEN = 20) specialty

END TYPE member

In the following example, a and b are both variable arrays of derived type pair:

TYPE (pair)

INTEGER i, j

END TYPE

TYPE (pair), DIMENSION (2, 2) :: a, b(3)

2621

63

The following example shows how you can use derived-type objects as components of other
derived-type objects:

TYPE employee_name

CHARACTER(25) last_name

CHARACTER(15) first_name

END TYPE

TYPE employee_addr

CHARACTER(20) street_name

INTEGER(2) street_number

INTEGER(2) apt_number

CHARACTER(20) city

CHARACTER(2) state

INTEGER(4) zip

END TYPE

Objects of these derived types can then be used within a third derived-type specification, such
as:

TYPE employee_data

TYPE (employee_name) :: name

TYPE (employee_addr) :: addr

INTEGER(4) telephone

INTEGER(2) date_of_birth

INTEGER(2) date_of_hire

INTEGER(2) social_security(3)

LOGICAL(2) married

INTEGER(2) dependents

END TYPE

See Also
• C to D
• E to F

2622

63 Intel® Fortran Compiler User and Reference Guides

• T to Z
• DIMENSION
• MAP...END MAP
• PRIVATE
• PUBLIC
• RECORD
• SEQUENCE
• STRUCTURE...END STRUCTURE
• Derived Data Types
• Default Initialization
• Structure Components
• Structure Constructors

Building Applications: Handling User-Defined Types

UNION...END UNION
Statements: Define a data area that can be
shared intermittently during program execution by
one or more fields or groups of fields. A union
declaration must be within a structure declaration.

Syntax

Each unique field or group of fields is defined by a separate map declaration.

UNION

map-declaration

map-declaration

[map-declaration]

. . .

[map-declaration]

END UNION

Takes the following form:map-declaration

MAP

field-declaration

2623

63

[field-declaration]

. . .

[field-declaration]

END MAP

Is a structure declaration or RECORD
statement contained within a union
declaration, a union declaration contained

field-declaration

within a union declaration, or the declaration
of a data field (having a data type) within a
union. It can be of any intrinsic or derived
type.

As with normal Fortran type declarations, data can be initialized in field declaration statements
in union declarations. However, if fields within multiple map declarations in a single union are
initialized, the data declarations are initialized in the order in which the statements appear. As
a result, only the final initialization takes effect and all of the preceding initializations are
overwritten.

The size of the shared area established for a union declaration is the size of the largest map
defined for that union. The size of a map is the sum of the sizes of the fields declared within
it.

Manipulating data by using union declarations is similar to using EQUIVALENCE statements.
The difference is that data entities specified within EQUIVALENCE statements are concurrently
associated with a common storage location and the data residing there; with union declarations
you can use one discrete storage location to alternately contain a variety of fields (arrays or
variables).

With union declarations, only one map declaration within a union declaration can be associated
at any point in time with the storage location that they share. Whenever a field within another
map declaration in the same union declaration is referenced in your program, the fields in the
prior map declaration become undefined and are succeeded by the fields in the map declaration
containing the newly referenced field.

2624

63 Intel® Fortran Compiler User and Reference Guides

Example

In the following example, the structure WORDS_LONG is defined. This structure contains a
union declaration defining two map fields. The first map field consists of three INTEGER*2
variables (WORD_0, WORD_1, and WORD_2), and the second, an INTEGER*4 variable, LONG:

STRUCTURE /WORDS_LONG/

UNION

MAP

INTEGER*2 WORD_0, WORD_1, WORD_2

END MAP

MAP

INTEGER*4 LONG

END MAP

END UNION

END STRUCTURE

The length of any record with the structure WORDS_LONG is 6 bytes. The following figure shows
the memory mapping of any record with the structure WORDS_LONG:

Figure 55: Memory Map of Structure WORDS_LONG

2625

63

In the following example, note how the first 40 characters in the string2 array are overlayed
on 4-byte integers, while the remaining 20 are overlayed on 2-byte integers:

UNION

MAP

CHARACTER*20 string1, CHARACTER*10 string2(6)

END MAP

MAP

INTEGER*2 number(10), INTEGER*4 var(10), INTEGER*2

+ datum(10)

END MAP

END UNION

See Also
• E to F
• T to Z
• STRUCTURE...END STRUCTURE
• Record Structures

END WHERE
Statement: Marks the end of a WHERE block. See
WHERE.

Example
WHERE (pressure <= 1.0)

pressure = pressure + inc_pressure

temp = temp - 5.0

ELSEWHERE

raining = .TRUE.

END WHERE

Note that the variables temp, pressure, and raining are all arrays.

2626

63 Intel® Fortran Compiler User and Reference Guides

ENTRY
Statement: Provides one or more entry points
within a subprogram. It is not executable and must
precede any CONTAINS statement (if any) within
the subprogram.

Syntax

ENTRY name[([d-arg[,d-arg]...]) [RESULT (r-name)]]

Is the name of an entry point. If RESULT is specified, this entry
name must not appear in any specification statement in the scoping
unit of the function subprogram.

name

(Optional) Is a dummy argument. The dummy argument can be
an alternate return indicator (*) if the ENTRY statement is within
a subroutine subprogram.

d-arg

(Optional) Is the name of a function result. This name must not
be the same as the name of the entry point, or the name of any
other function or function result. This parameter can only be
specified for function subprograms.

r-name

Description

ENTRY statements can only appear in external procedures or module procedures.

An ENTRY statement must not appear in a CASE, DO, IF, FORALL, or WHERE construct, or a
nonblock DO loop.

When the ENTRY statement appears in a subroutine subprogram, it is referenced by a CALL
statement. When the ENTRY statement appears in a function subprogram, it is referenced by
a function reference.

An entry name within a function subprogram can appear in a type declaration statement.

2627

63

Within the subprogram containing the ENTRY statement, the entry name must not appear as
a dummy argument in the FUNCTION or SUBROUTINE statement, and it must not appear in
an EXTERNAL or INTRINSIC statement. For example, neither of the following are valid:

(1) SUBROUTINE SUB(E)

ENTRY E

...

(2) SUBROUTINE SUB

EXTERNAL E

ENTRY E

...

The procedure defined by an ENTRY statement can reference itself if the function or subroutine
was defined as RECURSIVE.

Dummy arguments can be used in ENTRY statements even if they differ in order, number, type
and kind parameters, and name from the dummy arguments used in the FUNCTION,
SUBROUTINE, and other ENTRY statements in the same subprogram. However, each reference
to a function, subroutine, or entry must use an actual argument list that agrees in order,
number, and type with the dummy argument list in the corresponding FUNCTION, SUBROUTINE,
or ENTRY statement.

Dummy arguments can be referred to only in executable statements that follow the first
SUBROUTINE, FUNCTION, or ENTRY statement in which the dummy argument is specified. If
a dummy argument is not currently associated with an actual argument, the dummy argument
is undefined and cannot be referenced. Arguments do not retain their association from one
reference of a subprogram to another.

2628

63 Intel® Fortran Compiler User and Reference Guides

Example
C This fragment writes a message indicating

C whether num is positive or negative

IF (num .GE. 0) THEN

CALL Sign

ELSE

CALL Negative

END IF

...

END

SUBROUTINE Sign

WRITE (*, *) 'It''s positive.'

RETURN

ENTRY Negative

WRITE (*, *) 'It''s negative.'

RETURN

END SUBROUTINE

See Also
• E to F
• Program Units and Procedures
• ENTRY Statements in Function Subprograms
• ENTRY Statements in Subroutine Subprograms

EOF
Inquiry Intrinsic Function (Generic): Checks
whether a file is at or beyond the end-of-file record.

Syntax

result = EOF (unit)

2629

63

(Input) Must be of type integer. It represents a unit specifier
corresponding to an open file. It cannot be zero unless you have
reconnected unit zero to a unit other than the screen or keyboard.

unit

Results

The result type is default logical. The value of the result is .TRUE. if the file connected to unit
is at or beyond the end-of-file record; otherwise, .FALSE..

2630

63 Intel® Fortran Compiler User and Reference Guides

Example
! Creates a file of random numbers, reads them back

REAL x, total

INTEGER count

OPEN (1, FILE = 'TEST.DAT')

DO I = 1, 20

CALL RANDOM_NUMBER(x)

WRITE (1, '(F6.3)') x * 100.0

END DO

CLOSE(1)

OPEN (1, FILE = 'TEST.DAT')

DO WHILE (.NOT. EOF(1))

count = count + 1

READ (1, *) value

total = total + value

END DO

100 IF (count .GT. 0) THEN

WRITE (*,*) 'Average is: ', total / count

ELSE

WRITE (*,*) 'Input file is empty '

END IF

STOP

END

See Also
• E to F
• ENDFILE
• BACKSPACE
• REWIND

2631

63

EOSHIFT
Transformational Intrinsic Function (Generic):
Performs an end-off shift on a rank-one array, or
performs end-off shifts on all the complete
rank-one sections along a given dimension of an
array of rank two or greater. Elements are shifted
off at one end of a section and copies of a boundary
value are filled in at the other end. Different
sections can have different boundary values and
can be shifted by different amounts and in different
directions.

Syntax

result = EOSHIFT (array,shift [,boundary][,dim])

(Input) Must be an array (of any data type).array

(Input) Must be a scalar integer or an array with a rank that is one
less than array, and shape (d1, d2, ..., ddim-1, ddim+1, ..., dn),
where (d1, d2, ..., dn) is the shape of array.

shift

(Input; optional) Must have the same type and kind parameters
as array. It must be a scalar or an array with a rank that is one
less than array, and shape (d1, d2, ..., ddim-1, ddim+1, ..., dn). The
boundary specifies a value to replace spaces left by the shifting
procedure.

boundary

If boundary is not specified, it is assumed to have the following
default values (depending on the data type of array):

boundary Valuearray Type

0Integer

0.0Real

(0.0, 0.0)Complex

falseLogical

len blanksCharacter(len)

2632

63 Intel® Fortran Compiler User and Reference Guides

(Input; optional) Must be a scalar integer with a value in the range
1 to n, where n is the rank of array. If dim is omitted, it is
assumed to be 1.

dim

Results

The result is an array with the same type and kind parameters, and shape as array.

If array has rank one, the same shift is applied to each element. If an element is shifted off
one end of the array, the boundary value is placed at the other end the array.

If array has rank greater than one, each section (s1, s2, ..., sdim-1, :, sdim+1, ..., sn) of the result
is shifted as follows:

• By the value of shift, if shift is scalar

• According to the corresponding value in shift(s1, s2, ..., sdim-1, sdim+1, ..., sn), if shift is
an array

If an element is shifted off one end of a section, the boundary value is placed at the other end
of the section.

The value of shift determines the amount and direction of the end- off shift. A positive shift
value causes a shift to the left (in rows) or up (in columns). A negative shift value causes a
shift to the right (in rows) or down (in columns).

Example

V is the array (1, 2, 3, 4, 5, 6).

EOSHIFT (V, SHIFT=2) shifts the elements in V to the left by 2 positions, producing the value
(3, 4, 5, 6, 0, 0). 1 and 2 are shifted off the beginning and two elements with the default
BOUNDARY value are placed at the end.

EOSHIFT (V, SHIFT= -3, BOUNDARY= 99) shifts the elements in V to the right by 3 positions,
producing the value (99, 99, 99, 1, 2, 3). 4, 5, and 6 are shifted off the end and three elements
with BOUNDARY value 99 are placed at the beginning.

M is the character array

[1 2 3]

[4 5 6]

[7 8 9].

2633

63

EOSHIFT (M, SHIFT = 1, BOUNDARY = '*', DIM = 2) produces the result

[2 3 *]

[5 6 *]

[8 9 *].

Each element in rows 1, 2, and 3 is shifted to the left by 1 position. This causes the first
element in each row to be shifted off the beginning, and the BOUNDARY value to be placed at
the end.

EOSHIFT (M, SHIFT = -1, DIM = 1) produces the result

[0 0 0]

[1 2 3]

[4 5 6].

Each element in columns 1, 2, and 3 is shifted down by 1 position. This causes the last element
in each column to be shifted off the end and the BOUNDARY value to be placed at the beginning.

EOSHIFT (M, SHIFT = (/1, -1, 0/), BOUNDARY = (/ '*', '?', '/' /), DIM = 2) produces the result

[2 3 *]

[? 4 5]

[7 8 9].

Each element in row 1 is shifted to the left by 1 position, causing the first element to be shifted
off the beginning and the BOUNDARY value * to be placed at the end. Each element in row 2
is shifted to the right by 1 position, causing the last element to be shifted off the end and the
BOUNDARY value ? to be placed at the beginning. No element in row 3 is shifted at all, so the
specified BOUNDARY value is not used.

2634

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

INTEGER shift(3)

CHARACTER(1) array(3, 3), AR1(3, 3)

array = RESHAPE ((/'A', 'D', 'G', 'B', 'E', 'H', &

'C', 'F', 'I'/), (/3,3/))

! array is A B C

! D E F

! G H I

shift = (/-1, 1, 0/)

AR1 = EOSHIFT (array, shift, BOUNDARY = (/'*','?','#'/), DIM= 2)

! returns * A B

! E F ?

! G H I

See Also
• E to F
• CSHIFT
• ISHFT
• ISHFTC
• TRANSPOSE

EPSILON
Inquiry Intrinsic Function (Generic): Returns
a positive model number that is almost negligible
compared to unity in the model representing real
numbers.

Syntax

result = EPSILON (x)

(Input) Must be of type real; it can be scalar or array valued.x

2635

63

Results

The result is a scalar of the same type and kind parameters as x. The result has the value b
1-p. Parameters b and p are defined in Model for Real Data.

EPSILON makes it easy to select a delta for algorithms (such as root locators) that search
until the calculation is within delta of an estimate. If delta is too small (smaller than the
decimal resolution of the data type), the algorithm might never halt. By scaling the value
returned by EPSILON to the estimate, you obtain a delta that ensures search termination.

Example

If x is of type REAL(4), EPSILON (X) has the value 2 -23.

See Also
• E to F
• PRECISION
• TINY
• Data Representation Models

EQUIVALENCE
Statement: Specifies that a storage area is shared
by two or more objects in a program unit. This
causes total or partial storage association of the
objects that share the storage area.

Syntax

EQUIVALENCE (equiv-list) [,(equiv-list)]...

Is a list of two or more variable names, array elements, or
substrings, separated by commas (also called an equivalence set).
If an object of derived type is specified, it must be a sequence
type. Objects cannot have the TARGET attribute.

equiv-list

Each expression in a subscript or a substring reference must be
an integer initialization expression. A substring must not have a
length of zero.

Description

The following objects cannot be specified in EQUIVALENCE statements:

• A dummy argument

2636

63 Intel® Fortran Compiler User and Reference Guides

• An allocatable variable

• An automatic object

• A pointer

• An object of nonsequence derived type

• A derived-type object that has an allocatable or pointer component at any level

• A component of a derived-type object

• A function, entry, or result name

• A named constant

• A structure component

• A subobject of any of the above objects

• An object with either the DLLIMPORT or DLLEXPORT attribute

• A variable with the BIND attribute

• A variable in a common block that has the BIND attribute

The EQUIVALENCE statement causes all of the entities in one parenthesized list to be allocated
storage beginning at the same storage location.

If an equivalence object has the PROTECTED attribute, all of the objects in the equivalence set
must have the PROTECTED attribute.

Association of objects depends on their types, as follows:

Type of Associated ObjectType of Object

Can be of any of these typesIntrinsic numeric 1or numeric sequence

Can be of either of these types 2Default character or character sequence

Must have the same type and kind
parameters

Any other intrinsic type

Must have the same typeAny other sequence type

1Default integer, default real, double precision real, default complex, double complex, or
default logical.
2The lengths do not have to be equal.

2637

63

So, objects can be associated if they are of different numeric type. For example, the following
is valid:

INTEGER A(20)

REAL Y(20)

EQUIVALENCE(A, Y)

Objects of default character do not need to have the same length. The following example
associates character variable D with the last 4 (of the 6) characters of character array F:

CHARACTER(LEN=4) D

CHARACTER(LEN=3) F(2)

EQUIVALENCE(D, F(1)(3:))

Entities having different data types can be associated because multiple components of one data
type can share storage with a single component of a higher-ranked data type. For example, if
you make an integer variable equivalent to a complex variable, the integer variable shares
storage with the real part of the complex variable.

The same storage unit cannot occur more than once in a storage sequence, and consecutive
storage units cannot be specified in a way that would make them nonconsecutive.

Intel® Fortran lets you associate character and noncharacter entities, for example:

CHARACTER*1 char1(10)

REAL reala, realb

EQUIVALENCE (reala, char1(1))

EQUIVALENCE (realb, char1(2))

EQUIVALENCE statements require only the first subscript of a multidimensional array (unless
the STRICT compiler directive is in effect). For example, the array declaration var(3,3), var(4)
could appear in an EQUIVALENCE statement. The reference is to the fourth element of the array
(var(1,2)), not to the beginning of the fourth row or column.

If you use the STRICT directive, the following rules apply to the kinds of variables and arrays
that you can associate:

• If an EQUIVALENCE object is default integer, default real, double-precision real, default
complex, default logical, or a sequenced derived type of all numeric or logical components,
all objects in the EQUIVALENCE statement must be one of these types, though it is not
necessary that they be the same type.

2638

63 Intel® Fortran Compiler User and Reference Guides

• If an EQUIVALENCE object is default character or a sequenced derived type of all character
components, all objects in the EQUIVALENCE statement must be one of these types. The
lengths do not need to be the same.

• If an EQUIVALENCE object is a sequenced derived type that is not purely numeric or purely
character, all objects in the EQUIVALENCE statement must be the same derived type.

• If an EQUIVALENCE object is an intrinsic type other than the default (for example,
INTEGER(1)), all objects in the EQUIVALENCE statement must be the same type and kind.

Example

The following EQUIVALENCE statement is invalid because it specifies the same storage unit for
X(1) and X(2):

REAL, DIMENSION(2) :: X

REAL :: Y

EQUIVALENCE(X(1), Y), (X(2), Y)

The following EQUIVALENCE statement is invalid because A(1) and A(2) will not be consecutive:

REAL A(2)

DOUBLE PRECISION D(2)

EQUIVALENCE(A(1), D(1)), (A(2), D(2))

In the following example, the EQUIVALENCE statement causes the four elements of the integer
array IARR to share the same storage as that of the double-precision variable DVAR:

DOUBLE PRECISION DVAR

INTEGER(KIND=2) IARR(4)

EQUIVALENCE(DVAR, IARR(1))

In the following example, the EQUIVALENCE statement causes the first character of the character
variables KEY and STAR to share the same storage location. The character variable STAR is
equivalent to the substring KEY(1:10).

CHARACTER KEY*16, STAR*10

EQUIVALENCE(KEY, STAR)

2639

63

The following shows another example:

CHARACTER name, first, middle, last

DIMENSION name(60), first(20), middle(20), last(20)

EQUIVALENCE (name(1), first(1)), (name(21), middle(1))

EQUIVALENCE (name(41), last(1))

Consider the following:

CHARACTER (LEN = 4) :: a, b

CHARACTER (LEN = 3) :: c(2)

EQUIVALENCE (a, c(1)), (b, c(2))

This causes the following alignment:

1 2 3 4 5 6 7

a(1:1) a(2:2) a(3:3) a(4:4)

b(1:1) b(2:2) b(3:3) b(4:4)

c(1)(1:1) c(1)(2:2) c(1)(3:3) c(2)(1:1) c(2)(2:2) c(2)(3:3)

Note that the fourth element of a, the first element of b, and the first element of c(2) share
the same storage unit.

See Also
• E to F
• EQUIVALENCE Statement
• Initialization Expressions
• Derived Data Types
• Storage Association
• STRICT Directive

ERF
Elemental Intrinsic Function (Generic):
Returns the error function of an argument.

Syntax

result = ERF (x)

(Input) Must be of type real.x

2640

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is the same as x. The result is in the range -1 to 1.

ERF returns the error function of x defined as follows:

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)ERF

REAL(8)REAL(8)DERF

REAL(16)REAL(16)QERF

Example

ERF (1.0) has the value 0.842700794.

See Also
• E to F
• ERFC

ERFC
Elemental Intrinsic Function (Generic):
Returns the complementary error function of an
argument.

Syntax

result = ERFC (x)

(Input) Must be of type real.x

Results

The result type is the same as x. The result is in the range 0 to 2.

ERFC returns 1 - ERF(x) and is defined as follows:

2641

63

ERFC is provided because of the extreme loss of relative accuracy if ERF(x) is called for large
x and the result is subtracted from 1.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)ERFC

REAL(8)REAL(8)DERFC

REAL(16)REAL(16)QERFC

Example

ERFC (1.0) has the value 0.1572992057.

See Also
• E to F
• ERF

ERRSNS
Intrinsic Subroutine (Generic): Returns
information about the most recently detected I/O
system error condition. Intrinsic subroutines cannot
be passed as actual arguments.

Syntax

CALL ERRSNS ([io_err] [,sys_err] [,stat] [,unit] [,cond])

(Output; Optional) Is an integer variable or array element that
stores the most recent Run-Time Library error number that
occurred during program execution. (For a listing of error numbers,
see Building Applications.)

io_err

A zero indicates no error has occurred since the last call to ERRSNS
or since the start of program execution.

2642

63 Intel® Fortran Compiler User and Reference Guides

(Output; Optional) Is an integer variable or array element that
stores the most recent system error number associated with
io_err. This code is one of the following:

sys_err

• On Windows* systems, it is the value returned by
GETLASTERROR() at the time of the error.

• On Linux* and Mac OS* X systems, it is an errno value. (See
errno(2).)

(Output; Optional) Is an integer variable or array element that
stores a status value that occurred during program execution. This
value is always set to zero.

stat

(Output; Optional) Is an integer variable or array element that
stores the logical unit number, if the last error was an I/O error.

unit

(Output; Optional) Is an integer variable or array element that
stores the actual processor value. This value is always set to zero.

cond

If you specify INTEGER(2) arguments, only the low-order 16 bits of information are returned
or adjacent data can be overwritten. Because of this, it is best to use INTEGER(4) arguments.

The saved error information is set to zero after each call to ERRSNS.

Example

Any of the arguments can be omitted. For example, the following is valid:

CALL ERRSNS (SYS_ERR=I1, STAT=I2, UNIT=I4)

ETIME
Portability Function: On single processor
systems, returns the elapsed CPU time, in seconds,
of the process that calls it. On multi-core or
multi-processor systems, returns the elapsed
wall-clock time, in seconds.

Module

USE IFPORT

Syntax

result = ETIME (array)

2643

63

(Output) REAL(4). Must be a rank one array with two elements:array

• array(1) − Elapsed user time, which is time spent executing
user code. This value includes time running protected Windows
subsystem code. On single processors, ETIME returns the
elapsed CPU time, in seconds, of the process that calls it. On
multiple processors, ETIME returns the elapsed wall-clock time,
in seconds.

• array(2) − Elapsed system time, which is time spent executing
privileged code (code in the Windows Executive) on single
processors; on multiple processors, this value is zero.

Results

The result type is REAL(4). The result is the total CPU time, which is the sum of array(1) and
array(2).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

REAL(4) I, TA(2)

I = ETIME(TA)

write(*,*) 'Program has used', I, 'seconds of CPU time.'

write(*,*) ' This includes', TA(1), 'seconds of user time and', &

& TA(2), 'seconds of system time.'

See Also
• E to F
• DATE_AND_TIME

2644

63 Intel® Fortran Compiler User and Reference Guides

EXIT Statement
Statement: Terminates execution of a DO
construct.

Syntax

EXIT [name]

(Optional) Is the name of the DO construct.name

Description

The EXIT statement causes execution of the named (or innermost) DO construct to be
terminated.

If a DO construct name is specified, the EXIT statement must be within the range of that
construct.

Any DO variable present retains its last defined value.

An EXIT statement can be labeled, but it cannot be used to terminate a DO construct.

Example

The following example shows an EXIT statement:

LOOP_A : DO I = 1, 15

N = N + 1

IF (N > I) EXIT LOOP_A

END DO LOOP_A

2645

63

The following shows another example:

CC See CYCLE.F90 in the TBD for an example of EXIT in nested

CC DO loops

CC Loop terminates early if one of the data points is zero:

CC

INTEGER numpoints, point

REAL datarray(1000), sum

sum = 0.0

DO point = 1, 1000

sum = sum + datarray(point)

IF (datarray(point+1) .EQ. 0.0) EXIT

END DO

See Also
• E to F
• DO
• DO WHILE

EXIT Subroutine
Intrinsic Subroutine (Generic): Terminates
program execution, closes all files, and returns
control to the operating system. Intrinsic
subroutines cannot be passed as actual arguments.

Syntax

CALL EXIT [([status])]

(Output; optional) Is an integer argument you can use to specify
the image exit-status value.

status

The exit-status value may not be accessible after program termination in some application
environments.

2646

63 Intel® Fortran Compiler User and Reference Guides

Example
INTEGER(4) exvalue

! all is well, exit with 1

exvalue = 1

CALL EXIT(exvalue)

! all is not well, exit with diagnostic -4

exvalue = -4

CALL EXIT(exvalue)

! give no diagnostic, just exit

CALL EXIT ()

See Also
• E to F
• END
• ABORT

EXP
Elemental Intrinsic Function (Generic):
Computes an exponential value.

Syntax

result = EXP (x)

(Input) Must be of type real or complex.x

Results

The result type is the same as x. The value of the result is e x. If x is of type complex, its
imaginary part is regarded as a value in radians.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)EXP

REAL(8)REAL(8)DEXP

2647

63

Result TypeArgument TypeSpecific Name

REAL(16)REAL(16)QEXP

COMPLEX(4)COMPLEX(4)CEXP 1

COMPLEX(8)COMPLEX(8)CDEXP2

COMPLEX(16)COMPLEX(16)CQEXP

1The setting of compiler options specifying real size can affect CEXP.
2This function can also be specified as ZEXP.

Example

EXP (2.0) has the value 7.389056.

EXP (1.3) has the value 3.669297.

The following shows another example:

! Given initial size and growth rate,

! calculates the size of a colony at a given time.

REAL sizei, sizef, time, rate

sizei = 10000.0

time = 40.5

rate = 0.0875

sizef = sizei * EXP (rate * time)

WRITE (*, 100) sizef

100 FORMAT (' The final size is ', E12.6)

END

See Also
• E to F
• LOG

2648

63 Intel® Fortran Compiler User and Reference Guides

EXPONENT
Elemental Intrinsic Function (Generic):
Returns the exponent part of the argument when
represented as a model number.

Syntax

result = EXPONENT (x)

(Input) must be of type real.x

Results

The result type is default integer. If x is not equal to zero, the result value is the exponent part
of x. The exponent must be within default integer range; otherwise, the result is undefined.

If x is zero, the exponent of x is zero. For more information on the exponent part (e) in the
real model, see Model for Real Data.

Example

EXPONENT (2.0) has the value 2.

If 4.1 is a REAL(4) value, EXPONENT (4.1) has the value 3.

The following shows another example:

REAL(4) r1, r2

REAL(8) r3, r4

r1 = 1.0

r2 = 123456.7

r3 = 1.0D0

r4 = 123456789123456.7

write(*,*) EXPONENT(r1) ! prints 1

write(*,*) EXPONENT(r2) ! prints 17

write(*,*) EXPONENT(r3) ! prints 1

write(*,*) EXPONENT(r4) ! prints 47

END

2649

63

See Also
• E to F
• DIGITS
• RADIX
• FRACTION
• MAXEXPONENT
• MINEXPONENT
• Data Representation Models

EXTERNAL
Statement and Attribute: Allows an external or
dummy procedure to be used as an actual
argument. (To specify intrinsic procedures as actual
arguments, use the INTRINSIC attribute.)

Syntax

The EXTERNAL attribute can be specified in a type declaration statement or an EXTERNAL
statement, and takes one of the following forms:

Type Declaration Statement:

type,[att-ls,] EXTERNAL [, att-ls] :: ex-pro[, ex-pro]...

Statement:

EXTERNAL [::]ex-pro[, ex-pro]...

Is a data type specifier.type

Is an optional list of attribute specifiers.att-ls

Is the name of an external (user-supplied) procedure or dummy
procedure.

ex-pro

Description

In a type declaration statement, only functions can be declared EXTERNAL. However, you can
use the EXTERNAL statement to declare subroutines and block data program units, as well as
functions, to be external.

The name declared EXTERNAL is assumed to be the name of an external procedure, even if the
name is the same as that of an intrinsic procedure. For example, if SIN is declared with the
EXTERNAL attribute, all subsequent references to SIN are to a user-supplied function named
SIN, not to the intrinsic function of the same name.

2650

63 Intel® Fortran Compiler User and Reference Guides

You can include the name of a block data program unit in the EXTERNAL statement to force a
search of the object module libraries for the block data program unit at link time. However,
the name of the block data program unit must not be used in a type declaration statement.

If you want to describe a routine with greater detail, use the INTERFACE statement. This
statement automatically declares a routine as EXTERNAL, and provides information on result
types and argument types.

Example

The following example shows type declaration statements specifying the EXTERNAL attribute:

PROGRAM TEST

...

INTEGER, EXTERNAL :: BETA

LOGICAL, EXTERNAL :: COS

...

CALL SUB(BETA) ! External function BETA is an actual argument

You can use a name specified in an EXTERNAL statement as an actual argument to a subprogram,
and the subprogram can then use the corresponding dummy argument in a function reference
or a CALL statement; for example:

EXTERNAL FACET

CALL BAR(FACET)

SUBROUTINE BAR(F)

EXTERNAL F

CALL F(2)

Used as an argument, a complete function reference represents a value, not a subprogram;
for example, FUNC(B) represents a value in the following statement:

CALL SUBR(A, FUNC(B), C)

2651

63

The following shows another example:

EXTERNAL MyFunc, MySub

C MyFunc and MySub are arguments to Calc

CALL Calc (MyFunc, MySub)

C Example of a user-defined function replacing an

C intrinsic

EXTERNAL SIN

x = SIN (a, 4.2, 37)

See Also
• E to F
• INTRINSIC
• Program Units and Procedures
• Type Declarations
• INTRINSIC
• Compatible attributes
• FORTRAN 66 Interpretation of the External Statement

FDATE
Portability Function and Subroutine: Returns
the current date and time as an ASCII string.

Module

USE IFPORT

Syntax

Function Syntax

result =FDATE()

Subroutine Syntax:

CALL FDATE ([string])

(Output; optional) Character*(*). It is returned as a 24-character
string in the form:

Mon Jan 31 04:37:23 2001

string

2652

63 Intel® Fortran Compiler User and Reference Guides

Any value in string before the call is destroyed.

Results

The result of the function FDATE and the value of string returned by the subroutine FDATE(
string) are identical. Newline and NULL are not included in the string.

When you use FDATE as a function, declare it as:

CHARACTER*24 FDATE

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

CHARACTER*24 today

!

CALL FDATE(today)

write (*,*), 'Today is ', today

!

write (*,*), 'Today is ', fdate()

See Also
• E to F
• DATE_AND_TIME

FGETC
Portability Function: Reads the next available
character from a file specified by a Fortran unit
number.

Module

USE IFPORT

Syntax

result = FGETC (lunit,char)

2653

63

(Input) INTEGER(4). Unit number of a file. Must be currently
connected to a file when the function is called.

lunit

(Output) CHARACTER*1. Next available character in the file. If
lunit is connected to a console device, then no characters are
returned until the Enter key is pressed.

char

Results

The result type is INTEGER(4). The result is zero if the read is successful, or -1 if an end-of-file
is detected. A positive value is either a system error code or a Fortran I/O error code, such as:

EINVAL: The specified unit is invalid (either not already open, or an invalid unit number).

If you use WRITE, READ, or any other Fortran I/O statements with lunit, be sure to read
Building Applications: Portability Routines: Input and Output Routines.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

CHARACTER inchar

INTEGER istatus

istatus = FGETC(5,inchar)

PRINT *, inchar

END

See Also
• E to F
• GETCHARQQ
• READ

FIND
Statement: Positions a direct access file at a
particular record and sets the associated variable
of the file to that record number. It is comparable

2654

63 Intel® Fortran Compiler User and Reference Guides

to a direct access READ statement with no I/O list,
and it can open an existing file. No data transfer
takes place.

Syntax

FIND ([UNIT=] io-unit, REC= r[, ERR= label] [, IOSTAT= i-var])

FIND (io-unit 'r [, ERR=label] [, IOSTAT=i-var])

Is a logical unit number. It must refer to a relative organization
file (see Unit Specifier).

io-unit

Is the direct access record number. It cannot be less than one or
greater than the number of records defined for the file (see Record
Specifier).

r

Is the label of the executable statement that receives control if an
error occurs.

label

Is a scalar integer variable that is defined as a positive integer if
an error occurs, and as zero if no error occurs (see I/O Status
Specifier).

i-var

Example

In the following example, the FIND statement positions logical unit 1 at the first record in the
file. The file's associated variable is set to one:

FIND(1, REC=1)

In the following example, the FIND statement positions the file at the record identified by the
content of INDX. The file's associated variable is set to the value of INDX:

FIND(4, REC=INDX)

See Also
• E to F
• Forms for Direct-Access READ Statements
• I/O Control List

2655

63

FINDFILEQQ
Portability Function: Searches for a specified file
in the directories listed in the path contained in the
environment variable.

Module

USE IFPORT

Syntax

result = FINDFILEQQ (filename,varname,pathbuf)

(Input) Character*(*). Name of the file to be found.filename

(Input) Character*(*). Name of an environment variable containing
the path to be searched.

varname

(Output) Character*(*). Buffer to receive the full path of the file
found.

pathbuf

Results

The result type is INTEGER(4). The result is the length of the string containing the full path of
the found file returned in pathbuf, or 0 if no file is found.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

CHARACTER(256) pathname

INTEGER(4) pathlen

pathlen = FINDFILEQQ("libfmt.lib", "LIB", pathname)

WRITE (*,*) pathname

END

See Also
• E to F
• FULLPATHQQ

2656

63 Intel® Fortran Compiler User and Reference Guides

• GETFILEINFOQQ
• SPLITPATHQQ

FIRSTPRIVATE
Parallel Directive Clause: Provides a superset
of the functionality provided by the PRIVATE
clause; objects are declared PRIVATE and they are
initialized with certain values.

Syntax

FIRSTPRIVATE (list)

Is the name of one or more variables or common blocks that are
accessible to the scoping unit. Subobjects cannot be specified.
Each name must be separated by a comma, and a named common
block must appear between slashes (/ /).

list

Variables that appear in a FIRSTPRIVATE list are subject to PRIVATE
clause semantics. In addition, private (local) copies of each variable
in the different threads are initialized to the value the variable had
before the parallel region started.

See Also
• E to F
• PRIVATE clause

Building Applications: Debugging Shared Variables

Optimizing Applications: PRIVATE, FIRSTPRIVATE, and LASTPRIVATE Clauses

Optimizing Applications: Worksharing Construct Directives

FIXEDFORMLINESIZE
General Compiler Directive: Sets the line length
for fixed-form Fortran source code.

Syntax

cDEC$ FIXEDFORMLINESIZE:{72 | 80 | 132}

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

2657

63

You can set FIXEDFORMLINESIZE to 72 (the default), 80, or 132 characters. The
FIXEDFORMLINESIZE setting remains in effect until the end of the file, or until it is reset.

The FIXEDFORMLINESIZE directive sets the source-code line length in include files, but not in
USE modules, which are compiled separately. If an include file resets the line length, the change
does not affect the host file.

This directive has no effect on free-form source code.

Example
cDEC$ NOFREEFORM

cDEC$ FIXEDFORMLINESIZE:132

WRITE (*,*) 'Sentence that goes beyond the 72nd column without continuation.'

See Also
• E to F
• FREEFORM and NOFREEFORM
• Source Forms
• General Compiler Directives

Building Applications: /fixed

Building Applications: Compiler Directives Related to Options

FLOAT
Elemental Intrinsic Function (Generic):
Converts an integer to REAL(4).

See Also
• E to F
• REAL

FLOODFILL, FLOODFILL_W (W*32, W*64)
Graphics Functions: Fill an area using the current
color index and fill mask.

Module

USE IFQWIN

2658

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = FLOODFILL (x,y,bcolor)

result = FLOODFILL_W (wx,wy,bcolor)

(Input) INTEGER(2). Viewport coordinates for fill starting point.x, y

(Input) INTEGER(2). Color index of the boundary color.bcolor

(Input) REAL(8). Window coordinates for fill starting point.wx, wy

Results

The result type is INTEGER(2). The result is a nonzero value if successful; otherwise, 0 (occurs
if the fill could not be completed, or if the starting point lies on a pixel with the boundary color
bcolor, or if the starting point lies outside the clipping region).

FLOODFILL begins filling at the viewport-coordinate point (x, y). FLOODFILL_W begins filling
at the window-coordinate point (wx, wy). The fill color used by FLOODFILL and FLOODFILL_W
is set by SETCOLOR. You can obtain the current fill color index by calling GETCOLOR. These
functions allow access only to the colors in the palette (256 or less). To access all available
colors on a VGA (262,144 colors) or a true color system, use the RGB functions FLOODFILLRGB
and FLOODFILLRGB_W.

If the starting point lies inside a figure, the interior is filled; if it lies outside a figure, the
background is filled. In both cases, the fill color is the current graphics color index set by
SETCOLOR. The starting point must be inside or outside the figure, not on the figure boundary
itself. Filling occurs in all directions, stopping at pixels of the boundary color bcolor.

NOTE. The FLOODFILL routine described here is a QuickWin routine. If you are trying
to use the Microsoft* Platform SDK version of the FloodFill routine by including the IFWIN
module, you need to specify the routine name as MSFWIN$FloodFill. For more information,
see Building Applications: Special Naming Convention for Certain QuickWin and Win32
Graphics Routines.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

2659

63

Example
USE IFQWIN

INTEGER(2) status, bcolor, red, blue

INTEGER(2) x1, y1, x2, y2, xinterior, yinterior

x1 = 80; y1 = 50

x2 = 240; y2 = 150

red = 4

blue = 1

status = SETCOLOR(red)

status = RECTANGLE($GBORDER, x1, y1, x2, y2)

bcolor = GETCOLOR()

status = SETCOLOR (blue)

xinterior = 160; yinterior = 100

status = FLOODFILL (xinterior, yinterior, bcolor)

END

See Also
• E to F
• FLOODFILLRGB, FLOODFILLRGB_W
• ELLIPSE
• GETCOLOR
• GETFILLMASK
• GRSTATUS
• PIE
• SETCLIPRGN
• SETCOLOR
• SETFILLMASK

Building Applications: Setting Figure Properties

2660

63 Intel® Fortran Compiler User and Reference Guides

FLOODFILLRGB, FLOODFILLRGB_W (W*32, W*64)
Graphics Functions: Fill an area using the current
Red-Green-Blue (RGB) color and fill mask.

Module

USE IFQWIN

Syntax

result = FLOODFILLRGB (x,y,color)

result = FLOODFILLRGB_W (wx,wy,color)

(Input) INTEGER(2). Viewport coordinates for fill starting point.x, y

(Input) INTEGER(4). RGB value of the boundary color.color

(Input) REAL(8). Window coordinates for fill starting point.wx, wy

Results

The result type is INTEGER(4). The result is a nonzero value if successful; otherwise, 0 (occurs
if the fill could not be completed, or if the starting point lies on a pixel with the boundary color
color, or if the starting point lies outside the clipping region).

FLOODFILLRGB begins filling at the viewport-coordinate point (x, y). FLOODFILLRGB_W begins
filling at the window-coordinate point (wx, wy). The fill color used by FLOODFILLRGB and
FLOODFILLRGB_W is set by SETCOLORRGB. You can obtain the current fill color by calling
GETCOLORRGB.

If the starting point lies inside a figure, the interior is filled; if it lies outside a figure, the
background is filled. In both cases, the fill color is the current color set by SETCOLORRGB. The
starting point must be inside or outside the figure, not on the figure boundary itself. Filling
occurs in all directions, stopping at pixels of the boundary color color.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

2661

63

Example
! Build as a QuickWin or Standard Graphics App.

USE IFQWIN

INTEGER(2) status

INTEGER(4) result, bcolor

INTEGER(2) x1, y1, x2, y2, xinterior, yinterior

x1 = 80; y1 = 50

x2 = 240; y2 = 150

result = SETCOLORRGB(Z'008080') ! red

status = RECTANGLE($GBORDER, x1, y1, x2, y2)

bcolor = GETCOLORRGB()

result = SETCOLORRGB (Z'FF0000') ! blue

xinterior = 160; yinterior = 100

result = FLOODFILLRGB (xinterior, yinterior, bcolor)

END

See Also
• E to F
• ELLIPSE
• FLOODFILL
• GETCOLORRGB
• GETFILLMASK
• GRSTATUS
• PIE
• SETCLIPRGN
• SETCOLORRGB
• SETFILLMASK

Building Applications: Setting Figure Properties

2662

63 Intel® Fortran Compiler User and Reference Guides

FLOOR
Elemental Intrinsic Function (Generic):
Returns the greatest integer less than or equal to
its argument.

Syntax

result = FLOOR (a[,kind])

(Input) Must be of type real.a

(Input; optional) Must be a scalar integer initialization expression.
This argument is a Fortran 95 feature.

kind

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified
by kind; otherwise, the kind parameter of the result is that of default integer. If the processor
cannot represent the result value in the kind of the result, the result is undefined.

The value of the result is equal to the greatest integer less than or equal to a.

The setting of compiler options specifying integer size can affect this function.

Example

FLOOR (4.8) has the value 4.

FLOOR (-5.6) has the value -6.

The following shows another example:

I = FLOOR(3.1) ! returns 3

I = FLOOR(-3.1) ! returns -4

See Also
• E to F
• CEILING

2663

63

FLUSH Directive
OpenMP* Fortran Compiler Directive: Identifies
synchronization points at which the implementation
must provide a consistent view of memory.

Syntax

c$OMP FLUSH [(list)]

Is one of the following: C (or c), !, or * (see Syntax Rules for
Compiler Directives).

c

Is the name of one or more variables to be flushed. Names must
be separated by commas.

list

The FLUSH directive must appear at the precise point in the code at which the synchronization
is required. To avoid flushing all variables, specify a list.

Thread-visible variables are written back to memory at the point at which this directive appears.
Modifications to thread-visible variables are visible to all threads after this point. Subsequent
reads of thread-visible variables fetch the latest copy of the data.

Thread-visible variables include the following data items:

• Globally visible variables (common blocks and modules)

• Local variables that do not have the SAVE attribute but have had their address taken and
saved or have had their address passed to another subprogram

• Local variables that do not have the SAVE attribute that are declared shared in a parallel
region within the subprogram

• Dummy arguments

• All pointer dereferences

The FLUSH directive is implied for the following directives (unless the NOWAIT keyword is used):

• BARRIER

• CRITICAL and END CRITICAL

• END DO

• END PARALLEL

• END SECTIONS

• END SINGLE

2664

63 Intel® Fortran Compiler User and Reference Guides

• ORDERED and END ORDERED

• PARALLEL and END PARALLEL

• PARALLEL DO and END PARALLEL DO

• PARALLEL SECTIONS and END PARALLEL SECTIONS

Example

The following example uses the FLUSH directive for point-to-point synchronization between
pairs of threads:

c$OMP PARALLEL DEFAULT(PRIVATE) SHARED(ISYNC)

IAM = OMP_GET_THREAD_NUM()

ISYNC(IAM) = 0

c$OMP BARRIER

CALL WORK()

C I AM DONE WITH MY WORK, SYNCHRONIZE WITH MY NEIGHBOR

ISYNC(IAM) = 1

c$OMP FLUSH(ISYNC)

C WAIT TILL NEIGHBOR IS DONE

DO WHILE (ISYNC(NEIGH) .EQ. 0)

c$OMP FLUSH(ISYNC)

END DO

c$OMP END PARALLEL

See Also
• E to F
• OpenMP Fortran Compiler Directives

2665

63

FLUSH Statement
Statement: Causes data written to a file to
become available to other processes or causes data
written to a file outside of Fortran to be accessible
to a READ statement. It takes one of the following
forms:

Syntax

FLUSH([UNIT=]io-unit [,ERR=label] [IOSTAT=i-var])

FLUSH io-unit

(Input) Is an external unit specifier.io-unit

(Input) Is the label of the branch target statement that receives
control if an error occurs.

label

(Output) Is a scalar integer variable that is defined as a positive
integer if an error occurs and zero if no error occurs.

i-var

The FLUSH statement specifiers can appear in any order. An I/O unit must be specified, but
the UNIT= keyword is optional if the unit specifier is the first item in the I/O control list.

This statement has no effect on file position.

FLUSH Subroutine
Portability Subroutine: Flushes the contents of
an external unit buffer into its associated file.

Module

USE IFPORT

Syntax

CALL FLUSH (lunit)

(Input) INTEGER(4). Number of the external unit to be flushed.
Must be currently connected to a file when the subroutine is called.
This routine is thread-safe, and locks the associated stream before
I/O is performed.

lunit

2666

63 Intel® Fortran Compiler User and Reference Guides

NOTE. The flush is performed in a non-blocking mode. In this mode, the command may
return before the physical write is completed. If you want to use a blocking mode of
FLUSH use COMMITQQ.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• E to F
• COMMITQQ

FOCUSQQ (W*32, W*64)
QuickWin Function: Sets focus to the window
with the specified unit number.

Module

USE IFQWIN

Syntax

result = FOCUSQQ (iunit)

(Input) INTEGER(4). Unit number of the window to which the focus
is set. Unit numbers 0, 5, and 6 refer to the default startup window.

iunit

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, nonzero.

Units 0, 5, and 6 refer to the default window only if the program does not specifically open
them. If these units have been opened and connected to windows, they are automatically
reconnected to the console once they are closed.

Unlike SETACTIVEQQ, FOCUSQQ brings the specified unit to the foreground. Note that the
window with the focus is not necessarily the active window (the one that receives graphical
output). A window can be made active without getting the focus by calling SETACTIVEQQ.

2667

63

A window has focus when it is given the focus by FOCUSQQ, when it is selected by a mouse
click, or when an I/O operation other than a graphics operation is performed on it, unless the
window was opened with IOFOCUS=.FALSE.. The IOFOCUS specifier determines whether a
window receives focus when on I/O statement is executed on that unit. For example:

OPEN (UNIT = 10, FILE = 'USER', IOFOCUS = .TRUE.)

By default IOFOCUS=.TRUE., except for child windows opened with as unit *. If
IOFOCUS=.TRUE., the child window receives focus prior to each READ, WRITE, PRINT, or
OUTTEXT. Calls to graphics functions (such as OUTGTEXT and ARC) do not cause the focus to
shift.

Compatibility

QUICKWIN GRAPHICS LIB

See Also
• E to F
• SETACTIVEQQ
• INQFOCUSQQ

Building Applications: Using QuickWin Overview

Building Applications: Giving a Window Focus and Setting the Active Window

FOR_DESCRIPTOR_ASSIGN (W*32, W*64)
Run-Time Subroutine: Creates an array
descriptor in memory.

Module

USE IFCORE

Syntax

CALL FOR_DESCRIPTOR_ASSIGN (dp,base,size,reserved,rank,dims_info)

(Input) A Fortran 95/90 pointer to an array; the array can be of
any data type.

dp

(Input) INTEGER(4) or INTEGER(8). The base address of the data
being described by dp.

base

Note that a Fortran 95/90 pointer describes both the location and
type of the data item.

2668

63 Intel® Fortran Compiler User and Reference Guides

(Input) INTEGER(4). The size of the data type; for example, 4 for
INTEGER(4).

size

(Input) INTEGER(4). A logical bitwise OR combination of the
following constants, which are defined in IFCORE.F90:

reserved

• FOR_DESCRIPTOR_ARRAY_DEFINED - Specifies whether the
array pointed to has been allocated or associated. If the bit is
set, the array has been allocated or associated.

• FOR_DESCRIPTOR_ARRAY_NODEALLOC - Specifies whether
the array points to something that can be deallocated by a call
to DEALLOCATE, or whether it points to something that cannot
be deallocated. For example:

integer, pointer :: p(:)

integer, target :: t

p => t ! t cannot be deallocated

allocate(p(10)) ! t can be deallocated

If the bit is set, the array cannot be deallocated.

• FOR_DESCRIPTOR_ARRAY_CONTIGUOUS - Specifies whether
the array pointed to is completely contiguous in memory or
whether it is a slice that is not contiguous. If the bit is set, the
array is contiguous.

(Input) INTEGER(4). The rank of the array pointed to.rank

(Input) An array of derived type FOR_DIMS_INFO; you must specify
a rank for this array. The derived type FOR_DIMS_INFO is defined
in IFCORE.F90 as follows:

TYPE FOR_DIMS_INFO

INTEGER(4) LOWERBOUND !Lower bound for the dimension

dims_info

INTEGER(4) UPPERBOUND !Upper bound for the dimension

INTEGER(4) STRIDE !Stride for the dimension

END TYPE FOR_DIMS_INFO

2669

63

The FOR_DESCRIPTOR_ASSIGN routine is similar to a Fortran 95/90 pointer assignment, but
gives you more control over the assignment, allowing, for example, assignment to any location
in memory.

You can also use this routine to create an array that can be used from both Fortran or C.

Example
use IFCORE

common/c_array/ array

real(8) array(5,5)

external init_array

external c_print_array

real(8),pointer :: p_array(:,:)

type(FOR_DIMS_INFO) dims_info(2)

call init_array()

do i=1,5

do j=1,5

print *,i,j, array(i,j)

end do

end do

dims_info(1)%LOWERBOUND = 11

dims_info(1)%UPPERBOUND = 15

dims_info(1)%STRIDE = 1

dims_info(2)%LOWERBOUND = -5

dims_info(2)%UPPERBOUND = -1

dims_info(2)%STRIDE = 1

2670

63 Intel® Fortran Compiler User and Reference Guides

call FOR_DESCRIPTOR_ASSIGN(p_array, &

LOC(array), &

SIZEOF(array(1,1)), &

FOR_DESCRIPTOR_ARRAY_DEFINED .or. &

FOR_DESCRIPTOR_ARRAY_NODEALLOC .or. &

FOR_DESCRIPTOR_ARRAY_CONTIGUOUS, &

2, &

dims_info)

p_array = p_array + 1

call c_print_array()

end

The following shows the C program containing init_array and c_print_array:

#include <stdio.h>

#if !defined(_WIN32) && !defined(_WIN64)

#define C_ARRAY c_array_

#define INIT_ARRAY init_array_

#define C_PRINT_ARRAY c_print_array_

#endif

double C_ARRAY[5][5];

void INIT_ARRAY(void);

void C_PRINT_ARRAY(void);

void INIT_ARRAY(void)

{

int i,j;

for(i=0;i<5;i++)

2671

63

for(j=0;j<5;j++)

C_ARRAY[i][j] = j + 10*i;

}

void C_PRINT_ARRAY(void)

{

int i,j;

for(i=0;i<5;i++){

for(j=0;j<5;j++)

printf("%f ", C_ARRAY[i][j]);

printf("\n");

}

}

See Also
• E to F
• POINTER - Fortran 95/90

FOR_GET_FPE
Run-Time Function: Returns the current settings
of floating-point exception flags. This routine can
be called from a C or Fortran program.

Module

USE IFCORE

Syntax

result = FOR_GET_FPE()

Results

The result type is INTEGER(4). The return value represents the settings of the current
floating-point exception flags. The meanings of the bits are defined in the IFPORT module file.

To set floating-point exception flags after program initialization, use FOR_SET_FPE.

2672

63 Intel® Fortran Compiler User and Reference Guides

Example
USE IFCORE

INTEGER*4 FPE_FLAGS

FPE_FLAGS = FOR_GET_FPE ()

See Also
• E to F
• FOR_SET_FPE option for example

for_rtl_finish_
Run-Time Function: Cleans up the Fortran
run-time environment; for example, flushing
buffers and closing files. It also issues messages
about floating-point exceptions, if any occur.

Syntax

This routine should be called from a C main program; it is invoked by default from a Fortran
main program.

result = for_rtl_finish_ ()

Results

The result is an I/O status value. For information on these status values, see Building
Applications: Using the IOSTAT Value and Fortran Exit Codes.

To initialize the Fortran run-time environment, use function for_rtl_init_ .

Example

Consider the following C code:

int io_status;

int for_rtl_finish_ ();

io_status = for_rtl_finish_ ();

See Also
• E to F
• for_rtl_init_

2673

63

for_rtl_init_
Run-Time Subroutine: Initializes the Fortran
run-time environment. It establishes handlers and
floating-point exception handling, so Fortran
subroutinesprocedures behave the same as when
called from a Fortran main program.

Syntax

This routine should be called from a C main program; it is invoked by default from a Fortran
main program.

CALL for_rtl_init_ (argcount,actarg)

Is a command-line parameter describing the argument count.argcount

Is a command-line parameter describing the actual arguments.actarg

To clean up the Fortran run-time environment, use function for_rtl_finish_.

Example

Consider the following C code:

int argc;

char **argv;

void for_rtl_init_ (int *, char **);

for_rtl_init_ (&argc, argv);

See Also
• E to F
• for_rtl_finish_

FOR_SET_FPE
Run-Time Function: Sets the floating-point
exception flags. This routine can be called from a
C or Fortran program.

Module

USE IFCORE

2674

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = FOR_SET_FPE (a)

Must be of type INTEGER(4). It contains bit flags controlling
floating-point exception trapping, reporting, and result handling.

a

Results

The result type is INTEGER(4). The return value represents the previous settings of the
floating-point exception flags. The meanings of the bits are defined in the IFCORE module file.

To get the current settings of the floating-point exception flags, use FOR_GET_FPE.

Example
USE IFCORE

INTEGER*4 OLD_FPE_FLAGS, NEW_FPE_FLAGS

OLD_FPE_FLAGS = FOR_SET_FPE (NEW_FPE_FLAGS)

2675

63

The following example program is compiled without any fpe options; however, it uses calls to
for_set_fpe to enable the same flags as when compiling with the fpe:0 option. The new
flags can be verified by compiling the program with the -fpe:0 option.

program samplefpe

use ifcore

implicit none

INTEGER(4) :: ORIGINAL_FPE_FLAGS, NEW_FPE_FLAGS

INTEGER(4) :: CURRENT_FPE_FLAGS, PREVIOUS_FPE_FLAGS

NEW_FPE_FLAGS = FPE_M_TRAP_UND + FPE_M_TRAP_OVF + FPE_M_TRAP_DIV0 &

+ FPE_M_TRAP_INV + FPE_M_ABRUPT_UND + FPE_M_ABRUPT_DMZ

ORIGINAL_FPE_FLAGS = FOR_SET_FPE (NEW_FPE_FLAGS)

CURRENT_FPE_FLAGS = FOR_GET_FPE ()

print *,"The original FPE FLAGS were:"

CALL PRINT_FPE_FLAGS(ORIGINAL_FPE_FLAGS)

print *," "

print *,"The new FPE FLAGS are:"

CALL PRINT_FPE_FLAGS(CURRENT_FPE_FLAGS)

!! restore the fpe flag to their original values

PREVIOUS_FPE_FLAGS = FOR_SET_FPE (ORIGINAL_FPE_FLAGS)

end

subroutine PRINT_FPE_FLAGS(fpe_flags)

use ifcore

implicit none

integer(4) :: fpe_flags

character(3) :: toggle

print 10, fpe_flags, fpe_flags

10 format(X,'FPE FLAGS = 0X',Z8.8," B'",B32.32)

if (IAND(fpe_flags, FPE_M_TRAP_UND) .ne. 0) then

toggle = "ON"

2676

63 Intel® Fortran Compiler User and Reference Guides

else

toggle = "OFF"

endif

write(*,*) " FPE_TRAP_UND :", toggle

if (IAND(fpe_flags, FPE_M_TRAP_OVF) .ne. 0) then

toggle = "ON"

else

toggle = "OFF"

endif

write(*,*) " FPE_TRAP_OVF :", toggle

if (IAND(fpe_flags, FPE_M_TRAP_DIV0) .ne. 0) then

toggle = "ON"

else

2677

63

toggle = "OFF"

endif

write(*,*) " FPE_TRAP_DIV0 :", toggle

if (IAND(fpe_flags, FPE_M_TRAP_INV) .ne. 0) then

toggle = "ON"

else

toggle = "OFF"

endif

write(*,*) " FPE_TRAP_INV :", toggle

if (IAND(fpe_flags, FPE_M_ABRUPT_UND) .ne. 0) then

toggle = "ON"

else

toggle = "OFF"

endif

write(*,*) " FPE_ABRUPT_UND :", toggle

if (IAND(fpe_flags, FPE_M_ABRUPT_OVF) .ne. 0) then

toggle = "ON"

else

toggle = "OFF"

endif

write(*,*) " FPE_ABRUPT_OVF :", toggle

if (IAND(fpe_flags, FPE_M_ABRUPT_DMZ) .ne. 0) then

toggle = "ON"

else

toggle = "OFF"

endif

write(*,*) " FPE_ABRUPT_DIV0 :", toggle

if (IAND(fpe_flags, FPE_M_ABRUPT_DIV0) .ne. 0) then

2678

63 Intel® Fortran Compiler User and Reference Guides

toggle = "ON"

else

toggle = "OFF"

endif

write(*,*) " FPE_ABRUPT_INV :", toggle

if (IAND(fpe_flags, FPE_M_ABRUPT_DMZ) .ne. 0) then ! ABRUPT_DMZ

toggle = "ON"

else

toggle = "OFF"

endif

write(*,*) " FPE_ABRUPT_DMZ :", toggle, " (ftz related)"

end subroutine PRINT_FPE_FLAGS

2679

63

The output from this program is as follows:

>ifort set_fpe_sample01.f90

>set_fpe_sample01.exe

The original FPE FLAGS were:

FPE FLAGS = 0X00000000 B'00000000000000000000000000000000

FPE_TRAP_UND :OFF

FPE_TRAP_OVF :OFF

FPE_TRAP_DIV0 :OFF

FPE_TRAP_INV :OFF

FPE_ABRUPT_UND :OFF

FPE_ABRUPT_OVF :OFF

FPE_ABRUPT_DIV0 :OFF

FPE_ABRUPT_INV :OFF

FPE_ABRUPT_DMZ :OFF (ftz related)

The new FPE FLAGS are:

FPE FLAGS = 0X0011000F B'00000000000100010000000000001111

FPE_TRAP_UND :ON

FPE_TRAP_OVF :ON

FPE_TRAP_DIV0 :ON

FPE_TRAP_INV :ON

FPE_ABRUPT_UND :ON

FPE_ABRUPT_OVF :OFF

FPE_ABRUPT_DIV0 :ON

FPE_ABRUPT_INV :OFF

FPE_ABRUPT_DMZ :ON (ftz related)

2680

63 Intel® Fortran Compiler User and Reference Guides

FOR_SET_REENTRANCY
Run-Time Function: Controls the type of
reentrancy protection that the Fortran Run-Time
Library (RTL) exhibits. This routine can be called
from a C or Fortran program.

Module

USE IFCORE

Syntax

result = FOR_SET_REENTRANCY (mode)

Must be of type INTEGER(4) and contain one of the following
options:

mode

Tells the Fortran RTL to perform simple locking
around critical sections of RTL code. This type
of reentrancy should be used when the Fortran

FOR_K_REENTRANCY_NONE

RTL will not be reentered due to asynchronous
system traps (ASTs) or threads within the
application.

Tells the Fortran RTL to perform simple locking
and disables ASTs around critical sections of
RTL code. This type of reentrancy should be
used when the application contains AST
handlers that call the Fortran RTL.

FOR_K_REENTRANCY_ASYNCH

Tells the Fortran RTL to perform thread
locking. This type of reentrancy should be used
in multithreaded applications.

FOR_K_REENTRANCY_THREADED

Tells the Fortran RTL to return the current
reentrancy mode.

FOR_K_REENTRANCY_INFO

Results

The result type is INTEGER(4). The return value represents the previous setting of the Fortran
Run-Time Library reentrancy mode, unless the argument is FOR_K_REENTRANCY_INFO, in
which case the return value represents the current setting.

2681

63

You must be using an RTL that supports the level of reentrancy you desire. For example,
FOR_SET_REENTRANCY ignores a request for thread protection
(FOR_K_REENTRANCY_THREADED) if you do not build your program with the thread-safe RTL.

Example
PROGRAM SETREENT

USE IFCORE

INTEGER*4 MODE

CHARACTER*10 REENT_TXT(3) /'NONE ','ASYNCH ','THREADED'/

PRINT*,'Setting Reentrancy mode to ',REENT_TXT(MODE+1)

MODE = FOR_SET_REENTRANCY(FOR_K_REENTRANCY_NONE)

PRINT*,'Previous Reentrancy mode was ',REENT_TXT(MODE+1)

MODE = FOR_SET_REENTRANCY(FOR_K_REENTRANCY_INFO)

PRINT*,'Current Reentrancy mode is ',REENT_TXT(MODE+1)

END

FORALL
Statement and Construct: The FORALL
statement and construct is an element-by-element
generalization of the Fortran 95/90 masked array
assignment (WHERE statement and construct). It
allows more general array shapes to be assigned,
especially in construct form.

Syntax

FORALL is a feature of Fortran 95.

Statement:

FORALL (triplet-spec[, triplet-spec] ...[, mask-expr]) assign-stmt

Construct:

[name:] FORALL (triplet-spec[, triplet-spec] ...[, mask-expr])

forall-body-stmt

[forall-body-stmt]...

END FORALL [name]

2682

63 Intel® Fortran Compiler User and Reference Guides

Is a triplet specification with the following form:triplet-spec

subscript-name= subscript-1: subscript-2[: stride]

The subscript-name is a scalar of type integer. It is valid only
within the scope of the FORALL; its value is undefined on
completion of the FORALL.
The subscripts and stride cannot contain a reference to any
subscript-name in triplet-spec.
The stride cannot be zero. If it is omitted, the default value is 1.
Evaluation of an expression in a triplet specification must not affect
the result of evaluating any other expression in another triplet
specification.

Is a logical array expression (called the mask expression). If it is
omitted, the value .TRUE. is assumed. The mask expression can
reference the subscript name in triplet-spec.

mask-expr

Is a triplet specification with the following form:triplet-spec

subscript-name= subscript-1: subscript-2[: stride]

The subscript-name is a scalar of type integer. It is valid only
within the scope of the FORALL; its value is undefined on
completion of the FORALL.
The subscripts and stride cannot contain a reference to any
subscript-name in triplet-spec.
The stride cannot be zero. If it is omitted, the default value is 1.
Evaluation of an expression in a triplet specification must not affect
the result of evaluating any other expression in another triplet
specification.

Description

If a construct name is specified in the FORALL statement, the same name must appear in the
corresponding END FORALL statement.

A FORALL statement is executed by first evaluating all bounds and stride expressions in the
triplet specifications, giving a set of values for each subscript name. The FORALL assignment
statement is executed for all combinations of subscript name values for which the mask
expression is true.

2683

63

The FORALL assignment statement is executed as if all expressions (on both sides of the
assignment) are completely evaluated before any part of the left side is changed. Valid values
are assigned to corresponding elements of the array being assigned to. No element of an array
can be assigned a value more than once.

A FORALL construct is executed as if it were multiple FORALL statements, with the same triplet
specifications and mask expressions. Each statement in the FORALL body is executed completely
before execution begins on the next FORALL body statement.

Any procedure referenced in the mask expression or FORALL assignment statement must be
pure.

Pure functions can be used in the mask expression or called directly in a FORALL statement.
Pure subroutines cannot be called directly in a FORALL statement, but can be called from other
pure procedures.

Example

The following example, which is not expressible using array syntax, sets diagonal elements of
an array to 1:

REAL, DIMENSION(N, N) :: A

FORALL (I=1:N) A(I, I) = 1

Consider the following:

FORALL(I = 1:N, J = 1:N, A(I, J) .NE. 0.0) B(I, J) = 1.0 / A(I, J)

This statement takes the reciprocal of each nonzero element of array A(1:N, 1:N) and assigns
it to the corresponding element of array B. Elements of A that are zero do not have their
reciprocal taken, and no assignments are made to corresponding elements of B.

Every array assignment statement and WHERE statement can be written as a FORALL statement,
but some FORALL statements cannot be written using just array syntax. For example, the
preceding FORALL statement is equivalent to the following:

WHERE(A /= 0.0) B = 1.0 / A

However, the following FORALL example cannot be written using just array syntax:

FORALL(I = 1:N, J = 1:N) H(I, J) = 1.0/REAL(I + J - 1)

This statement sets array element H(I, J) to the value 1.0/REAL(I + J - 1) for values of I and
J between 1 and N.

2684

63 Intel® Fortran Compiler User and Reference Guides

Consider the following:

TYPE MONARCH

INTEGER, POINTER :: P

END TYPE MONARCH

TYPE(MONARCH), DIMENSION(8) :: PATTERN

INTEGER, DIMENSION(8), TARGET :: OBJECT

FORALL(J=1:8) PATTERN(J)%P => OBJECT(1+IEOR(J-1,2))

This FORALL statement causes elements 1 through 8 of array PATTERN to point to elements
3, 4, 1, 2, 7, 8, 5, and 6, respectively, of OBJECT. IEOR can be referenced here because it is
pure.

The following example shows a FORALL construct:

FORALL(I = 3:N + 1, J = 3:N + 1)

C(I, J) = C(I, J + 2) + C(I, J - 2) + C(I + 2, J) + C(I - 2, J)

D(I, J) = C(I, J)

END FORALL

The assignment to array D uses the values of C computed in the first statement in the construct,
not the values before the construct began execution.

See Also
• E to F
• WHERE

FORMAT
Statement: Specifies the form of data being
transferred and the data conversion (editing)
required to achieve that form.

Syntax

FORMAT (format-list)

Is a list of one or more of the following edit descriptors, separated
by commas or slashes (/):

format-list

I, B, O, Z, F, E, EN, ES, D, G,
L, and A.

Data edit descriptors:

2685

63

T, TL, TR, X, S, SP, SS, BN,
BZ, P, :, /, $, \, and Q.

Control edit descriptors:

H, 'c', and "c", where c is a
character constant.

String edit descriptors:

A comma can be omitted in the following cases:

• Between a P edit descriptor and an immediately following F, E,
EN, ES, D, or G edit descriptor

• Before a slash (/) edit descriptor when the optional repeat
specification is not present

• After a slash (/) edit descriptor

• Before or after a colon (:) edit descriptor

Edit descriptors can be nested and a repeat specification can
precede data edit descriptors, the slash edit descriptor, or a
parenthesized list of edit descriptors.

Description

A FORMAT statement must be labeled.

Named constants are not permitted in format specifications.

If the associated I/O statement contains an I/O list, the format specification must contain at
least one data edit descriptor or the control edit descriptor Q.

Blank characters can precede the initial left parenthesis, and additional blanks can appear
anywhere within the format specification. These blanks have no meaning unless they are within
a character string edit descriptor.

When a formatted input statement is executed, the setting of the BLANK specifier (for the
relevant logical unit) determines the interpretation of blanks within the specification. If the BN
or BZ edit descriptors are specified for a formatted input statement, they supersede the default
interpretation of blanks. (For more information on BLANK defaults, see the OPEN statement.

For formatted input, use the comma as an external field separator. The comma terminates the
input of fields (for noncharacter data types) that are shorter than the number of characters
expected. It can also designate null (zero-length) fields.

2686

63 Intel® Fortran Compiler User and Reference Guides

The first character of a record transmitted to a line printer or terminal is typically used for
carriage control; it is not printed. The first character of such a record should be a blank, 0, 1,
$,+, or ASCII NUL. Any other character is treated as a blank.

A format specification cannot specify more output characters than the external record can
contain. For example, a line printer record cannot contain more than 133 characters, including
the carriage control character.

Whenever an edit descriptor requires an integer constant, you can specify an integer expression
in a FORMAT statement. The integer expression must be enclosed by angle brackets (< and
>). The following examples are valid format specifications:

WRITE(6,20) INT1

20 FORMAT(I<MAX(20,5)>)

WRITE(6,FMT=30) INT2, INT3

30 FORMAT(I<J+K>, I<2*M>)

The integer expression can be any valid Fortran expression, including function calls and
references to dummy arguments, with the following restrictions:

• Expressions cannot be used with the H edit descriptor.

• Expressions cannot contain graphical relational operators (such as > and <).

The value of the expression is reevaluated each time an input/output item is processed during
the execution of the READ, WRITE, or PRINT statement.

The following tables summarize the different kinds of edit descriptors:

Table 797: Data Edit Descriptors

EffectForm 1Code

Transfers character or
Hollerith values.

A[w]A

Transfers binary values.Bw[.m]B

Transfers real values with D
exponents.

Dw.dD

Transfers real values with E
exponents.

Ew.d[Ee]E

2687

63

EffectForm 1Code

Transfers real values with
engineering notation.

ENw.d[Ee]EN

Transfers real values with
scientific notation.

ESw.d[Ee]ES

Transfers real values with no
exponent.

Fw.dF

Transfers values of all
intrinsic types.

Gw.d[Ee]G

Transfers decimal integer
values.

Iw[.m]I

Transfers logical values: on
input, transfers characters;
on output, transfers T or F.

LwL

Transfers octal values.Ow[.m]O

Transfers hexadecimal
values.

Zw[.m]Z

1 w is the field width.

m is the minimum number of digits that must be in the field (including zeros).

d is the number of digits to the right of the decimal point.

E is the exponent field.

e is the number of digits in the exponent.

Table 798: Control Edit Descriptors

EffectFormCode

Ignores embedded and
trailing blanks in a numeric
input field.

BNBN

2688

63 Intel® Fortran Compiler User and Reference Guides

EffectFormCode

Treats embedded and trailing
blanks in a numeric input
field as zeros.

BZBZ

Interprets certain real
numbers with a specified
scale factor.

kPP

Returns the number of
characters remaining in an
input record.

QQ

Reinvokes optional plus sign
(+) in numeric output fields;
counters the action of SP and
SS.

SS

Writes optional plus sign (+)
into numeric output fields.

SPSP

Suppresses optional plus sign
(+) in numeric output fields.

SSSS

Tabs to specified position.TnT

Tabs left the specified
number of positions.

TLnTL

Tabs right the specified
number of positions.

TRnTR

Skips the specified number
of positions.

nXX

Suppresses trailing carriage
return during interactive I/O.

$$

2689

63

EffectFormCode

Terminates format control if
there are no more items in
the I/O list.

::

Terminates the current record
and moves to the next
record.

[r]//

Continues the same record;
same as $.

\\

Table 799: String Edit Descriptors

EffectFormCode

Transfers characters following
the H edit descriptor to an
output record.

nHch[ch...]H

Transfers the character literal
constant (between the
delimiters) to an output
record.

'c''c' 2

2 These delimiters can also be quotation marks (").

Example
INTEGER width, value

width = 2

read (*,1) width, value

! if the input is 3123, prints 123, not 12

1 format (i1, i<width>)

print *, value

END

2690

63 Intel® Fortran Compiler User and Reference Guides

See Also
• E to F
• I/O Formatting
• Format Specifications
• Data Edit Descriptors

FP_CLASS
Elemental Intrinsic Function (Generic):
Returns the class of an IEEE* real (S_floating,
T_floating, or X_floating) argument. This function
cannot be passed as an actual argument.

Syntax

result = FP_CLASS (x)

(Input) Must be of type real.x

Results

The result type is INTEGER(4). The return value is one of the following:

Return ValueClass of Argument

FOR_K_FP_SNANSignaling NaN

FOR_K_FP_QNANQuiet NaN

FOR_K_FP_POS_INFPositive Infinity

FOR_K_FP_NEG_INFNegative Infinity

FOR_K_FP_POS_NORMPositive Normalized Number

FOR_K_FP_NEG_NORMNegative Normalized Number

FOR_K_FP_POS_DENORMPositive Denormalized Number

FOR_K_FP_NEG_DENORMNegative Denormalized Number

FOR_K_FP_POS_ZEROPositive Zero

2691

63

Return ValueClass of Argument

FOR_K_FP_NEG_ZERONegative Zero

The preceding return values are defined in file for_fpclass.for.

Example

FP_CLASS (4.0_8) has the value 4 (FOR_K_FP_POS_NORM).

FPUTC
Portability Function: Writes a character to the
file specified by a Fortran external unit, bypassing
normal Fortran input/output.

Module

USE IFPORT

Syntax

result = FPUTC (lunit,char)

(Input) INTEGER(4). Unit number of a file.lunit

(Output) Character*(*). Variable whose value is to be written to
the file corresponding to lunit.

char

Results

The result type is INTEGER(4). The result is zero if the write was successful; otherwise, an
error code, such as:

EINVAL - The specified unit is invalid (either not already open, or an invalid unit number)

If you use WRITE, READ, or any other Fortran I/O statements with lunit, be sure to read
Building Applications: Input and Output With Portability Routines.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

2692

63 Intel® Fortran Compiler User and Reference Guides

Example
use IFPORT

integer*4 lunit, i4

character*26 string

character*1 char1

lunit = 1

open (lunit,file = 'fputc.dat')

do i = 1,26

char1 = char(123-i)

i4 = fputc(1,char1) !make valid writes

if (i4.ne.0) iflag = 1

enddo

rewind (1)

read (1,'(a)') string

print *, string

See Also
• E to F
• I/O Formatting

Building Applications: Files, Devices, and Input/Output Hardware

FRACTION
Elemental Intrinsic Function (Generic):
Returns the fractional part of the model
representation of the argument value.

Syntax

result = FRACTION (x)

(Input) Must be of type real.x

2693

63

Results

The result type is the same as x. The result has the value x* b e. Parameters b and e are defined
in Model for Real Data. If x has the value zero, the result has the value zero.

Example

If 3.0 is a REAL(4) value, FRACTION (3.0) has the value 0.75.

The following shows another example:

REAL result

result = FRACTION(3.0) ! returns 0.75

result = FRACTION(1024.0) ! returns 0.5

See Also
• E to F
• DIGITS
• RADIX
• EXPONENT
• Data Representation Models

FREE
Intrinsic Subroutine (Specific): Frees a block
of memory that is currently allocated. Intrinsic
subroutines cannot be passed as actual arguments.

Syntax

CALL FREE (addr)

(Input) Must be of type INTEGER(4) on IA-32 architecture;
INTEGER(8) on Intel® 64 architecture and IA-64 architecture. This
value is the starting address of the memory block to be freed,
previously allocated by MALLOC.

addr

If the freed address was not previously allocated by MALLOC, or if an address is freed more
than once, results are unpredictable.

2694

63 Intel® Fortran Compiler User and Reference Guides

Example
INTEGER(4) SIZE

REAL(4) STORAGE(*)

POINTER (ADDR, STORAGE) ! ADDR will point to STORAGE

SIZE = 1024 ! Size in bytes

ADDR = MALLOC(SIZE) ! Allocate the memory

CALL FREE(ADDR) ! Free it

FREEFORM and NOFREEFORM
General Compiler Directives: FREEFORM
specifies that source code is in free-form format.
NOFREEFORM specifies that source code is in
fixed-form format.

Syntax

cDEC$ FREEFORM

cDEC$ NOFREEFORM

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

When the FREEFORM or NOFREEFORM directives are used, they remain in effect for the remainder
of the file, or until the opposite directive is used. When in effect, they apply to include files,
but do not affect USE modules, which are compiled separately.

See Also
• E to F
• M to N
• Source Forms
• General Compiler Directives
• free compiler option

Building Applications: Compiler Directives Related to Options

2695

63

FSEEK
Portability Function: Repositions a file specified
by a Fortran external unit.

Module

USE IFPORT

Syntax

result = FSEEK (lunit,offset,from)

(Input) INTEGER(4). External unit number of a file.lunit

(Input) INTEGER(4) or INTEGER(8). Offset in bytes, relative to
from, that is to be the new location of the file marker.

offset

(Input) INTEGER(4). A position in the file. It must be one of the
following:

from

PositionVariableValue

Positions the file
relative to the
beginning of the
file.

SEEK_SET0

Positions the file
relative to the
current position.

SEEK_CUR1

Positions the file
relative to the end
of the file.

SEEK_END2

Results

The result type is INTEGER(4). The result is zero if the repositioning was successful; otherwise,
an error code, such as:

EINVAL: The specified unit is invalid (either not already open, or an invalid unit number), or
the from parameter is invalid.

The file specified in lunit must be open.

2696

63 Intel® Fortran Compiler User and Reference Guides

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

integer(4) istat, offset, ipos

character ichar

OPEN (unit=1,file='datfile.dat')

offset = 5

ipos = 0

istat=fseek(1,offset,ipos)

if (.NOT. stat) then

istat=fgetc(1,ichar)

print *, 'data is ',ichar

end if

FSTAT
Portability Function: Returns detailed information
about a file specified by a external unit number.

Module

USE IFPORT

Syntax

result = FSTAT (lunit,statb)

(Input) INTEGER(4). External unit number of the file to examine.lunit

(Output) INTEGER(4) or INTEGER(8). One-dimensional array of
size 12; where the system information is stored. The elements of
statb contain the following values:

statb

2697

63

Values or NotesDescriptionElement

W*32, W*64:
Always 0

Device the file
resides on

statb(1)

L*X: System
dependent

W*32, W*64:
Always 0

File inode numberstatb(2)

L*X: System
dependent

See the table in
Results

Access mode of the
file

statb(3)

W*32, W*64:
Always 1

Number of hard
links to the file

statb(4)

L*X: System
dependent

W*32, W*64:
Always 1

User ID of ownerstatb(5)

L*X: System
dependent

W*32, W*64:
Always 1

Group ID of ownerstatb(6)

L*X: System
dependent

W*32, W*64:
Always 0

Raw device the file
resides on

statb(7)

L*X: System
dependent

Size of the filestatb(8)

2698

63 Intel® Fortran Compiler User and Reference Guides

Values or NotesDescriptionElement

W*32, W*64: Only
available on
non-FAT file
systems; undefined
on FAT systems

Time when the file
was last accessed1

statb(9)

L*X: System
dependent

Time when the file
was last modified1

statb(10)

W*32, W*64:
Same as stat(10)

Time of last file
status change1

statb(11)

L*X: System
dependent

W*32, W*64:
Always 1

Blocksize for file
system I/O
operations

statb(12)

L*X: System
dependent

1Times are in the same format returned by the TIME function
(number of seconds since 00:00:00 Greenwich mean time,
January 1, 1970).

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, returns an error code
equal to EINVAL (lunit is not a valid unit number, or is not open).

The access mode (the third element of statb) is a bitmap consisting of an IOR of the following
constants:

NotesDescriptionConstantSymbolic name

Type of fileO'0170000'S_IFMT

2699

63

NotesDescriptionConstantSymbolic name

DirectoryO'0040000'S_IFDIR

Never set on
Windows* systems

Character specialO'0020000'S_IFCHR

Never set on
Windows systems

Block specialO'0060000'S_IFBLK

RegularO'0100000'S_IFREG

Never set on
Windows systems

Symbolic linkO'0120000'S_IFLNK

Never set on
Windows systems

SocketO'0140000'S_IFSOCK

Never set on
Windows systems

Set user ID on
execution

O'0004000'S_ISUID

Never set on
Windows systems

Set group ID on
execution

O'0002000'S_ISGID

Never set on
Windows systems

Save swapped textO'0001000'S_ISVTX

Owner's file
permissions

O'0000700'S_IRWXU

Always true on
Windows systems

Owner's read
permission

O'0000400'S_IRUSR, S_IREAD

Owner's write
permission

O'0000200'S_IWUSR, S_IWRITE

Based on file
extension (.EXE,
.COM, .CMD, or .BAT)

Owner's execute
permission

O'0000100'S_IXUSR, S_IEXEC

2700

63 Intel® Fortran Compiler User and Reference Guides

NotesDescriptionConstantSymbolic name

Same as S_IRWXU
on Windows systems

Group's file
permissions

O'0000070'S_IRWXG

Same as S_IRUSR on
Windows systems

Group's read
permission

O'0000040'S_IRGRP

Same as S_IWUSR
on Windows systems

Group's write
permission

O'0000020'S_IWGRP

Same as S_IXUSR on
Windows systems

Group's execute
permission

O'0000010'S_IXGRP

Same as S_IRWXU
on Windows systems

Other's file
permissions

O'0000007'S_IRWXO

Same as S_IRUSR on
Windows systems

Other's read
permission

O'0000004'S_IROTH

Same as S_IWUSR
on Windows systems

Other's write
permission

O'0000002'S_IWOTH

Same as S_IXUSR on
Windows systems

Other's execute
permission

O'0000001'S_IXOTH

STAT returns the same information as FSTAT, but accesses files by name instead of external
unit number.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

2701

63

Example
USE IFPORT

integer(4) statarray(12), istat

OPEN (unit=1,file='datfile.dat')

ISTAT = FSTAT (1, statarray)

if (.NOT. istat) then

print *, statarray

end if

See Also
• E to F
• INQUIRE
• STAT

FTELL, FTELLI8
Portability Functions: Return the current position
of a file.

Module

USE IFPORT

Syntax

result = FTELL (lunit)

result = FTELLI8 (lunit)

(Input) INTEGER(4). External unit number of a file.lunit

Results

The result type is INTEGER(4) for FTELL; INTEGER(8) for FTELLI8. The result is the offset, in
bytes, from the beginning of the file. A negative value indicates an error, which is the negation
of the IERRNO error code. The following is an example of an error code:

EINVAL: lunit is not a valid unit number, or is not open.

2702

63 Intel® Fortran Compiler User and Reference Guides

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

FULLPATHQQ
Portability Function: Returns the full path for a
specified file or directory.

Module

USE IFPORT

Syntax

result = FULLPATHQQ (name,pathbuf)

(Input) Character*(*). Item for which you want the full path. Can
be the name of a file in the current directory, a relative directory
or file name, or a network uniform naming convention (UNC) path.

name

(Output) Character*(*). Buffer to receive full path of the item
specified in name.

pathbuf

Results

The result type is INTEGER(4). The result is the length of the full path in bytes, or 0 if the
function fails. This function does not verify that the resulting path and file name are valid nor
that they exist.

The length of the full path depends upon how deeply the directories are nested on the drive
you are using. If the full path is longer than the character buffer provided to return it (pathbuf),
FULLPATHQQ returns only that portion of the path that fits into the buffer.

Check the length of the path before using the string returned in pathbuf. If the longest full
path you are likely to encounter does not fit into the buffer you are using, allocate a larger
character buffer. You can allocate the largest possible path buffer with the following statements:

USE IFPORT

CHARACTER($MAXPATH) pathbuf

$MAXPATH is a symbolic constant defined in IFPORT.F90 as 260.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

2703

63

Example
USE IFPORT

USE IFCORE

CHARACTER($MAXPATH) buf

CHARACTER(3) drive

CHARACTER(256) dir

CHARACTER(256) name

CHARACTER(256) ext

CHARACTER(256) file

INTEGER(4) len

DO WHILE (.TRUE.)

WRITE (*,*)

WRITE (*,'(A, \)') ' Enter filename (Hit &

RETURN to exit): '

len = GETSTRQQ(file)

IF (len .EQ. 0) EXIT

len = FULLPATHQQ(file, buf)

IF (len .GT. 0) THEN

WRITE (*,*) buf(:len)

ELSE

WRITE (*,*) 'Can''t get full path'

EXIT

END IF

!

! Split path

WRITE (*,*)

len = SPLITPATHQQ(buf, drive, dir, name, ext)

IF (len .NE. 0) THEN

2704

63 Intel® Fortran Compiler User and Reference Guides

WRITE (*, 900) ' Drive: ', drive

WRITE (*, 900) ' Directory: ', dir(1:len)

WRITE (*, 900) ' Name: ', name

WRITE (*, 900) ' Extension: ', ext

ELSE

WRITE (*, *) 'Can''t split path'

END IF

END DO

900 FORMAT (A, A)

END

See Also
• E to F
• SPLITPATHQQ

FUNCTION
Statement: The initial statement of a function
subprogram. A function subprogram is invoked in
an expression and returns a single value (a function
result) that is used to evaluate the expression.

Syntax

[prefix [prefix]] FUNCTION name [([d-arg-list])] [suffix]

[specification-part]

[execution-part]

[CONTAINS

internal-subprogram-part]

END [FUNCTION [name]]

(Optional) Is any of the following:prefix

• A data type specifier

• RECURSIVE

2705

63

Permits direct recursion to occur. If a function is directly
recursive and array valued, RESULT must also be specified.

• PURE

Asserts that the procedure has no side effects.

• ELEMENTAL

Acts on one array element at a time. This is a restricted form
of pure procedure.

At most one of each of the above can be specified. You cannot
specify ELEMENTAL and RECURSIVE together. You cannot specify
ELEMENTAL if lang-binding is specified in suffix.

Is the name of the function. If RESULT is specified, the function
name must not appear in any specification statement in the scoping
unit of the function subprogram.

name

The function name can be followed by the length of the data type.
The length is specified by an asterisk (*) followed by any unsigned,
nonzero integer that is a valid length for the function's type. For
example, REAL FUNCTION LGFUNC*8 (Y, Z) specifies the function
result as REAL(8) (or REAL*8).
This optional length specification is not permitted if the length has
already been specified following the keyword CHARACTER.

(Optional) Is a list of one or more dummy arguments.d-arg-list
If there are no dummy arguments and no RESULT variable, the
parentheses can be omitted. For example, the following is valid:

FUNCTION F

(Optional) Takes one of the following forms:suffix
[RESULT (r-name)] lang-binding
lang-binding [RESULT (r-name)]

(Optional) Is the name of the function result.
This name must not be the same as the
function name.

r-name

Takes the following form:lang-binding
BIND (C [, NAME=ext-name])

2706

63 Intel® Fortran Compiler User and Reference Guides

Is a character scalar
initialization expression that can
be used to construct the
external name.

ext-name

Is one or more specification statements, except for the following:specification-part

• INTENT (or its equivalent attribute)

• OPTIONAL (or its equivalent attribute)

• PUBLIC and PRIVATE (or their equivalent attributes)

An automatic object must not appear in a specification statement.
If a SAVE statement is specified, it has no effect.

Is one or more executable constructs or statements, except for
ENTRY or RETURN statements.

execution-part

Is one or more internal subprograms (defining internal procedures).
The internal-subprogram-part is preceded by a CONTAINS
statement.

internal-subprogram-part

Description

The type and kind parameters (if any) of the function's result can be defined in the FUNCTION
statement or in a type declaration statement within the function subprogram, but not both. If
no type is specified, the type is determined by implicit typing rules in effect for the function
subprogram.

Execution begins with the first executable construct or statement following the FUNCTION
statement. Control returns to the calling program unit once the END statement (or a RETURN
statement) is executed.

If you specify CHARACTER*(*), the function assumes the length declared for it in the program
unit that invokes it. This type of character function can have different lengths when it is invoked
by different program units; it is an obsolescent feature in Fortran 95.

If the length is specified as an integer constant, the value must agree with the length of the
function specified in the program unit that invokes the function. If no length is specified, a
length of 1 is assumed.

If the function is array-valued or a pointer, the declarations within the function must state these
attributes for the function result name. The specification of the function result attributes, dummy
argument attributes, and the information in the procedure heading collectively define the
interface of the function.

2707

63

The value of the result variable is returned by the function when it completes execution. Certain
rules apply depending on whether the result is a pointer, as follows :

• If the result is a pointer, its allocation status must be determined before the function
completes execution. The function must associate a target with the pointer, or cause the
pointer to be explicitly disassociated from a target.

The shape of the value returned by the function is determined by the shape of the result
variable when the function completes execution.

• If the result is not a pointer, its value must be defined before the function completes
execution. If the result is an array, all the elements must be defined. If the result is a
derived-type structure, all the components must be defined.

A function subprogram cannot contain a BLOCK DATA statement, a PROGRAM statement, or a
MODULE statement. A function can contain SUBROUTINE and FUNCTION statements to define
internal procedures. ENTRY statements can be included to provide multiple entry points to the
subprogram.

Example

The following example uses the Newton-Raphson iteration method (F(X) = cosh(X) + cos(X)
- A = 0) to get the root of the function:

FUNCTION ROOT(A)

X = 1.0

DO

EX = EXP(X)

EMINX = 1./EX

ROOT = X - ((EX+EMINX)*.5+COS(X)-A)/((EX-EMINX)*.5-SIN(X))

IF (ABS((X-ROOT)/ROOT) .LT. 1E-6) RETURN

X = ROOT

END DO

END

In the preceding example, the following formula is calculated repeatedly until the difference
between Xi and Xi+1 is less than 1.0E-6:

2708

63 Intel® Fortran Compiler User and Reference Guides

The following example shows an assumed-length character function:

CHARACTER*(*) FUNCTION REDO(CARG)

CHARACTER*1 CARG

DO I=1,LEN(REDO)

REDO(I:I) = CARG

END DO

RETURN

END FUNCTION

This function returns the value of its argument, repeated to fill the length of the function.

Within any given program unit, all references to an assumed-length character function must
have the same length. In the following example, the REDO function has a length of 1000:

CHARACTER*1000 REDO, MANYAS, MANYZS

MANYAS = REDO('A')

MANYZS = REDO('Z')

Another program unit within the executable program can specify a different length. For example,
the following REDO function has a length of 2:

CHARACTER HOLD*6, REDO*2

HOLD = REDO('A')//REDO('B')//REDO('C')

The following example shows a dynamic array-valued function:

FUNCTION SUB (N)

REAL, DIMENSION(N) :: SUB

...

END FUNCTION

2709

63

The following shows another example:

INTEGER Divby2

10 PRINT *, 'Enter a number'

READ *, i

Print *, Divby2(i)

GOTO 10

END

C

C This is the function definition

C

INTEGER FUNCTION Divby2 (num)

Divby2=num / 2

END FUNCTION

2710

63 Intel® Fortran Compiler User and Reference Guides

The following example shows an allocatable function with allocatable arguments:

MODULE AP

CONTAINS

FUNCTION ADD_VEC(P1,P2)

! Function to add two allocatable arrays of possibly differing lengths.

! The arrays may be thought of as polynomials (coefficients)

REAL, ALLOCATABLE :: ADD_VEC(:), P1(:), P2(:)

! This function returns an allocatable array whose length is set to

! the length of the larger input array.

ALLOCATE(ADD_VEC(MAX(SIZE(P1), SIZE(P2))))

M = MIN(SIZE(P1), SIZE(P2))

! Add up to the shorter input array size

ADD_VEC(:M) = P1(:M) + P2(:M)

! Use the larger input array elements afterwards (from P1 or P2)

IF(SIZE(P1) > M) THEN

ADD_VEC(M+1:) = P1(M+1:)

ELSE IF(SIZE(P2) > M) THEN

ADD_VEC(M+1:) = P2(M+1:)

ENDIF

END FUNCTION

END MODULE

PROGRAM TEST

USE AP

REAL, ALLOCATABLE :: P(:), Q(:), R(:), S(:)

ALLOCATE(P(3))

ALLOCATE(Q(2))

ALLOCATE(R(3))

ALLOCATE(S(3))

! Notice that P and Q differ in length

2711

63

P = (/4,2,1/) ! P = X**2 + 2X + 4

Q = (/-1,1/) ! Q = X - 1

PRINT *,' Result should be: 3.000000 3.000000 1.000000'

PRINT *,' Coefficients are: ', ADD_VEC(P, Q) ! X**2 + 3X + 3

P = (/1,1,1/) ! P = X**2 + X + 1

R = (/2,2,2/) ! R = 2X**2 + 2X + 2

S = (/3,3,3/) ! S = 3X**2 + 3X + 3

PRINT *,' Result should be: 6.000000 6.000000 6.000000'

PRINT *,' Coefficients are: ', ADD_VEC(ADD_VEC(P,R), S)

END

See Also
• E to F
• ENTRY
• SUBROUTINE
• PURE
• ELEMENTAL
• RESULT keyword
• Function References
• Program Units and Procedures
• General Rules for Function and Subroutine Subprograms

G

GERROR
Run-Time Subroutine: Returns a message for
the last error detected by a Fortran run-time
routine.

Module

USE IFCORE

2712

63 Intel® Fortran Compiler User and Reference Guides

Syntax

CALL GERROR (string)

(Output) Character*(*). Message corresponding to the last detected
error.

string

The last detected error does not necessarily correspond to the most recent function call. The
compiler resets string only when another error occurs.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFCORE

character*40 errtext

character char1

integer*4 iflag, i4

. . .!Open unit 1 here

i4=fgetc(1,char1)

if (i4) then

iflag = 1

Call GERROR (errtext)

print *, errtext

end if

See Also
• G
• PERROR
• IERRNO

2713

63

GETACTIVEQQ (W*32, W*64)
QuickWin Function: Returns the unit number of
the currently active child window.

Module

USE IFQWIN

Syntax

result = GETACTIVEQQ()

Results

The result type is INTEGER(4). The result is the unit number of the currently active window. If
no child window is active, it returns the parameter QWIN$NOACTIVEWINDOW (defined in
IFQWIN.F90).

Compatibility

QUICKWIN GRAPHICS LIB

See Also
• G
• SETACTIVEQQ
• GETHWNDQQ

Building Applications: Using QuickWin Overview

Building Applications: Giving a Window Focus and Setting the Active Window

GETARCINFO (W*32, W*64)
Graphics Function: Determines the endpoints (in
viewport coordinates) of the most recently drawn
arc or pie.

Module

USE IFQWIN

Syntax

result = GETARCINFO (pstart, pend, ppaint)

2714

63 Intel® Fortran Compiler User and Reference Guides

(Output) Derived type xycoord. Viewport coordinates of the
starting point of the arc.

pstart

(Output) Derived type xycoord. Viewport coordinates of the end
point of the arc.

pend

(Output) Derived type xycoord. Viewport coordinates of the point
at which the fill begins.

ppaint

Results

The result type is INTEGER(2). The result is nonzero if successful. The result is zero if neither
the ARC nor the PIE function has been successfully called since the last time CLEARSCREEN or
SETWINDOWCONFIG was successfully called, or since a new viewport was selected.

GETARCINFO updates the pstart and pendxycoord derived types to contain the endpoints (in
viewport coordinates) of the arc drawn by the most recent call to the ARC or PIE functions. The
xycoord derived type, defined in IFQWIN.F90, is:

TYPE xycoord

INTEGER(2) xcoord

INTEGER(2) ycoord

END TYPE xycoord

The returned value in ppaint specifies a point from which a pie can be filled. You can use this
to fill a pie in a color different from the border color. After a call to GETARCINFO, change colors
using SETCOLORRGB. Use the new color, along with the coordinates in ppaint, as arguments
for the FLOODFILLRGB function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

2715

63

Example
USE IFQWIN

INTEGER(2) status, x1, y1, x2, y2, x3, y3, x4, y4

TYPE (xycoord) xystart, xyend, xyfillpt

x1 = 80; y1 = 50

x2 = 240; y2 = 150

x3 = 120; y3 = 80

x4 = 90; y4 = 180

status = ARC(x1, y1, x2, y2, x3, y3, x4, y4)

status = GETARCINFO(xystart, xyend, xyfillpt)

END

See Also
• G
• ARC
• FLOODFILLRGB
• GETCOLORRGB
• GRSTATUS
• PIE
• SETCOLORRGB

GETARG
Intrinsic Subroutine: Returns the specified
command-line argument (where the command
itself is argument number zero). This subroutine
cannot be passed as an actual argument.

Syntax

CALL GETARG (n,buffer[,status])

(Input) Must be a scalar of type integer. This value is the position
of the command-line argument to retrieve. The command itself is
argument number 0.

n

2716

63 Intel® Fortran Compiler User and Reference Guides

(Output) Must be a scalar of type default character. Its value is
the returned command-line argument.

buffer

(Output; optional) Must be a scalar of type integer. If specified,
its value is the returned completion status.

status

If there were no errors, status returns the number of characters
in the retrieved command-line argument before truncation or
blank-padding. (That is, status is the original number of
characters in the command-line argument.) Errors return a value
of -1. Errors include specifying an argument position less than 0
or greater than the value returned by IARGC.

GETARG returns the nth command-line argument. If n is zero, the name of the executing
program file is returned.

GETARG returns command-line arguments as they were entered. There is no case conversion.

If the command-line argument is shorter than buffer, GETARG pads buffer on the right with
blanks. If the argument is longer than buffer, GETARG truncates the argument on the right.
If there is an error, GETARG fills buffer with blanks.

Example

Assume a command-line invocation of PROG1 -g -c -a, and that buffer is at least five
characters long. The following calls to GETARG return the corresponding arguments in buffer
and status:

Length returned in statusString returned in bufferStatement

5PROG1CALL GETARG (0, buffer,
status)

undefined-gCALL GETARG (1, buffer)

2-cCALL GETARG (2, buffer,
status)

undefined-aCALL GETARG (3, buffer)

-1all blanksCALL GETARG (4, buffer,
status)

2717

63

See Also
• G
• NARGS
• IARGC
• COMMAND_ARGUMENT_COUNT
• GET_COMMAND
• GET_COMMAND_ARGUMENT

GETBKCOLOR (W*32, W*64)
Graphics Function: Returns the current
background color index for both text and graphics
output.

Module

USE IFQWIN

Syntax

result = GETBKCOLOR()

Results

The result type is INTEGER(4). The result is the current background color index.

GETBKCOLOR returns the current background color index for both text and graphics, as set
with SETBKCOLOR. The color index of text over the background color is set with SETTEXTCOLOR
and returned with GETTEXTCOLOR. The color index of graphics over the background color is
set with SETCOLOR and returned with GETCOLOR. These non-RGB color functions use color
indexes, not true color values, and limit the user to colors in the palette, at most 256. For
access to all system colors, use SETBKCOLORRGB, SETCOLORRGB, and SETTEXTCOLORRGB.

Generally, INTEGER(4) color arguments refer to color values and INTEGER(2) color arguments
refer to color indexes. The two exceptions are GETBKCOLOR and SETBKCOLOR. The default
background index is 0, which is associated with black unless the user remaps the palette with
REMAPPALETTERGB.

2718

63 Intel® Fortran Compiler User and Reference Guides

NOTE. The GETBKCOLOR routine described here is a QuickWin routine. If you are trying
to use the Microsoft* Platform SDK version of the GetBkColor routine by including the
IFWIN module, you need to specify the routine name as MSFWIN$GetBkColor. For more
information, see Building Applications: Special Naming Convention for Certain QuickWin
and Win32 Graphics Routines.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
USE IFQWIN

INTEGER(4) bcindex

bcindex = GETBKCOLOR()

See Also
• G
• GETBKCOLORRGB
• SETBKCOLOR
• GETCOLOR
• GETTEXTCOLOR
• REMAPALLPALETTERGB, REMAPPALETTERGB

Building Applications: Setting Figure Properties

Building Applications: Using Text Colors

GETBKCOLORRGB (W*32, W*64)
Graphics Function: Returns the current
background Red-Green-Blue (RGB) color value for
both text and graphics.

Module

USE IFQWIN

Syntax

result = GETBKCOLORRGB()

2719

63

Results

The result type is INTEGER(4). The result is the RGB value of the current background color for
both text and graphics.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an
eight-bit value (2 hex digits). In the value you retrieve with GETBKCOLORRGB, red is the
rightmost byte, followed by green and blue. The RGB value's internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex FF) the
maximum for each of the three components. For example, Z'0000FF' yields full-intensity red,
Z'00FF00' full-intensity green, Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all
three, resulting in bright white.

GETBKCOLORRGB returns the RGB color value of the current background for both text and
graphics, set with SETBKCOLORRGB. The RGB color value of text over the background color
(used by text functions such as OUTTEXT, WRITE, and PRINT) is set with SETTEXTCOLORRGB
and returned with GETTEXTCOLORRGB. The RGB color value of graphics over the background
color (used by graphics functions such as ARC, OUTGTEXT, and FLOODFILLRGB) is set with
SETCOLORRGB and returned with GETCOLORRGB.

SETBKCOLORRGB (and the other RGB color selection functions SETCOLORRGB and
SETTEXTCOLORRGB) sets the color to a value chosen from the entire available range. The
non-RGB color functions (SETBKCOLOR, SETCOLOR, and SETTEXTCOLOR) use color indexes
rather than true color values. If you use color indexes, you are restricted to the colors available
in the palette, at most 256. Some display adapters (SVGA and true color) are capable of creating
262,144 (256K) colors or more. To access any available color, you need to specify an explicit
RGB value with an RGB color function, rather than a palette index with a non-RGB color function.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

2720

63 Intel® Fortran Compiler User and Reference Guides

Example
! Build as a QuickWin or Standard Graphics App.

USE IFQWIN

INTEGER(4) back, fore, oldcolor

INTEGER(2) status, x1, y1, x2, y2

x1 = 80; y1 = 50

x2 = 240; y2 = 150

oldcolor = SETCOLORRGB(Z'FF') ! red

! reverse the screen

back = GETBKCOLORRGB()

fore = GETCOLORRGB()

oldcolor = SETBKCOLORRGB(fore)

oldcolor = SETCOLORRGB(back)

CALL CLEARSCREEN ($GCLEARSCREEN)

status = ELLIPSE($GBORDER, x1, y1, x2, y2)

END

See Also
• G
• GETCOLORRGB
• GETTEXTCOLORRGB
• SETBKCOLORRGB
• GETBKCOLOR

Building Applications: Setting Figure Properties

Building Applications: Using Text Colors

2721

63

GETC
Portability Function: Reads the next available
character from external unit 5, which is normally
connected to the console.

Module

USE IFPORT

Syntax

result = GETC (char)

(Output) Character*(*). First character typed at the keyboard after
the call to GETC. If unit 5 is connected to a console device, then
no characters are returned until the Enter key is pressed.

char

Results

The result type is INTEGER(4). The result is zero if successful, or -1 if an end-of-file was
detected.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAHICS WINDOWS DLL LIB

Example
use IFPORT

character ans,errtxt*40

print *, 'Enter a character: '

ISTAT = GETC (ans)

if (istat) then

call gerror(errtxt)

end if

See Also
• G
• GETCHARQQ
• GETSTRQQ

2722

63 Intel® Fortran Compiler User and Reference Guides

GETCHARQQ
Run-Time Function: Returns the next keystroke.

Module

USE IFCORE

Syntax

result = GETCHARQQ()

Results

The result type is character with length 1. The result is the character representing the key that
was pressed. The value can be any ASCII character.

If the key pressed is represented by a single ASCII character, GETCHARQQ returns the character.
If the key pressed is a function or direction key, a hex Z'00' or Z'E0' is returned. If you need
to know which function or direction was pressed, call GETCHARQQ a second time to get the
extended code for the key.

If there is no keystroke waiting in the keyboard buffer, GETCHARQQ waits until there is one,
and then returns it. Compare this to the function PEEKCHARQQ, which returns .TRUE. if there
is a character waiting in the keyboard buffer, and .FALSE. if not. You can use PEEKCHARQQ to
determine if GETCHARQQ should be called. This can prevent a program from hanging while
GETCHARQQ waits for a keystroke that isn't there. Note that PEEKCHARQQ is only supported
in console applications.

If your application is a QuickWin or Standard Graphics application, you may want to put a call
to PASSDIRKEYSQQ in your program. This will enable the program to get characters that would
otherwise be trapped. These extra characters are described in PASSDIRKEYSQQ.

Note that the GETCHARQQ routine used in a console application is a different routine than the
one used in a QuickWin or Standard Graphics application. The GETCHARQQ used with a console
application does not trap characters that are used in QuickWin for a special purpose, such as
scrolling. Console applications do not need, and cannot use PASSDIRKEYSQQ.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

2723

63

Example
! Program to demonstrate GETCHARQQ

USE IFCORE

CHARACTER(1) key / 'A' /

PARAMETER (ESC = 27)

PARAMETER (NOREP = 0)

WRITE (*,*) ' Type a key: (or q to quit)'

! Read keys until ESC or q is pressed

DO WHILE (ICHAR (key) .NE. ESC)

key = GETCHARQQ()

! Some extended keys have no ASCII representation

IF(ICHAR(key) .EQ. NOREP) THEN

key = GETCHARQQ()

WRITE (*, 900) 'Not ASCII. Char = NA'

WRITE (*,*)

! Otherwise, there is only one key

ELSE

WRITE (*,900) 'ASCII. Char = '

WRITE (*,901) key

END IF

IF (key .EQ. 'q') THEN

EXIT

END IF

END DO

900 FORMAT (1X, A, \)

901 FORMAT (A)

END

2724

63 Intel® Fortran Compiler User and Reference Guides

See Also
• G
• PEEKCHARQQ
• GETSTRQQ
• INCHARQQ
• MBINCHARQQ
• GETC
• FGETC
• PASSDIRKEYSQQ

GETCOLOR (W*32, W*64)
Graphics Function: Returns the current graphics
color index.

Module

USE IFQWIN

Syntax

result = GETCOLOR()

Results

The result type is INTEGER(2). The result is the current color index, if successful; otherwise,
-1.

GETCOLOR returns the current color index used for graphics over the background color as set
with SETCOLOR. The background color index is set with SETBKCOLOR and returned with
GETBKCOLOR. The color index of text over the background color is set with SETTEXTCOLOR
and returned with GETTEXTCOLOR. These non-RGB color functions use color indexes, not true
color values, and limit the user to colors in the palette, at most 256. For access to all system
colors, use SETCOLORRGB, SETBKCOLORRGB, and SETTEXTCOLORRGB.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

2725

63

Example
! Program to demonstrate GETCOLOR

PROGRAM COLORS

USE IFQWIN

INTEGER(2) loop, loop1, status, color

LOGICAL(4) winstat

REAL rnd1, rnd2, xnum, ynum

type (windowconfig) wc

status = SETCOLOR(INT2(0))

! Color random pixels with 15 different colors

DO loop1 = 1, 15

color = INT2(MOD(GETCOLOR() +1, 16))

status = SETCOLOR (color) ! Set to next color

DO loop = 1, 75

! Set color of random spot, normalized to be on screen

CALL RANDOM(rnd1)

CALL RANDOM(rnd2)

winstat = GETWINDOWCONFIG(wc)

xnum = wc%numxpixels

ynum = wc%numypixels

status = &

SETPIXEL(INT2(rnd1*xnum+1),INT2(rnd2*ynum))

status = &

SETPIXEL(INT2(rnd1*xnum),INT2(rnd2*ynum+1))

status = &

SETPIXEL(INT2(rnd1*xnum-1),INT2(rnd2*ynum))

status = &

SETPIXEL(INT2(rnd1*xnum),INT2(rnd2*ynum-1))

2726

63 Intel® Fortran Compiler User and Reference Guides

END DO

END DO

END

See Also
• G
• GETCOLORRGB
• GETBKCOLOR
• GETTEXTCOLOR
• SETCOLOR

Building Applications: Setting Figure Properties

GETCOLORRGB (W*32, W*64)
Graphics Function: Returns the current graphics
color Red-Green-Blue (RGB) value (used by
graphics functions such as ARC, ELLIPSE, and
FLOODFILLRGB).

Module

USE IFQWIN

Syntax

result = GETCOLORRGB()

Results

The result type is INTEGER(4). The result is the RGB value of the current graphics color.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an
eight-bit value (2 hex digits). In the value you retrieve with GETCOLORRGB, red is the rightmost
byte, followed by green and blue. The RGB value's internal structure is as follows:

2727

63

Larger numbers correspond to stronger color intensity with binary 1111111 (hex FF) the
maximum for each of the three components. For example, Z'0000FF' yields full-intensity red,
Z'00FF00' full-intensity green, Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all
three, resulting in bright white.

GETCOLORRGB returns the RGB color value of graphics over the background color (used by
graphics functions such as ARC, ELLIPSE, and FLOODFILLRGB), set with SETCOLORRGB.
GETBKCOLORRGB returns the RGB color value of the current background for both text and
graphics, set with SETBKCOLORRGB. GETTEXTCOLORRGB returns the RGB color value of text
over the background color (used by text functions such as OUTTEXT, WRITE, and PRINT), set
with SETTEXTCOLORRGB.

SETCOLORRGB (and the other RGB color selection functions SETBKCOLORRGB and
SETTEXTCOLORRGB) sets the color to a value chosen from the entire available range. The
non-RGB color functions (SETCOLOR, SETBKCOLOR, and SETTEXTCOLOR) use color indexes
rather than true color values. If you use color indexes, you are restricted to the colors available
in the palette, at most 256. Some display adapters (SVGA and true color) are capable of creating
262,144 (256K) colors or more. To access any available color, you need to specify an explicit
RGB value with an RGB color function, rather than a palette index with a non-RGB color function.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

2728

63 Intel® Fortran Compiler User and Reference Guides

Example
! Build as a QuickWin or Standard Graphics App.

USE IFQWIN

INTEGER(2) numfonts

INTEGER(4) fore, oldcolor

numfonts = INITIALIZEFONTS ()

oldcolor = SETCOLORRGB(Z'FF') ! set graphics

! color to red

fore = GETCOLORRGB()

oldcolor = SETBKCOLORRGB(fore) ! set background

! to graphics color

CALL CLEARSCREEN($GCLEARSCREEN)

oldcolor = SETCOLORRGB (Z'FF0000') ! set graphics

! color to blue

CALL OUTGTEXT("hello, world")

END

See Also
• G
• GETBKCOLORRGB
• GETTEXTCOLORRGB
• SETCOLORRGB
• GETCOLOR

Building Applications: Color Mixing

Building Applications: Setting Figure Properties

2729

63

GET_COMMAND
Intrinsic Subroutine: Returns the entire
command that was used to invoke the program.

Syntax

CALL GET_COMMAND ([command,length,status])

(Output; optional) Must be a scalar of type default character. If
specified, its value is the entire command that was used to invoke
the program. If the command cannot be determined, its value is
all blanks.

command

(Output; optional) Must be a scalar of type integer. If specified,
its value is the significant length of the command that was used
to invoke the program. This length includes trailing blanks, but it
does not include any truncation or padding used in the command.
If the command length cannot be determined, its value is zero.

length

(Output; optional) Must be a scalar of type integer. If specified,
its value is -1 if the command argument is present and has a length
less than the significant length of the command. If the command
cannot be retrieved, its value is positive; otherwise, it is assigned
the value zero.

status

Example

See the example in COMMAND_ARGUMENT_COUNT.

See Also
• G
• GETARG
• NARGS
• IARGC
• COMMAND_ARGUMENT_COUNT
• GET_COMMAND_ARGUMENT

2730

63 Intel® Fortran Compiler User and Reference Guides

GET_COMMAND_ARGUMENT
Intrinsic Subroutine: Returns a command line
argument of the command that invoked the
program. This subroutine cannot be passed as an
actual argument.

Syntax

CALL GET_COMMAND_ARGUMENT (number[,value,length,status])

(Input) Must be a scalar of type integer. It must be non-negative
and less than or equal to the value returned by the
COMMAND_ARGUMENT_COUNT function. Its value is the position
of the command-line argument to retrieve. The command itself is
argument number zero.

number

(Output; optional) Must be a scalar of type default character. If
specified, its value is the returned command-line argument or all
blanks if the value is unknown.

value

(Output; optional) Must be a scalar of type integer. If specified,
its value is the length of the returned command-line argument or
zero if the length of the argument is unknown. This length includes

length

significant trailing blanks. It does not include any truncation or
padding that occurs when the argument is assigned to the value
argument.

(Output; optional) Must be a scalar of type integer. If specified,
its value is the returned completion status. It is assigned the value
-1 if the value argument is present and has a length less than the

status

significant length of the command argument specified by number.
It is assigned a processor-dependent positive value if the argument
retrieval fails. Otherwise, it is assigned the value zero.

GET_COMMAND_ARGUMENT returns command-line arguments as they were entered. There is
no case conversion.

Example

See the example in COMMAND_ARGUMENT_COUNT.

See Also
• G

2731

63

• GETARG
• NARGS
• IARGC
• COMMAND_ARGUMENT_COUNT
• GET_COMMAND

GETCONTROLFPQQ
Portability Subroutine: Returns the floating-point
processor control word.

Module

USE IFPORT

Syntax

CALL GETCONTROLFPQQ (controlword)

(Output) INTEGER(2). Floating-point processor control word.controlword
The floating-point control word is a bit flag that controls various
modes of the floating-point coprocessor.
The control word can be any of the following constants (defined
in IFPORT.F90):

DescriptionHex valueParameter name

Infinity control
mask

Z'1000'FPCW$MCW_IC

Affine infinityZ'1000'FPCW$AFFINE

Projective infinityZ'0000'FPCW$PROJECTIVE

Precision control
mask

Z'0300'FPCW$MCW_PC

64-bit precisionZ'0300'FPCW$64

53-bit precisionZ'0200'FPCW$53

24-bit precisionZ'0000'FPCW$24

2732

63 Intel® Fortran Compiler User and Reference Guides

DescriptionHex valueParameter name

Rounding control
mask

Z'0C00'FPCW$MCW_RC

TruncateZ'0C00'FPCW$CHOP

Round upZ'0800'FPCW$UP

Round downZ'0400'FPCW$DOWN

Round to nearestZ'0000'FPCW$NEAR

Exception maskZ'003F'FPCW$MCW_EM

Allow invalid
numbers

Z'0001'FPCW$INVALID

Allow denormals
(very small
numbers)

Z'0002'FPCW$DENORMAL

Allow divide by zeroZ'0004'FPCW$ZERODIVIDE

Allow overflowZ'0008'FPCW$OVERFLOW

Allow underflowZ'0010'FPCW$UNDERFLOW

Allow inexact
precision

Z'0020'FPCW$INEXACT

An exception is disabled if its control bit is set to 1. An exception is enabled if its control bit is
cleared to 0. Exceptions can be disabled by setting the control bits to 1 with SETCONTROLFPQQ.

If an exception is disabled, it does not cause an interrupt when it occurs. Instead, floating-point
processes generate an appropriate special value (NaN or signed infinity), but the program
continues.

2733

63

You can find out which exceptions (if any) occurred by calling GETSTATUSFPQQ. If errors on
floating-point exceptions are enabled (by clearing the control bits to 0 with SETCONTROLFPQQ),
the operating system generates an interrupt when the exception occurs. By default, these
interrupts cause run-time errors, but you can capture the interrupts with SIGNALQQ and branch
to your own error-handling routines.

You can use GETCONTROLFPQQ to retrieve the current control word and SETCONTROLFPQQ to
change the control word. Most users do not need to change the default settings. For a full
discussion of the floating-point control word, exceptions, and error handling, see Building
Applications: The Floating-Point Environment Overview.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(2) control

CALL GETCONTROLFPQQ (control)

!if not rounding down

IF (IAND(control, FPCW$DOWN) .NE. FPCW$DOWN) THEN

control = IAND(control, NOT(FPCW$MCW_RC)) ! clear all

! rounding

control = IOR(control, FPCW$DOWN) ! set to

! round down

CALL SETCONTROLFPQQ(control)

END IF

END

See Also
• G
• SETCONTROLFPQQ
• GETSTATUSFPQQ
• SIGNALQQ
• CLEARSTATUSFPQQ

2734

63 Intel® Fortran Compiler User and Reference Guides

Building Applications: Exception Parameters

Building Applications: Floating-Point Control Word Overview

GETCURRENTPOSITION, GETCURRENTPOSITION_W (W*32, W*64)
Graphics Subroutines: Return the coordinates
of the current graphics position.

Module

USE IFQWIN

Syntax

CALL GETCURRENTPOSITION (t)

CALL GETCURRENTPOSITION_W (wt)

(Output) Derived type xycoord. Viewport coordinates of current
graphics position. The derived type xycoordis defined in
IFQWIN.F90 as follows:

TYPE xycoord

INTEGER(2) xcoord ! x-coordinate

INTEGER(2) ycoord ! y-coordinate

END TYPE xycoord

t

(Output) Derived type wxycoord. Window coordinates of current
graphics position. The derived type wxycoordis defined in
IFQWIN.F90 as follows:

TYPE wxycoord

REAL(8) wx ! x-coordinate

REAL(8) wy ! y-coordinate

END TYPE wxycoord

wt

LINETO, MOVETO, and OUTGTEXT all change the current graphics position. It is in the center
of the screen when a window is created.

2735

63

Graphics output starts at the current graphics position returned by GETCURRENTPOSITION or
GETCURRENTPOSITION_W. This position is not related to normal text output (from OUTTEXT
or WRITE, for example), which begins at the current text position (see SETTEXTPOSITION). It
does, however, affect graphics text output from OUTGTEXT.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
! Program to demonstrate GETCURRENTPOSITION

USE IFQWIN

TYPE (xycoord) position

INTEGER(2) result

result = LINETO(INT2(300), INT2(200))

CALL GETCURRENTPOSITION(position)

IF (position%xcoord .GT. 50) THEN

CALL MOVETO(INT2(50), position%ycoord, position)

WRITE(*,*) "Text unaffected by graphics position"

END IF

result = LINETO(INT2(300), INT2(200))

END

See Also
• G
• LINETO
• MOVETO
• OUTGTEXT
• SETTEXTPOSITION
• GETTEXTPOSITION

Building Applications: Setting Graphics Coordinates

2736

63 Intel® Fortran Compiler User and Reference Guides

GETCWD
Portability Function: Returns the path of the
current working directory.

Module

USE IFPORT

Syntax

result = GETCWD (dirname)

(Output) Character *(*). Name of the current working directory
path, including drive letter.

dirname

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, an error code.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

character*30 dirname

! variable dirname must be long enough to hold entire string

integer(4) istat

ISTAT = GETCWD (dirname)

IF (ISTAT == 0) write *, 'Current directory is ',dirname

See Also
• G
• GETDRIVEDIRQQ

2737

63

GETDAT
Portability Subroutine: Returns the date.

Module

USE IFPORT

Syntax

CALL GETDAT (iyr, imon, iday)

(Output) INTEGER(4) or INTEGER(2). Year (xxxxAD).iyr

(Output) INTEGER(4) or INTEGER(2). Month (1-12).imon

(Output) INTEGER(4) or INTEGER(2). Day of the month (1-31).iday
This subroutine is thread-safe.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

2738

63 Intel® Fortran Compiler User and Reference Guides

Example
! Program to demonstrate GETDAT and GETTIM

USE IFPORT

INTEGER(4) tmpday, tmpmonth, tmpyear

INTEGER(4) tmphour, tmpminute, tmpsecond, tmphund

CHARACTER(1) mer

CALL GETDAT(tmpyear, tmpmonth, tmpday)

CALL GETTIM(tmphour, tmpminute, tmpsecond, tmphund)

IF (tmphour .GT. 12) THEN

mer = 'p'

tmphour = tmphour - 12

ELSE

mer = 'a'

END IF

WRITE (*, 900) tmpmonth, tmpday, tmpyear

900 FORMAT(I2, '/', I2.2, '/', I4.4)

WRITE (*, 901) tmphour,tmpminute,tmpsecond,tmphund,mer

901 FORMAT(I2, ':', I2.2, ':', I2.2, ':', I2.2, ' ',&

A, 'm')

END

See Also
• G
• GETTIM
• SETDAT
• SETTIM
• DATE portability routine
• FDATE
• IDATE portability routine
• JDATE

2739

63

GETDRIVEDIRQQ
Portability Function: Returns the path of the
current working directory on a specified drive.

Module

USE IFPORT

Syntax

result = GETDRIVEDIRQQ (drivedir)

(Input; output) Character*(*). On input, drive whose current
working directory path is to be returned. On output, string
containing the current directory on that drive in the form d:\dir.

drivedir

Results

The result type is INTEGER(4). The result is the length (in bytes) of the full path of the directory
on the specified drive. Zero is returned if the path is longer than the size of the character buffer
drivedir.

You specify the drive from which to return the current working directory by putting the drive
letter into drivedir before calling GETDRIVEDIRQQ. To make sure you get information about
the current drive, put the symbolic constant FILE$CURDRIVE (defined in IFPORT.F90) into
drivedir.

Because drives are identified by a single alphabetic character, GETDRIVEDIRQQ examines only
the first letter of drivedir. For instance, if drivedir contains the path c:\fps90\bin,
GETDRIVEDIRQQ (drivedir) returns the current working directory on drive C and disregards
the rest of the path. The drive letter can be uppercase or lowercase.

The length of the path returned depends on how deeply the directories are nested on the drive
specified in drivedir. If the full path is longer than the length of drivedir, GETDRIVEDIRQQ
returns only the portion of the path that fits into drivedir. If you are likely to encounter a long
path, allocate a buffer of size $MAXPATH ($MAXPATH = 260).

On Linux* and Mac OS* X systems, the function gets a path only when symbolic constant
FILE$CURDRIVE has been applied to drivedir.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

2740

63 Intel® Fortran Compiler User and Reference Guides

Example
! Program to demonstrate GETDRIVEDIRQQ

USE IFPORT

CHARACTER($MAXPATH) dir

INTEGER(4) length

! Get current directory

dir = FILE$CURDRIVE

length = GETDRIVEDIRQQ(dir)

IF (length .GT. 0) THEN

WRITE (*,*) 'Current directory is: '

WRITE (*,*) dir

ELSE

WRITE (*,*) 'Failed to get current directory'

END IF

END

See Also
• G
• CHANGEDRIVEQQ
• CHANGEDIRQQ
• GETDRIVESIZEQQ
• GETDRIVESQQ
• GETLASTERRORQQ
• SPLITPATHQQ

GETDRIVESIZEQQ
Portability Function: Returns the total size of
the specified drive and space available on it.

Module

USE IFPORT

2741

63

Syntax

result = GETDRIVESIZEQQ (drive,total,avail)

(Input) Character*(*). String containing the letter of the drive to
get information about.

drive

(Output) INTEGER(4) or INTEGER(4),DIMENSION(2) or
INTEGER(8). Total number of bytes on the drive.

total

(Output) INTEGER(4) or INTEGER(4),DIMENSION(2) or
INTEGER(8). Number of bytes of available space on the drive.

avail

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

The data types and dimension (if any) specified for the total and avail arguments must be
the same. Specifying an array of two INTEGER(4) elements, or an INTEGER(8) argument, allows
drive sizes larger than 2147483647 to be returned.

If an array of two INTEGER(4) elements is specified, the least-significant 32 bits are returned
in the first element, the most-significant 32 bits in the second element. If an INTEGER(4) scalar
is specified, the least-significant 32 bits are returned.

Because drives are identified by a single alphabetic character, GETDRIVESIZEQQ examines
only the first letter of drive. The drive letter can be uppercase or lowercase. You can use the
constant FILE$CURDRIVE (defined in IFPORT.F90) to get the size of the current drive.

If GETDRIVESIZEQQ fails, use GETLASTERRORQQ to determine the reason.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

2742

63 Intel® Fortran Compiler User and Reference Guides

Example
! Program to demonstrate GETDRIVESQQ and GETDRIVESIZEQQ

USE IFPORT

CHARACTER(26) drives

CHARACTER(1) adrive

LOGICAL(4) status

INTEGER(4) total, avail

INTEGER(2) i

! Get the list of drives

drives = GETDRIVESQQ()

WRITE (*,'(A, A)') ' Drives available: ', drives

!

!Cycle through them for free space and write to console

DO i = 1, 26

adrive = drives(i:i)

status = .FALSE.

WRITE (*,'(A, A, A, \)') ' Drive ', CHAR(i + 64), ':'

IF (adrive .NE. ' ') THEN

status = GETDRIVESIZEQQ(adrive, total, avail)

END IF

IF (status) THEN

WRITE (*,*) avail, ' of ', total, ' bytes free.'

ELSE

WRITE (*,*) 'Not available'

END IF

END DO

END

2743

63

See Also
• G
• GETLASTERRORQQ
• GETDRIVESQQ
• GETDRIVEDIRQQ
• CHANGEDRIVEQQ
• CHANGEDIRQQ

GETDRIVESQQ
Portability Function: Reports which drives are
available to the system.

Module

USE IFPORT

Syntax

result = GETDRIVESQQ()

Results

The result type is character with length 26. It is the positional character string containing the
letters of the drives available in the system.

The returned string contains letters for drives that are available, and blanks for drives that are
not available. For example, on a system with A, C, and D drives, the string 'A CD' is returned.

On Linux* and Mac OS* X systems, the function returns a string filled with spaces.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

Example

See the example for GETDRIVESIZEQQ.

See Also
• G
• GETDRIVEDIRQQ
• GETDRIVESIZEQQ

2744

63 Intel® Fortran Compiler User and Reference Guides

• CHANGEDRIVEQQ

GETENV
Portability Subroutine: Returns the value of an
environment variable.

Module

USE IFPORT

Syntax

CALL GETENV (ename,evalue)

(Input) Character*(*). Environment variable to search for.ename

(Output) Character*(*). Value found for ename. Blank if ename is
not found.

evalue

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
use IFPORT

character*40 libname

CALL GETENV ("LIB",libname)

TYPE *, "The LIB variable points to ",libname

See Also
• G
• GETENVQQ

GET_ENVIRONMENT_VARIABLE
Intrinsic Subroutine: Gets the value of an
environment variable.

Syntax

CALL GET_ENVIRONMENT_VARIABLE (name [,value,length,status,trim_name])

2745

63

(Input) Must be a scalar of type default character. It is the name
of the environment variable.

name

(Output; optional) Must be a scalar of type default character. If
specified, it is assigned the value of the environment variable
specified by name. If the environment variable does not exist,
value is assigned all blanks.

value

Must be a scalar of type integer. If specified, its value is the length
of the the environment variable, if it exists; otherwise, length is
set to 0.

length

(Output; optional) Must be a scalar of type integer. If specified, it
is assigned a value of 0 if the environment variable exists and
either has no value or its value is successfully assigned to value.

status

It is assigned a value of 1 if the environment variable does not
exist. For other error conditions, it is assigned a
processor-dependent value greater than 2.

(Input; optional) Must be a scalar of type logical. If the value is
FALSE, then trailing blanks in name are considered significant.
Otherwise, they are not considered part of the environment
variable's name.

trim_name

2746

63 Intel® Fortran Compiler User and Reference Guides

Example

The following program asks for the name of an environment variable. If the environment variable
exists in the program's environment, it prints out its value:

program print_env_var

character name*20, val*40

integer len, status

write (*,*) 'enter the name of the environment variable'

read (*,*) name

call get_environment_variable (name, val, len, status, .true.)

if (status .ge. 2) then

write (*,*) 'get_environment_variable failed: status = ', status

stop

end if

if (status .eq. 1) then

write (*,*) 'env var does not exist'

stop

end if

if (status .eq. -1) then

write (*,*) 'env var length = ', len, ' truncated to 40'

len = 40

end if

if (len .eq. 0) then

write (*,*) 'env var exists but has no value'

stop

end if

write (*,*) 'env var value = ', val (1:len)

end

When the above program is invoked, the following line is displayed:

enter the name of the environment variable

2747

63

The following shows an example of what could be displayed if you enter "HOME".

• On a Linux* OS or Mac OS* X system:

env var value = /home/our_space/usr4

• On a Windows* OS system:

env var value = C:/

The following shows an example of what could be displayed if you enter "PATH".

• On a Linux OS or Mac OS X system:

env var length = 307 truncated to 40

env var value = /site/our_space/usr4/progs/build_area

• On a Windows OS system:

env var length = 829 truncated to 40

env var value = C:\OUR_SPACE\BUILD_AREA\build_objects\

GETENVQQ
Portability Function: Returns the value of an
environment variable.

Module

USE IFPORT

Syntax

result = GETENVQQ (varname,value)

(Input) Character*(*). Name of environment variable.varname

(Output) Character*(*). Value of the specified environment
variable, in uppercase.

value

Results

The result type is INTEGER(4). The result is the length of the string returned in value. Zero is
returned if the given variable is not defined.

2748

63 Intel® Fortran Compiler User and Reference Guides

GETENVQQ searches the list of environment variables for an entry corresponding to varname.
Environment variables define the environment in which a process executes. For example, the
LIB environment variable defines the default search path for libraries to be linked with a program.

Note that some environment variables may exist only on a per-process basis and may not be
present at the command-line level.

GETENVQQ uses the C runtime routine getenv and SETENVQQ uses the C runtime routine
_putenv. From the C documentation:

getenv and _putenv use the copy of the environment pointed to by the global variable _environ
to access the environment. getenv operates only on the data structures accessible to the
run-time library and not on the environment segment created for the process by the operating
system.

In a program that uses the main function, _environ is initialized at program startup to settings
taken from the operating system's environment.

Changes made outside the program by the console SET command, for example, SET
MY_VAR=ABCDE, will be reflected by GETENVQQ.

GETENVQQ and SETENVQQ will not work properly with the Windows* APIs
GetEnvironmentVariable and SetEnvironmentVariable.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

2749

63

Example
! Program to demonstrate GETENVQQ and SETENVQQ

USE IFPORT

USE IFCORE

INTEGER(4) lenv, lval

CHARACTER(80) env, val, enval

WRITE (*,900) ' Enter environment variable name to create, &

modify, or delete: '

lenv = GETSTRQQ(env)

IF (lenv .EQ. 0) STOP

WRITE (*,900) ' Value of variable (ENTER to delete): '

lval = GETSTRQQ(val)

IF (lval .EQ. 0) val = ' '

enval = env(1:lenv) // '=' // val(1:lval)

IF (SETENVQQ(enval)) THEN

lval = GETENVQQ(env(1:lenv), val)

IF (lval .EQ. 0) THEN

WRITE (*,*) 'Can''t get environment variable'

ELSE IF (lval .GT. LEN(val)) THEN

WRITE (*,*) 'Buffer too small'

ELSE

WRITE (*,*) env(:lenv), ': ', val(:lval)

WRITE (*,*) 'Length: ', lval

END IF

ELSE

WRITE (*,*) 'Can''t set environment variable'

END IF

900 FORMAT (A, \)

2750

63 Intel® Fortran Compiler User and Reference Guides

END

See Also
• G
• SETENVQQ
• GETLASTERRORQQ

GETEXCEPTIONPTRSQQ (i32, i64em; W*32, W*64)
Run-Time Function: Returns a pointer to C
run-time exception information pointers appropriate
for use in signal handlers established with
SIGNALQQ or direct calls to the C rtl signal()
routine.

Module

USE IFCORE

Syntax

result = GETEXCEPTIONPTRSQQ()

Results

The result type is INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 architecture.
The return value is the address of a data structure whose members are pointers to exception
information captured by the C runtime at the time of an exception. This result value can then
be used as the eptr argument to routine TRACEBACKQQ to generate a stack trace from a
user-defined handler or to inspect the exception context record directly.

Calling GETEXCEPTIONPTRSQQ is only valid within a user-defined handler that was established
with SIGNALQQ or a direct call to the C rtl signal() function.

For a full description of exceptions and error handling, see Building Applications: The
Floating-Point Environment Overview.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

2751

63

Example
PROGRAM SIGTEST

USE IFCORE

...

R3 = 0.0E0

STS = SIGNALQQ(MY_HANDLER)

! Cause a divide by zero exception

R1 = 3.0E0/R3

...

END

INTEGER(4) FUNCTION MY_HANDLER(SIGNUM,EXCNUM)

USE IFCORE

...

EPTRS = GETEXCEPTIONPTRSQQ()

...

CALL TRACEBACKQQ("Application SIGFPE error!",USER_EXIT_CODE=-1,EPTR=EPTRS)

...

MY_HANDLER = 1

END

See Also
• G
• TRACEBACKQQ
• GETSTATUSFPQQ
• CLEARSTATUSFPQQ
• SETCONTROLFPQQ
• GETCONTROLFPQQ
• SIGNALQQ

Building Applications: Using SIGNALQQ

2752

63 Intel® Fortran Compiler User and Reference Guides

GETEXITQQ (W*32, W*64)
QuickWin Function: Returns the setting for a
QuickWin application's exit behavior.

Module

USE IFQWIN

Syntax

result = GETEXITQQ()

Results

The result type is INTEGER(4). The result is exit mode with one of the following constants
(defined in IFQWIN.F90):

• QWIN$EXITPROMPT - Displays a message box that reads "Program exited with exit status
n. Exit Window?", where n is the exit status from the program.

If you choose Yes, the application closes the window and terminates. If you choose No, the
dialog box disappears and you can manipulate the window as usual. You must then close
the window manually.

• QWIN$EXITNOPERSIST - Terminates the application without displaying a message box.

• QWIN$EXITPERSIST - Leaves the application open without displaying a message box.

The default for both QuickWin and Console Graphics applications is QWIN$EXITPROMPT.

Compatibility

STANDARD GRAPHICS QUICKWIN.EXE LIB

2753

63

Example
! Program to demonstrate GETEXITQQ

USE IFQWIN

INTEGER i

i = GETEXITQQ()

SELECT CASE (i)

CASE (QWIN$EXITPROMPT)

WRITE(*, *) "Prompt on exit."

CASE (QWIN$EXITNOPERSIST)

WRITE(*,*) "Exit and close."

CASE (QWIN$EXITPERSIST)

WRITE(*,*) "Exit and leave open."

END SELECT

END

See Also
• G
• SETEXITQQ

Building Applications: Using QuickWin Overview

GETFILEINFOQQ
Portability Function: Returns information about
the specified file. File names can contain wildcards
(* and ?).

Module

USE IFPORT

Syntax

result = GETFILEINFOQQ (files,buffer,handle)

(Input) Character*(*). Name or pattern of files you are searching
for. Can include a full path and wildcards (* and ?).

files

2754

63 Intel® Fortran Compiler User and Reference Guides

(Output) Derived type FILE$INFO or derived type FILE$INFOI8.
Information about a file that matches the search criteria in files.
The derived type FILE$INFO is defined in IFPORT.F90 as follows:

TYPE FILE$INFO

INTEGER(4) CREATION ! CREATION TIME (-1 on FAT)

INTEGER(4) LASTWRITE ! LAST WRITE TO FILE

INTEGER(4) LASTACCESS ! LAST ACCESS (-1 on FAT)

INTEGER(4) LENGTH ! LENGTH OF FILE

INTEGER(4) PERMIT ! FILE ACCESS MODE

CHARACTER(255) NAME ! FILE NAME

END TYPE FILE$INFO

buffer

The derived type FILE$INFOI8 is defined in IFPORT.F90 as
follows:

TYPE FILE$INFO

INTEGER(4) CREATION ! CREATION TIME (-1 on FAT)

INTEGER(4) LASTWRITE ! LAST WRITE TO FILE

INTEGER(4) LASTACCESS ! LAST ACCESS (-1 on FAT)

INTEGER(8) LENGTH ! LENGTH OF FILE

INTEGER(4) PERMIT ! FILE ACCESS MODE

CHARACTER(255) NAME ! FILE NAME

END TYPE FILE$INFO

(Input; output) INTEGER(4) on IA-32 architecture; INTEGER(8)
on Intel® 64 architecture and IA-64 architecture. Control
mechanism. One of the following constants, defined in
IFPORT.F90:

handle

• FILE$FIRST - First matching file found.

• FILE$LAST - Previous file was the last valid file.

• FILE$ERROR - No matching file found.

2755

63

Results

The result type is INTEGER(4). The result is the nonblank length of the file name if a match
was found, or 0 if no matching files were found.

To get information about one or more files, set the handle to FILE$FIRST and call
GETFILEINFOQQ. This will return information about the first file which matches the name and
return a handle. If the program wants more files, it should call GETFILEINFOQQ with the handle.
GETFILEINFOQQ must be called with the handle until GETFILEINFOQQ sets handle to FILE$LAST,
or system resources may be lost.

The derived-type element variables FILE$INFO%CREATION, FILE$INFO%LASTWRITE, and
FILE$INFO%LASTACCESS contain packed date and time information that indicates when the
file was created, last written to, and last accessed, respectively. To break the time and date
into component parts, call UNPACKTIMEQQ. FILE$INFO%LENGTH contains the length of the
file in bytes. FILE$INFO%PERMIT contains a set of bit flags describing access information about
the file as follows:

Access information for the fileBit flag

Marked as having been copied to a backup
device.

FILE$ARCHIVE

A subdirectory of the current directory. Each
MS-DOS* directory contains two special files,
"." and "..". These are directory aliases

FILE$DIR

created by MS-DOS for use in relative
directory notation. The first refers to the
current directory, and the second refers to
the current directory's parent directory.

Hidden. It does not appear in the directory
list you request from the command line, the
Microsoft* visual development environment
browser, or File Manager.

FILE$HIDDEN

Write-protected. You can read the file, but
you cannot make changes to it.

FILE$READONLY

Used by the operating system.FILE$SYSTEM

2756

63 Intel® Fortran Compiler User and Reference Guides

Access information for the fileBit flag

A logical volume, or partition, on a physical
disk drive. This type of file appears only in
the root directory of a physical device.

FILE$VOLUME

You can use the constant FILE$NORMAL to check that all bit flags are set to 0. If the derived-type
element variable FILE$INFO%PERMIT is equal to FILE$NORMAL, the file has no special attributes.
The variable FILE$INFO%NAME contains the short name of the file, not the full path of the file.

If an error occurs, call GETLASTERRORQQ to retrieve the error message, such as:

• ERR$NOENT: The file or path specified was not found.

• ERR$NOMEM: Not enough memory is available to execute the command, the available
memory has been corrupted, or an invalid block exists, indicating that the process making
the call was not allocated properly.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

2757

63

Example
USE IFPORT

USE IFCORE

CALL SHOWPERMISSION()

END

! SUBROUTINE to demonstrate GETFILEINFOQQ

SUBROUTINE SHOWPERMISSION()

USE IFPORT

CHARACTER(80) files

INTEGER(KIND=INT_PTR_KIND()) handle

INTEGER(4) length

CHARACTER(5) permit

TYPE (FILE$INFO) info

WRITE (*, 900) ' Enter wildcard of files to view: '

900 FORMAT (A, \)

length = GETSTRQQ(files)

handle = FILE$FIRST

DO WHILE (.TRUE.)

length = GETFILEINFOQQ(files, info, handle)

IF ((handle .EQ. FILE$LAST) .OR. &

(handle .EQ. FILE$ERROR)) THEN

SELECT CASE (GETLASTERRORQQ())

CASE (ERR$NOMEM)

WRITE (*,*) 'Out of memory'

CASE (ERR$NOENT)

EXIT

CASE DEFAULT

WRITE (*,*) 'Invalid file or path name'

2758

63 Intel® Fortran Compiler User and Reference Guides

END SELECT

END IF

permit = ' '

IF ((info%permit .AND. FILE$HIDDEN) .NE. 0) &

permit(1:1) = 'H'

IF ((info%permit .AND. FILE$SYSTEM) .NE. 0) &

permit(2:2) = 'S'

IF ((info%permit .AND. FILE$READONLY) .NE. 0) &

permit(3:3) = 'R'

IF ((info%permit .AND. FILE$ARCHIVE) .NE. 0) &

permit(4:4) = 'A'

IF ((info%permit .AND. FILE$DIR) .NE. 0) &

permit(5:5) = 'D'

WRITE (*, 9000) info%name, info%length, permit

9000 FORMAT (1X, A5, I9, ' ',A6)

END DO

END SUBROUTINE

See Also
• G
• SETFILEACCESSQQ
• SETFILETIMEQQ
• UNPACKTIMEQQ

GETFILLMASK (W*32, W*64)
Graphics Subroutine: Returns the current pattern
used to fill shapes.

Module

USE IFQWIN

2759

63

Syntax

CALL GETFILLMASK (mask)

(Output) INTEGER(1). One-dimensional array of length 8.mask

There are 8 bytes in mask, and each of the 8 bits in each byte represents a pixel, creating an
8x8 pattern. The first element (byte) of mask becomes the top 8 bits of the pattern, and the
eighth element (byte) of mask becomes the bottom 8 bits.

During a fill operation, pixels with a bit value of 1 are set to the current graphics color, while
pixels with a bit value of 0 are unchanged. The current graphics color is set with SETCOLORRGB
or SETCOLOR. The 8-byte mask is replicated over the entire fill area. If no fill mask is set (with
SETFILLMASK), or if the mask is all ones, solid current color is used in fill operations.

The fill mask controls the fill pattern for graphics routines (FLOODFILLRGB, PIE, ELLIPSE,
POLYGON, and RECTANGLE).

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

2760

63 Intel® Fortran Compiler User and Reference Guides

Example
! Build as QuickWin or Standard Graphics

USE IFQWIN

INTEGER(1) style(8). array(8)

INTEGER(2) i

style = 0

style(1) = Z'F'

style(3) = Z'F'

style(5) = Z'F'

style(7) = Z'F'

CALL SETFILLMASK (style)

...

CALL GETFILLMASK (array)

WRITE (*, *) 'Fill mask in bits: '

DO i = 1, 8

WRITE (*, '(B8)') array(i)

END DO

END

See Also
• G
• ELLIPSE
• FLOODFILLRGB
• PIE
• POLYGON
• RECTANGLE
• SETFILLMASK

Building Applications: Setting Figure Properties

2761

63

GETFONTINFO (W*32, W*64)
Graphics Function: Returns the current font
characteristics.

Module

USE IFQWIN

Syntax

result = GETFONTINFO (font)

(Output) Derived type FONTINFO. Set of characteristics of the
current font. The FONTINFO derived type is defined in IFQWIN.F90
as follows:

TYPE FONTINFO

INTEGER(4) type ! 1 = truetype, 0 = bit map

INTEGER(4) ascent ! Pixel distance from top to

! baseline

INTEGER(4) pixwidth ! Character width in pixels,

! 0=proportional

INTEGER(4) pixheight ! Character height in pixels

INTEGER(4) avgwidth ! Average character width in

! pixels

CHARACTER(81) filename ! File name including path

CHARACTER(32) facename ! Font name

LOGICAL(1) italic ! .TRUE. if current font

! formatted italic

LOGICAL(1) emphasized ! .TRUE. if current font

! formatted bold

LOGICAL(1) underline ! .TRUE. if current font

! formatted underlined

END TYPE FONTINFO

font

2762

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is INTEGER(2). The result is zero if successful; otherwise, -1.

You must initialize fonts with INITIALIZEFONTS before calling any font-related function, including
GETFONTINFO.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
! Build as QuickWin or Standard Graphics

USE IFQWIN

TYPE (FONTINFO) info

INTEGER(2) numfonts, return, line_spacing

numfonts = INITIALIZEFONTS ()

return = GETFONTINFO(info)

line_spacing = info%pixheight + 2

END

See Also
• G
• GETGTEXTEXTENT
• GETGTEXTROTATION
• GRSTATUS
• OUTGTEXT
• INITIALIZEFONTS
• SETFONT

Building Applications: Using Fonts from the Graphics Library Overview

Building Applications: Setting the Font and Displaying Text

2763

63

GETGID
Portability Function: Returns the group ID of the
user of a process.

Module

USE IFPORT

Syntax

result = GETGID()

Results

The result type is INTEGER(4). The result corresponds to the primary group of the user under
whose identity the program is running. The result is returned as follows:

• On Windows* systems, this function returns the last subauthority of the security identifier
for the process. This is unique on a local machine and unique within a domain for domain
accounts.

Note that on Windows systems, domain accounts and local accounts can overlap.

• On Linux* and Mac OS* X systems, this function returns the group identity for the current
process.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

ISTAT = GETGID()

GETGTEXTEXTENT (W*32, W*64)
Graphics Function: Returns the width in pixels
that would be required to print a given string of
text (including any trailing blanks) with OUTGTEXT
using the current font.

Module

USE IFQWIN

2764

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = GETGTEXTEXTENT (text)

(Input) Character*(*). Text to be analyzed.text

Results

The result type is INTEGER(2). The result is the width of text in pixels if successful; otherwise,
-1 (for example, if fonts have not been initialized with INITIALIZEFONTS).

This function is useful for determining the size of text that uses proportionally spaced fonts.
You must initialize fonts with INITIALIZEFONTS before calling any font-related function, including
GETGTEXTEXTENT.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
! Build as QuickWin or Standard Graphics

USE IFQWIN

INTEGER(2) status, pwidth

CHARACTER(80) text

status= INITIALIZEFONTS()

status= SETFONT('t''Arial''h22w10')

pwidth= GETGTEXTEXTENT('How many pixels wide is this?')

WRITE(*,*) pwidth

END

See Also
• G
• GETFONTINFO
• OUTGTEXT
• SETFONT
• INITIALIZEFONTS
• GETGTEXTROTATION

Building Applications: Selecting Display Options

2765

63

GETGTEXTROTATION (W*32, W*64)
Graphics Function: Returns the current
orientation of the font text output by OUTGTEXT.

Module

USE IFQWIN

Syntax

result = GETGTEXTROTATION()

Results

The result type is INTEGER(4). It is the current orientation of the font text output in tenths of
degrees. Horizontal is 0 °, and angles increase counterclockwise so that 900 tenths of degrees
(90 °) is straight up, 1800 tenths of degrees (180 °) is upside-down and left, 2700 tenths of
degrees (270 °) is straight down, and so forth.

The orientation for text output with OUTGTEXT is set with SETGTEXTROTATION.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
! Build as QuickWin or Standard Graphics

USE IFQWIN

INTEGER ang

REAL rang

ang = GETGTEXTROTATION()

rang = FLOAT(ang)/10.0

WRITE(*,*) "Text tilt in degrees is: ", rang

END

See Also
• G
• OUTGTEXT
• SETFONT

2766

63 Intel® Fortran Compiler User and Reference Guides

• SETGTEXTROTATION

GETHWNDQQ (W*32, W*64)
QuickWin Function: Converts a window unit
number into a Windows* handle.

Module

USE IFQWIN

Syntax

result = GETHWNDQQ (unit)

(Input) INTEGER(4). The window unit number. If unit is set to
QWIN$FRAMEWINDOW (defined in IFQWIN.F90), the handle of
the frame window is returned.

unit

Results

The result type is INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 architecture and
IA-64 architecture. The result is a true Windows handle to the window. If unit is not open, it
returns -1 .

Compatibility

QUICKWIN GRAPHICS LIB

See Also
• G
• GETACTIVEQQ
• GETUNITQQ
• SETACTIVEQQ

Building Applications: Using QuickWin Overview

Building Applications: Giving a Window Focus and Setting the Active Window

Building Applications: Using Windows API Routines with QuickWin

2767

63

GETIMAGE, GETIMAGE_W (W*32, W*64)
Graphics Subroutines: Store the screen image
defined by a specified bounding rectangle.

Module

USE IFQWIN

Syntax

CALL GETIMAGE (x1,y1,x2,y2,image)

CALL GETIMAGE_W (wx1,wy1,wx2,wy2,image)

(Input) INTEGER(2). Viewport coordinates for upper-left corner of
bounding rectangle.

x1, y1

(Input) INTEGER(2). Viewport coordinates for lower-right corner
of bounding rectangle.

x2, y2

(Input) REAL(8). Window coordinates for upper-left corner of
bounding rectangle.

wx1, wy1

(Input) REAL(8). Window coordinates for lower-right corner of
bounding rectangle.

wx2, wy2

(Output) INTEGER(1). Array of single-byte integers. Stored image
buffer.

image

GETIMAGE defines the bounding rectangle in viewport-coordinate points (x1, y1) and (x2,
y2). GETIMAGE_W defines the bounding rectangle in window-coordinate points (wx1, wy1) and
(wx2, wy2).

The buffer used to store the image must be large enough to hold it. You can determine the
image size by calling IMAGESIZE at run time, or by using the formula described under
IMAGESIZE. After you have determined the image size, you can dimension the buffer accordingly.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

2768

63 Intel® Fortran Compiler User and Reference Guides

Example
! Build as QuickWin or Standard Graphics

USE IFQWIN

INTEGER(1), ALLOCATABLE:: buffer (:)

INTEGER(2) status, x, y, error

INTEGER(4) imsize

x = 50

y = 30

status = ELLIPSE ($GFILLINTERIOR, INT2(x-15), &

INT2(y-15), INT2(x+15), INT2(y+15))

imsize = IMAGESIZE (INT2(x-16), INT2(y-16), &

INT2(x+16), INT2(y+16))

ALLOCATE(buffer (imsize), STAT = error)

IF (error .NE. 0) THEN

STOP 'ERROR: Insufficient memory'

END IF

CALL GETIMAGE (INT2(x-16), INT2(y-16), &

INT2(x+16), INT2(y+16), buffer)

END

See Also
• G
• IMAGESIZE
• PUTIMAGE

Building Applications: Transferring Images in Memory

GETLASTERROR
Portability Function: Returns the last error set.

Module

USE IFPORT

2769

63

Syntax

result = GETLASTERROR()

Results

The result type is INTEGER(4). The result is the integer corresponding to the last run-time error
value that was set.

For example, if you use an ERR= specifier in an I/O statement, your program will not abort if
an error occurs. GETLASTERROR provides a way to determine what the error condition was,
with a better degree of certainty than just examining errno. Your application can then take
appropriate action based upon the error number.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

GETLASTERRORQQ
Portability Function: Returns the last error set
by a run-time procedure.

Module

USE IFPORT

Syntax

result = GETLASTERRORQQ()

Results

The result type is INTEGER(4). The result is the most recent error code generated by a run-time
procedure.

Library functions that return a logical or integer value sometimes also provide an error code
that identifies the cause of errors. GETLASTERRORQQ retrieves the most recent error message.
The error constants are defined in IFPORT.F90. The following table shows some library routines
and the errors each routine produces:

Errors producedLibrary routine

no errorBEEPQQ

ERR$INVALBSEARCHQQ

2770

63 Intel® Fortran Compiler User and Reference Guides

Errors producedLibrary routine

ERR$NOMEM, ERR$NOENTCHANGEDIRQQ

ERR$INVAL, ERR$NOENTCHANGEDRIVEQQ

ERR$BADFCOMMITQQ

ERR$NOMEM, ERR$ACCES, ERR$NOENTDELDIRQQ

ERR$NOMEM, ERR$ACCES, ERR$NOENT,
ERR$INVAL

DELFILESQQ

ERR$NOMEM, ERR$NOENTFINDFILEQQ

ERR$NOMEM, ERR$INVALFULLPATHQQ

no errorGETCHARQQ

ERR$NOMEM, ERR$RANGEGETDRIVEDIRQQ

ERR$INVAL, ERR$NOENTGETDRIVESIZEQQ

no errorGETDRIVESQQ

ERR$NOMEM, ERR$NOENTGETENVQQ

ERR$NOMEM, ERR$NOENT, ERR$INVALGETFILEINFOQQ

no errorGETLASTERRORQQ

no errorGETSTRQQ

ERR$NOMEM, ERR$ACCES, ERR$EXIST,
ERR$NOENT

MAKEDIRQQ

no errorPACKTIMEQQ

no errorPEEKCHARQQ

ERR$NOMEM, ERR$ACCES, ERR$NOENT,
ERR$XDEV

RENAMEFILEQQ

2771

63

Errors producedLibrary routine

ERR$NOMEM, ERR$2BIG, ERR$INVAL,
ERR$NOENT, ERR$NOEXEC

RUNQQ

no errorSETERRORMODEQQ

ERR$NOMEM, ERR$INVALSETENVQQ

ERR$NOMEM, ERR$INVAL, ERR$ACCESSETFILEACCESSQQ

ERR$NOMEM, ERR$ACCES, ERR$INVAL,
ERR$MFILE, ERR$NOENT

SETFILETIMEQQ

no errorSLEEPQQ

ERR$INVALSORTQQ

ERR$NOMEM, ERR$INVALSPLITPATHQQ

ERR$NOMEM, ERR$2BIG, ERR$NOENT,
ERR$NOEXEC

SYSTEMQQ

no errorUNPACKTIMEQQ

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

GETLINESTYLE (W*32, W*64)
Graphics Function: Returns the current graphics
line style.

Module

USE IFQWIN

Syntax

result = GETLINESTYLE()

2772

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is INTEGER(2). The result is the current line style.

GETLINESTYLE retrieves the mask (line style) used for line drawing. The mask is a 16-bit
number, where each bit represents a pixel in the line being drawn.

If a bit is 1, the corresponding pixel is colored according to the current graphics color and logical
write mode; if a bit is 0, the corresponding pixel is left unchanged. The mask is repeated for
the entire length of the line. The default mask is Z'FFFF' (a solid line). A dashed line can be
represented by Z'FF00' (long dashes) or Z'F0F0' (short dashes).

The line style is set with SETLINESTYLE. The current graphics color is set with SETCOLORRGB
or SETCOLOR. SETWRITEMODE affects how the line is displayed.

The line style retrieved by GETLINESTYLE affects the drawing of straight lines as in LINETO,
POLYGON and RECTANGLE, but not the drawing of curved lines as in ARC, ELLIPSE or PIE.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
! Build as Graphics

USE IFQWIN

INTEGER(2) lstyle

lstyle = GETLINESTYLE()

WRITE (*, 100) lstyle, lstyle

100 FORMAT (1X, 'Line mask in Hex ', Z4, ' and binary ', B16)

END

See Also
• G
• LINETO
• POLYGON
• RECTANGLE
• SETCOLORRGB
• SETFILLMASK
• SETLINESTYLE

2773

63

• SETWRITEMODE

Building Applications: Setting Figure Properties

GETLOG
Portability Subroutine: Returns the user's login
name.

Module

USE IFPORT

Syntax

CALL GETLOG (name)

(Output) Character*(*). User's login name.name

The login name must be less than or equal to 64 characters. If the login name is longer than
64 characters, it is truncated. The actual parameter corresponding to name should be long
enough to hold the login name. If the supplied actual parameter is too short to hold the login
name, the login name is truncated.

If the login name is shorter than the actual parameter corresponding to name, the login name
is padded with blanks at the end, until it reaches the length of the actual parameter.

If the login name cannot be determined, all blanks are returned.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
use IFPORT

character*20 username

CALL GETLOG (username)

print *, "You logged in as ",username

2774

63 Intel® Fortran Compiler User and Reference Guides

GETPHYSCOORD (W*32, W*64)
Graphics Subroutine: Translates viewport
coordinates to physical coordinates.

Module

USE IFQWIN

Syntax

CALL GETPHYSCOORD (x,y,t)

(Input) INTEGER(2). Viewport coordinates to be translated to
physical coordinates.

x, y

(Output) Derived type xycoord. Physical coordinates of the input
viewport position. The xycoord derived type is defined in
IFQWIN.F90 as follows:

TYPE xycoord

INTEGER(2) xcoord ! x-coordinate

INTEGER(2) ycoord ! y-coordinate

END TYPE xycoord

t

Physical coordinates refer to the physical screen. Viewport coordinates refer to an area of the
screen defined as the viewport with SETVIEWPORT. Both take integer coordinate values. Window
coordinates refer to a window sized with SETWINDOW or SETWSIZEQQ. Window coordinates
are floating-point values and allow easy scaling of data to the window area. For a more complete
discussion of coordinate systems, see Building Applications: Understanding Coordinate Systems
Overview.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

2775

63

Example
! Program to demonstrate GETPHYSCOORD, GETVIEWCOORD,

! and GETWINDOWCOORD. Build as QuickWin or Standard

! Graphics

USE IFQWIN

TYPE (xycoord) viewxy, physxy

TYPE (wxycoord) windxy

CALL SETVIEWPORT(INT2(80), INT2(50), &

INT2(240), INT2(150))

! Get viewport equivalent of point (100, 90)

CALL GETVIEWCOORD (INT2(100), INT2(90), viewxy)

! Get physical equivalent of viewport coordinates

CALL GETPHYSCOORD (viewxy%xcoord, viewxy%ycoord, &

physxy)

! Get physical equivalent of viewport coordinates

CALL GETWINDOWCOORD (viewxy%xcoord, viewxy%ycoord, &

windxy)

! Write viewport coordinates

WRITE (*,*) viewxy%xcoord, viewxy%ycoord

! Write physical coordinates

WRITE (*,*) physxy%xcoord, physxy%ycoord

! Write window coordinates

WRITE (*,*) windxy%wx, windxy%wy

END

See Also
• G
• GETVIEWCOORD
• GETWINDOWCOORD

2776

63 Intel® Fortran Compiler User and Reference Guides

• SETCLIPRGN
• SETVIEWPORT

Building Applications: Setting Graphics Coordinates

GETPID
Portability Function: Returns the process ID of
the current process.

Module

USE IFPORT

Syntax

result = GETPID()

Results

The result type is INTEGER(4). The result is the process ID number of the current process.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) istat

istat = GETPID()

GETPIXEL, GETPIXEL_W (W*32, W*64)
Graphics Functions: Return the color index of
the pixel at a specified location.

Module

USE IFQWIN

Syntax

result = GETPIXEL (x, y)

result = GETPIXEL_W (wx, wy)

2777

63

(Input) INTEGER(2). Viewport coordinates for pixel position.x, y

(Input) REAL(8). Window coordinates for pixel position.wx, wy

Results

The result type is INTEGER(2). The result is the pixel color index if successful; otherwise, -1
(if the pixel lies outside the clipping region, for example).

Color routines without the RGB suffix, such as GETPIXEL, use color indexes, not true color
values, and limit you to colors in the palette, at most 256. To access all system colors, use
SETPIXELRGB to specify an explicit Red-Green-Blue value and retrieve the value with
GETPIXELRGB.

NOTE. The GETPIXEL routine described here is a QuickWin routine. If you are trying to
use the Microsoft* Platform SDK version of the GetPixel routine by including the IFWIN
module, you need to specify the routine name as MSFWIN$GetPixel. For more information,
see Building Applications: Special Naming Convention for Certain QuickWin and Win32
Graphics Routines.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also
• G
• GETPIXELRGB
• GRSTATUS
• REMAPALLPALETTERGB, REMAPPALETTERGB
• SETCOLOR
• GETPIXELS
• SETPIXEL

2778

63 Intel® Fortran Compiler User and Reference Guides

GETPIXELRGB, GETPIXELRGB_W (W*32, W*64)
Graphics Functions: Return the Red-Green-Blue
(RGB) color value of the pixel at a specified
location.

Module

USE IFQWIN

Syntax

result = GETPIXELRGB (x,y)

result = GETPIXELRGB_W (wx,wy)

(Input) INTEGER(2). Viewport coordinates for pixel position.x, y

(Input) REAL(8). Window coordinates for pixel position.wx, wy

Results

The result type is INTEGER(4). The result is the pixel's current RGB color value.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an
eight-bit value (2 hex digits). In the value you retrieve with GETPIXELRGB, red is the rightmost
byte, followed by green and blue. The RGB value's internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex Z'FF') the
maximum for each of the three components. For example, Z'0000FF' yields full-intensity red,
Z'00FF00' full-intensity green, Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all
three, resulting in bright white.

GETPIXELRGB returns the true color value of the pixel, set with SETPIXELRGB, SETCOLORRGB,
SETBKCOLORRGB, or SETTEXTCOLORRGB, depending on the pixel's position and the current
configuration of the screen.

SETPIXELRGB (and the other RGB color selection functions SETCOLORRGB, SETBKCOLORRGB,
and SETTEXTCOLORRGB) sets colors to a color value chosen from the entire available range.
The non-RGB color functions (SETPIXELS, SETCOLOR, SETBKCOLOR, and SETTEXTCOLOR) use
color indexes rather than true color values. If you use color indexes, you are restricted to the

2779

63

colors available in the palette, at most 256. Some display adapters (SVGA and true color) are
capable of creating 262,144 (256K) colors or more. To access any available color, you need to
specify an explicit Red-Green-Blue (RGB) value with an RGB color function, rather than a palette
index with a non-RGB color function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
! Build as QuickWin or Standard Graphics

USE IFQWIN

INTEGER(4) pixcolor, rseed

INTEGER(2) status

REAL rnd1, rnd2

LOGICAL(4) winstat

TYPE (windowconfig) wc

CALL GETTIM (status, status, status, INT2(rseed))

CALL SEED (rseed)

CALL RANDOM (rnd1)

CALL RANDOM (rnd2)

! Get the color index of a random pixel, normalized to

! be in the window. Then set current color to that

! pixel color.

winstat = GETWINDOWCONFIG(wc)

xnum = wc%numxpixels

ynum = wc%numypixels

pixcolor = GETPIXELRGB(INT2(rnd1*xnum), INT2(rnd2*ynum))

status = SETCOLORRGB (pixcolor)

END

2780

63 Intel® Fortran Compiler User and Reference Guides

See Also
• G
• SETPIXELRGB
• GETPIXELSRGB
• SETPIXELSRGB
• GETPIXEL, GETPIXEL_W

Building Applications: Color Mixing

GETPIXELS (W*32, W*64)
Graphics Subroutine: Returns the color indexes
of multiple pixels.

Module

USE IFQWIN

Syntax

CALL GETPIXELS (n,x,y,color)

(Input) INTEGER(4). Number of pixels to get. Sets the number of
elements in the other arguments.

n

(Input) INTEGER(2). Parallel arrays containing viewport coordinates
of pixels to get.

x, y

(Output) INTEGER(2). Array to be filled with the color indexes of
the pixels at x and y.

color

GETPIXELS fills in the array color with color indexes of the pixels specified by the two input
arrays x and y. These arrays are parallel: the first element in each of the three arrays refers
to a single pixel, the second element refers to the next pixel, and so on.

If the pixel is outside the clipping region, the value placed in the color array is undefined.
Calls to GETPIXELS with n less than 1 are ignored. GETPIXELS is a much faster way to acquire
multiple pixel color indexes than individual calls to GETPIXEL.

The range of possible pixel color index values is determined by the current video mode and
palette, at most 256 colors. To access all system colors you need to specify an explicit
Red-Green-Blue (RGB) value with an RGB color function such as SETPIXELSRGB and retrieve
the value with GETPIXELSRGB, rather than a palette index with a non-RGB color function.

2781

63

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also
• G
• GETPIXELSRGB
• SETPIXELSRGB
• GETPIXEL
• SETPIXELS

GETPIXELSRGB (W*32, W*64)
Graphics Subroutine: Returns the
Red-Green-Blue (RGB) color values of multiple
pixels.

Module

USE IFQWIN

Syntax

CALL GETPIXELSRGB (n,x,y,color)

(Input) INTEGER(4). Number of pixels to get. Sets the number of
elements in the other argument arrays.

n

(Input) INTEGER(2). Parallel arrays containing viewport coordinates
of pixels.

x, y

(Output) INTEGER(4). Array to be filled with RGB color values of
the pixels at x and y.

color

GETPIXELS fills in the array color with the RGB color values of the pixels specified by the two
input arrays x and y. These arrays are parallel: the first element in each of the three arrays
refers to a single pixel, the second element refers to the next pixel, and so on.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an
eight-bit value (2 hex digits). In the values you retrieve with GETPIXELSRGB, red is the rightmost
byte, followed by green and blue. The RGB value's internal structure is as follows:

2782

63 Intel® Fortran Compiler User and Reference Guides

Larger numbers correspond to stronger color intensity with binary 11111111 (hex Z'FF') the
maximum for each of the three components. For example, Z'0000FF' yields full-intensity red,
Z'00FF00' full-intensity green, Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all
three, resulting in bright white.

GETPIXELSRGB is a much faster way to acquire multiple pixel RGB colors than individual calls
to GETPIXELRGB. GETPIXELSRGB returns an array of true color values of multiple pixels, set
with SETPIXELSRGB, SETCOLORRGB, SETBKCOLORRGB, or SETTEXTCOLORRGB, depending
on the pixels' positions and the current configuration of the screen.

SETPIXELSRGB (and the other RGB color selection functions SETCOLORRGB, SETBKCOLORRGB,
and SETTEXTCOLORRGB) sets colors to a color value chosen from the entire available range.
The non-RGB color functions (SETPIXELS, SETCOLOR, SETBKCOLOR, and SETTEXTCOLOR) use
color indexes rather than true color values. If you use color indexes, you are restricted to the
colors available in the palette, at most 256. Some display adapters (SVGA and true color) are
capable of creating 262,144 (256K) colors or more. To access any available color, you need to
specify an explicit RGB value with an RGB color function, rather than a palette index with a
non-RGB color function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

2783

63

Example
! Build as QuickWin or Standard Graphics

USE IFQWIN

INTEGER(4) color(50), result

INTEGER(2) x(50), y(50), status

TYPE (xycoord) pos

result = SETCOLORRGB(Z'FF')

CALL MOVETO(INT2(0), INT2(0), pos)

status = LINETO(INT2(100), INT2(200))

! Get 50 pixels at line 30 in viewport

DO i = 1, 50

x(i) = i-1

y(i) = 30

END DO

CALL GETPIXELSRGB(300, x, y, color)

! Move down 30 pixels and redisplay pixels

DO i = 1, 50

y(i) = y(i) + 30

END DO

CALL SETPIXELSRGB (50, x, y, color)

END

See Also
• G
• SETPIXELSRGB
• GETPIXELRGB, GETPIXELRGB_W
• GETPIXELS
• SETPIXELS

Building Applications: Color Mixing

2784

63 Intel® Fortran Compiler User and Reference Guides

GETPOS, GETPOSI8
Portability Functions: Return the current position
of a file.

Module

USE IFPORT

Syntax

result = GETPOS (lunit)

result = GETPOSI8 (lunit)

(Input) INTEGER(4). External unit number of a file. The value must
be in the range 0 to 100 and the file must be connected.

lunit

Results

The result type is INTEGER(4) for GETPOS; INTEGER(8) for GETPOSI8. The result is the offset,
in bytes, from the beginning of the file. If an error occurs, the result value is -1 and the following
error code is returned in errno:

EINVAL: lunit is not a valid unit number, or is not open.

These functions are equivalent to FTELL, FTELLI8.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

GETSTATUSFPQQ (W*32, W*64)
Portability Subroutine: Returns the floating-point
processor status word.

Module

USE IFPORT

Syntax

CALL GETSTATUSFPQQ (status)

(Output) INTEGER(2). Floating-point processor status word.status

2785

63

The floating-point status word shows whether various floating-point exception conditions have
occurred. Intel® Fortran initially clears (sets to 0) all status flags, but after an exception occurs
it does not reset the flags before performing additional floating-point operations. A status flag
with a value of one thus shows there has been at least one occurrence of the corresponding
exception. The following table lists the status flags and their values:

DescriptionHex valueParameter name

Status Mask (set all flags to
1)

Z'003F'FPSW$MSW_EM

An invalid result occurredZ'0001'FPSW$INVALID

A denormal (very small
number) occurred

Z'0002'FPSW$DENORMAL

A divide by zero occurredZ'0004'FPSW$ZERODIVIDE

An overflow occurredZ'0008'FPSW$OVERFLOW

An underflow occurredZ'0010'FPSW$UNDERFLOW

Inexact precision occurredZ'0020'FPSW$INEXACT

You can use a logical comparison on the status word returned by GETSTATUSFPQQ to determine
which of the six floating-point exceptions listed in the table has occurred.

An exception is disabled if its control bit is set to 1. An exception is enabled if its control bit is
cleared to 0. By default, all exception traps are disabled. Exceptions can be enabled and disabled
by clearing and setting the flags with SETCONTROLFPQQ. You can use GETCONTROLFPQQ to
determine which exceptions are currently enabled and disabled.

If an exception is disabled, it does not cause an interrupt when it occurs. Instead, floating-point
processes generate an appropriate special value (NaN or signed infinity), but the program
continues. You can find out which exceptions (if any) occurred by calling GETSTATUSFPQQ.

If errors on floating-point exceptions are enabled (by clearing the flags to 0 with
SETCONTROLFPQQ), the operating system generates an interrupt when the exception occurs.
By default, these interrupts cause run-time errors, but you can capture the interrupts with
SIGNALQQ and branch to your own error-handling routines.

For a full discussion of the floating-point status word, exceptions, and error handling, see
Building Applications: The Floating-Point Environment Overview.

2786

63 Intel® Fortran Compiler User and Reference Guides

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

Example
! Program to demonstrate GETSTATUSFPQQ

USE IFPORT

INTEGER(2) status

CALL GETSTATUSFPQQ(status)

! check for divide by zero

IF (IAND(status, FPSW$ZERODIVIDE) .NE. 0) THEN

WRITE (*,*) 'Divide by zero occurred. Look &

for NaN or signed infinity in resultant data.'

END IF

END

See Also
• G
• SETCONTROLFPQQ
• GETCONTROLFPQQ
• SIGNALQQ
• CLEARSTATUSFPQQ

GETSTRQQ
Run-Time Function: Reads a character string
from the keyboard using buffered input.

Module

USE IFCORE

Syntax

result = GETSTRQQ (buffer)

(Output) Character*(*). Character string returned from keyboard,
padded on the right with blanks.

buffer

2787

63

Results

The result type is INTEGER(4). The result is the number of characters placed in buffer.

The function does not complete until you press Return or Enter.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
! Program to demonstrate GETSTRQQ

USE IFCORE

USE IFPORT

INTEGER(4) length, result

CHARACTER(80) prog, args

WRITE (*, '(A, \)') ' Enter program to run: '

length = GETSTRQQ (prog)

WRITE (*, '(A, \)') ' Enter arguments: '

length = GETSTRQQ (args)

result = RUNQQ (prog, args)

IF (result .EQ. -1) THEN

WRITE (*,*) 'Couldn''t run program'

ELSE

WRITE (*, '(A, Z4, A)') 'Return code : ', result, 'h'

END IF

END

See Also
• G
• READ
• GETCHARQQ
• PEEKCHARQQ

2788

63 Intel® Fortran Compiler User and Reference Guides

GETTEXTCOLOR (W*32, W*64)
Graphics Function: Returns the current text color
index.

Module

USE IFQWIN

Syntax

result = GETTEXTCOLOR()

Results

The result type is INTEGER(2). It is the current text color index.

GETTEXTCOLOR returns the text color index set by SETTEXTCOLOR. SETTEXTCOLOR affects
text output with OUTTEXT, WRITE, and PRINT. The background color index is set with
SETBKCOLOR and returned with GETBKCOLOR. The color index of graphics over the background
color is set with SETCOLOR and returned with GETCOLOR. These non-RGB color functions use
color indexes, not true color values, and limit the user to colors in the palette, at most 256. To
access all system colors, use SETTEXTCOLORRGB, SETBKCOLORRGB, and SETCOLORRGB.

The default text color index is 15, which is associated with white unless the user remaps the
palette.

NOTE. The GETTEXTCOLOR routine described here is a QuickWin routine. If you are
trying to use the Microsoft* Platform SDK version of the GetTextColor routine by including
the IFWIN module, you need to specify the routine name as MSFWIN$GetTextColor. For
more information, see Building Applications: Special Naming Convention for Certain
QuickWin and Win32 Graphics Routines.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also
• G
• OUTTEXT
• REMAPPALETTERGB

2789

63

• SETCOLOR
• SETTEXTCOLOR

Building Applications: Using Text Colors

GETTEXTCOLORRGB (W*32, W*64)
Graphics Function: Returns the Red-Green-Blue
(RGB) value of the current text color (used with
OUTTEXT, WRITE and PRINT).

Module

USE IFQWIN

Syntax

result = GETTEXTCOLORRGB()

Results

The result type is INTEGER(4). It is the RGB value of the current text color.

In each RGB color calue, each of the three colors, red, green, and blue, is represented by an
eight-bit value (2 hex digits). In the value you retrieve with GETTEXTCOLORRGB, red is the
rightmost byte, followed by green and blue. The RGB value's internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary (hex Z'FF') the maximum
for each of the three components. For example, Z'0000FF' yields full-intensity red, Z'00FF00'
full-intensity green, Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all three,
resulting in bright white.

GETTEXTCOLORRGB returns the RGB color value of text over the background color (used by
text functions such as OUTTEXT, WRITE, and PRINT), set with SETTEXTCOLORRGB. The RGB
color value used for graphics is set and returned with SETCOLORRGB and GETCOLORRGB.
SETCOLORRGB controls the color used by the graphics function OUTGTEXT, while
SETTEXTCOLORRGB controls the color used by all other text output functions. The RGB
background color value for both text and graphics is set and returned with SETBKCOLORRGB
and GETBKCOLORRGB.

2790

63 Intel® Fortran Compiler User and Reference Guides

SETTEXTCOLORRGB (and the other RGB color selection functions SETBKCOLORRGB, and
SETCOLORRGB) sets the color to a color value chosen from the entire available range. The
non-RGB color functions (SETTEXTCOLOR, SETBKCOLOR, and SETCOLOR) use color indexes
rather than true color values. If you use color indexes, you are restricted to the colors available
in the palette, at most 256. Some display adapters (SVGA and true color) are capable of creating
262,144 (256K) colors or more. To access any available color, you need to specify an explicit
RGB value with an RGB color function, rather than a palette index with a non-RGB color function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
! Build as QuickWin or Standard Graphics

USE IFQWIN

INTEGER(4) oldtextc, oldbackc, temp

TYPE (rccoord) curpos

! Save color settings

oldtextc = GETTEXTCOLORRGB()

oldbackc = GETBKCOLORRGB()

CALL CLEARSCREEN($GCLEARSCREEN)

! Reset colors

temp = SETTEXTCOLORRGB(Z'00FFFF') ! full red + full green

! = full yellow text

temp = SETBKCOLORRGB(Z'FF0000') ! blue background

CALL SETTEXTPOSITION(INT2(4), INT2(15), curpos)

CALL OUTTEXT('Hello, world')

! Restore colors

temp = SETTEXTCOLORRGB(oldtextc)

temp = SETBKCOLORRGB(oldbackc)

END

2791

63

See Also
• G
• SETTEXTCOLORRGB
• GETBKCOLORRGB
• GETCOLORRGB
• GETTEXTCOLOR

Building Applications: Using Text Colors

GETTEXTPOSITION (W*32, W*64)
Graphics Subroutine: Returns the current text
position.

Module

USE IFQWIN

Syntax

CALL GETTEXTPOSITION (t)

(Output) Derived type rccord. Current text position. The derived
type rccoordis defined in IFQWIN.F90 as follows:

TYPE rccoord

INTEGER(2) row ! Row coordinate

INTEGER(2) col ! Column coordinate

END TYPE rccoord

t

The text position given by coordinates (1, 1) is defined as the upper-left corner of the text
window. Text output from the OUTTEXT function (and WRITE and PRINT statements) begins
at the current text position. Font text is not affected by the current text position. Graphics
output, including OUTGTEXT output, begins at the current graphics output position, which is a
separate position returned by GETCURRENTPOSITION.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

2792

63 Intel® Fortran Compiler User and Reference Guides

Example
! Build as QuickWin or Standard Graphics

USE IFQWIN

TYPE (rccoord) textpos

CALL GETTEXTPOSITION (textpos)

END

See Also
• G
• SETTEXTPOSITION
• GETCURRENTPOSITION
• OUTTEXT
• WRITE
• SETTEXTWINDOW

GETTEXTWINDOW (W*32, W*64)
Graphics Subroutine: Finds the boundaries of
the current text window.

Module

USE IFQWIN

Syntax

CALL GETTEXTWINDOW (r1,c1,r2,c2)

(Output) INTEGER(2). Row and column coordinates for upper-left
corner of the text window.

r1, c1

(Output) INTEGER(2). Row and column coordinates for lower-right
corner of the text window.

r2, c2

Output from OUTTEXT and WRITE is limited to the text window. By default, this is the entire
window, unless the text window is redefined by SETTEXTWINDOW.

The window defined by SETTEXTWINDOW has no effect on output from OUTGTEXT.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

2793

63

Example
! Build as QuickWin or Standard Graphics

USE IFQWIN

INTEGER(2) top, left, bottom, right

DO i = 1, 10

WRITE(*,*) "Hello, world"

END DO

! Save text window position

CALL GETTEXTWINDOW (top, left, bottom, right)

! Scroll text window down seven lines

CALL SCROLLTEXTWINDOW (INT2(-7))

! Restore text window

CALL SETTEXTWINDOW (top, left, bottom, right)

WRITE(*,*) "At beginning again"

END

See Also
• G
• GETTEXTPOSITION
• OUTTEXT
• WRITE
• SCROLLTEXTWINDOW
• SETTEXTPOSITION
• SETTEXTWINDOW
• WRAPON

Building Applications: Displaying Character-Based Text

2794

63 Intel® Fortran Compiler User and Reference Guides

GETTIM
Portability Subroutine: Returns the time.

Module

USE IFPORT

Syntax

CALL GETTIM (ihr, imin, isec, i100th)

(Output) INTEGER(4) or INTEGER(2). Hour (0-23).ihr

(Output) INTEGER(4) or INTEGER(2). Minute (0-59).imin

(Output) INTEGER(4) or INTEGER(2). Second (0-59).isec

(Output) INTEGER(4) or INTEGER(2). Hundredths of a second
(0-99).

i100th

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

Example

See the example in GETDAT.

See Also
• G
• GETDAT
• SETDAT
• SETTIM
• CLOCK
• CTIME
• DTIME
• ETIME
• GMTIME
• ITIME
• LTIME
• RTC
• SECNDS portability routine

2795

63

• TIME portability routine
• TIMEF

GETTIMEOFDAY
Portability Subroutine: Returns seconds and
microseconds since 00:00 Jan 1, 1970.

Module

USE IFPORT

Syntax

CALL GETTIMEOFDAY (ret, err)

(Output) INTEGER(4). One-dimensional array with 2 elements
used to contain numeric time data. The elements of ret are
returned as follows:

ret

ValueElement

Secondsret(1)

Microsecondsret(2)

(Output) INTEGER(4).err

If an error occurs, err contains a value equal to -1 and array ret contains zeros.

On Windows* systems, this subroutine has millisecond precision, and the last three digits of
the returned value are not significant.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

GETUID
Portability Function: Returns the user ID of the
calling process.

Module

USE IFPORT

2796

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = GETUID()

Results

The result type is INTEGER(4). The result corresponds to the user identity under which the
program is running. The result is returned as follows:

• On Windows* systems, this function returns the last subauthority of the security identifier
for the process. This is unique on a local machine and unique within a domain for domain
accounts.

Note that on Windows systems, domain accounts and local accounts can overlap.

• On Linux* and Mac OS* X systems, this function returns the user identity for the current
process.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

integer(4) istat

ISTAT = GETUID()

GETUNITQQ (W*32, W*64)
QuickWin Function: Returns the unit number
corresponding to the specified Windows* handle.

Module

USE IFQWIN

Syntax

result = GETUNITQQ (whandle)

(Input) INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel®

64 architecture and IA-64 architecture. The Windows handle to
the window; this is a unique ID.

whandle

2797

63

Results

The result type is INTEGER(4). The result is the unit number corresponding to the specified
Windows handle. If whandle does not exist, it returns -1 .

This routine is the inverse of GETHWNDQQ.

Compatibility

QUICKWIN GRAPHICS LIB

See Also
• G
• GETHWNDQQ

Building Applications: Using QuickWin Overview

GETVIEWCOORD, GETVIEWCOORD_W (W*32, W*64)
Graphics Subroutines: Translate physical
coordinates or window coordinates to viewport
coordinates.

Module

USE IFQWIN

Syntax

CALL GETVIEWCOORD (x, y, t)

CALL GETVIEWCOORD_W (wx,wy,wt)

(Input) INTEGER(2). Physical coordinates to be converted to
viewport coordinates.

x, y

(Output) Derived type xycoord. Viewport coordinates. The
xycoord derived type is defined in IFQWIN.F90 as follows:

TYPE xycoord

INTEGER(2) xcoord ! x-coordinate

INTEGER(2) ycoord ! y-coordinate

END TYPE xycoord

t

2798

63 Intel® Fortran Compiler User and Reference Guides

(Input) REAL(8). Window coordinates to be converted to viewport
coordinates.

wx, wy

(Output) Derived type wxycoord. Window coordinates. The derived
type wxycoord is defined in IFQWIN.F90 as follows:

TYPE wxycoord

REAL(8) wx ! x-coordinate

REAL(8) wy ! y-coordinate

END TYPE wxycoord

wt

Viewport coordinates refer to an area of the screen defined as the viewport with SETVIEWPORT.
Physical coordinates refer to the whole screen. Both take integer coordinate values. Window
coordinates refer to a window sized with SETWINDOW or SETWSIZEQQ. Window coordinates
are floating-point values and allow easy scaling of data to the window area. For a more complete
discussion of coordinate systems, see Building Applications: Understanding Coordinate Systems
Overview.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example

See the example program in GETPHYSCOORD.

See Also
• G
• GETPHYSCOORD
• GETWINDOWCOORD

Building Applications: Setting Graphics Coordinates

GETWINDOWCONFIG (W*32, W*64)
QuickWin Function: Returns the properties of
the current window.

Module

USE IFQWIN

2799

63

Syntax

result = GETWINDOWCONFIG (wc)

2800

63 Intel® Fortran Compiler User and Reference Guides

(Output) Derived type windowconfig. Contains window properties.
The windowconfig derived type is defined in IFQWIN.F90 as
follows:

TYPE windowconfig

INTEGER(2) numxpixels ! Number of pixels on x-axis

INTEGER(2) numypixels ! Number of pixels on y-axis

INTEGER(2) numtextcols ! Number of text columns
available

INTEGER(2) numtextrows ! Number of text rows
available

INTEGER(2) numcolors ! Number of color indexes

INTEGER(4) fontsize ! Size of default font. Set to

! QWIN$EXTENDFONT when
specifying

! extended attributes, in
which

! case extendfontsize sets
the

! font size

CHARACTER(80) title ! The window title

INTEGER(2) bitsperpixel ! The number of bits per
pixel

INTEGER(2) numvideopages ! Unused

INTEGER(2) mode ! Controls scrolling mode

INTEGER(2) adapter ! Unused

INTEGER(2) monitor ! Unused

INTEGER(2) memory ! Unused

INTEGER(2) environment ! Unused

!

! The next three parameters provide extended font attributes.

! CHARACTER(32) extendfontname ! The name of the desired
font

wc

2801

63

INTEGER(4) extendfontsize ! Takes the same values as
fontsize,

! when fontsize is set to

! QWIN$EXTENDFONT

INTEGER(4) extendfontattributes ! Font attributes such as
bold

! and italic

END TYPE windowconfig

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE. (for
example, if there is no active child window).

GETWINDOWCONFIG returns information about the active child window. If you have not set
the window properties with SETWINDOWCONFIG, GETWINDOWCONFIG returns default window
values.

A typical set of values would be 1024 x pixels, 768 y pixels, 128 text columns, 48 text rows,
and a font size of 8x16 pixels. The resolution of the display and the assumed font size of 8x16
pixels generates the number of text rows and text columns. The resolution (in this case, 1024
x pixels by 768 y pixels) is the size of the virtual window. To get the size of the physical
window visible on the screen, use GETWSIZEQQ. In this case, GETWSIZEQQ returned the
following values: (0,0) for the x and y position of the physical window, 25 for the height or
number of rows, and 71 for the width or number of columns.

The number of colors returned depends on the video drive. The window title defaults to
"Graphic1" for the default window. All of these values can be changed with SETWINDOWCONFIG.

Note that the bitsperpixel field in the windowconfig derived type is an output field only, while
the other fields return output values to GETWINDOWCONFIG and accept input values from
SETWINDOWCONFIG.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

2802

63 Intel® Fortran Compiler User and Reference Guides

Example
!Build as QuickWin or Standard Graphics App.

USE IFQWIN

LOGICAL(4) status

TYPE (windowconfig) wc

status = GETWINDOWCONFIG(wc)

IF(wc%numtextrows .LT. 10) THEN

wc%numtextrows = 10

status = SETWINDOWCONFIG(wc)

IF(.NOT. status) THEN ! if setwindowconfig error

status = SETWINDOWCONFIG(wc) ! reset

! setwindowconfig with corrected values

status = GETWINDOWCONFIG(wc)

IF(wc%numtextrows .NE. 10) THEN

WRITE(*,*) 'Error: Cannot increase text rows to 10'

END IF

END IF

END IF

END

See Also
• G
• GETWSIZEQQ
• SETWINDOWCONFIG
• SETACTIVEQQ

Building Applications: Using QuickWin Overview

Building Applications: Accessing Window Properties

Building Applications: Checking the Current Graphics Mode

Building Applications: Setting Graphics Coordinates

2803

63

GETWINDOWCOORD (W*32, W*64)
Graphics Subroutine: Converts viewport
coordinates to window coordinates.

Module

USE IFQWIN

Syntax

CALL GETWINDOWCOORD (x,y,wt)

(Input) INTEGER(2). Viewport coordinates to be converted to
window coordinates.

x, y

(Output) Derived type wxycoord. Window coordinates. The
wxycoord derived type is defined in IFQWIN.F90 as follows:

TYPE wxycoord

REAL(8) wx ! x-coordinate

REAL(8) wy ! y-coordinate

END TYPE wxycoord

wt

Physical coordinates refer to the physical screen. Viewport coordinates refer to an area of the
screen defined as the viewport with SETVIEWPORT. Both take integer coordinate values. Window
coordinates refer to a window sized with SETWINDOW or SETWSIZEQQ. Window coordinates
are floating-point values and allow easy scaling of data to the window area. For a more complete
discussion of coordinate systems, see Building Applications: Understanding Coordinate Systems
Overview.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example

See the example program in GETPHYSCOORD.

See Also
• G
• GETCURRENTPOSITION
• GETPHYSCOORD

2804

63 Intel® Fortran Compiler User and Reference Guides

• GETVIEWCOORD
• MOVETO
• SETVIEWPORT
• SETWINDOW

Building Applications: Setting Graphics Coordinates

GETWRITEMODE (W*32, W*64)
Graphics Function: Returns the current logical
write mode, which is used when drawing lines with
the LINETO, POLYGON, and RECTANGLE functions.

Module

USE IFQWIN

Syntax

result = GETWRITEMODE()

Results

The result type is INTEGER(2). The result is the current write mode. Possible return values are:

• $GPSET - Causes lines to be drawn in the current graphics color. (default)

• $GAND - Causes lines to be drawn in the color that is the logical AND of the current graphics
color and the current background color.

• $GOR - Causes lines to be drawn in the color that is the logical OR of the current graphics
color and the current background color.

• $GPRESET - Causes lines to be drawn in the color that is the logical NOT of the current
graphics color.

• $GXOR - Causes lines to be drawn in the color that is the logical exclusive OR (XOR) of the
current graphics color and the current background color.

The default value is $GPSET. These constants are defined in IFQWIN.F90.

The write mode is set with SETWRITEMODE.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

2805

63

Example
! Build as QuickWin or Standard Graphics App.

USE IFQWIN

INTEGER(2) mode

mode = GETWRITEMODE()

END

See Also
• G
• SETWRITEMODE
• SETLINESTYLE
• LINETO
• POLYGON
• PUTIMAGE
• RECTANGLE
• SETCOLORRGB
• SETFILLMASK
• GRSTATUS

Building Applications: Setting Figure Properties

GETWSIZEQQ (W*32, W*64)
QuickWin Function: Returns the size and position
of a window.

Module

USE IFQWIN

Syntax

result = GETWSIZEQQ (unit, ireq, winfo)

(Input) INTEGER(4). Specifies the window unit. Unit numbers 0,
5 and 6 refer to the default startup window only if you have not
explicitly opened them with the OPEN statement. To access

unit

2806

63 Intel® Fortran Compiler User and Reference Guides

information about the frame window (as opposed to a child
window), set unit to the symbolic constant QWIN$FRAMEWINDOW,
defined in IFQWIN.F90.

(Input) INTEGER(4). Specifies what information is obtained. The
following symbolic constants, defined in IFQWIN.F90, are available:

ireq

• QWIN$SIZEMAX - Gets information about the maximum window
size.

• QWIN$SIZECURR - Gets information about the current window
size.

(Output) Derived type qwinfo. Physical coordinates of the window's
upper-left corner, and the current or maximum height and width
of the window's client area (the area within the frame). The derived
type qwinfois defined in IFQWIN.F90 as follows:

TYPE QWINFO

INTEGER(2) TYPE ! request type (controls

! SETWSIZEQQ)

INTEGER(2) X ! x coordinate for upper left

INTEGER(2) Y ! y coordinate for upper left

INTEGER(2) H ! window height

INTEGER(2) W ! window width

END TYPE QWINFO

winfo

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, nonzero.

The position and dimensions of child windows are expressed in units of character height and
width. The position and dimensions of the frame window are expressed in screen pixels.

The height and width returned for a frame window reflects the size in pixels of the client area
excluding any borders, menus, and status bar at the bottom of the frame window. You should
adjust the values used in SETWSIZEQQ to take this into account.

The client area is the area actually available to place child windows.

2807

63

Compatibility

QUICKWIN GRAPHICS LIB

See Also
• G
• GETWINDOWCONFIG
• SETWSIZEQQ

Building Applications: Using QuickWin Overview

Building Applications: Controlling Size and Position of Windows

GMTIME
Portability Subroutine: Returns the Greenwich
mean time in an array of time elements.

Module

USE IFPORT

Syntax

CALL GMTIME (stime,tarray)

(Input) INTEGER(4). Numeric time data to be formatted. Number
of seconds since 00:00:00 Greenwich mean time, January 1, 1970.

stime

(Output) INTEGER(4). One-dimensional array with 9 elements
used to contain numeric time data. The elements of tarray are
returned as follows:

tarray

ValueElement

Seconds (0-61, where 60-61
can be returned for leap
seconds)

tarray(1)

Minutes (0-59)tarray(2)

Hours (0-23)tarray(3)

Day of month (1-31)tarray(4)

2808

63 Intel® Fortran Compiler User and Reference Guides

ValueElement

Month (0-11)tarray(5)

Number of years since 1900tarray(6)

Day of week (0-6, where 0 is
Sunday)

tarray(7)

Day of year (0-365)tarray(8)

Daylight saving flag (0 if
standard time, 1 if daylight
saving time)

tarray(9)

CAUTION. This subroutine may cause problems with the year 2000. Use
DATE_AND_TIME instead.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
use IFPORT

integer(4) stime, timearray(9)

! initialize stime to number of seconds since

! 00:00:00 GMT January 1, 1970

stime = time()

CALL GMTIME (stime, timearray)

print *, timearray

end

See Also
• G
• DATE_AND_TIME

2809

63

GOTO - Assigned
Statement: Transfers control to the statement
whose label was most recently assigned to a
variable. This feature has been deleted in Fortran
95; it was obsolescent in Fortran 90. Intel Fortran
fully supports features deleted in Fortran 95.

Syntax

GOTO var[[,] (label-list)]

Is a scalar integer variable.var

Is a list of labels (separated by commas) of valid branch target
statements in the same scoping unit as the assigned GO TO
statement. The same label can appear more than once in this list.

label-list

The variable must have a statement label value assigned to it by an ASSIGN statement (not
an arithmetic assignment statement) before the GO TO statement is executed.

If a list of labels appears, the statement label assigned to the variable must be one of the labels
in the list.

Both the assigned GO TO statement and its associated ASSIGN statement must be in the same
scoping unit.

Example

The following example is equivalent to GO TO 200:

ASSIGN 200 TO IGO

GO TO IGO

The following example is equivalent to GO TO 450:

ASSIGN 450 TO IBEG

GO TO IBEG, (300,450,1000,25)

The following example shows an invalid use of an assigned variable:

ASSIGN 10 TO I

J = I

GO TO J

2810

63 Intel® Fortran Compiler User and Reference Guides

In this case, variable J is not the variable assigned to, so it cannot be used in the assigned GO
TO statement.

The following shows another example:

ASSIGN 10 TO n

GOTO n

10 CONTINUE

The following example uses an assigned GOTO statement to check the value of view:

C Show user appropriate view of data depending on

C security clearance.

GOTO view (100, 200, 400)

See Also
• G
• Obsolescent Features in Fortran 90
• GOTO - Computed GOTO
• GOTO - Unconditional GOTO
• Execution Control

GOTO - Computed
Statement: Transfers control to one of a set of
labeled branch target statements based on the
value of an expression. It is an obsolescent feature
in Fortran 95.

Syntax

GOTO (label-list) [,] expr

Is a list of labels (separated by commas) of valid branch target
statements in the same scoping unit as the computed GO TO
statement. (Also called the transfer list.) The same label can
appear more than once in this list.

label-list

Is a scalar numeric expression in the range 1 to n, where n is the
number of statement labels in label-list. If necessary, it is
converted to integer data type.

expr

2811

63

When the computed GO TO statement is executed, the expression is evaluated first. The value
of the expression represents the ordinal position of a label in the associated list of labels. Control
is transferred to the statement identified by the label. For example, if the list contains
(30,20,30,40) and the value of the expression is 2, control is transferred to the statement
identified with label 20.

If the value of the expression is less than 1 or greater than the number of labels in the list,
control is transferred to the next executable statement or construct following the computed
GO TO statement.

Example

The following example shows valid computed GO TO statements:

GO TO (12,24,36), INDEX

GO TO (320,330,340,350,360), SITU(J,K) + 1

The following shows another example:

next = 1

C

C The following statement transfers control to statement 10:

C

GOTO (10, 20) next

...

10 CONTINUE

...

20 CONTINUE

See Also
• G
• obsolescent feature
• GOTO - Unconditional GOTO
• Execution Control

2812

63 Intel® Fortran Compiler User and Reference Guides

GOTO - Unconditional
Statement: Transfers control to the same branch
target statement every time it executes.

Syntax

GO TO label

Is the label of a valid branch target statement in the same scoping
unit as the GO TO statement.

label

The unconditional GO TO statement transfers control to the branch target statement identified
by the specified label.

Example

The following are examples of GO TO statements:

GO TO 7734

GO TO 99999

The following shows another example:

integer(2) in

10 print *, 'enter a number from one to ten: '

read *, in

select case (in)

case (1:10)

exit

case default

print *, 'wrong entry, try again'

goto 10

end select

See Also
• G
• GOTO - Computed GOTO
• Execution Control

2813

63

GRSTATUS (W*32, W*64)
Graphics Function: Returns the status of the
most recently used graphics routine.

Module

USE IFQWIN

Syntax

result = GRSTATUS()

Results

The result type is INTEGER(2). The result is the status of the most recently used graphics
function.

Use GRSTATUS immediately following a call to a graphics routine to determine if errors or
warnings were generated. Return values less than 0 are errors, and values greater than 0 are
warnings.

The following symbolic constants are defined in the IFQWIN.F90 module file for use with
GRSTATUS:

MeaningConstant

Error writing bitmap file$GRFILEWRITEERROR

Error opening bitmap file$GRFILEOPENERROR

Error reading image$GRIMAGEREADERROR

Error displaying bitmap$GRBITMAPDISPLAYERROR

Bitmap too large$GRBITMAPTOOLARGE

Improper format for bitmap file$GRIMPROPERBITMAPFORMAT

Error reading file$GRFILEREADERROR

No bitmap file$GRNOBITMAPFILE

Image buffer data inconsistent$GRINVALIDIMAGEBUFFER

2814

63 Intel® Fortran Compiler User and Reference Guides

MeaningConstant

Not enough memory to allocate buffer or to
complete a fill operation

$GRINSUFFICIENTMEMORY

One or more parameters invalid$GRINVALIDPARAMETER

Requested video mode not supported$GRMODENOTSUPPORTED

Graphics error$GRERROR

Success$GROK

No action taken$GRNOOUTPUT

Output was clipped to viewport$GRCLIPPED

One or more input parameters was altered
to be within range, or pairs of parameters
were interchanged to be in the proper order

$GRPARAMETERALTERED

After a graphics call, compare the return value of GRSTATUS to $GROK. to determine if an
error has occurred. For example:

IF (GRSTATUS .LT. $GROK) THEN

! Code to handle graphics error goes here

ENDIF

The following routines cannot give errors, and they all set GRSTATUS to $GROK:

GETTEXTWINDOWGETCOLORRGBDISPLAYCURSOR

OUTTEXTGETTEXTCOLORGETBKCOLOR

WRAPONGETTEXTCOLORRGBGETBKCOLORRGB

GETTEXTPOSITIONGETCOLOR

The following table lists some other routines with the error or warning messages they produce
for GRSTATUS:

2815

63

Possible GRSTATUSwarning
codes

Possible GRSTATUS error
codes

Function

$GRNOOUTPUT$GRINVALIDPARAMETERARC, ARC_W

$GRINVALIDPARAMETERCLEARSCREEN

$GRNOOUTPUT$GRINVALIDPARAMETER,
$GRINSUFFICIENTMEMORY

ELLIPSE, ELLIPSE_W

$GRNOOUTPUT$GRINVALIDPARAMETER,
$GRINSUFFICIENTMEMORY

FLOODFILLRGB

$GRERRORGETARCINFO

$GRERROR,
$GRINVALIDPARAMETER

GETFILLMASK

$GRERRORGETFONTINFO

$GRERRORGETGTEXTEXTENT

$GRPARAMETERALTERED$GRINSUFFICIENTMEMORYGETIMAGE

$GRBITMAPTOOLARGEGETPIXEL

$GRBITMAPTOOLARGEGETPIXELRGB

$GRNOOUTPUT, $GRCLIPPEDLINETO, LINETO_W

$GRFILEOPENERROR,
$GRNOBITMAPFILE,
$GRALEREADERROR,

LOADIMAGE

$GRIMPROPERBITMAPFORMAT,
$GRBITMAPTOOLARGE,
$GRIMAGEREADERROR

$GRNOOUTPUT, $GRCLIPPEDOUTGTEXT

$GRNOOUTPUT$GRINVALIDPARAMETER,
$GRINSUFFICIENTMEMORY

PIE, PIE_W

2816

63 Intel® Fortran Compiler User and Reference Guides

Possible GRSTATUSwarning
codes

Possible GRSTATUS error
codes

Function

$GRNOOUTPUT, $GRCLIPPED$GRINVALIDPARAMETER,
$GRINSUFFICIENTMEMORY

POLYGON, POLYGON_W

$GRPARAMETERALTERED,
$GRNOOUTPUT

$GRERROR,
$GRINVALIDPARAMETER,
$GRINVALIDIMAGEBUFFER
$GRBITMAPDISPLAYERROR

PUTIMAGE, PUTIMAGE_W

$GRNOOUTPUT, $GRCLIPPED$GRINVALIDPARAMETER,
$GRINSUFFICIENTMEMORY

RECTANGLE, RECTANGLE_W

$GRERROR,
$GRINVALIDPARAMETER

REMAPPALETTERGB

$GRERROR,
$GRINVALIDPARAMETER

REMAPALLPALETTERGB

$GRFILEOPENERRORSAVEIMAGE

$GRNOOUTPUTSCROLLTEXTWINDOW

$GRPARAMETERALTERED$GRINVALIDPARAMETERSETBKCOLOR

$GRPARAMETERALTERED$GRINVALIDPARAMETERSETBKCOLORRGB

$GRPARAMETERALTEREDSETCLIPRGN

$GRPARAMETERALTEREDSETCOLOR

$GRPARAMETERALTERED$GRERROR,
$GRINSUFFICIENTMEMORY

SETFONT

$GRNOOUTPUTSETPIXEL, SETPIXEL_W

$GRNOOUTPUTSETPIXELRGB,
SETPIXELRGB_W

$GRPARAMETERALTEREDSETTEXTCOLOR

2817

63

Possible GRSTATUSwarning
codes

Possible GRSTATUS error
codes

Function

$GRPARAMETERALTEREDSETTEXTCOLORRGB

$GRPARAMETERALTEREDSETTEXTPOSITION

$GRPARAMETERALTEREDSETTEXTWINDOW

$GRPARAMETERALTEREDSETVIEWPORT

$GRPARAMETERALTERED$GRINVALIDPARAMETERSETWINDOW

$GRINVALIDPARAMETERSETWRITEMODE

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also
• G
• ARC
• ELLIPSE
• FLOODFILLRGB
• LINETO
• PIE
• POLYGON
• REMAPALLPALETTERGB
• SETBKCOLORRGB
• SETCOLORRGB
• SETPIXELRGB
• SETTEXTCOLORRGB
• SETWINDOW
• SETWRITEMODE

Building Applications: Setting the Font and Displaying Text

2818

63 Intel® Fortran Compiler User and Reference Guides

H to I

HOSTNAM
Portability Function: Returns the current host
computer name. This function can also be specified
as HOSTNM.

Module

USE IFPORT

Syntax

result = HOSTNAM (name)

(Output) Character*(*). Name of the current host. Should be at
least as long as MAX_HOSTNAM_LENGTH + 1.
MAX_HOSTNAM_LENGTH is defined in the IFPORT module.

name

Results

The result type is INTEGER(4). The result is zero if successful. If name is not long enough to
contain all of the host name, the function truncates the host name and returns -1.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
use IFPORT

character(MAX_HOSTNAM_LENGTH + 1) hostnam

integer(4) istat

ISTAT = HOSTNAM (hostname)

2819

63

HUGE
Inquiry Intrinsic Function (Generic): Returns
the largest number in the model representing the
same type and kind parameters as the argument.

Syntax

result = HUGE (x)

(Input) Must be of type integer or real; it can be scalar or array
valued.

x

Results

The result is a scalar of the same type and kind parameters as x. If x is of type integer, the
result has the value r q - 1. If x is of type real, the result has the value (1 - b -p)b emax.

Integer parameters r and q are defined in Model for Integer Data; real parameters b, p, and
e maxare defined in Model for Real Data.

Example

If X is of type REAL(4), HUGE (X) has the value (1 - 2 -24) x 2 128.

See Also
• H to I
• TINY
• Data Representation Models

IACHAR
Elemental Intrinsic Function (Generic):
Returns the position of a character in the ASCII
character set, even if the processor's default
character set is different. In Intel® Fortran, IACHAR
is equivalent to the ICHAR function.

Syntax

result = IACHAR (c [, kind])

(Input) Must be of type character of length 1.c

(Input; optional) Must be a scalar integer initialization expression.kind

2820

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified
by kind; otherwise, the kind parameter of the result is that of default integer. If c is in the
ASCII collating sequence, the result is the position of c in that sequence and satisfies the
inequality (0 .le. IACHAR(c) .le. 127).

The results must be consistent with the LGE, LGT, LLE, and LLT lexical comparison functions.
For example, if LLE(C, D) is true, IACHAR(C) .LE. IACHAR(D) is also true.

Example

IACHAR ('Y') has the value 89.

IACHAR ('%') has the value 37.

See Also
• H to I
• ASCII and Key Code Charts
• ACHAR
• CHAR
• ICHAR
• LGE
• LGT
• LLE
• LLT

IAND
Elemental Intrinsic Function (Generic):
Performs a logical AND on corresponding bits. This
function can also be specified as AND.

Syntax

result = IAND (i,j)

(Input) Must be of type integer or of type logical (which is treated
as an integer).

i

2821

63

(Input) Must be of type integer or logical with the same kind
parameter as i. If the kinds of i and j do not match, the value
with the smaller kind is extended with zeros on the left and the
larger kind is used for the operation and the result.

j

Results

The result type is the same as i. The result value is derived by combining i and j bit-by-bit
according to the following truth table:

i j IAND (i, j)

1 1 1

1 0 0

0 1 0

0 0 0

The model for the interpretation of an integer value as a sequence of bits is shown in Model
for Bit Data.

Result TypeArgument TypeSpecific Name

INTEGER(1)INTEGER(1)BIAND

INTEGER(2)INTEGER(2)IIAND 1

INTEGER(4)INTEGER(4)JIAND

INTEGER(8)INTEGER(8)KIAND

1Or HIAND.

Example

IAND (2, 3) has the value 2.

IAND (4, 6) has the value 4.

See Also
• H to I
• IEOR
• IOR

2822

63 Intel® Fortran Compiler User and Reference Guides

• NOT

IARGC
Inquiry Intrinsic Function (Specific): Returns
the index of the last command-line argument. It
cannot be passed as an actual argument. This
function can also be specified as IARG or NUMARG.

Syntax

result = IARGC()

Results

The result type is INTEGER(4). The result is the index of the last command-line argument,
which is also the number of arguments on the command line. The command is not included in
the count. For example, IARGC returns 3 for the command-line invocation of PROG1 -g -c
-a.

IARGC returns a value that is 1 less than that returned by NARGS.

Example
integer(4) no_of_arguments

no_of_arguments = IARGC ()

print *, 'total command line arguments are ', no_of_arguments

For a command-line invocation of PROG1 -g -c -a, the program above prints:

total command line arguments are 3

See Also
• H to I
• GETARG
• NARGS
• COMMAND_ARGUMENT_COUNT
• GET_COMMAND
• GET_COMMAND_ARGUMENT

2823

63

IBCHNG
Elemental Intrinsic Function (Generic):
Reverses the value of a specified bit in an integer.

Syntax

result = IBCHNG (i,pos)

(Input) Must be of type integer or of type logical (which is treated
as an integer). This argument contains the bit to be reversed.

i

(Input) Must be of type integer. This argument is the position of
the bit to be changed.

pos

The rightmost (least significant) bit of i is in position 0.

Results

The result type is the same as i. The result is equal to i with the bit in position pos reversed.

For more information, see Bit Functions.

Example
INTEGER J, K

J = IBCHNG(10, 2) ! returns 14 = 1110

K = IBCHNG(10, 1) ! returns 8 = 1000

See Also
• H to I
• BTEST
• IAND
• IBCLR
• IBSET
• IEOR
• IOR
• ISHA
• ISHC
• ISHL
• ISHFT
• NOT

2824

63 Intel® Fortran Compiler User and Reference Guides

IBCLR
Elemental Intrinsic Function (Generic): Clears
one bit to zero.

Syntax

result = IBCLR (i,pos)

(Input) Must be of type integer or of type logical (which is treated
as an integer).

i

(Input) Must be of type integer. It must not be negative and it
must be less than BIT_SIZE(i).

pos

The rightmost (least significant) bit of i is in position 0.

Results

The result type is the same as i. The result has the value of the sequence of bits of i, except
that bit pos of i is set to zero.

For more information, see Bit Functions.

The model for the interpretation of an integer value as a sequence of bits is shown in Model
for Bit Data.

Result TypeArgument TypeSpecific Name

INTEGER(1)INTEGER(1)BBCLR

INTEGER(2)INTEGER(2)IIBCLR1

INTEGER(4)INTEGER(4)JIBCLR

INTEGER(8)INTEGER(8)KIBCLR

1Or HBCLR.

Example

IBCLR (18, 1) has the value 16.

If V has the value (1, 2, 3, 4), the value of IBCLR (POS = V, I = 15) is (13, 11, 7, 15).

2825

63

The following shows another example:

INTEGER J, K

J = IBCLR(7, 1) ! returns 5 = 0101

K = IBCLR(5, 1) ! returns 5 = 0101

See Also
• H to I
• BTEST
• IAND
• IBCHNG
• IBSET
• IEOR
• IOR
• ISHA
• ISHC
• ISHL
• ISHFT
• NOT

IBITS
Elemental Intrinsic Function (Generic):
Extracts a sequence of bits (a bit field).

Syntax

result = IBITS (i,pos,len)

(Input) Must be of type integer.i

(Input) Must be of type integer. It must not be negative and pos+
len must be less than or equal to BIT_SIZE(i).

pos

The rightmost (least significant) bit of i is in position 0.

(Input) Must be of type integer. It must not be negative.len

Results

The result type is the same as i. The result has the value of the sequence of len bits in i,
beginning at pos, right-adjusted and with all other bits zero.

2826

63 Intel® Fortran Compiler User and Reference Guides

For more information, see Bit Functions.

The model for the interpretation of an integer value as a sequence of bits is shown in Model
for Bit Data.

Result TypeArgument TypeSpecific Name

INTEGER(1)INTEGER(1)BBITS

INTEGER(2)INTEGER(2)IIBITS1

INTEGER(4)INTEGER(4)JIBITS

INTEGER(8)INTEGER(8)KIBITS

1 Or HBITS

Example

IBITS (12, 1, 4) has the value 6.

IBITS (10, 1, 7) has the value 5.

See Also
• H to I
• BTEST
• BIT_SIZE
• IBCLR
• IBSET
• ISHFT
• ISHFTC
• MVBITS

IBSET
Elemental Intrinsic Function (Generic): Sets
one bit to 1.

Syntax

result = IBSET (i,pos)

2827

63

(Input) Must be of type integer or of type logical (which is treated
as an integer).

i

(Input) Must be of type integer. It must not be negative and it
must be less than BIT_SIZE(i).

pos

The rightmost (least significant) bit of i is in position 0.

Results

The result type is the same as i. The result has the value of the sequence of bits of i, except
that bit pos of i is set to 1.

For more information, see Bit Functions.

The model for the interpretation of an integer value as a sequence of bits is shown in Model
for Bit Data.

Result TypeArgument TypeSpecific Name

INTEGER(1)INTEGER(1)BBSET

INTEGER(2)INTEGER(2)IIBSET1

INTEGER(4)INTEGER(4)JIBSET

INTEGER(8)INTEGER(8)KIBSET

1Or HBSET.

Example

IBSET (8, 1) has the value 10.

If V has the value (1, 2, 3, 4), the value of IBSET (POS = V, I = 2) is (2, 6, 10, 18).

The following shows another example:

INTEGER I

I = IBSET(8, 2) ! returns 12 = 1100

See Also
• H to I
• BTEST
• IAND

2828

63 Intel® Fortran Compiler User and Reference Guides

• IBCHNG
• IBCLR
• IEOR
• IOR
• ISHA
• ISHC
• ISHL
• ISHFT
• NOT

ICHAR
Elemental Intrinsic Function (Generic):
Returns the position of a character in the
processor's character set.

Syntax

result = ICHAR (c [, kind])

(Input) Must be of type character of length 1.c

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified
by kind; otherwise, the kind parameter of the result is that of default integer.

The result value is the position of c in the processor's character set. c is in the range zero to
n - 1, where n is the number of characters in the character set.

For any characters C and D (capable of representation in the processor), C .LE. D is true only
if ICHAR(C) .LE. ICHAR(D) is true, and C .EQ. D is true only if ICHAR(C) .EQ. ICHAR(D) is true.

Result TypeArgument TypeSpecific Name

INTEGER(2)CHARACTER

INTEGER(4)CHARACTERICHAR 1

INTEGER(8)CHARACTER

2829

63

Result TypeArgument TypeSpecific Name

1This specific function cannot be passed as an actual argument.

Example

ICHAR ('W') has the value 87.

ICHAR ('#') has the value 35.

See Also
• H to I
• IACHAR
• CHAR
• ASCII and Key Code Charts

IDATE Intrinsic Procedure
Intrinsic Subroutine (Generic): Returns three
integer values representing the current month,
day, and year. IDATE can be used as an intrinsic
subroutine or as a portability subroutine. It is an
intrinsic procedure unless you specify USE IFPORT.
Intrinsic subroutines cannot be passed as actual
arguments.

Syntax

CALL IDATE (i, j, k)

(Output) Must be of type integer. It is the current month.i

(Output) Must be of type integer with the same kind type
parameter as i. It is the current day.

j

(Output) Must be of type integer with the same kind type
parameter as i. It is the current year.

k

The current month is returned in i; the current day in j. The last two digits of the current year
are returned in k.

CAUTION. The two-digit year return value may cause problems with the year 2000.
Use DATE_AND_TIME instead.

2830

63 Intel® Fortran Compiler User and Reference Guides

Example

If the current date is September 16, 1999, the values of the integer variables upon return are:
I = 9, J = 16, and K = 99.

See Also
• H to I
• DATE intrinsic procedure
• DATE_AND_TIME
• GETDAT
• IDATE portability routine

IDATE Portability Routine
Portability Subroutine: Returns the month, day,
and year of the current system. IDATE can be used
as an intrinsic subroutine or as a portability
subroutine. It is an intrinsic procedure unless you
specify USE IFPORT.

Module

USE IFPORT

Syntax

CALL IDATE (i, j, k)

-or-

CALL IDATE (iarray)

(Output) INTEGER(4). Is the current system month.i

(Output) INTEGER(4). Is the current system day.j

(Output) INTEGER(4). Is the current system year as an offset from
1900.

k

(Output) INTEGER(4). Is a three-element array that holds day as
element 1, month as element 2, and year as element 3. The month
is between 1 and 12. The year is greater than or equal to 1969
and is returned as 2 digits.

iarray

2831

63

CAUTION. The two-digit year return value may cause problems with the year 2000.
Use DATE_AND_TIME instead.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
use IFPORT

integer(4) imonth, iday, iyear, datarray(3)

! If the date is July 11, 1999:

CALL IDATE(IMONTH, IDAY, IYEAR)

! sets IMONTH to 7, IDAY to 11 and IYEAR to 99.

CALL IDATE (DATARRAY)

! datarray is (/11,7,99/)

See Also
• H to I
• DATE portability routine
• DATE_AND_TIME
• GETDAT
• IDATE intrinsic procedure

IDATE4
Portability Subroutine: Returns the month, day,
and year of the current system.

Module

USE IFPORT

Syntax

CALL IDATE4 (i,j,k)

-or-

CALL IDATE4 (iarray)

2832

63 Intel® Fortran Compiler User and Reference Guides

(Output) INTEGER(4). The current system month.i

(Output) INTEGER(4). The current system day.j

(Output) INTEGER(4). The current system year as an offset from
1900.

k

(Output) INTEGER(4). A three-element array that holds day as
element 1, month as element 2, and year as element 3. The month
is between 1 and 12. The year is returned as an offset from 1900,
if the year is less than 2000. For years greater than or equal to
2000, this element simply returns the integer year, such as 2003.

iarray

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

IDENT
General Compiler Directive: Specifies a string
that identifies an object module. The compiler
places the string in the identification field of an
object module when it generates the module for
each source program unit.

Syntax

cDEC$ IDENT string

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is a character constant containing printable characters. The number
of characters is limited by the length of the source line.

string

Only the first IDENT directive is effective; the compiler ignores any additional IDENT directives
in a program unit or module.

IDFLOAT
Portability Function: Converts an INTEGER(4)
argument to double-precision real type.

Module

USE IFPORT

2833

63

Syntax

result = IDFLOAT (i)

(Input) Must be of type INTEGER(4).i

Results

The result type is double-precision real (REAL(8) or REAL*8).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• H to I
• DFLOAT

IEEE_CLASS
Elemental Module Intrinsic Function
(Generic): Returns the IEEE class.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_CLASS (x)

(Input) Must be of type REAL.x

Results

The result is of type TYPE(IEEE_CLASS_TYPE). The result value is one of the following:

IEEE_NEGATIVE_NORMALIEEE_SIGNALING_NAN

IEEE_POSITIVE_DENORMALIEEE_QUITE_NAN

IEEE_NEGATIVE_DENORMALIEEE_POSITIVE_INF

IEEE_POSITIVE_ZEROIEEE_NEGATIVE_INF

2834

63 Intel® Fortran Compiler User and Reference Guides

IEEE_NEGATIVE_ZEROIEEE_POSITIVE_NORMAL

IEEE_CLASS does not return IEEE_OTHER_VALUE in Intel Fortran.

Example

IEEE_CLASS(1.0) has the value IEEE_POSITIVE_NORMAL.

IEEE_COPY_SIGN
Elemental Module Intrinsic Function
(Generic): Returns an argument with a copied
sign. This is equivalent to the IEEE copysign
function.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_COPY_SIGN (x,y)

(Input) Must be of type REAL.x

(Input) Must be of type REAL.y

Results

The result type is the same as x. The result has the value x with the sign of y. This is true even
for IEEE special values, such as NaN or infinity.

The flags information is returned as a set of 1-bit flags.

Example

The value of IEEE_COPY_SIGN (X,3.0) is ABS (X), even when X is NaN.

IEEE_GET_FLAG
Elemental Module Intrinsic Subroutine
(Generic): Returns whether an exception flag is
signaling.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

2835

63

Syntax

CALL IEEE_GET_FLAG (flag, flag_value)

(Input) Must be of type TYPE (IEEE_FLAG_TYPE). It specifies one
of the following IEEE flags:

flag

IEEE_DIVIDE_BY_ZERO, IEEE_INEXACT, IEEE_INVALID,
IEEE_OVERFLOW, or IEEE_UNDERFLOW.

(Output) Must be of type default logical. If the exception in 'flag'
is signaling, the result is true; otherwise, false.

flag_value

Example

Consider the following:

USE, INTRINSIC :: IEEE_EXCEPTIONS ! Can also use module IEEE_ARITHMETIC

LOGICAL ON

...

CALL IEEE_GET_FLAG(IEEE_INVALID, ON)

If flag IEEE_INVALID is signaling, the value of ON is true; if it is quiet, the value of ON is false.

IEEE_GET_HALTING_MODE
Elemental Module Intrinsic Subroutine
(Generic): Stores the halting mode for an
exception.

Module

USE, INTRINSIC :: IEEE_EXCEPTIONS

Syntax

CALL IEEE_GET_HALTING_MODE (flag, halting)

(Input) Must be of type TYPE (IEEE_FLAG_TYPE). It specifies one
of the following IEEE flags:

flag

IEEE_DIVIDE_BY_ZERO, IEEE_INEXACT, IEEE_INVALID,
IEEE_OVERFLOW, or IEEE_UNDERFLOW.

(Output) Must be of type default logical. If the exception in "flag"
causes halting, the result is true; otherwise, false.

halting

2836

63 Intel® Fortran Compiler User and Reference Guides

Example

Consider the following:

USE, INTRINSIC :: IEEE_EXCEPTIONS

LOGICAL HALT

...

CALL IEEE_GET_HALTING_MODE(IEEE_INVALID, HALT) ! Stores the halting mode

CALL IEEE_SET_HALTING_MODE(IEEE_INVALID, .FALSE.) ! Stops halting

...

CALL IEEE_SET_HALTING_MODE(IEEE_INVALID, HALT) ! Restores halting

IEEE_GET_ROUNDING_MODE
Intrinsic Module Subroutine (Generic): Stores
the current IEEE rounding mode.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

CALL IEEE_GET_ROUNDING_MODE (round_value)

(Output) Must be scalar and of type TYPE (IEEE_ROUND_TYPE).
It returns one of the following IEEE floating-point rounding values:

round_value

IEEE_DOWN, IEEE_NEAREST, IEEE_TO_ZERO, or IEEE_UP;
otherwise, IEEE_OTHER.
The result can only be used if IEEE_SET_ROUNDING_MODE is
invoked.

2837

63

Example

Consider the following:

USE, INTRINSIC :: IEEE_ARITHMETIC

TYPE(IEEE_ROUND_TYPE) ROUND

...

CALL IEEE_GET_ROUNDING_MODE(ROUND) ! Stores the rounding mode

CALL IEEE_SET_ROUNDING_MODE(IEEE_UP) ! Resets the rounding mode

...

CALL IEEE_SET_ROUNDING_MODE(VALUE) ! Restores the previous rounding mode

IEEE_GET_STATUS
Intrinsic Module Subroutine (Generic): Stores
the current state of the floating-point environment.

Module

USE, INTRINSIC :: IEEE_EXCEPTIONS

Syntax

CALL IEEE_GET_STATUS (status_value)

(Input) Must be scalar and of type TYPE (IEEE_STATUS_TYPE).status_value
It stores the floating-point status. The result can only be used if
IEEE_SET_STATUS is invoked.

Example

Consider the following:

USE, INTRINSIC :: IEEE_EXCEPTIONS !Can also use IEEE_ARITHMETIC

TYPE(IEEE_ STATUS_TYPE) STATUS

...

CALL IEEE_GET_STATUS(STATUS) ! Stores the floating-point status

CALL IEEE_SET_FLAG(IEEE_ALL,.FALSE.) ! Sets all flags to be quiet

...

CALL IEEE_SET_STATUS(STATUS) ! Restores the floating-point status

2838

63 Intel® Fortran Compiler User and Reference Guides

IEEE_GET_UNDERFLOW_MODE
Intrinsic Module Subroutine (Generic): Stores
the current underflow mode.

Module

USE, INTRINSIC :: IEEE_EXCEPTIONS

Syntax

CALL IEEE_GET_UNDERFLOW_MODE (gradual)

(Output) Must be default logical scalar.gradual
The result is true if the current underflow mode is gradual (IEEE
denormals are allowed) and false if the current underflow mode
is abrupt (underflowed results are set to zero).

Example

Consider the following:

USE, INTRINSIC :: IEEE_EXCEPTIONS

LOGICAL GRAD

...

CALL IEEE_GET_UNDERFLOW_MODE(GRAD)

IF (GRAD) THEN ! underflows are gradual

...

ELSE ! underflows are abrupt

...

END IF

IEEE_IS_FINITE
Elemental Module Intrinsic Function
(Generic): Returns whether an IEEE value is finite.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

2839

63

Syntax

result = IEEE_IS_FINITE (x)

(Input) Must be of type REAL.x

Results

The result type is default logical. The result has the value true if the value of x is finite;
otherwise, false.

An IEEE value is finite if IEEE_CLASS(x) has one of the following values:

IEEE_NEGATIVE_DENORMALIEEE_POSITIVE_NORMAL

IEEE_POSITIVE_ZEROIEEE_NEGATIVE_NORMAL

IEEE_NEGATIVE_ZEROIEEE_POSITIVE_DENORMAL

Example

IEEE_IS_FINITE (-2.0) has the value true.

IEEE_IS_NAN
Elemental Module Intrinsic Function
(Generic): Returns whether an IEEE value is
Not-a-Number (NaN).

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_IS_NAN (x)

(Input) Must be of type REAL.x

Results

The result type is default logical. The result has the value true if the value of x is NaN; otherwise,
false.

2840

63 Intel® Fortran Compiler User and Reference Guides

Example

IEEE_IS_NAN (SQRT(-2.0)) has the value true if IEEE_SUPPORT_SQRT (2.0) has the value
true.

IEEE_IS_NEGATIVE
Elemental Module Intrinsic Function
(Generic): Returns whether an IEEE value is
negative.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_IS_NEGATIVE (x)

(Input) Must be of type REAL.x

Results

The result type is default logical. The result has the value true if the value of x is negative;
otherwise, false.

An IEEE value is negative if IEEE_CLASS(x) has one of the following values::

IEEE_NEGATIVE_ZEROIEEE_NEGATIVE_NORMAL

IEEE_NEGATIVE_INFIEEE_NEGATIVE_DENORMAL

Example

IEEE_IS_NEGATIVE (2.0) has the value false.

IEEE_IS_NORMAL
Elemental Module Intrinsic Function
(Generic): Returns whether an IEEE value is
normal.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

2841

63

Syntax

result = IEEE_IS_NORMAL (x)

(Input) Must be of type REAL.x

Results

The result type is default logical. The result has the value true if the value of x is normal;
otherwise, false.

An IEEE value is normal if IEEE_CLASS(x) has one of the following values:

IEEE_POSITIVE_ZEROIEEE_POSITIVE_NORMAL

IEEE_NEGATIVE_ZEROIEEE_NEGATIVE_NORMAL

Example

IEEE_IS_NORMAL (SQRT(-2.0)) has the value false if IEEE_SUPPORT_SQRT (-2.0) has the
value true.

IEEE_LOGB
Elemental Module Intrinsic Function
(Generic): Returns a floating-point value equal
to the unbiased exponent of the argument. This is
equivalent to the IEEE logb function.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_LOGB (x)

(Input) Must be of type REAL.x

Results

The result type is the same as x. The result has the value of the unbiased exponent of x if the
value of x is not zero, infinity, or NaN. The value of the result is equal to EXPONENT(x) - 1.

If x is equal to 0, the result is -infinity if IEEE_SUPPORT_INF(x) is true; otherwise, -HUGE(x).
In either case, the IEEE_DIVIDE_BY_ZERO exception is signaled.

2842

63 Intel® Fortran Compiler User and Reference Guides

Example

IEEE_LOGB (3.4) has the value 1.0; IEEE_LOGB (4.0) has the value 2.0.

IEEE_NEXT_AFTER
Elemental Module Intrinsic Function
(Generic): Returns the next representable value
after X toward Y. This is equivalent to the IEEE
nextafter function.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_NEXT_AFTER (x,y)

(Input) Must be of type REAL.x

(Input) Must be of type REAL.y

Results

The result type is the same as x. If x is equal to y, the result is x; no exception is signaled. If
x is not equal to y, the result has the value of the next representable neighbor of x toward y.
The neighbors of zero (of either sign) are both nonzero.

The following exceptions are signaled under certain cases:

SignalledException

When X is finite but IEEE_NEXT_AFTER(X,Y)
is infinite

IEEE_OVERFLOW

When IEEE_NEXT_AFTER(X,Y) is
denormalized

IEEE_UNDERFLOW

In both the above casesIEEE_INEXACT

Example

The value of IEEE_NEXT_AFTER (2.0,3.0) is 2.0 + EPSILON (X).

2843

63

IEEE_REM
Elemental Module Intrinsic Function
(Generic): Returns the result value from a
remainder operation. This is equivalent to the IEEE
rem function.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_REM (x,y)

(Input) Must be of type REAL.x

(Input) Must be of type REAL.y

Results

The result type is real with the kind type parameter of whichever argument has greater precision.

Regardless of the rounding mode, the result value is x - y*N, where N is the integer nearest
to the value x / y. If |N – x / y | = 1/2, N is even. If the result value is zero, the sign is the
same as x.

Example

The value of IEEE_REM (5.0,4.0) is 1.0; the value of IEEE_REM (2.0,1.0) is 0.0; the value of
IEEE_REM (3.0,2.0) is -1.0.

IEEE_RINT
Elemental Module Intrinsic Function
(Generic): Returns an integer value rounded
according to the current rounding mode.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_RINT (x)

(Input) Must be of type REAL.x

2844

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is the same as x. The value of the result is x rounded to an integer according
to the current rounding mode. If the result value is zero, the sign is the same as x.

Example

If the current rounding mode is IEEE_UP, the value of IEEE_RINT (2.2) is 3.0.

If the current rounding mode is IEEE_NEAREST, the value of IEEE_RINT (2.2) is 2.0.

IEEE_SCALB
Elemental Module Intrinsic Function
(Generic): Returns the exponent of a
radix-independent floating-point number. This is
equivalent to the IEEE scalb function.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_SCALB (x,i)

(Input) Must be of type REAL.x

(Input) Must be of type INTEGER.i

Results

The result type is the same as x. The result is x multiplied by 2**i, if the value can be
represented as a normal number.

If x (2**i) is too small and there is a loss of accuracy, the exception IEEE_UNDERFLOW is
signaled. The result value is the nearest number that can be represented with the same sign
as x.

If x is finite and x (2**i) is too large, an IEEE_OVERFLOW exception occurs. If
IEEE_SUPPORT_INF (x) is true, the result value is infinity with the same sign as x; otherwise,
the result value is SIGN (HUGE(x), x).

If x is infinite, the result is the same as x; no exception is signaled.

Example

The value of IEEE_SCALB (2.0,3) is 16.0.

2845

63

IEEE_SELECTED_REAL_KIND
Transformational Module Intrinsic Function
(Generic): Returns the the value of the kind
parameter of an IEEE REAL data type.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_SELECTED_REAL_KIND ([p][,r])

(Input; optional) Must be scalar and of type INTEGER.p

(Input; optional) Must be scalar and of type INTEGER.r

At least one argument must be specified.

Results

The result is a scalar of type default integer. The result has a value equal to a value of the kind
parameter of an IEEE real data type with decimal precision, as returned by the function
PRECISION, of at least p digits and a decimal exponent range, as returned by the function
RANGE, of at least r.

If no such kind type parameter is available on the processor, the result is as follows:

• -1 if the precision is not available

• -2 if the exponent range is not available

• -3 if neither the precision nor the exponent range is available

• -4 if one but not both of the precision and the exponent range is available.

If more than one kind type parameter value meets the criteria, the value returned is the one
with the smallest decimal precision.

Example

IEEE_SELECTED_REAL_KIND (6, 70) = 8.

See Also
• H to I
• Model for Real Data

2846

63 Intel® Fortran Compiler User and Reference Guides

IEEE_SET_FLAG
Elemental Module Intrinsic Function
(Generic): Assigns a value to an exception flag.

Module

USE, INTRINSIC :: IEEE_EXCEPTIONS

Syntax

CALL IEEE_SET_FLAG (flag,flag_value)

(Input) Must be of type TYPE (IEEE_FLAG_TYPE). It specifies one
of the following IEEE flags:

flag

IEEE_DIVIDE_BY_ZERO, IEEE_INEXACT, IEEE_INVALID,
IEEE_OVERFLOW, or IEEE_UNDERFLOW.

(Output) Must be of type default logical. If it has the value true,
the exception in 'flag' is set to signal; otherwise, the exception is
set to be quiet.

flag_value

Example

Consider the following:

USE, INTRINSIC :: IEEE_EXCEPTIONS ! Can also use module IEEE_ARITHMETIC

...

CALL IEEE_SET_FLAG (IEEE_INVALID, .TRUE.) ! Sets the IEEE_INVALID flag to signal

IEEE_SET_HALTING_MODE
Elemental Module Intrinsic Function
(Generic): Controls halting or continuation after
an exception.

Module

USE, INTRINSIC :: IEEE_EXCEPTIONS

Syntax

CALL IEEE_SET_HALTING_MODE (flag, halting)

2847

63

(Input) Must be of type TYPE (IEEE_FLAG_TYPE). It specifies one
of the following IEEE flags:

flag

IEEE_DIVIDE_BY_ZERO, IEEE_INEXACT, IEEE_INVALID,
IEEE_OVERFLOW, or IEEE_UNDERFLOW

(Input) Must be scalar and of type default logical. If the value is
true, the exception specified in FLAG will cause halting; otherwise,
execution will continue after this exception.

halting

Example

Consider the following:

USE, INTRINSIC :: IEEE_EXCEPTIONS

LOGICAL HALT

...

CALL IEEE_GET_HALTING_MODE(IEEE_INVALID, HALT) ! Stores the halting mode

CALL IEEE_SET_HALTING_MODE(IEEE_INVALID, .FALSE.) ! Stops halting

...

CALL IEEE_SET_HALTING_MODE(IEEE_INVALID, HALT) ! Restores halting

IEEE_SET_ROUNDING_MODE
Intrinsic Module Subroutine (Generic): Sets
the IEEE rounding mode.

Module

USE, INTRINSIC :: IEEE_EXCEPTIONS

Syntax

CALL IEEE_SET_ROUNDING_MODE (round_value)

(Output) Must be scalar and of type TYPE (IEEE_ROUND_TYPE).
It specifies one of the following IEEE floating-point rounding values:

round_value

IEEE_DOWN, IEEE_NEAREST, IEEE_TO_ZERO, IEEE_UP, or
IEEE_OTHER.

2848

63 Intel® Fortran Compiler User and Reference Guides

Example

Consider the following:

USE, INTRINSIC :: IEEE_ARITHMETIC

TYPE (IEEE_ROUND_TYPE) ROUND

...

CALL IEEE_GET_ROUNDING_MODE (ROUND) ! Stores the rounding mode

CALL IEEE_SET_ROUNDING_MODE (IEEE_UP) ! Resets the rounding mode

...

CALL IEEE_SET_ROUNDING_MODE (VALUE) ! Restores the previous rounding mode

IEEE_SET_STATUS
Intrinsic Module Subroutine (Generic):
Restores the state of the floating-point
environment.

Module

USE, INTRINSIC :: IEEE_EXCEPTIONS

Syntax

CALL IEEE_SET_STATUS (status_value)

(Input) Must be scalar and of type TYPE (IEEE_STATUS_TYPE). Its
value must be set in a previous invocation of IEEE_GET_STATUS.

status_value

2849

63

Example

Consider the following:

USE, INTRINSIC :: IEEE_EXCEPTIONS !Can also use IEEE_ARITHMETIC

TYPE (IEEE_STATUS_TYPE) STATUS

...

CALL IEEE_GET_STATUS (STATUS) ! Stores the floating-point status

CALL IEEE_SET_FLAG (IEEE_ALL,.FALSE.) ! Sets all flags to be quiet

...

CALL IEEE_SET_STATUS (STATUS) ! Restores the floating-point status

IEEE_SET_UNDERFLOW_MODE
Intrinsic Module Subroutine (Generic): Sets
the current underflow mode.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

CALL IEEE_SET_UNDERFLOW_MODE (gradual)

(Input) Must be scalar and of type default logical. If it is true, the
current underflow mode is set to gradual underflow (denormals
may be produced on underflow). If it is false, the current underflow
mode is set to abrupt (underflowed results are set to zero).

gradual

Example

Consider the following:

USE, INTRINSIC :: IEEE_EXCEPTIONS

2850

63 Intel® Fortran Compiler User and Reference Guides

LOGICAL :: SG

...

CALL IEEE_GET_UNDERFLOW_MODE (SG) ! Stores underflow mode

CALL IEEE_SET_UNDERFLOW_MODE (.FALSE.) ! Resets underflow mode

... ! Abrupt underflows happens here

CALL IEEE_SET_UNDERFLOW_MODE (SG) ! Restores previous undeflow mode

IEEE_SUPPORT_DATATYPE
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports IEEE
arithmetic.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_SUPPORT_DATATYPE ([x])

(Input; optional) Must be scalar and of type REAL.x

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the
processor supports IEEE arithmetic for all real values; otherwise, false.

If x is specified, the result has the value true if the processor supports IEEE arithmetic for real
variables of the same kind type parameter as x; otherwise, false.

If real values are implemented according to the IEEE standard except that underflowed values
flush to zero (abrupt) instead of being denormal.

Example

IEEE_SUPPORT_DATATYPE (3.0) has the value true.

2851

63

IEEE_SUPPORT_DENORMAL
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports IEEE
denormalized numbers.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_SUPPORT_DENORMAL ([x])

(Input; optional) Must be of type REAL; it can be scalar or array
valued.

x

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the
processor supports arithmetic operations and assignments with denormalized numbers for all
real values; otherwise, false.

If x is specified, the result has the value true if the processor supports arithmetic operations
and assignments with denormalized numbers for real variables of the same kind type parameter
as x; otherwise, false.

Example

IEEE_SUPPORT_DENORMAL () has the value true if IEEE denormalized numbers are supported
for all real types.

IEEE_SUPPORT_DIVIDE
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports IEEE
divide.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_SUPPORT_DIVIDE ([x])

2852

63 Intel® Fortran Compiler User and Reference Guides

(Input; optional) Must be of type REAL; it can be scalar or array
valued.

x

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the
processor supports divide with the accuracy specified by the IEEE standard for all real values;
otherwise, false.

If x is specified, the result has the value true if the processor supports divide with the accuracy
specified by the IEEE standard for real variables of the same kind type parameter as x; otherwise,
false.

Example

IEEE_SUPPORT_DIVIDE () has the value true if IEEE divide is supported for all real types.

IEEE_SUPPORT_FLAG
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports IEEE
exceptions.

Module

USE, INTRINSIC :: IEEE_EXCEPTIONS

Syntax

result = IEEE_SUPPORT_FLAG (flag [, x])

(Input) Must be a scalar of type TYPE (IEEE_FLAG_TYPE). Its value
is one of the following IEEE flags:

flag

IEEE_DIVIDE_BY_ZERO, IEEE_INEXACT, IEEE_INVALID,
IEEE_OVERFLOW, or IEEE_UNDERFLOW.

(Input; optional) Must be of type REAL; it can be scalar or array
valued.

x

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the
processor supports detection of the exception specified by "flag" for all real values; otherwise,
false.

2853

63

If x is specified, the result has the value true if the processor supports detection of the exception
specified by "flag" for real variables of the same kind type parameter as x; otherwise, false.

Example

IEEE_SUPPORT_FLAG (IEEE_UNDERFLOW) has the value true if the IEEE_UNDERFLOW exception
is supported for all real types.

IEEE_SUPPORT_HALTING
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports IEEE
halting.

Module

USE, INTRINSIC :: IEEE_EXCEPTIONS

Syntax

result = IEEE_SUPPORT_HALTING(flag)

(Input) Must be of type TYPE (IEEE_FLAG_TYPE). It specifies one
of the following IEEE flags:

flag

IEEE_DIVIDE_BY_ZERO, IEEE_INEXACT, IEEE_INVALID,
IEEE_OVERFLOW, or IEEE_UNDERFLOW.

Results

The result is a scalar of type default logical. The result has the value true if the processor
supports the ability to control halting after the exception specified by "flag"; otherwise, false.

Example

IEEE_SUPPORT_HALTING (IEEE_UNDERFLOW) has the value true if halting is supported after
an IEEE_UNDERFLOW exception

IEEE_SUPPORT_INF
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports IEEE
infinities.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

2854

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = IEEE_SUPPORT_INF ([x])

(Input; optional) Must be of type REAL; it can be scalar or array
valued.

x

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the
processor supports IEEE infinities (positive and negative) for all real values; otherwise, false.

If x is specified, the result has the value true if the processor supports IEEE infinities for real
variables of the same kind type parameter as x; otherwise, false.

Example

IEEE_SUPPORT_INF() has the value true if IEEE infinities are supported for all real types.

IEEE_SUPPORT_IO
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports IEEE base
conversion rounding during formatted I/O.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_SUPPORT_IO ([x])

(Input; optional) Must be of type REAL; it can be scalar or array
valued.

x

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the
processor supports base conversion rounding during formatted input and output for all real
values; otherwise, false.

If x is specified, the result has the value true if the processor supports base conversion rounding
during formatted input and output for real variables of the same kind type parameter as x;
otherwise, false.

2855

63

The base conversion rounding applies to modes IEEE_UP, IEEE_DOWN, IEEE_TO_ZERO, and
IEEE_NEAREST.

Example

IEEE_SUPPORT_IO () has the value true if base conversion rounding is supported for all real
types during formatted I/O.

IEEE_SUPPORT_NAN
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports IEEE
Not-a-Number feature.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_SUPPORT_NAN ([x])

(Input; optional) Must be of type REAL; it can be scalar or array
valued.

x

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the
processor supports NaNs for all real values; otherwise, false.

If x is specified, the result has the value true if the processor supports NaNs for real variables
of the same kind type parameter as x; otherwise, false.

Example

IEEE_SUPPORT_NAN () has the value true if IEEE NaNs are supported for all real types.

IEEE_SUPPORT_ROUNDING
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports IEEE
rounding mode.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

2856

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = IEEE_SUPPORT_ROUNDING (round_value [, x])

(Input) Must be of type TYPE(IEEE_ROUND_TYPE). It specifies one
of the following rounding modes:

round_value

IEEE_UP, IEEE_DOWN, IEEE_TO_ZERO, and IEEE_NEAREST.

(Input; optional) Must be of type REAL; it can be scalar or array
valued.

x

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the
processor supports the rounding mode specified by round_value for all real values; otherwise,
false.

If x is specified, the result has the value true if the processor supports the rounding mode
specified by round_value for real variables of the same kind type parameter as x; otherwise,
false.

Example

IEEE_SUPPORT_ROUNDING (IEEE_DOWN) has the value true if rounding mode IEEE_DOWN
is supported for all real types.

IEEE_SUPPORT_SQRT
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports IEEE SQRT
(square root).

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_SUPPORT_SQRT ([x])

(Input; optional) Must be of type REAL; it can be scalar or array
valued.

x

2857

63

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the
processor implements SQRT in accord with the IEEE standard for all real values; otherwise,
false.

If x is specified, the result has the value true if the processor implements SQRT in accord with
the IEEE standard for real variables of the same kind type parameter as x; otherwise, false.

Example

IEEE_SUPPORT_SQRT () has the value true if IEEE SQRT is supported for all real types.

IEEE_SUPPORT_STANDARD
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports IEEE
features defined in the standard.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_SUPPORT_STANDARD ([x])

(Input; optional) Must be of type REAL; it can be scalar or array
valued.

x

Results

The result is a scalar of type default logical. The result has the value true if the results of all
the following functions are true (x can be omitted):

IEEE_SUPPORT_DATATYPE([x])

IEEE_SUPPORT_DENORMAL([x])

IEEE_SUPPORT_DIVIDE([x])

IEEE_SUPPORT_FLAG(flag [, x])1

IEEE_SUPPORT_HALTING(flag)1

IEEE_SUPPORT_INF([x])

2858

63 Intel® Fortran Compiler User and Reference Guides

IEEE_SUPPORT_NAN([x])

IEEE_SUPPORT_ROUNDING(round_value [, x])2

IEEE_SUPPORT_SQRT([x])

1: "flag" must be a valid value

2: "round_value" must be a valid value

Otherwise, the result has the value, false.

Example

IEEE_SUPPORT_STANDARD () has the value false if both IEEE and non-IEEE real kinds are
supported.

IEEE_SUPPORT_UNDERFLOW_CONTROL
Inquiry Module Intrinsic Function (Generic):
Returns whether the processor supports the ability
to control the underflow mode.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_SUPPORT_UNDERFLOW_CONTROL ([x])

(Input; optional) Must be of type REAL; it can be scalar or array
valued.

x

Results

The result is a scalar of type default logical. If x is omitted, the result has the value true if the
processor supports controlling the underflow mode for all real values; otherwise, false.

If x is specified, the result has the value true if the processor supports controlling the underflow
mode for real variables of the same kind type parameter as x; otherwise, false.

Example

IEEE_SUPPORT_UNDERFLOW _CONTROL () has the value true if controlling the underflow mode
is supported for all real types.

2859

63

IEEE_UNORDERED
Elemental Module Intrinsic Function
(Generic): Returns whether one or more of the
arguments is Not-a-Number (NaN). This is
equivalent to the IEEE unordered function.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_UNORDERED (x,y)

(Input) Must be of type REAL.x

(Input) Must be of type REAL.y

Results

The result type is default logical. The result has the value true if x or y is a NaN, or both are
NaNs; otherwise, false.

Example

IEEE_UNORDERED (0.0, SQRT(-2.0)) has the value true if IEEE_SUPPORT_SQRT (2.0) has the
value true.

IEEE_VALUE
Elemental Module Intrinsic Function
(Generic): Creates an IEEE value.

Module

USE, INTRINSIC :: IEEE_ARITHMETIC

Syntax

result = IEEE_VALUE (x, class)

(Input) Must be of type REAL.x

(Input) Must be of type TYPE (IEEE_CLASS_TYPE). Its value is one
of the following:

class

2860

63 Intel® Fortran Compiler User and Reference Guides

IEEE_NEGATIVE_NORMALIEEE_SIGNALING_NAN

IEEE_POSITIVE_DENORMALIEEE_QUITE_NAN

IEEE_NEGATIVE_DENORMALIEEE_POSITIVE_INF

IEEE_POSITIVE_ZEROIEEE_NEGATIVE_INF

IEEE_NEGATIVE_ZEROIEEE_POSITIVE_NORMAL

Results

The result type is the same as x. The result value is an IEEE value as specified by "class".

When IEEE_VALUE returns a signaling NaN, it is processor dependent whether or not invalid is
signaled and processor dependent whether or not the signaling NaN is converted to a quiet
NaN.

Example

IEEE_VALUE (1.0,IEEE_POSITIVE_INF) has the value +infinity.

IEEE_FLAGS
Portability Function: Gets, sets or clears IEEE
flags for rounding direction and precision as well
as queries or controls exception status. This
function provides easy access to the modes and
status required to use the features of IEEE
Standard 754-1985 arithmetic in a Fortran
program.

Module

USE IFPORT

Syntax

result = IEEE_FLAGS (action,mode,in,out)

(Input) Character*(*). One of the following literal values: 'GET',
'SET', 'CLEAR', or 'CLEARALL'.

action

2861

63

(Input) Character*(*). One of the following literal values:
'direction', 'precision', or 'exception'. The value 'precision' is only
allowed on Intel® 64 architecture and IA-32 architecture.

mode

(Input) Character*(*). One of the following literal values: 'inexact',
'division', 'underflow','overflow', 'invalid', 'all', 'common', 'nearest',
'tozero', 'negative', 'positive','extended', 'double', 'single', or ' ',
which represents an unused (null) value.

in

(Output) Must be at least CHARACTER*9. One of the literal values
listed for in.

out

The descriptions for the values allowed for in and out can be
summarized as follows:

DescriptionValue

Rounding direction flags'nearest'

'tozero'

'negative'

'positive'

Rounding precision flags'single'

'double'

'extended'

Math exception flags'inexact'

'underflow'

'overflow'

'division'

'invalid'

All math exception flags above'all'

The math exception flags:
'invalid', 'division', 'overflow',
and 'underflow'

'common'

2862

63 Intel® Fortran Compiler User and Reference Guides

The values for in and out depend on the action and mode they
are used with. The interaction of the parameters can be
summarized as follows:

Functionality
and return
value

Value of
out

Value of inValue of
mode

Value of
action

Tests
rounding
direction
settings.

One of
'nearest',
'tozero',
'negative',
or
'positive'

Null (' ')'direction'GET

Returns
the
current
setting, or
'not
available'.

Tests
math
exception
settings.

One of
'inexact',
'division',
'underflow'

Null (' ')'exception'

, Returns
the
current
setting, or
0.

'overflow',
'invalid',
'all', or
'common'

Tests
rounding
precision
settings.

One of
'single ',
'double ',
or
'extended'

Null (' ')'precision'

Returns
the
current
setting, or
'not
available'.

2863

63

Functionality
and return
value

Value of
out

Value of inValue of
mode

Value of
action

Sets a
rounding
direction.

Null (' ')One of
'nearest',
'tozero',
'negative',
or
'positive'

'direction'SET

Sets a
floating-point
math
exception.

Null (' ')One of
'inexact',
'division',
'underflow'
,

'exception'

'overflow',
'invalid',
'all', or
'common'

Sets a
rounding
precision.

Null (' ')One of
'single ',
'double ',
or
'extended'

'precision'

Clears the
mode. Sets
rounding
to
'nearest'.

Null (' ')Null (' ')'direction'CLEAR

Returns 0
if
successful.

Clears the
mode.

Null (' ')One of
'inexact',
'division',

'exception'

2864

63 Intel® Fortran Compiler User and Reference Guides

Functionality
and return
value

Value of
out

Value of inValue of
mode

Value of
action

Returns 0
if
successful.

'underflow','overflow',
'invalid',
'all', or
'common'

Clears the
mode. Sets
precision

Null (' ')Null (' ')'precision'

to 'double'
(W*32,
W*64) or
'extended'
(L*X,
M*X).

Returns 0
if
successful.

Clears all
flags. Sets
rounding

Null (' ')Null (' ')Null (' ')CLEARALL

to
'nearest',
sets
precision
to 'double'
(W*32,
W*64) or
'extended'
(L*X,
M*X), and
sets all
exception
flags to 0.

2865

63

Functionality
and return
value

Value of
out

Value of inValue of
mode

Value of
action

Returns 0
if
successful.

Results

IEEE_FLAGS is an elemental, integer-valued function that sets IEEE flags for GET, SET, CLEAR,
or CLEARALL procedures. It lets you control rounding direction and rounding precision, query
exception status, and control exception enabling or disabling by using the SET or CLEAR
procedures, respectively.

The flags information is returned as a set of 1-bit flags.

Example

The following example gets the highest priority exception that has a flag raised. It passes the
input argument in as a null string:

USE IFPORT

INTEGER*4 iflag

CHARACTER*9 out

iflag = ieee_flags('get', 'exception', '', out)

PRINT *, out, ' flag raised'

The following example sets the rounding direction to round toward zero, unless the hardware
does not support directed rounding modes:

USE IFPORT

INTEGER*4 iflag

CHARACTER*10 mode, out, in

iflag = ieee_flags('set', 'direction', 'tozero', out)

2866

63 Intel® Fortran Compiler User and Reference Guides

The following example sets the rounding direction to the default ('nearest'):

USE IFPORT

INTEGER*4 iflag

CHARACTER*10 out, in

iflag = ieee_flags('clear','direction', '', '')

The following example clears all exceptions:

USE IFPORT

INTEGER*4 iflag

CHARACTER*10 out

iflag = ieee_flags('clear','exception', 'all', '')

The following example restores default direction and precision settings, and sets all exception
flags to 0:

USE IFPORT

INTEGER*4 iflag

CHARACTER*10 mode, out, in

iflag = ieee_flags('clearall', '', '', '')

The following example detects an underflow exception:

USE IFPORT

CHARACTER*20 out, in

excep_detect = ieee_flags('get', 'exception', 'underflow', out)

if (out .eq.'underflow') stop 'underflow'

IEEE_HANDLER
Portability Function: Establishes a handler for
IEEE exceptions.

Module

USE IFPORT

Syntax

result = IEEE_HANDLER (action, exception, handler)

2867

63

(Input) Character*(*). One of the following literal IEEE actions:
'GET', 'SET', or 'CLEAR'. For more details on these actions, see
IEEE_FLAGS.

action

(Input) Character*(*). One of the following literal IEEE exception
flags: 'inexact', 'underflow', 'overflow', 'division', 'invalid', 'all'
(which equals the previous five flags), or 'common' (which equals
'invalid', 'overflow', 'underflow', and 'division'). The flags 'all' or
'common' should only be used for actions SET or CLEAR.

exception

(Input) The address of an external signal-handling routine.handler

Results

The result type is INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 architecture and
IA-64 architecture. The result is 0 if successful; otherwise, 1.

IEEE_HANDLER calls a signal-handling routine to establish a handler for IEEE exceptions. It
also enables an FPU trap corresponding to the required exception.

The state of the FPU is not defined in the handler routine. When the FPU trap occurs, the
program invokes the handler routine. After the handler routine is executed, the program
terminates.

The handler routine gets the exception code in the SIGINFO argument. SIGNO is the number
of the system signal. The meaning of the SIGINFO constants appear in the following table
(defined in the IFPORT module):

Invalid operationFPE$INVALID

Divide-by-zeroFPE$ZERODIVIDE

Numeric overflowFPE$OVERFLOW

Numeric underflowFPE$UNDERFLOW

Inexact result (precision)FPE$INEXACT

'GET' actions return the location of the current handler routine for exception cast to an INTEGER.

2868

63 Intel® Fortran Compiler User and Reference Guides

Example

The following example creates a handler routine and sets it to trap divide-by-zero:

PROGRAM TEST_IEEE

REAL :: X, Y, Z

CALL FPE_SETUP

X = 0.

Y = 1.

Z = Y / X

END PROGRAM

SUBROUTINE FPE_SETUP

USE IFPORT

IMPLICIT NONE

INTERFACE

SUBROUTINE FPE_HANDLER(SIGNO, SIGINFO)

INTEGER(4), INTENT(IN) :: SIGNO, SIGINFO

END SUBROUTINE

END INTERFACE

INTEGER IR

IR = IEEE_HANDLER('set','division',FPE_HANDLER)

END SUBROUTINE FPE_SETUP

SUBROUTINE FPE_HANDLER(SIG, CODE)

USE IFPORT

IMPLICIT NONE

INTEGER SIG, CODE

IF(CODE.EQ.FPE$ZERODIVIDE) PRINT *,'Occurred divide by zero.'

CALL ABORT

END SUBROUTINE FPE_HANDLER

2869

63

See Also
• H to I
• IEEE_FLAGS

IEOR
Elemental Intrinsic Function (Generic):
Performs an exclusive OR on corresponding bits.
This function can also be specified as XOR or IXOR.

Syntax

result = IEOR (i,j)

(Input) Must be of type integer or of type logical (which is treated
as an integer).

i

(Input) Must be of type integer with the same kind parameter as
i. If the kinds of i and j do not match, the value with the smaller
kind is extended with zeros on the left and the larger kind is used
for the operation and the result.

j

Results

The result type is the same as i. The result value is derived by combining i and j bit-by-bit
according to the following truth table:

i j IEOR (i, j)

1 1 0

1 0 1

0 1 1

0 0 0

The model for the interpretation of an integer value as a sequence of bits is shown in Model
for Bit Data.

Result TypeArgument TypeSpecific Name

INTEGER(1)INTEGER(1)BIEOR1

INTEGER(2)INTEGER(2)IIEOR2

INTEGER(4)INTEGER(4)JIEOR3

2870

63 Intel® Fortran Compiler User and Reference Guides

Result TypeArgument TypeSpecific Name

INTEGER(8)INTEGER(8)KIEOR

1Or BIXOR
2Or HIEOR, HIXOR, or IIXOR
3Or JIXOR

Example

IEOR (12, 7) has the value 11; binary 1100 exclusive OR with binary 0111 is binary 1011.

The following shows another example:

INTEGER I

I = IEOR(240, 90) ! returns 170

! IEOR (B'11110000', B'1011010') == B'10101010'

The following shows an example using alternate option XOR:

INTEGER i, j, k

i = 3 ! B'011'

j = 5 ! B'101'

k = XOR(i, j) ! returns 6 = B'110'

See Also
• H to I
• IAND
• IOR
• NOT

IERRNO
Portability Function: Returns the number of the
last detected error from any routines in the IFPORT
module that return error codes.

Module

USE IFPORT

2871

63

Syntax

result = IERRNO()

Results

The result type is INTEGER(4). The result value is the last error code from any portability
routines that return error codes. These error codes are analogous to errno on a Linux* or Mac
OS* X system. The module IFPORT.F90 provides parameter definitions for the following errno
names (typically found in errno.h on Linux systems):

DescriptionNumberSymbolic name

Insufficient permission for
operation

1EPERM

No such file or directory2ENOENT

No such process3ESRCH

I/O error5EIO

Argument list too long7E2BIG

File is not executable8ENOEXEC

Not enough resources12ENOMEM

Permission denied13EACCES

Cross-device link18EXDEV

Not a directory20ENOTDIR

Invalid argument22EINVAL

The value returned by IERRNO is updated only when an error occurs. For example, if an error
occurs on a GETLOG call and then two CHMOD calls succeed, a subsequent call to IERRNO
returns the error for the GETLOG call.

Examine IERRNO immediately after returning from a portability routine. Other Fortran routines,
as well as any Windows* APIs, can also change the error code to an undefined value. IERRNO
is set on a per thread basis.

2872

63 Intel® Fortran Compiler User and Reference Guides

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

CHARACTER*20 username

INTEGER(4) ierrval

ierrval=0 !initialize return value

CALL GETLOG(username)

IF (IERRNO() == ierrval) then

print *, 'User name is ',username

exit

ELSE

ierrval = ierrno()

print *, 'Error is ',ierrval

END IF

IF - Arithmetic
Statement: Conditionally transfers control to one
of three statements, based on the value of an
arithmetic expression. It is an obsolescent feature
in Fortran 95 and Fortran 90.

Syntax

IF (expr) label1,label2,label3

Is a scalar numeric expression of type integer or real (enclosed in
parentheses).

expr

Are the labels of valid branch target statements that are in the
same scoping unit as the arithmetic IFstatement.

label1, label2, label3

Description

All three labels are required, but they do not need to refer to three different statements. The
same label can appear more than once in the same arithmetic IF statement.

2873

63

During execution, the expression is evaluated first. Depending on the value of the expression,
control is then transferred as follows:

Control Transfers To:If the Value of expr is:

Statement label1Less than 0

Statement label2Equal to 0

Statement label3Greater than 0

Example

The following example transfers control to statement 50 if the real variable THETAis less than
or equal to the real variable CHI. Control passes to statement 100 only if THETAis greater than
CHI.

IF (THETA-CHI) 50,50,100

The following example transfers control to statement 40 if the value of the integer variable
NUMBERis even. It transfers control to statement 20 if the value is odd.

IF (NUMBER / 2*2 - NUMBER) 20,40,20

The following statement transfers control to statement 10 for n < 10, to statement 20 for n =
10, and to statement 30 for n > 10:

IF (n-10) 10, 20, 30

The following statement transfers control to statement 10 if n <= 10, and to statement 30 for
n > 10:

IF (n-10) 10, 10, 30

See Also
• H to I
• SELECT CASE...END SELECT
• Execution Control
• Obsolescent Features in Fortran 90

2874

63 Intel® Fortran Compiler User and Reference Guides

IF - Logical
Statement: Conditionally executes one statement
based on the value of a logical expression. (This
statement was called a logical IF statement in
FORTRAN 77.)

Syntax

IF (expr) stmt

Is a scalar logical expression enclosed in parentheses.expr

Is any complete, unlabeled, executable Fortran statement, except
for the following:

stmt

• A CASE, DO, IF, FORALL, or WHERE construct

• Another IF statement

• The END statement for a program, function, or subroutine

When an IF statement is executed, the logical expression is evaluated first. If the value is true,
the statement is executed. If the value is false, the statement is not executed and control
transfers to the next statement in the program.

Example

The following examples show valid IF statements:

IF (J.GT.4 .OR. J.LT.1) GO TO 250

IF (REF(J,K) .NE. HOLD) REF(J,K) = REF(J,K) * (-1.5D0)

IF (ENDRUN) CALL EXIT

2875

63

The following shows another example:

USE IFPORT

INTEGER(4) istat, errget

character(inchar)

real x

istat = getc(inchar)

IF (istat) errget = -1

...

! IF (x .GT. 2.3) call new_subr(x)

...

See Also
• H to I
• IF Construct
• Execution Control

IF Construct
Statement: Conditionally executes one block of
constructs or statements depending on the
evaluation of a logical expression. (This construct
was called a block IF statement in FORTRAN 77.)

Syntax

name:] IF (expr) THEN

block

[ELSE IF (expr) THEN [name]

block]

[ELSE [name]

block]

END IF [name]

(Optional) Is the name of the IF construct.name

Is a scalar logical expression enclosed in parentheses.expr

2876

63 Intel® Fortran Compiler User and Reference Guides

Is a sequence of zero or more statements or constructs.block

Description

If a construct name is specified at the beginning of an IF THEN statement, the same name
must appear in the corresponding END IF statement. The same construct name must not be
used for different named constructs in the same scoping unit.

Depending on the evaluation of the logical expression, one block or no block is executed. The
logical expressions are evaluated in the order in which they appear, until a true value is found
or an ELSE or END IF statement is encountered.

Once a true value is found or an ELSE statement is encountered, the block immediately following
it is executed and the construct execution terminates.

If none of the logical expressions evaluate to true and no ELSE statement appears in the
construct, no block in the construct is executed and the construct execution terminates.

NOTE. No additional statement can be placed after the IF THEN statement in a block
IF construct. For example, the following statement is invalid in the block IF construct:

IF (e) THEN I = J

This statement is translated as the following logical IF statement:

IF (e) THENI = J

You cannot use branching statements to transfer control to an ELSE IF statement or ELSE
statement. However, you can branch to an END IF statement from within the IF construct.

2877

63

The following figure shows the flow of control in IF constructs:

2878

63 Intel® Fortran Compiler User and Reference Guides

Figure 62: Flow of Control in IF Constructs

2879

63

You can include an IF construct in the statement block of another IF construct, if the nested IF
construct is completely contained within a statement block. It cannot overlap statement blocks.

Example

The following example shows the simplest form of an IF construct:

Form Example

IF (expr) THEN IF (ABS(ADJU) .GE. 1.0E-6) THEN

block TOTERR = TOTERR + ABS(ADJU)

QUEST = ADJU/FNDVAL

END IF END IF

This construct conditionally executes the block of statements between the IF THEN and the
END IF statements.

The following shows another example:

! Simple block IF:

IF (i .LT. 10) THEN

! the next two statements are only executed if i < 10

j = i

slice = TAN (angle)

END IF

The following example shows a named IF construct:

BLOCK_A: IF (D > 0.0) THEN ! Initial statement for named construct

RADIANS = ACOS(D) ! These two statements

DEGREES = ACOSD(D) ! form a block

END IF BLOCK_A ! Terminal statement for named construct

2880

63 Intel® Fortran Compiler User and Reference Guides

The following example shows an IF construct containing an ELSE statement:

Form Example

IF (expr) THEN IF (NAME .LT. 'N') THEN

block1 IFRONT = IFRONT + 1

FRLET(IFRONT) = NAME(1:2)

ELSE ELSE

block2 IBACK = IBACK + 1

END IF END IF

Block1 consists of all the statements between the IF THEN and ELSE statements. Block2 consists
of all the statements between the ELSE and the END IF statements.

If the value of the character variable NAME is less than 'N ', block1 is executed. If the value
of NAME is greater than or equal to 'N ', block2 is executed.

The following example shows an IF construct containing an ELSE IF THEN statement:

Form Example IF (expr) THEN IF (A .GT. B) THEN

block1 D = B

F = A - B

ELSE IF (expr) THEN ELSE IF (A .GT. B/2.) THEN

block2 D = B/2.

F = A - B/2.

END IF END IF

If A is greater than B, block1 is executed. If A is not greater than B, but A is greater than B/2,
block2 is executed. If A is not greater than B and A is not greater than B/2, neither block1 nor
block2 is executed. Control transfers directly to the next executable statement after the END
IF statement.

2881

63

The following shows another example:

! Block IF with ELSE IF statements:

IF (j .GT. 1000) THEN

! Statements here are executed only if J > 1000

ELSE IF (j .GT. 100) THEN

! Statements here are executed only if J > 100 and j <= 1000

ELSE IF (j .GT. 10) THEN

! Statements here are executed only if J > 10 and j <= 100

ELSE

! Statements here are executed only if j <= 10

END IF

The following example shows an IF construct containing several ELSE IF THEN statements and
an ELSE statement:

Form Example

IF (expr) THEN IF (A .GT. B) THEN

block1 D = B

F = A - B

ELSE IF (expr) THEN ELSE IF (A .GT. C) THEN

block2 D = C

F = A - C

ELSE IF (expr) THEN ELSE IF (A .GT. Z) THEN

block3 D = Z

F = A - Z

ELSE ELSE

block4 D = 0.0

F = A

END IF END IF

2882

63 Intel® Fortran Compiler User and Reference Guides

If A is greater than B, block1 is executed. If A is not greater than B but is greater than C, block2
is executed. If A is not greater than B or C but is greater than Z, block3 is executed. If A is not
greater than B, C, or Z, block4 is executed.

The following example shows a nested IF construct:

Form Example

IF (expr) THEN IF (A .LT. 100) THEN

block1 INRAN = INRAN + 1

IF (expr2) THEN IF (ABS(A-AVG) .LE. 5.) THEN

block1a INAVG = INAVG + 1

ELSE ELSE

block1b OUTAVG = OUTAVG + 1

END IF END IF

ELSE ELSE

block2 OUTRAN = OUTRAN + 1

END IF END IF

If A is less than 100, the code immediately following the IF is executed. This code contains a
nested IF construct. If the absolute value of A minus AVG is less than or equal to 5, block1a is
executed. If the absolute value of A minus AVG is greater than 5, block1b is executed.

If A is greater than or equal to 100, block2 is executed, and the nested IF construct (in block1)
is not executed.

2883

63

The following shows another example:

! Nesting of constructs and use of an ELSE statement following

! a block IF without intervening ELSE IF statements:

IF (i .LT. 100) THEN

! Statements here executed only if i < 100

IF (j .LT. 10) THEN

! Statements here executed only if i < 100 and j < 10

END IF

! Statements here executed only if i < 100

ELSE

! Statements here executed only if i >= 100

IF (j .LT. 10) THEN

! Statements here executed only if i >= 100 and j < 10

END IF

! Statements here executed only if i >= 100

END IF

See Also
• H to I
• Execution Control
• IF - Logical
• IF - Arithmetic

IF Directive Construct
General Compiler Directive: A conditional
compilation construct that begins with an IF or IF
DEFINED directive. IF tests whether a logical
expression is .TRUE. or .FALSE.. IF DEFINED tests
whether a symbol has been defined.

Syntax

cDEC$ IF (expr) -or- cDEC$ IF DEFINED (name)

2884

63 Intel® Fortran Compiler User and Reference Guides

block

[cDEC$ ELSEIF (expr)

block] ...

[cDEC$ ELSE

block]

cDEC$ ENDIF

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is a logical expression that evaluates to .TRUE. or .FALSE..expr

Is the name of a symbol to be tested for definition.name

Are executable statements that are compiled (or not) depending
on the value of logical expressions in the IF directive construct.

block

The IF and IF DEFINED directive constructs end with an ENDIF directive and can contain one
or more ELSEIF directives and at most one ELSE directive. If the logical condition within a
directive evaluates to .TRUE. at compilation, and all preceding conditions in the IF construct
evaluate to .FALSE., then the statements contained in the directive block are compiled.

A name can be defined with a DEFINE directive, and can optionally be assigned an integer value.
If the symbol has been defined, with or without being assigned a value, IF DEFINED (name)
evaluates to .TRUE.; otherwise, it evaluates to .FALSE..

If the logical condition in the IF or IF DEFINED directive is .TRUE., statements within the IF or
IF DEFINED block are compiled. If the condition is .FALSE., control transfers to the next ELSEIF
or ELSE directive, if any.

If the logical expression in an ELSEIF directive is .TRUE., statements within the ELSEIF block
are compiled. If the expression is .FALSE., control transfers to the next ELSEIF or ELSE directive,
if any.

If control reaches an ELSE directive because all previous logical conditions in the IF construct
evaluated to .FALSE., the statements in an ELSE block are compiled unconditionally.

You can use any Fortran logical or relational operator or symbol in the logical expression of the
directive, including: .LT., <, .GT., >, .EQ., ==, .LE., <=, .GE., >=, .NE., /=, .EQV., .NEQV.,
.NOT., .AND., .OR., and .XOR.. The logical expression can be as complex as you like, but the
whole directive must fit on one line.

2885

63

Example
! When the following code is compiled and run,

! the output is:

! Or this compiled if all preceding conditions .FALSE.

!

!DEC$ DEFINE flag=3

!DEC$ IF (flag .LT. 2)

WRITE (*,*) "This is compiled if flag less than 2."

!DEC$ ELSEIF (flag >= 8)

WRITE (*,*) "Or this compiled if flag greater than &

or equal to 8."

!DEC$ ELSE

WRITE (*,*) "Or this compiled if all preceding &

conditions .FALSE."

!DEC$ ENDIF

END

See Also
• H to I
• DEFINE and UNDEFINE
• IF Construct
• General Compiler Directives

2886

63 Intel® Fortran Compiler User and Reference Guides

IF DEFINED Directive
See IF Directive Construct.

IFIX
Elemental Intrinsic Function (Generic):
Converts a single-precision real argument to an
integer by truncating. See INT.

IFLOATI, IFLOATJ
Portability Functions: Convert an integer to
single-precision real type.

Module

USE IFPORT

Syntax

result = IFLOATI (i)

result = IFLOATJ (j)

(Input) Must be of type INTEGER(2).i

(Input) Must be of type INTEGER(4).j

Results

The result type is single-precision real (REAL(4) or REAL*4).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• H to I
• DFLOAT

2887

63

ILEN
Inquiry Intrinsic Function (Generic): Returns
the length (in bits) of the two's complement
representation of an integer.

Syntax

result = ILEN (i)

Must be of type integer.i

Results

The result type is the same as i. The result value is (LOG2(i+ 1)) if i is not negative;
otherwise, the result value is (LOG2(- i)).

Example
ILEN (4) has the value 3.

ILEN (-4) has the value 2.

IMAGESIZE, IMAGESIZE_W (W*32, W*64)
Graphics Functions: Return the number of bytes
needed to store the image inside the specified
bounding rectangle. IMAGESIZE is useful for
determining how much memory is needed for a
call to GETIMAGE.

Module

USE IFQWIN

Syntax

result = IMAGESIZE (x1,y1,x2,y2)

result = IMAGESIZE_W (wx1,wy1,wx2,wy2)

(Input) INTEGER(2). Viewport coordinates for upper-left corner of
image.

x1, y1

(Input) INTEGER(2). Viewport coordinates for lower-right corner
of image.

x2, y2

2888

63 Intel® Fortran Compiler User and Reference Guides

(Input) REAL(8). Window coordinates for upper-left corner of
image.

wx1, wy1

(Input) REAL(8). Window coordinates for lower-right corner of
image.

wx2, wy2

Results

The result type is INTEGER(4). The result is the storage size of an image in bytes.

IMAGESIZE defines the bounding rectangle in viewport-coordinate points (x1, y1) and (x2,
y2). IMAGESIZE_W defines the bounding rectangle in window-coordinate points (wx1, wy1)
and (wx2, wy2).

IMAGESIZE_W defines the bounding rectangle in terms of window-coordinate points (wx1, wy1)
and (wx2, wy2).

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example

See the example in GETIMAGE.

See Also
• H to I
• GETIMAGE
• GRSTATUS
• PUTIMAGE

Building Applications: Transferring Images in Memory

IMPLICIT
Statement: Overrides the default implicit typing
rules for names. (The default data type is INTEGER
for names beginning with the letters I through N,
and REAL for names beginning with any other
letter.)

Syntax

The IMPLICIT statement takes one of the following forms:

IMPLICIT type(a[,a]...)[,type(a[,a]...)]...

2889

63

IMPLICIT NONE

Is a data type specifier (CHARACTER*(*) is not allowed).type

Is a single letter, a dollar sign ($),or a range of letters in
alphabetical order. The form for a range of letters is a1-a2, where
the second letter follows the first alphabetically (for example, A-C).

a

The dollar sign can be used at the end of a range of letters, since IMPLICIT interprets the dollar
sign to alphabetically follow the letter Z. For example, a range of X-$ would apply to identifiers
beginning with the letters X, Y, Z, or $.

In Intel® Fortran, the parentheses around the list of letters are optional.

Description

The IMPLICIT statement assigns the specified data type (and kind parameter) to all names that
have no explicit data type and begin with the specified letter or range of letters. It has no effect
on the default types of intrinsic procedures.

When the data type is CHARACTER*len, len is the length for character type. The len is an
unsigned integer constant or an integer specification expression enclosed in parentheses. The
range for len is 1 to 2**31-1 on IA-32 architecture; 1 to 2**63-1 on Intel® 64 architecture
and IA-64 architecture.

Names beginning with a dollar sign ($) are implicitly INTEGER.

The IMPLICIT NONE statement disables all implicit typing defaults. When IMPLICIT NONE is
used, all names in a program unit must be explicitly declared. An IMPLICIT NONE statement
must precede any PARAMETER statements, and there must be no other IMPLICIT statements
in the scoping unit.

NOTE. To receive diagnostic messages when variables are used but not declared, you
can specify compiler option warn declarations instead of using IMPLICIT NONE.

The following IMPLICIT statement represents the default typing as specified by the Fortran
Standard for names when they are not explicitly typed:

IMPLICIT INTEGER (I-N), REAL (A-H, O-Z)

Example

The following are examples of the IMPLICIT statement:

IMPLICIT DOUBLE PRECISION (D) IMPLICIT COMPLEX (S,Y), LOGICAL(1) (L,A-C)

2890

63 Intel® Fortran Compiler User and Reference Guides

IMPLICIT CHARACTER*32 (T-V)

IMPLICIT CHARACTER*2 (W)

IMPLICIT TYPE(COLORS) (E-F), INTEGER (G-H)

The following shows another example:

SUBROUTINE FF (J)

IMPLICIT INTEGER (a-b), CHARACTER*(J+1) (n), TYPE(fried) (c-d)

TYPE fried

INTEGER e, f

REAL g, h

END TYPE

age = 10 ! integer

name = 'Paul' ! character

c%e = 1 ! type fried, integer component

See Also
• H to I
• Data Types, Constants, and Variables
• warn declarations compiler option

IMPORT
Statement: Makes host entities accessible in the
interface body of an interface block. It takes the
following form:

Syntax

IMPORT [[::] import-name-list]

2891

63

(Input) Is the name of one or more entities in the host scoping
unit.

import-name-list

An IMPORT statement can appear only in an interface body. Each of the named entities must
be explicitly declared before the interface body containing the IMPORT statement.

If import-name-list is not specified, all of the accessible named entities in the host scoping
unit are imported.

The default is that all accessible symbols are imported. This statement can optionally name
only those symbols you choose.

The names of imported entities must not appear in any context that causes the host entity to
be inaccessible.

Example

The following example shows how the IMPORT statement can be applied.

module mymod

type mytype

integer comp

end type mytype

interface

subroutine sub (arg)

import

type(mytype) :: arg

end subroutine sub

end interface

end module mymod

INCHARQQ (W*32, W*64)
QuickWin Function: Reads a single character
input from the keyboard and returns the ASCII
value of that character without any buffering.

Module

USE IFQWIN

2892

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = INCHARQQ()

Results

The result type is INTEGER(2). The result is the ASCII key code.

The keystroke is read from the child window that currently has the focus. You must call
INCHARQQ before the keystroke is made (INCHARQQ does not read the keyboard buffer). This
function does not echo its input. For function keys, INCHARQQ returns 0xE0 as the upper 8
bits, and the ASCII code as the lower 8 bits.

For direction keys, INCHARQQ returns 0xF0 as the upper 8 bits, and the ASCII code as the
lower 8 bits. To allow direction keys to be read, you must use the PASSDIRKEYSQQ function.
The escape characters (the upper 8 bits) are different from those of GETCHARQQ. Note that
console applications do not need, and cannot use PASSDIRKEYSQQ.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

2893

63

Example
use IFQWIN

integer*4 res

integer*2 exchar

character*1 ch, ch1

Print *,"Type X to exit, S to scroll, D to pass Direction keys"

123 continue

exchar = incharqq()

! check for escapes

! 0xE0 0x?? is a function key

! 0xF0 0x?? is a direction key

ch = char(rshift(exchar,8) .and. Z'00FF')

ch1= char(exchar .and. Z'00FF')

if (ichar(ch) .eq. 224) then

print *,"function key = ",ichar(ch), " ",ichar(ch1)," ",ch1

goto 123

endif

if (ichar(ch) .eq. 240) then

print *,"direction key = ",ichar(ch), " ",ichar(ch1)," ",ch1

goto 123

endif

print *,"other key = ",ichar(ch)," ",ichar(ch1)," ",ch1

if(ch1 .eq. 'S') then

res = passdirkeysqq(.false.)

print *, "Entering Scroll mode"

endif

if(ch1 .eq. 'D') then

res = passdirkeysqq(.true.)

2894

63 Intel® Fortran Compiler User and Reference Guides

print *, "Entering Direction keys mode"

endif

if(ch1 .ne. 'X') go to 123

end

See Also
• H to I
• GETCHARQQ
• READ
• MBINCHARQQ
• GETC
• PASSDIRKEYSQQ

Building Applications: Using QuickWin Overview

Building Applications: Blocking Procedures

INCLUDE
Statement: Directs the compiler to stop reading
statements from the current file and read
statements in an included file or text module.

Syntax

The INCLUDE line takes the following form:

INCLUDE 'filename[/[NO]LIST]'

Is a character string specifying the name of the file to be included;
it must not be a named constant.

filename

The form of the file name must be acceptable to the operating
system, as described in your system documentation.

Specifies whether the incorporated code is to appear in the
compilation source listing. In the listing, a number precedes each
incorporated statement. The number indicates the "include" nesting
depth of the code. The default is /NOLIST. /LIST and /NOLIST
must be spelled completely.

[NO]LIST

You can only use /[NO]LIST if you specify compiler option vms
(which sets OpenVMS defaults).

2895

63

Description

An INCLUDE line can appear anywhere within a scoping unit. The line can span more than one
source line, but no other statement can appear on the same line. The source line cannot be
labeled.

An included file or text module cannot begin with a continuation line, and each Fortran statement
must be completely contained within a single file.

An included file or text module can contain any source text, but it cannot begin or end with an
incomplete Fortran statement.

The included statements, when combined with the other statements in the compilation, must
satisfy the statement-ordering restrictions shown in Statements.

Included files or text modules can contain additional INCLUDE lines, but they must not be
recursive. INCLUDE lines can be nested until system resources are exhausted.

When the included file or text module completes execution, compilation resumes with the
statement following the INCLUDE line.

You can use modules instead of include files to achieve encapsulation of related data types and
procedures. For example, one module can contain derived type definitions as well as special
operators and procedures that apply to those types. For information on how to use modules,
see Program Units and Procedures.

2896

63 Intel® Fortran Compiler User and Reference Guides

Example

In the following example, a file named COMMON.FOR (in the current working directory) is
included and read as input.

Figure 63: Including Text from a File

Main Program File COMMON.FOR File

PROGRAM

INCLUDE 'COMMON.FOR' INTEGER, PARAMETER :: M=100

REAL, DIMENSION(M) :: Z REAL, DIMENSION(M) :: X, Y

CALL CUBE COMMON X, Y

DO I = 1, M

Z(I) = X(I) + SQRT(Y(I))

...

END DO

END

SUBROUTINE CUBE

INCLUDE 'COMMON.FOR'

DO I=1,M

X(I) = Y(I)**3

END DO

RETURN

END

The file COMMON.FOR defines a named constant M, and defines arrays X and Y as part of blank
common.

The following example program declares its common data in an include file. The contents of
the file INCLUDE.INC are inserted in the source code in place of every INCLUDE 'INCLUDE.INC'
line. This guarantees that all references to common storage variables are consistent.

INTEGER i

REAL x

2897

63

INCLUDE 'INCLUDE.INC'

DO i = 1, 5

READ (*, '(F10.5)') x

CALL Push (x)

END DO

See Also
• H to I
• MODULE
• USE

INDEX
Elemental Intrinsic Function (Generic):
Returns the starting position of a substring within
a string.

Syntax

result = INDEX (string, substring [,back] [, kind])

(Input) Must be of type character.string

(Input) Must be of type character.substring

(Input; optional) Must be of type logical.back

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result is of type integer. If kind is present, the kind parameter of the result is that specified
by kind; otherwise, the kind parameter of the result is that of default integer. If the processor
cannot represent the result value in the kind of the result, the result is undefined.

If back does not appear (or appears with the value false), the value returned is the minimum
value of I such that string(I : I + LEN (substring) - 1) = substring(or zero if there is no
such value). If LEN (string) < LEN (substring), zero is returned. If LEN (substring) = zero,
1 is returned.

2898

63 Intel® Fortran Compiler User and Reference Guides

If back appears with the value true, the value returned is the maximum value of I such that
string(I : I + LEN (substring) - 1) = substring (or zero if there is no such value). If
LEN(string) < LEN (substring), zero is returned. If LEN (substring) = zero, LEN (string)
+ 1 is returned.

Result TypeArgument TypeSpecific Name

INTEGER(1)CHARACTER

INTEGER(2)CHARACTER

INTEGER(4)CHARACTERINDEX 1

INTEGER(8)CHARACTER

1The setting of compiler options specifying integer size can affect this function.

Example

INDEX ('FORTRAN', 'O', BACK = .TRUE.) has the value 2.

INDEX ('XXXX', " ", BACK = .TRUE.) has the value 5.

The following shows another example:

I = INDEX('banana','an', BACK = .TRUE.) ! returns 4

I = INDEX('banana', 'an') ! returns 2

See Also
• H to I
• SCAN

INITIALIZEFONTS (W*32, W*64)
Graphics Function: Initializes Windows* fonts.

Module

USE IFQWIN

Syntax

result = INITIALIZEFONTS()

2899

63

Results

The result type is INTEGER(2). The result is the number of fonts initialized.

All fonts on Windows systems become available after a call to INITIALIZEFONTS. Fonts must
be initialized with INITIALIZEFONTS before any other font-related library function (such as
GETFONTINFO, GETGTEXTEXTENT, SETFONT, OUTGTEXT) can be used. For more information,
see Building Applications: Using Fonts from the Graphics Library.

The font functions affect the output of OUTGTEXT only. They do not affect other Fortran I/O
functions (such as WRITE) or graphics output functions (such as OUTTEXT).

For each window you open, you must call INITIALIZEFONTS before calling SETFONT.
INITIALIZEFONTS needs to be executed after each new child window is opened in order for a
subsequent SETFONT call to be successful.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
! build as a QuickWin or Standard Graphics App.

USE IFQWIN

INTEGER(2) numfonts

numfonts = INITIALIZEFONTS()

WRITE (*,*) numfonts

END

See Also
• H to I
• SETFONT
• OUTGTEXT

Building Applications: Initializing Fonts

INITIALSETTINGS (W*32, W*64)
QuickWin Function: Initializes QuickWin.

Module

USE IFQWIN

2900

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = INITIALSETTINGS()

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

You can change the initial appearance of an application's default frame window and menus by
defining an INITIALSETTINGS function. Do not use INITIALSETTINGS to open or size child
windows.

If no user-defined INITIALSETTINGS function is supplied, QuickWin calls a predefined
INITIALSETTINGS routine to control the default frame window and menu appearance. You do
not need to call INITIALSETTINGS if you define it, since it will be called automatically during
initialization.

For more information, see Building Applications: Controlling the Initial Menu and Frame Window.

Compatibility

QUICKWIN GRAPHICS WINDOWS LIB

See Also
• H to I
• APPENDMENUQQ
• INSERTMENUQQ
• DELETEMENUQQ
• SETWSIZEQQ

Building Applications: Using QuickWin Overview

Building Applications: Program Control of Menus

INMAX
Portability Function: Returns the maximum
positive value for an integer.

Module

USE IFPORT

Syntax

result = INMAX (i)

2901

63

(Input) INTEGER(4).i

Results

The result type is INTEGER(4). The result is the maximum 4-byte signed integer value for the
argument.

INQFOCUSQQ (W*32, W*64)
QuickWin Function: Determines which window
has the focus.

Module

USE IFQWIN

Syntax

result = INQFOCUSQQ (unit)

(Output) INTEGER(4). Unit number of the window that has the I/O
focus.

unit

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, nonzero. The function
fails if the window with the focus is associated with a closed unit.

Unit numbers 0, 5, and 6 refer to the default window only if the program has not specifically
opened them. If these units have been opened and connected to windows, they are automatically
reconnected to the console once they are closed.

The window with focus is always in the foreground. Note that the window with the focus is not
necessarily the active window (the one that receives graphical output). A window can be made
active without getting the focus by calling SETACTIVEQQ.

A window has focus when it is given the focus by FOCUSQQ, when it is selected by a mouse
click, or when an I/O operation other than a graphics operation is performed on it, unless the
window was opened with IOFOCUS=.FALSE.. The IOFOCUS specifier determines whether a
window receives focus when an I/O statement is executed on that unit. For example:

OPEN (UNIT = 10, FILE = 'USER', IOFOCUS = .TRUE.)

2902

63 Intel® Fortran Compiler User and Reference Guides

By default IOFOCUS=.TRUE., except for child windows opened with as unit *. If
IOFOCUS=.TRUE., the child window receives focus prior to each READ, WRITE, PRINT, or
OUTTEXT. Calls to graphics functions (such as OUTGTEXT and ARC) do not cause the focus to
shift.

Compatibility

QUICKWIN GRAPHICS LIB

See Also
• H to I
• FOCUSQQ

Building Applications: Using QuickWin Overview

INQUIRE
Statement: Returns information on the status of
specified properties of a file, logical unit, or
directory. It takes one of the following forms:

Syntax

Inquiring by File:

INQUIRE (FILE=name[, ERR=label] [, IOSTAT=i-var] [, DEFAULTFILE=def] slist)

Inquiring by Unit:

INQUIRE ([UNIT=]io-unit [, ERR=label] [, IOSTAT=i-var] slist)

Inquiring by Directory:

INQUIRE (DIRECTORY=dir, EXIST=ex [, DIRSPEC=dirspec] [, ERR=label] [,
IOSTAT=i-var])

Inquiring by Output List:

INQUIRE (IOLENGTH=len) out-item-list

Is a scalar default character expression specifying the name of the
file for inquiry. For more information, see FILE Specifier and
STATUS Specifier.

name

Is the label of the branch target statement that receives control
if an error occurs. For more information, see Branch Specifiers.

label

2903

63

Is a scalar integer variable that is defined as a positive integer if
an error occurs and zero if no error occurs. For more information,
see I/O Status Specifier.

i-var

Is a scalar default character expression specifying a default file
pathname string. (For more information, see the DEFAULTFILE
specifier.)

def

Is one or more of the following inquiry specifiers (each specifier
can appear only once):

slist

READNAMEDDELIMACCESS

READWRITENEXTRECDIRECTACTION

RECLNUMBEREXISTASYNCHRONOUS

RECORDTYPEOPENEDFORMBINARY

SEQUENTIALORGANIZATIONFORMATTEDBLANK

SHAREPADIDBLOCKSIZE

UNFORMATTEDPENDINGIOFOCUSBUFFERED

WRITEPOSMODECARRIAGECONTROL

POSITIONNAMECONVERT

Is an external unit specifier.io-unit
The unit does not have to exist, nor does it need to be connected
to a file. If the unit is connected to a file, the inquiry encompasses
both the connection and the file.

Is a scalar default character expression specifying the name of the
directory for inquiry. If you are inquiring by directory, it must be
present.

dir

Is a scalar default logical variable that is assigned the value .TRUE.
if dir names a directory that exists; otherwise, ex is assigned the
value .FALSE.. If you are inquiring by directory, it must be present.
For more information, see the EXIST Specifier.

ex

2904

63 Intel® Fortran Compiler User and Reference Guides

Is a scalar default character variable that is assigned the value of
the full directory specification of dir if ex is assigned the value
.TRUE.. This specifier can only be used when inquiring by directory.

dirspec

(Output) Is a scalar integer variable that is assigned a value
corresponding to the length of an unformatted, direct-access record
resulting from the use of the out-item-list in a WRITE statement.

len

The value is suitable to use as a RECL specifier value in an OPEN
statement that connects a file for unformatted, direct access.
The unit of the value is 4-byte longwords, by default. However, if
you specify compiler option assume byterecl, the unit is bytes.

(Output) Is a list of one or more output items (see I/O Lists).out-item-list

Description

The control specifiers ([UNIT=] io-unit, ERR= label, and IOSTAT= i-var) and inquiry
specifiers can appear anywhere within the parentheses following INQUIRE. However, if the
UNIT keyword is omitted, the io-unit must appear first in the list.

An INQUIRE statement can be executed before, during, or after a file is connected to a unit.
The specifier values returned are those that are current when the INQUIRE statement executes.

To get file characteristics, specify the INQUIRE statement after opening the file.

Example

The following are examples of INQUIRE statements:

INQUIRE (FILE='FILE_B', EXIST=EXT)

INQUIRE (4, FORM=FM, IOSTAT=IOS, ERR=20)

INQUIRE (IOLENGTH=LEN) A, B

In the last statement, you can use the length returned in LEN as the value for the RECL specifier
in an OPEN statement that connects a file for unformatted direct access. If you have already
specified a value for RECL, you can check LEN to verify that A and B are less than or equal to
the record length you specified.

2905

63

The following shows another example:

! This program prompts for the name of a data file.

! The INQUIRE statement then determines whether

! the file exists. If it does not, the program

! prompts for another file name.

CHARACTER*12 fname

LOGICAL exists

! Get the name of a file:

100 WRITE (*, '(1X, A\)') 'Enter the file name: '

READ (*, '(A)') fname

! INQUIRE about file's existence:

INQUIRE (FILE = fname, EXIST = exists)

IF (.NOT. exists) THEN

WRITE (*,'(2A/)') ' >> Cannot find file ', fname

GOTO 100

END IF

END

See Also
• H to I
• OPEN statement
• UNIT control specifier
• ERR control specifier
• IOSTAT control specifier
• RECL specifier in OPEN statements
• FILE specifier in OPEN statements
• DEFAULTFILE specifier in OPEN statements
• assume minus0 compiler option

2906

63 Intel® Fortran Compiler User and Reference Guides

INSERTMENUQQ (W*32, W*64)
QuickWin Function: Inserts a menu item into a
QuickWin menu and registers its callback routine.

Module

USE IFQWIN

Syntax

result = INSERTMENUQQ (menuID,itemID,flag,text,routine)

(Input) INTEGER(4). Identifies the menu in which the item is
inserted, starting with 1 as the leftmost menu.

menuID

(Input) INTEGER(4). Identifies the position in the menu where the
item is inserted, starting with 0 as the top menu item.

itemID

(Input) INTEGER(4). Constant indicating the menu state. Flags
can be combined with an inclusive OR (see Results section below).
The following constants are available:

flag

• $MENUGRAYED - Disables and grays out the menu item.

• $MENUDISABLED - Disables but does not gray out the menu
item.

• $MENUENABLED - Enables the menu item.

• $MENUSEPARATOR - Draws a separator bar.

• $MENUCHECKED - Puts a check by the menu item.

• $MENUUNCHECKED - Removes the check by the menu item.

(Input) Character*(*). Menu item name. Must be a null-terminated
C string, for example, words of text'C.

text

(Input) EXERNAL. Callback subroutine that is called if the menu
item is selected. All routines ake a single LOGICAL parameter that
indicates whether the menu item is checked or not. You can assign
the following predefined routines to menus:

routine

• WINPRINT - Prints the program.

• WINSAVE - Saves the program.

• WINEXIT - Terminates the program.

2907

63

• WINSELECTTEXT - Selects text from the current window.

• WINSELECTGRAPHICS - Selects graphics from the current
window.

• WINSELECTALL - Selects the entire contents of the current
window.

• WININPUT - Brings to the top the child window requesting input
and makes it the current window.

• WINCOPY - Copies the selected text and/or graphics from
current window to the Clipboard.

• WINPASTE - Allows the user to paste Clipboard contents (text
only) to the current text window of the active window during a
READ.

• WINCLEARPASTE - Clears the paste buffer.

• WINSIZETOFIT - Sizes output to fit window.

• WINFULLSCREEN - Displays output in full screen.

• WINSTATE - Toggles between pause and resume states of text
output.

• WINCASCADE - Cascades active windows.

• WINTILE - Tiles active windows.

• WINARRANGE - Arranges icons.

• WINSTATUS - Enables a status bar.

• WININDEX - Displays the index for QuickWin help.

• WINUSING - Displays information on how to use Help.

• WINABOUT - Displays information about the current QuickWin
application.

• NUL - No callback routine.

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE.

Menus and menu items must be defined in order from left to right and top to bottom. For
example, INSERTMENUQQ fails if you try to insert menu item 7 when 5 and 6 are not defined
yet. For a top-level menu item, the callback routine is ignored if there are subitems under it.

2908

63 Intel® Fortran Compiler User and Reference Guides

The constants available for flags can be combined with an inclusive OR where reasonable, for
example $MENUCHECKED .OR. $MENUENABLED. Some combinations do not make sense, such
as $MENUENABLED and $MENUDISABLED, and lead to undefined behavior.

You can create quick-access keys in the text strings you pass to INSERTMENUQQ as text by
placing an ampersand (&) before the letter you want underlined. For example, to add a Print
menu item with the r underlined, text should be "P&rint". Quick-access keys allow users of
your program to activate that menu item with the key combination ALT+QUICK-ACCESS-KEY(
ALT+Rin the example) as an alternative to selecting the item with the mouse.

For more information on customizing QuickWin menus, see Building Applications: Using QuickWin
Overview.

Compatibility

QUICKWIN GRAPHICS LIB

Example
! build as a QuickWin App.

USE IFQWIN

LOGICAL(4) status

! insert new item into Menu 5 (Window)

status= INSERTMENUQQ(5, 5, $MENUCHECKED, 'New Item'C, &

WINSTATUS)

! insert new menu in position 2

status= INSERTMENUQQ(2, 0, $MENUENABLED, 'New Menu'C, &

WINSAVE)

END

See Also
• H to I
• APPENDMENUQQ
• DELETEMENUQQ
• MODIFYMENUFLAGSQQ
• MODIFYMENUROUTINEQQ
• MODIFYMENUSTRINGQQ

2909

63

INT
Elemental Intrinsic Function (Generic):
Converts a value to integer type.

Syntax

result = INT (a[,kind])

(Input) Must be of type integer, real, or complex.a

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified
by kind; otherwise, the kind parameter of the result is shown in the following table. If the
processor cannot represent the result value in the kind of the result, the result is undefined.

Functions that cause conversion of one data type to another type have the same affect as the
implied conversion in assignment statements.

The result value depends on the type and absolute value of a, as follows:

• If a is of type integer, INT(a) = a.

• If a is of type real and | a | < 1, INT(a) has the value zero.

If a is of type real and | a | >=1, INT(a) is the integer whose magnitude is the largest
integer that does not exceed the magnitude of a and whose sign is the same as the sign of
a.

• If a is of type complex, INT(a) = a is the value obtained by applying the preceding rules
(for a real argument) to the real part of a.

Result TypeArgument TypeSpecific Name 1

INTEGER(4)INTEGER(1), INTEGER(2),
INTEGER(4)

INTEGER(8)INTEGER(1), INTEGER(2),
INTEGER(4),

INTEGER(8)

INTEGER(2)INTEGER(4)IJINT

2910

63 Intel® Fortran Compiler User and Reference Guides

Result TypeArgument TypeSpecific Name 1

INTEGER(2)REAL(4)IIFIX2

INTEGER(2)REAL(4)IINT

INTEGER(4)REAL(4)IFIX 3, 4

INTEGER(4)INTEGER(1), INTEGER(2),
INTEGER(4),

JFIX

INTEGER(8), REAL(4),
REAL(8), REAL(16),

COMPLEX(4), COMPLEX(8),
COMPLEX(16)

INTEGER(4)REAL(4)INT 5, 6, 7

INTEGER(8)REAL(4)KIFIX

INTEGER(8)REAL(4)KINT

INTEGER(2)REAL(8)IIDINT

INTEGER(4)REAL(8)IDINT 6, 8

INTEGER(8)REAL(8)KIDINT

INTEGER(2)REAL(16)IIQINT

INTEGER(4)REAL(16)IQINT6, 9

INTEGER(8)REAL(16)KIQINT

INTEGER(2)COMPLEX(4), COMPLEX(8),
COMPLEX(16)

INTEGER(4)COMPLEX(4), COMPLEX(8),
COMPLEX(16)

2911

63

Result TypeArgument TypeSpecific Name 1

INTEGER(8)COMPLEX(4), COMPLEX(8),
COMPLEX(16)

INTEGER(1)INTEGER(1), INTEGER(2),
INTEGER(4),

INT110

INTEGER(8), REAL(4),
REAL(8), REAL(16),

COMPLEX(4), COMPLEX(8),
COMPLEX(16)

INTEGER(2)INTEGER(1), INTEGER(2),
INTEGER(4),

INT210

INTEGER(8), REAL(4),
REAL(8), REAL(16),

COMPLEX(4), COMPLEX(8),
COMPLEX(16)

INTEGER(4)INTEGER(1), INTEGER(2),
INTEGER(4),

INT410

INTEGER(8), REAL(4),
REAL(8), REAL(16),

COMPLEX(4), COMPLEX(8),
COMPLEX(16)

INTEGER(8)INTEGER(1), INTEGER(2),
INTEGER(4),

INT810

INTEGER(8), REAL(4),
REAL(8), REAL(16),

COMPLEX(4), COMPLEX(8),
COMPLEX(16)

1These specific functions cannot be passed as actual arguments.
2This function can also be specified as HFIX.

2912

63 Intel® Fortran Compiler User and Reference Guides

Result TypeArgument TypeSpecific Name 1

3The setting of compiler options specifying integer size or real size can affect IFIX.
4For compatibility with older versions of Fortran, IFIX is treated as a generic function.
5Or JINT.
6The setting of compiler options specifying integer size can affect INT, IDINT, and IQINT.
7Or JIFIX.
8Or JIDINT. For compatibility with older versions of Fortran, IDINT can also be specified as
a generic function.
9Or JIQINT. For compatibility with older versions of Fortran, IQINT can also be specified as
a generic function.
10For compatibility, these functions can also be specified as generic functions.

Example

INT (-4.2) has the value -4.

INT (7.8) has the value 7.

See Also
• H to I
• NINT
• AINT
• ANINT
• REAL
• DBLE
• SNGL

INTC
Portability Function: Converts an INTEGER(4)
argument to INTEGER(2) type.

Module

USE IFPORT

2913

63

Syntax

result = INTC (i)

(Input) INTEGER(4). A value or expression.i

Results

The result type is INTEGER(2). The result is the value of i with type INTEGER(2). Overflow is
ignored.

INT_PTR_KIND
Inquiry Intrinsic Function (Specific): Returns
the INTEGER KIND that will hold an address. This
is a specific function that has no generic function
associated with it. It cannot be passed as an actual
argument.

Syntax

result = INT_PTR_KIND()

Results

The result type is default integer. The result is a scalar with the value equal to the value of the
kind parameter of the integer data type that can represent an address on the host platform.

The result value is 4 on IA-32 architecture; 8 on Intel® 64 architecture and IA-64 architecture.

Example
REAL A(100)

POINTER (P, A)

INTEGER (KIND=INT_PTR_KIND()) SAVE_P

P = MALLOC (400)

SAVE_P = P

2914

63 Intel® Fortran Compiler User and Reference Guides

INTEGER Statement
Statement: Specifies the INTEGER data type.

Syntax

INTEGER

INTEGER([KIND=] n)

INTEGER*n

Is kind 1, 2, 4, or 8.n

If a kind parameter is specified, the integer has the kind specified. If a kind parameter is not
specified, integer constants are interpreted as follows:

• If the integer constant is within the default integer kind range, the kind is default integer.

• If the integer constant is outside the default integer kind range, the kind of the integer
constant is the smallest integer kind which holds the constant.

The default kind can also be changed by using the INTEGER directive or compiler options
specifying integer size.

Example
! Entity-oriented declarations:

INTEGER, DIMENSION(:), POINTER :: days, hours

INTEGER (2) :: k=4

INTEGER (2), PARAMETER :: limit=12

! Attribute-oriented declarations:

INTEGER days, hours

INTEGER (2):: k=4, limit

DIMENSION days(:), hours(:)

POINTER days, hours

PARAMETER (limit=12)

See Also
• H to I

2915

63

• INTEGER Directive
• Integer Data Types
• Integer Constants

INTEGER Directive
General Compiler Directive: Specifies the default
integer kind.

Syntax

cDEC$ INTEGER:{ 2 | 4 | 8 }

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

The INTEGER directive specifies a size of 2 (KIND=2), 4 (KIND=4), or 8 (KIND=8) bytes for
default integer numbers.

When the INTEGER directive is in effect, all default integer variables are of the kind specified.
Only numbers specified or implied as INTEGER without KIND are affected.

The INTEGER directive can only appear at the top of a program unit. A program unit is a main
program, an external subroutine or function, a module or a block data program unit. INTEGER
cannot appear between program units, or at the beginning of internal subprograms. It does
not affect modules invoked with the USE statement in the program unit that contains it.

The default logical kind is the same as the default integer kind. So, when you change the default
integer kind you also change the default logical kind.

2916

63 Intel® Fortran Compiler User and Reference Guides

Example
INTEGER i ! a 4-byte integer

WRITE(*,*) KIND(i)

CALL INTEGER2()

WRITE(*,*) KIND(i) ! still a 4-byte integer

! not affected by setting in subroutine

END

SUBROUTINE INTEGER2()

!DEC$ INTEGER:2

INTEGER j ! a 2-byte integer

WRITE(*,*) KIND(j)

END SUBROUTINE

See Also
• H to I
• INTEGER
• REAL Directive
• General Compiler Directives
• Integer Data Types
• Integer Constants

INTEGERTORGB (W*32, W*64)
QuickWin Subroutine: Converts an RGB color
value into its red, green, and blue components.

Module

USE IFQWIN

Syntax

CALL INTEGERTORGB (rgb,red,green,blue)

(Input) INTEGER(4). RGB color value whose red, green, and blue
components are to be returned.

rgb

2917

63

(Output) INTEGER(4). Intensity of the red component of the RGB
color value.

red

(Output) INTEGER(4). Intensity of the green component of the
RGB color value.

green

(Output) INTEGER(4). Intensity of the blue component of the RGB
color value.

blue

INTEGERTORGB separates the four-byte RGB color value into the three components as follows:

Compatibility

QUICKWIN GRAPHICS WINDOWS LIB

Example
! build as a QuickWin App.

USE IFQWIN

INTEGER(4) r, g, b

CALL INTEGERTORGB(2456, r, g, b)

write(*,*) r, g, b

END

See Also
• H to I
• RGBTOINTEGER
• GETCOLORRGB
• GETBKCOLORRGB
• GETPIXELRRGB
• GETPIXELSRGB
• GETTEXTCOLORRGB

Building Applications: Using QuickWin Overview

2918

63 Intel® Fortran Compiler User and Reference Guides

INTENT
Statement and Attribute: Specifies the intended
use of one or more dummy arguments.

Syntax

The INTENT attribute can be specified in a type declaration statement or an INTENT statement,
and takes one of the following forms:

Type Declaration Statement:

type,[att-ls,] INTENT (intent-spec) [, att-ls] :: d-arg[, d-arg]...

Statement:

INTENT (intent-spec) [::] d-arg[, d-arg] ...

Is a data type specifier.type

Is an optional list of attribute specifiers.att-ls

Is one of the following specifiers:intent-spec

Specifies that the dummy argument will be
used only to provide data to the procedure.
The dummy argument must not be redefined
(or become undefined) during execution of the
procedure.

IN

Specifies that the dummy argument will be
used to pass data from the procedure back to
the calling program. The dummy argument is
undefined on entry and must be defined before
it is referenced in the procedure.

OUT

Any associated actual argument must be
definable.

Specifies that the dummy argument can both
provide data to the procedure and return data
to the calling program.

INOUT

Any associated actual argument must be
definable.

Is the name of a dummy argument or dummy pointer. It cannot
be a dummy procedure.

d-arg

2919

63

Description

The INTENT statement can only appear in the specification part of a subprogram or interface
body.

If no INTENT attribute is specified for a dummy argument, its use is subject to the limitations
of the associated actual argument.

If a function specifies a defined operator, the dummy arguments must have intent IN.

If a subroutine specifies defined assignment, the first argument must have intent OUT or INOUT,
and the second argument must have intent IN.

A non-pointer dummy argument with intent IN (or a subobject of such a dummy argument)
must not appear as any of the following:

• A DO variable

• The variable of an assignment statement

• The pointer-object of a pointer assignment statement

• An object or STAT variable in an ALLOCATE or DEALLOCATE statement

• An input item in a READ statement

• A variable name in a NAMELIST statement if the namelist group name appears in a NML
specifier in a READ statement

• An internal file unit in a WRITE statement

• A definable variable in an INQUIRE statement

• An IOSTAT or SIZE specifier in an I/O statement

• An actual argument in a reference to a procedure with an explicit interface if the associated
dummy argument has intent OUT or INOUT

INTENT on a pointer dummy argument refers to the pointer association status of the pointer
and has no effect on the value of the target of the pointer.

A pointer dummy argument with intent IN (or a subobject of such a pointer argument) must
not appear as any of the following:

• A pointer-object in a NULLIFY statement

• A pointer-object in a pointer assignment statement

• An object in an ALLOCATE or DEALLOCATE statement

2920

63 Intel® Fortran Compiler User and Reference Guides

• An actual argument in a reference to a procedure if the associated dummy argument is a
pointer with the INTENT(OUT) or INTENT(INOUT) attribute.

If an actual argument is an array section with a vector subscript, it cannot be associated with
a dummy array that is defined or redefined (has intent OUT or INOUT).

Example

The following example shows type declaration statements specifying the INTENT attribute:

SUBROUTINE TEST(I, J)

INTEGER, INTENT(IN) :: I

INTEGER, INTENT(OUT), DIMENSION(I) :: J

The following are examples of the INTENT statement:

SUBROUTINE TEST(A, B, X)

INTENT(INOUT) :: A, B

...

SUBROUTINE CHANGE(FROM, TO)

USE EMPLOYEE_MODULE

TYPE(EMPLOYEE) FROM, TO

INTENT(IN) FROM

INTENT(OUT) TO

...

2921

63

The following shows another example:

SUBROUTINE AVERAGE(value,data1, cube_ave)

TYPE DATA

INTEGER count

REAL avg

END TYPE

TYPE(DATA) data1

REAL tmp

! value cannot be changed, while cube_ave must be defined

! before it can be used. Data1 is defined when the procedure is

! invoked, and becomes redefined in the subroutine.

INTENT(IN)::value; INTENT(OUT)::cube_ave

INTENT(INOUT)::data1

! count number of times AVERAGE has been called on the data set

! being passed.

tmp = data1%count*data1%avg + value

data1%count = data1%count + 1

data1%avg = tmp/data1%count

cube_ave = data1%avg**3

END SUBROUTINE

See Also
• H to I
• Argument Association
• Type Declarations
• Compatible attributes

2922

63 Intel® Fortran Compiler User and Reference Guides

INTERFACE
Statement: Defines explicit interfaces for external
or dummy procedures. It can also be used to define
a generic name for procedures, a new operator for
functions, and a new form of assignment for
subroutines.

Syntax

INTERFACE [generic-spec]

[interface-body]...

[MODULE PROCEDURE name-list]...

END INTERFACE [generic-spec]

(Optional) Is one of the following:generic-spec

• A generic name

For information on generic names, see Program Units and
Procedures.

• OPERATOR (op)

Defines a generic operator (op). It can be a defined unary,
defined binary, or extended intrinsic operator. For information
on defined operators, see Program Units and Procedures.

• ASSIGNMENT (=)

Defines generic assignment. For information on defined
assignment, see Assignment - Defined Assignment.

Is one or more function or subroutine subprograms. A function
must end with END FUNCTION and a subroutine must end with
END SUBROUTINE.

interface-body

The subprogram must not contain a statement function or a DATA,
ENTRY, or FORMAT statement; an entry name can be used as a
procedure name.
The subprogram can contain a USE statement.

2923

63

Is the name of one or more module procedures that are accessible
in the host. The MODULE PROCEDURE statement is only allowed
if the interface block specifies a generic-spec and has a host
that is a module (or accesses a module by use association).

name-list

The characteristics of module procedures are not given in interface
blocks, but are assumed from the module subprogram definitions.

Description

Interface blocks can appear in the specification part of the program unit that invokes the external
or dummy procedure.

A generic-spec can only appear in the END INTERFACE statement (a Fortran 95 feature) if
one appears in the INTERFACE statement; they must be identical.

The characteristics specified for the external or dummy procedure must be consistent with
those specified in the procedure's definition.

An interface block must not appear in a block data program unit.

An interface block comprises its own scoping unit, and does not inherit anything from its host
through host association.

Internal, module, and intrinsic procedures are all considered to have explicit interfaces. External
procedures have implicit interfaces by default; when you specify an interface block for them,
their interface becomes explicit. A procedure must not have more than one explicit interface
in a given scoping unit. This means that you cannot include internal, module, or intrinsic
procedures in an interface block, unless you want to define a generic name for them.

A interface block containing generic-spec specifies a generic interface for the following
procedures:

• The procedures within the interface block

Any generic name, defined operator, or equals symbol that appears is a generic identifier
for all the procedures in the interface block. For the rules on how any two procedures with
the same generic identifier must differ, see Unambiguous Generic Procedure References.

• The module procedures listed in the MODULE PROCEDURE statement

The module procedures must be accessible by a USE statement.

To make an interface block available to multiple program units (through a USE statement),
place the interface block in a module.

The following rules apply to interface blocks containing pure procedures:

2924

63 Intel® Fortran Compiler User and Reference Guides

• The interface specification of a pure procedure must declare the INTENT of all dummy
arguments except pointer and procedure arguments.

• A procedure that is declared pure in its definition can also be declared pure in an interface
block. However, if it is not declared pure in its definition, it must not be declared pure in an
interface block.

Example

The following example shows a simple procedure interface block with no generic specification:

SUBROUTINE SUB_B (B, FB)

REAL B

...

INTERFACE

FUNCTION FB (GN)

REAL FB, GN

END FUNCTION

END INTERFACE

The following shows another example:

!An interface to an external subroutine SUB1 with header:

!SUBROUTINE SUB1(I1,I2,R1,R2)

!INTEGER I1,I2

!REAL R1,R2

INTERFACE

SUBROUTINE SUB1(int1,int2,real1,real2)

INTEGER int1,int2

REAL real1,real2

END SUBROUTINE SUB1

END INTERFACE

INTEGER int

. . .

2925

63

See Also
• H to I
• CALL
• FUNCTION
• MODULE
• MODULE PROCEDURE
• SUBROUTINE
• PURE
• Procedure Interfaces
• Use and Host Association
• Determining When Procedures Require Explicit Interfaces
• Defining Generic Names for Procedures
• Defining Generic Operators
• Defining Generic Assignment

INTERFACE TO
Statement: Identifies a subprogram and its actual
arguments before it is referenced or called.

Syntax

INTERFACE TO subprogram-stmt

[formal-declarations]

END

Is a function or subroutine declaration statement.subprogram-stmt

(Optional) Are type declaration statements (including optional
attributes) for the arguments.

formal-declarations

The INTERFACE TO block defines an explicit interface, but it contains specifications for only the
procedure declared in the INTERFACE TO statement. The explicit interface is defined only in
the program unit that contains the INTERFACE TO statement.

The recommended method for defining explicit interfaces is to use an INTERFACE block.

Example

Consider that a C function that has the following prototype:

extern void Foo (int i);

2926

63 Intel® Fortran Compiler User and Reference Guides

The following INTERFACE TO block declares the Fortran call to this function:

INTERFACE TO SUBROUTINE Foo [C.ALIAS: '_Foo'] (I)

INTEGER*4 I

END

See Also
• H to I
• INTERFACE

INTRINSIC
Statement and Attribute: Allows the specific
name of an intrinsic procedure to be used as an
actual argument.

Syntax

The INTRINSIC attribute can be specified in a type declaration statement or an INTRINSIC
statement, and takes one of the following forms:

Type Declaration Statement:

type,[att-ls,] INTRINSIC [, att-ls] :: in-pro[, in-pro]...

Statement:

INTRINSIC [::] in-pro[, in-pro] ...

Is a data type specifier.type

Is an optional list of attribute specifiers.att-ls

Is the name of an intrinsic procedure.in-pro

Description

In a type declaration statement, only functions can be declared INTRINSIC. However, you can
use the INTRINSIC statement to declare subroutines, as well as functions, to be intrinsic.

The name declared INTRINSIC is assumed to be the name of an intrinsic procedure. If a generic
intrinsic function name is given the INTRINSIC attribute, the name retains its generic properties.

Some specific intrinsic function names cannot be used as actual arguments. For more
information, see Intrinsic Functions Not Allowed as Actual Arguments.

2927

63

Example

The following example shows a type declaration statement specifying the INTRINSIC attribute:

PROGRAM EXAMPLE

...

REAL(8), INTRINSIC :: DACOS

...

CALL TEST(X, DACOS) ! Intrinsic function DACOS is an actual argument

The following example shows an INTRINSIC statement:

SubprogramMain Program

SUBROUTINE TRIG(X,F,Y)EXTERNAL CTN

Y = F(X)INTRINSIC SIN, COS

RETURN. . .

END

CALL TRIG(ANGLE,SIN,SINE)

FUNCTION CTN(X). . .

CTN = COS(X)/SIN(X)

RETURNCALL TRIG(ANGLE,COS,COSINE)

END. . .

CALL TRIG(ANGLE,CTN,COTANGENT)

Note that when TRIG is called with a second argument of SIN or COS, the function reference
F(X) references the Fortran 95/90 library functions SIN and COS; but when TRIG is called with
a second argument of CTN, F(X) references the user function CTN.

2928

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

INTRINSIC SIN, COS

REAL X, Y, R

! SIN and COS are arguments to Calc2:

R = Calc2 (SIN, COS)

See Also
• H to I
• References to Generic Procedures
• Type Declarations
• Compatible attributes

INUM
Elemental Intrinsic Function (Specific):
Converts a character string to an INTEGER(2)
value. This function cannot be passed as an actual
argument.

Syntax

result = INUM (i)

(Input) Must be of type character.i

Results

The result type is INTEGER(2). The result value is the INTEGER(2) value represented by the
character string i.

Example

INUM ("451") has the value 451 of type INTEGER(2).

IOR
Elemental Intrinsic Function (Generic):
Performs an inclusive OR on corresponding bits.
This function can also be specified as OR.

Syntax

result = IOR (i,j)

2929

63

(Input) Must be of type integer or of type logical (which is treated
as an integer).

i

(Input) Must be of type integer with the same kind parameter as
i. If the kinds of i and j do not match, the value with the smaller
kind is extended with zeros on the left and the larger kind is used
for the operation and the result.

j

Results

The result type is the same as i. The result value is derived by combining i and j bit-by-bit
according to the following truth table:

i j IOR (i, j)

1 1 1

1 0 1

0 1 1

0 0 0

The model for the interpretation of an integer value as a sequence of bits is shown in Model
for Bit Data.

Result TypeArgument TypeSpecific Name

INTEGER(1)INTEGER(1)BIOR

INTEGER(2)INTEGER(2)IIOR1

INTEGER(4)INTEGER(4)JIOR

INTEGER(8)INTEGER(8)KIOR

1Or HIOR.

Example

IOR (1, 4) has the value 5.

IOR (1, 2) has the value 3.

2930

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

INTEGER result

result = IOR(240, 90) ! returns 250

See Also
• H to I
• IAND
• IEOR
• NOT

IPXFARGC
POSIX Function: Returns the index of the last
command-line argument.

Module

USE IFPOSIX

Syntax

result = IPXFARGC()

Results

The result type is INTEGER(4). The result value is the number of command-line arguments,
excluding the command name, in the command used to invoke the executing program. A return
value of zero indicates there are no command-line arguments other than the command name
itself.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• H to I
• PXFGETARG

2931

63

IPXFCONST
POSIX Function: Returns the value associated
with a constant defined in the C POSIX standard.

Module

USE IFPOSIX

Syntax

result = IPXFCONST (constname)

(Input) Character. The name of a C POSIX standard constant.constname

Results

The result type is INTEGER(4). If constname corresponds to a defined constant in the C POSIX
standard, the result value is the integer that is associated with the constant. Otherwise, the
result value is -1.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• H to I
• PXFGETARG
• PXFCONST

IPXFLENTRIM
POSIX Function: Returns the index of the last
non-blank character in an input string.

Module

USE IFPOSIX

Syntax

result = IPXFLENTRIM (string)

(Input) Character. A character string.string

2932

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is INTEGER(4). The result value is the index of the last non-blank character in
the input argument string, or zero if all characters in string are blank characters.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

IPXFWEXITSTATUS (L*X, M*X)
POSIX Function: Returns the exit code of a child
process.

Module

USE IFPOSIX

Syntax

result = IPXFWEXITSTATUS (istat)

(Input) INTEGER(4). The value of output argument istat from
PXFWAIT or PXFWAITPID.

istat

Results

The result type is INTEGER(4). The result is the low-order eight bits of the output argument of
PXFWAIT or PXFWAITPID.

The IPXFWEXITSTATUS function should only be used if PXFWIFEXITED returns TRUE.

2933

63

Example
program t1

use ifposix

integer(4) ipid, istat, ierror, ipid_ret, istat_ret

print *," the child process will be born"

call PXFFORK(IPID, IERROR)

call PXFGETPID(IPID_RET,IERROR)

if(IPID.EQ.0) then

print *," I am a child process"

print *," My child's pid is", IPID_RET

call PXFGETPPID(IPID_RET,IERROR)

print *," The pid of my parent is",IPID_RET

print *," Now I have exited with code 0xABCD"

call PXFEXIT(Z'ABCD')

else

print *," I am a parent process"

print *," My parent pid is ", IPID_RET

print *," I am creating the process with pid", IPID

print *," Now I am waiting for the end of the child process"

call PXFWAIT(ISTAT, IPID_RET, IERROR)

print *," The child with pid ", IPID_RET," has exited"

if(PXFWIFEXITED(ISTAT)) then

print *, " The child exited normally"

istat_ret = IPXFWEXITSTATUS(ISTAT)

print 10," The low byte of the child exit code is", istat_ret

end if

end if

10 FORMAT (A,Z)

2934

63 Intel® Fortran Compiler User and Reference Guides

end program

See Also
• H to I
• PXFWAIT
• PXFWAITPID
• PXFWIFEXITED

IPXFWSTOPSIG (L*X, M*X)
POSIX Function: Returns the number of the signal
that caused a child process to stop.

Module

USE IFPOSIX

Syntax

result = IPXFWSTOPSIG (istat)

(Input) INTEGER(4). The value of output argument istat from
PXFWAIT or PXFWAITPID.

istat

Results

The result type is INTEGER(4). The result is the number of the signal that caused the child
process to stop.

The IPXFWSTOPSIG function should only be used if PXFWIFSTOPPED returns TRUE.

See Also
• H to I
• PXFWAIT
• PXFWAITPID
• PXFWIFSTOPPED

2935

63

IPXFWTERMSIG (L*X, M*X)
POSIX Function: Returns the number of the signal
that caused a child process to terminate.

Module

USE IFPOSIX

Syntax

result = IPXFWTERMSIG (istat)

(Input) INTEGER(4). The value of output argument istat from
PXFWAIT or PXFWAITPID.

istat

Results

The result type is INTEGER(4). The result is the number of the signal that caused the child
process to terminate.

The IPXFWTERMSIG function should only be used if PXFWIFSIGNALED returns TRUE.

See Also
• H to I
• PXFWAIT
• PXFWAITPID
• PXFWIFSIGNALED

IRAND, IRANDM
Portability Functions: Return random numbers
in the range 0 through (2**31)-1, or 0 through
(2**15)-1 if called without an argument.

Module

USE IFPORT

Syntax

result = IRAND ([iflag])

result = IRANDM ([iflag])

2936

63 Intel® Fortran Compiler User and Reference Guides

(Input) INTEGER(4). Optional for IRAND. Controls the way the
returned random number is chosen. If iflag is omitted, it is
assumed to be 0, and the return range is 0 through (2**15)-1
(inclusive).

iflag

Results

The result type is INTEGER(4). If iflag is 1, the generator is restarted and the first random
value is returned. If iflag is 0, the next random number in the sequence is returned. If iflag
is neither zero nor 1, it is used as a new seed for the random number generator, and the
functions return the first new random value.

IRAND and IRANDM are equivalent and return the same random numbers. Both functions are
included to ensure portability of existing code that references one or both of them.

You can use SRAND to restart the pseudorandom number generator used by these functions.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) istat, flag_value, r_nums(20)

flag_value=1

r_nums(1) = IRAND (flag_value)

flag_value=0

do istat=2,20

r_nums(istat) = irand(flag_value)

end do

See Also
• H to I
• RANDOM_NUMBER
• RANDOM_SEED
• SRAND

Building Applications: Portability Library Overview

2937

63

IRANGET
Portability Subroutine: Returns the current seed.

Module

USE IFPORT

Syntax

CALL IRANGET (seed)

(Output) INTEGER(4). The current seed value.seed

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• H to I
• IRANSET

IRANSET
Portability Subroutine: Sets the seed for the
random number generator.

Module

USE IFPORT

Syntax

CALL IRANSET (seed)

(Input) INTEGER(4). The reset value for the seed.seed

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• H to I
• IRANGET

2938

63 Intel® Fortran Compiler User and Reference Guides

ISATTY
Portability Function: Checks whether a logical
unit number is a terminal.

Module

USE IFPORT

Syntax

result = ISATTY (lunit)

(Input) INTEGER(4). An integer expression corresponding to a
Fortran logical unit number. Must be in the range 0 to 100 and
must be connected.

iunit

Results

The result type is LOGICAL(4). The result is .TRUE. if the specified logical unit is connected to
a terminal device; otherwise, .FALSE..

If lunit is out of range or is not connected, zero is returned.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

IS_IOSTAT_END
Elemental Intrinsic Function (Generic): Tests
for an end-of-file condition.

Syntax

result=IS_IOSTAT_END(i)

(Input) Must be of type integer.i

Results

The result type is default logical. The value of the result is true only if i is a value that could
be assigned to the scalar integer variable in an IOSTAT= specifier to indicate an end-of-file
condition.

2939

63

Example
INTEGER IO_STATUS

…

READ (20, IOSTAT=IO_STATUS) A, B, C

IF (IS_IOSTAT_END (IO_STATUS)) THEN

… ! process end of file

ENDIF

… ! process data read

IS_IOSTAT_EOR
Elemental Intrinsic Function (Generic): Tests
for an end-of-record condition.

Syntax

result=IS_IOSTAT_EOR(i)

(Input) Must be of type integer.i

Results

The result type is default logical. The value of the result is true only if i is a value that could
be assigned to the scalar integer variable in an IOSTAT= specifier to indicate an end-of-record
condition.

Example
INTEGER IO_STATUS

…

READ (30, ADVANCE='YES', IOSTAT=IO_STATUS) A, B, C

IF (IS_IOSTAT_EOR (IO_STATUS)) THEN

… ! process end of record

ENDIF

… ! process data read

2940

63 Intel® Fortran Compiler User and Reference Guides

ISHA
Elemental Intrinsic Function (Generic):
Arithmetically shifts an integer left or right by a
specified number of bits.

Syntax

result = ISHA (i,shift)

(Input) Must be of type integer. This argument is the value to be
shifted.

i

(Input) Must be of type integer. This argument is the direction and
distance of shift.

shift

Positive shifts are left (toward the most significant bit); negative
shifts are right (toward the least significant bit).

Results

The result type is the same as i. The result is equal to i shifted arithmetically by shift bits.

If shift is positive, the shift is to the left; if shift is negative, the shift is to the right. If shift
is zero, no shift is performed.

Bits shifted out from the left or from the right, as appropriate, are lost. If the shift is to the
left, zeros are shifted in on the right. If the shift is to the right, copies of the sign bit (0 for
non-negative i; 1 for negative i) are shifted in on the left.

The kind of integer is important in arithmetic shifting because sign varies among integer
representations (see the following example). If you want to shift a one-byte or two-byte
argument, you must declare it as INTEGER(1) or INTEGER(2).

Example
INTEGER(1) i, res1

INTEGER(2) j, res2

i = -128 ! equal to 10000000

j = -32768 ! equal to 10000000 00000000

res1 = ISHA (i, -4) ! returns 11111000 = -8

res2 = ISHA (j, -4) ! returns 11111000 10100000 = -2048

2941

63

See Also
• H to I
• ISHC
• ISHL
• ISHFT
• ISHFTC

ISHC
Elemental Intrinsic Function (Generic): Rotates
an integer left or right by specified number of bits.
Bits shifted out one end are shifted in the other
end. No bits are lost.

Syntax

result = ISHC (i,shift)

(Input) Must be of type integer. This argument is the value to be
rotated.

i

(Input) Must be of type integer. This argument is the direction and
distance of rotation.

shift

Positive rotations are left (toward the most significant bit); negative
rotations are right (toward the least significant bit).

Results

The result type is the same as i. The result is equal to i circularly rotated by shift bits.

If shift is positive, i is rotated left shift bits. If shift is negative, i is rotated right shift
bits. Bits shifted out one end are shifted in the other. No bits are lost.

The kind of integer is important in circular shifting. With an INTEGER(4) argument, all 32 bits
are shifted. If you want to rotate a one-byte or two-byte argument, you must declare it as
INTEGER(1) or INTEGER(2).

2942

63 Intel® Fortran Compiler User and Reference Guides

Example
INTEGER(1) i, res1

INTEGER(2) j, res2

i = 10 ! equal to 00001010

j = 10 ! equal to 00000000 00001010

res1 = ISHC (i, -3) ! returns 01000001 = 65

res2 = ISHC (j, -3) ! returns 01000000 00000001 =

! 16385

See Also
• H to I
• ISHA
• ISHL
• ISHFT
• ISHFTC

ISHFT
Elemental Intrinsic Function (Generic):
Performs a logical shift.

Syntax

result = ISHFT (i,shift)

(Input) Must be of type integer.i

(Input) Must be of type integer. The absolute value for shift must
be less than or equal to BIT_SIZE(i).

shift

Results

The result type is the same as i. The result has the value obtained by shifting the bits of i by
shift positions. If shift is positive, the shift is to the left; if shift is negative, the shift is to
the right. If shift is zero, no shift is performed.

Bits shifted out from the left or from the right, as appropriate, are lost. Zeros are shifted in
from the opposite end.

2943

63

ISHFT with a positive shift can also be specified as LSHIFT (or LSHFT). ISHFT with a negative
shift can also be specified as RSHIFT (or RSHFT) with | shift |.

For more information on bit functions, see Bit Functions.

The model for the interpretation of an integer value as a sequence of bits is shown in Model
for Bit Data.

Result TypeArgument TypeSpecific Name

INTEGER(1)INTEGER(1)BSHFT

INTEGER(2)INTEGER(2)IISHFT1

INTEGER(4)INTEGER(4)JISHFT

INTEGER(8)INTEGER(8)KISHFT

1Or HSHFT.

Example

ISHFT (2, 1) has the value 4.

ISHFT (2, -1) has the value 1.

The following shows another example:

INTEGER(1) i, res1

INTEGER(2) j, k(3), res2

i = 10 ! equal to 00001010

j = 10 ! equal to 00000000 00001010

res1 = ISHFT (i, 5) ! returns 01000000 = 64

res2 = ISHFT (j, 5) ! returns 00000001 01000000 =

! 320

k = ISHFT((/3, 5, 1/), (/1, -1, 0/)) ! returns array

! /6, 2, 1/

See Also
• H to I

2944

63 Intel® Fortran Compiler User and Reference Guides

• BIT_SIZE
• ISHFTC
• ISHA
• ISHC

ISHFTC
Elemental Intrinsic Function (Generic):
Performs a circular shift of the rightmost bits.

Syntax

result = ISHFTC (i,shift[,size])

(Input) Must be of type integer.i

(Input) Must be of type integer. The absolute value of shift must
be less than or equal to size.

shift

(Input;optional) Must be of type integer. The value of sizemust
be positive and must not exceed BIT_SIZE(i). If sizeis omitted,
it is assumed to have the value of BIT_SIZE(i).

size

Results

The result type is the same as i. The result value is obtained by circular shifting the size
rightmost bits of i by shift positions. If shift is positive, the shift is to the left; if shift is
negative, the shift is to the right. If shift is zero, no shift is performed.

No bits are lost. Bits in i beyond the value specified by size are unaffected.

For more information on bit functions, see Bit Functions.

The model for the interpretation of an integer value as a sequence of bits is shown in Model
for Bit Data.

Result TypeArgument TypeSpecific Name

INTEGER(1)INTEGER(1)BSHFTC

INTEGER(2)INTEGER(2)IISHFTC1

INTEGER(4)INTEGER(4)JISHFTC

INTEGER(8)INTEGER(8)KISHFTC

2945

63

Result TypeArgument TypeSpecific Name

1Or HSHFTC.

Example

ISHFTC (4, 2, 4) has the value 1.

ISHFTC (3, 1, 3) has the value 6.

The following shows another example:

INTEGER(1) i, res1

INTEGER(2) j, res2

i = 10 ! equal to 00001010

j = 10 ! equal to 00000000 00001010

res1 = ISHFTC (i, 2, 3) ! rotates the 3 rightmost

! bits by 2 (left) and

! returns 00001001 = 9

res1 = ISHFTC (i, -2, 3) ! rotates the 3 rightmost

! bits by -2 (right) and

! returns 00001100 = 12

res2 = ISHFTC (j, 2, 3) ! rotates the 3 rightmost

! bits by 2 and returns

! 00000000 00001001 = 9

See Also
• H to I
• BIT_SIZE
• ISHFT
• MVBITS

2946

63 Intel® Fortran Compiler User and Reference Guides

ISHL
Elemental Intrinsic Function (Generic):
Logically shifts an integer left or right by the
specified bits. Zeros are shifted in from the
opposite end.

Syntax

result = ISHL (i,shift)

(Input) Must be of type integer. This argument is the value to be
shifted.

i

(Input) Must be of type integer. This argument is the direction and
distance of shift.

shift

If positive, i is shifted left (toward the most significant bit). If
negative, i is shifted right (toward the least significant bit).

Results

The result type is the same as i. The result is equal to i logically shifted by shift bits. Zeros
are shifted in from the opposite end.

Unlike circular or arithmetic shifts, which can shift ones into the number being shifted, logical
shifts shift in zeros only, regardless of the direction or size of the shift. The integer kind,
however, still determines the end that bits are shifted out of, which can make a difference in
the result (see the following example).

Example
INTEGER(1) i, res1

INTEGER(2) j, res2

i = 10 ! equal to 00001010

j = 10 ! equal to 00000000 00001010

res1 = ISHL (i, 5) ! returns 01000000 = 64

res2 = ISHL (j, 5) ! returns 00000001 01000000 = 320

See Also
• H to I
• ISHA

2947

63

• ISHC
• ISHFT
• ISHFTC

ISNAN
Elemental Intrinsic Function (Generic): Tests
whether IEEE* real (S_floating, T_floating, and
X_floating) numbers are Not-a-Number (NaN)
values.

Syntax

result = ISNAN (x)

(Input) Must be of type real.x

Results

The result type is default logical. The result is .TRUE. if x is an IEEE NaN; otherwise, the result
is .FALSE..

Example
LOGICAL A

DOUBLE PRECISION B

...

A = ISNAN(B)

A is assigned the value .TRUE. if B is an IEEE NaN; otherwise, the value assigned is .FALSE..

ITIME
Portability Subroutine: Returns the time in
numeric form.

Module

USE IFPORT

Syntax

CALL ITIME (array)

2948

63 Intel® Fortran Compiler User and Reference Guides

(Output) INTEGER(4). A rank one array with three elements used
to store numeric time data:

array

• array(1) - the hour

• array(2) - the minute

• array(3) - the second

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) time_array(3)

CALL ITIME (time_array)

write(*,10) time_array

10 format (1X,I2,':',I2,':',I2)

END

See Also
• H to I
• DATE_AND_TIME

Building Applications: Portability Library Overview

IVDEP
General Compiler Directive: Assists the
compiler's dependence analysis of iterative DO
loops.

Syntax

cDEC$ IVDEP [: option]

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is LOOP or BACK. This argument is only available on processors
using IA-32 architecture.

option

2949

63

Description

The IVDEP directive is an assertion to the compiler's optimizer about the order of memory
references inside a DO loop.

IVDEP:LOOP implies no loop-carried dependencies. IVDEP:BACK implies no backward
dependencies.

When no option is specified, the following occurs:

• On IA-64 architecture, the behavior is the same as IVDEP:BACK. You can modify the behavior
to be the same as IVDEP:LOOP by using a compiler option.

• On Intel® 64 architecture and IA-32 architecture, the compiler begins dependence analysis
by assuming all dependences occur in the same forward direction as their appearance in
the normal scalar execution order. This contrasts with normal compiler behavior, which is
for the dependence analysis to make no initial assumptions about the direction of a
dependence.

cDEC$ IVDEP with no option can also be spelled cDEC$ INIT_DEP_FWD (INITialize DEPendences
ForWarD).

The IVDEP directive is applied to a DO loop in which the user knows that dependences are in
lexical order. For example, if two memory references in the loop touch the same memory
location and one of them modifies the memory location, then the first reference to touch the
location has to be the one that appears earlier lexically in the program source code. This assumes
that the right-hand side of an assignment statement is "earlier" than the left-hand side.

The IVDEP directive informs the compiler that the program would behave correctly if the
statements were executed in certain orders other than the sequential execution order, such as
executing the first statement or block to completion for all iterations, then the next statement
or block for all iterations, and so forth. The optimizer can use this information, along with
whatever else it can prove about the dependences, to choose other execution orders.

Example

In the following example, the IVDEP directive provides more information about the dependences
within the loop, which may enable loop transformations to occur:

!DEC$ IVDEP

DO I=1, N

A(INDARR(I)) = A(INDARR(I)) + B(I)

END DO

2950

63 Intel® Fortran Compiler User and Reference Guides

In this case, the scalar execution order follows:

1. Retrieve INDARR(I).

2. Use the result from step 1 to retrieve A(INDARR(I)).

3. Retrieve B(I).

4. Add the results from steps 2 and 3.

5. Store the results from step 4 into the location indicated by A(INDARR(I)) from step 1.

IVDEP directs the compiler to initially assume that when steps 1 and 5 access a common memory
location, step 1 always accesses the location first because step 1 occurs earlier in the execution
sequence. This approach lets the compiler reorder instructions, as long as it chooses an
instruction schedule that maintains the relative order of the array references.

See Also
• H to I
• General Compiler Directives
• Rules for General Directives that Affect DO Loops

IXOR
Elemental Intrinsic Function (Generic): See
IEOR.

J to L

JABS
Portability Function: Returns an absolute value.

Module

USE IFPORT

Syntax

result = JABS (i)

(Input) INTEGER(4). A value.i

Results

The result type is INTEGER(4). The value of the result is | i |.

2951

63

JDATE
Portability Function: Returns an 8-character
string with the Julian date in the form "yyddd".
Three spaces terminate this string.

Module

USE IFPORT

Syntax

result = JDATE()

Results

The result type is character with length 8. The result is the Julian date, in the form YYDDD,
followed by three spaces.

The Julian date is a five-digit number whose first two digits are the last two digits of the year,
and whose final three digits represent the day of the year (1 for January 1, 366 for December
31 of a leap year, and so on). For example, the Julian date for February 1, 1999 is 99032.

CAUTION. The two-digit year return value may cause problems with the year 2000.
Use DATE_AND_TIMEinstead.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
! Sets julian to today's julian date

USE IFPORT

CHARACTER*8 julian

julian = JDATE()

See Also
• J to L
• DATE_AND_TIME

2952

63 Intel® Fortran Compiler User and Reference Guides

JDATE4
Portability Function: Returns a 10-character
string with the Julian date in the form "yyyyddd".
Three spaces terminate this string.

Module

USE IFPORT

Syntax

result = JDATE4()

Results

The result type is character with length 10. The result is the Julian date, in the form YYYYDDD,
followed by three spaces.

The Julian date is a seven-digit number whose first four digits are the year, and whose final
three represent the day of the year (1 for January 1, 366 for December 31 of a leap year, and
so on). For example, the Julian date for February 1, 1999 is 1999032.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• J to L
• DATE_AND_TIME

JNUM
Elemental Intrinsic Function (Specific):
Converts a character string to an INTEGER(4)
value. This function cannot be passed as an actual
argument.

Syntax

result = JNUM (i)

(Input) Must be of type character.i

2953

63

Results

The result type is INTEGER(4). The result value is the integer value represented by the character
string i.

Example

JNUM ("46616") has the value 46616 of type INTEGER(4).

KILL
Portability Function: Sends a signal to the
process given by ID.

Module

USE IFPORT

Syntax

result = KILL (pid,signum)

(Input) INTEGER(4). ID of a process to be signaled.pid

(Input) INTEGER(4). A signal value. For the definition of signal
values, see the SIGNALfunction.

signum

Results

The result type is INTEGER(4). The result is zero if the call was successful; otherwise, an error
code. Possible error codes are:

• EINVAL: The signum is not a valid signal number, or PID is not the same as getpid() and
signum does not equal SIGKILL.

• ESRCH: The given PID could not be found.

• EPERM: The current process does not have permission to send a signal to the process given
by PID.

On Windows* systems, arbitrary signals can be sent only to the calling process (where pid=
getpid()). Other processes can send only the SIGKILL signal (signum= 9), and only if the
calling process has permission.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

2954

63 Intel® Fortran Compiler User and Reference Guides

Example
USE IFPORT

integer(4) id_number, sig_val, istat

id_number=getpid()

ISTAT = KILL (id_number, sig_val)

See Also
• J to L
• SIGNAL
• RAISEQQ
• SIGNALQQ

Building Applications: Portability Library Overview

KIND
Inquiry Intrinsic Function (Generic): Returns
the kind parameter of the argument.

Syntax

result = KIND (x)

(Input) Can be of any intrinsic type.x

Results

The result is a scalar of type default integer. The result has a value equal to the kind type
parameter value of x.

Example

KIND (0.0) has the kind value of default real type.

KIND (12) has the kind value of default integer type.

2955

63

The following shows another example:

INTEGER i ! a 4-byte integer

WRITE(*,*) KIND(i)

CALL INTEGER2()

WRITE(*,*) KIND(i) ! still a 4-byte integer

! not affected by setting in subroutine

END

SUBROUTINE INTEGER2()

!DEC$INTEGER:2

INTEGER j ! a 2-byte integer

WRITE(*,*) KIND(j)

END SUBROUTINE

See Also
• J to L
• SELECTED_INT_KIND
• SELECTED_REAL_KIND
• CMPLX
• INT
• REAL
• LOGICAL
• CHAR
• Intrinsic Data Types
• Argument Keywords in Intrinsic Procedures

KNUM
Elemental Intrinsic Function (Specific):
Converts a character string to an INTEGER(8)
value.

Syntax

result = KNUM (i)

(Input) Must be of type character.i

2956

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is INTEGER(8). The result value is the integer value represented by the character
string i.

Example

KNUM ("46616") has the value 46616 of type INTEGER(8).

LASTPRIVATE
Parallel Directive Clause: Provides a superset
of the functionality provided by the PRIVATE
clause; objects are declared PRIVATE and they are
given certain values when the parallel region is
exited.

Syntax

LASTPRIVATE (list)

Is the name of one or more variables or common blocks that are
accessible to the scoping unit. Subobjects cannot be specified.
Each name must be separated by a comma, and a named common
block must appear between slashes (/ /).

list

Variables that appear in a LASTPRIVATE list are subject to PRIVATE clause semantics. In addition,
once the parallel region is exited, each variable has the value provided by the sequentially last
section or loop iteration.

When the LASTPRIVATE clause appears in a DO directive, the thread that executes the
sequentially last iteration updates the version of the object it had before the construct. When
the LASTPRIVATE clause appears in a SECTIONS directive, the thread that executes the lexically
last SECTION updates the version of the object it had before the construct.

Subobjects that are not assigned a value by the last iteration of the DO or the lexically last
SECTION of the SECTIONS directive are undefined after the construct.

2957

63

LBOUND
Inquiry Intrinsic Function (Generic): Returns
the lower bounds for all dimensions of an array,
or the lower bound for a specified dimension.

Syntax

result = LBOUND (array [, dim] [, kind])

(Input) Must be an array. It may be of any data type. It must not
be an allocatable array that is not allocated, or a disassociated
pointer.

array

(Input; optional) Must be a scalar integer with a value in the range
1 to n, where n is the rank array.

dim

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified
by kind; otherwise, the kind parameter of the result is that of default integer. If the processor
cannot represent the result value in the kind of the result, the result is undefined.

If dim is present, the result is a scalar. Otherwise, the result is a rank-one array with one
element for each dimension of array. Each element in the result corresponds to a dimension
of array.

If array is an array section or an array expression that is not a whole array or array structure
component, each element of the result has the value 1.

If array is a whole array or array structure component, LBOUND (array, dim) has a value
equal to the lower bound for subscript dim of array(if dim is nonzero or array is an assumed-size
array of rank dim). Otherwise, the corresponding element of the result has the value 1.

The setting of compiler options specifying integer size can affect this function.

Example

Consider the following:

REAL ARRAY_A (1:3, 5:8)

REAL ARRAY_B (2:8, -3:20)

LBOUND(ARRAY_A) is (1, 5). LBOUND(ARRAY_A, DIM=2) is 5.

2958

63 Intel® Fortran Compiler User and Reference Guides

LBOUND(ARRAY_B) is (2, -3). LBOUND(ARRAY_B (5:8, :)) is (1,1) because the arguments are
array sections.

The following shows another example:

REAL ar1(2:3, 4:5, -1:14), vec1(35)

INTEGER res1(3), res2, res3(1)

res1 = UBOUND (ar1) ! returns [2, 4, -1]

res2 = UBOUND (ar1, DIM= 3) ! returns -1

res3 = UBOUND (vec1) ! returns [1]

END

See Also
• J to L
• UBOUND

LCWRQQ
Portability Subroutine: Sets the value of the
floating-point processor control word.

Module

USE IFPORT

Syntax

CALL LCWRQQ (controlword)

(Input) INTEGER(2). Floating-point processor control word.controlword

LCWRQQ performs the same function as the run-time subroutine SETCONTROLFPQQ and is
provided for compatibility.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

2959

63

Example
USE IFPORT

INTEGER(2) control

CALL SCWRQQ(control) ! get control word

! Set control word to make processor round up

control = control .AND. (.NOT. FPCW$MCW_RC) ! Clear

! control word with inverse

! of rounding control mask

control = control .OR. FPCW$UP ! Set control word

! to round up

CALL LCWRQQ(control)

WRITE (*, 9000) 'Control word: ', control

9000 FORMAT (1X, A, Z4)

END

See Also
• J to L
• SETCONTROLFPQQ

LEADZ
Elemental Intrinsic Function (Generic):
Returns the number of leading zero bits in an
integer.

Syntax

result = LEADZ (i)

(Input) Must be of type integer or logical.i

Results

The result type is the same as i. The result value is the number of leading zeros in the binary
representation of the integer i.

2960

63 Intel® Fortran Compiler User and Reference Guides

The model for the interpretation of an integer value as a sequence of bits is shown in Model
for Bit Data.

Example

Consider the following:

INTEGER*8 J, TWO

PARAMETER (TWO=2)

DO J= -1, 40

TYPE *, LEADZ(TWO**J) ! Prints 64 down to 23 (leading zeros)

ENDDO

END

LEN
Inquiry Intrinsic Function (Generic): Returns
the length of a character expression.

Syntax

result = LEN (string [, kind])

(Input) Must be of type character; it can be scalar or array valued.
(It can be an array of strings.)

string

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result is a scalar of type integer. If kind is present, the kind parameter of the result is that
specified by kind; otherwise, the kind parameter of the result is that of default integer. If the
processor cannot represent the result value in the kind of the result, the result is undefined.

The result has a value equal to the number of characters in string(if it is scalar) or in an
element of string(if it is array valued).

Result TypeArgument TypeSpecific Name

INTEGER(4)CHARACTERLEN 1

INTEGER(8)CHARACTER

2961

63

Result TypeArgument TypeSpecific Name

1The setting of compiler options specifying integer size can affect this function.

Example

Consider the following example:

CHARACTER (15) C (50)

CHARACTER (25) D

LEN (C) has the value 15, and LEN (D) has the value 25.

The following shows another example:

CHARACTER(11) STR(100)

INTEGER I

I = LEN (STR) ! returns 11

I = LEN('A phrase with 5 trailing blanks. ')

! returns 37

See Also
• J to L
• LEN_TRIM
• Declaration Statements for Character Types
• Character Data Type

LEN_TRIM
Elemental Intrinsic Function (Generic):
Returns the length of the character argument
without counting trailing blank characters.

Syntax

result = LEN_TRIM (string [, kind])

(Input) Must be of type character.string

(Input; optional) Must be a scalar integer initialization expression.kind

2962

63 Intel® Fortran Compiler User and Reference Guides

Results

The result is a scalar of type integer. If kind is present, the kind parameter of the result is that
specified by kind; otherwise, the kind parameter of the result is that of default integer. If the
processor cannot represent the result value in the kind of the result, the result is undefined.

The result has a value equal to the number of characters remaining after any trailing blanks in
string are removed. If the argument contains only blank characters, the result is zero.

The setting of compiler options specifying integer size can affect this function.

Example

LEN_TRIM (' C D ') has the value 4.

LEN_TRIM (' ') has the value 0.

The following shows another example:

INTEGER LEN1

LEN1 = LEN_TRIM (' GOOD DAY ') ! returns 9

LEN1 = LEN_TRIM (' ') ! returns 0

See Also
• J to L
• LEN
• LNBLNK

LGE
Elemental Intrinsic Function (Generic):
Determines if a string is lexically greater than or
equal to another string, based on the ASCII
collating sequence, even if the processor's default
collating sequence is different. In Intel® Fortran,
LGE is equivalent to the (.GE.) operator.

Syntax

result = LGE (string_a,string_b)

(Input) Must be of type character.string_a

(Input) Must be of type character.string_b

2963

63

Results

The result type is default logical. If the strings are of unequal length, the comparison is made
as if the shorter string were extended on the right with blanks, to the length of the longer
string.

The result is true if the strings are equal, both strings are of zero length, or if string_a follows
string_b in the ASCII collating sequence; otherwise, the result is false.

Result TypeArgument TypeSpecific Name

LOGICAL(4)CHARACTERLGE 1,2

1 This specific function cannot be passed as an actual argument.
2 The setting of compiler options specifying integer size can affect this function.

Example

LGE ('ONE', 'SIX') has the value false.

LGE ('TWO', 'THREE') has the value true.

The following shows another example:

LOGICAL L

L = LGE('ABC','ABD') ! returns .FALSE.

L = LGE ('AB', 'AAAAAAAB') ! returns .TRUE.

See Also
• J to L
• LGT
• LLE
• LLT
• ASCII and Key Code Charts

LGT
Elemental Intrinsic Function (Generic):
Determines whether a string is lexically greater
than another string, based on the ASCII collating

2964

63 Intel® Fortran Compiler User and Reference Guides

sequence, even if the processor's default collating
sequence is different. In Intel® Fortran, LGT is
equivalent to the > (.GT.) operator.

Syntax

result = LGT (string_a,string_b)

(Input) Must be of type character.string_a

(Input) Must be of type character.string_b

Results

The result type is default logical. If the strings are of unequal length, the comparison is made
as if the shorter string were extended on the right with blanks, to the length of the longer
string.

The result is true if string_a follows string_b in the ASCII collating sequence; otherwise, the
result is false. If both strings are of zero length, the result is also false.

Result TypeArgument TypeSpecific Name

LOGICAL(4)CHARACTERLGT 1,2

1This specific function cannot be passed as an actual argument.
2 The setting of compiler options specifying integer size can affect this function.

Example

LGT ('TWO', 'THREE') has the value true.

LGT ('ONE', 'FOUR') has the value true.

The following shows another example:

LOGICAL L

L = LGT('ABC', 'ABC') ! returns .FALSE.

L = LGT('ABC', 'AABC') ! returns .TRUE.

See Also
• J to L
• LGE
• LLE

2965

63

• LLT
• ASCII and Key Code Charts

LINETO, LINETO_W (W*32, W*64)
Graphics Function: Draws a line from the current
graphics position up to and including the end point.

Module

USE IFQWIN

Syntax

result = LINETO (x,y)

result = LINETO_W (wx, wy)

(Input) INTEGER(2). Viewport coordinates of end point.x, y

(Input) REAL(8). Window coordinates of end point.wx, wy

Results

The result type is INTEGER(2). The result is a nonzero value if successful; otherwise, 0.

The line is drawn using the current graphics color, logical write mode, and line style. The
graphics color is set with SETCOLORRGB, the write mode with SETWRITEMODE, and the line
style with SETLINESTYLE.

If no error occurs, LINETO sets the current graphics position to the viewport point (x, y), and
LINETO_W sets the current graphics position to the window point (wx, wy).

If you use FLOODFILLRGB to fill in a closed figure drawn with LINETO, the figure must be drawn
with a solid line style. Line style is solid by default and can be changed with SETLINESTYLE.

NOTE. The LINETO routine described here is a QuickWin routine. If you are trying to
use the Microsoft* Platform SDK version of the LineTo routine by including the IFWIN
module, you need to specify the routine name as MSFWIN$LineTo. For more information,
see Building Applications: Special Naming Convention for Certain QuickWin and Win32
Graphics Routines.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS

2966

63 Intel® Fortran Compiler User and Reference Guides

Example

This program draws the figure shown below.

! Build as QuickWin or Standard Graphics

USE IFQWIN

INTEGER(2) status

TYPE (xycoord) xy

CALL MOVETO(INT2(80), INT2(50), xy)

status = LINETO(INT2(240), INT2(150))

status = LINETO(INT2(240), INT2(50))

END

See Also
• J to L
• GETCURRENTPOSITION
• GETLINESTYLE
• GRSTATUS
• MOVETO
• POLYGON
• POLYLINEQQ
• SETLINESTYLE
• SETWRITEMODE

Building Applications: Drawing Lines on the Screen

Building Applications: Graphics Coordinates

2967

63

LINETOAR (W*32, W*64)
Graphics Function: Draws a line between each
x,y point in the from-array to each corresponding
x,y point in the to-array.

Module

USE IFQWIN

Syntax

result = LINETOAR (loc(fx), loc(fy), loc(tx) loc(ty), cnt)

(Input) INTEGER(2). From x viewport coordinate array.fx

(Input) INTEGER(2). From y viewport coordinate array.fy

(Input) INTEGER(2). To x viewport coordinate array.tx

(Input) INTEGER(2). To y viewport coordinate array.ty

(Input) INTEGER(4). Length of each coordinate array; all should
be the same size.

cnt

Results

The result type is INTEGER(2). The result is a nonzero value if successful; otherwise, zero.

The lines are drawn using the current graphics color, logical write mode, and line style. The
graphics color is set with SETCOLORRGB, the write mode with SETWRITEMODE, and the line
style with SETLINESTYLE.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS

2968

63 Intel® Fortran Compiler User and Reference Guides

Example
! Build for QuickWin or Standard Graphics

USE IFQWIN

integer(2) fx(3),fy(3),tx(3),ty(3),result

integer(4) cnt, i

! load the points

do i = 1,3

!from here

fx(i) =20*i

fy(i) =10

!to there

tx(i) =20*i

ty(i) =60

end do

! draw the lines all at once

! 3 white vertical lines in upper left corner

result = LINETOAR(loc(fx),loc(fy),loc(tx),loc(ty), 3)

end

See Also
• J to L
• LINETO
• LINETOAREX
• LOC
• SETCOLORRGB
• SETLINESTYLE
• SETWRITEMODE

Building Applications: Drawing Lines on the Screen

2969

63

LINETOAREX (W*32, W*64)
Graphics Function: Draws a line between each
x,y point in the from-array to each corresponding
x,y point in the to-array. Each line is drawn with
the specified graphics color and line style.

Module

USE IFQWIN

Syntax

result = LINETOAREX (loc(fx), loc(fy), loc(tx) loc(ty), loc(C), loc(S), cnt)

(Input) INTEGER(2). From x viewport coordinate array.fx

(Input) INTEGER(2). From y viewport coordinate array.fy

(Input) INTEGER(2). To x viewport coordinate array.tx

(Input) INTEGER(2). To y viewport coordinate array.ty

(Input) INTEGER(4). Color array.C

(Input) INTEGER(4). Style array.S

(Input) INTEGER(4). Length of each coordinate array; also the
length of the color array and style array. All of the arrays should
be the same size.

cnt

Results

The result type is INTEGER(2). The result is a nonzero value if successful; otherwise, zero.

The lines are drawn using the specified graphics colors and line styles, and with the current
write mode. The current write mode is set with SETWRITEMODE.

If the color has the Z'80000000' bit set, the color is an RGB color; otherwise, the color is a
palette color.

2970

63 Intel® Fortran Compiler User and Reference Guides

The styles are as follows from wingdi.h:

SOLID 0

DASH 1 /* ------- */

DOT 2 /* */

DASHDOT 3 /* _._._._ */

DASHDOTDOT 4 /* _.._.._ */

NULL 5

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS

2971

63

Example
! Build for QuickWin or Standard Graphics

USE IFQWIN

integer(2) fx(3),fy(3),tx(3),ty(3),result

integer(4) C(3),S(3),cnt,i,color

color = #000000FF

! load the points

do i = 1,3

S(i) = 0 ! all lines solid

C(i) = IOR(Z'80000000',color)

color = color*256 ! pick another of RGB

if(IAND(color,Z'00FFFFFF').eq.0) color = Z'000000FF'

!from here

fx(i) =20*i

fy(i) =10

!to there

tx(i) =20*i

ty(i) =60

end do

! draw the lines all at once

! 3 vertical lines in upper left corner, Red, Green, and Blue

result = LINETOAREX(loc(fx),loc(fy),loc(tx),loc(ty),loc(C),loc(S),3)

end

See Also
• J to L
• LINETO
• LINETOAR
• LOC
• POLYLINEQQ

2972

63 Intel® Fortran Compiler User and Reference Guides

• SETWRITEMODE

Building Applications: Drawing Lines on the Screen

LLE
Elemental Intrinsic Function (Generic):
Determines whether a string is lexically less than
or equal to another string, based on the ASCII
collating sequence, even if the processor's default
collating sequence is different. In Intel® Fortran,
LLE is equivalent to the (.LE.) operator.

Syntax

result = LLE (string_a,string_b)

(Input) Must be of type character.string_a

(Input) Must be of type character.string_b

Results

The result type is default logical. If the strings are of unequal length, the comparison is made
as if the shorter string were extended on the right with blanks, to the length of the longer
string.

The result is true if the strings are equal, both strings are of zero length, or if string_a precedes
string_b in the ASCII collating sequence; otherwise, the result is false.

Result TypeArgument TypeSpecific Name

LOGICAL(4)CHARACTERLLE 1,2

1This specific function cannot be passed as an actual argument.
2 The setting of compiler options specifying integer size can affect this function.

Example

LLE ('TWO', 'THREE') has the value false.

LLE ('ONE', 'FOUR') has the value false.

2973

63

The following shows another example:

LOGICAL L

L = LLE('ABC', 'ABC') ! returns .TRUE.

L = LLE('ABC', 'AABCD') ! returns .FALSE.

See Also
• J to L
• LGE
• LGT
• LLT
• ASCII and Key Code Charts

LLT
Elemental Intrinsic Function (Generic):
Determines whether a string is lexically less than
another string, based on the ASCII collating
sequence, even if the processor's default collating
sequence is different. In Intel® Fortran, LLT is
equivalent to the < (.LT.) operator.

Syntax

result = LLT (string_a,string_b)

(Input) Must be of type character.string_a

(Input) Must be of type character.string_b

Results

The result type is default logical. If the strings are of unequal length, the comparison is made
as if the shorter string were extended on the right with blanks, to the length of the longer
string.

The result is true if string_a precedes string_b in the ASCII collating sequence; otherwise,
the result is false. If both strings are of zero length, the result is also false.

Result TypeArgument TypeSpecific Name

LOGICAL(4)CHARACTERLLT 1,2

2974

63 Intel® Fortran Compiler User and Reference Guides

Result TypeArgument TypeSpecific Name

1This specific function cannot be passed as an actual argument.
2 The setting of compiler options specifying integer size can affect this function.

Example

LLT ('ONE', 'SIX') has the value true.

LLT ('ONE', 'FOUR') has the value false.

The following shows another example:

LOGICAL L

L = LLT ('ABC', 'ABC') ! returns .FALSE.

L = LLT ('AAXYZ', 'ABCDE') ! returns .TRUE.

See Also
• J to L
• LGE
• LGT
• LLE
• ASCII and Key Code Charts

LNBLNK
Portability Function: Locates the position of the
last nonblank character in a string.

Module

USE IFPORT

Syntax

result = LNBLNK (string)

(Input) Character*(*). String to be searched. Cannot be an array.string

Results

The result type is INTEGER(4). The result is the index of the last nonblank character in string.

2975

63

LNBLNK is very similar to the intrinsic function LEN_TRIM, except that string cannot be an
array.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

integer(4) p

p = LNBLNK(' GOOD DAY ') ! returns 9

p = LNBLNK(' ') ! returns 0

See Also
• J to L
• LEN_TRIM

Building Applications: Portability Library Overview

LOADIMAGE, LOADIMAGE_W (W*32, W*64)
Graphics Functions: Read an image from a
Windows bitmap file and display it at a specified
location.

Module

USE IFQWIN

Syntax

result = LOADIMAGE (filename,xcoord,ycoord)

result = LOADIMAGE_W (filename,wxcoord,wycoord)

(Input) Character*(*). Path of the bitmap file.filename

(Input) INTEGER(4). Viewport coordinates for upper-left corner of
image display.

xcoord, ycoord

(Input) REAL(8). Window coordinates for upper-left corner of image
display.

wxcoord, wycoord

2976

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a negative value.

The image is displayed with the colors in the bitmap file. If the color palette in the bitmap file
is different from the current system palette, the current palette is discarded and the bitmap's
palette is loaded.

LOADIMAGE specifies the screen placement of the image in viewport coordinates. LOADIMAGE_W
specifies the screen placement of the image in window coordinates.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also
• J to L
• SAVEIMAGE, SAVEIMAGE_W

Building Applications: Loading and Saving Images to Files

LOC
Inquiry Intrinsic Function (Generic): Returns
the internal address of a storage item. This function
cannot be passed as an actual argument.

Syntax

result = LOC (x)

(Input) Is a variable, an array or record field reference, a
procedure, or a constant; it can be of any data type. It must not
be the name of a statement function. If it is a pointer, it must be
defined and associated with a target.

x

Results

The result type is INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 architecture and
IA-64 architecture. The value of the result represents the address of the data object or, in the
case of pointers, the address of its associated target. If the argument is not valid, the result is
undefined.

This function performs the same function as the %LOC built-in function.

2977

63

Example
! Mixed language example passing Integer Pointer to C

! Fortran main program

INTERFACE

SUBROUTINE Ptr_Sub (p)

!DEC$ ATTRIBUTES C, ALIAS:'_Ptr_Sub' :: Ptr_Sub

INTEGER p

END SUBROUTINE Ptr_Sub

END INTERFACE

REAL A[10], VAR[10]

POINTER (p, VAR) ! VAR is the pointer-based

! variable, p is the integer

! pointer

p = LOC(A)

CALL Ptr_Sub (p)

WRITE(*,*) "A(4) = ", A(4)

END

! C subprogram

void Ptr_Sub (int *p)

{ float a[10];

a[3] = 23.5;

*p = a;

}

%LOC
Built-in Function: Computes the internal address
of a storage item.

Syntax

result = %LOC (a)

2978

63 Intel® Fortran Compiler User and Reference Guides

(Input) Is the name of an actual argument. It must be a variable,
an expression, or the name of a procedure. It must not be the
name of a statement function.

a

Description

The %LOC function produces an integer value that represents the location of the given argument.
The value is INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 architecture and IA-64
architecture. You can use this integer value as an item in an arithmetic expression.

The LOC intrinsic function serves the same purpose as the %LOC built-in function.

LOG
Elemental Intrinsic Function (Generic):
Returns the natural logarithm of the argument.

Syntax

result = LOG (x)

(Input) Must be of type real or complex. If x is real, its value must
be greater than zero. If x is complex, its value must not be zero.

x

Results

The result type is the same as x. The result value is approximately equal to logex.

If the arguments are complex, the result is the principal value with imaginary part omega in
the range -pi <= omega <= pi.

If the real part of x < 0 and the imaginary part of x is a positive real zero, the imaginary part
of the result is pi.

If the real part of x < 0 and the imaginary part of x is a negative real zero, the imaginary part
of the result is -pi.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)ALOG 1,2

REAL(8)REAL(8)DLOG

REAL(16)REAL(16)QLOG

2979

63

Result TypeArgument TypeSpecific Name

COMPLEX(4)COMPLEX(4)CLOG 2

COMPLEX(8)COMPLEX(8)CDLOG3,4

COMPLEX(16)COMPLEX(16)CQLOG

1This function is treated like LOG.
2The setting of compiler options specifying real size can affect ALOG, LOG, and CLOG.
3This function can also be specified as ZLOG.
4The setting of compiler options specifying double size can affect CDLOG.

Example

LOG (8.0) has the value 2.079442.

LOG (25.0) has the value 3.218876.

The following shows another example:

REAL r

r = LOG(10.0) ! returns 2.302585

See Also
• J to L
• EXP
• LOG10

LOG10
Elemental Intrinsic Function (Generic):
Returns the common logarithm of the argument.

Syntax

result = LOG10 (x)

(Input) Must be of type real or complex. If x is real, its value must
be greater than zero. If x is complex, its value must not be zero.

x

2980

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is the same as x. The result value is approximately equal to log10x.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)ALOG10 1,2

REAL(8)REAL(8)DLOG10 3

REAL(16)REAL(16)QLOG10

COMPLEX(4)COMPLEX(4)CLOG10 2

COMPLEX(8)COMPLEX(8)CDLOG10 3

COMPLEX(16)COMPLEX(16)CQLOG10

1This function is treated like LOG10.
2 The setting of compiler options specifying real size can affect ALOG10, CLOG10, and LOG10.
3 The setting of compiler options specifying double size can affect DLOG10 and CDLOG10.

Example

LOG10 (8.0) has the value 0.9030900.

LOG10 (15.0) has the value 1.176091.

The following shows another example:

REAL r

r = LOG10(10.0) ! returns 1.0

See Also
• J to L
• LOG

2981

63

LOGICAL Statement
Statement: Specifies the LOGICAL data type.

Syntax

LOGICAL

LOGICAL([KIND=] n)

LOGICAL*n

Is kind 1, 2, 4, or 8.n

If a kind parameter is specified, the logical constant has the kind specified. If no kind parameter
is specified, the kind of the constant is default logical.

Example
LOGICAL, ALLOCATABLE :: flag1, flag2

LOGICAL (2), SAVE :: doit, dont=.FALSE.

LOGICAL switch

! An equivalent declaration is:

LOGICAL flag1, flag2

LOGICAL (2) doit, dont=.FALSE.

ALLOCATABLE flag1, flag2

SAVE doit, dont

See Also
• J to L
• Logical Data Types
• Logical Constants
• Data Types, Constants, and Variables

2982

63 Intel® Fortran Compiler User and Reference Guides

LOGICAL Function
Elemental Intrinsic Function (Generic):
Converts the logical value of the argument to a
logical value with different kind parameters.

Syntax

result = LOGICAL (l[,kind])

(Input) Must be of type logical.l

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result is of type logical. If kind is present, the kind parameter is that specified by kind;
otherwise, the kind parameter is that of default logical. The result value is that of l.

The setting of compiler options specifying integer size can affect this function.

Example

LOGICAL (L .OR. .NOT. L) has the value true and is of type default logical regardless of the
kind parameter of logical variable L.

LOGICAL (.FALSE., 2) has the value false, with the kind parameter of INTEGER(KIND=2).

See Also
• J to L
• CMPLX
• INT
• REAL
• Logical Data Types

LONG
Portability Function: Converts an INTEGER(2)
argument to INTEGER(4) type.

Module

USE IFPORT

2983

63

Syntax

result = LONG (int2)

(Input) INTEGER(2). Value to be converted.int2

Results

The result type is INTEGER(4). The result is the value of int2 with type INTEGER(4). The upper
16 bits of the result are zeros and the lower 16 are equal to int2.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• J to L
• INT
• KIND

Building Applications: Portability Library Overview

LOOP COUNT
General Compiler Directive: Specifies the
iterations (count) for a DO loop.

Syntax

cDEC$ LOOP COUNT (n1[,n2]...)

cDEC$ LOOP COUNT= n1[,n2]...

cDEC$ LOOP COUNT MAX(n1), MIN(n1), AVG(n1)

cDEC$ LOOP COUNT MAX=n1, MIN=n1, AVG=n1

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is a non-negative integer constant.n1, n2

The value of the loop count affects heuristics used in software pipelining, vectorization, and
loop-transformations.

2984

63 Intel® Fortran Compiler User and Reference Guides

DescriptionArgument Form

Indicates that the next DO loop will iterate
n1, n2, or some other number of times.

n1 [, n2]

Indicates that the next DO loop has the
specified maximum, minimum, and average
number (n1) of iterations.

MAX, MIN, and AVG

Example

Consider the following:

cDEC$ LOOP COUNT (10000)

do i =1,m

b(i) = a(i) +1 ! This is likely to enable the loop to get software-pipelined

enddo

Note that you can specify more than one LOOP COUNT directive for a DO loop. For example,
the following directives are valid:

!DEC$ LOOP COUNT (10, 20, 30)

!DEC$ LOOP COUNT MAX=100, MIN=3, AVG=17

DO

...

See Also
• J to L
• Rules for General Directives that Affect DO Loops

Optimizing Applications: Loop Count and Loop Distribution

2985

63

LSHIFT
Elemental Intrinsic Function (Generic): Shifts
the bits in an integer left by a specified number of
positions. See ISHFT.

LSTAT
Portability Function: Returns detailed information
about a file.

Module

USE IFPORT

Syntax

result = LSTAT (name,statb)

(Input) Character*(*). Name of the file to examine.name

(Output) INTEGER(4) or INTEGER(8). One-dimensional array of
size 12; where the system information is stored. See STATfor the
possible values returned in statb.

statb

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, an error code (see
IERRNO).

LSTAT returns detailed information about the file named in name.

On Linux* and Mac OS* X systems, if the file denoted by name is a link, LSTAT provides
information on the link, while STAT provides information on the file at the destination of the
link.

On Windows* systems, LSTAT returns exactly the same information as STAT (because there
are no symbolic links on these systems). STAT is the preferred function.

INQUIRE also provides information about file properties.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

2986

63 Intel® Fortran Compiler User and Reference Guides

Example
USE IFPORT

INTEGER(4) info_array(12), istatus

character*20 file_name

print *, "Enter name of file to examime: "

read *, file_name

ISTATUS = LSTAT (file_name, info_array)

if (.NOT. ISTATUS) then

print *, info_array

else

print *, 'Error ',istatus

end if

See Also
• J to L
• INQUIRE
• GETFILEINFOQQ
• STAT
• FSTAT

Building Applications: Portability Library Overview

LTIME
Portability Subroutine: Returns the components
of the local time zone time in a nine-element array.

Module

USE IFPORT

Syntax

CALL LTIME (time,array)

(Input) INTEGER(4). An elapsed time in seconds since 00:00:00
Greenwich mean time, January 1, 1970.

time

2987

63

(Output) INTEGER(4). One-dimensional array with 9 elements to
contain local date and time data derived from time.

array

The elements of array are returned as follows:

ValueElement

Seconds (0 - 59)array(1)

Minutes (0 - 59)array(2)

Hours (0 - 23)array(3)

Day of month (1 - 31)array(4)

Month (0 - 11)array(5)

Years since 1900array(6)

Day of week (0 - 6, where 0 is
Sunday)

array(7)

Day of year (1 - 365)array(8)

1 if daylight saving time is in
effect; otherwise, 0.

array(9)

CAUTION. This subroutine is not year-2000 compliant, use DATE_AND_TIME instead.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

2988

63 Intel® Fortran Compiler User and Reference Guides

Example
USE IFPORT

INTEGER(4) input_time, time_array(9)

! find number of seconds since 1/1/70

input_time=TIME()

! convert number of seconds to time array

CALL LTIME (input_time, time_array)

PRINT *, time_array

See Also
• J to L
• DATE_AND_TIME

Building Applications: Portability Library Overview

M to N

MAKEDIRQQ
Portability Function: Creates a new directory
with a specified name.

Module

USE IFPORT

Syntax

result = MAKEDIRQQ (dirname)

(Input) Character*(*). Name of directory to be created.dirname

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

MAKEDIRQQ can create only one directory at a time. You cannot create a new directory and a
subdirectory below it in a single command. MAKEDIRQQ does not translate path delimiters.
You can use either slash (/) or backslash (\) as valid delimiters.

If an error occurs, call GETLASTERRORQQ to retrieve the error message. Possible errors include:

2989

63

• ERR$ACCES - Permission denied. The file's (or directory's) permission setting does not allow
the specified access.

• ERR$EXIST - The directory already exists.

• ERR$NOENT - The file or path specified was not found.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

LOGICAL(4) result

result = MAKEDIRQQ('mynewdir')

IF (result) THEN

WRITE (*,*) 'New subdirectory successfully created'

ELSE

WRITE (*,*) 'Failed to create subdirectory'

END IF

END

See Also
• M to N
• DELDIRQQ
• CHANGEDIRQQ
• GETLASTERRORQQ

MALLOC
Elemental Intrinsic Function (Generic):
Allocates a block of memory. This is a generic
function that has no specific function associated
with it. It must not be passed as an actual
argument.

Syntax

result = MALLOC (size)

2990

63 Intel® Fortran Compiler User and Reference Guides

(Input) Must be of type integer. This value is the size (in bytes)
of memory to be allocated.

size

Results

The result type is INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 architecture and
IA-64 architecture. The result is the starting address of the allocated memory. The memory
allocated can be freed by using the FREE intrinsic function.

Example
INTEGER(4) SIZE

REAL(4) STORAGE(*)

POINTER (ADDR, STORAGE) ! ADDR will point to STORAGE

SIZE = 1024 ! Size in bytes

ADDR = MALLOC(SIZE) ! Allocate the memory

CALL FREE(ADDR) ! Free it

2991

63

MAP...END MAP
Statement: Specifies mapped field declarations
that are part of a UNION declaration within a
STRUCTURE declaration. See STRUCTURE.

Example
UNION

MAP

CHARACTER*20 string

END MAP

MAP

INTEGER*2 number(10)

END MAP

END UNION

UNION

MAP

RECORD /Cartesian/ xcoord, ycoord

END MAP

MAP

RECORD /Polar/ length, angle

END MAP

END UNION

MASTER
OpenMP* Fortran Compiler Directive: Specifies
a block of code to be executed by the master
thread of the team.

Syntax

c$OMP MASTER

block

2992

63 Intel® Fortran Compiler User and Reference Guides

c$OMP END MASTER

Is one of the following: C (or c), !, or * (see Syntax Rules for
Compiler Directives).

c

Is a structured block (section) of statements or constructs. You
cannot branch into or out of the block.

block

When the MASTER directive is specified, the other threads in the team skip the enclosed block
(section) of code and continue execution. There is no implied barrier, either on entry to or exit
from the master section.

Example

The following example forces the master thread to execute the routines OUTPUT and INPUT:

c$OMP PARALLEL DEFAULT(SHARED)

CALL WORK(X)

c$OMP MASTER

CALL OUTPUT(X)

CALL INPUT(Y)

c$OMP END MASTER

CALL WORK(Y)

c$OMP END PARALLEL

See Also
• M to N
• OpenMP Fortran Compiler Directives

MATMUL
Transformational Intrinsic Function (Generic):
Performs matrix multiplication of numeric or logical
matrices.

Syntax

result = MATMUL (matrix_a,matrix_b)

(Input) Must be an array of rank one or two. It must be of numeric
(integer, real, or complex) or logical type.

matrix_a

2993

63

(Input) Must be an array of rank one or two. It must be of numeric
type if matrix_a is of numeric type or logical type if matrix_a is
logical type.

matrix_b

At least one argument must be of rank two. The size of the first
(or only) dimension of matrix_b must equal the size of the last
(or only) dimension of matrix_a.

Results

The result is an array whose type depends on the data type of the arguments, according to the
rules described in Data Type of Numeric Expressions. The rank and shape of the result depends
on the rank and shapes of the arguments, as follows:

• If matrix_a has shape (n, m) and matrix_b has shape (m, k), the result is a rank-two array
with shape (n, k).

• If matrix_a has shape (m) and matrix_b has shape (m, k), the result is a rank-one array
with shape (k).

• If matrix_a has shape (n, m) and matrix_b has shape (m), the result is a rank-one array
with shape (n).

If the arguments are of numeric type, element (i, j) of the result has the value SUM((row i of
matrix_a) * (column j of matrix_b)). If the arguments are of logical type, element (i, j) of the
result has the value ANY((row i of matrix_a) .AND. (column j of matrix_b)).

Example

A is matrix

[2 3 4]

[3 4 5],

B is matrix

[2 3]

[3 4]

[4 5],

X is vector (1, 2), and Y is vector (1, 2, 3).

The result of MATMUL (A, B) is the matrix-matrix product AB with the value

[29 38]

[38 50].

2994

63 Intel® Fortran Compiler User and Reference Guides

The result of MATMUL (X, A) is the vector-matrix product XA with the value (8, 11, 14).

The result of MATMUL (A, Y) is the matrix-vector product AY with the value (20, 26).

The following shows another example:

INTEGER a(2,3), b(3,2), c(2), d(3), e(2,2), f(3), g(2)

a = RESHAPE((/1, 2, 3, 4, 5, 6/), (/2, 3/))

! a is 1 3 5

! 2 4 6

b = RESHAPE((/1, 2, 3, 4, 5, 6/), (/3, 2/))

! b is 1 4

! 2 5

! 3 6

c = (/1, 2/) ! c is [1 2]

d = (/1, 2, 3/) ! d is [1 2 3]

e = MATMUL(a, b) ! returns 22 49

! 28 64

f = MATMUL(c,a) ! returns [5 11 17]

g = MATMUL(a,d) ! returns [22 28]

WRITE(*,*) e, f, g

END

See Also
• M to N
• TRANSPOSE
• PRODUCT

MAX
Elemental Intrinsic Function (Generic):
Returns the maximum value of the arguments.

Syntax

result = MAX (a1,a2[,a3]...)

2995

63

(Input) All must have the same type (integer or real) and kind
parameters.

a1, a2, a3

Results

For MAX0, AMAX1, DMAX1, QMAX1, IMAX0, JMAX0, and KMAX0, the result type is the same
as the arguments. For MAX1, IMAX1, JMAX1, and KMAX1, the result type is integer. For AMAX0,
AIMAX0, AJMAX0, and AKMAX0, the result type is real. The value of the result is that of the
largest argument.

Result TypeArgument TypeSpecific Name 1

INTEGER(1)INTEGER(1)

INTEGER(2)INTEGER(2)IMAX0

REAL(4)INTEGER(2)AIMAX0

INTEGER(4)INTEGER(4)MAX0 2

REAL(4)INTEGER(4)AMAX0 3, 4

INTEGER(8)INTEGER(8)KMAX0

REAL(4)INTEGER(8)AKMAX0

INTEGER(2)REAL(4)IMAX1

INTEGER(4)REAL(4)MAX1 4, 5, 6

INTEGER(8)REAL(4)KMAX1

REAL(4)REAL(4)AMAX1 7

REAL(8)REAL(8)DMAX1

REAL(16)REAL(16)QMAX1

1These specific functions cannot be passed as actual arguments.
2Or JMAX0.
3Or AJMAX0.AMAX0 is the same as REAL (MAX).

2996

63 Intel® Fortran Compiler User and Reference Guides

Result TypeArgument TypeSpecific Name 1

4In Fortran 95/90, AMAX0 and MAX1 are specific functions with no generic name. For
compatibility with older versions of Fortran, these functions can also be specified as generic
functions.
5Or JMAX1.MAX1 is the same as INT(MAX).
6The setting of compiler options specifying integer size can affect MAX1.
7The setting of compiler options specifying real size can affect AMAX1.

Example

MAX (2.0, -8.0, 6.0) has the value 6.0.

MAX (14, 32, -50) has the value 32.

The following shows another example:

INTEGER m1, m2

REAL r1, r2

m1 = MAX(5, 6, 7) ! returns 7

m2 = MAX1(5.7, 3.2, -8.3) ! returns 5

r1 = AMAX0(5, 6, 7) ! returns 7.0

r2 = AMAX1(6.4, -12.2, 4.9) ! returns 6.4

See Also
• M to N
• MIN

MAXEXPONENT
Inquiry Intrinsic Function (Generic): Returns
the maximum exponent in the model representing
the same type and kind parameters as the
argument.

Syntax

result = MAXEXPONENT (x)

(Input) Must be of type real; it can be scalar or array valued.x

2997

63

Results

The result is a scalar of type default integer. The result has the value emax, as defined in Model
for Real Data.

Example
REAL(4) x

INTEGER i

i = MAXEXPONENT(x) ! returns 128.

See Also
• M to N
• MINEXPONENT

MAXLOC
Transformational Intrinsic Function (Generic):
Returns the location of the maximum value of all
elements in an array, a set of elements in an array,
or elements in a specified dimension of an array.

Syntax

result = MAXLOC (array [, dim] [, mask] [, kind])

(Input) Must be an array of type integer or real.array

(Input; optional) Must be a scalar integer with a value in the range
1 to n, where n is the rank of array. This argument is a Fortran
95 feature.

dim

(Input; optional) Must be a logical array that is conformable with
array.

mask

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result is an array of type integer. If kind is present, the kind parameter of the result is
that specified by kind; otherwise, the kind parameter of the result is that of default integer. If
the processor cannot represent the result value in the kind of the result, the result is undefined.

The following rules apply if dim is omitted:

2998

63 Intel® Fortran Compiler User and Reference Guides

• The array result has rank one and a size equal to the rank of array.

• If MAXLOC(array) is specified, the elements in the array result form the subscript of the
location of the element with the maximum value in array.

The ith subscript returned lies in the range 1 to ei, where eiis the extent of the ith dimension
of array.

• If MAXLOC(array, MASK= mask) is specified, the elements in the array result form the
subscript of the location of the element with the maximum value corresponding to the
condition specified by mask.

The following rules apply if dim is specified:

• The array result has a rank that is one less than array, and shape (d1, d2,...ddim-1,
ddim+1,...dn), where (d1, d2,...dn) is the shape of array.

• If array has rank one, MAXLOC(array, dim[, mask]) has a value equal to that of MAXLOC(
array[, MASK = mask]). Otherwise, the value of element (s1, s2,...sdim-1, sdim+1,...sn) of
MAXLOC(array, dim[, mask]) is equal to MAXLOC(array(s1, s2,...sdim-1, :, sdim+1,...sn) [,
MASK = mask(s1, s2,...sdim-1, :, sdim+1,...sn)]).

If more than one element has maximum value, the element whose subscripts are returned is
the first such element, taken in array element order. If array has size zero, or every element
of mask has the value .FALSE., the value of the result is controlled by compiler option assume
[no]old_maxminloc, which can set the result to either 1 or 0.

The setting of compiler options specifying integer size can affect this function.

Example

The value of MAXLOC((/3, 7, 4, 7/)) is (2), which is the subscript of the location of the first
occurrence of the maximum value in the rank-one array.

A is the array

[4 0 -3 2]

[3 1 -2 6]

[-1 -4 5 -5].

MAXLOC (A, MASK=A .LT. 5) has the value (1, 1) because these are the subscripts of the
location of the maximum value (4) that is less than 5.

2999

63

MAXLOC (A, DIM=1) has the value (1, 2, 3, 2). 1 is the subscript of the location of the maximum
value (4) in column 1; 2 is the subscript of the location of the maximum value (1) in column
2; and so forth.

MAXLOC (A, DIM=2) has the value (1, 4, 3). 1 is the subscript of the location of the maximum
value in row 1; 4 is the subscript of the location of the maximum value in row 2; and so forth.

3000

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

INTEGER i, max

INTEGER i, maxl(1)

INTEGER array(3, 3)

INTEGER, ALLOCATABLE :: AR1(:)

! put values in array

array = RESHAPE((/7, 9, -1, -2, 5, 0, 3, 6, 9/), &

(/3, 3/))

! array is 7 -2 3

! 9 5 6

! -1 0 9

i = SIZE(SHAPE(array)) ! Get number of dimensions

! in array

ALLOCATE (AR1(i)) ! Allocate AR1 to number

! of dimensions in array

AR1 = MAXLOC (array, MASK = array .LT. 7) ! Get

! the location (subscripts) of

! largest element less than 7

! in array

!

! MASK = array .LT. 7 creates a mask array the same

! size and shape as array whose elements are .TRUE. if

! the corresponding element in array is less than 7,

! and .FALSE. if it is not. This mask causes MAXLOC to

! return the index of the element in array with the

! greatest value less than 7.

!

! array is 7 -2 3 and MASK=array .LT. 7 is F T T

! 9 5 6 F T T

3001

63

! -1 0 9 T T F

! and AR1 = MAXLOC(array, MASK = array .LT. 7) returns

! (2, 3), the location of the element with value 6

maxl = MAXLOC((/1, 4, 3, 4/)) ! returns 2, the first

! occurrence of maximum

END

See Also
• M to N
• MAXVAL
• MINLOC
• MINVAL

MAXVAL
Transformational Intrinsic Function (Generic):
Returns the maximum value of all elements in an
array, a set of elements in an array, or elements
in a specified dimension of an array.

Syntax

result = MAXVAL (array[,dim] [,mask])

(Input) Must be an array of type integer or real.array

(Input; optional) Must be a scalar integer expression with a value
in the range 1 to n, where n is the rank of array.

dim

(Input; optional) Must be a logical array that is conformable with
array.

mask

Results

The result is an array or a scalar of the same data type as array.

The result is a scalar if dim is omitted or array has rank one.

The following rules apply if dim is omitted:

• If MAXVAL(array) is specified, the result has a value equal to the maximum value of all
the elements in array.

3002

63 Intel® Fortran Compiler User and Reference Guides

• If MAXVAL(array, MASK= mask) is specified, the result has a value equal to the maximum
value of the elements in array corresponding to the condition specified by mask.

The following rules apply if dim is specified:

• An array result has a rank that is one less than array, and shape (d1, d2,...,ddim-1, ddim+1,
..., dn), where (d1, d2, ..., dn) is the shape of array.

• If array has rank one, MAXVAL(array, dim[, mask]) has a value equal to that of MAXVAL(
array[,MASK = mask]). Otherwise, the value of element (s1, s2, ..., sdim-1, sdim+1, ..., sn) of
MAXVAL(array, dim, [, mask]) is equal to MAXVAL(array(s1, s2, ..., sdim-1, :, sdim+1, ...,
sn) [,MASK = mask(s1, s2, ..., sdim-1, :, sdim+1, ..., sn)]).

If array has size zero or if there are no true elements in mask, the result (if dim is omitted),
or each element in the result array (if dim is specified), has the value of the negative number
of the largest magnitude supported by the processor for numbers of the type and kind
parameters of array.

Example

The value of MAXVAL ((/2, 3, 4/)) is 4 because that is the maximum value in the rank-one
array.

MAXVAL (B, MASK=B .LT. 0.0) finds the maximum value of the negative elements of B.

C is the array

[2 3 4]

[5 6 7].

MAXVAL (C, DIM=1) has the value (5, 6, 7). 5 is the maximum value in column 1; 6 is the
maximum value in column 2; and so forth.

MAXVAL (C, DIM=2) has the value (4, 7). 4 is the maximum value in row 1 and 7 is the
maximum value in row 2.

3003

63

The following shows another example:

INTEGER array(2,3), i(2), max

INTEGER, ALLOCATABLE :: AR1(:), AR2(:)

array = RESHAPE((/1, 4, 5, 2, 3, 6/),(/2, 3/))

! array is 1 5 3

! 4 2 6

i = SHAPE(array) ! i = [2 3]

ALLOCATE (AR1(i(2))) ! dimension AR1 to the number of

! elements in dimension 2

! (a column) of array

ALLOCATE (AR2(i(1))) ! dimension AR2 to the number of

! elements in dimension 1

! (a row) of array

max = MAXVAL(array, MASK = array .LT. 4) ! returns 3

AR1 = MAXVAL(array, DIM = 1) ! returns [4 5 6]

AR2 = MAXVAL(array, DIM = 2) ! returns [5 6]

END

See Also
• M to N
• MAXLOC
• MINVAL
• MINLOC

MBCharLen (W*32, W*64)
NLS Function: Returns the length, in bytes, of
the first character in a multibyte-character string.

Module

USE IFNLS

3004

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = MBCharLen (string)

(Input) Character*(*). String containing the character whose length
is to be determined. Can contain multibyte characters.

string

Results

The result type is INTEGER(4). The result is the number of bytes in the first character contained
in string. The function returns 0 if string has no characters (is length 0).

MBCharLen does not test for multibyte character validity.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• M to N
• MBCurMax
• MBLead
• MBLen
• MBLen_Trim

MBConvertMBToUnicode (W*32, W*64)
NLS Function: Converts a multibyte-character
string from the current codepage to a Unicode
string.

Module

USE IFNLS

Syntax

result = MBConvertMBToUnicode (mbstr,unicodestr[,flags])

(Input) Character*(*). Multibyte codepage string to be converted.mbstr

(Output) INTEGER(2). Array of integers that is the translation of
the input string into Unicode.

unicodestr

3005

63

(Input; optional) INTEGER(4). If specified, modifies the string
conversion. If flags is omitted, the value NLS$Precomposed is
used. Available values (defined in IFNLS.F90) are:

flags

• NLS$Precomposed - Use precomposed characters always.
(default)

• NLS$Composite - Use composite wide characters always.

• NLS$UseGlyphChars - Use glyph characters instead of control
characters.

• NLS$ErrorOnInvalidChars - Returns -1 if an invalid input
character is encountered.

The flags NLS$Precomposed and NLS$Composite are mutually
exclusive. You can combine NLS$UseGlyphChars with either
NLS$Precomposed or NLS$Composite using an inclusive OR (IOR
or OR).

Results

The result type is INTEGER(4). If no error occurs, the result is the number of bytes written to
unicodestr(bytes are counted, not characters), or the number of bytes required to hold the
output string if unicodestr has zero size. If the unicodestr array is bigger than needed to
hold the translation, the extra elements are set to space characters. If unicodestr has zero
size, the function returns the number of bytes required to hold the translation and nothing is
written to unicodestr.

If an error occurs, one of the following negative values is returned:

• NLS$ErrorInsufficentBuffer - The unicodestr argument is too small, but not zero size so
that the needed number of bytes would be returned.

• NLS$ErrorInvalidFlags - The flags argument has an illegal value.

• NLS$ErrorInvalidCharacter - A character with no Unicode translation was encountered in
mbstr. This error can occur only if the NLS$InvalidCharsError flag was used in flags.

•

NOTE. By default, or if flags is set to NLS$Precomposed, the function
MBConvertMBToUnicode attempts to translate the multibyte codepage string to a
precomposed Unicode string. If a precomposed form does not exist, the function attempts
to translate the codepage string to a composite form.

3006

63 Intel® Fortran Compiler User and Reference Guides

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• M to N
• MBConvertUnicodeToMB

MBConvertUnicodeToMB (W*32, W*64)
NLS Function: Converts a Unicode string to a
multibyte-character string from the current
codepage.

Module

USE IFNLS

Syntax

result = MBConvertUnicodeToMB (unicodestr,mbstr[,flags])

(Input) INTEGER(2). Array of integers holding the Unicode string
to be translated.

unicodestr

(Output) Character*(*). Translation of Unicode string into multibyte
character string from the current codepage.

mbstr

(Input; optional) INTEGER(4). If specified, argument to modify
the string conversion. If flags is omitted, no extra checking of
the conversion takes place. Available values (defined in IFNLS.F90)
are:

flags

• NLS$CompositeCheck - Convert composite characters to
precomposed.

• NLS$SepChars - Generate separate characters.

• NLS$DiscardDns - Discard nonspacing characters.

• NLS$DefaultChars - Replace exceptions with default character.

The last three flags (NLS$SepChars, NLS$DiscardDns, and
NLS$DefaultChars) are mutually exclusive and can be used only
if NLS$CompositeCheck is set, in which case one (and only one)
of them is combined with NLS$CompositeCheck using an inclusive

3007

63

OR (IOR or OR). These flags determine what translation to make
when there is no precomposed mapping for a base
character/nonspace character combination in the Unicode wide
character string. The default (IOR(NLS$CompositeCheck,
NLS$SepChars)) is to generate separate characters.

Results

The result type is INTEGER(4). If no error occurs, returns the number of bytes written to
mbstr(bytes are counted, not characters), or the number of bytes required to hold the output
string if mbstr has zero length. If mbstr is longer than the translation, it is blank-padded. If
mbstr is zero length, the function returns the number of bytes required to hold the translation
and nothing is written to mbstr.

If an error occurs, one of the following negative values is returned:

• NLS$ErrorInsufficentBuffer - The mbstr argument is too small, but not zero length so that
the needed number of bytes is returned.

• NLS$ErrorInvalidFlags - The flags argument has an illegal value.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• M to N
• MBConvertMBToUnicode

MBCurMax (W*32, W*64)
NLS Function: Returns the longest possible
multibyte character length, in bytes, for the current
codepage.

Module

USE IFNLS

Syntax

result = MBCurMax()

3008

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is INTEGER(4). The result is the longest possible multibyte character, in bytes,
for the current codepage.

The MBLenMax parameter, defined in the module IFNLS.F90, is the longest length, in bytes,
of any character in any codepage installed on the system.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• M to N
• MBCharLen

Building Applications: MBCS Inquiry Routines

MBINCHARQQ (W*32, W*64)
NLS Function: Performs the same function as
INCHARQQ except that it can read a single
multibyte character at once, and it returns the
number of bytes read as well as the character.

Module

USE IFNLS

Syntax

result = MBINCHARQQ (string)

(Output) CHARACTER(MBLenMax). String containing the read
characters, padded with blanks up to the length MBLenMax. The
MBLenMax parameter, defined in the module IFNLS.F90, is the
longest length, in bytes, of any character in any codepage installed
on the system.

string

Results

The result type is INTEGER(4). The result is the number of characters read.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3009

63

See Also
• M to N
• INCHARQQ
• MBCurMax
• MBCharLen
• MBLead

MBINDEX (W*32, W*64)
NLS Function: Performs the same function
asINDEX except that the strings manipulated can
contain multibyte characters.

Module

USE IFNLS

Syntax

result = MBINDEX (string,substring[,back])

(Input) CHARACTER*(*). String to be searched for the presence
of substring. Can contain multibyte characters.

string

(Input) CHARACTER*(*). Substring whose position within string
is to be determined. Can contain multibyte characters.

substring

(Input; optional) LOGICAL(4). If specified, determines direction
of the search. If back is .FALSE. or is omitted, the search starts
at the beginning of string and moves toward the end. If back is
.TRUE., the search starts end of string and moves toward the
beginning.

back

Results

The result type is INTEGER(4). If back is omitted or is .FALSE., it returns the leftmost position
in string that contains the start of substring. If back is .TRUE., it returns the rightmost
position in string that contains the start of substring. If string does not contain substring,
it returns 0. If substring occurs more than once, it returns the starting position of the first
occurrence ("first" is determined by the presence and value of back).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3010

63 Intel® Fortran Compiler User and Reference Guides

See Also
• M to N
• INDEX
• MBSCAN
• MBVERIFY

MBJISToJMS, MBJMSToJIS (W*32, W*64)
NLS Functions: Converts Japan Industry Standard
(JIS) characters to Microsoft Kanji (JMS)
characters, or converts JMS characters to JIS
characters.

Module

USE IFNLS

Syntax

result = MBJISToJMS (char)

result = MBJISToJIS (char)

(Input) CHARACTER(2). JIS or JMS character to be converted.char
A JIS character is converted only if the lead and trail bytes are in
the hexadecimal range 21 through 7E.
A JMS character is converted only if the lead byte is in the
hexadecimal range 81 through 9F or E0 through FC, and the trail
byte is in the hexadecimal range 40 through 7E or 80 through FC.

Results

The result type is character with length 2. MBJISToJMS returns a Microsoft Kanji (Shift JIS or
JMS) character. MBJMSToJIS returns a Japan Industry Standard (JIS) character.

Only computers with Japanese installed as one of the available languages can use the
MBJISToJMS and MBJMSToJIS conversion functions.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• M to N

3011

63

• NLSEnumLocales
• NLSEnumCodepages
• NLSGetLocale
• NLSSetLocale

Building Applications: MBCS Conversion Routines

MBLead (W*32, W*64)
NLS Function: Determines whether a given
character is the lead (first) byte of a multibyte
character sequence.

Module

USE IFNLS

Syntax

result = MBLead (char)

(Input) CHARACTER(1). Character to be tested for lead status.char

Results

The result type is LOGICAL(4). The result is .TRUE. if char is the first character of a multibyte
character sequence; otherwise, .FALSE..

MBLead only works stepping forward through a whole multibyte character string. For example:

DO i = 1, LEN(str) ! LEN returns the number of bytes, not the

! number of characters in str

WRITE(*, 100) MBLead (str(i:i))

END DO

100 FORMAT (L2, \)

MBLead is passed only one character at a time and must start on a lead byte and step through
a string to establish context for the character. MBLead does not correctly identify a nonlead
byte if it is passed only the second byte of a multibyte character because the status of lead
byte or trail byte depends on context.

3012

63 Intel® Fortran Compiler User and Reference Guides

The function MBStrLead is passed a whole string and can identify any byte within the string as
a lead or trail byte because it performs a context-sensitive test, scanning all the way back to
the beginning of a string if necessary to establish context. So, MBStrLead can be much slower
than MBLead (up to n times slower, where n is the length of the string).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• M to N
• MBStrLead
• MBCharLen

Building Applications: MBCS Inquiry Routines

MBLen (W*32, W*64)
NLS Function: Returns the number of characters
in a multibyte-character string, including trailing
blanks.

Module

USE IFNLS

Syntax

result = MBLen (string)

(Input) CHARACTER*(*). String whose characters are to be
counted. Can contain multibyte characters.

string

Results

The result type is INTEGER(4). The result is the number of characters in string.

MBLen recognizes multibyte-character sequences according to the multibyte codepage currently
in use. It does not test for multibyte-character validity.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3013

63

See Also
• M to N
• MBLen_Trim
• MBStrLead

Building Applications: MBCS Inquiry Routines

MBLen_Trim (W*32, W*64)
NLS Function: Returns the number of characters
in a multibyte-character string, not including
trailing blanks.

Module

USE IFNLS

Syntax

result = MBLen_Trim (string)

(Input) Character*(*). String whose characters are to be counted.
Can contain multibyte characters.

string

Results

The result type is INTEGER(4). The result is the number of characters in string minus any
trailing blanks (blanks are bytes containing character 32 (hex 20) in the ASCII collating
sequence).

MBLen_Trim recognizes multibyte-character sequences according to the multibyte codepage
currently in use. It does not test for multibyte-character validity.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• M to N
• MBLen
• MBStrLead

Building Applications: MBCS Inquiry Routines

3014

63 Intel® Fortran Compiler User and Reference Guides

MBLGE, MBLGT, MBLLE, MBLLT, MBLEQ, MBLNE (W*32, W*64)
NLS Functions: Perform the same functions as
LGE, LGT, LLE, LLT and the logical operators .EQ.
and .NE. except that the strings being compared
can include multibyte characters, and optional flags
can modify the comparison.

Module

USE IFNLS

Syntax

result = MBLGE (string_a,string_b, [flags])

result = MBLGT (string_a,string_b, [flags])

result = MBLLE (string_a,string_b, [flags])

result = MBLLT (string_a,string_b, [flags])

result = MBLEQ (string_a,string_b, [flags])

result = MBLNE (string_a,string_b, [flags])

(Input) Character*(*). Strings to be compared. Can contain
multibyte characters.

string_a, string_b

(Input; optional) INTEGER(4). If specified, determines which
character traits to use or ignore when comparing strings. You can
combine several flags using an inclusive OR (IOR or OR). There

flags

are no illegal combinations of flags, and the functions may be used
without flags, in which case all flag options are turned off. The
available values (defined in IFNLS.F90) are:

• NLS$MB_IgnoreCase - Ignore case.

• NLS$MB_IgnoreNonspace - Ignore nonspacing characters (this
flag removes Japanese accent characters if they exist).

• NLS$MB_IgnoreSymbols - Ignore symbols.

• NLS$MB_IgnoreKanaType - Do not differentiate between
Japanese Hiragana and Katakana characters (corresponding
Hiragana and Katakana characters will compare as equal).

3015

63

• NLS$MB_IgnoreWidth - Do not differentiate between a
single-byte character and the same character as a double byte.

• NLS$MB_StringSort - Sort all symbols at the beginning,
including the apostrophe and hyphen (see the Notebelow).

Results

The result type is LOGICAL(4). Comparisons are made using the current locale, not the current
codepage. The codepage used is the default for the language/country combination of the current
locale.

The results of these functions are as follows:

• MBLGE returns .TRUE. if the strings are equal or string_a comes last in the collating
sequence; otherwise, .FALSE..

• MBLGT returns .TRUE. if string_a comes last in the collating sequence; otherwise, .FALSE..

• MBLLE returns .TRUE. if the strings are equal or string_a comes first in the collating
sequence; otherwise, .FALSE..

• MBLLT returns .TRUE. if string_a comes first in the collating sequence; otherwise, .FALSE..

• MBLEQ returns .TRUE. if the strings are equal in the collating sequence; otherwise, .FALSE..

• MBLNE returns .TRUE. if the strings are not equal in the collating sequence; otherwise,
.FALSE..

If the two strings are of different lengths, they are compared up to the length of the shortest
one. If they are equal to that point, then the return value indicates that the longer string is
greater.

If flags is invalid, the functions return .FALSE..

If the strings supplied contain Arabic Kashidas, the Kashidas are ignored during the comparison.
Therefore, if the two strings are identical except for Kashidas within the strings, the functions
return a value indicating they are "equal" in the collation sense, though not necessarily identical.

NOTE. When not using the NLS$MB_StringSort flag, the hyphen and apostrophe are
special symbols and are treated differently than others. This is to ensure that words like
coop and co-op stay together within a list. All symbols, except the hyphen and apostrophe,
sort before any other alphanumeric character. If you specify the NLS$MB_StringSort
flag, hyphen and apostrophe sort at the beginning also.

3016

63 Intel® Fortran Compiler User and Reference Guides

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• M to N
• LGE
• LGT
• LLE
• LLT

MBNext (W*32, W*64)
NLS Function: Returns the position of the first
lead byte or single-byte character immediately
following the given position in a multibyte-character
string.

Module

USE IFNLS

Syntax

result = MBNext (string,position)

(Input) Character*(*). String to be searched for the first lead byte
or single-byte character after the current position. Can contain
multibyte characters.

string

(Input) INTEGER(4). Position in string to search from. Must be
the position of a lead byte or a single-byte character. Cannot be
the position of a trail (second) byte of a multibyte character.

position

Results

The result type is INTEGER(4). The result is the position of the first lead byte or single-byte
character in string immediately following the position given in position, or 0 if no following
first byte is found in string.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3017

63

See Also
• M to N
• MBPrev

Building Applications: MBCS Inquiry Routines

MBPrev (W*32, W*64)
NLS Function: Returns the position of the first
lead byte or single-byte character immediately
preceding the given string position in a
multibyte-character string.

Module

USE IFNLS

Syntax

result = MBPrev (string,position)

(Input) Character*(*). String to be searched for the first lead byte
or single-byte character before the current position. Can contain
multibyte characters.

string

(Input) INTEGER(4). Position in string to search from. Must be
the position of a lead byte or single-byte character. Cannot be the
position of the trail (second) byte of a multibyte character.

position

Results

The result type is INTEGER(4). The result is the position of the first lead byte or single-byte
character in string immediately preceding the position given in position, or 0 if no preceding
first byte is found in string.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• M to N
• MBNext

Building Applications: MBCS Inquiry Routines

3018

63 Intel® Fortran Compiler User and Reference Guides

MBSCAN (W*32, W*64)
NLS Function: Performs the same function
asSCAN except that the strings manipulated can
contain multibyte characters.

Module

USE IFNLS

Syntax

result = MBSCAN (string,set[,back])

(Input) Character*(*). String to be searched for the presence of
any character in set.

string

(Input) Character*(*). Characters to search for.set

(Input; optional) LOGICAL(4). If specified, determines direction
of the search. If back is .FALSE. or is omitted, the search starts
at the beginning of string and moves toward the end. If back is
.TRUE., the search starts end of string and moves toward the
beginning.

back

Results

The result type is INTEGER(4). If back is .FALSE. or is omitted, it returns the position of the
leftmost character in string that is in set. If back is .TRUE., it returns the rightmost character
in string that is in set. If no characters in string are in set, it returns 0.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• M to N
• SCAN
• MBINDEX
• MBVERIFY

3019

63

MBStrLead (W*32, W*64)
NLS Function: Performs a context-sensitive test
to determine whether a given character byte in a
string is a multibyte-character lead byte.

Module

USE IFNLS

Syntax

result = MBStrLead (string,position)

(Input) Character*(*). String containing the character byte to be
tested for lead status.

string

(Input) INTEGER(4). Position in string of the character byte in
the string to be tested.

position

Results

The result type is LOGICAL(4). The result is .TRUE. if the character byte in position of string
is a lead byte; otherwise, .FALSE..

MBStrLead is passed a whole string and can identify any byte within the string as a lead or trail
byte because it performs a context-sensitive test, scanning all the way back to the beginning
of a string if necessary to establish context.

MBLead is passed only one character at a time and must start on a lead byte and step through
a string one character at a time to establish context for the character. So, MBStrLead can be
much slower than MBLead (up to n times slower, where n is the length of the string).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• M to N
• MBLead

Building Applications: MBCS Inquiry Routines

3020

63 Intel® Fortran Compiler User and Reference Guides

MBVERIFY (W*32, W*64)
NLS Function: Performs the same function
asVERIFY except that the strings manipulated can
contain multibyte characters.

Module

USE IFNLS

Syntax

result = MBVERIFY (string,set[,back])

(Input) Character*(*). String to be searched for presence of any
character not in set.

string

(Input) Character*(*). Set of characters tested to verify that it
includes all the characters in string.

set

(Input; optional) LOGICAL(4). If specified, determines direction
of the search. If back is .FALSE. or is omitted, the search starts
at the beginning of string and moves toward the end. If back is
.TRUE., the search starts end of string and moves toward the
beginning.

back

Results

The result type is INTEGER(4). If back is .FALSE. or is omitted, it returns the position of the
leftmost character in string that is not in set. If back is .TRUE., it returns the rightmost
character in string that is not in set. If all the characters in string are in set, it returns 0.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• M to N
• VERIFY
• MBINDEX
• MBSCAN

3021

63

MCLOCK
Inquiry Intrinsic Function (Specific): Returns
time accounting for a program.

Syntax

result = MCLOCK()

Results

The result type is INTEGER(4). The result is the sum (in units of microseconds) of the current
process's user time and the user and system time of all its child processes.

MEMORYTOUCH (i64 only)
General Compiler Directive: Ensures that a
specific memory location is updated dynamically.

Syntax

cDEC$ MEMORYTOUCH (array[, schedule-type [(chunk-size)]] [,init-type])

Is a c, C, !, or *. (See Syntax Rules for Compiler Directives.)c

Is an array of type INTEGER(4), INTEGER(8), REAL(4) or REAL(8).array

Is STATIC, GUIDED, RUNTIME or DYNAMIC, whichever is consistent
with the OpenMP conforming processing of the subsequent parallel
loops.

schedule-type

Is an integer expression.chunk-size

Is LOAD or STORE. If init-type is LOAD, the compiler generates
an OpenMP loop which fetches elements of array into a temporary
variable. If init-type is STORE, the compiler generates an
OpenMP loop which sets elements of array to zero.

init-type

The MEMORYTOUCH directive ensures that a specific memory location is updated dynamically.
This prevents the possibility of multiple, simultaneous writing threads.

This directive supports correctly distributed memory initialization and NUMA pre-fetching.

To use this directive, OpenMP must be enabled.

3022

63 Intel® Fortran Compiler User and Reference Guides

Example
c$DEC memorytouch (ARRAY_A)c$DEC memorytouch (ARRAY_A, LOAD)c$DEC memorytouch (ARRAY_A,
STATIC (load+jf(3)))c$DEC memorytouch (ARRAY_A, GUIDED (20), STORE)

See Also
• M to N
• General Compiler Directives

MEMREF_CONTROL (i64 only)
General Compiler Directive: Lets you provide
cache hints on prefetches, loads, and stores.

Syntax

cDEC$ MEMREF_CONTROL address1[: locality[: latency]] [,address2...]

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is a memory reference. You must specify at least one address.address1, address2

Is an optional scalar integer initialization expression with the value
1, 2, 3, or 4. To use this argument, you must also specify address.

locality

This argument specifies the cache level at which this data has
temporal locality, that is, where the data should be kept for future
accesses. This will determine the load/store hint (or prefetch hint)
to be used for this reference. The value can be one of the following:

FOR_K_LOCALITY_L1 = 1

FOR_K_LOCALITY_L2 = 2

FOR_K_LOCALITY_L3 = 3

FOR_K_LOCALITY_MEM = 4

Is an optional scalar integer initialization expression with the value
1, 2, 3, or 4. To use this argument, you must also specify address
and locality.

latency

3023

63

This argument specifies the most appropriate latency value to be
used for a load (or the latency that has to be overlapped if a
prefetch is issued for this address). The value can be one of the
following:

FOR_K_LATENCY_L1 = 1

FOR_K_LATENCY_L2 = 2

FOR_K_LATENCY_L3 = 3

FOR_K_LATENCY_MEM = 4

See Also
• M to N
• PREFETCH and NOPREFETCH

MERGE
Elemental Intrinsic Function (Generic): Selects
between two values or between corresponding
elements in two arrays, according to the condition
specified by a logical mask.

Syntax

result = MERGE (tsource,fsource,mask)

(Input) May be of any data type.tsource

(Input) Must be of the same type and type parameters as tsource.fsource

(Input) Must be of type logical.mask

Results

The result type is the same as tsource. The value of mask determines whether the result value
is taken from tsource (if mask is true) or fsource (if mask is false).

Example

For MERGE (1.0, 0.0, R < 0), R = -3 has the value 1.0, and R = 7 has the value 0.0.

3024

63 Intel® Fortran Compiler User and Reference Guides

TSOURCE is the array

[1 3 5]

[2 4 6],

FSOURCE is the array

[8 9 0]

[1 2 3],

and MASK is the array

[F T T]

[T T F].

MERGE (TSOURCE, FSOURCE, MASK) produces the result:

[8 3 5]

[2 4 3].

The following shows another example:

INTEGER tsource(2, 3), fsource(2, 3), AR1 (2, 3)

LOGICAL mask(2, 3)

tsource = RESHAPE((/1, 4, 2, 5, 3, 6/),(/2, 3/))

fsource = RESHAPE((/7, 0, 8, -1, 9, -2/), (/2, 3/))

mask = RESHAPE((/.TRUE., .FALSE., .FALSE., .TRUE., &

.TRUE., .FALSE./), (/2,3/))

! tsource is 1 2 3 , fsource is 7 8 9 , mask is T F T

! 4 5 6 0 -1 -2 F T F

AR1 = MERGE(tsource, fsource, mask) ! returns 1 8 3

! 0 5 -2

END

3025

63

MESSAGE
General Compiler Directive: Specifies a
character string to be sent to the standard output
device during the first compiler pass; this aids
debugging.

Syntax

cDEC$ MESSAGE:string

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is a character constant specifying a message.string

Example
!DEC$ MESSAGE:'Compiling Sound Speed Equations'

See Also
• M to N
• General Compiler Directives

MESSAGEBOXQQ (W*32, W*64)
QuickWin Function: Displays a message box in
a QuickWin window.

Module

USE IFQWIN

Syntax

result = MESSAGEBOXQQ (msg,caption,mtype)

(Input) Character*(*). Null-terminated C string. Message the box
displays.

msg

(Input) Character*(*). Null-terminated C string. Caption that
appears in the title bar.

caption

3026

63 Intel® Fortran Compiler User and Reference Guides

(Input) INTEGER(4). Symbolic constant that determines the objects
(buttons and icons) and properties of the message box. You can
combine several constants (defined in IFQWIN.F90) using an
inclusive OR (IOR or OR). The symbolic constants and their
associated objects or properties are as follows:

mtype

• MB$ABORTRETRYIGNORE - The Abort, Retry, and Ignore
buttons.

• MB$DEFBUTTON1 - The first button is the default.

• MB$DEFBUTTON2 - The second button is the default.

• MB$DEFBUTTON3 - The third button is the default.

• MB$ICONASTERISK, MB$ICONINFORMATION - Lowercase i in
blue circle icon.

• MB$ICONEXCLAMATION - The exclamation-mark icon.

• MB$ICONHAND, MB$ICONSTOP - The stop-sign icon.

• MB$ICONQUESTION - The question-mark icon.

• MB$OK - The OK button.

• MB$OKCANCEL - The OK and Cancel buttons.

• MB$RETRYCANCEL - The Retry and Cancel buttons.

• MB$SYSTEMMODAL - Box is system-modal: all applications are
suspended until the user responds.

• MB$YESNO - The Yes and No buttons.

• MB$YESNOCANCEL - The Yes, No, and Cancel buttons.

Results

The result type is INTEGER(4). The result is zero if memory is not sufficient for displaying the
message box. Otherwise, the result is one of the following values, indicating the user's response
to the message box:

• MB$IDABORT - The Abort button was pressed.

• MB$IDCANCEL - The Cancel button was pressed.

• MB$IDIGNORE - The Ignore button was pressed.

• MB$IDNO - The No button was pressed.

3027

63

• MB$IDOK - The OK button was pressed.

• MB$IDRETRY - The Retry button was pressed.

• MB$IDYES - The Yes button was pressed.

Compatibility

QUICKWIN GRAPHICS LIB

Example
! Build as QuickWin app

USE IFQWIN

message = MESSAGEBOXQQ('Do you want to continue?'C, &

'Matrix'C, &

MB$ICONQUESTION.OR.MB$YESNO.OR.MB$DEFBUTTON1)

END

See Also
• M to N
• ABOUTBOXQQ
• SETMESSAGEQQ

Building Applications: Using QuickWin Overview

Building Applications: Displaying Message Boxes

MIN
Elemental Intrinsic Function (Generic):
Returns the minimum value of the arguments.

Syntax

result = MIN (a1,a2[,a3...])

(Input) All must have the same type (integer or real) and kind
parameters.

a1, a2, a3

3028

63 Intel® Fortran Compiler User and Reference Guides

Results

For MIN0, AMIN1, DMIN1, QMIN1, IMIN0, JMIN0, and KMIN0, the result type is the same as
the arguments. For MIN1, IMIN1, JMIN1, and KMIN1, the result type is integer. For AMIN0,
AIMIN0, AJMIN0, and AKMIN0, the result type is real. The value of the result is that of the
smallest argument.

Result TypeArgument TypeSpecific Name 1

INTEGER(1)INTEGER(1)

INTEGER(2)INTEGER(2)IMIN0

REAL(4)INTEGER(2)AIMIN0

INTEGER(4)INTEGER(4)MIN0 2

REAL(4)INTEGER(4)AMIN0 3, 4

INTEGER(8)INTEGER(8)KMIN0

REAL(4)INTEGER(8)AKMIN0

INTEGER(2)REAL(4)IMIN1

INTEGER(4)REAL(4)MIN1 4, 5, 6

INTEGER(8)REAL(4)KMIN1

REAL(4)REAL(4)AMIN1 7

REAL(8)REAL(8)DMIN1

REAL(16)REAL(16)QMIN1

1These specific functions cannot be passed as actual arguments.
2Or JMIN0.
3Or AJMIN0.AMIN0 is the same as REAL (MIN).

3029

63

Result TypeArgument TypeSpecific Name 1

4In Fortran 95/90, AMIN0 and MIN1 are specific functions with no generic name. For
compatibility with older versions of Fortran, these functions can also be specified as generic
functions.
5Or JMIN1.MIN1 is the same as INT (MIN).
6The setting of compiler options specifying integer size can affect MIN1.
7The setting of compiler options specifying real size can affect AMIN1.

Example

MIN (2.0, -8.0, 6.0) has the value -8.0.

MIN (14, 32, -50) has the value -50.

The following shows another example:

INTEGER m1, m2

REAL r1, r2

m1 = MIN (5, 6, 7) ! returns 5

m2 = MIN1 (-5.7, 1.23, -3.8) ! returns -5

r1 = AMIN0 (-5, -6, -7) ! returns -7.0

r2 = AMIN1(-5.7, 1.23, -3.8) ! returns -5.7

See Also
• M to N
• MAX

MINEXPONENT
Inquiry Intrinsic Function (Generic): Returns
the minimum exponent in the model representing
the same type and kind parameters as the
argument.

Syntax

result = MINEXPONENT (x)

(Input) must be of type real; it can be scalar or array valued.x

3030

63 Intel® Fortran Compiler User and Reference Guides

Results

The result is a scalar of type default integer. The result has the value emin, as defined in Model
for Real Data.

Example

If X is of type REAL(4), MINEXPONENT (X) has the value -125.

The following shows another example:

REAL(8) r1 ! DOUBLE PRECISION REAL

INTEGER i

i = MINEXPONENT (r1) ! returns - 1021.

See Also
• M to N
• MAXEXPONENT

MINLOC
Transformational Intrinsic Function (Generic):
Returns the location of the minimum value of all
elements in an array, a set of elements in an array,
or elements in a specified dimension of an array.

Syntax

result = MINLOC (array [, dim] [, mask] [, kind])

(Input) Must be an array of type integer or real.array

(Input; optional) Must be a scalar integer with a value in the range
1 to n, where n is the rank of array. This argument is a Fortran
95 feature.

dim

(Input; optional) Must be a logical array that is conformable with
array.

mask

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result is an array of type integer. If kind is present, the kind parameter of the result is
that specified by kind; otherwise, the kind parameter of the result is that of default integer. If
the processor cannot represent the result value in the kind of the result, the result is undefined.

3031

63

The following rules apply if dim is omitted:

• The array result has rank one and a size equal to the rank of array.

• If MINLOC(array) is specified, the elements in the array result form the subscript of the
location of the element with the minimum value in array.

The ith subscript returned lies in the range 1 to ei, where ei is the extent of the ith
dimension of array.

• If MINLOC(array, MASK= mask) is specified, the elements in the array result form the
subscript of the location of the element with the minimum value corresponding to the
condition specified by mask.

The following rules apply if dim is specified:

• The array result has a rank that is one less than array, and shape (d1, d2,...ddim-1,
ddim+1,...dn), where (d1, d2,...dn) is the shape of array.

• If array has rank one, MINLOC(array, dim[, mask]) has a value equal to that of MINLOC(
array[,MASK = mask]). Otherwise, the value of element (s1, s2,...sdim-1, sdim+1,...sn) of
MINLOC(array, dim[, mask]) is equal to MINLOC(array(s1, s2,...sdim-1, :, sdim+1,...sn) [,
MASK = mask(s1, s2,...sdim-1, :, sdim+1,...sn)]).

If more than one element has minimum value, the element whose subscripts are returned is
the first such element, taken in array element order. If array has size zero, or every element
of mask has the value .FALSE., the value of the result is controlled by compiler option assume
[no]old_maxminloc, which can set the result to either 1 or 0.

The setting of compiler options specifying integer size can affect this function.

Example

The value of MINLOC ((/3, 1, 4, 1/)) is (2), which is the subscript of the location of the first
occurrence of the minimum value in the rank-one array.

A is the array

[4 0 -3 2]

[3 1 -2 6]

[-1 -4 5 -5].

MINLOC (A, MASK=A .GT. -5) has the value (3, 2) because these are the subscripts of the
location of the minimum value (-4) that is greater than -5.

3032

63 Intel® Fortran Compiler User and Reference Guides

MINLOC (A, DIM=1) has the value (3, 3, 1, 3). 3 is the subscript of the location of the minimum
value (-1) in column 1; 3 is the subscript of the location of the minimum value (-4) in column
2; and so forth.

MINLOC (A, DIM=2) has the value (3, 3, 4). 3 is the subscript of the location of the minimum
value (-3) in row 1; 3 is the subscript of the location of the minimum value (-2) in row 2; and
so forth.

3033

63

The following shows another example:

INTEGER i, minl(1)

INTEGER array(2, 3)

INTEGER, ALLOCATABLE :: AR1(:)

! put values in array

array = RESHAPE((/-7, 1, -2, -9, 5, 0/),(/2, 3/))

! array is -7 -2 5

! 1 -9 0

i = SIZE(SHAPE(array)) ! Get the number of dimensions

! in array

ALLOCATE (AR1 (i)) ! Allocate AR1 to number

! of dimensions in array

AR1 = MINLOC (array, MASK = array .GT. -5) ! Get the

! location (subscripts) of

! smallest element greater

! than -5 in array

!

! MASK = array .GT. -5 creates a mask array the same

! size and shape as array whose elements are .TRUE. if

! the corresponding element in array is greater than

! -5, and .FALSE. if it is not. This mask causes MINLOC

! to return the index of the element in array with the

! smallest value greater than -5.

!

!array is -7 -2 5 and MASK= array .GT. -5 is F T T

! 1 -9 0 T F T

! and AR1 = MINLOC(array, MASK = array .GT. -5) returns

! (1, 2), the location of the element with value -2

minl = MINLOC((/-7,2,-7,5/)) ! returns 1, first

3034

63 Intel® Fortran Compiler User and Reference Guides

! occurrence of minimum

END

See Also
• M to N
• MAXLOC
• MINVAL
• MAXVAL

MINVAL
Transformational Intrinsic Function (Generic):
Returns the minimum value of all elements in an
array, a set of elements in an array, or elements
in a specified dimension of an array.

Syntax

result = MINVAL (array[,dim] [,mask])

(Input) Must be an array of type integer or real.array

(Input; optional) Must be a scalar integer with a value in the range
1 to n, where n is the rank of array.

dim

(Input; optional) Must be a logical array that is conformable with
array.

mask

Results

The result is an array or a scalar of the same data type as array.

The result is a scalar if dim is omitted or array has rank one.

The following rules apply if dim is omitted:

• If MINVAL(array) is specified, the result has a value equal to the minimum value of all the
elements in array.

• If MINVAL(array, MASK= mask) is specified, the result has a value equal to the minimum
value of the elements in array corresponding to the condition specified by mask.

The following rules apply if dim is specified:

3035

63

• An array result has a rank that is one less than array, and shape (d1, d2, ..., ddim-1, ddim+1,
..., dn), where (d1, d2, ..., dn) is the shape of array.

• If array has rank one, MINVAL(array, dim[, mask]) has a value equal to that of MINVAL(
array[,MASK = mask]). Otherwise, the value of element (s1, s2, ..., sdim-1, sdim+1, ..., sn) of
MINVAL(array, dim, [, mask]) is equal to MINVAL(array(s1, s2, ..., sdim-1, :, sdim+1, ..., sn)
[,MASK = mask(s1, s2, ..., sdim-1, :, sdim+1, ..., sn)]).

If array has size zero or if there are no true elements in mask, the result (if dim is omitted),
or each element in the result array (if dim is specified), has the value of the positive number
of the largest magnitude supported by the processor for numbers of the type and kind
parameters of array.

Example

The value of MINVAL ((/2, 3, 4/)) is 2 because that is the minimum value in the rank-one array.

The value of MINVAL (B, MASK=B .GT. 0.0) finds the minimum value of the positive elements
of B.

C is the array

[2 3 4]

[5 6 7].

MINVAL (C, DIM=1) has the value (2, 3, 4). 2 is the minimum value in column 1; 3 is the
minimum value in column 2; and so forth.

MINVAL (C, DIM=2) has the value (2, 5). 2 is the minimum value in row 1 and 5 is the minimum
value in row 2.

3036

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

INTEGER array(2, 3), i(2), minv

INTEGER, ALLOCATABLE :: AR1(:), AR2(:)

array = RESHAPE((/1, 4, 5, 2, 3, 6/), (/2, 3/))

! array is 1 5 3

! 4 2 6

i = SHAPE(array) ! i = [2 3]

ALLOCATE(AR1(i(2))) ! dimension AR1 to number of

! elements in dimension 2

! (a column) of array.

ALLOCATE(AR2(i(1))) ! dimension AR2 to number of

! elements in dimension 1

! (a row) of array

minv = MINVAL(array, MASK = array .GT. 4) ! returns 5

AR1 = MINVAL(array, DIM = 1) ! returns [1 2 3]

AR2 = MINVAL(array, DIM = 2) ! returns [1 2]

END

See Also
• M to N
• MAXVAL
• MINLOC
• MAXLOC

MM_PREFETCH
Intrinsic Subroutine (Generic): Prefetches data
from the specified address on one memory cache
line. Intrinsic subroutines cannot be passed as
actual arguments.

Syntax

CALL MM_PREFETCH (address[,hint] [,fault] [,exclusive])

3037

63

(Input) Is the name of a scalar or array; it can be of any type or
rank. It specifies the address of the data on the cache line to
prefetch.

address

(Input; optional) Is an optional default integer constant with one
of the following values:

hint

DescriptionPrefetch ConstantValue

Prefetches into the
L1 cache (and the
L2 and the L3
cache). Use this for
integer data.

FOR_K_PREFETCH_T00

Prefetches into the
L2 cache (and the
L3 cache);

FOR_K_PREFETCH_T11

floating-point data
is used from the L2
cache, not the L1
cache. Use this for
real data.

Prefetches into the
L2 cache (and the
L3 cache); this line

FOR_K_PREFETCH_T22

will be marked for
early displacement.
Use this if you are
not going to reuse
the cache line
frequently.

Prefetches into the
L2 cache (but not
the L3 cache); this

FOR_K_PREFETCH_NTA3

line will be marked
for early
displacement. Use

3038

63 Intel® Fortran Compiler User and Reference Guides

DescriptionPrefetch ConstantValue

this if you are not
going to reuse the
cache line.

The preceding constants are defined in file fordef.for on
Windows* systems and file fordef.f on Linux* and Mac OS* X
systems.
If hint is omitted, 0 is assumed.

(Input; optional) Is an optional default logical constant. If .TRUE.
is specified, page faults are allowed to occur, if necessary; if
.FALSE. is specified, page faults are not allowed to occur. If fault
is omitted, .FALSE. is assumed. This argument is ignored on Intel®

64 architecture and IA-32 architecture.

fault

(Input; optional) Is an optional default logical constant. If.TRUE.
is specified, you get exclusive ownership of the cache line because
you intend to assign to it; if .FALSE. is specified, there is no

exclusive

exclusive ownership. If exclusive is omitted, .FALSE.is assumed.
This argument is ignored on Intel® 64 architecture and IA-32
architecture.

3039

63

Example
subroutine spread_lf (a, b)

PARAMETER (n = 1025)

real*8 a(n,n), b(n,n), c(n)

do j = 1,n

do i = 1,100

a(i, j) = b(i-1, j) + b(i+1, j)

call mm_prefetch (a(i+20, j), 1)

call mm_prefetch (b(i+21, j), 1)

enddo

enddo

print *, a(2, 567)

stop

end

MOD
Elemental Intrinsic Function (Generic):
Returns the remainder when the first argument is
divided by the second argument.

Syntax

result = MOD (a, p)

(Input) Must be of type integer or real.a

(Input)Must have the same type and kind parameters as a.p

Results

The result type is the same as a. If p is not equal to zero, the value of the result is a- INT(a/
p) * p. If p is equal to zero, the result is undefined.

Result TypeArgument TypeSpecific Name

INTEGER(1)INTEGER(1)BMOD

3040

63 Intel® Fortran Compiler User and Reference Guides

Result TypeArgument TypeSpecific Name

INTEGER(2)INTEGER(2)IMOD1

INTEGER(4)INTEGER(4)MOD 2

INTEGER(8)INTEGER(8)KMOD

REAL(4)REAL(4)AMOD 3

REAL(8)REAL(8)DMOD 3,4

REAL(16)REAL(16)QMOD

1 Or HMOD.
2 Or JMOD.
3 The setting of compiler options specifying real size can affect AMOD and DMOD.
4 The setting of compiler options specifying double size can affect DMOD.

Example

MOD (7, 3) has the value 1.

MOD (9, -6) has the value 3.

MOD (-9, 6) has the value -3.

The following shows more examples:

INTEGER I

REAL R

R = MOD(9.0, 2.0) ! returns 1.0

I = MOD(18, 5) ! returns 3

I = MOD(-18, 5) ! returns -3

See Also
• M to N
• MODULO

3041

63

MODIFYMENUFLAGSQQ (W*32, W*64)
QuickWin Function:Modifies a menu item's state.

Module

USE IFQWIN

Syntax

result = MODIFYMENUFLAGSQQ (menuID,itemID,flag)

(Input) INTEGER(4). Identifies the menu containing the item whose
state is to be modified, starting with 1 as the leftmost menu.

menuID

(Input) INTEGER(4). Identifies the menu item whose state is to
be modified, starting with 0 as the top item.

itemID

(Input) INTEGER(4). Constant indicating the menu state. Flags
can be combined with an inclusive OR (see below). The following
constants are available:

flags

• $MENUGRAYED - Disables and grays out the menu item.

• $MENUDISABLED - Disables but does not gray out the menu
item.

• $MENUENABLED - Enables the menu item.

• $MENUSEPARATOR - Draws a separator bar.

• $MENUCHECKED - Puts a check by the menu item.

• $MENUUNCHECKED - Removes the check by the menu item.

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

The constants available for flags can be combined with an inclusive OR where reasonable, for
example $MENUCHECKED .OR. $MENUENABLED. Some combinations do not make sense, such
as $MENUENABLED and $MENUDISABLED, and lead to undefined behavior.

Compatibility

QUICKWIN GRAPHICS LIB

3042

63 Intel® Fortran Compiler User and Reference Guides

Example
USE IFQWIN

LOGICAL(4) result

CHARACTER(20) str

! Append item to the bottom of the first (FILE) menu

str = '&Add to File Menu'C

result = APPENDMENUQQ(1, $MENUENABLED, str, WINSTATUS)

! Gray out and disable the first two menu items in the

! first (FILE) menu

result = MODIFYMENUFLAGSQQ (1, 1, $MENUGRAYED)

result = MODIFYMENUFLAGSQQ (1, 2, $MENUGRAYED)

END

See Also
• M to N
• APPENDMENUQQ
• DELETEMENUQQ
• INSERTMENUQQ
• MODIFYMENUROUTINEQQ
• MODIFYMENUSTRINGQQ

Building Applications: Using QuickWin Overview

Building Applications: Program Control of Menus

MODIFYMENUROUTINEQQ (W*32, W*64)
QuickWin Function: Changes a menu item's
callback routine.

Module

USE IFQWIN

Syntax

result = MODIFYMENUROUTINEQQ (menuIdD,itemID,routine)

3043

63

(Input) INTEGER(4). Identifies the menu that contains the item
whose callback routine is be changed, starting with 1 as the
leftmost menu.

menuID

(Input) INTEGER(4). Identifies the menu item whose callback
routine is to be changed, starting with 0 as the top item.

itemID

(Input) EXTERNAL. Callback subroutine called if the menu item is
selected. All routines take a single LOGICAL parameter that
indicates whether the menu item is checked or not. You can assign
the following predefined routines to menus:

routine

• WINPRINT - Prints the program.

• WINSAVE - Saves the program.

• WINEXIT - Terminates the program.

• WINSELECTTEXT - Selects text from the current window.

• WINSELECTGRAPHICS - Selects graphics from the current
window.

• WINSELECTALL - Selects the entire contents of the current
window.

• WININPUT - Brings to the top the child window requesting input
and makes it the current window.

• WINCOPY - Copies the selected text and/or graphics from the
current window to the Clipboard.

• WINPASTE - Allows the user to paste Clipboard contents (text
only) to the current text window of the active window during a
READ.

• WINCLEARPASTE - Clears the paste buffer.

• WINSIZETOFIT - Sizes output to fit window.

• WINFULLSCREEN - Displays output in full screen.

• WINSTATE - Toggles between pause and resume states of text
output.

• WINCASCADE - Cascades active windows.

• WINTILE - Tiles active windows.

• WINARRANGE - Arranges icons.

• WINSTATUS - Enables a status bar.

3044

63 Intel® Fortran Compiler User and Reference Guides

• WININDEX - Displays the index for QuickWin help.

• WINUSING - Displays information on how to use Help.

• WINABOUT - Displays information about the current QuickWin
application.

• NUL - No callback routine.

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

Compatibility

QUICKWIN GRAPHICS LIB

See Also
• M to N
• APPENDMENUQQ
• DELETEMENUQQ
• INSERTMENUQQ
• MODIFYMENUFLAGSQQ
• MODIFYMENUSTRINGQQ

Building Applications: Using QuickWin Overview

Building Applications: Program Control of Menus

MODIFYMENUSTRINGQQ (W*32, W*64)
QuickWin Function: Changes a menu item's text
string.

Module

USE IFQWIN

Syntax

result = MODIFYMENUSTRINGQQ (menuID,itemID,text)

(Input) INTEGER(4). Identifies the menu containing the item whose
text string is to be changed, starting with 1 as the leftmost item.

menuID

3045

63

(Input) INTEGER(4). Identifies the menu item whose text string
is to be changed, starting with 0 as the top menu item.

itemID

(Input) Character*(*). Menu item name. Must be a null-terminated
C string. For example, words of text'C.

text

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

You can add access keys in your text strings by placing an ampersand (&) before the letter you
want underlined. For example, to add a Print menu item with the r underlined, use "P&rint"C
as text.

Compatibility

QUICKWIN GRAPHICS LIB

Example
USE IFQWIN

LOGICAL(4) result

CHARACTER(25) str

! Append item to the bottom of the first (FILE) menu

str = '&Add to File Menu'C

result = APPENDMENUQQ(1, $MENUENABLED, str, WINSTATUS)

! Change the name of the first item in the first menu

str ='&Browse'C

result = MODIFYMENUSTRINGQQ (1, 1, str)

END

See Also
• M to N
• APPENDMENUQQ
• DELETEMENUQQ
• INSERTMENUQQ
• SETMESSAGEQQ
• MODIFYMENUFLAGSQQ

3046

63 Intel® Fortran Compiler User and Reference Guides

• MODIFYMENUROUTINEQQ

Building Applications: Using QuickWin Overview

Building Applications: Program Control of Menus

Building Applications: Displaying Character-Based Text

MODULE
Statement: Marks the beginning of a module
program unit, which contains specifications and
definitions that can be used by one or more
program units.

Syntax

MODULE name

[specification-part]

[CONTAINS

module-subprogram

[module-subprogram]...]

END[MODULE [name]]

Is the name of the module.name

Is one or more specification statements, except for the following:specification-part

• ENTRY

• FORMAT

• AUTOMATIC (or its equivalent attribute)

• INTENT (or its equivalent attribute)

• OPTIONAL (or its equivalent attribute)

• Statement functions

An automatic object must not appear in a specification statement.

Is a function or subroutine subprogram that defines the module
procedure. A function must end with END FUNCTION and a
subroutine must end with END SUBROUTINE.

module-subprogram

A module subprogram can contain internal procedures.

3047

63

Description

If a name follows the END statement, it must be the same as the name specified in the MODULE
statement.

The module name is considered global and must be unique. It cannot be the same as any local
name in the main program or the name of any other program unit, external procedure, or
common block in the executable program.

A module is host to any module procedures it contains, and entities in the module are accessible
to the module procedures through host association.

A module must not reference itself (either directly or indirectly).

You can use the PRIVATE attribute to restrict access to procedures or variables within a module.

Although ENTRY statements, FORMAT statements, and statement functions are not allowed in
the specification part of a module, they are allowed in the specification part of a module
subprogram.

Any executable statements in a module can only be specified in a module subprogram.

A module can contain one or more procedure interface blocks, which let you specify an explicit
interface for an external subprogram or dummy subprogram.

Example

The following example shows a simple module that can be used to provide global data:

MODULE MOD_A

INTEGER :: B, C

REAL E(25,5)

END MODULE MOD_A

...

SUBROUTINE SUB_Z

USE MOD_A ! Makes scalar variables B and C, and array

... ! E available to this subroutine

END SUBROUTINE SUB_Z

3048

63 Intel® Fortran Compiler User and Reference Guides

The following example shows a module procedure:

MODULE RESULTS

...

CONTAINS

FUNCTION MOD_RESULTS(X,Y) ! A module procedure

...

END FUNCTION MOD_RESULTS

END MODULE RESULTS

The following example shows a module containing a derived type:

MODULE EMPLOYEE_DATA

TYPE EMPLOYEE

INTEGER ID

CHARACTER(LEN=40) NAME

END TYPE EMPLOYEE

END MODULE

The following example shows a module containing an interface block:

MODULE ARRAY_CALCULATOR

INTERFACE

FUNCTION CALC_AVERAGE(D)

REAL :: CALC_AVERAGE

REAL, INTENT(IN) :: D(:)

END FUNCTION

END INTERFACE

END MODULE ARRAY_CALCULATOR

3049

63

The following example shows a derived-type definition that is public with components that are
private:

MODULE MATTER

TYPE ELEMENTS

PRIVATE

INTEGER C, D

END TYPE

...

END MODULE MATTER

In this case, components C and D are private to type ELEMENTS, but type ELEMENTS is not
private to MODULE MATTER. Any program unit that uses the module MATTER can declare
variables of type ELEMENTS, and pass as arguments values of type ELEMENTS.

This design allows you to change components of a type without affecting other program units
that use the module.

3050

63 Intel® Fortran Compiler User and Reference Guides

If a derived type is needed in more than one program unit, the definition should be placed in
a module and accessed by a USE statement whenever it is needed, as follows:

MODULE STUDENTS

TYPE STUDENT_RECORD

...

END TYPE

CONTAINS

SUBROUTINE COURSE_GRADE(...)

TYPE(STUDENT_RECORD) NAME

...

END SUBROUTINE

END MODULE STUDENTS

...

PROGRAM SENIOR_CLASS

USE STUDENTS

TYPE(STUDENT_RECORD) ID

...

END PROGRAM

Program SENIOR_CLASS has access to type STUDENT_RECORD, because it uses module
STUDENTS. Module procedure COURSE_GRADE also has access to type STUDENT_RECORD,
because the derived-type definition appears in its host.

3051

63

The following shows another example:

MODULE mod1

REAL(8) a,b,c,d

INTEGER(4) Int1, Int2, Int3

CONTAINS

function fun1(x)

....

end function fun1

END MODULE

See Also
• M to N
• PUBLIC
• PRIVATE
• USE
• Procedure Interfaces
• Program Units and Procedures
• PROTECTED Attribute and Statement

3052

63 Intel® Fortran Compiler User and Reference Guides

MODULE PROCEDURE
Statement: Identifies module procedures in an
interface block that specifies a generic name. See
INTERFACE.

Example
!A program that changes non-default integers and reals !into default integers and reals

PROGRAM CHANGE_KIND

USE Module1

INTERFACE DEFAULT

MODULE PROCEDURE Sub1, Sub2

END INTERFACE

integer(2) in

integer indef

indef = DEFAULT(in)

END PROGRAM

! procedures sub1 and sub2 defined as follows:

MODULE Module1

CONTAINS

FUNCTION Sub1(y)

REAL(8) y

sub1 = REAL(y)

END FUNCTION

FUNCTION Sub2(z)

INTEGER(2) z

sub2 = INT(z)

END FUNCTION

END MODULE

3053

63

See Also
• M to N
• MODULE
• Modules and Module Procedures

MODULO
Elemental Intrinsic Function (Generic):
Returns the modulo of the arguments.

Syntax

result = MODULO (a,p)

(Input) Must be of type integer or real.a

(Input) Must have the same type and kind parameters as a.p

Results

The result type is the same a. The result value depends on the type of a, as follows:

• If a is of type integer and P is not equal to zero, the value of the result is a - FLOOR(REAL(
a) / REAL(p)) * p.

• If a is of type real and p is not equal to zero, the value of the result is a - FLOOR(a/ p) *
p.

If p is equal to zero (regardless of the type of a), the result is undefined.

Example

MODULO (7, 3) has the value 1.

MODULO (9, -6) has the value -3.

MODULO (-9, 6) has the value 3.

3054

63 Intel® Fortran Compiler User and Reference Guides

The following shows more examples:

INTEGER I

REAL R

I= MODULO(8, 5) ! returns 3 Note: q=1

I= MODULO(-8, 5) ! returns 2 Note: q=-2

I= MODULO(8, -5) ! returns -2 Note: q=-2

R= MODULO(7.285, 2.35) ! returns 0.2350001 Note: q=3

R= MODULO(7.285, -2.35) ! returns -2.115 Note: q=-4

See Also
• M to N
• MOD

MOVE_ALLOC
Intrinsic Subroutine (Generic): Moves an
allocation from one allocatable object to another.
Intrinsic subroutines cannot be passed as actual
arguments.

Syntax

CALL MOVE_ALLOC (from,to)

(Input; output) Can be of any type and rank; it must be allocatable.from

(Output) Must have the same type and kind parameters as from
and have the same rank; it must be allocatable.

to

If to is currently allocated, it is deallocated. If from is allocated, to becomes allocated with
the same type, type parameters, array bounds, and value as from. Lastly, from is deallocated.

If to has the TARGET attribute, any pointer associated with from at the time of the call to
MOVE_ALLOC becomes correspondingly associated with to. If to does not have the TARGET
attribute, the pointer association status of any pointer associated with from on entry becomes
undefined.

During implementation of MOVE_ALLOC, the internal descriptor contents are copied from from
to to, so that the storage pointed to is the same.

Typically, MOVE_ALLOC is used to provide an efficient way to reallocate a variable to a larger
size without copying the data twice.

3055

63

Example

The following shows an example of how to increase the allocated size of A and keep the old
values with only one copy of the old values.

integer,allocatable::a(:),b(:)

n=2

allocate (a(n), b(n*2))

a=(/(i,i=1,n)/)

b=-1

print *, ' Old a = ',a

print *, ' Old b = ',b

print *, ' Allocated(a), allocated(b) = ', allocated(a), allocated(b)

b(1:n)=a ! Copy all of a into low end of b (the only copy)

print *, ' New b = ',b

call move_alloc(b,a) ! Make a the container, deallocate b (NO copy!)

print *, ' New a = ',a

print *, ' Allocated(a), allocated(b) = ', allocated(a), allocated(b)

end

3056

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

! This program uses MOVE_ALLOC to make an allocated array X bigger and

! keep the old values of X by only making one copy of the old values of X

integer :: n = 2

real, allocatable :: x(:), y(:)

allocate (x(n), y(2*n)) ! Y is bigger than X

x = (/(i,i=1,n)/) ! put "old values" into X

Y = -1 ! put different "old values" into Y

print *, ' allocated of X is ', allocated (X)

print *, ' allocated of Y is ', allocated (Y)

print *, ' old X is ', X

print *, ' old Y is ', Y

y (1:n) = x ! copy all of X into the first locations of Y

! this is the only copying of values required

print *, ' new Y is ', y

call move_alloc (y, x) ! X is now twice a big as it was, Y is

! deallocated, the values were not copied

print *, ' allocated of X is ', allocated (X)

print *, ' allocated of Y is ', allocated (Y)

print *, ' new X is ', x

end

3057

63

The following shows the output for the above example:

allocated of X is T

allocated of Y is T

old X is 1.000000 2.000000

old Y is -1.000000 -1.000000 -1.000000 -1.000000

new Y is 1.000000 2.000000 -1.000000 -1.000000

allocated of X is T

allocated of Y is F

new X is 1.000000 2.000000 -1.000000 -1.000000

MOVETO, MOVETO_W (W*32, W*64)
Graphics Subroutines: Move the current graphics
position to a specified point. No drawing occurs.

Module

USE IFQWIN

Syntax

CALL MOVETO (x,y,t)

CALL MOVETO_W (wx,wy,wt)

(Input) INTEGER(2). Viewport coordinates of the new graphics
position.

x, y

(Output) Derived type xycoord. Viewport coordinates of the
previous graphics position. The derived type xycoordis defined in
IFQWIN.F90 as follows:

TYPE xycoord

INTEGER(2) xcoord ! x coordinate

INTEGER(2) ycoord ! y coordinate

END TYPE xycoord

t

(Input) REAL(8). Window coordinates of the new graphics position.wx, wy

3058

63 Intel® Fortran Compiler User and Reference Guides

(Output) Derived type wxycoord. Window coordinates of the
previous graphics position. The derived type wxycoord is defined
in IFQWIN.F90

TYPE wxycoord

REAL(8) wx ! x window coordinate

REAL(8) wy ! y window coordinate

END TYPE wxycoord

wt

MOVETO sets the current graphics position to the viewport coordinate (x, y). MOVETO_W sets
the current graphics position to the window coordinate (wx, wy).

MOVETO and MOVETO_W assign the coordinates of the previous position to t and wt,
respectively.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
! Build as QuickWin or Standard Graphics ap.

USE IFQWIN

INTEGER(2) status, x, y

INTEGER(4) result

TYPE (xycoord) xy

RESULT = SETCOLORRGB(Z'FF0000') ! blue

x = 60

! Draw a series of lines

DO y = 50, 92, 3

CALL MOVETO(x, y, xy)

status = LINETO(INT2(x + 20), y)

END DO

END

3059

63

See Also
• M to N
• GETCURRENTPOSITION
• LINETO
• OUTGTEXT

Building Applications: Drawing Lines on the Screen

Building Applications: SHOWFONT.F90 Example

Building Applications: Using Fonts from the Graphics Library Overview

MULT_HIGH (i64 only)
Elemental Intrinsic Function (Specific):
Multiplies two 64-bit unsigned integers. This is a
specific function that has no generic function
associated with it. It cannot be passed as an actual
argument.

Syntax

result = MULT_HIGH (i,j)

(Input) Must be of type INTEGER(8).i

(Input) Must be of type INTEGER(8).j

Results

The result type is INTEGER(8). The result value is the upper (leftmost) 64 bits of the 128-bit
unsigned result.

3060

63 Intel® Fortran Compiler User and Reference Guides

Example

Consider the following:

INTEGER(8) I,J,K

I=2_8**53

J=2_8**51

K = MULT_HIGH (I,J)

PRINT *,I,J,K

WRITE (6,1000)I,J,K

1000 FORMAT (' ', 3(Z,1X))

END

This example prints the following:

9007199254740992 2251799813685248 1099511627776

20000000000000 8000000000000 10000000000

MULT_HIGH_SIGNED (i64 only)
Elemental Intrinsic Function (Specific):
Multiplies two 64-bit signed integers. This is a
specific function that has no generic function
associated with it. It cannot be passed as an actual
argument.

Syntax

result = MULT_HIGH_SIGNED (i,j)

(Input) Must be of type INTEGER(8).i

(Input) Must be of type INTEGER(8).j

Results

The result type is INTEGER(8). The result value is the upper (leftmost) 64 bits of the 128-bit
signed result.

3061

63

Example

Consider the following:

INTEGER(8) I,J,K

I=2_8**53

J=2_8**51

K = MULT_HIGH_SIGNED (I,J)

PRINT *,I,J,K

WRITE (6,1000)I,J,K

1000 FORMAT (' ', 3(Z,1X))

END

This example prints the following:

9007199254740992 -2251799813685248 -1099511627776

20000000000000 FFF8000000000000 FFFFFF0000000000

MVBITS
Elemental Intrinsic Subroutine (Generic):
Copies a sequence of bits (a bit field) from one
location to another. Intrinsic subroutines cannot
be passed as actual arguments.

Syntax

CALL MVBITS (from,frompos,len,to,topos)

(Input) Integer. Can be of any integer type. It represents the
location from which a bit field is transferred.

from

(Input) Can be of any integer type; it must not be negative. It
identifies the first bit position in the field transferred from from.
frompos + len must be less than or equal to BIT_SIZE(from).

frompos

(Input) Can be of any integer type; it must not be negative. It
identifies the length of the field transferred from from.

len

3062

63 Intel® Fortran Compiler User and Reference Guides

(Input; output) Can be of any integer type, but must have the
same kind parameter as from. It represents the location to which
a bit field is transferred. to is set by copying the sequence of bits
of length len, starting at position frompos of from to position
topos of to. No other bits of to are altered.

to

(Input) Can be of any integer type; it must not be negative. It
identifies the starting position (within to) for the bits being
transferred. topos + len must be less than or equal to
BIT_SIZE(to).

topos

For more information on bit functions, see Bit Functions.

The model for the interpretation of an integer value as a sequence of bits is shown in Model
for Bit Data.

You can also use the following specific routines:

Arguments from and to must be INTEGER(1).BMVBITS

Arguments from and to must be INTEGER(2).HMVBITS

Arguments from and to must be INTEGER(2).IMVBITS

Arguments from and to must be INTEGER(4).JMVBITS

Arguments from and to must be INTEGER(8).KMVBITS

Example

If TO has the initial value of 6, its value after a call to MVBITS(7, 2, 2, TO, 0) is 5.

The following shows another example:

INTEGER(1) :: from = 13 ! 00001101

INTEGER(1) :: to = 6 ! 00000110

CALL MVBITS(from, 2, 2, to, 0) ! returns to = 00000111

END

See Also
• M to N
• BIT_SIZE

3063

63

• IBCLR
• IBSET
• ISHFT
• ISHFTC

NAMELIST
Statement: Associates a name with a list of
variables. This group name can be referenced in
some input/output operations.

Syntax

NAMELIST /group/ var-list[[,] /group/ var-list]...

Is the name of the group.group

Is a list of variables (separated by commas) that are to be
associated with the preceding group name. The variables can be
of any data type.

var-list

Description

The namelist group name is used by namelist I/O statements instead of an I/O list. The unique
group name identifies a list whose entities can be modified or transferred.

A variable can appear in more than one namelist group.

Each variable in var-list must be accessed by use or host association, or it must have its
type, type parameters, and shape explicitly or implicitly specified in the same scoping unit. If
the variable is implicitly typed, it can appear in a subsequent type declaration only if that
declaration confirms the implicit typing.

The following variables cannot be specified in a namelist group:

• An array dummy argument with nonconstant bounds

• A variable with assumed character length

• An allocatable array

• A pointer

• A variable of a type that has a pointer as an ultimate component

• A subobject of any of the above objects

3064

63 Intel® Fortran Compiler User and Reference Guides

Only the variables specified in the namelist can be read or written in namelist I/O. It is not
necessary for the input records in a namelist input statement to define every variable in the
associated namelist.

The order of variables in the namelist controls the order in which the values appear on namelist
output. Input of namelist values can be in any order.

If the group name has the PUBLIC attribute, no item in the variable list can have the PRIVATE
attribute.

The group name can be specified in more than one NAMELIST statement in a scoping unit. The
variable list following each successive appearance of the group name is treated as a continuation
of the list for that group name.

Example

In the following example, D and E are added to the variables A, B, and C for group name LIST:

NAMELIST /LIST/ A, B, C

NAMELIST /LIST/ D, E

In the following example, two group names are defined:

CHARACTER*30 NAME(25)

NAMELIST /INPUT/ NAME, GRADE, DATE /OUTPUT/ TOTAL, NAME

Group name INPUT contains variables NAME, GRADE, and DATE. Group name OUTPUT contains
variables TOTAL and NAME.

3065

63

The following shows another example:

NAMELIST /example/ i1, l1, r4, r8, z8, z16, c1, c10, iarray

! The corresponding input statements could be:

&example

i1 = 11

l1 = .TRUE.

r4 = 24.0

r8 = 28.0d0

z8 = (38.0, 0.0)

z16 = (316.0d0, 0.0d0)

c1 = 'A'

c10 = 'abcdefghij'

iarray(8) = 41, 42, 43

/

A sample program, NAMELIST.F90, is included in the <install-dir>/samples subdirectory.

See Also
• M to N
• READ
• WRITE
• Namelist Specifier
• Namelist Input
• Namelist Output

NARGS
Inquiry Intrinsic Function (Specific): Returns
the total number of command-line arguments,
including the command. This function cannot be
passed as an actual argument.

Syntax

result = NARGS()

3066

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is INTEGER(4). The result is the number of command-line arguments, including
the command. For example, NARGS returns 4 for the command-line invocation of PROG1 -g
-c -a.

3067

63

Example
INTEGER(2) result

result = RUNQQ('myprog', '-c -r')

END

! MYPROG.F90 responds to command switches -r, -c,

! and/or -d

INTEGER(4) count, num, i, status

CHARACTER(80) buf

REAL r1 / 0.0 /

COMPLEX c1 / (0.0,0.0) /

REAL(8) d1 / 0.0 /

num = 5

count = NARGS()

DO i = 1, count-1

CALL GETARG(i, buf, status)

IF (status .lt. 0) THEN

WRITE (*,*) 'GETARG error - exiting'

EXIT

END IF

IF (buf(2:status) .EQ.'r') THEN

r1 = REAL(num)

WRITE (*,*) 'r1 = ',r1

ELSE IF (buf(2:status) .EQ.'c') THEN

c1 = CMPLX(num)

WRITE (*,*) 'c1 = ', c1

ELSE IF (buf(2:status) .EQ.'d') THEN

d1 = DBLE(num)

WRITE (*,*) 'd1 = ', d1

3068

63 Intel® Fortran Compiler User and Reference Guides

ELSE

WRITE(*,*) 'Invalid command switch: ', buf (1:status)

END IF

END DO

END

See Also
• M to N
• GETARG
• IARGC
• COMMAND_ARGUMENT_COUNT
• GET_COMMAND
• GET_COMMAND_ARGUMENT

NEAREST
Elemental Intrinsic Function (Generic):
Returns the nearest different number
(representable on the processor) in a given
direction.

Syntax

result = NEAREST (x, s)

(Input) Must be of type real.x

(Input) Must be of type real and nonzero.s

Results

The result type is the same as x. The result has a value equal to the machine representable
number that is different from and nearest to x, in the direction of the infinity with the same
sign as s.

Example

If 3.0 and 2.0 are REAL(4) values, NEAREST (3.0, 2.0) has the value 3 + 2 -22, which equals
approximately 3.0000002. (For more information on the model for REAL(4), see Model for Real
Data.

3069

63

The following shows another example:

REAL(4) r1

REAL(8) r2, result

r1 = 3.0

result = NEAREST (r1, -2.0)

WRITE(*,*) result ! writes 2.999999761581421

! When finding nearest to REAL(8), can't see

! the difference unless output in HEX

r2 = 111502.07D0

result = NEAREST(r2, 2.0)

WRITE(*,'(1x,Z16)') result ! writes 40FB38E11EB851ED

result = NEAREST(r2, -2.0)

WRITE(*,'(1x,Z16)') result ! writes 40FB38E11EB851EB

END

See Also
• M to N
• EPSILON

NEW_LINE
Inquiry Intrinsic Function (Generic): Returns
a new line character.

Syntax

result = NEW_LINE(a)

(Input) Must be of type default character. It may be a scalar or
an array.

a

Results

The result is a character scalar of length one with the same kind type parameter as a.

The result value is the ASCII newline character ACHAR(10).

3070

63 Intel® Fortran Compiler User and Reference Guides

NINT
Elemental Intrinsic Function (Generic):
Returns the nearest integer to the argument.

Syntax

result = NINT (a[,kind])

(Input) Must be of type real.a

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified
by kind; otherwise, the kind parameter of the result is shown in the following table. If the
processor cannot represent the result value in the kind of the result, the result is undefined.

If a is greater than zero, NINT(a) has the value INT(a+ 0.5); if a is less than or equal to zero,
NINT(a) has the value INT(a- 0.5).

Result TypeArgument TypeSpecific Name

INTEGER(2)REAL(4)ININT

INTEGER(4)REAL(4)NINT 1, 2

INTEGER(8)REAL(4)KNINT

INTEGER(2)REAL(8)IIDNNT

INTEGER(4)REAL(8)IDNINT 2, 3

INTEGER(8)REAL(8)KIDNNT

INTEGER(2)REAL(16)IIQNNT

INTEGER(4)REAL(16)IQNINT2, 4

INTEGER(8)REAL(16)KIQNNT

1Or JNINT.

3071

63

Result TypeArgument TypeSpecific Name
2The setting of compiler options specifying integer size can affect NINT, IDNINT, and IQNINT.
3Or JIDNNT. For compatibility with older versions of Fortran, IDNINT can also be specified
as a generic function.
4Or JIQNNT. For compatibility with older versions of Fortran, IQNINT can also be specified
as a generic function.

Example

NINT (3.879) has the value 4.

NINT (-2.789) has the value -3.

The following shows another example:

INTEGER(4) i1, i2

i1 = NINT(2.783) ! returns 3

i2 = IDNINT(-2.783D0) ! returns -3

See Also
• M to N
• ANINT
• INT

NLSEnumCodepages (W*32, W*64)
NLS Function: Returns an array containing the
codepages supported by the system, with each
array element describing one valid codepage.

Module

USE IFNLS

Syntax

ptr=> NLSEnumCodepages()

Results

The result is a pointer to an array of codepages, with each element describing one supported
codepage.

3072

63 Intel® Fortran Compiler User and Reference Guides

NOTE. After use, the pointer returned by NLSEnumCodepages should be deallocated
with the DEALLOCATE statement.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• M to N
• NLSEnumLocales
• DEALLOCATE

Building Applications: Locale Setting and Inquiry Routines

NLSEnumLocales (W*32, W*64)
NLS Function: Returns an array containing the
language and country combinations supported by
the system, in which each array element describes
one valid combination.

Module

USE IFNLS

Syntax

ptr=> NLSEnumLocales()

Results

The result is a pointer to an array of locales, in which each array element describes one supported
language and country combination. Each element has the following structure:

TYPE NLS$EnumLocale

CHARACTER*(NLS$MaxLanguageLen) Language

CHARACTER*(NLS$MaxCountryLen) Country

INTEGER(4) DefaultWindowsCodepage

INTEGER(4) DefaultConsoleCodepage

END TYPE

3073

63

If the application is a Windows or QuickWin application, NLS$DefaultWindowsCodepage is the
codepage used by default for the given language and country combination. If the application
is a console application, NLS$DefaultConsoleCodepage is the codepage used by default for the
given language and country combination.

NOTE. After use, the pointer returned by NLSEnumLocales should be deallocated with
the DEALLOCATE statement.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• M to N
• NLSEnumCodepages
• DEALLOCATE

Building Applications: Locale Setting and Inquiry Routines

NLSFormatCurrency (W*32, W*64)
NLS Function: Returns a correctly formatted
currency string for the current locale.

Module

USE IFNLS

Syntax

result = NLSFormatCurrency (outstr,instr[,flags])

(Output) Character*(*). String containing the correctly formatted
currency for the current locale. If outstr is longer than the
formatted currency, it is blank-padded.

outstr

(Input) Character*(*). Number string to be formatted. Can contain
only the characters '0' through '9', one decimal point (a period) if
a floating-point value, and a minus sign in the first position if
negative. All other characters are invalid and cause the function
to return an error.

intstr

3074

63 Intel® Fortran Compiler User and Reference Guides

(Input; optional) INTEGER(4). If specified, modifies the currency
conversion. If you omit flags, the flag NLS$Normal is used.
Available values (defined in IFNLS.F90) are:

flags

• NLS$Normal - No special formatting

• NLS$NoUserOverride - Do not use user overrides

Results

The result type is INTEGER(4). The result is the number of characters written to outstr(bytes
are counted, not multibyte characters). If an error occurs, the result is one of the following
negative values:

• NLS$ErrorInsufficentBuffer - outstr buffer is too small

• NLS$ErrorInvalidFlags - flags has an illegal value

• NLS$ErrorInvalidInput - instr has an illegal value

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFNLS

CHARACTER(40) str

INTEGER(4) i

i = NLSFormatCurrency(str, "1.23")

print *, str ! prints $1.23

i = NLSFormatCurrency(str, "1000000.99")

print *, str ! prints $1,000,000.99

i = NLSSetLocale("Spanish", "Spain")

i = NLSFormatCurrency(str, "1.23")

print *, str ! prints 1 Pts

i = NLSFormatCurrency(str, "1000000.99")

print *, str ! prints 1.000.001 Pts

3075

63

See Also
• M to N
• NLSFormatNumber
• NLSFormatDate
• NLSFormatTime

Building Applications: NLS Formatting Routines

NLSFormatDate (W*32, W*64)
NLS Function: Returns a correctly formatted string
containing the date for the current locale.

Module

USE IFNLS

Syntax

result = NLSFormatDate (outstr[,intime] [,flags])

(Output) Character*(*). String containing the correctly formatted
date for the current locale. If outstr is longer than the formatted
date, it is blank-padded.

outstr

(Input; optional) INTEGER(4). If specified, date to be formatted
for the current locale. Must be an integer date such as the packed
time created with PACKTIMEQQ. If you omit intime, the current
system date is formatted and returned in outstr.

intime

(Input; optional) INTEGER(4). If specified, modifies the date
conversion. If you omit flags, the flag NLS$Normal is used.
Available values (defined in IFNLS.F90) are:

flags

• NLS$Normal - No special formatting

• NLS$NoUserOverride - Do not use user overrides

• NLS$UseAltCalendar - Use the locale's alternate calendar

• NLS$LongDate - Use local long date format

• NLS$ShortDate - Use local short date format

3076

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is INTEGER(4). The result is the number of characters written to outstr(bytes
are counted, not multibyte characters). If an error occurs, the result is one of the following
negative values:

• NLS$ErrorInsufficentBuffer - outstr buffer is too small

• NLS$ErrorInvalidFlags - flags has an illegal value

• NLS$ErrorInvalidInput - intime has an illegal value

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFNLS

INTEGER(4) i

CHARACTER(40) str

i = NLSFORMATDATE(str, NLS$NORMAL) ! 8/1/99

i = NLSFORMATDATE(str, NLS$USEALTCALENDAR) ! 8/1/99

i = NLSFORMATDATE(str, NLS$LONGDATE) ! Monday, August 1, 1999

i = NLSFORMATDATE(str, NLS$SHORTDATE) ! 8/1/99

END

See Also
• M to N
• NLSFormatTime
• NLSFormatCurrency
• NLSFormatNumber

Building Applications: NLS Formatting Routines

3077

63

NLSFormatNumber (W*32, W*64)
NLS Function: Returns a correctly formatted
number string for the current locale.

Module

USE IFNLS

Syntax

result = NLSFormatNumber (outstr,instr[,flags])

(Output) Character*(*). String containing the correctly formatted
number for the current locale. If outstr is longer than the
formatted number, it is blank-padded.

outstr

(Input) Character*(*). Number string to be formatted. Can only
contain the characters '0' through '9', one decimal point (a period)
if a floating-point value, and a minus sign in the first position if
negative. All other characters are invalid and cause the function
to return an error.

instr

(Input; optional) INTEGER(4). If specified, modifies the number
conversion. If you omit flags, the flag NLS$Normal is used.
Available values (defined in IFNLS.F90) are:A BR tag was used
here in the original source.A BR tag was used here in the original
source.

flags

• NLS$Normal - No special formatting

• NLS$NoUserOverride - Do not use user overrides

Results

The result type is INTEGER(4). The result is the number of characters written to outstr(bytes
are counted, not multibyte characters). If an error occurs, the result is one of the following
negative values:

• NLS$ErrorInsufficentBuffer - outstr buffer is too small

• NLS$ErrorInvalidFlags - flags has an illegal value

• NLS$ErrorInvalidInput - instr has an illegal value

3078

63 Intel® Fortran Compiler User and Reference Guides

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFNLS

CHARACTER(40) str

INTEGER(4) i

i = NLSFormatNumber(str, "1.23")

print *, str ! prints 1.23

i = NLSFormatNumber(str, "1000000.99")

print *, str ! prints 1,000,000.99

i = NLSSetLocale("Spanish", "Spain")

i = NLSFormatNumber(str, "1.23")

print *, str ! prints 1,23

i = NLSFormatNumber(str, "1000000.99")

print *, str ! prints 1.000.000,99

See Also
• M to N
• NLSFormatTime
• NLSFormatCurrency
• NLSFormatDate

NLSFormatTime (W*32, W*64)
NLS Function: Returns a correctly formatted string
containing the time for the current locale.

Module

USE IFNLS

Syntax

result = NLSFormatTime (outstr [,intime] [,flags])

3079

63

(Output) Character*(*). String containing the correctly formatted
time for the current locale. If outstr is longer than the formatted
time, it is blank-padded.

outstr

(Input; optional) INTEGER(4). If specified, time to be formatted
for the current locale. Must be an integer time such as the packed
time created with PACKTIMEQQ. If you omit intime, the current
system time is formatted and returned in outstr.

intime

(Input; optional) INTEGER(4). If specified, modifies the time
conversion. If you omit flags, the flag NLS$Normal is used.
Available values (defined in IFNLS.F90) are:

flags

• NLS$Normal - No special formatting

• NLS$NoUserOverride - Do not use user overrides

• NLS$NoMinutesOrSeconds - Do not return minutes or seconds

• NLS$NoSeconds - Do not return seconds

• NLS$NoTimeMarker - Do not add a time marker string

• NLS$Force24HourFormat - Return string in 24 hour format

Results

The result type is INTEGER(4). The result is the number of characters written to outstr(bytes
are counted, not multibyte characters). If an error occurs, the result is one of the following
negative values:

• NLS$ErrorInsufficentBuffer - outstr buffer is too small

• NLS$ErrorInvalidFlags - flags has an illegal value

• NLS$ErrorInvalidInput - intime has an illegal value

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3080

63 Intel® Fortran Compiler User and Reference Guides

Example
USE IFNLS

INTEGER(4) i

CHARACTER(20) str

i = NLSFORMATTIME(str, NLS$NORMAL) ! 11:38:28 PM

i = NLSFORMATTIME(str, NLS$NOMINUTESORSECONDS) ! 11 PM

i = NLSFORMATTIME(str, NLS$NOTIMEMARKER) ! 11:38:28 PM

i = NLSFORMATTIME(str, IOR(NLS$FORCE24HOURFORMAT, &

& NLS$NOSECONDS)) ! 23:38 PM

END

See Also
• M to N
• NLSFormatCurrency
• NLSFormatDate
• NLSFormatNumber

Building Applications: NLS Formatting Routines

NLSGetEnvironmentCodepage (W*32, W*64)
NLS Function: Returns the codepage number for
the system (Window) codepage or the console
codepage.

Module

USE IFNLS

Syntax

result = NLSGetEnvironmentCodepage (flags)

(Input) INTEGER(4). Tells the function which codepage number to
return. Available values (defined in IFNLS.F90) are:

flags

• NLS$ConsoleEnvironmentCodepage - Gets the codepage for
the console

3081

63

• NLS$WindowsEnvironmentCodepage - Gets the current Windows
codepage

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, it returns one of the
following error codes:

• NLS$ErrorInvalidFlags - flags has an illegal value

• NLS$ErrorNoConsole - There is no console associated with the given application; so,
operations with the console codepage are not possible

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• M to N
• NLSSetEnvironmentCodepage

Building Applications: Locale Setting and Inquiry Routines

NLSGetLocale (W*32, W*64)
NLS Subroutine: Returns the current language,
country, or codepage.

Module

USE IFNLS

Syntax

CALL NLSGetLocale ([language] [,country] [,codepage])

(Output; optional) Character*(*). Current language.language

(Output; optional) Character*(*). Current country.country

(Output; optional) INTEGER(4). Current codepage.codepage

NLSGetLocale returns a valid codepage in codepage. It does not return one of the NLS$...
symbolic constants that can be used with NLSSetLocale.

3082

63 Intel® Fortran Compiler User and Reference Guides

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFNLS

CHARACTER(50) cntry, lang

INTEGER(4) code

CALL NLSGetLocale (lang, cntry, code) ! get all three

CALL NLSGetLocale (CODEPAGE = code) ! get the codepage

CALL NLSGetLocale (COUNTRY = cntry, CODEPAGE =code) ! get country

! and codepage

See Also
• M to N
• NLSSetLocale

Building Applications: Locale Setting and Inquiry Routines

NLSGetLocaleInfo (W*32, W*64)
NLS Function: Returns information about the
current locale.

Module

USE IFNLS

Syntax

result = NLSGetLocaleInfo (type,outstr)

(Input) INTEGER(4). NLS parameter requested. A list of parameter
names is provided in NLS LocaleInfo Parameters.

type

(Output) Character*(*). Parameter setting for the current locale.
All parameter settings placed in outstr are character strings, even
numbers. If a parameter setting is numeric, the ASCII

outstr

representation of the number is used. If the requested parameter
is a date or time string, an explanation of how to interpret the
format in outstr is provided in NLS Date and Time Format.

3083

63

Results

The result type is INTEGER(4). The result is the number of characters written to outstr if
successful, or if outstr has 0 length, the number of characters required to hold the requested
information. Otherwise, the result is one of the following error codes (defined in IFNLS.F90):

• NLS$ErrorInvalidLIType - The given type is invalid

• NLS$ErrorInsufficientBuffer - The outstr buffer was too small, but was not 0 (so that the
needed size would be returned)

The NLS$LI parameters are used for the argument type and select the locale information
returned by NLSGetLocaleInfo in outstr. You can perform an inclusive OR with
NLS$NoUserOverride and any NLS$LI parameter. This causes NLSGetLocaleInfo to bypass any
user overrides and always return the system default value.

The following table lists and describes the NLS$LI parameters.

Table 856: NLS LocaleInfo Parameters

DescriptionParameter

An ID indicating the language.NLS$LI_ILANGUAGE

The full localized name of the language.NLS$LI_SLANGUAGE

The full English name of the language from
the ISO Standard 639. This will always be
restricted to characters that map into the
ASCII 127 character subset.

NLS$LI_SENGLANGUAGE

The abbreviated name of the language,
created by taking the 2-letter language
abbreviation as found in ISO Standard 639
and adding a third letter as appropriate to
indicate the sublanguage.

NLS$LI_SABBREVLANGNAME

The native name of the language.NLS$LI_SNATIVELANGNAME

The country code, based on international
phone codes, also referred to as IBM country
codes.

NLS$LI_ICOUNTRY

The full localized name of the country.NLS$LI_SCOUNTRY

3084

63 Intel® Fortran Compiler User and Reference Guides

DescriptionParameter

The full English name of the country. This will
always be restricted to characters that map
into the ASCII 127 character subset.

NLS$LI_SENGCOUNTRY

The abbreviated name of the country as per
ISO Standard 3166.

NLS$LI_SABBREVCTRYNAME

The native name of the country.NLS$LI_SNATIVECTRYNAME

Language ID for the principal language
spoken in this locale. This is provided so that
partially specified locales can be completed
with default values.

NLS$LI_IDEFAULTLANGUAGE

Country code for the principal country in this
locale. This is provided so that partially
specified locales can be completed with
default values.

NLS$LI_IDEFAULTCOUNTRY

ANSI code page associated with this locale.NLS$LI_IDEFAULTANSICODEPAGE

OEM code page associated with the locale.NLS$LI_IDEFAULTOEMCODEPAGE

Character(s) used to separate list items, for
example, comma in many locales.

NLS$LI_SLIST

This value is 0 if the metric system (S.I.) is
used and 1 for the U.S. system of
measurements.

NLS$LI_IMEASURE

The character(s) used as decimal separator.
This is restricted such that it cannot be set
to digits 0 - 9.

NLS$LI_SDECIMAL

The character(s) used as separator between
groups of digits left of the decimal. This is
restricted such that it cannot be set to digits
0 - 9.

NLS$LI_STHOUSAND

3085

63

DescriptionParameter

Sizes for each group of digits to the left of
the decimal. An explicit size is needed for
each group; sizes are separated by

NLS$LI_SGROUPING

semicolons. If the last value is 0 the
preceding value is repeated. To group
thousands, specify "3;0".

The number of decimal digits.NLS$LI_IDIGITS

Determines whether to use leading zeros in
decimal fields:

NLS$LI_ILZERO

0 - Use no leading zeros

1 - Use leading zeros

Determines how negative numbers are
represented:

NLS$LI_INEGNUMBER

0 - Puts negative numbers in parentheses:
(1.1)

1 - Puts a minus sign in front: -1.1

2 - Puts a minus sign followed by a space in
front: - 1.1

3 - Puts a minus sign after: 1.1-

4 - Puts a space then a minus sign after: 1.1
-

The ten characters that are the native
equivalent to the ASCII 0-9.

NLS$LI_SNATIVEDIGITS

The string used as the local monetary symbol.
Cannot be set to digits 0-9.

NLS$LI_SCURRENCY

3086

63 Intel® Fortran Compiler User and Reference Guides

DescriptionParameter

Three characters of the International
monetary symbol specified in ISO 4217
"Codes for the Representation of Currencies
and Funds", followed by the character
separating this string from the amount.

NLS$LI_SINTLSYMBOL

The character(s) used as monetary decimal
separator. This is restricted such that it
cannot be set to digits 0-9.

NLS$LI_SMONDECIMALSEP

The character(s) used as monetary separator
between groups of digits left of the decimal.
Cannot be set to digits 0-9.

NLS$LI_SMONTHOUSANDSEP

Sizes for each group of monetary digits to
the left of the decimal. If the last value is 0,
the preceding value is repeated. To group
thousands, specify "3;0".

NLS$LI_SMONGROUPING

Number of decimal digits for the local
monetary format.

NLS$LI_ICURRDIGITS

Number of decimal digits for the international
monetary format.

NLS$LI_IINTLCURRDIGITS

Determines how positive currency is
represented:

NLS$LI_ICURRENCY

0 - Puts currency symbol in front with no
separation: $1.1

1 - Puts currency symbol in back with no
separation: 1.1$

2 - Puts currency symbol in front with single
space after: $ 1.1

3 - Puts currency symbol in back with single
space before: 1.1 $

3087

63

DescriptionParameter

Determines how negative currency is
represented:

NLS$LI_INEGCURR

0 ($1.1)

1 -$1.1

2 $-1.1

3 $1.1-

4 (1.1$)

5 -1.1$

6 1.1-$

7 1.1$-

8 -1.1 $ (space before $)

9 -$ 1.1 (space after $)

10 1.1 $- (space before $)

11 $ 1.1- (space after $)

12 $ -1.1 (space after $)

13 1.1- $ (space before $)

14 ($ 1.1) (space after $)

15 (1.1 $) (space before $)

String value for the positive sign. Cannot be
set to digits 0-9.

NLS$LI_SPOSITIVESIGN

String value for the negative sign. Cannot be
set to digits 0-9.

NLS$LI_SNEGATIVESIGN

Determines the formatting index for positive
values:

NLS$LI_IPOSSIGNPOSN

0 - Parenthesis surround the amount and the
monetary symbol

3088

63 Intel® Fortran Compiler User and Reference Guides

DescriptionParameter

1 - The sign string precedes the amount and
the monetary symbol

2 - The sign string follows the amount and
the monetary symbol

3 - The sign string immediately precedes the
monetary symbol

4 - The sign string immediately follows the
monetary symbol

Determines the formatting index for negative
values. Same values as for
NLS$LI_IPOSSIGNPOSN.

NLS$LI_INEGSIGNPOSN

1 if the monetary symbol precedes, 0 if it
follows a positive amount.

NLS$LI_IPOSSYMPRECEDES

1 if the monetary symbol is separated by a
space from a positive amount; otherwise, 0.

NLS$LI_IPOSSEPBYSPACE

1 if the monetary symbol precedes, 0 if it
follows a negative amount.

NLS$LI_INEGSYMPRECEDES

1 if the monetary symbol is separated by a
space from a negative amount; otherwise, 0.

NLS$LI_INEGSEPBYSPACE

Time formatting string. See NLS Date and
Time Formatfor explanations of the valid
strings.

NLS$LI_STIMEFORMAT

Character(s) for the time separator. Cannot
be set to digits 0-9.

NLS$LI_STIME

Time format:NLS$LI_ITIME

0 - Use 12-hour format

1 - Use 24-hour format

3089

63

DescriptionParameter

Determines whether to use leading zeros in
time fields:

NLS$LI_ITLZERO

0 - Use no leading zeros

1 - Use leading zeros for hours

String for the AM designator.NLS$LI_S1159

String for the PM designator.NLS$LI_S2359

Short Date formatting string for this locale.
The d, M and y should have the day, month,
and year substituted, respectively. See NLS
Date and Time Formatfor explanations of the
valid strings.

NLS$LI_SSHORTDATE

Character(s) for the date separator. Cannot
be set to digits 0-9.

NLS$LI_SDATE

Short Date format ordering:NLS$LI_IDATE

0 - Month-Day-Year

1 - Day-Month-Year

2 - Year-Month-Day

Specifies whether to use full 4-digit century
for the short date only:

NLS$LI_ICENTURY

0 - Two-digit year

1 - Full century

Specifies whether to use leading zeros in day
fields for the short date only:

NLS$LI_IDAYLZERO

0 - Use no leading zeros

1 - Use leading zeros

Specifies whether to use leading zeros in
month fields for the short date only:

NLS$LI_IMONLZERO

3090

63 Intel® Fortran Compiler User and Reference Guides

DescriptionParameter

0 - Use no leading zeros

1 - Use leading zeros

Long Date formatting string for this locale.
The string returned may contain a string
within single quotes (' '). Any characters

NLS$LI_SLONGDATE

within single quotes should be left as is. The
d, M and y should have the day, month, and
year substituted, respectively.

Long Date format ordering:NLS$LI_ILDATE

0 - Month-Day-Year

1 - Day-Month-Year

2 - Year-Month-Day

Specifies which type of calendar is currently
being used:

NLS$LI_ICALENDARTYPE

1 - Gregorian (as in United States)

2 - Gregorian (English strings always)

3 - Era: Year of the Emperor (Japan)

4 - Era: Year of the Republic of China

5 - Tangun Era (Korea)

Specifies which additional calendar types are
valid and available for this locale. This can
be a null separated list of all valid optional
calendars:

NLS$LI_IOPTIONALCALENDAR

0 - No additional types valid

1 - Gregorian (localized)

2 - Gregorian (English strings always)

3 - Era: Year of the Emperor (Japan)

4 - Era: Year of the Republic of China

3091

63

DescriptionParameter

5 - Tangun Era (Korea)

Specifies which day is considered first in a
week:

NLS$LI_IFIRSTDAYOFWEEK

0 - SDAYNAME1

1 - SDAYNAME2

2 - SDAYNAME3

3 - SDAYNAME4

4 - SDAYNAME5

5 - SDAYNAME6

6 - SDAYNAME7

Specifies which week of the year is considered
first:

NLS$LI_IFIRSTWEEKOFYEAR

0 - Week containing 1/1

1 - First full week following 1/1

2 - First week containing at least 4 days

Native name for each day of the week. 1 =
Monday, 2 = Tuesday, etc.

NLS$LI_SDAYNAME1 -
NLS$LI_SDAYNAME7

Native abbreviated name for each day of the
week. 1 = Mon, 2 = Tue, etc.

NLS$LI_SABBREVDAYNAME1 -
NLS$LI_SABBREVDAYNAME7

Native name for each month. 1 = January, 2
= February, etc. 13 = the 13th month, if it
exists in the locale.

NLS$LI_SMONTHNAME1 -
NLS$LI_SMONTHNAME13

Native abbreviated name for each month. 1
= Jan, 2 = Feb, etc. 13 = the 13th month, if
it exists in the locale.

NLS$LI_SABBREVMONTHNAME1 -
NLS$LI_SABBREVMONTHNAME13

3092

63 Intel® Fortran Compiler User and Reference Guides

When NLSGetLocaleInfo (type, outstr) returns information about the date and time formats
of the current locale, the value returned in outstr can be interpreted according to the following
tables. Any text returned within a date and time string that is enclosed within single quotes
should be left in the string in its exact form; that is, do not change the text or the location
within the string.

Day

The day can be displayed in one of four formats using the letter "d". The following table shows
the four variations:

Day of the month as digits without leading
zeros for single-digit days

d

Day of the month as digits with leading zeros
for single-digit days

dd

Day of the week as a three-letter abbreviation
(SABBREVDAYNAME)

ddd

Day of the week as its full name (SDAYNAME)dddd

Month

The month can be displayed in one of four formats using the letter "M". The uppercase "M"
distinguishes months from minutes. The following table shows the four variations:

Month as digits without leading zeros for
single-digit months

M

Month as digits with leading zeros for
single-digit months

MM

Month as a three-letter abbreviation
(SABBREVMONTHNAME)

MMM

Month as its full name (SMONTHNAME)MMMM

Year

The year can be displayed in one of three formats using the letter "y". The following table shows
the three variations:

3093

63

Year represented by only the last digity

Year represented by only the last two digitsyy

Year represented by the full 4 digitsyyyy

Period/Era

The period/era string is displayed in a single format using the letters "gg".

Period/Era stringgg

Time

The time can be displayed in one of many formats using the letter "h" or "H" to denote hours,
the letter "m" to denote minutes, the letter "s" to denote seconds and the letter "t" to denote
the time marker. The following table shows the numerous variations of the time format.
Lowercase "h" denotes the 12 hour clock and uppercase "H" denotes the 24 hour clock. The
lowercase "m" distinguishes minutes from months.

Hours without leading zeros for single-digit
hours (12 hour clock)

h

Hours with leading zeros for single-digit hours
(12 hour clock)

hh

Hours without leading zeros for single-digit
hours (24 hour clock)

H

Hours with leading zeros for single-digit hours
(24 hour clock)

HH

Minutes without leading zeros for single-digit
minutes

m

Minutes with leading zeros for single-digit
minutes

mm

Seconds without leading zeros for single-digit
seconds

s

3094

63 Intel® Fortran Compiler User and Reference Guides

Seconds with leading zeros for single-digit
seconds

ss

One-character time marker stringt

Multicharacter time marker stringtt

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFNLS

INTEGER(4) strlen

CHARACTER(40) str

strlen = NLSGetLocaleInfo(NLS$LI_SDAYNAME1, str)

print *, str ! prints Monday if language is English

strlen = NLSGetLocaleInfo(NLS$LI_SDAYNAME2, str)

print *, str ! prints Tuesday if language is English

See Also
• M to N
• NLSGetLocale
• NLSFormatDate
• NLSFormatTime
• NLSSetLocale

NLSSetEnvironmentCodepage (W*32, W*64)
NLS Function: Sets the codepage for the current
console. The specified codepage affects the current
console program and any other programs launched
from the same console. It does not affect other
open consoles or any consoles opened later.

Module

USE IFNLS

3095

63

Syntax

result = NLSSetEnvironmentCodepage (codepage,flags)

(Input) INTEGER(4). Number of the codepage to set as the console
codepage.

codepage

(Input) INTEGER(4). Must be set to
NLS$ConsoleEnvironmentCodepage.

flags

Results

The result type is INTEGER(4). The result is zero if successful. Otherwise, returns one of the
following error codes (defined in IFNLS.F90):

• NLS$ErrorInvalidCodepage - codepage is invalid or not installed on the system

• NLS$ErrorInvalidFlags - flags is not valid

• NLS$ErrorNoConsole - There is no console associated with the given application; so
operations, with the console codepage are not possible

The flags argument must be NLS$ConsoleEnvironmentCodepage; it cannot be
NLS$WindowsEnvironmentCodepage. NLSSetEnvironmentCodepage does not affect the Windows*
codepage.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• M to N
• NLSGetEnvironmentCodepage

Building Applications: Locale Setting and Inquiry Routines

NLSSetLocale (W*32, W*64)
NLS Function: Sets the current language, country,
or codepage.

Module

USE IFNLS

3096

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = NLSSetLocale (language[,country] [,codepage])

(Input) Character*(*). One of the languages supported by the
Windows* OS NLS APIs.

language

(Input; optional) Character*(*). If specified, characterizes the
language further. If omitted, the default country for the language
is set.

country

(Input; optional) INTEGER(4). If specified, codepage to use for all
character-oriented NLS functions. Can be any valid supported
codepage or one of the following predefined values (defined in
IFNLS.F90):

codepage

• NLS$CurrentCodepage - The codepage is not changed. Only
the language and country settings are altered by the function.

• NLS$ConsoleEnvironmentCodepage - The codepage is changed
to the default environment codepage currently in effect for
console programs.

• NLS$ConsoleLanguageCodepage - The codepage is changed to
the default console codepage for the language and country
combination specified.

• NLS$WindowsEnvironmentCodepage - The codepage is changed
to the default environment codepage currently in effect for
Windows* OS programs.

• NLS$WindowsLanguageCodepage - The codepage is changed
to the default Windows OS codepage for the language and
country combination specified.

If you omit codepage, it defaults to
NLS$WindowsLanguageCodepage. At program startup,
NLS$WindowsEnvironmentCodepage is used to set the codepage.

Results

The result type is INTEGER(4). The result is zero if successful. Otherwise, one of the following
error codes (defined in IFNLS.F90) may be returned:

• NLS$ErrorInvalidLanguage - language is invalid or not supported

• NLS$ErrorInvalidCountry - country is invalid or is not valid with the language specified

3097

63

• NLS$ErrorInvalidCodepage - codepage is invalid or not installed on the system

NOTE. NLSSetLocale works on installed locales only. Many locales are supported, but
they must be installed through the system Control Panel/International menu.

When doing mixed-language programming with Fortran and C, calling NLSSetLocale with a
codepage other than the default environment Windows OS codepage causes the codepage in
the C run-time library to change by calling C's setmbcp() routine with the new codepage.
Conversely, changing the C run-time library codepage does not change the codepage in the
Fortran NLS library.

Calling NLSSetLocale has no effect on the locale used by C programs. The locale set with C's
setlocale() routine is independent of NLSSetLocale.

Calling NLSSetLocale with the default environment console codepage,
NLS$ConsoleEnvironmentCodepage, causes an implicit call to the Windows OS API
SetFileApisToOEM(). Calling NLSSetLocale with any other codepage causes a call to
SetFileApisToANSI().

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• M to N
• NLSGetLocale

FREEFORM and NOFREEFORM
General Compiler Directives: FREEFORM
specifies that source code is in free-form format.
NOFREEFORM specifies that source code is in
fixed-form format.

Syntax

cDEC$ FREEFORM

cDEC$ NOFREEFORM

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

3098

63 Intel® Fortran Compiler User and Reference Guides

When the FREEFORM or NOFREEFORM directives are used, they remain in effect for the remainder
of the file, or until the opposite directive is used. When in effect, they apply to include files,
but do not affect USE modules, which are compiled separately.

See Also
• E to F
• M to N
• Source Forms
• General Compiler Directives
• free compiler option

Building Applications: Compiler Directives Related to Options

OPTIMIZE and NOOPTIMIZE
General Compiler Directive: Enables or disables
optimizations.

Syntax

cDEC$ OPTIMIZE[: n]

cDEC$ NOOPTIMIZE

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the number denoting the optimization level. The number can
be 0, 1, 2, or 3, which corresponds to compiler options O0, O1,
O2, and O3. If n is omitted, the default is 2, which corresponds to
option O2.

n

The OPTIMIZE and NOOPTIMIZE directives can only appear once at the top of a procedure
program unit. A procedure program unit is a main program, an external subroutine or function,
or a module. OPTIMIZE and NOOPTIMIZE cannot appear between program units or in a block
data program unit. They do not affect any modules invoked with the USE statement in the
program unit that contains them. They do affect CONTAINed procedures that do not include
an explicit OPTIMIZE or NOOPTIMIZE directive.

NOOPTIMIZE is the same as OPTIMIZE:0. They are both equivalent to −O0 (Linux and Mac OS
X) and /Od (Windows).

3099

63

The procedure is compiled with an optimization level equal to the smaller of n and the
optimization level specified by the O compiler option on the command line. For example, if the
procedure contains the directive NOOPTIMIZE and the program is compiled with the O3 command
line option, this procedure is compiled at O0 while the rest of the program is compiled at O3.

See Also
• M to N
• O to P
• General Compiler Directives
• O compiler option

PREFETCH and NOPREFETCH
General Compiler Directives: PREFETCH enables
a data prefetch from memory. Prefetching data
can minimize the effects of memory latency.
NOPREFETCH (the default) disables data
prefetching. These directives affect the heuristics
used in the compiler.

Syntax

cDEC$ PREFETCH [var1[: hint1[: distance1]] [,var2[: hint2[: distance2]]]...]

cDEC$ NOPREFETCH [var1[,var2]...]

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is an optional memory reference.var

Is an optional integer initialization expression with the value 0, 1,
2, or 3. These are the same as the values for hint in the intrinsic
subroutine MM_PREFETCH. To use this argument, you must also
specify var.

hint

Is an optional integer initialization expression with a value greater
than 0. It indicates the number of loop iterations to perform before
the prefetch. To use this argument, you must also specify var and
hint.

distance

To use these directives, compiler option O2 or O3 must be set.

This directive affects the DO loop it precedes.

If you specify PREFETCH with no arguments, all arrays accessed in the DO loop will be prefetched.

3100

63 Intel® Fortran Compiler User and Reference Guides

If a loop includes expression A(j), placing cDEC$ PREFETCH A in front of the loop instructs the
compiler to insert prefetches for A(j + d) within the loop. The d is determined by the compiler.

Example
cDEC$ NOPREFETCH c

cDEC$ PREFETCH a

do i = 1, m

b(i) = a(c(i)) + 1

enddo

3101

63

The following example is valid on IA-64 architecture:

sum = 0.d0

do j=1,lastrow-firstrow+1

i = rowstr(j)

iresidue = mod(rowstr(j+1)-i, 8)

sum = 0.d0

CDEC$ NOPREFETCH a,p,colidx

do k=i,i+iresidue-1

sum = sum + a(k)*p(colidx(k))

enddo

CDEC$ NOPREFETCH colidx

CDEC$ PREFETCH a:1:40

CDEC$ PREFETCH p:1:20

do k=i+iresidue, rowstr(j+1)-8, 8

sum = sum + a(k)*p(colidx(k))

& + a(k+1)*p(colidx(k+1)) + a(k+2)*p(colidx(k+2))

& + a(k+3)*p(colidx(k+3)) + a(k+4)*p(colidx(k+4))

& + a(k+5)*p(colidx(k+5)) + a(k+6)*p(colidx(k+6))

& + a(k+7)*p(colidx(k+7))

enddo

q(j) = sum

enddo

See Also
• M to N
• O to P
• MM_PREFETCH
• O

Optimizing Applications: Prefetching Support

3102

63 Intel® Fortran Compiler User and Reference Guides

STRICT and NOSTRICT
General Compiler Directive: STRICT disables
language features not found in the language
standard specified on the command line (Fortran
2003, Fortran 95, or Fortran 90). NOSTRICT (the
default) enables these features.

Syntax

cDEC$ STRICT

cDEC$ NOSTRICT

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

If STRICT is specified and no language standard is specified on the command line, the default
is to disable features not found in Fortran 2003.

The STRICT and NOSTRICT directives can appear only appear at the top of a program unit. A
program unit is a main program, an external subroutine or function, a module, or a block data
program unit. STRICT and NOSTRICT cannot appear between program units, or at the beginning
of internal subprograms. They do not affect any modules invoked with the USE statement in
the program unit that contains them.

3103

63

Example
! NOSTRICT by default

TYPE stuff

INTEGER(4) k

INTEGER(4) m

CHARACTER(4) name

END TYPE stuff

TYPE (stuff) examp

DOUBLE COMPLEX cd ! non-standard data type, no error

cd =(3.0D0, 4.0D0)

examp.k = 4 ! non-standard component designation,

! no error

END

SUBROUTINE STRICTDEMO()

!DEC$ STRICT

TYPE stuff

INTEGER(4) k

INTEGER(4) m

CHARACTER(4) name

END TYPE stuff

TYPE (stuff) samp

DOUBLE COMPLEX cd ! ERROR

cd =(3.0D0, 4.0D0)

samp.k = 4 ! ERROR

END SUBROUTINE

See Also
• M to N
• S

3104

63 Intel® Fortran Compiler User and Reference Guides

• General Compiler Directives
• stand compiler option

Building Applications: Compiler Directives Related to Options

SWP and NOSWP (i64 only)
General Compiler Directives: SWP enables
software pipelining for a DO loop. NOSWP (the
default) disables this software pipelining. These
directives are only available on IA-64 architecture.

Syntax

cDEC$ SWP

cDEC$ NOSWP

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

The SWP directive must precede the DO statement for each DO loop it affects.

The SWP directive does not help data dependence, but overrides heuristics based on profile
counts or lop-sided control flow.

The software pipelining optimization specified by the SWP directive applies instruction scheduling
to certain innermost loops, allowing instructions within a loop to be split into different stages.

This allows increased instruction level parallelism, which can reduce the impact of long-latency
operations, resulting in faster loop execution.

Loops chosen for software pipelining are always innermost loops containing procedure calls
that are inlined. Because the optimizer no longer considers fully unrolled loops as innermost
loops, fully unrolling loops can allow an additional loop to become the innermost loop (see
compiler option -funroll-loops or /Qunroll).

You can request and view the optimization report to see whether software pipelining was applied.

3105

63

Example
!DEC$ SWP

do i = 1, m

if (a(i) .eq. 0) then

b(i) = a(i) + 1

else

b(i) = a(i)/c(i)

endif

enddo

See Also
• M to N
• S
• Syntax Rules for Compiler Directives
• Rules for General Directives that Affect DO Loops
• unroll, Qunroll compiler option

Optimizing Applications: Pipelining for Itanium®-based Architecture

Optimizing Applications: Optimizer Report Generation

NOT
Elemental Intrinsic Function (Generic):
Returns the logical complement of the argument.

Syntax

result = NOT (i)

(Input) Must be of type integer.i

3106

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is the same as i. The result value is obtained by complementing i bit-by-bit
according to the following truth table:

I NOT (I)

1 0

0 1

The model for the interpretation of an integer value as a sequence of bits is shown in Model
for Bit Data.

Result TypeArgument TypeSpecific Name

INTEGER(1)INTEGER(1)BNOT

INTEGER(2)INTEGER(2)INOT1

INTEGER(4)INTEGER(4)JNOT

INTEGER(8)INTEGER(8)KNOT

1Or HNOT.

Example

If I has a value equal to 10101010 (base 2), NOT (I) has the value 01010101 (base 2).

The following shows another example:

INTEGER(2) i(2), j(2)

i = (/4, 132/) ! i(1) = 0000000000000100

! i(2) = 0000000010000100

j = NOT(i) ! returns (-5,-133)

! j(1) = 1111111111111011

! j(2) = 1111111101111011

See Also
• M to N
• BTEST

3107

63

• IAND
• IBCHNG
• IBCLR
• IBSET
• IEOR
• IOR
• ISHA
• ISHC
• ISHL
• ISHFT
• ISHFTC

UNROLL and NOUNROLL
General Compiler Directive: Tells the compiler's
optimizer how many times to unroll a DO loop or
disables the unrolling of a DO loop. These directives
can only be applied to iterative DO loops.

Syntax

cDEC$ UNROLL [(n)] -or- cDEC$ UNROLL [=n]

cDEC$ NOUNROLL

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is an integer constant. The range of n is 0 through 255.n

If n is specified, the optimizer unrolls the loop n times. If n is omitted, or if it is outside the
allowed range, the optimizer picks the number of times to unroll the loop.

The UNROLL directive overrides any setting of loop unrolling from the command line.

To use these directives, compiler option O2 or O3 must be set.

3108

63 Intel® Fortran Compiler User and Reference Guides

Example
cDEC$ UNROLL

do i =1, m

b(i) = a(i) + 1

d(i) = c(i) + 1

enddo

See Also
• M to N
• T to Z
• General Compiler Directives
• Rules for General Directives that Affect DO Loops
• O compiler option

VECTOR ALWAYS and NOVECTOR
General Compiler Directive: Enables or disables
vectorization of a DO loop.

Syntax

cDEC$ VECTOR ALWAYS

cDEC$ NOVECTOR

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

The VECTOR ALWAYS and NOVECTOR directives override the default behavior of the compiler.
The VECTOR ALWAYS directive also overrides efficiency heuristics of the vectorizer, but it only
works if the loop can actually be vectorized. You should use the IVDEP directive to ignore
assumed dependences.

CAUTION. The directive VECTOR ALWAYS should be used with care. Overriding the
efficiency heuristics of the compiler should only be done if you are absolutely sure the
vectorization will improve performance.

3109

63

Example

The compiler normally does not vectorize DO loops that have a large number of non-unit stride
references (compared to the number of unit stride references).

In the following example, vectorization would be disabled by default, but the directive overrides
this behavior:

!DEC$ VECTOR ALWAYS

do i = 1, 100, 2

! two references with stride 2 follow

a(i) = b(i)

enddo

There may be cases where you want to explicitly avoid vectorization of a loop; for example, if
vectorization would result in a performance regression rather than an improvement. In these
cases, you can use the NOVECTOR directive to disable vectorization of the loop.

In the following example, vectorization would be performed by default, but the directive overrides
this behavior:

!DEC$ NOVECTOR

do i = 1, 100

a(i) = b(i) + c(i)

enddo

See Also
• M to N
• T to Z
• Rules for General Directives that Affect DO Loops

NULL
Transformational Intrinsic Function (Generic):
Initializes a pointer as disassociated when it is
declared. This is a new intrinsic function in Fortran
95.

Syntax

result = NULL ([mold])

3110

63 Intel® Fortran Compiler User and Reference Guides

(Optional) Must be a pointer; it can be of any type. Its pointer
association status can be associated, disassociated, or undefined.
If its status is associated, the target does not have to be defined
with a value.

mold

Results

The result type is the same as mold, if present; otherwise, it is determined as follows:

Type is Determined From...If NULL () Appears...

The pointer on the left sideOn the right side of pointer assignment

The objectAs initialization for an object in a declaration

The componentAs default initialization for a component

The corresponding componentIn a structure constructor

The corresponding dummy argumentAs an actual argument

The corresponding pointer objectIn a DATA statement

The result is a pointer with disassociated association status.

CAUTION. If you use module IFWIN or IFWINTY, you will have a name conflict if you
use the NULL intrinsic. To avoid this problem, rename the integer parameter constant
NULL to something else; for example:

USE IFWIN, NULL0 => NULL

This example lets you use both NULL0 and NULL() in the same program unit with no
conflict.

Example

Consider the following:

INTEGER, POINTER :: POINT1 => NULL()

This statement defines the initial association status of POINT1 to be disassociated.

3111

63

NULLIFY
Statement: Disassociates a pointer from a target.

Syntax

NULLIFY (pointer-object[,pointer-object]...)

Is a structure component or the name of a variable; it must be a
pointer (have the POINTER attribute).

pointer-object

Description

The initial association status of a pointer is undefined. You can use NULLIFY to initialize an
undefined pointer, giving it disassociated status. Then the pointer can be tested using the
intrinsic function ASSOCIATED.

Example

The following is an example of the NULLIFY statement:

REAL, TARGET :: TAR(0:50)

REAL, POINTER :: PTR_A(:), PTR_B(:)

PTR_A => TAR

PTR_B => TAR

...

NULLIFY(PTR_A)

After these statements are executed, PTR_A will have disassociated status, while PTR_B will
continue to be associated with variable TAR.

3112

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

! POINTER2.F90 Pointing at a Pointer and Target

!DEC$ FIXEDFORMLINESIZE:80

REAL, POINTER :: arrow1 (:)

REAL, POINTER :: arrow2 (:)

REAL, ALLOCATABLE, TARGET :: bullseye (:)

ALLOCATE (bullseye (7))

bullseye = 1.

bullseye (1:7:2) = 10.

WRITE (*,'(/1x,a,7f8.0)') 'target ',bullseye

arrow1 => bullseye

WRITE (*,'(/1x,a,7f8.0)') 'pointer',arrow1

arrow2 => arrow1

IF (ASSOCIATED(arrow2)) WRITE (*,'(/a/)') ' ARROW2 is pointed.'

WRITE (*,'(1x,a,7f8.0)') 'pointer',arrow2

NULLIFY (arrow2)

IF (.NOT.ASSOCIATED(arrow2)) WRITE (*,'(/a/)') ' ARROW2 is not pointed.'

WRITE (*,'(1x,a,7f8.0)') 'pointer',arrow1

WRITE (*,'(/1x,a,7f8.0)') 'target ',bullseye

END

See Also
• M to N
• ALLOCATE
• ASSOCIATED
• DEALLOCATE
• POINTER
• TARGET
• NULL
• Pointer Assignments
• Dynamic Allocation

3113

63

O to P

OBJCOMMENT
General Compiler Directive: Specifies a library
search path in an object file.

Syntax

cDEC$ OBJCOMMENT LIB: library

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is a character constant specifying the name and, if necessary, the
path of the library that the linker is to search.

library

The linker searches for the library named in OBJCOMMENT as if you named it on the command
line, that is, before default library searches. You can place multiple library search directives in
the same source file. Each search directive appears in the object file in the order it is encountered
in the source file.

If the OBJCOMMENT directive appears in the scope of a module, any program unit that uses
the module also contains the directive, just as if the OBJCOMMENT directive appeared in the
source file using the module.

If you want to have the OBJCOMMENT directive in a module, but do not want it in the program
units that use the module, place the directive outside the module that is used.

3114

63 Intel® Fortran Compiler User and Reference Guides

Example
! MOD1.F90

MODULE a

!DEC$ OBJCOMMENT LIB: "opengl32.lib"

END MODULE a

! MOD2.F90

!DEC$ OBJCOMMENT LIB: "graftools.lib"

MODULE b

!

END MODULE b

! USER.F90

PROGRAM go

USE a ! library search contained in MODULE a

! included here

USE b ! library search not included

END

See Also
• O to P
• General Compiler Directives

Building Applications: Compiler Directives Related to Options

OPEN
Statement: Connects an external file to a unit,
creates a new file and connects it to a unit, creates
a preconnected file, or changes certain properties
of a connection.

Syntax

OPEN ([UNIT=] io-unit[, FILE= name] [, ERR= label] [, IOSTAT=i-var],slist)

Is an external unit specifier.io-unit

3115

63

Is a character or numeric expression specifying the name of the
file to be connected. For more information, see FILE Specifier and
STATUS Specifier.

name

Is the label of the branch target statement that receives control
if an error occurs. For more information, see Branch Specifiers.

label

Is a scalar integer variable that is defined as a positive integer
(the number of the error message) if an error occurs, a negative
integer if an end-of-file record is encountered, and zero if no error
occurs. For more information, see I/O Status Specifier.

i-var

Is one or more of the following OPEN specifiers in the form
specifier= value or specifier (each specifier can appear only
once):

slist

RECORDSIZEMAXRECCARRIAGECONTROLACCESS

RECORDTYPEMODECONVERTACTION

SHARENAMEDEFAULTFILEASSOCIATEVARIABLE

SHAREDORGANIZATIONDELIMASYNCHRONOUS

STATUSPADDISPOSEBLANK

TITLEPOSITIONFILEBLOCKSIZE

TYPEREADONLYFORMBUFFERCOUNT

USEROPENRECLIOFOCUSBUFFERED

The OPEN specifiers and their acceptable values are summarized
in the OPEN Statement in the Language Reference.
The control specifiers that can be specified in an OPEN statement
are discussed in I/O Control List in the Language Reference.

Description

The control specifiers ([UNIT=] io-unit, ERR= label, and IOSTAT= i-var) and OPEN specifiers
can appear anywhere within the parentheses following OPEN. However, if the UNIT specifier is
omitted, the io-unit must appear first in the list.

Specifier values that are scalar numeric expressions can be any integer or real expression. The
value of the expression is converted to integer data type before it is used in the OPEN statement.

3116

63 Intel® Fortran Compiler User and Reference Guides

Only one unit at a time can be connected to a file, but multiple OPENs can be performed on
the same unit. If an OPEN statement is executed for a unit that already exists, the following
occurs:

• If FILE is not specified, or FILE specifies the same file name that appeared in a previous
OPEN statement, the current file remains connected.

If the file names are the same, the values for the BLANK, CARRIAGECONTROL, CONVERT,
DELIM, DISPOSE, ERR, IOSTAT, and PAD specifiers can be changed. Other OPEN specifier
values cannot be changed, and the file position is unaffected.

• If FILE specifies a different file name, the previous file is closed and the new file is connected
to the unit.

The ERR and IOSTAT specifiers from any previously executed OPEN statement have no effect
on any currently executing OPEN statement. If an error occurs, no file is opened or created.

Secondary operating system messages do not display when IOSTAT is specified. To display
these messages, remove IOSTAT or use a platform-specific method.

Example

You can specify character values at run time by substituting a character expression for a specifier
value in the OPEN statement. The character value can contain trailing blanks but not leading
or embedded blanks; for example:

CHARACTER*6 FINAL /' '/

...

IF (expr) FINAL = 'DELETE'

OPEN (UNIT=1, STATUS='NEW', DISP=FINAL)

The following statement creates a new sequential formatted file on unit 1 with the default file
name fort.1:

OPEN (UNIT=1, STATUS='NEW', ERR=100)

The following statement creates a file on magnetic tape:

OPEN (UNIT=I, FILE='/dev/rmt8', &

STATUS='NEW', ERR=14, RECL=1024)

The following statement opens the file (created in the previous example) for input:

OPEN (UNIT=I, FILE='/dev/rmt8', READONLY, STATUS='OLD', &

RECL=1024)

3117

63

The following example opens the existing file /usr/users/someone/test.dat:

OPEN (unit=10, DEFAULTFILE='/usr/users/someone/', FILE='test.dat',

1 FORM='FORMATTED', STATUS='OLD')

The following example opens a new file:

! Prompt user for a filename and read it:

CHARACTER*64 filename

WRITE (*, '(A\)') ' enter file to create: '

READ (*, '(A)') filename

! Open the file for formatted sequential access as unit 7.

! Note that the specified access need not have been specified,

! since it is the default (as is "formatted").

OPEN (7, FILE = filename, ACCESS = 'SEQUENTIAL', STATUS = 'NEW')

The following example opens an existing file called DATA3.TXT:

! Open a file created by an editor, "DATA3.TXT", as unit 3:

OPEN (3, FILE = 'DATA3.TXT')

See Also
• O to P
• READ
• WRITE
• CLOSE
• FORMAT
• INQUIRE
• OPEN Statement

OPTIONAL
Statement and Attribute: Permits dummy
arguments to be omitted in a procedure reference.

Syntax

The OPTIONAL attribute can be specified in a type declaration statement or an OPTIONAL
statement, and takes one of the following forms:

3118

63 Intel® Fortran Compiler User and Reference Guides

Type Declaration Statement:

type,[att-ls,] OPTIONAL [, att-ls] :: d-arg[, d-arg]...

Statement:

OPTIONAL [::] d-arg[, d-arg] ...

Is a data type specifier.type

Is an optional list of attribute specifiers.att-ls

Is the name of a dummy argument.d-arg

Description

The OPTIONAL attribute can only appear in the scoping unit of a subprogram or an interface
body, and can only be specified for dummy arguments. It cannot be specified for arguments
that are passed by value.

A dummy argument is "present" if it associated with an actual argument. A dummy argument
that is not optional must be present. You can use the PRESENT intrinsic function to determine
whether an optional dummy argument is associated with an actual argument.

To call a procedure that has an optional argument, you must use an explicit interface.

If argument keywords are not used, argument association is positional. The first dummy
argument becomes associated with the first actual argument, and so on. If argument keywords
are used, arguments are associated by the keyword name, so actual arguments can be in a
different order than dummy arguments. A keyword is required for an argument only if a
preceding optional argument is omitted or if the argument sequence is changed.

Example

The following example shows a type declaration statement specifying the OPTIONAL attribute:

SUBROUTINE TEST(A)

REAL, OPTIONAL, DIMENSION(-10:2) :: A

END SUBROUTINE

3119

63

The following is an example of the OPTIONAL statement:

SUBROUTINE TEST(A, B, L, X)

OPTIONAL :: B

INTEGER A, B, L, X

IF (PRESENT(B)) THEN ! Printing of B is conditional

PRINT *, A, B, L, X ! on its presence

ELSE

PRINT *, A, L, X

ENDIF

END SUBROUTINE

INTERFACE

SUBROUTINE TEST(ONE, TWO, THREE, FOUR)

INTEGER ONE, TWO, THREE, FOUR

OPTIONAL :: TWO

END SUBROUTINE

END INTERFACE

INTEGER I, J, K, L

I = 1

J = 2

K = 3

L = 4

CALL TEST(I, J, K, L) ! Prints: 1 2 3 4

CALL TEST(I, THREE=K, FOUR=L) ! Prints: 1 3 4

END

Note that in the second call to subroutine TEST, the second positional (optional) argument is
omitted. In this case, all following arguments must be keyword arguments.

3120

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

SUBROUTINE ADD (a,b,c,d)

REAL a, b, d

REAL, OPTIONAL :: c

IF (PRESENT(c)) THEN

d = a + b + c + d

ELSE

d = a + b + d

END IF

END SUBROUTINE

Consider the following:

SUBROUTINE EX (a, b, c)

REAL, OPTIONAL :: b,c

This subroutine can be called with any of the following statements:

CALL EX (x, y, z) !All 3 arguments are passed.

CALL EX (x) !Only the first argument is passed.

CALL EX (x, c=z) !The first optional argument is omitted.

Note that you cannot use a series of commas to indicate omitted optional arguments, as in the
following example:

CALL EX (x,,z) !Invalid statement.

This results in a compile-time error.

See Also
• O to P
• PRESENT
• Argument Keywords in Intrinsic Procedures
• Optional Arguments
• Argument Association
• Type Declarations
• Compatible attributes

3121

63

OPTIONS Statement
Statement: Overrides or confirms the compiler
options in effect for a program unit.

Syntax

OPTIONS option[option...]

Is one of the following:option

[NO]UNDERSCORE/ASSUME =

ALL/CHECK =

[NO]BOUNDS

NONE

/NOCHECK

BIG_ENDIAN/CONVERT =

CRAY

FDX

FGX

IBM

LITTLE_ENDIAN

NATIVE

VAXD

VAXG

/[NO]EXTEND_SOURCE

/[NO]F77

/[NO]I4

/[NO]RECURSIVE

Note that an option must always be preceded by a slash (/).

3122

63 Intel® Fortran Compiler User and Reference Guides

Some OPTIONS statement options are equivalent to compiler
options.

The OPTIONS statement must be the first statement in a program unit, preceding the PROGRAM,
SUBROUTINE, FUNCTION, MODULE, and BLOCK DATA statements.

OPTIONS statement options override compiler options, but only until the end of the program
unit for which they are defined. If you want to override compiler options in another program
unit, you must specify the OPTIONS statement before that program unit.

Example

The following are valid OPTIONS statements:

OPTIONS /CHECK=ALL/F77

OPTIONS /I4

See Also
• O to P

For details on compiler options, see your Compiler Options reference

Building Applications: OPEN Statement CONVERT Method

OPTIMIZE and NOOPTIMIZE
General Compiler Directive: Enables or disables
optimizations.

Syntax

cDEC$ OPTIMIZE[: n]

cDEC$ NOOPTIMIZE

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the number denoting the optimization level. The number can
be 0, 1, 2, or 3, which corresponds to compiler options O0, O1,
O2, and O3. If n is omitted, the default is 2, which corresponds to
option O2.

n

The OPTIMIZE and NOOPTIMIZE directives can only appear once at the top of a procedure
program unit. A procedure program unit is a main program, an external subroutine or function,
or a module. OPTIMIZE and NOOPTIMIZE cannot appear between program units or in a block

3123

63

data program unit. They do not affect any modules invoked with the USE statement in the
program unit that contains them. They do affect CONTAINed procedures that do not include
an explicit OPTIMIZE or NOOPTIMIZE directive.

NOOPTIMIZE is the same as OPTIMIZE:0. They are both equivalent to −O0 (Linux and Mac OS
X) and /Od (Windows).

The procedure is compiled with an optimization level equal to the smaller of n and the
optimization level specified by the O compiler option on the command line. For example, if the
procedure contains the directive NOOPTIMIZE and the program is compiled with the O3 command
line option, this procedure is compiled at O0 while the rest of the program is compiled at O3.

See Also
• M to N
• O to P
• General Compiler Directives
• O compiler option

OPTIONS Directive
General Compiler Directive: Affects data
alignment and warnings about data alignment.

Syntax

cDEC$ OPTIONS option[option]

...

cDEC$ END OPTIONS

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is one (or both) of the following:option

Controls whether warnings are issued by the
compiler for data that is not naturally aligned.
By default, you receive compiler messages
when misaligned data is encountered
(/WARN=ALIGNMENT).

/WARN=[NO]ALIGNMENT

Controls alignment of fields in record
structures and data items in common blocks.
The fields and data items can be naturally

/[NO]ALIGN[= p]

3124

63 Intel® Fortran Compiler User and Reference Guides

aligned (for performance reasons) or they can
be packed together on arbitrary byte
boundaries.

Is a specifier with one of the
following forms:

p

[class=]rule

(class= rule,...)

ALL

NONE

Is one of the following
keywords:

class

• COMMONS: For
common blocks

• RECORDS: For
records

• STRUCTURES: A
synonym for
RECORDS

Is one of the following
keywords:

rule

Packs fields in
records or data
items in

PACKED

common
blocks on
arbitrary byte
boundaries.

Naturally
aligns fields in
records and

NATURAL

data items in
common
blocks on up to

3125

63

64-bit
boundaries
(inconsistent
with the
Fortran 95/90
standard).
This keyword
causes the
compiler to
naturally align
all data in a
common block,
including
INTEGER(KIND=8),
REAL(KIND=8),
and all
COMPLEX
data.

Naturally
aligns data
items in

STANDARD

common
blocks on up to
32-bit
boundaries
(consistent
with the
Fortran 95/90
standard).
This keyword
only applies to
common
blocks; so, you
can specify
/ALIGN=COMMONS=STANDARD,
but you cannot
specify
/ALIGN=STANDARD.

3126

63 Intel® Fortran Compiler User and Reference Guides

Is the same as
specifying OPTIONS
/ALIGN, OPTIONS

ALL

/ALIGN=NATURAL,
and OPTIONS
/ALIGN=(RECORDS=NATURAL,COMMONS=NATURAL).

Is the same as
specifying OPTIONS
/NOALIGN, OPTIONS

NONE

/ALIGN=PACKED, and
OPTIONS
/ALIGN=(RECORDS=PACKED,COMMONS=PACKED).

The OPTIONS (and accompanying END OPTIONS) directives must come after OPTIONS,
SUBROUTINE, FUNCTION, and BLOCK DATA statements (if any) in the program unit, and before
the executable part of the program unit.

The OPTIONS directive supersedes compiler option align.

For performance reasons, Intel Fortran aligns local data items on natural boundaries. However,
EQUIVALENCE, COMMON, RECORD, and STRUCTURE data declaration statements can force
misaligned data. If /WARN=NOALIGNMENT is specified, warnings will not be issued if misaligned
data is encountered.

NOTE. Misaligned data significantly increases the time it takes to execute a program.
As the number of misaligned fields encountered increases, so does the time needed to
complete program execution. Specifying /ALIGN (or compiler option align) minimizes
misaligned data.

If you want aligned data in common blocks, do one of the following:

• Specify OPTIONS /ALIGN=COMMONS=STANDARD for data items up to 32 bits in length.

• Specify OPTIONS /ALIGN=COMMONS=NATURAL for data items up to 64 bits in length.

• Place source data declarations within the common block in descending size order, so that
each data item is naturally aligned.

If you want packed, unaligned data in a record structure, do one of the following:

• Specify OPTIONS /ALIGN=RECORDS=PACKED.

3127

63

• Place source data declarations in the record structure so that the data is naturally aligned.

Example
! directives can be nested up to 100 levels

CDEC$ OPTIONS /ALIGN=PACKED ! Start of Group A

declarations

CDEC$ OPTIONS /ALIGN=RECO=NATU ! Start of nested Group B

more declarations

CDEC$ END OPTIONS ! End of Group B

still more declarations

CDEC$ END OPTIONS ! End of Group A

The OPTIONS specification for Group B only applies to RECORDS; common blocks within Group
B will be PACKED. This is because COMMONS retains the previous setting (in this case, from
the Group A specification).

See Also
• O to P
• General Compiler Directives
• align compiler option

OR
Elemental Intrinsic Function (Generic):
Performs a bitwise inclusive OR on its arguments.
See IOR.

Example
INTEGER i

i = OR(3, 10) ! returns 11

3128

63 Intel® Fortran Compiler User and Reference Guides

ORDERED
OpenMP* Fortran Compiler Directive: Specifies
a block of code to be executed in the order in which
iterations would be executed in sequential
execution.

Syntax

c$OMP ORDERED

block

c$OMP ORDERED

Is one of the following: C (or c), !, or * (see Syntax Rules for
Compiler Directives).

c

Is a structured block (section) of statements or constructs. You
cannot branch into or out of the block.

block

An ORDERED directive can appear only in the dynamic extent of a DO or PARALLEL DO directive.
The DO directive to which the ordered section binds must have the ORDERED clause specified.

An iteration of a loop using a DO directive must not execute the same ORDERED directive more
than once, and it must not execute more than one ORDERED directive.

One thread is allowed in an ordered section at a time. Threads are allowed to enter in the order
of the loop iterations. No thread can enter an ordered section until it can be guaranteed that
all previous iterations have completed or will never execute an ordered section. This
sequentializes and orders code within ordered sections while allowing code outside the section
to run in parallel.

Ordered sections that bind to different DO directives are independent of each other.

3129

63

Example

Ordered sections are useful for sequentially ordering the output from work that is done in
parallel. Assuming that a reentrant I/O library exists, the following program prints out the
indexes in sequential order:

c$OMP DO ORDERED SCHEDULE(DYNAMIC)

DO I=LB,UB,ST

CALL WORK(I)

END DO

...

SUBROUTINE WORK(K)

c$OMP ORDERED

WRITE(*,*) K

c$OMP END ORDERED

See Also
• O to P
• OpenMP Fortran Compiler Directives

OUTGTEXT (W*32, W*64)
Graphics Subroutine: In graphics mode, sends
a string of text to the screen, including any trailing
blanks.

Module

USE IFQWIN

Syntax

CALL OUTGTEXT (text)

(Input) Character*(*). String to be displayed.text

Text output begins at the current graphics position, using the current font set with SETFONT
and the current color set with SETCOLORRGB or SETCOLOR. No formatting is provided. After
it outputs the text, OUTGTEXT updates the current graphics position.

Before you call OUTGTEXT, you must call the INITIALIZEFONTS function.

3130

63 Intel® Fortran Compiler User and Reference Guides

Because OUTGTEXT is a graphics function, the color of text is affected by the SETCOLORRGB
function, not by SETTEXTCOLORRGB.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3131

63

Example
! build as a QuickWin App.

USE IFQWIN

INTEGER(2) result

INTEGER(4) i

TYPE (xycoord) xys

result = INITIALIZEFONTS()

result = SETFONT('t''Arial''h18w10pvib')

do i=1,6

CALL MOVETO(INT2(0),INT2(30*(i-1)),xys)

grstat=SETCOLOR(INT2(i))

CALL OUTGTEXT('This should be ')

SELECT CASE (i)

CASE (1)

CALL OUTGTEXT('Blue')

CASE (2)

CALL OUTGTEXT('Green')

CASE (3)

CALL OUTGTEXT('Cyan')

CASE (4)

CALL OUTGTEXT('Red')

CASE (5)

CALL OUTGTEXT('Magenta')

CASE (6)

CALL OUTGTEXT('Orange')

END SELECT

end do

END

3132

63 Intel® Fortran Compiler User and Reference Guides

See Also
• O to P
• GETFONTINFO
• GETGTEXTEXTENT
• INITIALIZEFONTS
• MOVETO
• SETCOLORRGB
• SETFONT
• SETGTEXTROTATION

Building Applications: Setting Figure Properties

Building Applications: Selecting Display Options

OUTTEXT (W*32, W*64)
Graphics Subroutine: In text or graphics mode,
sends a string of text to the screen, including any
trailing blanks.

Module

USE IFQWIN

Syntax

CALL OUTTEXT (text)

(Input) Character*(*). String to be displayed.text

Text output begins at the current text position in the color set with SETTEXTCOLORRGB or
SETTEXTCOLOR. No formatting is provided. After it outputs the text, OUTTEXT updates the
current text position.

To output text using special fonts, you must use the OUTGTEXT subroutine.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3133

63

Example
USE IFQWIN

INTEGER(2) oldcolor

TYPE (rccoord) rc

CALL CLEARSCREEN($GCLEARSCREEN)

CALL SETTEXTPOSITION (INT2(1), INT2(5), rc)

oldcolor = SETTEXTCOLOR(INT2(4))

CALL OUTTEXT ('Hello, everyone')

END

See Also
• O to P
• OUTGTEXT
• SETTEXTPOSITION
• SETTEXTCOLORRGB
• WRITE
• WRAPON

Building Applications: Displaying Character-Based Text

Building Applications: Using Text Colors

PACK Function
Transformational Intrinsic Function (Generic):
Takes elements from an array and packs them into
a rank-one array under the control of a mask.

Syntax

result = PACK (array,mask[,vector])

(Input) Must be an array. It may be of any data type.array

(Input) Must be of type logical and conformable with array. It
determines which elements are taken from array.

mask

3134

63 Intel® Fortran Compiler User and Reference Guides

(Input; optional) Must be a rank-one array with the same type
and type parameters as array. Its size must be at least t, where
t is the number of true elements in mask. If mask is a scalar with
value true, vector must have at least as many elements as there
are in array.

vector

Elements in vector are used to fill out the result array if there
are not enough elements selected by mask.

Results

The result is a rank-one array with the same type and type parameters as array. If vector is
present, the size of the result is that of vector. Otherwise, the size of the result is the number
of true elements in mask, or the number of elements in array (if mask is a scalar with value
true).

Elements in array are processed in array element order to form the result array. Element i of
the result is the element of array that corresponds to the ith true element of mask. If vector
is present and has more elements than there are true values in mask, any result elements that
are empty (because they were not true according to mask) are set to the corresponding values
in vector.

Example

N is the array

[0 8 0]

[0 0 0]

[7 0 0].

PACK (N, MASK=N .NE. 0, VECTOR=(/1, 3, 5, 9, 11, 13/)) produces the result (7, 8, 5, 9, 11,
13).

PACK (N, MASK=N .NE. 0) produces the result (7, 8).

3135

63

The following shows another example:

INTEGER array(2, 3), vec1(2), vec2(5)

LOGICAL mask (2, 3)

array = RESHAPE((/7, 0, 0, -5, 0, 0/), (/2, 3/))

mask = array .NE. 0

! array is 7 0 0 and mask is T F F

! 0 -5 0 F T F

VEC1 = PACK(array, mask) ! returns (7, -5)

VEC2 = PACK(array, array .GT. 0, VECTOR= (/1,2,3,4,5/))

! returns (7, 2, 3, 4, 5)

See Also
• O to P
• UNPACK

PACK Directive
General Compiler Directive: Specifies the
memory starting addresses of derived-type items
(and record structure items).

Syntax

cDEC$ PACK[: [{1 | 2 | 4 | 8}]]

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Items of derived types, unions, and structures are aligned in memory on the smaller of two
sizes: the size of the type of the item, or the current alignment setting. The current alignment
setting can be 1, 2, 4, or 8 bytes. The default initial setting is 8 bytes (unless compiler option
vms or align rec n bytes is specified). By reducing the alignment setting, you can pack variables
closer together in memory.

The PACK directive lets you control the packing of derived-type or record structure items inside
your program by overriding the current memory alignment setting.

3136

63 Intel® Fortran Compiler User and Reference Guides

For example, if PACK:1 is specified, all variables begin at the next available byte, whether odd
or even. Although this slightly increases access time, no memory space is wasted. If PACK:4
is specified, INTEGER(1), LOGICAL(1), and all character variables begin at the next available
byte, whether odd or even. INTEGER(2) and LOGICAL(2) begin on the next even byte; all other
variables begin on 4-byte boundaries.

If the PACK directive is specified without a number, packing reverts to the compiler option
setting (if any), or the default setting of 8.

The directive can appear anywhere in a program before the derived-type definition or record
structure definition. It cannot appear inside a derived-type or record structure definition.

Example
! Use 4-byte packing for this derived type

! Note PACK is used outside of the derived type definition

!DEC$ PACK:4

TYPE pair

INTEGER a, b

END TYPE

! revert to default or compiler option

!DEC$ PACK

See Also
• O to P
• TYPE
• STRUCTURE...END STRUCTURE
• UNION...END UNION
• General Compiler Directives
• align rec n bytes compiler option
• vms compiler option

Building Applications: Compiler Directives Related to Options

3137

63

PACKTIMEQQ
Portability Subroutine: Packs time and date
values.

Module

USE IFPORT

Syntax

CALL PACKTIMEQQ (timedate,iyr,imon,iday,ihr,imin,isec)

(Output) INTEGER(4). Packed time and date information.timedate

(Input) INTEGER(2). Year (xxxxAD).iyr

(Input) INTEGER(2). Month (1 - 12).imon

(Input) INTEGER(2). Day (1 - 31)iday

(Input) INTEGER(2). Hour (0 - 23)ihr

(Input) INTEGER(2). Minute (0 - 59)imin

(Input) INTEGER(2). Second (0 - 59)isec

The packed time is the number of seconds since 00:00:00 Greenwich mean time, January 1,
1970. Because packed time values can be numerically compared, you can use PACKTIMEQQ
to work with relative date and time values. Use UNPACKTIMEQQ to unpack time information.
SETFILETIMEQQ uses packed time.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS DLL LIB

3138

63 Intel® Fortran Compiler User and Reference Guides

Example
USE IFPORT

INTEGER(2) year, month, day, hour, minute, second, &

hund

INTEGER(4) timedate

CALL GETDAT (year, month, day)

CALL GETTIM (hour, minute, second, hund)

CALL PACKTIMEQQ (timedate, year, month, day, hour, &

minute, second)

END

See Also
• O to P
• UNPACKTIMEQQ
• SETFILETIMEQQ
• GETFILEINFOQQ
• TIME portability routine

PARALLEL Directive (OpenMP*)
OpenMP* Fortran Compiler Directive: Defines
a parallel region.

Syntax

c$OMP PARALLEL [clause[[,] clause] ...]

block

c$OMP END PARALLEL

Is one of the following: C (or c), !, or * (see Syntax Rules for
Compiler Directives).

c

Is one of the following:clause

• COPYIN (list)
• DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)
• FIRSTPRIVATE (list)

3139

63

• IF (scalar_logical_expression)

Specifies that the enclosed code section is to be executed in
parallel only if the scalar_logical_expression evaluates to
.TRUE.. Otherwise, the parallel region is serialized. If this clause
is not used, the region is executed as if an IF(.TRUE.) clause
were specified.

This clause is evaluated by the master thread before any data
scope attributes take effect.

Only a single IF clause can appear in the directive.

• NUM_THREADS (scalar_integer_expression)

Specifies the number of threads to be used in a parallel region.
The scalar_integer_expression must evaluate to a positive
scalar integer value. Only a single NUM_THREADS clause can
appear in the directive.

• PRIVATE (list)
• REDUCTION (operator | intrinsic : list)
• SHARED (list)

Is a structured block (section) of statements or constructs. You
cannot branch into or out of the block (the parallel region).

block

The PARALLEL and END PARALLEL directive pair must appear in the same routine in the
executable section of the code.

The END PARALLEL directive denotes the end of the parallel region. There is an implied barrier
at this point. Only the master thread of the team continues execution at the end of a parallel
region.

The number of threads in the team can be controlled by the NUM_THREADS clause, the
environment variable OMP_NUM_THREADS, or by calling the run-time library routine
OMP_SET_NUM_THREADS from a serial portion of the program.

NUM_THREADS supersedes the OMP_SET_NUM_THREADS routine, which supersedes the
OMP_NUM_THREADS environment variable. Subsequent parallel regions, however, are not
affected unless they have their own NUM_THREADS clauses.

Once specified, the number of threads in the team remains constant for the duration of that
parallel region.

3140

63 Intel® Fortran Compiler User and Reference Guides

If the dynamic threads mechanism is enabled by an environment variable or a library routine,
then the number of threads requested by the NUM_THREADS clause is the maximum number
to use in the parallel region.

The code contained within the dynamic extent of the parallel region is executed on each thread,
and the code path can be different for different threads.

If a thread executing a parallel region encounters another parallel region, it creates a new team
and becomes the master of that new team. By default, nested parallel regions are always
serialized and executed by a team of one thread.

Example

You can use the PARALLEL directive in coarse-grain parallel programs. In the following example,
each thread in the parallel region decides what part of the global array X upon which to work
based on the thread number:

c$OMP PARALLEL DEFAULT(PRIVATE) SHARED(X,NPOINTS)

IAM = OMP_GET_THREAD_NUM()

NP = OMP_GET_NUM_THREADS()

IPOINTS = NPOINTS/NP

CALL SUBDOMAIN(X,IAM,IPOINTS)

c$OMP END PARALLEL

Assuming you previously used the environment variable OMP_NUM_THREADS to set the number
of threads to six, you can change the number of threads between parallel regions as follows:

CALL OMP_SET_NUM_THREADS(3)

!$OMP PARALLEL

...

!$OMP END PARALLEL

CALL OMP_SET_NUM_THREADS(4)

!$OMP PARALLEL DO

...

!$OMP END PARALLEL DO

For more information on environment variables, see Building Applications.

3141

63

See Also
• O to P
• OpenMP Fortran Compiler Directives
• OpenMP* Fortran Routines
• PARALLEL DO
• SHARED Clause

PARALLEL and NOPARALLEL Loop Directives
General Compiler Directives: PARALLEL
facilitates auto-parallelization for the immediately
following DO loop. NOPARALLEL prevents this
auto-parallelization.

Syntax

cDEC$ PARALLEL [ALWAYS]

cDEC$ NOPARALLEL

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

PARALLEL helps the compiler to resolve dependencies, facilitating auto-parallelization of the
immediately following DO loop. It instructs the compiler to ignore dependencies that it assumes
may exist and which would prevent correct parallelization in the loop. However, if dependencies
are proven, they are not ignored.

In addition, PARALLEL ALWAYS overrides the compiler heuristics that estimate the likelihood
that parallelization of a loop will increase performance. It allows a loop to be parallelized even
if the compiler thinks parallelization may not improve performance.

NOPARALLEL prevents auto-parallelization of the immediately following DO loop.

These directives take effect only if you specify the compiler option that enables
auto-parallelization.

CAUTION. The directive PARALLEL ALWAYS should be used with care. Overriding the
heuristics of the compiler should only be done if you are absolutely sure the parallelization
will improve performance.

3142

63 Intel® Fortran Compiler User and Reference Guides

Example
program main

parameter (n=100)

integer x(n),a(n)

!DEC$ NOPARALLEL

do i=1,n

x(i) = i

enddo

!DEC$ PARALLEL

do i=1,n

a(x(i)) = i

enddo

end

See Also
• O to P
• O to P
• Rules for General Directives that Affect DO Loops

PARALLEL and NOPARALLEL Loop Directives
General Compiler Directives: PARALLEL
facilitates auto-parallelization for the immediately
following DO loop. NOPARALLEL prevents this
auto-parallelization.

Syntax

cDEC$ PARALLEL [ALWAYS]

cDEC$ NOPARALLEL

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

3143

63

PARALLEL helps the compiler to resolve dependencies, facilitating auto-parallelization of the
immediately following DO loop. It instructs the compiler to ignore dependencies that it assumes
may exist and which would prevent correct parallelization in the loop. However, if dependencies
are proven, they are not ignored.

In addition, PARALLEL ALWAYS overrides the compiler heuristics that estimate the likelihood
that parallelization of a loop will increase performance. It allows a loop to be parallelized even
if the compiler thinks parallelization may not improve performance.

NOPARALLEL prevents auto-parallelization of the immediately following DO loop.

These directives take effect only if you specify the compiler option that enables
auto-parallelization.

CAUTION. The directive PARALLEL ALWAYS should be used with care. Overriding the
heuristics of the compiler should only be done if you are absolutely sure the parallelization
will improve performance.

Example
program main

parameter (n=100)

integer x(n),a(n)

!DEC$ NOPARALLEL

do i=1,n

x(i) = i

enddo

!DEC$ PARALLEL

do i=1,n

a(x(i)) = i

enddo

end

See Also
• O to P
• O to P

3144

63 Intel® Fortran Compiler User and Reference Guides

• Rules for General Directives that Affect DO Loops

PARALLEL DO
OpenMP* Fortran Compiler Directive: Provides
an abbreviated way to specify a parallel region
containing a single DO directive.

Syntax

c$OMP PARALLEL DO [clause[[,] clause] ...]

do-loop

[c$OMP END PARALLEL DO]

Is one of the following: C (or c), !, or * (see Syntax Rules for
Compiler Directives).

c

Can be any of the clauses accepted by the DO or PARALLEL
directives.

clause

Is a DO iteration (a DO loop). It cannot be a DO WHILE or a DO
loop without loop control. The DO loop iteration variable must be
of type integer.

do-loop

You cannot branch out of a DO loop associated with a DO directive.

If the END PARALLEL DO directive is not specified, the PARALLEL DO is assumed to end with
the DO loop that immediately follows the PARALLEL DO directive. If used, the END PARALLEL
DO directive must appear immediately after the end of the DO loop.

The semantics are identical to explicitly specifying a PARALLEL directive immediately followed
by a DO directive.

Example

In the following example, the loop iteration variable is private by default and it is not necessary
to explicitly declare it. The END PARALLEL DO directive is optional:

c$OMP PARALLEL DO

DO I=1,N

B(I) = (A(I) + A(I-1)) / 2.0

END DO

c$OMP END PARALLEL DO

3145

63

The following example shows how to use the REDUCTION clause in a PARALLEL DO directive:

c$OMP PARALLEL DO DEFAULT(PRIVATE) REDUCTION(+: A,B)

DO I=1,N

CALL WORK(ALOCAL,BLOCAL)

A = A + ALOCAL

B = B + BLOCAL

END DO

c$OMP END PARALLEL DO

See Also
• O to P
• OpenMP Fortran Compiler Directives

PARALLEL SECTIONS
OpenMP* Fortran Compiler Directive: Provides
an abbreviated way to specify a parallel region
containing a single SECTIONS directive. The
semantics are identical to explicitly specifying a
PARALLEL directive immediately followed by a
SECTIONS directive.

Syntax

c$OMP PARALLEL SECTIONS [clause[[,] clause] ...]

[c$OMP SECTION]

block

[c$OMP SECTION

block]...

c$OMP END PARALLEL SECTIONS

Is one of the following: C (or c), !, or * (see Syntax Rules for
Compiler Directives).

c

Can be any of the clauses accepted by the PARALLEL or SECTIONS
directives.

clause

3146

63 Intel® Fortran Compiler User and Reference Guides

Is a structured block (section) of statements or constructs. You
cannot branch into or out of the block.

block

The last section ends at the END PARALLEL SECTIONS directive.

Example

In the following example, subroutines XAXIS, YAXIS, and ZAXIS can be executed concurrently:

c$OMP PARALLEL SECTIONS

c$OMP SECTION

CALL XAXIS

c$OMP SECTION

CALL YAXIS

c$OMP SECTION

CALL ZAXIS

c$OMP END PARALLEL SECTIONS

See Also
• O to P
• OpenMP Fortran Compiler Directives

PARALLEL WORKSHARE
OpenMP* Fortran Compiler Directive: Provides
an abbreviated way to specify a parallel region
containing a single WORKSHARE directive.

Syntax

c$OMP PARALLEL WORKSHARE [clause[[,] clause] ...]

block

c$OMP END PARALLEL WORKSHARE

Is one of the following: C (or c), !, or * (see Syntax Rules for
Compiler Directives).

c

Is any of the clauses accepted by the PARALLEL or WORKSHARE
directives.

clause

3147

63

Is a structured block (section) of statements or constructs. You
cannot branch into or out of the block (the parallel region).

block

See Also
• O to P
• OpenMP Fortran Compiler Directives
• WORKSHARE
• PARALLEL

PARAMETER
Statement and Attribute: Defines a named
constant.

Syntax

The PARAMETER attribute can be specified in a type declaration statement or a PARAMETER
statement, and takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] PARAMETER [, att-ls] :: c =expr[, c = expr] ...

Statement:

PARAMETER [(]c= expr[, c= expr] ... [)]

Is a data type specifier.type

Is an optional list of attribute specifiers.att-ls

Is the name of the constant.c

Is an initialization expression. It can be of any data type.expr

Description

The type, type parameters, and shape of the named constant are determined in one of the
following ways:

• By an explicit type declaration statement in the same scoping unit.

• By the implicit typing rules in effect for the scoping unit. If the named constant is implicitly
typed, it can appear in a subsequent type declaration only if that declaration confirms the
implicit typing.

3148

63 Intel® Fortran Compiler User and Reference Guides

For example, consider the following statement:

PARAMETER (MU=1.23)

According to implicit typing, MU is of integer type, so MU=1. For MU to equal 1.23, it should
previously be declared REAL in a type declaration or be declared in an IMPLICIT statement.

A named constant must not appear in a format specification or as the character count for
Hollerith constants.For compilation purposes, writing the name is the same as writing the value.

If the named constant is used as the length specifier in a CHARACTER declaration, it must be
enclosed in parentheses.

The name of a constant cannot appear as part of another constant, although it can appear as
either the real or imaginary part of a complex constant.

You can only use the named constant within the scoping unit containing the defining PARAMETER
statement.

Any named constant that appears in the initialization expression must have been defined
previously in the same type declaration statement (or in a previous type declaration statement
or PARAMETER statement), or made accessible by use or host association.

The use of parentheses is optional and can be controlled by using compiler option [no]altparam.

Example

The following example shows a type declaration statement specifying the PARAMETER attribute:

REAL, PARAMETER :: C = 2.9979251, Y = (4.1 / 3.0)

The following is an example of the PARAMETER statement:

REAL(4) PI, PIOV2

REAL(8) DPI, DPIOV2

LOGICAL FLAG

CHARACTER*(*) LONGNAME

PARAMETER (PI=3.1415927, DPI=3.141592653589793238D0)

PARAMETER (PIOV2=PI/2, DPIOV2=DPI/2)

PARAMETER (FLAG=.TRUE., LONGNAME='A STRING OF 25 CHARACTERS')

3149

63

The following shows another example:

! implicit integer type

PARAMETER (nblocks = 10)

! implicit real type

IMPLICIT REAL (L-M)

PARAMETER (loads = 10.0, mass = 32.2)

! typed by PARAMETER statement

! Requires compiler option

PARAMETER mass = 47.3, pi = 3.14159

PARAMETER bigone = 'This constant is larger than forty characters'

! PARAMETER in attribute syntax

REAL, PARAMETER :: mass=47.3, pi=3.14159, loads=10.0, mass=32.2

See Also
• O to P
• DATA
• Type Declarations
• Compatible attributes
• Initialization Expressions
• IMPLICIT
• Alternative syntax for the PARAMETER statement
• altparam compiler option

PASSDIRKEYSQQ (W*32, W*64)
QuickWin Function: Determines the behavior of
direction and page keys in a QuickWin application.

Module

USE IFQWIN

Syntax

result = PASSDIRKEYSQQ (val)

(Input) INTEGER(4) or LOGICAL(4).val

3150

63 Intel® Fortran Compiler User and Reference Guides

A value of .TRUE. causes direction and page keys to be input as
normal characters (the PassDirKeys flag is turned on). A value of
.FALSE. causes direction and page keys to be used for scrolling.
The following constants, defined in IFQWIN.F90, can be used as
integer arguments:

• PASS_DIR_FALSE - Turns off any special handling of direction
keys. They are not passed to the program by GETCHARQQ.

• PASS_DIR_TRUE - Turns on special handling of direction keys.
That is, they are passed to the program by GETCHARQQ.

• PASS_DIR_INSDEL - INSERT and DELETE are also passed to
the program by GETCHARQQ

• PASS_DIR_CNTRLC - Only needed for a QuickWin application,
but harmless if used with a Standard Graphics application that
already passes CTRL+C.

This value allows CTRL+C to be passed to a QuickWin program
by GETCHARQQ if the following is true: the program must have
removed the File menu EXIT item by using DELETEMENUQQ.

This value also passes direction keys and INSERT and DELETE.

Results

The return value indicates the previous setting of the PassDirKeys flag.

The return data type is the same as the data type of val; that is, either INTEGER(4) or
LOGICAL(4).

When the PassDirKeys flag is turned on, the mouse must be used for scrolling since the direction
and page keys are treated as normal input characters.

The PASSDIRKEYSQQ function is meant to be used primarily with the GETCHARQQ and
INCHARQQ functions. Do not use normal input statements (such as READ) with the PassDirKeys
flag turned on, unless your program is prepared to interpret direction and page keys.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3151

63

Example
use IFQWIN

logical*4 res

character*1 ch, ch1

Print *,"Type X to exit, S to scroll, D to pass Direction keys"

123 continue

ch = getcharqq()

! check for escapes

! 0x00 0x?? is a function key

! 0xE0 0x?? is a direction key

if (ichar(ch) .eq. 0) then

ch1 = getcharqq()

print *,"function key follows escape = ",ichar(ch), " ",ichar(ch1)," ",ch1

goto 123

else if (ichar(ch) .eq. 224) then

ch1 = getcharqq()

print *,"direction key follows escape = ",ichar(ch)," ",ichar(ch1)," ",ch1

goto 123

else

print *,ichar(ch)," ",ch

if(ch .eq. 'S') then

res = passdirkeysqq(.false.)

print *, "Entering Scroll mode ",res

endif

if(ch .eq. 'D') then

res = passdirkeysqq(.true.)

print *, "Entering Direction keys mode ",res

endif

3152

63 Intel® Fortran Compiler User and Reference Guides

if(ch .ne. 'X') go to 123

endif

end

3153

63

The following example uses an integer constant as an argument to PASSDIRKEYSQQ:

c===

c

c dirkeys4.for

c

c===

c

c Compile/Load Input Line for Standard Graphics Full Screen Window

c

c ifort /libs:qwins dirkeys4.for

c

c Compile/Load Input Line for QuickWin Graphics

c

c ifort /libs:qwin dirkeys4.for

c

c Program to illustrate how to get almost every character

c from the keyboard in QuickWin or Standard Graphics mode.

c Comment out the deletemenu line for Standard Graphics mode.

c

c If you are doing a standard graphics application,

c control C will come in as a Z'03' without further

c effort.

c

c In a QuickWin application, The File menu Exit item must

c be deleted, and PassDirKeysQQ called with PASS_DIR_CNTRLC

c to get control C.

c

c===

use IFQWIN

3154

63 Intel® Fortran Compiler User and Reference Guides

integer(4) status

character*1 key1,key2,ch1

write(*,*) 'Initializing'

c-----don't do this for a Standard Grapics application

c remove File menu Exit item.

status = deletemenuqq(1,3) ! stop QuickWin from getting control C

c-----set up to pass all keys to window including control c.

status = passdirkeysqq(PASS_DIR_CNTRLC)

c===

c

c read and print characters

c

c===

10 key1 = getcharqq()

c-----first check for control+c

if(ichar(key1) .eq. 3) then

write(*,*) 'Control C Received'

write(*,*) "Really want to quit?"

write(*,*) "Type Y <cr> to exit, or any other char <cr> to continue."

read(*,*) ch1

if(ch1.eq."y" .or. ch1.eq."Y") goto 30

goto 10

endif

if(ichar(key1).eq.0) then ! function key?

key2 = getcharqq()

write(*,15) ichar(key1),ichar(key2),key2

15 format(1x,2i12,1x,a1,' function key')

else

3155

63

if(ichar(key1).eq.224) then ! direction key?

key2 = getcharqq()

write(*,16) ichar(key1),ichar(key2),key2

16 format(1x,2i12,1x,a1,' direction key')

else

write(*,20) key1,ichar(key1) ! normal key

20 format(1x,a1,i11)

endif

endif

go to 10

30 stop

end

See Also
• O to P
• GETCHARQQ
• INCHARQQ

PAUSE
Statement: Temporarily suspends program
execution and lets you execute operating system
commands during the suspension. The PAUSE
statement is a deleted feature in Fortran 95; it was
obsolescent in Fortran 90. Intel Fortran fully
supports features deleted in Fortran 95.

Syntax

PAUSE [pause-code]

(Optional) Is an optional message. It can be either of the following:pause-code

• A scalar character constant of type default character.

• A string of up to six digits; leading zeros are ignored. (Fortran
90 and FORTRAN 77 limit digits to five.)

3156

63 Intel® Fortran Compiler User and Reference Guides

If you specify pause-code, the PAUSE statement displays the specified message and then
displays the default prompt.

If you do not specify pause-code, the system displays the following default message:

FORTRAN PAUSE

The following prompt is then displayed:

• On Windows* systems:

Fortran Pause - Enter command<CR> or <CR> to continue.

• On Linux* and Mac OS* X systems:

PAUSE prompt>

Effect on Windows* Systems

The program waits for input on stdin. If you enter a blank line, execution resumes at the next
executable statement.

Anything else is treated as a DOS command and is executed by a system() call. The program
loops, letting you execute multiple DOS commands, until a blank line is entered. Execution
then resumes at the next executable statement.

Effect on Linux* and Mac OS* Systems

The effect of PAUSE differs depending on whether the program is a foreground or background
process, as follows:

• If a program is a foreground process, the program is suspended until you enter the CONTINUE
command. Execution then resumes at the next executable statement.

Any other command terminates execution.

• If a program is a background process, the behavior depends on stdin, as follows:

• If stdinis redirected from a file, the system displays the following (after the pause code
and prompt):

To continue from background, execute 'kill -15 n'

In this message, nis the process id of the program.

• If stdinis not redirected from a file, the program becomes a suspended background job,
and you must specify fgto bring the job into the foreground. You can then enter a
command to resume or terminate processing.

3157

63

Example

The following examples show valid PAUSE statements:

PAUSE 701

PAUSE 'ERRONEOUS RESULT DETECTED'

The following shows another example:

CHARACTER*24 filename

PAUSE 'Enter DIR to see available files or press RETURN' &

&' if you already know filename.'

READ(*,'(A\)') filename

OPEN(1, FILE=filename)

. . .

See Also
• O to P
• STOP
• SYSTEM
• Obsolescent and Deleted Language Features

PEEKCHARQQ
Run-Time Function: Checks the keystroke buffer
for a recent console keystroke and returns .TRUE.
if there is a character in the buffer or .FALSE. if
there is not.

Module

USE IFCORE

Syntax

result = PEEKCHARQQ()

Results

The result type is LOGICAL(4). The result is .TRUE. if there is a character waiting in the keyboard
buffer; otherwise, .FALSE..

3158

63 Intel® Fortran Compiler User and Reference Guides

To find out the value of the key in the buffer, call GETCHARQQ. If there is no character waiting
in the buffer when you call GETCHARQQ, GETCHARQQ waits until there is a character in the
buffer. If you call PEEKCHARQQ first, you prevent GETCHARQQ from halting your process while
it waits for a keystroke. If there is a keystroke, GETCHARQQ returns it and resets PEEKCHARQQ
to .FALSE..

Compatibility

CONSOLE DLL LIB

Example
USE IFCORE

LOGICAL(4) pressed / .FALSE. /

DO WHILE (.NOT. pressed)

WRITE(*,*) ' Press any key'

pressed = PEEKCHARQQ ()

END DO

END

See Also
• O to P
• GETCHARQQ
• GETSTRQQ
• FGETC
• GETC

PERROR
Run-Time Subroutine: Sends a message to the
standard error stream, preceded by a specified
string, for the last detected error.

Module

USE IFCORE

Syntax

CALL PERROR (string)

3159

63

(Input) Character*(*). Message to precede the standard error
message.

string

The string sent is the same as that given by GERROR.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFCORE

character*24 errtext

errtext = 'In my opinion, '

. . .

! any error message generated by errtext is

! preceded by 'In my opinion, '

Call PERROR (errtext)

See Also
• O to P
• GERROR
• IERRNO

PIE, PIE_W (W*32, W*64)
Graphics Functions: Draw a pie-shaped wedge
in the current graphics color.

Module

USE IFQWIN

Syntax

result = PIE (i,x1,y1,x2,y2,x3,y3,x4,y4)

result = PIE_W (i, wx1, wy1, wx2, wy2, wx3, y3,wx4, wy4)

3160

63 Intel® Fortran Compiler User and Reference Guides

(Input) INTEGER(2). Fill flag. One of the following symbolic
constants (defined in IFQWIN.F90):

i

• $GFILLINTERIOR - Fills the figure using the current color and
fill mask.

• $GBORDER - Does not fill the figure.

(Input) INTEGER(2). Viewport coordinates for upper-left corner of
bounding rectangle.

x1, y1

(Input) INTEGER(2). Viewport coordinates for lower-right corner
of bounding rectangle.

x2, y2

(Input) INTEGER(2). Viewport coordinates of start vector.x3, y3

(Input) INTEGER(2). Viewport coordinates of end vector.x4, y4

(Input) REAL(8). Window coordinates for upper-left corner of
bounding rectangle.

wx1, wy1

(Input) REAL(8). Window coordinates for lower-right corner of
bounding rectangle.

wx2, wy2

(Input) REAL(8). Window coordinates of start vector.wx3, wy3

(Input) REAL(8). Window coordinates of end vector.wx4, wy4

Results

The result type is INTEGER(2). The result is nonzero if successful; otherwise, 0. If the pie is
clipped or partially out of bounds, the pie is considered successfully drawn and the return is 1.
If the pie is drawn completely out of bounds, the return is 0.

The border of the pie wedge is drawn in the current color set by SETCOLORRGB.

The PIE function uses the viewport-coordinate system. The center of the arc is the center of
the bounding rectangle, which is specified by the viewport-coordinate points (x1, y1) and (
x2, y2). The arc starts where it intersects an imaginary line extending from the center of the
arc through (x3, y3). It is drawn counterclockwise about the center of the arc, ending where
it intersects an imaginary line extending from the center of the arc through (x4, y4).

The PIE_W function uses the window-coordinate system. The center of the arc is the center of
the bounding rectangle specified by the window-coordinate points (wx1, wy1) and (wx2, wy2).
The arc starts where it intersects an imaginary line extending from the center of the arc through
(wx3, wy3). It is drawn counterclockwise about the center of the arc, ending where it intersects
an imaginary line extending from the center of the arc through (wx4, wy4).

3161

63

The fill flag option $GFILLINTERIOR is equivalent to a subsequent call to FLOODFILLRGB using
the center of the pie as the starting point and the current graphics color (set by SETCOLORRGB)
as the fill color. If you want a fill color different from the boundary color, you cannot use the
$GFILLINTERIOR option. Instead, after you have drawn the pie wedge, change the current
color with SETCOLORRGB and then call FLOODFILLRGB. You must supply FLOODFILLRGB with
an interior point in the figure you want to fill. You can get this point for the last drawn pie or
arc by calling GETARCINFO.

If you fill the pie with FLOODFILLRGB, the pie must be bordered by a solid line style. Line style
is solid by default and can be changed with SETLINESTYLE.

NOTE. The PIE routine described here is a QuickWin routine. If you are trying to use
the Microsoft* Platform SDK version of the Pie routine by including the IFWIN module,
you need to specify the routine name as MSFWIN$Pie. For more information, see Building
Applications: Special Naming Convention for Certain QuickWin and Win32 Graphics
Routines.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
! build as Graphics App.

USE IFQWIN

INTEGER(2) status, dummy

INTEGER(2) x1, y1, x2, y2, x3, y3, x4, y4

x1 = 80; y1 = 50

x2 = 180; y2 = 150

x3 = 110; y3 = 80

x4 = 90; y4 = 180

status = SETCOLOR(INT2(4))

dummy = PIE($GFILLINTERIOR, x1, y1, x2, y2, &

x3, y3, x4, y4)

END

3162

63 Intel® Fortran Compiler User and Reference Guides

This figure shows the coordinates used to define PIE and PIE_W:

See Also
• O to P
• SETCOLORRGB
• SETFILLMASK
• SETLINESTYLE
• FLOODFILLRGB
• GETARCINFO
• ARC
• ELLIPSE
• GRSTATUS
• LINETO
• POLYGON
• RECTANGLE

POINTER - Fortran 95/90
Statement and Attribute: Specifies that an object
is a pointer (a dynamic variable). A pointer does
not contain data, but points to a scalar or array
variable where data is stored. A pointer has no
initial storage set aside for it; memory storage is
created for the pointer as a program runs.

Syntax

The POINTER attribute can be specified in a type declaration statement or a POINTER statement,
and takes one of the following forms:

3163

63

Type Declaration Statement:

type,[att-ls,] POINTER [, att-ls] :: ptr[(d-spec)][, ptr[(d-spec)]]...

Statement:

POINTER [::]ptr[(d-spec)][, ptr[(d-spec)]] ...

Is a data type specifier.type-spec

Is an optional list of attribute specifiers.att-ls

Is the name of the pointer. The pointer cannot be declared with
the INTENT or PARAMETER attributes.

ptr

(Optional) Is a deferred-shape specification (: [, :] ...). Each colon
represents a dimension of the array.

d-spec

Description

No storage space is created for a pointer until it is allocated with an ALLOCATE statement or
until it is assigned to a allocated target. A pointer must not be referenced or defined until
memory is associated with it.

Each pointer has an association status, which tells whether the pointer is currently associated
with a target object. When a pointer is initially declared, its status is undefined. You can use
the ASSOCIATED intrinsic function to find the association status of a pointer if the pointer's
association status is defined.

If the pointer is an array, and it is given the DIMENSION attribute elsewhere in the program,
it must be declared as a deferred-shape array.

A pointer cannot be specified in an EQUIVALENCE or NAMELIST statement. A pointer in a DATA
statement can only be associated with NULL().

Fortran 95/90 pointers are not the same as integer pointers. For more information, see the
POINTER - Integer statement.

Example

The following example shows type declaration statements specifying the POINTER attribute:

TYPE(SYSTEM), POINTER :: CURRENT, LAST

REAL, DIMENSION(:,:), POINTER :: I, J, REVERSE

The following is an example of the POINTER statement:

TYPE(SYSTEM) :: TODAYS

POINTER :: TODAYS, A(:,:)

3164

63 Intel® Fortran Compiler User and Reference Guides

See also the examples POINTER.F90 and POINTER2.F90in the TUTORIAL sample programs.

The following shows another example:

REAL, POINTER :: arrow (:)

REAL, ALLOCATABLE, TARGET :: bullseye (:,:)

! The following statement associates the pointer with an unused

! block of memory.

ALLOCATE (arrow (1:8), STAT = ierr)

IF (ierr.eq.0) WRITE (*,'(/1x,a)') 'ARROW allocated'

arrow = 5.

WRITE (*,'(1x,8f8.0/)') arrow

ALLOCATE (bullseye (1:8,3), STAT = ierr)

IF (ierr.eq.0) WRITE (*,*) 'BULLSEYE allocated'

bullseye = 1.

bullseye (1:8:2,2) = 10.

WRITE (*,'(1x,8f8.0)') bullseye

! The following association breaks the association with the first

! target, which being unnamed and unassociated with other pointers,

! becomes lost. ARROW acquires a new shape.

arrow => bullseye (2:7,2)

WRITE (*,'(/1x,a)') 'ARROW is repointed & resized, all the 5s are lost'

WRITE (*,'(1x,8f8.0)') arrow

NULLIFY (arrow)

IF (.NOT.ASSOCIATED(arrow)) WRITE (*,'(/a/)') ' ARROW is not pointed'

DEALLOCATE (bullseye, STAT = ierr)

IF (ierr.eq.0) WRITE (*,*) 'Deallocation successful.'

END

See Also
• O to P

3165

63

• ALLOCATE
• ASSOCIATED
• DEALLOCATE
• NULLIFY
• TARGET
• Deferred-Shape Arrays
• Pointer Assignments
• Pointer Association
• Pointer Arguments
• NULL
• Integer POINTER statement
• Type Declarations
• Compatible attributes

POINTER - Integer
Statement: Establishes pairs of objects and
pointers, in which each pointer contains the
address of its paired object. This statement is
different from the Fortran 95/90
POINTERstatement.

Syntax

POINTER (pointer,pointee) [,(pointer,pointee)] . . .

Is a variable whose value is used as the address of the pointee.pointer

Is a variable; it can be an array name or array specification. It can
also be a procedure named in an EXTERNAL statement or in a
specific (non-generic) procedure interface block.

pointee

The following are pointer rules and behavior:

• Two pointers can have the same value, so pointer aliasing is allowed.

• When used directly, a pointer is treated like an integer variable. On IA-32 architecture, a
pointer occupies one numeric storage unit, so it is a 32-bit quantity (INTEGER(4)). On Intel®

64 architecture and IA-64 architecture, a pointer occupies two numeric storage units, so it
is a 64-bit quantity (INTEGER(8)).

• A pointer cannot be a pointee.

• A pointer cannot appear in an ASSIGN statement and cannot have the following attributes:

3166

63 Intel® Fortran Compiler User and Reference Guides

POINTERINTRINSICALLOCATABLE

TARGETPARAMETEREXTERNAL

A pointer can appear in a DATA statement with integer literals only.

• Integers can be converted to pointers, so you can point to absolute memory locations.

• A pointer variable cannot be declared to have any other data type.

• A pointer cannot be a function return value.

• You can give values to pointers by doing the following:

• Retrieve addresses by using the LOC intrinsic function (or the %LOC built-in function)

• Allocate storage for an object by using the MALLOC intrinsic function (or by using
malloc(3f) on Linux* and Mac OS* X systems)

For example:

Using %LOC: Using MALLOC:

INTEGER I(10) INTEGER I(10)

INTEGER I1(10) /10*10/ POINTER (P,I)

POINTER (P,I) P = MALLOC(40)

P = %LOC(I1) I = 10

I(2) = I(2) + 1 I(2) = I(2) + 1

• The value in a pointer is used as the pointee's base address.

The following are pointee rules and behavior:

• A pointee is not allocated any storage. References to a pointee look to the current contents
of its associated pointer to find the pointee's base address.

• A pointee cannot be data-initialized or have a record structure that contains data-initialized
fields.

• A pointee can appear in only one integer POINTER statement.

• A pointee array can have fixed, adjustable, or assumed dimensions.

• A pointee cannot appear in a COMMON, DATA, EQUIVALENCE, or NAMELIST statement, and
it cannot have the following attributes:

SAVEOPTIONALALLOCATABLE

3167

63

STATICPARAMETERAUTOMATIC

POINTERINTENT

• A pointee cannot be:

• A dummy argument

• A function return value

• A record field or an array element

• Zero-sized

• An automatic object

• The name of a generic interface block

• If a pointee is of derived type, it must be of sequence type.

Example
POINTER (p, k)

INTEGER j(2)

! This has the same effect as j(1) = 0, j(2) = 5

p = LOC(j)

k = 0

p = p + SIZEOF(k) ! 4 for 4-byte integer

k = 5

See Also
• O to P
• LOC
• MALLOC
• FREE

3168

63 Intel® Fortran Compiler User and Reference Guides

POLYBEZIER, POLYBEZIER_W (W*32, W*64)
Graphics Functions: Draw one or more Bezier
curves.

Module

USE IFQWIN

Syntax

result = POLYBEZIER (ppoints,cpoints)

result = POLYBEZIER_W (wppoints,cpoints)

(Input) Derived type xycoord. Array of derived types defining the
endpoints and the control points for each Bezier curve. The derived
type xycoordis defined in IFQWIN.F90 as follows:

TYPE xycoord

INTEGER(2) xcoord

INTEGER(2) ycoord

END TYPE xycoord

ppoints

(Input) INTEGER(2). Number of points in ppoints or wppoints.cpoints

(Input) Derived type wxycoord. Array of derived types defining
the endpoints and the control points for each Bezier curve. The
derived type wxycoordis defined in IFQWIN.F90 as follows:

TYPE wxycoord

REAL(8) wx

REAL(8) wy

END TYPE wxycoord

wppoints

Results

The result type is INTEGER(2). The result is nonzero if anything is drawn; otherwise, 0.

3169

63

A Bezier curve is based on fitting a cubic curve to four points. The first point is the starting
point, the next two points are control points, and last point is the ending point. The starting
point must be given for the first curve; subsequent curves use the ending point of the previous
curve as their starting point. So, cpoints should contain 4 for one curve, 7 for 2 curves, 10
for 3 curves, and so forth.

POLYBEZIER does not use or change the current graphics position.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3170

63 Intel® Fortran Compiler User and Reference Guides

Example
Program Bezier

use IFQWIN

! Shows how to use POLYBEZIER, POLYBEZIER_W,

! POLYBEZIERTO, and POLYBEZIERTO_W,

TYPE(xycoord) lppoints(31)

TYPE(wxycoord) wlppoints(31)

TYPE(xycoord) xy

TYPE(wxycoord) wxy

integer(4) i

integer(2) istat, orgx, orgy

real(8) worgx, worgy

i = setcolorrgb(Z'00FFFFFF') ! graphic to black

i = settextcolorrgb(Z'00FFFFFF') ! text to black

i = setbkcolorrgb(Z'00000000') ! background to white

call clearscreen($GCLEARSCREEN)

orgx = 20

orgy = 20

lppoints(1).xcoord = 1+orgx

lppoints(1).ycoord = 1+orgy

lppoints(2).xcoord = 30+orgx

lppoints(2).ycoord = 120+orgy

lppoints(3).xcoord = 150+orgx

lppoints(3).ycoord = 60+orgy

lppoints(4).xcoord = 180+orgx

lppoints(4).ycoord = 180+orgy

istat = PolyBezier(lppoints, 4)

! Show tangent lines

3171

63

! A bezier curve is tangent to the line

! from the begin point to the first control

! point. It is also tangent to the line from

! the second control point to the end point.

do i = 1,4,2

call moveto(lppoints(i).xcoord,lppoints(i).ycoord,xy)

istat = lineto(lppoints(i+1).xcoord,lppoints(i+1).ycoord)

end do

read(*,*)

worgx = 50.0

worgy = 50.0

wlppoints(1).wx = 1.0+worgx

wlppoints(1).wy = 1.0+worgy

wlppoints(2).wx = 30.0+worgx

wlppoints(2).wy = 120.0+worgy

wlppoints(3).wx = 150.0+worgx

wlppoints(3).wy = 60.0+worgy

wlppoints(4).wx = 180.0+worgx

wlppoints(4).wy = 180.0+worgy

i = setcolorrgb(Z'000000FF') ! graphic to red

istat = PolyBezier_W(wlppoints, 4)

! Show tangent lines

! A bezier curve is tangent to the line

! from the begin point to the first control

! point. It is also tangent to the line from

! the second control point to the end point.

do i = 1,4,2

call moveto_w(wlppoints(i).wx,wlppoints(i).wy,wxy)

3172

63 Intel® Fortran Compiler User and Reference Guides

istat = lineto_w(wlppoints(i+1).wx,wlppoints(i+1).wy)

end do

read(*,*)

orgx = 80

orgy = 80

! POLYBEZIERTO uses the current graphics position

! as its initial starting point so we start the

! array with the first first control point.

! lppoints(1).xcoord = 1+orgx ! need to move to this

! lppoints(1).ycoord = 1+orgy

lppoints(1).xcoord = 30+orgx

lppoints(1).ycoord = 120+orgy

lppoints(2).xcoord = 150+orgx

lppoints(2).ycoord = 60+orgy

lppoints(3).xcoord = 180+orgx

lppoints(3).ycoord = 180+orgy

i = setcolorrgb(Z'0000FF00') ! graphic to green

call moveto(1+orgx,1+orgy,xy)

istat = PolyBezierTo(lppoints, 3)

! Show tangent lines

! A bezier curve is tangent to the line

! from the begin point to the first control

! point. It is also tangent to the line from

! the second control point to the end point.

call moveto(1+orgx,1+orgy,xy)

istat = lineto(lppoints(1).xcoord,lppoints(1).ycoord)

call moveto(lppoints(2).xcoord,lppoints(2).ycoord,xy)

istat = lineto(lppoints(3).xcoord,lppoints(3).ycoord)

3173

63

read(*,*)

worgx = 110.0

worgy = 110.0

!wlppoints(1).wx = 1.0+worgx

!wlppoints(1).wy = 1.0+worgy

wlppoints(1).wx = 30.0+worgx

wlppoints(1).wy = 120.0+worgy

wlppoints(2).wx = 150.0+worgx

wlppoints(2).wy = 60.0+worgy

wlppoints(3).wx = 180.0+worgx

wlppoints(3).wy = 180.0+worgy

call moveto_w(1.0+worgx,1.0+worgy,wxy)

i = setcolorrgb(Z'00FF0000') ! graphic to blue

istat = PolyBezierTo_W(wlppoints, 3)

! Show tangent lines

! A bezier curve is tangent to the line

! from the begin point to the first control

! point. It is also tangent to the line from

! the second control point to the end point.

call moveto_w(1.0+worgx,1.0+worgy,wxy)

istat = lineto_w(wlppoints(1).wx,wlppoints(1).wy)

call moveto_w(wlppoints(2).wx,wlppoints(2).wy,wxy)

istat = lineto_w(wlppoints(3).wx,wlppoints(3).wy)

read(*,*)

END PROGRAM Bezier

See Also
• O to P
• POLYBEZIERTO, POLYBEZIERTO_W

3174

63 Intel® Fortran Compiler User and Reference Guides

POLYBEZIERTO, POLYBEZIERTO_W (W*32, W*64)
Graphics Functions: Draw one or more Bezier
curves.

Module

USE IFQWIN

Syntax

result = POLYBEZIERTO (ppoints,cpoints)

result = POLYBEZIERTO_W (wppoints,cpoints)

(Input) Derived type xycoord. Array of derived types defining the
endpoints and the control points for each Bezier curve. The derived
type xycoordis defined in IFQWIN.F90 as follows:

TYPE xycoord

INTEGER(2) xcoord

INTEGER(2) ycoord

END TYPE xycoord

ppoints

(Input) INTEGER(2). Number of points in ppoints or wppoints.cpoints

(Input) Derived type wxycoord. Array of derived types defining
the endpoints and the control points for each Bezier curve. The
derived type wxycoordis defined in IFQWIN.F90 as follows:

TYPE wxycoord

REAL(8) wx

REAL(8) wy

END TYPE wxycoord

wppoints

Results

The result type is INTEGER(2). The result is nonzero if anything is drawn; otherwise, 0.

3175

63

A Bezier curve is based on fitting a cubic curve to four points. The first point is the starting
point, the next two points are control points, and last point is the ending point. The starting
point is the current graphics position as set by MOVETO for the first curve; subsequent curves
use the ending point of the previous curve as their starting point. So, cpoints should contain
3 for one curve, 6 for 2 curves, 9 for 3 curves, and so forth.

POLYBEZIERTO moves the current graphics position to the ending point of the last curve drawn.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3176

63 Intel® Fortran Compiler User and Reference Guides

Example
Program Bezier

use IFQWIN

! Shows how to use POLYBEZIER, POLYBEZIER_W,

! POLYBEZIERTO, and POLYBEZIERTO_W,

TYPE(xycoord) lppoints(31)

TYPE(wxycoord) wlppoints(31)

TYPE(xycoord) xy

TYPE(wxycoord) wxy

integer(4) i

integer(2) istat, orgx, orgy

real(8) worgx, worgy

i = setcolorrgb(Z'00FFFFFF') ! graphic to black

i = settextcolorrgb(Z'00FFFFFF') ! text to black

i = setbkcolorrgb(Z'00000000') ! background to white

call clearscreen($GCLEARSCREEN)

orgx = 20

orgy = 20

lppoints(1).xcoord = 1+orgx

lppoints(1).ycoord = 1+orgy

lppoints(2).xcoord = 30+orgx

lppoints(2).ycoord = 120+orgy

lppoints(3).xcoord = 150+orgx

lppoints(3).ycoord = 60+orgy

lppoints(4).xcoord = 180+orgx

lppoints(4).ycoord = 180+orgy

istat = PolyBezier(lppoints, 4)

! Show tangent lines

3177

63

! A bezier curve is tangent to the line

! from the begin point to the first control

! point. It is also tangent to the line from

! the second control point to the end point.

do i = 1,4,2

call moveto(lppoints(i).xcoord,lppoints(i).ycoord,xy)

istat = lineto(lppoints(i+1).xcoord,lppoints(i+1).ycoord)

end do

read(*,*)

worgx = 50.0

worgy = 50.0

wlppoints(1).wx = 1.0+worgx

wlppoints(1).wy = 1.0+worgy

wlppoints(2).wx = 30.0+worgx

wlppoints(2).wy = 120.0+worgy

wlppoints(3).wx = 150.0+worgx

wlppoints(3).wy = 60.0+worgy

wlppoints(4).wx = 180.0+worgx

wlppoints(4).wy = 180.0+worgy

i = setcolorrgb(Z'000000FF') ! graphic to red

istat = PolyBezier_W(wlppoints, 4)

! Show tangent lines

! A bezier curve is tangent to the line

! from the begin point to the first control

! point. It is also tangent to the line from

! the second control point to the end point.

do i = 1,4,2

call moveto_w(wlppoints(i).wx,wlppoints(i).wy,wxy)

3178

63 Intel® Fortran Compiler User and Reference Guides

istat = lineto_w(wlppoints(i+1).wx,wlppoints(i+1).wy)

end do

read(*,*)

orgx = 80

orgy = 80

! POLYBEZIERTO uses the current graphics position

! as its initial starting point so we start the

! array with the first first control point.

! lppoints(1).xcoord = 1+orgx ! need to move to this

! lppoints(1).ycoord = 1+orgy

lppoints(1).xcoord = 30+orgx

lppoints(1).ycoord = 120+orgy

lppoints(2).xcoord = 150+orgx

lppoints(2).ycoord = 60+orgy

lppoints(3).xcoord = 180+orgx

lppoints(3).ycoord = 180+orgy

i = setcolorrgb(Z'0000FF00') ! graphic to green

call moveto(1+orgx,1+orgy,xy)

istat = PolyBezierTo(lppoints, 3)

! Show tangent lines

! A bezier curve is tangent to the line

! from the begin point to the first control

! point. It is also tangent to the line from

! the second control point to the end point.

call moveto(1+orgx,1+orgy,xy)

istat = lineto(lppoints(1).xcoord,lppoints(1).ycoord)

call moveto(lppoints(2).xcoord,lppoints(2).ycoord,xy)

istat = lineto(lppoints(3).xcoord,lppoints(3).ycoord)

3179

63

read(*,*)

worgx = 110.0

worgy = 110.0

! wlppoints(1).wx = 1.0+worgx

! wlppoints(1).wy = 1.0+worgy

wlppoints(1).wx = 30.0+worgx

wlppoints(1).wy = 120.0+worgy

wlppoints(2).wx = 150.0+worgx

wlppoints(2).wy = 60.0+worgy

wlppoints(3).wx = 180.0+worgx

wlppoints(3).wy = 180.0+worgy

call moveto_w(1.0+worgx,1.0+worgy,wxy)

i = setcolorrgb(Z'00FF0000') ! graphic to blue

istat = PolyBezierTo_W(wlppoints, 3)

! Show tangent lines

! A bezier curve is tangent to the line

! from the begin point to the first control

! point. It is also tangent to the line from

! the second control point to the end point.

call moveto_w(1.0+worgx,1.0+worgy,wxy)

istat = lineto_w(wlppoints(1).wx,wlppoints(1).wy)

call moveto_w(wlppoints(2).wx,wlppoints(2).wy,wxy)

istat = lineto_w(wlppoints(3).wx,wlppoints(3).wy)

read(*,*)

END PROGRAM Bezier

See Also
• O to P
• POLYBEZIER, POLYBEZIER_W
• MOVETO, MOVETO_W

3180

63 Intel® Fortran Compiler User and Reference Guides

POLYGON, POLYGON_W (W*32, W*64)
Graphics Functions: Draw a polygon using the
current graphics color, logical write mode, and line
style.

Module

USE IFQWIN

Syntax

result = POLYGON (control,ppoints,cpoints)

result = POLYGON_W (control,wppoints,cpoints)

(Input) INTEGER(2). Fill flag. One of the following symbolic
constants (defined in IFQWIN.F90):

control

• $GFILLINTERIOR - Draws a solid polygon using the current
color and fill mask.

• $GBORDER - Draws the border of a polygon using the current
color and line style.

(Input) Derived type xycoord. Array of derived types defining the
polygon vertices in viewport coordinates. The derived type
xycoordis defined in IFQWIN.F90 as follows:

TYPE xycoord

INTEGER(2) xcoord

INTEGER(2) ycoord

END TYPE xycoord

ppoints

(Input) INTEGER(2). Number of polygon vertices.cpoints

3181

63

(Input) Derived type wxycoord. Array of derived types defining
the polygon vertices in window coordinates. The derived type
wxycoordis defined in IFQWIN.F90 as follows:

TYPE wxycoord

REAL(8) wx

REAL(8) wy

END TYPE wxycoord

wppoints

Results

The result type is INTEGER(2). The result is nonzero if anything is drawn; otherwise, 0.

The border of the polygon is drawn in the current graphics color, logical write mode, and line
style, set with SETCOLORRGB, SETWRITEMODE, and SETLINESTYLE, respectively. The POLYGON
routine uses the viewport-coordinate system (expressed in xycoord derived types), and the
POLYGON_W routine uses real-valued window coordinates (expressed in wxycoordtypes).

The arguments ppoints and wppoints are arrays whose elements are xycoordor wxycoord
derived types. Each element specifies one of the polygon's vertices. The argument cpoints is
the number of elements (the number of vertices) in the ppoints or wppoints array.

Note that POLYGON draws between the vertices in their order in the array. Therefore, when
drawing outlines, skeletal figures, or any other figure that is not filled, you need to be careful
about the order of the vertices. If you don't want lines between some vertices, you may need
to repeat vertices to make the drawing backtrack and go to another vertex to avoid drawing
across your figure. Also, POLYGON draws a line from the last specified vertex back to the first
vertex.

If you fill the polygon using FLOODFILLRGB, the polygon must be bordered by a solid line style.
Line style is solid by default and can be changed with SETLINESTYLE.

NOTE. The POLYGON routine described here is a QuickWin routine. If you are trying to
use the Microsoft* Platform SDK version of the Polygon routine by including the IFWIN
module, you need to specify the routine name as MSFWIN$Polygon. For more information,
see Building Applications: Special Naming Convention for Certain QuickWin and Win32
Graphics Routines.

3182

63 Intel® Fortran Compiler User and Reference Guides

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3183

63

Example
! Build as a Graphics App.

!

! Draw a skeletal box

USE IFQWIN

INTEGER(2) status

TYPE (xycoord) poly(12)

! Set up box vertices in order they will be drawn, &

! repeating some to avoid unwanted lines across box

poly(1)%xcoord = 50

poly(1)%ycoord = 80

poly(2)%xcoord = 85

poly(2)%ycoord = 35

poly(3)%xcoord = 185

poly(3)%ycoord = 35

poly(4)%xcoord = 150

poly(4)%ycoord = 80

poly(5)%xcoord = 50

poly(5)%ycoord = 80

poly(6)%xcoord = 50

poly(6)%ycoord = 180

poly(7)%xcoord = 150

poly(7)%ycoord = 180

poly(8)%xcoord = 185

poly(8)%ycoord = 135

poly(9)%xcoord = 185

poly(9)%ycoord = 35

poly(10)%xcoord = 150

3184

63 Intel® Fortran Compiler User and Reference Guides

poly(10)%ycoord = 80

poly(11)%xcoord = 150

poly(11)%ycoord = 180

poly(12)%xcoord = 150

poly(12)%ycoord = 80

status = SETCOLORRGB(Z'0000FF')

status = POLYGON($GBORDER, poly, INT2(12))

END

See Also
• O to P
• SETCOLORRGB
• SETFILLMASK
• SETLINESTYLE
• FLOODFILLRGB
• GRSTATUS
• LINETO
• RECTANGLE
• SETWRITEMODE

POLYLINEQQ (W*32, W*64)
Graphics Function: Draws a line between each
successive x, y point in a given array.

Module

USE IFQWIN

Syntax

result = POLYLINEQQ (points,cnt)

3185

63

(Input) An array of DF_POINTobjects. The derived type DF_POINT
is defined in IFQWIN.F90 as:

type DF_POINT

sequence

integer(4) x

integer(4) y

end type DF_POINT

points

(Input) INTEGER(4). Number of elements in the points array.cnt

Results

The result type is INTEGER(4). The result is a nonzero value if successful; otherwise, zero.

POLYLINEQQ uses the viewport-coordinate system.

The lines are drawn using the current graphics color, logical write mode, and line style. The
graphics color is set with SETCOLORRGB, the write mode with SETWRITEMODE, and the line
style with SETLINESTYLE.

The current graphics position is not used or changed as it is in the LINETO function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS

3186

63 Intel® Fortran Compiler User and Reference Guides

Example
! Build for QuickWin or Standard Graphics

USE IFQWIN

TYPE(DF_POINT) points(12)

integer(4) result

integer(4) cnt, i

! load the points

do i = 1,12,2

points(i).x =20*i

points(i).y =10

points(i+1).x =20*i

points(i+1).y =60

end do

! A sawtooth pattern will appear in the upper left corner

result = POLYLINEQQ(points, 12)

end

See Also
• O to P
• LINETO
• LINETOAREX
• SETCOLORRGB
• SETLINESTYLE
• SETWRITEMODE

POPCNT
Elemental Intrinsic Function (Generic):
Returns the number of 1 bits in the integer
argument.

Syntax

result = POPCNT (i)

3187

63

(Input) Must be of type integer or logical.i

Results

The result type is the same as i. The result value is the number of 1 bits in the binary
representation of the integer i.

The model for the interpretation of an integer value as a sequence of bits is shown in Model
for Bit Data.

Example

If the value of I is B'0...00011010110', the value of POPCNT(I) is 5.

POPPAR
Elemental Intrinsic Function (Generic):
Returns the parity of the integer argument.

Syntax

result = POPPAR (i)

(Input) Must be of type integer or logical.i

Results

The result type is the same as i. The result value is 1 if there are an odd number of 1 bits in
the binary representation of the integer I. The result value is zero if there are an even number.

POPPAR(i) is the same as 1 .AND. POPCNT(i).

The model for the interpretation of an integer value as a sequence of bits is shown in Model
for Bit Data.

Example

If the value of I is B'0...00011010110', the value of POPPAR(I) is 1.

3188

63 Intel® Fortran Compiler User and Reference Guides

PRECISION
Inquiry Intrinsic Function (Generic): Returns
the decimal precision in the model representing
real numbers with the same kind parameter as the
argument.

Syntax

result = PRECISION (x)

(Input) Must be of type real or complex; it can be scalar or array
valued.

x

Results

The result is a scalar of type default integer. The result has the value INT((DIGITS(x) - 1) *
LOG10(RADIX(x))). If RADIX(x) is an integral power of 10, 1 is added to the result.

Example

If X is a REAL(4) value, PRECISION(X) has the value 6. The value 6 is derived from INT ((24-1)
* LOG10 (2.)) = INT (6.92...). For more information on the model for REAL(4), see Model for
Real Data.

PREFETCH and NOPREFETCH
General Compiler Directives: PREFETCH enables
a data prefetch from memory. Prefetching data
can minimize the effects of memory latency.
NOPREFETCH (the default) disables data
prefetching. These directives affect the heuristics
used in the compiler.

Syntax

cDEC$ PREFETCH [var1[: hint1[: distance1]] [,var2[: hint2[: distance2]]]...]

cDEC$ NOPREFETCH [var1[,var2]...]

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is an optional memory reference.var

3189

63

Is an optional integer initialization expression with the value 0, 1,
2, or 3. These are the same as the values for hint in the intrinsic
subroutine MM_PREFETCH. To use this argument, you must also
specify var.

hint

Is an optional integer initialization expression with a value greater
than 0. It indicates the number of loop iterations to perform before
the prefetch. To use this argument, you must also specify var and
hint.

distance

To use these directives, compiler option O2 or O3 must be set.

This directive affects the DO loop it precedes.

If you specify PREFETCH with no arguments, all arrays accessed in the DO loop will be prefetched.

If a loop includes expression A(j), placing cDEC$ PREFETCH A in front of the loop instructs the
compiler to insert prefetches for A(j + d) within the loop. The d is determined by the compiler.

Example
cDEC$ NOPREFETCH c

cDEC$ PREFETCH a

do i = 1, m

b(i) = a(c(i)) + 1

enddo

3190

63 Intel® Fortran Compiler User and Reference Guides

The following example is valid on IA-64 architecture:

sum = 0.d0

do j=1,lastrow-firstrow+1

i = rowstr(j)

iresidue = mod(rowstr(j+1)-i, 8)

sum = 0.d0

CDEC$ NOPREFETCH a,p,colidx

do k=i,i+iresidue-1

sum = sum + a(k)*p(colidx(k))

enddo

CDEC$ NOPREFETCH colidx

CDEC$ PREFETCH a:1:40

CDEC$ PREFETCH p:1:20

do k=i+iresidue, rowstr(j+1)-8, 8

sum = sum + a(k)*p(colidx(k))

& + a(k+1)*p(colidx(k+1)) + a(k+2)*p(colidx(k+2))

& + a(k+3)*p(colidx(k+3)) + a(k+4)*p(colidx(k+4))

& + a(k+5)*p(colidx(k+5)) + a(k+6)*p(colidx(k+6))

& + a(k+7)*p(colidx(k+7))

enddo

q(j) = sum

enddo

See Also
• M to N
• O to P
• MM_PREFETCH
• O

Optimizing Applications: Prefetching Support

3191

63

PRESENT
Inquiry Intrinsic Function (Generic): Returns
whether or not an optional dummy argument is
present, that is, whether it has an associated actual
argument.

Syntax

result = PRESENT (a)

(Input) Must be an argument of the current procedure and must
have the OPTIONAL attribute. An explicit interface for the current
procedure must be visible to its caller; for more information, see
Procedure Interfaces.

a

Results

The result is a scalar of type default logical. The result is .TRUE. if a is present; otherwise, the
result is .FALSE..

3192

63 Intel® Fortran Compiler User and Reference Guides

Example

Consider the following:

MODULE MYMOD

CONTAINS

SUBROUTINE CHECK (X, Y)

REAL X, Z

REAL, OPTIONAL :: Y

...

IF (PRESENT (Y)) THEN

Z = Y

ELSE

Z = X * 2

END IF

END SUBROUTINE CHECK

END MODULE MYMOD

...

USE MYMOD

CALL CHECK (15.0, 12.0) ! Causes Z to be set to 12.0

CALL CHECK (15.0) ! Causes Z to be set to 30.0

3193

63

The following shows another example:

CALL who(1, 2) ! prints "A present" "B present"

CALL who(1) ! prints "A present"

CALL who(b = 2) ! prints "B present"

CALL who() ! prints nothing

CONTAINS

SUBROUTINE who(a, b)

INTEGER(4), OPTIONAL :: a, b

IF (PRESENT(a)) PRINT *,'A present'

IF (PRESENT(b)) PRINT *,'B present'

END SUBROUTINE who

END

See Also
• O to P
• OPTIONAL
• Optional Arguments

PRINT
Statement: Displays output on the screen. TYPE
is a synonym for PRINT. All forms and rules for the
PRINT statement also apply to the TYPE statement.

Syntax

The PRINT statement is the same as a formatted, sequential WRITE statement, except that the
PRINT statement must never transfer data to user-specified I/O units. You can override this
restriction by using an environment variable. For more information, see Building Applications:
Logical Devices.

A PRINT statement takes one of the following forms:

Formatted:

PRINT form[, io-list]

Formatted - List-Directed:

PRINT *[, io-list]

3194

63 Intel® Fortran Compiler User and Reference Guides

Formatted - Namelist:

PRINT nml

Is the nonkeyword form of a format specifier (no FMT=).form

Is an I/O list.io-list

Is the format specifier indicating list-directed formatting.*

Is the nonkeyword form of a namelist specifier (no NML=)
indicating namelist formatting.

nml

Example

In the following example, one record (containing four fields of data) is printed to the implicit
output device:

CHARACTER*16 NAME, JOB

PRINT 400, NAME, JOB

400 FORMAT ('NAME=', A, 'JOB=', A)

The following shows another example:

! The following statements are equivalent:

PRINT '(A11)', 'Abbottsford'

WRITE (*, '(A11)') 'Abbottsford'

TYPE '(A11)', 'Abbottsford'

See Also
• O to P
• PUTC
• READ
• WRITE
• FORMAT
• Data Transfer I/O Statements
• File Operation I/O Statements
• PRINT as a value in CLOSE

3195

63

PRIVATE Statement
Statement and Attribute: Specifies that entities
in a module can be accessed only within the
module itself.

Syntax

The PRIVATE attribute can be specified in a type declaration statement or a PRIVATE statement,
and takes one of the following forms:

Type Declaration Statement:

type,[att-ls,] PRIVATE [, att-ls] :: entity[, entity]...

Statement:

PRIVATE [[::] entity[, entity] ...]

Is a data type specifier.type

Is an optional list of attribute specifiers.att-ls

Is one of the following:entity

• A variable name

• A procedure name

• A derived type name

• A named constant

• A namelist group name

In statement form, an entity can also be a generic identifier (a
generic name, defined operator, or defined assignment).

Description

The PRIVATE attribute can only appear in the scoping unit of a module.

Only one PRIVATE statement without an entity list is permitted in the scoping unit of a module;
it sets the default accessibility of all entities in the module.

If no PRIVATE statements are specified in a module, the default is PUBLIC accessibility. Entities
with PUBLIC accessibility can be accessed from outside the module by means of a USE statement.

If a derived type is declared PRIVATE in a module, its components are also PRIVATE. The derived
type and its components are accessible to any subprograms within the defining module through
host association, but they are not accessible from outside the module.

3196

63 Intel® Fortran Compiler User and Reference Guides

If the derived type is declared PUBLIC in a module, but its components are declared PRIVATE,
any scoping unit accessing the module though use association (or host association) can access
the derived-type definition, but not its components.

If a module procedure has a dummy argument or a function result of a type that has PRIVATE
accessibility, the module procedure must have PRIVATE accessibility. If the module has a generic
identifier, it must also be declared PRIVATE.

If a procedure has a generic identifier, the accessibility of the procedure's specific name is
independent of the accessibility of its generic identifier. One can be declared PRIVATE and the
other PUBLIC.

Example

The following examples show type declaration statements specifying the PUBLIC and PRIVATE
attributes:

REAL, PRIVATE :: A, B, C

INTEGER, PUBLIC :: LOCAL_SUMS

The following is an example of the PUBLIC and PRIVATE statements:

MODULE SOME_DATA

REAL ALL_B

PUBLIC ALL_B

TYPE RESTRICTED_DATA

REAL LOCAL_C

DIMENSION LOCAL_C(50)

END TYPE RESTRICTED_DATA

PRIVATE RESTRICTED_DATA

END MODULE

The following derived-type declaration statement indicates that the type is restricted to the
module:

TYPE, PRIVATE :: DATA

...

END TYPE DATA

3197

63

The following example shows a PUBLIC type with PRIVATE components:

MODULE MATTER

TYPE ELEMENTS

PRIVATE

INTEGER C, D

END TYPE

...

END MODULE MATTER

In this case, components C and D are private to type ELEMENTS, but type ELEMENTS is not
private to MODULE MATTER. Any program unit that uses the module MATTER, can declare
variables of type ELEMENTS, and pass as arguments values of type ELEMENTS.

3198

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

!LENGTH in module VECTRLEN calculates the length of a 2-D vector.

!The module contains both private and public procedures

MODULE VECTRLEN

PRIVATE SQUARE

PUBLIC LENGTH

CONTAINS

SUBROUTINE LENGTH(x,y,z)

REAL,INTENT(IN) x,y

REAL,INTENT(OUT) z

CALL SQUARE(x,y)

z = SQRT(x + y)

RETURN

END SUBROUTINE

SUBROUTINE SQUARE(x1,y1)

REAL x1,y1

x1 = x1**2

y1 = y1**2

RETURN

END SUBROUTINE

END MODULE

See Also
• O to P
• MODULE
• PUBLIC
• TYPE
• Defining Generic Names for Procedures
• USE
• Use and Host Association

3199

63

• Type Declarations
• Compatible attributes

PRIVATE Clause
Parallel Directive Clause: Declares specified
variables to be private to each thread in a team.

Syntax

PRIVATE (list)

Is the name of one or more variables or common blocks that are
accessible to the scoping unit. Subobjects cannot be specified.
Each name must be separated by a comma, and a named common
block must appear between slashes (/ /).

list

The following occurs when variables are declared in a PRIVATE clause:

• A new object of the same type is declared once for each thread in the team. The new object
is no longer storage associated with the original object.

• All references to the original object in the lexical extent of the directive construct are replaced
with references to the private object.

• Variables defined as PRIVATE are undefined for each thread on entering the construct and
the corresponding shared variable is undefined on exit from a parallel construct.

• Contents, allocation state, and association status of variables defined as PRIVATE are
undefined when they are referenced outside the lexical extent (but inside the dynamic
extent) of the construct, unless they are passed as actual arguments to called routines.

See Also
• O to P

Building Applications: Debugging Shared Variables

Optimizing Applications: OpenMP* Directives and Clauses Summary

Optimizing Applications: PRIVATE, FIRSTPRIVATE, and LASTPRIVATE Clauses

Optimizing Applications: REDUCTION Clause

Optimizing Applications: Data Scope Attribute Clauses Overview

Optimizing Applications: Parallel Region Directives

Optimizing Applications: Worksharing Construct Directives

3200

63 Intel® Fortran Compiler User and Reference Guides

PRODUCT
Transformational Intrinsic Function (Generic):
Returns the product of all the elements in an entire
array or in a specified dimension of an array.

Syntax

result = PRODUCT (array[,dim] [,mask])

(Input) Must be an array of type integer, real, or complex.array

(Input; optional) Must be a scalar integer with a value in the range
1 to n, where n is the rank of array.

dim

(Input; optional) Must be of type logical and conformable with
array.

mask

Results

The result is an array or a scalar of the same data type as array.

The result is a scalar if dim is omitted or array has rank one.

The following rules apply if dim is omitted:

• If PRODUCT(array) is specified, the result is the product of all elements of array. If array
has size zero, the result is 1.

• If PRODUCT(array, MASK= mask) is specified, the result is the product of all elements of
array corresponding to true elements of mask. If array has size zero, or every element of
mask has the value .FALSE., the result is 1.

The following rules apply if dim is specified:

• If array has rank one, the value is the same as PRODUCT(array[,MASK= mask]).

• An array result has a rank that is one less than array, and shape (d1, d2, ..., ddim-1, ddim+1,
..., dn), where (d1, d2, ..., dn) is the shape of array.

• The value of element (s1, s2, ..., sdim-1, sdim+1, ..., sn) of PRODUCT(array, dim[, mask]) is
equal to PRODUCT(array(s1, s2, ..., sdim-1, :, sdim+1, ..., sn) [,MASK= mask(s1, s2, ..., sdim-1,
:, sdim+1, ..., sn)]).

3201

63

Example

PRODUCT ((/2, 3, 4/)) returns the value 24 (the product of 2 * 3 * 4). PRODUCT ((/2, 3, 4/),
DIM=1) returns the same result.

PRODUCT (C, MASK=C .LT. 0.0) returns the product of the negative elements of C.

A is the array

[1 4 7]

[2 3 5].

PRODUCT (A, DIM=1) returns the value (2, 12, 35), which is the product of all elements in
each column. 2 is the product of 1 * 2 in column 1. 12 is the product of 4 * 3 in column 2, and
so forth.

PRODUCT (A, DIM=2) returns the value (28, 30), which is the product of all elements in each
row. 28 is the product of 1 * 4 * 7 in row 1. 30 is the product of 2 * 3 * 5 in row 2.

If array has shape (2, 2, 2), mask is omitted, and dim is 1, the result is an array result with
shape (2, 2) whose elements have the following values.

ValueResultant array element

array(1, 1, 1) * array(2, 1, 1)result(1, 1)

array(1, 2, 1) * array(2, 2, 1)result(2, 1)

array(1, 1, 2) * array(2, 1, 2)result(1, 2)

array(1, 2, 2) * array(2, 2, 2)result(2, 2)

3202

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

INTEGER array (2, 3)

INTEGER AR1(3), AR2(2)

array = RESHAPE((/1, 4, 2, 5, 3, 6/),(/2,3/))

! array is 1 2 3

! 4 5 6

AR1 = PRODUCT(array, DIM = 1) ! returns [4 10 18]

AR2 = PRODUCT(array, MASK = array .LT. 6, DIM = 2)

! returns [6 20]

END

See Also
• O to P
• SUM

PROGRAM
Statement: Identifies the program unit as a main
program and gives it a name.

Syntax

[PROGRAM name]

[specification-part]

[execution-part]

[CONTAINS

internal-subprogram-part]

END[PROGRAM [name]]

Is the name of the program.name

Is one or more specification statements, except for the following:specification-part

• INTENT (or its equivalent attribute)

• OPTIONAL (or its equivalent attribute)

• PUBLIC and PRIVATE (or their equivalent attributes)

3203

63

An automatic object must not appear in a specification statement.
If a SAVE statement is specified, it has no effect.

Is one or more executable constructs or statements, except for
ENTRY or RETURN statements.

execution-part

Is one or more internal subprograms (defining internal procedures).
The internal-subprogram-part is preceded by a CONTAINS
statement.

internal-subprogram-part

Description

The PROGRAM statement is optional. Within a program unit, a PROGRAM statement can be
preceded only by comment lines or an OPTIONS statement.

The END statement is the only required part of a program. If a name follows the END statement,
it must be the same as the name specified in the PROGRAM statement.

The program name is considered global and must be unique. It cannot be the same as any
local name in the main program or the name of any other program unit, external procedure,
or common block in the executable program.

A main program must not reference itself (either directly or indirectly).

Example

The following is an example of a main program:

PROGRAM TEST

INTEGER C, D, E(20,20) ! Specification part

CALL SUB_1 ! Executable part

...

CONTAINS

SUBROUTINE SUB_1 ! Internal subprogram

...

END SUBROUTINE SUB_1

END PROGRAM TEST

3204

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

PROGRAM MyProg

PRINT *, 'hello world'

END

See Also
• O to P

Building Applications: Building Applications from Microsoft* Visual Studio* .NET Overview

PROTECTED
Statement and Attribute: Specifies limitations
on the use of module entities.

Syntax

The PROTECTED attribute can be specified in a type declaration statement or a PROTECTED
statement, and takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] PROTECTED [, att-ls] :: entity[, entity] ...

Statement:

PROTECTED [::]entity[, entity] ...

Is a data type specifier.type

Is an optional list of attribute specifiers.att-ls

Is the name of an entity in a module.entity

The PROTECTED attribute can only appear in the specification part of a module.

The PROTECTED attribute can only be specified for a named variable that is not in a common
block.

A non-pointer object that has the PROTECTED attribute and is accessed by use association can
not appear in a variable definition or as the target in a pointer assignment statement.

A pointer object that has the PROTECTED attribute and is accessed by use association must
not appear as any of the following:

• A pointer-object in a NULLIFY statement

• A pointer-object in a pointer assignment statement

3205

63

• An object in an ALLOCATE or DEALLOCATE statement

• An actual argument in a reference to a procedure if the associated dummy argument is a
pointer with the INTENT(OUT) or INTENT(INOUT) attribute.

The following restrictions apply outside of the module in which the entity has been given the
PROTECTED attribute:

• A non-pointer entity may not be defined or redefined.

• A pointer entity may not have its association status changed through the pointer.

Example

The following example shows a type declaration statement specifying the PROTECTED attribute:

INTEGER, PROTECTED :: D, E

Consider the following example:

MODULE counter_mod

INTEGER, PROTECTED :: current = 0

CONTAINS

INTEGER FUNCTION next()

current = current + 1 ! current can be modified here

next = current

RETURN

END FUNCTION next

END MODULE counter_mod

PROGRAM test_counter

USE counter_mod

PRINT *, next() ! Prints 1

current = 42 ! Error: variable is protected

END PROGRAM test_counter

See Also
• O to P
• Modules and Module Procedures

3206

63 Intel® Fortran Compiler User and Reference Guides

• Type Declarations
• Compatible attributes
• Pointer Assignments

PSECT
General Compiler Directive: Modifies
characteristics of a common block.

Syntax

cDEC$ PSECT /common-name/ a[,a] ...

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the name of the common block. The slashes (/) are required.common-name

Is one of the following:a

• ALIGN= val or ALIGN= keyword

Specifies minimum alignment for the common block. ALIGN
only has an effect when specified on Windows* and Linux*
systems.

The val is a constant ranging from 0 through 6 on Windows*
systems and 0 through 4 on Linux* systems. The specified
number is interpreted as a power of 2. The value of the
expression is the alignment in bytes.

The keyword is one of the following:

Equivalent to valKeyword

0BYTE

1WORD

2LONG

3QUAD

4OCTA

i32: 12PAGE1

3207

63

Equivalent to valKeyword

i64: 13

1Range is 0 to 13 except on L*X32 , where the range is 0 to
12.

• [NO]WRT

Determines whether the contents of a common block can be
modified during program execution.

If one program unit changes one or more characteristics of a common block, all other units
that reference that common block must also change those characteristics in the same way.

The defaults are ALIGN=OCTA and WRT.

PUBLIC
Statement and Attribute: Specifies that entities
in a module can be accessed from outside the
module (by specifying a USE statement).

Syntax

The PUBLIC attribute can be specified in a type declaration statement or a PUBLIC statement,
and takes one of the following forms:

Type Declaration Statement:

type,[att-ls,] PUBLIC [, att-ls] :: entity [, entity]...

Statement:

PUBLIC [[::] entity [, entity] ...]

Is a data type specifier.type

Is an optional list of attribute specifiers.att-ls

Is one of the following:entity

• A variable name

• A procedure name

• A derived type name

• A named constant

3208

63 Intel® Fortran Compiler User and Reference Guides

• A namelist group name

In statement form, an entity can also be a generic identifier (a
generic name, defined operator, or defined assignment).

Description

The PUBLIC attribute can only appear in the scoping unit of a module.

Only one PUBLIC statement without an entity list is permitted in the scoping unit of a module;
it sets the default accessibility of all entities in the module.

If no PRIVATE statements are specified in a module, the default is PUBLIC accessibility.

If a derived type is declared PUBLIC in a module, but its components are declared PRIVATE,
any scoping unit accessing the module though use association (or host association) can access
the derived-type definition, but not its components.

If a module procedure has a dummy argument or a function result of a type that has PRIVATE
accessibility, the module procedure must have PRIVATE accessibility. If the module has a generic
identifier, it must also be declared PRIVATE.

If a procedure has a generic identifier, the accessibility of the procedure's specific name is
independent of the accessibility of its generic identifier. One can be declared PRIVATE and the
other PUBLIC.

Example

The following examples show type declaration statements specifying the PUBLIC and PRIVATE
attributes:

REAL, PRIVATE :: A, B, C

INTEGER, PUBLIC :: LOCAL_SUMS

3209

63

The following is an example of the PUBLIC and PRIVATE statements:

MODULE SOME_DATA

REAL ALL_B

PUBLIC ALL_B

TYPE RESTRICTED_DATA

REAL LOCAL_C

DIMENSION LOCAL_C(50)

END TYPE RESTRICTED_DATA

PRIVATE RESTRICTED_DATA

END MODULE

The following example shows a PUBLIC type with PRIVATE components:

MODULE MATTER

TYPE ELEMENTS

PRIVATE

INTEGER C, D

END TYPE

...

END MODULE MATTER

In this case, components C and D are private to type ELEMENTS, but type ELEMENTS is not
private to MODULE MATTER. Any program unit that uses the module MATTER, can declare
variables of type ELEMENTS, and pass as arguments values of type ELEMENTS.

3210

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

!LENGTH in module VECTRLEN calculates the length of a 2-D vector.

!The module contains both private and public procedures

MODULE VECTRLEN

PRIVATE SQUARE

PUBLIC LENGTH

CONTAINS

SUBROUTINE LENGTH(x,y,z)

REAL,INTENT(IN) x,y

REAL,INTENT(OUT) z

CALL SQUARE(x,y)

z = SQRT(x + y)

RETURN

END SUBROUTINE

SUBROUTINE SQUARE(x1,y1)

REAL x1,y1

x1 = x1**2

y1 = y1**2

RETURN

END SUBROUTINE

END MODULE

See Also
• O to P
• PRIVATE
• MODULE
• TYPE
• Defining Generic Names for Procedures
• USE
• Use and Host Association

3211

63

• Type Declarations
• Compatible attributes

PURE
Keyword: Asserts that a user-defined procedure
has no side effects.

Description

This kind of procedure is specified by using the prefix PURE (or ELEMENTAL) in a FUNCTION or
SUBROUTINE statement. Pure procedures are a Fortran 95 feature.

A pure procedure has no side effects. It has no effect on the state of the program, except for
the following:

• For functions: It returns a value.

• For subroutines: It modifies INTENT(OUT) and INTENT(INOUT) parameters.

The following intrinsic and library procedures are implicitly pure:

• All intrinsic functions

• The elemental intrinsic subroutine MVBITS

• The intrinsic subroutine MOVE_ALLOC

A statement function is pure only if all functions that it references are pure.

Except for procedure arguments and pointer arguments, the following intent must be specified
for all dummy arguments in the specification part of the procedure:

• For functions: INTENT(IN)

• For subroutines: any INTENT (IN, OUT, or INOUT)

A local variable declared in a pure procedure (including variables declared in any internal
procedure) must not:

• Specify the SAVE attribute

• Be initialized in a type declaration statement or a DATA statement

The following variables have restricted use in pure procedures (and any internal procedures):

• Global variables

• Dummy arguments with INTENT(IN) (or no declared intent)

3212

63 Intel® Fortran Compiler User and Reference Guides

• Objects that are storage associated with any part of a global variable

They must not be used in any context that does either of the following:

• Causes their value to change. For example, they must not be used as:

• The left side of an assignment statement or pointer assignment statement

• An actual argument associated with a dummy argument with INTENT(OUT),
INTENT(INOUT), or the POINTER attribute

• An index variable in a DO or FORALL statement, or an implied-DO clause

• The variable in an ASSIGN statement

• An input item in a READ statement

• An internal file unit in a WRITE statement

• An object in an ALLOCATE, DEALLOCATE, or NULLIFY statement

• An IOSTAT or SIZE specifier in an I/O statement, or the STAT specifier in a ALLOCATE
or DEALLOCATE statement

• Creates a pointer to that variable. For example, they must not be used as:

• The target in a pointer assignment statement

• The right side of an assignment to a derived-type variable (including a pointer to a derived
type) if the derived type has a pointer component at any level

A pure procedure must not contain the following:

• Any external I/O statement (including a READ or WRITE statement whose I/O unit is an
external file unit number or *)

• A PAUSE statement

• A STOP statement

A pure procedure can be used in contexts where other procedures are restricted; for example:

• It can be called directly in a FORALL statement or be used in the mask expression of a
FORALL statement.

• It can be called from a pure procedure. Pure procedures can only call other pure procedures.

• It can be passed as an actual argument to a pure procedure.

3213

63

If a procedure is used in any of these contexts, its interface must be explicit and it must be
declared pure in that interface.

Example

Consider the following:

PURE FUNCTION DOUBLE(X)

REAL, INTENT(IN) :: X

DOUBLE = 2 * X

END FUNCTION DOUBLE

The following shows another example:

PURE INTEGER FUNCTION MANDELBROT(X)

COMPLEX, INTENT(IN) :: X

COMPLEX__:: XTMP

INTEGER__:: K

! Assume SHARED_DEFS includes the declaration

! INTEGER ITOL

USE SHARED_DEFS

K = 0

XTMP = -X

DO WHILE (ABS(XTMP) < 2.0 .AND. K < ITOL)

XTMP = XTMP**2 - X

K = K + 1

END DO

ITER = K

END FUNCTION

3214

63 Intel® Fortran Compiler User and Reference Guides

The following shows the preceding function used in an interface block:

INTERFACE

PURE INTEGER FUNCTION MANDELBROT(X)

COMPLEX, INTENT(IN) :: X

END FUNCTION MANDELBROT

END INTERFACE

The following shows a FORALL construct calling the MANDELBROT function to update all the
elements of an array:

FORALL (I = 1:N, J = 1:M)

A(I,J) = MANDELBROT(COMPLX((I-1)*1.0/(N-1), (J-1)*1.0/(M-1))

END FORALL

See Also
• O to P
• FUNCTION
• SUBROUTINE
• FORALL
• ELEMENTAL prefix

PUTC
Portability Function: Writes a character to
Fortran external unit number 6.

Module

USE IFPORT

Syntax

result = PUTC (char)

(Input) Character. Character to be written to external unit 6.char

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, an error code.

3215

63

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
use IFPORT

integer(4) i4

character*1 char1

do i = 1,26

char1 = char(123-i)

i4 = putc(char1)

if (i4.ne.0) iflag = 1

enddo

See Also
• O to P
• GETC
• WRITE
• PRINT
• FPUTC

Building Applications: Portability Library Overview

PUTIMAGE, PUTIMAGE_W (W*32, W*64)
Graphics Subroutines: Transfer the image stored
in memory to the screen.

Module

USE IFQWIN

Syntax

CALL PUTIMAGE (x,y,image,action)

CALL PUTIMAGE_W (wx,wy,image,action)

(Input) INTEGER(2). Viewport coordinates for upper-left corner of
the image when placed on the screen.

x, y

3216

63 Intel® Fortran Compiler User and Reference Guides

(Input) REAL(8). Window coordinates for upper-left corner of the
image when placed on the screen.

wx, wy

(Input) INTEGER(1). Array of single-byte integers. Stored image
buffer.

image

(Input) INTEGER(2). Interaction of the stored image with the
existing screen image. One of the following symbolic constants
(defined in IFQWIN.F90):

action

• $GAND - Forms a new screen display as the logical AND of the
stored image and the existing screen display. Points that have
the same color in both the existing screen image and the stored
image remain the same color, while points that have different
colors are joined by a logical AND.

• $GOR - Superimposes the stored image onto the existing screen
display. The resulting image is the logical OR of the image.

• $GPRESET - Transfers the data point-by-point onto the screen.
Each point has the inverse of the color attribute it had when it
was taken from the screen by GETIMAGE, producing a negative
image.

• $GPSET - Transfers the data point-by-point onto the screen.
Each point has the exact color attribute it had when it was taken
from the screen by GETIMAGE.

• $GXOR - Causes points in the existing screen image to be
inverted wherever a point exists in the stored image. This
behavior is like that of a cursor. If you perform an exclusive
OR of an image with the background twice, the background is
restored unchanged. This allows you to move an object around
without erasing the background. The $GXOR constant is a
special mode often used for animation.

• In addition, the following ternary raster operation constants
can be used (described in the online documentation for the
Windows* API BitBlt):

• $GSRCCOPY (same as $GPSET)

• $GSRCPAINT (same as $GOR)

• $GSRCAND (same as $GAND)

• $GSRCINVERT (same as $GXOR)

3217

63

• $GSRCERASE

• $GNOTSRCCOPY (same as $GPRESET)

• $GNOTSRCERASE

• $GMERGECOPY

• $GMERGEPAINT

• $GPATCOPY

• $GPATPAINT

• $GPATINVERT

• $GDSTINVERT

• $GBLACKNESS

• $GWHITENESS

PUTIMAGE places the upper-left corner of the image at the viewport coordinates (x, y).
PUTIMAGE_W places the upper-left corner of the image at the window coordinates (wx, wy).

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3218

63 Intel® Fortran Compiler User and Reference Guides

Example
! Build as a Graphics App.

USE IFQWIN

INTEGER(1), ALLOCATABLE :: buffer(:)

INTEGER(2) status, x

INTEGER(4) imsize

status = SETCOLOR(INT2(4))

! draw a circle

status = ELLIPSE($GFILLINTERIOR,INT2(40),INT2(55), &

INT2(70),INT2(85))

imsize = IMAGESIZE (INT2(39),INT2(54),INT2(71), &

INT2(86))

ALLOCATE (buffer(imsize))

CALL GETIMAGE(INT2(39),INT2(54),INT2(71),INT2(86), &

buffer)

! copy a row of circles beneath it

DO x = 5 , 395, 35

CALL PUTIMAGE(x, INT2(90), buffer, $GPSET)

END DO

DEALLOCATE(buffer)

END

See Also
• O to P
• GETIMAGE
• GRSTATUS
• IMAGESIZE

3219

63

PXF(type)GET
POSIX Subroutine: Gets the value stored in a
component (or field) of a structure.

Module

USE IFPOSIX

Syntax

CALL PXF(type)GET (jhandle,compname,value,ierror)

CALL PXF(type)GET (jhandle,compname,value,ilen,ierror) ! syntax when (type)
is STR

A placeholder for one of the following values:(type)

Routine NameData TypeValue

PXFINTGETINTEGER(4)INT

PXFREALGETREAL(4)REAL

PXFLGCLGETLOGICAL(4)LGCL

PXFSTRGETCHARACTER*(*)STR

PXFCHARGETCHARACTER(1)CHAR

PXFDBLGETREAL(8)DBL

PXFINT8GETINTEGER(8)INT8

(Input) INTEGER(4). A handle of a structure.jhandle

(Input) Character. The name of the component (or field) of the
structure to retrieve data from.

compname

(Output) A variable, whose data type depends on the value of
(type). See the table above for the data types for each value;
for example, if the value for (type) is INT, the data type is
INTEGER(4). Stores the value of the component (or field).

value

3220

63 Intel® Fortran Compiler User and Reference Guides

(Output) INTEGER(4). This argument can only be used when
(type) is STR (PXFSTRGET). Stores the length of the returned
string.

ilen

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXF(type)GET subroutines retrieve the value from component (or field) compname of the
structure associated with handle jhandle into variable value.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

See the example in PXFTIMES (which shows PXFINTGET and PXFINT8GET)

See Also
• O to P
• PXF(type)SET

PXF(type)SET
POSIX Subroutine: Sets the value of a
component (or field) of a structure.

Module

USE IFPOSIX

Syntax

CALL PXF(type)SET (jhandle,compname,value,ierror)

CALL PXF(type)SET (jhandle,compname,value,ilen,ierror) ! syntax when (type)
is STR

A placeholder for one of the following values:(type)

Routine NameData TypeValue

PXFINTSETINTEGER(4)INT

PXFREALSETREAL(4)REAL

3221

63

Routine NameData TypeValue

PXFLGCLSETLOGICAL(4)LGCL

PXFSTRSETCHARACTER*(*)STR

PXFCHARSETCHARACTER(1)CHAR

PXFDBLSETREAL(8)DBL

PXFINT8SETINTEGER(8)INT8

(Input) INTEGER(4). A handle of a structure.jhandle

(Input) Character. The name of the component (or field) of the
structure to write data to.

compname

(Input) A variable, whose data type depends on the value of
(type). See the table above for the data types for each value;
for example, if the value for (type) is INT, the data type is
INTEGER(4). The value for the component (or field).

value

(Input) INTEGER(4). This argument can only be used when (type)
is STR (PXFSTRSET). The length of the string in value.

ilen

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

See the example in PXFSTRUCTCREATE (which shows PXFSTRSET)

See Also
• O to P
• PXF(type)GET

3222

63 Intel® Fortran Compiler User and Reference Guides

PXFA<TYPE>GET
POSIX Subroutine: Gets the array values stored
in a component (or field) of a structure.

Module

USE IFPOSIX

Syntax

CALL PXFA(type)GET (jhandle,compname,value,ialen,ierror)

CALL PXFA(type)GET (jhandle,compname,value,ialen,ilen,ierror) ! syntax when
(type) is STR

A placeholder for one of the following values:(type)

Routine NameData TypeValue

PXFAINTGETINTEGER(4)INT

PXFAREALGETREAL(4)REAL

PXFALGCLGETLOGICAL(4)LGCL

PXFASTRGETCHARACTER*(*)STR

PXFACHARGETCHARACTER(1)CHAR

PXFADBLGETREAL(8)DBL

PXFAINT8GETINTEGER(8)INT8

(Input) INTEGER(4). A handle of a structure.jhandle

(Input) Character. The name of the component (or field) of the
structure to retrieve data from.

compname

(Output) An array, whose data type depends on the value of
(type). See the table above for the data types for each value;
for example, if the value for (type) is INT, the data type of the
array is INTEGER(4). Stores the value of the component (or field).

value

(Input) INTEGER(4). The size of array value.ialen

3223

63

(Output) INTEGER(4). This argument can only be used when
(type) is STR (PXFASTRGET). An array that stores the lengths of
elements of array value.

ilen

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFA(type)GET subroutines are similar to the PXF(type)GET subroutines, but they should
be used when the component (or field) of the structure is an array.

When the PXFA(type)GET subroutines are used, the entire array is accessed (read from the
component or field) as a unit.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFA(type)SET
• PXF(type)GET

PXFA(type)SET
POSIX Subroutine: Sets the value of an array
component (or field) of a structure.

Module

USE IFPOSIX

Syntax

CALL PXFA(type)SET (jhandle, compname,value,ialen,ierror)

CALL PXFA(type)SET (jhandle,compname,value,ialen,ilen,ierror) ! syntax when
(type) is STR

A placeholder for one of the following values:(type)

Routine NameData TypeValue

PXFAINTSETINTEGER(4)INT

PXFAREALSETREAL(4)REAL

3224

63 Intel® Fortran Compiler User and Reference Guides

Routine NameData TypeValue

PXFALGCLSETLOGICAL(4)LGCL

PXFASTRSETCHARACTER*(*)STR

PXFACHARSETCHARACTER(1)CHAR

PXFADBLSETREAL(8)DBL

PXFAINT8SETINTEGER(8)INT8

(Input) INTEGER(4). A handle of a structure.jhandle

(Input) Character. The name of the component (or field) of the
structure to write data to.

compname

(Input) An array, whose data type depends on the value of (type).
See the table above for the data types for each value; for example,
if the value for (type) is INT, the data type of the array is
INTEGER(4). The value for the component (or field).

value

(Input) INTEGER(4). The size of array value.ialen

(Input) INTEGER(4). This argument can only be used when (type)
is STR (PXFASTRSET). An array that specifies the lengths of
elements of array value.

ilen

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFA(type)GET subroutines are similar to the PXF(type)GET subroutines, but they should
be used when the component (or field) of the structure is an array.

When the PXFA(type)GET subroutines are used, the entire array is accessed (read from the
component or field) as a unit.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFA(type)GET

3225

63

• PXF(type)SET

PXFACCESS
POSIX Subroutine: Determines the accessibility
of a file.

Module

USE IFPOSIX

Syntax

CALL PXFACCESS (path,ilen,iamode,ierror)

(Input) Character. The name of the file.path

(Input) INTEGER(4). The length of the path string.ilen

(Input) INTEGER(4). One or more of the following:iamode

Checks for existence of the
file.

0

Checks for execute permission.11

Checks for write access.2

Checks for read access.4

Checks for read/write access.6

1L*X only

(Output) INTEGER(4). The error status.ierror

If access is permitted, the result value is zero; otherwise, an error code. Possible error codes
are:

• -1: A bad parameter was passed.

• ENOENT: The named directory does not exist.

• EACCES: Access requested was denied.

On Windows* systems, if the name given is a directory name, the function only checks for
existence. All directories have read/write access on Windows* systems.

3226

63 Intel® Fortran Compiler User and Reference Guides

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFALARM
POSIX Subroutine: Schedules an alarm.

Module

USE IFPOSIX

Syntax

CALL PXFALARM (iseconds,isecleft,ierror)

(Input) INTEGER(4). The number of seconds before the alarm
signal should be delivered.

iseconds

(Output) INTEGER(4). The number of seconds remaining until any
previously scheduled alarm signal is due to be delivered.

isecleft

It is set to zero if there was no previously scheduled alarm signal.

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFALARM subroutine arranges for a SIGALRM signal to be delivered to the process in
seconds iseconds.

On Linux* and Mac OS* X systems, SIGALRM is a reserved defined constant that is equal to
14. You can use any other routine to install the signal handler. You can get SIGALRM and other
signal values by using PXFCONST or IPXFCONST.

On Windows* systems, the SIGALRM feature is not supported, but the POSIX library has an
implementation you can use. You can provide a signal handler for SIGALRM by using
PXFSIGACTION.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFCONST
• IPXFCONST

3227

63

• PXFSIGACTION

PXFCALLSUBHANDLE
POSIX Subroutine: Calls the associated
subroutine.

Module

USE IFPOSIX

Syntax

CALL PXFCALLSUBHANDLE (jhandle2,ival,ierror)

(Input) INTEGER(4). A handle to the subroutine.jhandle2

(Input) INTEGER(4). The argument to the subroutine.ival

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFCALLSUBHANDLE subroutine, when given a subroutine handle, calls the associated
subroutine.

PXFGETSUBHANDLE should be used to obtain a subroutine handle.

NOTE. The subroutine cannot be a function, an intrinsic, or an entry point, and must
be defined with exactly one integer argument.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFGETSUBHANDLE

3228

63 Intel® Fortran Compiler User and Reference Guides

PXFCFGETISPEED (L*X, M*X)
POSIX Subroutine: Returns the input baud rate
from a termios structure.

Module

USE IFPOSIX

Syntax

CALL PXFCFGETISPEED (jtermios,iospeed,ierror)

(Input) INTEGER(4). A handle of structure termios.jtermios

(Output) INTEGER(4). The returned value of the input baud rate
from the structure associated with handle jtermios.

iospeed

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

NOTE. To get a handle for an instance of the termios structure, use PXFSTRUCTCREATE
with the string 'termios' for the structure name.

See Also
• O to P
• PXFSTRUCTCREATE
• PXFCFSETISPEED

PXFCFGETOSPEED (L*X, M*X)
POSIX Subroutine: Returns the output baud rate
from a termios structure.

Module

USE IFPOSIX

Syntax

CALL PXFCFGETOSPEED (jtermios,iospeed,ierror)

(Input) INTEGER(4). A handle of structure termios.jtermios

3229

63

(Output) INTEGER(4). The returned value of the output baud rate
from the structure associated with handle jtermios.

iospeed

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

NOTE. To get a handle for an instance of the termios structure, use PXFSTRUCTCREATE
with the string 'termios' for the structure name.

See Also
• O to P
• PXFSTRUCTCREATE
• PXFCFSETOSPEED

PXFCFSETISPEED (L*X, M*X)
POSIX Subroutine: Sets the input baud rate in
a termios structure.

Module

USE IFPOSIX

Syntax

CALL PXFCFSETISPEED (jtermios,ispeed,ierror)

(Input) INTEGER(4). A handle of structure termios.jtermios

(Input) INTEGER(4). The value of the input baud rate for the
structure associated with handle jtermios.

ispeed

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

NOTE. To get a handle for an instance of the termios structure, use PXFSTRUCTCREATE
with the string 'termios' for the structure name.

3230

63 Intel® Fortran Compiler User and Reference Guides

See Also
• O to P
• PXFSTRUCTCREATE
• PXFCFGETISPEED

PXFCFSETOSPEED (L*X, M*X)
POSIX Subroutine: Sets the output baud rate in
a termios structure.

Module

USE IFPOSIX

Syntax

CALL PXFCFSETOSPEED (jtermios,ispeed,ierror)

(Input) INTEGER(4). A handle of structure termios.jtermios

(Input) INTEGER(4). The value of the output baud rate for the
structure associated with handle jtermios.

ispeed

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

NOTE. To get a handle for an instance of the termios structure, use PXFSTRUCTCREATE
with the string 'termios' for the structure name.

See Also
• O to P
• PXFSTRUCTCREATE
• PXFCFGETOSPEED

PXFCHDIR
POSIX Subroutine: Changes the current working
directory.

Module

USE IFPOSIX

3231

63

Syntax

CALL PXFCHDIR (path,ilen,ierror)

(Input) Character. The directory to be changed to.path

(Input) INTEGER(4). The length of the path string.ilen

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFMKDIR

PXFCHMOD
POSIX Subroutine: Changes the ownership mode
of the file.

Module

USE IFPOSIX

Syntax

CALL PXFCHMOD (path,ilen,imode,ierror)

(Input) Character. The path to the file.path

(Input) INTEGER(4). The length of the path string.ilen

(Input) INTEGER(4). The ownership mode of the file. On Windows*
systems, see your Microsoft* Visual C++ Installation in the
\include directory under sys\stat.h for the values of imode.
On Linux* and Mac OS* X systems, use octal file-access mode.

imode

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

3232

63 Intel® Fortran Compiler User and Reference Guides

NOTE. On Linux and Mac OS X systems, you must have sufficient ownership permissions,
such as being the owner of the file or having read/write access of the file.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFCHOWN (L*X, M*X)
POSIX Subroutine: Changes the owner and group
of a file.

Module

USE IFPOSIX

Syntax

CALL PXFCHOWN (path,ilen,iowner,igroup,ierror)

(Input) Character. The path to the file.path

(Input) INTEGER(4). The length of the path string.ilen

(Input) INTEGER(4). The owner UID.iowner

(Input) INTEGER(4). The group GID.igroup

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

PXFCLEARENV
POSIX Subroutine: Clears the process
environment.

Module

USE IFPOSIX

Syntax

CALL PXFCLEARENV (ierror)

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

3233

63

After a call to PXFCLEARENV, no environment variables are defined.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFCLOSE
POSIX Subroutine: Closes the file associated with
the descriptor.

Module

USE IFPOSIX

Syntax

CALL PXFCLOSE (fd,ierror)

(Input) INTEGER(4). A file descriptor.fd

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFOPEN

PXFCLOSEDIR
POSIX Subroutine: Closes the directory stream.

Module

USE IFPOSIX

Syntax

CALL PXFCLOSEDIR (idirid,ierror)

(Input) INTEGER(4). The directory ID obtained from PXFOPENDIR.idirid

(Output) INTEGER(4). The error status.ierror

3234

63 Intel® Fortran Compiler User and Reference Guides

If successful, ierror is set to zero; otherwise, an error code.

The PXFCLOSEDIR subroutine closes the directory associated with idirid.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFOPENDIR

PXFCONST
POSIX Subroutine: Returns the value associated
with a constant.

Module

USE IFPOSIX

Syntax

CALL PXFCONST (constname,ival,ierror)

(Input) Character. The name of one of the following constants:constname

• STDIN_UNIT

• STDOUT_UNIT

• STDERR_UNIT

• EINVAL

• ENONAME

• ENOHANDLE

• EARRAYLEN

• ENOENT

• ENOTDIR

• EACCES

The constants beginning with E signify various error values for the
system variable errno.

3235

63

(Output) INTEGER(4). The returned value of the constant.ival

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, it is set to -1.

For more information on these constants, see your Microsoft* Visual C++ documentation
(Windows* systems) or the errno.h file (Linux* and Mac OS* X systems).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFISCONST

PXFCREAT
POSIX Subroutine: Creates a new file or rewrites
an existing file.

Module

USE IFPOSIX

Syntax

CALL PXFCREAT (path,ilen,imode,ifildes,ierror)

(Input) Character. The pathname of the file.path

(Input) INTEGER(4). The length of path string.ilen

(Input) INTEGER(4). The mode of the newly created file. On
Windows* systems, see your Microsoft* Visual C++ documentation
for permitted mode values. On Linux* and Mac OS* X systems,
use octal file-access mode.

imode

(Output) INTEGER(4). The returned file descriptor.ifildes

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3236

63 Intel® Fortran Compiler User and Reference Guides

PXFCTERMID (L*X, M*X)
POSIX Subroutine: Generates a terminal
pathname.

Module

USE IFPOSIX

Syntax

CALL PXFCTERMID (s,ilen,ierror)

(Output) Character. The returned pathname of the terminal.s

(Output) INTEGER(4). The length of the returned value in the s
string.

ilen

(Output) INTEGER(4). The error status.ierror

If successful, ierroris set to zero; otherwise, an error code.

This subroutine returns a string that refers to the current controlling terminal for the current
process.

PXFDUP, PXFDUP2
POSIX Subroutine: Duplicates an existing file
descriptor.

Module

USE IFPOSIX

Syntax

CALL PXFDUP (ifildes,ifid,ierror)

CALL PXFDUP2 (ifildes,ifildes2,ierror)

(Input) INTEGER(4). The file descriptor to duplicate.ifildes

(Output) INTEGER(4). The returned new duplicated file descriptor.ifid

(Input) INTEGER(4). The number for the new file descriptor.ifildes2

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

3237

63

The PXFDUP subroutine creates a second file descriptor for an opened file.

The PXFDUP2 subroutine copies the file descriptor associated with ifildes. Integer number
ifildes2 becomes associated with this new file descriptor, but the value of ifildes2 is not
changed.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFE(type)GET
POSIX Subroutine: Gets the value stored in an
array element component (or field) of a structure.

Module

USE IFPOSIX

Syntax

CALL PXFE(type)GET (jhandle, compname,index,value,ierror)

CALL PXFE(type)GET (jhandle,compname,index,value,ilen,ierror) ! syntax when
(type) is STR

A placeholder for one of the following values:(type)

Routine NameData TypeValue

PXFEINTGETINTEGER(4)INT

PXFEREALGETREAL(4)REAL

PXFELGCLGETLOGICAL(4)LGCL

PXFESTRGETCHARACTER*(*)STR

PXFECHARGETCHARACTER(1)CHAR

PXFEDBLGETREAL(8)DBL

PXFEINT8GETINTEGER(8)INT8

(Input) INTEGER(4). A handle of a structure.jhandle

3238

63 Intel® Fortran Compiler User and Reference Guides

(Input) Character. The name of the component (or field) of the
structure to retrieve data from.

compname

(Input) INTEGER(4). The index of the array element to get data
for.

index

(Output) A variable, whose data type depends on the value of
(type). See the table above for the data types for each value;
for example, if the value for (type) is INT, the data type is
INTEGER(4). Stores the value of the component (or field).

value

(Output) INTEGER(4). This argument can only be used when
(type) is STR (PXFESTRGET). Stores the length of the returned
string.

ilen

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFE(type)GET subroutines are similar to the PXF(type)GET subroutines, but they should
be used when the component (or field) of the structure is an array.

When the PXFE(type)GET subroutines are used, the array element with index index is accessed
(read from the component or field).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFE(type)SET
• PXF(type)GET

PXFE(type)SET
POSIX Subroutine: Sets the value of an array
element component (or field) of a structure.

Module

USE IFPOSIX

Syntax

CALL PXFE(type)SET (jhandle, compname,index,value,ierror)

3239

63

CALL PXFE(type)SET (jhandle,compname,index,value,ilen,ierror) ! syntax when
(type) is STR

A placeholder for one of the following values:(type)

Routine NameData TypeValue

PXFEINTSETINTEGER(4)INT

PXFEREALSETREAL(4)REAL

PXFELGCLSETLOGICAL(4)LGCL

PXFESTRSETCHARACTER*(*)STR

PXFECHARSETCHARACTER(1)CHAR

PXFEDBLSETREAL(8)DBL

PXFEINT8SETINTEGER(8)INT8

(Input) INTEGER(4). A handle of a structure.jhandle

(Input) Character. The name of the component (or field) of the
structure to write data to.

compname

(Input) INTEGER(4). The index of the array element to write data
to.

index

(Input) A variable, whose data type depends on the value of
(type). See the table above for the data types for each value;
for example, if the value for (type) is INT, the data type is
INTEGER(4). The value for the component (or field).

value

(Input) INTEGER(4). This argument can only be used when (type)
is STR (PXFESTRSET). The length of the string value.

ilen

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFE(type)SET subroutines are similar to the PXF(type)SET subroutines, but they should
be used when the component (or field) of the structure is an array.

When the PXFE(type)SET subroutines are used, the array element with index index is accessed
(written to the component or field).

3240

63 Intel® Fortran Compiler User and Reference Guides

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFE(type)GET
• PXF(type)SET

PXFEXECV
POSIX Subroutine: Executes a new process by
passing command-line arguments.

Module

USE IFPOSIX

Syntax

CALL PXFEXECV (path,lenpath,argv,lenargv,iargc,ierror)

(Input) Character. The path to the new executable process.path

(Input) INTEGER(4). The length of path string.lenpath

(Input) An array of character strings. Contains the command-line
arguments to be passed to the new process.

argv

(Input) INTEGER(4). An array that contains the lengths for each
corresponding character string in argv.

lenargv

(Input) INTEGER(4). The number of command-line argumentsiargc

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFEXECV subroutine executes a new executable process (file) by passing command-line
arguments specified in the argv array. If execution is successful, no return is made to the calling
process.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3241

63

See Also
• O to P
• PXFEXECVE
• PXFEXECVP

PXFEXECVE
POSIX Subroutine: Executes a new process by
passing command-line arguments.

Module

USE IFPOSIX

Syntax

CALL PXFEXECVE (path,lenpath,argv,lenargv,iargc,env,lenenv,ienvc,ierror)

(Input) Character. The path to the new executable process.path

(Input) INTEGER(4). The length of path string.lenpath

(Input) An array of character strings. Contains the command-line
arguments to be passed to the new process.

argv

(Input) INTEGER(4). An array that contains the lengths for each
corresponding character string in argv.

lenargv

(Input) INTEGER(4). The number of command-line arguments.iargc

(Input) An array of character strings. Contains the environment
settings for the new process.

env

(Input) INTEGER(4). An array that contains the lengths for each
corresponding character string in env.

lenenv

(Input) INTEGER(4). The number of environment settings in env.ienvc

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFEXECVE subroutine executes a new executable process (file) by passing command-line
arguments specified in the argv array and environment settings specified in the env array.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3242

63 Intel® Fortran Compiler User and Reference Guides

See Also
• O to P
• PXFEXECV
• PXFEXECVP

PXFEXECVP
POSIX Subroutine: Executes a new process by
passing command-line arguments.

Module

USE IFPOSIX

Syntax

CALL PXFEXECVP (file,lenfile,argv,lenargv,iargc,ierror)

(Input) Character. The filename of the new executable process.file

(Input) INTEGER(4). The length of file string.lenfile

(Input) An array of character strings. Contains the command-line
arguments to be passed to the new process.

argv

(Input) INTEGER(4). An array that contains the lengths for each
corresponding character string in argv.

lenargv

(Input) INTEGER(4). The number of command-line arguments.iargc

(Input) Character. The filename of the new executable process.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFEXECVP subroutine executes a new executable process(file) by passing command-line
arguments specified in theargv array. It uses the PATH environment variable to find the file
to execute.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFEXECV
• PXFEXECVE

3243

63

PXFEXIT, PXFFASTEXIT
POSIX Subroutine: Exits from a process.

Module

USE IFPOSIX

Syntax

CALL PXFEXIT (istatus)

CALL PXFFASTEXIT (istatus)

(Input) INTEGER(4). The exit value.istatus

The PXFEXIT subroutine terminates the calling process. It calls, in last-in-first-out (LIFO) order,
the functions registered by C runtime functions atexit and onexit, and flushes all file buffers
before terminating the process. The istatus value is typically set to zero to indicate a normal
exit and some other value to indicate an error.

The PXFFASTEXIT subroutine terminates the calling process without processing atexit or
onexit, and without flushing stream buffers.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
program t1

use ifposix

integer(4) ipid, istat, ierror, ipid_ret, istat_ret

print *," the child process will be born"

call PXFFORK(IPID, IERROR)

call PXFGETPID(IPID_RET,IERROR)

3244

63 Intel® Fortran Compiler User and Reference Guides

if(IPID.EQ.0) then

print *," I am a child process"

print *," My child's pid is", IPID_RET

call PXFGETPPID(IPID_RET,IERROR)

print *," The pid of my parent is",IPID_RET

print *," Now I have exited with code 0xABCD"

call PXFEXIT(Z'ABCD')

else

print *," I am a parent process"

print *," My parent pid is ", IPID_RET

print *," I am creating the process with pid", IPID

print *," Now I am waiting for the end of the child process"

call PXFWAIT(ISTAT, IPID_RET, IERROR)

print *," The child with pid ", IPID_RET," has exited"

if(PXFWIFEXITED(ISTAT)) then

print *, " The child exited normally"

istat_ret = IPXFWEXITSTATUS(ISTAT)

print 10," The low byte of the child exit code is", istat_ret

end if

end if

10 FORMAT (A,Z)

end program

PXFFCNTL (L*X, M*X)
POSIX Subroutine: Manipulates an open file
descriptor.

Module

USE IFPOSIX

3245

63

Syntax

CALL PXFFCNTL (ifildes,icmd,iargin,iargout,ierror)

(Input) INTEGER(4). A file descriptor.ifildes

(Input) INTEGER(4). Defines an action for the file descriptor.icmd

(Input; output) INTEGER(4). Interpretation of this argument
depends on the value of icmd.

iargin

(Output) INTEGER(4). Interpretation of this argument depends on
the value of icmd.

iargout

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

PXFFCNTL is a multi-purpose subroutine that causes an action to be performed on a file
descriptor. The action, defined in icmd, can be obtained by using the values of predefined
macros in C header fcntl.h, or by using PXFCONST or IPXFCONST with one of the following
constant names:

ActionConstant

Returns into iargout the lowest available
unopened file descriptor greater than or equal
to iargin. The new file descriptor refers to

F_DUPFD

the same open file as ifildes and shares
any locks. The system flag FD_CLOEXEC for
the new file descriptor is cleared so the new
descriptor will not be closed on a call to
PXFEXEC subroutine.

Returns into iargout the value of system flag
FD_CLOEXEC associated with ifildes. In
this case, iargin is ignored.

F_GETFD

Sets or clears the system flag FD_CLOEXEC
for file descriptor ifildes. The PXFEXEC
family of functions will close all file descriptors

F_SETFD

with the FD_CLOEXEC flag set. The value for
FD_CLOEXEC is obtained from argument
iargin.

3246

63 Intel® Fortran Compiler User and Reference Guides

ActionConstant

Returns the file status flags for file descriptor
ifildes. Unlike F_GETFD, these flags are
associated with the file and shared by all

F_GETFL

descriptors. A combination of the following
flags, which are symbolic names for
PXFCONST or IPXFCONST, can be returned:

• O_APPEND - Specifies the file is opened
in append mode.

• O_NONBLOCK - Specifies when the file is
opened, it does not block waiting for data
to become available.

• O_RDONLY - Specifies the file is opened
for reading only.

• O_RDWR - Specifies the file is opened for
both reading and writing.

• O_WRONLY - Specifies the file is opened
for writing only.

Sets the file status flags from iargin for file
descriptor ifildes. Only O_APPEND or
O_NONBLOCK flags can be modified. In this
case, iargout is ignored.

F_SETFL

Gets information about a lock. Argument
iargin must be a handle of structure flock.
This structure is taken as the description of

F_GETLK

a lock for the file. If there is a lock already in
place that would prevent this lock from being
locked, it is returned to the structure
associated with handle iargin. If there are
no locks in place that would prevent the lock
from being locked, field l_type in the
structure is set to the value of the constant
with symbolic name F_UNLCK.

3247

63

ActionConstant

Sets or clears a lock. Argument iargin must
be a handle of structure flock. The lock is
set or cleared according to the value of
structure field l_type. If the lock is busy, an
error is returned.

F_SETLK

Sets or clears a lock, but causes the process
to wait if the lock is busy. Argument iargin
must be a handle of structure flock. The

F_SETLKW

lock is set or cleared according to the value
of structure field l_type. If the lock is busy,
PXFCNTL waits for an unlock.

NOTE. To get a handle for an instance of the flock structure, use PXFSTRUCTCREATE
with the string 'flock' for the structure name.

See Also
• O to P
• PXFSTRUCTCREATE
• IPXFCONST
• PXFCONST

PXFFDOPEN
POSIX Subroutine: Opens an external unit.

Module

USE IFPOSIX

Syntax

CALL PXFFDOPEN (ifildes,iunit,access,ierror)

(Input) INTEGER(4). The file descriptor of the opened file.ifildes

(Input) INTEGER(4). The Fortran logical unit to connect to file
descriptor ifildes.

iunit

3248

63 Intel® Fortran Compiler User and Reference Guides

(Input) Character. A character string that specifies the attributes
for the Fortran unit. The string must consist of one or more of the
following keyword/value pairs. Keyword/value pairs should be
separated by a comma, and blanks are ignored.

access

DefaultDescriptionPossible
Values

Keyword

'YES'I/O type'YES' or 'NO''NEWLINE'

'NULL'Interpretation
of blanks

'NULL' or
'ZERO'

'BLANK'

'UNKNOWN'File status at
open

'OLD',
'SCRATCH', or
'UNKNOWN'

'STATUS'

'FORMATTED'Format type'FORMATTED'
or
'UNFORMATTED'

'FORM'

Keywords should be separated from their values by the equals
('=') character; for example:

call PXFDOPEN (IFILDES, IUNIT, 'BLANK=NULL, STATUS=UNKNOWN',
IERROR)

(Output) INTEGER(4). The error status.ierror

The PXFFDOPEN subroutine connects an external unit identified by iunit to a file descriptor
ifildes. If unit is already connected to a file, the file should be closed before using PXFFDOPEN.

NOTE. On Windows* systems, the default value of the POSIX/IO flag is 0, which causes
PXFFDOPEN to return an error.

To prevent this, call subroutine PXFPOSIXIO and set the value of the POSIX/IO flag to
1.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3249

63

See Also
• O to P
• PXFPOSIXIO

PXFFFLUSH
POSIX Subroutine: Flushes a file directly to disk.

Module

USE IFPOSIX

Syntax

CALL PXFFFLUSH (lunit,ierror)

(Input) INTEGER(4). A Fortran logical unit.lunit

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFFFLUSH subroutine writes any buffered output to the file connected to unit lunit.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFFGETC
POSIX Subroutine: Reads a character from a file.

Module

USE IFPOSIX

Syntax

CALL PXFFGETC (lunit,char,ierror)

(Input) INTEGER(4). A Fortran logical unit.lunit

(Input) Character. The character to be read.char

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFFGETC subroutine reads a character from a file connected to unit lunit.

3250

63 Intel® Fortran Compiler User and Reference Guides

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFFPUTC

PXFFILENO
POSIX Subroutine: Returns the file descriptor
associated with a specified unit.

Module

USE IFPOSIX

Syntax

CALL PXFFILENO (lunit,fd,ierror)

(Input) INTEGER(4). A Fortran logical unit.lunit

(Output) INTEGER(4). The returned file descriptor.fd

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code. Possible error codes are:

• EINVAL: lunit is not an open unit.

• EBADF: lunit is not connected with a file descriptor.

The PXFFILENO subroutine returns in fd the file descriptor associated with lunit.

NOTE. On Windows* systems, the default value of the POSIX/IO flag is 0, which prevents
OPEN from connecting a unit to a file descriptor and causes PXFFILENO to return an
error.

To prevent this, call subroutine PXFPOSIXIO and set the value of the POSIX/IO flag to
1. This setting allows a connection to a file descriptor.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3251

63

See Also
• O to P
• PXFPOSIXIO

PXFFORK (L*X, M*X)
POSIX Subroutine: Creates a child process that
differs from the parent process only in its PID.

Module

USE IFPOSIX

Syntax

CALL PXFFORK (ipid,ierror)

(Output) INTEGER(4). The returned PID of the new child process.ipid

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFFORK subroutine creates a child process that differs from the parent process only in
its PID. If successful, the PID of the child process is returned in the parent's thread of execution,
and a zero is returned in the child's thread of execution. Otherwise, a -1 is returned in the
parent's context and no child process is created.

Example
program t1

use ifposix

integer(4) ipid, istat, ierror, ipid_ret, istat_ret

print *," the child process will be born"

call PXFFORK(IPID, IERROR)

call PXFGETPID(IPID_RET,IERROR)

3252

63 Intel® Fortran Compiler User and Reference Guides

if(IPID.EQ.0) then

print *," I am a child process"

print *," My child's pid is", IPID_RET

call PXFGETPPID(IPID_RET,IERROR)

print *," The pid of my parent is",IPID_RET

print *," Now I have exited with code 0xABCD"

call PXFEXIT(Z'ABCD')

else

print *," I am a parent process"

print *," My parent pid is ", IPID_RET

print *," I am creating the process with pid", IPID

print *," Now I am waiting for the end of the child process"

call PXFWAIT(ISTAT, IPID_RET, IERROR)

print *," The child with pid ", IPID_RET," has exited"

if(PXFWIFEXITED(ISTAT)) then

print *, " The child exited normally"

istat_ret = IPXFWEXITSTATUS(ISTAT)

print 10," The low byte of the child exit code is", istat_ret

end if

end if

10 FORMAT (A,Z)

end program

See Also
• O to P
• IPXWEXITSTATUS

3253

63

PXFFPATHCONF
POSIX Subroutine: Gets the value for a
configuration option of an opened file.

Module

USE IFPOSIX

Syntax

CALL PXFFPATHCONF (ifildes,name,ival,ierror)

(Input) INTEGER(4). The file descriptor of the opened file.ifildes

(Input) INTEGER(4). The configurable option.name

(Output) INTEGER(4). The value of the configurable option.ival

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFFPATHCONF subroutine gets a value for the configuration option named for the opened
file with descriptor ifildes.

The configuration option, defined in name, can be obtained by using PXFCONST or IPXFCONST
with one of the following constant names:

ActionConstant

Returns the maximum number of links to the
file. If ifildes refers to a directory, then the
value applies to the whole directory.

_PC_LINK_MAX

Returns the maximum length of a formatted
input line; the file descriptor ifildes must
refer to a terminal.

_PC_MAX_CANON1

Returns the maximum length of an input line;
the file descriptor ifildes must refer to a
terminal.

_PC_MAX_INPUT1

Returns the maximum length of a filename
in ifildes that the process is allowed to
create.

_PC_NAME_MAX

3254

63 Intel® Fortran Compiler User and Reference Guides

ActionConstant

Returns the maximum length of a relative
pathname when ifildes is the current
working directory.

_PC_PATH_MAX

Returns the size of the pipe buffer; the file
descriptor ifildes must refer to a pipe or
FIFO.

_PC_PIPE_BUF

Returns nonzero if PXFCHOWN may not be
used on this file. If ifildes refers to a
directory, then this applies to all files in that
directory.

_PC_CHOWN_RESTRICTED1

Returns nonzero if accessing filenames longer
than _POSIX_NAME_MAX will generate an
error.

_PC_NO_TRUNC1

Returns nonzero if special character
processing can be disabled; the file descriptor
ifildes must refer to a terminal.

_PC_VDISABLE1

1L*X, M*X

On Linux* and Mac OS* X systems, the corresponding macros are defined in <unistd.h>. The
values for name can be obtained by using PXFCONST or IPXFCONST when passing the string
names of predefined macros in <unistd.h>. The following table shows the corresponding macro
names for the above constants:

Corresponding MacroConstant

_POSIX_LINK_MAX_PC_LINK_MAX

_POSIX_MAX_CANON_PC_MAX_CANON

_POSIX_MAX_INPUT_PC_MAX_INPUT

_POSIX_NAME_MAX_PC_NAME_MAX

_POSIX_PATH_MAX_PC_PATH_MAX

3255

63

Corresponding MacroConstant

_POSIX_PIPE_BUF_PC_PIPE_BUF

_POSIX_CHOWN_RESTRICTED_PC_CHOWN_RESTRICTED

_POSIX_NO_TRUNC_PC_NO_TRUNC

_POSIX_VDISABLE_PC_VDISABLE

See Also
• O to P
• IPXFCONST
• PXFCONST
• PXFPATHCONF

PXFFPUTC
POSIX Subroutine: Writes a character to a file.

Module

USE IFPOSIX

Syntax

CALL PXFFPUTC (lunit,char,ierror)

(Input) INTEGER(4). A Fortran logical unit.lunit

(Input) Character. The character to be written.char

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code. A possible error code is EEND if
the end of the file has been reached.

The PXFFPUTC subroutine writes a character to the file connected to unit lunit.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3256

63 Intel® Fortran Compiler User and Reference Guides

See Also
• O to P
• PXFFGETC

PXFFSEEK
POSIX Subroutine: Modifies a file position.

Module

USE IFPOSIX

Syntax

CALL PXFFSEEK (lunit,ioffset,iwhence,ierror)

(Input) INTEGER(4). A Fortran logical unit.lunit

(Input) INTEGER(4). The number of bytes away from iwhence to
place the pointer.

ioffset

(Input) INTEGER(4). The position within the file. The value must
be one of the following constants (defined in stdio.h):

iwhence

Offset from the beginning of the file.SEEK_SET = 0

Offset from the current position of the file
pointer.

SEEK_CUR = 1

Offset from the end of the file.SEEK_END = 2

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code. Possible error codes are:

• EINVAL: No file is connected to lunit, iwhence is not a proper value, or the resulting offset
is invalid.

• ESPIPE: lunit is a pipe or FIFO.

• EEND: The end of the file has been reached.

The PXFFSEEK subroutine modifies the position of the file connected to unit lunit.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3257

63

PXFFSTAT
POSIX Subroutine: Gets a file's status
information.

Module

USE IFPOSIX

Syntax

CALL PXFFSTAT (ifildes,jstat,ierror)

(Input) INTEGER(4). The file descriptor for an opened file.ifildes

(Input) INTEGER(4). A handle of structure stat.jstat

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFFSTAT subroutine puts the status information for the file associated with ifildes into
the structure associated with handle jstat.

NOTE. To get a handle for an instance of the stat structure, use PXFSTRUCTCREATE
with the string 'stat' for the structure name.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFSTRUCTCREATE

PXFFTELL
POSIX Subroutine: Returns the relative position
in bytes from the beginning of the file.

Module

USE IFPOSIX

3258

63 Intel® Fortran Compiler User and Reference Guides

Syntax

CALL PXFFTELL (lunit,ioffset,ierror)

(Input) INTEGER(4). A Fortran logical unit.lunit

(Output) INTEGER(4). The returned relative position in bytes from
the beginning of the file.

ioffset

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFGETARG
POSIX Subroutine: Gets the specified
command-line argument.

Module

USE IFPOSIX

Syntax

CALL PXFGETARG (argnum,str,istr,ierror)

(Input) INTEGER(4). The number of the command-line argument.argnum

(Output) Character. The returned string value.str

(Output) INTEGER(4). The length of the returned string; it is zero
if an error occurs.

istr

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFGETARG subroutine places the command-line argument with number argnum into
character string str. If argnum is equal to zero, the value of the argument returned is the
command name of the executable file.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3259

63

See Also
• O to P
• IPXFARGC

PXFGETATTY
POSIX Subroutine: Tests whether a file descriptor
is connected to a terminal.

Module

USE IFPOSIX

Syntax

CALL PXFGETATTY (ifildes,isatty,ierror)

(Input) INTEGER(4). The file descriptor.ifildes

(Output) LOGICAL(4). The returned value.isatty

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

If file descriptor ifildes is open and connected to a terminal, isatty returns .TRUE.; otherwise,
.FALSE..

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFGETC
POSIX Subroutine: Reads a character from
standard input unit 5.

Module

USE IFPOSIX

Syntax

CALL PXFGETC (nextcar,ierror)

(Output) Character. The returned character that was read.nextcar

(Output) INTEGER(4). The error status.ierror

3260

63 Intel® Fortran Compiler User and Reference Guides

If successful, ierror is set to zero; otherwise, an error code.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFPUTC

PXFGETCWD
POSIX Subroutine: Returns the path of the
current working directory.

Module

USE IFPOSIX

Syntax

CALL PXFGETCWD (buf,ilen,ierror)

(Output) Character. The returned pathname of the current working
directory.

buf

(Output) INTEGER(4). The length of the returned pathname.ilen

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code. A possible error code is EINVAL
if the size of buf is insufficient.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFGETEGID (L*X, M*X)
POSIX Subroutine: Gets the effective group ID
of the current process.

Module

USE IFPOSIX

3261

63

Syntax

CALL PXFGETEGID (iegid,ierror)

(Output) INTEGER(4). The returned effective group ID.iegid

(Output) INTEGER(4). The error status.ierror

Description

If successful, ierror is set to zero; otherwise, an error code.

The effective ID corresponds to the set ID bit on the file being executed.

PXFGETENV
POSIX Subroutine: Gets the setting of an
environment variable.

Module

USE IFPOSIX

Syntax

CALL PXFGETENV (name,lenname,value,lenval,ierror)

(Input) Character. The name of the environment variable.name

(Input) INTEGER(4). The length of name.lenname

(Output) Character. The returned value of the environment
variable.

value

(Output) INTEGER(4). The returned length of value. If an error
occurs, it returns zero.

lenval

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFSETENV

3262

63 Intel® Fortran Compiler User and Reference Guides

PXFGETEUID (L*X, M*X)
POSIX Subroutine: Gets the effective user ID of
the current process.

Module

USE IFPOSIX

Syntax

CALL PXFGETEUID (ieuid,ierror)

(Output) INTEGER(4). The returned effective user ID.ieuid

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The effective ID corresponds to the set ID bit on the file being executed.

PXFGETGID (L*X, M*X)
POSIX Subroutine: Gets the real group ID of the
current process.

Module

USE IFPOSIX

Syntax

CALL PXFGETGID (igid,ierror)

(Output) INTEGER(4). The returned real group ID.igid

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The real ID corresponds to the ID of the calling process.

Example

See the example in PXFGETGROUPS

See Also
• O to P

3263

63

• PXFSETGID

PXFGETGRGID (L*X, M*X)
POSIX Subroutine: Gets group information for
the specified GID.

Module

USE IFPOSIX

Syntax

CALL PXFGETGRGID (jgid,jgroup,ierror)

(Input) INTEGER(4). The group ID to retrieve information about.jgid

(Input) INTEGER(4). A handle of structure group.jgroup

(Output) INTEGER(4). The error status.ierror

If successful, ierror is not changed; otherwise, an error code.

The PXFGETGRGID subroutine stores the group information from /etc/group for the entry
that matches the group GID jgid in the structure associated with handle jgroup.

NOTE. To get a handle for an instance of the groupstructure, use PXFSTRUCTCREATE
with the string 'group' for the structure name.

Example

See the example in PXFGETGROUPS

See Also
• O to P
• PXFSTRUCTCREATE

PXFGETGRNAM (L*X, M*X)
POSIX Subroutine: Gets group information for
the named group.

Module

USE IFPOSIX

3264

63 Intel® Fortran Compiler User and Reference Guides

Syntax

CALL PXFGETGRNAM (name,ilen,jgroup,ierror)

(Input) Character. The name of the group to retrieve information
about.

name

(Input) INTEGER(4). The length of the name string.ilen

(Input) INTEGER(4). A handle of structure group.jgroup

(Output) INTEGER(4). The error status.ierror

If successful, ierror is not changed; otherwise, an error code.

The PXFGETGRNAM subroutine stores the group information from /etc/group for the entry
that matches the group name name in the structure associated with handle jgroup.

NOTE. To get a handle for an instance of the group structure, use PXFSTRUCTCREATE
with the string 'group' for the structure name.

See Also
• O to P
• PXFSTRUCTCREATE

PXFGETGROUPS (L*X, M*X)
POSIX Subroutine: Gets supplementary group
IDs.

Module

USE IFPOSIX

Syntax

CALL PXFGETGROUPS (igidsetsize,igrouplist,ngroups,ierror)

(Input) INTEGER(4). The number of elements in the igrouplist
array.

igidsetsize

(Output) INTEGER(4). The array that has the returned
supplementary group IDs.

igrouplist

(Output) INTEGER(4). The total number of supplementary group
IDs for the process.

ngroups

3265

63

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFGETGROUPS subroutine returns, up to size igidsetsize, the supplementary group
IDs in array igrouplist. It is unspecified whether the effective group ID of the calling process
is included in the returned list. If the size is zero, the list is not modified, but the total number
of supplementary group IDs for the process is returned.

Example
program test5

use ifposix

implicit none

integer(4) number_of_groups, ierror, isize,i, igid

integer(4),allocatable,dimension(:):: igrouplist

integer(JHANDLE_SIZE) jgroup

! Get total number of groups in system

! call PXFGETGROUPS with 0

call PXFGETGROUPS(0, igrouplist, number_of_groups, ierror)

if(ierror.NE.0) STOP 'Error: first call of PXFGETGROUPS fails'

print *," The number of groups in system ", number_of_groups

! Get Group IDs

isize = number_of_groups

ALLOCATE(igrouplist(isize))

call PXFGETGROUPS(isize, igrouplist, number_of_groups, ierror)

if(ierror.NE.0) then

DEALLOCATE(igrouplist)

STOP 'Error: first call of PXFGETGROUPS fails'

end if

print *," Create an instance for structure 'group' "

3266

63 Intel® Fortran Compiler User and Reference Guides

call PXFSTRUCTCREATE("group",jgroup, ierror)

if(ierror.NE.0) then

DEALLOCATE(igrouplist)

STOP 'Error: PXFSTRUCTCREATE failed to create an instance of group'

end if

do i=1, number_of_groups

call PXFGETGRGID(igrouplist(i), jgroup, ierror)

if(ierror.NE.0) then

DEALLOCATE(igrouplist)

call PXFSTRUCTFREE(jgroup, ierror)

print *,'Error: PXFGETGRGID failed for i=',i," gid=", igrouplist(i)

STOP 'Abnormal termination'

end if

call PRINT_GROUP_INFO(jgroup)

end do

call PXFGETGID(igid,ierror)

if(ierror.NE.0) then

DEALLOCATE(igrouplist)

call PXFSTRUCTFREE(jgroup, ierror)

print *,'Error: PXFGETGID failed'

STOP 'Abnormal termination'

end if

3267

63

call PXFGETGRGID(igid, jgroup, ierror)

if(ierror.NE.0) then

DEALLOCATE(igrouplist)

call PXFSTRUCTFREE(jgroup, ierror)

print *,"Error: PXFGETGRGID failed for gid=", igid

STOP 'Abnormal termination'

end if

call PRINT_GROUP_INFO(jgroup)

DEALLOCATE(igrouplist)

call PXFSTRUCTFREE(jgroup, ierror)

print *," Program will normal terminated"

call PXFEXIT(0)

end

PXFGETLOGIN
POSIX Subroutine: Gets the name of the user.

Module

USE IFPOSIX

Syntax

CALL PXFGETLOGIN (s,ilen,ierror)

(Output) Character. The returned user name.s

(Output) INTEGER(4). The length of the string stored in s.ilen

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3268

63 Intel® Fortran Compiler User and Reference Guides

PXFGETPGRP (L*X, M*X)
POSIX Subroutine: Gets the process group ID of
the calling process.

Module

USE IFPOSIX

Syntax

CALL PXFGETPGRP (ipgrp,ierror)

(Output) INTEGER(4). The returned process group ID.ipgrp

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

Each process group is a member of a session and each process is a member of the session in
which its process group is a member.

PXFGETPID
POSIX Subroutine: Gets the process ID of the
calling process.

Module

USE IFPOSIX

Syntax

CALL PXFGETPID (ipid,ierror)

(Output) INTEGER(4). The returned process ID.ipid

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
program t1

3269

63

use ifposix

integer(4) ipid, istat, ierror, ipid_ret, istat_ret

print *," the child process will be born"

call PXFFORK(IPID, IERROR)

call PXFGETPID(IPID_RET,IERROR)

if(IPID.EQ.0) then

print *," I am a child process"

print *," My child's pid is", IPID_RET

call PXFGETPPID(IPID_RET,IERROR)

print *," The pid of my parent is",IPID_RET

print *," Now I have exited with code 0xABCD"

call PXFEXIT(Z'ABCD')

else

print *," I am a parent process"

print *," My parent pid is ", IPID_RET

print *," I am creating the process with pid", IPID

print *," Now I am waiting for the end of the child process"

call PXFWAIT(ISTAT, IPID_RET, IERROR)

print *," The child with pid ", IPID_RET," has exited"

if(PXFWIFEXITED(ISTAT)) then

print *, " The child exited normally"

istat_ret = IPXFWEXITSTATUS(ISTAT)

print 10," The low byte of the child exit code is", istat_ret

end if

end if

10 FORMAT (A,Z)

3270

63 Intel® Fortran Compiler User and Reference Guides

end program

PXFGETPPID
POSIX Subroutine: Gets the process ID of the
parent of the calling process.

Module

USE IFPOSIX

Syntax

CALL PXFGETPPID (ippid,ierror)

(Output) INTEGER(4). The returned process ID.ippid

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
program t1

use ifposix

integer(4) ipid, istat, ierror, ipid_ret, istat_ret

print *," the child process will be born"

call PXFFORK(IPID, IERROR)

call PXFGETPID(IPID_RET,IERROR)

3271

63

if(IPID.EQ.0) then

print *," I am a child process"

print *," My child's pid is", IPID_RET

call PXFGETPPID(IPID_RET,IERROR)

print *," The pid of my parent is",IPID_RET

print *," Now I have exited with code 0xABCD"

call PXFEXIT(Z'ABCD')

else

print *," I am a parent process"

print *," My parent pid is ", IPID_RET

print *," I am creating the process with pid", IPID

print *," Now I am waiting for the end of the child process"

call PXFWAIT(ISTAT, IPID_RET, IERROR)

print *," The child with pid ", IPID_RET," has exited"

if(PXFWIFEXITED(ISTAT)) then

print *, " The child exited normally"

istat_ret = IPXFWEXITSTATUS(ISTAT)

print 10," The low byte of the child exit code is", istat_ret

end if

end if

10 FORMAT (A,Z)

end program

PXFGETPWNAM (L*X, M*X)
POSIX Subroutine: Gets password information
for a specified name.

Module

USE IFPOSIX

3272

63 Intel® Fortran Compiler User and Reference Guides

Syntax

CALL PXFGETPWNAM (name,ilen,jpasswd,ierror)

(Input) Character. The login name of the user to retrieve
information about. For example, a login name might be "jsmith",
while the actual name is "John Smith".

name

(Input) INTEGER(4). The length of the name string.ilen

(Input) INTEGER(4). A handle of structure compnam.jpasswd

(Output) INTEGER(4). The error status.ierror

If successful, ierror is not changed; otherwise, an error code.

The PXFGETPWNAM subroutine stores the user information from /etc/passwd for the entry that
matches the user name name in the structure associated with handle jpasswd.

NOTE. To get a handle for an instance of the compnam structure, use PXFSTRUCTCREATE
with the string 'compnam' for the structure name.

See Also
• O to P
• PXFSTRUCTCREATE

PXFGETPWUID (L*X, M*X)
POSIX Subroutine: Gets password information
for a specified UID.

Module

USE IFPOSIX

Syntax

CALL PXFGETPWUID (iuid,jpasswd,ierror)

(Input) INTEGER(4). The user ID to retrieve information about.iuid

(Output) INTEGER(4). A handle of structure compnam.jpasswd

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

3273

63

The PXFGETPWUID subroutine stores the user information from /etc/passwd for the entry
that matches the user ID iuid in the structure associated with handle jpasswd.

NOTE. To get a handle for an instance of the compnam structure, use PXFSTRUCTCREATE
with the string 'compnam' for the structure name.

See Also
• O to P
• PXFSTRUCTCREATE

PXFGETSUBHANDLE
POSIX Subroutine: Returns a handle for a
subroutine.

Module

USE IFPOSIX

Syntax

CALL PXFGETSUBHANDLE (sub,jhandle1,ierror)

(Input) The Fortran subroutine to get a handle for.sub

(Output) INTEGER(4). The returned handle for the
subroutine.

jhandle1

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

NOTE. The argument sub cannot be a function, an intrinsic, or an entry point, and must
be defined with exactly one integer argument.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3274

63 Intel® Fortran Compiler User and Reference Guides

PXFGETUID (L*X, M*X)
POSIX Subroutine: Gets the real user ID of the
current process.

Module

USE IFPOSIX

Syntax

CALL PXFGETUID (iuid,ierror)

(Output) INTEGER(4). The returned real user ID.iuid

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The real ID corresponds to the ID of the calling process.

See Also
• O to P
• PXFSETUID

PXFISBLK
POSIX Function: Tests for a block special file.

Module

USE IFPOSIX

Syntax

result = PXFISBLK (m)

(Input) INTEGER(4). The value of the st_modecomponent (field)
in the structure stat.

m

Results

The result type is logical. If the file is a block special file, the result value is .TRUE.; otherwise,
.FALSE..

3275

63

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFISCHR

PXFISCHR
POSIX Function: Tests for a character file.

Module

USE IFPOSIX

Syntax

result = PXFISCHR (m)

(Input) INTEGER(4). The value of the st_modecomponent (field)
in the structure stat.

m

Results

The result type is logical. If the file is a character file, the result value is .TRUE.; otherwise,
.FALSE..

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFISBLK

PXFISCONST
POSIX Function: Tests whether a string is a valid
constant name.

Module

USE IFPOSIX

3276

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = PXFISCONST (s)

(Input) Character. The name of the constant to test.s

Results

The result type is logical. The PXFISCONST function confirms whether the argument is a valid
constant name that can be passed to functions PXFCONST and IPXFCONST. It returns .TRUE.
only if IPXFCONST will return a valid value for name s.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• IPXFCONST
• PXFCONST

PXFISDIR
POSIX Function: Tests whether a file is a
directory.

Module

USE IFPOSIX

Syntax

result = PXFISDIR (m)

(Input) INTEGER(4).The value of the st_mode component (field)
in the structure stat.

m

Results

The result type is logical. If the file is a directory, the result value is .TRUE.; otherwise, .FALSE..

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3277

63

PXFISFIFO
POSIX Function: Tests whether a file is a special
FIFO file.

Module

USE IFPOSIX

Syntax

result = PXFISFIFO (m)

(Input) INTEGER(4). The value of the st_modecomponent (field)
in the structure stat.

m

Results

The result type is logical.

The PXFISFIFO function tests whether the file is a special FIFO file created by PXFMKFIFO. If
the file is a special FIFO file, the result value is .TRUE.; otherwise, .FALSE..

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFMKFIFO
• PXFISREG

PXFISREG
POSIX Function: Tests whether a file is a regular
file.

Module

USE IFPOSIX

Syntax

result = PXFISREG (m)

3278

63 Intel® Fortran Compiler User and Reference Guides

(Input) INTEGER(4). The value of the st_mode component (field)
in the structure stat.

m

Results

The result type is logical. If the file is a regular file, the result value is .TRUE.; otherwise,
.FALSE..

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFMKFIFO
• PXFISFIFO

PXFKILL
POSIX Subroutine: Sends a signal to a specified
process.

Module

USE IFPOSIX

Syntax

CALL PXFKILL (ipid,isig,ierror)

(Input) INTEGER(4). The process to kill. It is determined by one
of the following values:

ipid

Kills the specific process.> 0

Kills all processes in the group.< 0

Kills all processes in the group
except special processes.

== 0

Kills all processes.== pid_t-1

(Input) INTEGER(4). The value of the signal to be sent.isig

3279

63

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFKILL subroutine sends a signal with value isig to a specified process. On Windows*
systems, only the ipid for the current process can be used.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFLINK
POSIX Subroutine: Creates a link to a file or
directory.

Module

USE IFPOSIX

Syntax

CALL PXFLINK (existing,lenexist,new,lennew,ierror)

(Input) Character. The path to the file or directory you want to
link to.

existing

(Input) INTEGER(4). The length of the existing string.lenexist

(Input) Character. The name of the new link file.new

(Input) INTEGER(4). The length of the new string.lennew

(Output) INTEGER(4). The error status.ierror

If successful, ierror is not changed; otherwise, an error code.

The PXFLINK subroutine creates a new link (also known as a hard link) to an existing file. This
new name can be used exactly as the old one for any operation. Both names refer to the same
file (so they have the same permissions and ownership) and it is impossible to tell which name
was the "original".

NOTE. On Windows* systems, this subroutine is only valid for NTFS file systems; for
FAT systems, it returns an error.

3280

63 Intel® Fortran Compiler User and Reference Guides

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFLOCALTIME
POSIX Subroutine: Converts a given elapsed
time in seconds to local time.

Module

USE IFPOSIX

Syntax

CALL PXFLOCALTIME (isecnds,iatime,ierror)

(Input) INTEGER(4). The elapsed time in seconds since 00:00:00
Greenwich Mean Time, January 1, 1970.

isecnds

(Output) INTEGER(4). One-dimensional array with 9 elements
containing numeric time data. The elements of iatime are returned
as follows:

iatime

ValueElement

Seconds (0-59)iatime(1)

Minutes (0-59)iatime(2)

Hours (0-23)iatime(3)

Day of month (1-31)iatime(4)

Month (1-12)iatime(5)

Gregorian year (for example,
1990)

iatime(6)

Day of week (0-6, where 0 is
Sunday)

iatime(7)

Day of year (1-366)iatime(8)

3281

63

ValueElement

Daylight savings flag (1 if
daylight savings time is in
effect; otherwise, 0)

iatime(9)

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFLOCALTIME subroutine converts the time (in seconds since epoch) in the isecnds
argument to the local date and time as described by the array iatime above.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFLSEEK
POSIX Subroutine: Positions a file a specified
distance in bytes.

Module

USE IFPOSIX

Syntax

CALL PXFLSEEK (ifildes,ioffset,iwhence,iposition,ierror)

(Input) INTEGER(4). A file descriptor.ifildes

(Input) INTEGER(4). The number of bytes to move.ioffset

(Input) INTEGER(4). The starting position. The value must be one
of the following:

iwhence

• SEEK_SET = 0

Sets the offset to ioffset bytes.

• SEEK_CUR = 1

Sets the offset to its current location plus ioffset bytes.

• SEEK_END = 2

Sets the offset to the size of the file plus ioffset bytes.

3282

63 Intel® Fortran Compiler User and Reference Guides

(Output) INTEGER(4). The ending position; the resulting offset
location as measured in bytes from the beginning of the file.

iposition

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFLSEEK subroutine repositions the offset of file descriptor ifildes to the argument
ioffset according to the value of argument iwhence.

PXFLSEEK allows the file offset to be set beyond the end of the existing end-of-file. If data is
later written at this point, subsequent reads of the data in the gap return bytes of zeros (until
data is actually written into the gap).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFMKDIR
POSIX Subroutine: Creates a new directory.

Module

USE IFPOSIX

Syntax

CALL PXFMKDIR (path,ilen,imode,ierror)

(Input) Character. The path for the new directory.path

(Input) INTEGER(4). The length of path string.ilen

(Input) INTEGER(4). The mode mask. Octal file-access mode.imode (L*X only)

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFRMDIR
• PXFCHDIR

3283

63

PXFMKFIFO (L*X, M*X)
POSIX Subroutine: Creates a new FIFO.

Module

USE IFPOSIX

Syntax

CALL PXFMKFIFO (path,ilen,imode,ierror)

(Input) Character. The path for the new FIFO.path

(Input) INTEGER(4). The length of path string.ilen

(Input) INTEGER(4). The mode mask; specifies the FIFO's
permissions. Octal file-access mode.

imode

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFMKFIFO subroutine creates a FIFO special file with name path. A FIFO special file is
similar to a pipe, except that it is created in a different way. Once a FIFO special file is created,
any process can open it for reading or writing in the same way as an ordinary file.

However, the FIFO file has to be open at both ends simultaneously before you can proceed to
do any input or output operations on it. Opening a FIFO for reading normally blocks it until
some other process opens the same FIFO for writing, and vice versa.

See Also
• O to P
• PXFISFIFO

PXFOPEN
POSIX Subroutine: Opens or creates a file.

Module

USE IFPOSIX

Syntax

CALL PXFOPEN (path,ilen,iopenflag,imode,ifildes,ierror)

3284

63 Intel® Fortran Compiler User and Reference Guides

(Input) Character. The path of the file to be opened or created.path

(Input) INTEGER(4). The length of path string.ilen

(Input) INTEGER(4). The flags for the file. (For possible constant
names that can be passed to PXFCONST or IPXFCONST, see below.)

iopenflag

(Input) INTEGER(4). The permissions for a new file. This argument
should always be specified when iopenflag=O_CREAT; otherwise,
it is ignored. (For possible permissions, see below.)

imode

(Output) INTEGER(4). The returned file descriptor for the opened
or created file.

ifildes

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

For iopenflag, you should specify one of the following constant values:

• O_RDONLY (read only)

• O_WRONLY (write only)

• O_RDWR (read and write)

In addition, you can also specify one of the following constant values by using a bitwise inclusive
OR (IOR):

ActionValue

Creates a file if the file does not exist.O_CREAT

When used with O_CREAT, it causes the open
to fail if the file already exists. In this case,
a symbolic link exists, regardless of where it
points to.

O_EXCL

If path refers to a terminal device, it prevents
it from becoming the process's controlling
terminal even if the process does not have
one.

O_NOCTTY1

If the file already exists, it is a regular file,
and imode allows writing (its value is
O_RDWR or O_WRONLY), it causes the file
to be truncated to length 0.

O_TRUNC

3285

63

ActionValue

Opens the file in append mode. Before each
write, the file pointer is positioned at the end
of the file, as if with PXFLSEEK.

O_APPEND

When possible, opens the file in non-blocking
mode. Neither the open nor any subsequent
operations on the file descriptor that is

O_NONBLOCK (or O_NDELAY)1

returned will cause the calling process to wait.
This mode need not have any effect on files
other than FIFOs.

Opens the file for synchronous I/O. Any writes
on the resulting file descriptor will block the
calling process until the data has been
physically written to the underlying hardware.

O_SYNC

If path is a symbolic link, it causes the open
to fail.

O_NOFOLLOW1

If path is not a directory, it causes the open
to fail.

O_DIRECTORY1

On 32-bit systems that support the Large
Files System, it allows files whose sizes
cannot be represented in 31 bits to be
opened.

O_LARGEFILE1

Opens the file in binary (untranslated) mode.O_BINARY2

Creates the file as temporary. If possible, it
does not flush to the disk.

O_SHORT_LIVED2

Creates the file as temporary. The file is
deleted when last file handle is closed.

O_TEMPORARY2

Specifies primarily random access from the
disk.

O_RANDOM2

3286

63 Intel® Fortran Compiler User and Reference Guides

ActionValue

Specifies primarily sequential access from the
disk.

O_SEQUENTIAL2

Opens the file in text (translated) mode.3O_TEXT2

1L*X only
2W*32, W*64
2W*32, W*64
3For more information, see "Text and Binary Modes" in the Visual C++* programmer's guide.

Argument imode specifies the permissions to use if a new file is created. The permissions only
apply to future accesses of the newly created file. The value for imode can be any of the following
constant values (which can be obtained by using PXFCONST or IPXFCONST):

DescriptionValue

00700 user (file owner) has read, write and
execute permission.

S_IRWXU

00400 user has read permission.S_IRUSR, S_IREAD

00200 user has write permission.S_IWUSR, S_IWRITE

00100 user has execute permission.S_IXUSR, S_IEXEC

00070 group has read, write and execute
permission.

S_IRWXG1

00040 group has read permission.S_IRGRP1

00020 group has write permission.S_IWGRP1

00010 group has execute permission.S_IXGRP1

00007 others have read, write and execute
permission.

S_IRWXO1

00004 others have read permission.S_IROTH1

3287

63

DescriptionValue

00002 others have write permission.S_IWOTH1

00001 others have execute permission.S_IXOTH1

1L*X only

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

The following call opens a file for writing only and if the file does not exist, it is created:

call PXFOPEN("OPEN.OUT", &

8, &

IOR(IPXFCONST(O_WRONLY), IPXFCONST(O_CREAT)), &

IOR(IPXFCONST(S_IREAD), IPXFCONST(S_IWRITE)))

See Also
• O to P
• PXFCLOSE
• IPXFCONST
• PXFCONST

PXFOPENDIR
POSIX Subroutine: Opens a directory and
associates a stream with it.

Module

USE IFPOSIX

Syntax

CALL PXFOPENDIR (dirname,lendirname,opendirid,ierror)

(Input) Character. The directory name.dirname

(Input) INTEGER(4). The length of dirname string.lendirname

3288

63 Intel® Fortran Compiler User and Reference Guides

(Output) INTEGER(4). The returned ID for the directory.opendirid

(Output) INTEGER(4). The error status.ierror
If successful, ierror is set to zero; otherwise, an error code.

This subroutine opens a directory pointed to by the dirname argument and returns the ID of
the directory into opendirid. After the call, this ID can be used by functions PXFREADDIR,
PXFREWINDDIR, PXFCLOSEDIR.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFCLOSEDIR
• PXFREADDIR
• PXFREADDIR

PXFPATHCONF
POSIX Subroutine: Gets the value for a
configuration option of an opened file.

Module

USE IFPOSIX

Syntax

CALL PXFPATHCONF (path,ilen,name,ival,ierror)

(Input) Character. The path to the opened file.path

(Input) INTEGER(4). The length of path.ilen

(Input) INTEGER(4). The configurable option.name

(Input) INTEGER(4). The value of the configurable option.ival

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFPATHCONF subroutine gets a value for the configuration option named for the opened
file with path path.

3289

63

The configuration option, defined in name, can be obtained by using PXFCONST or IPXFCONST
with one of the following constant names:

ActionConstant

Returns the maximum number of links to the
file. If path refers to a directory, then the
value applies to the whole directory.

_PC_LINK_MAX

Returns the maximum length of a formatted
input line; the path must refer to a terminal.

_PC_MAX_CANON1

Returns the maximum length of an input line;
the path must refer to a terminal.

_PC_MAX_INPUT1

Returns the maximum length of a filename
in path that the process is allowed to create.

_PC_NAME_MAX

Returns the maximum length of a relative
pathname when path is the current working
directory.

_PC_PATH_MAX

Returns the size of the pipe buffer; the path
must refer to a FIFO.

_PC_PIPE_BUF

Returns nonzero if PXFCHOWN may not be
used on this file. If path refers to a directory,
then this applies to all files in that directory.

_PC_CHOWN_RESTRICTED1

Returns nonzero if accessing filenames longer
than _POSIX_NAME_MAX will generate an
error.

_PC_NO_TRUNC1

Returns nonzero if special character
processing can be disabled; the path must
refer to a terminal.

_PC_VDISABLE1

1L*X, M*X

3290

63 Intel® Fortran Compiler User and Reference Guides

On Linux* and Mac OS* X systems, the corresponding macros are defined in <unistd.h>. The
values for name can be obtained by using PXFCONST or IPXFCONST when passing the string
names of predefined macros in <unistd.h>. The following table shows the corresponding macro
names for the above constants:

Corresponding MacroConstant

_POSIX_LINK_MAX_PC_LINK_MAX

_POSIX_MAX_CANON_PC_MAX_CANON

_POSIX_MAX_INPUT_PC_MAX_INPUT

_POSIX_NAME_MAX_PC_NAME_MAX

_POSIX_PATH_MAX_PC_PATH_MAX

_POSIX_PIPE_BUF_PC_PIPE_BUF

_POSIX_CHOWN_RESTRICTED_PC_CHOWN_RESTRICTED

_POSIX_NO_TRUN C_PC_NO_TRUNC

_POSIX_VDISABLE_PC_VDISABLE

See Also
• O to P
• IPXFCONST
• PXFCONST
• PXFFPATHCONF

PXFPAUSE
POSIX Subroutine: Suspends process execution.

Module

USE IFPOSIX

Syntax

CALL PXFPAUSE (ierror)

3291

63

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFPAUSE subroutine causes the invoking process (or thread) to sleep until a signal is
received that either terminates it or causes it to call a signal-catching function.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFPIPE
POSIX Subroutine: Creates a communications
pipe between two processes.

Module

USE IFPOSIX

Syntax

CALL PXFPIPE (ireadfd,iwritefd,ierror)

(Output) INTEGER(4). The file descriptor for reading.ireadfd

(Output) INTEGER(4). The file descriptor for writing.iwritefd

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFPIPE subroutine returns a pair of file descriptors, pointing to a pipe inode, and places
them into ireadfd for reading and into iwritefd for writing.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFPOSIXIO
POSIX Subroutine: Sets the current value of the
POSIX I/O flag.

Module

USE IFPOSIX

3292

63 Intel® Fortran Compiler User and Reference Guides

Syntax

CALL PXFPOSIXIO (new,old,ierror)

(Input) INTEGER(4). The new value for the POSIX I/O flag.new

(Output) INTEGER(4). The previous value of the POSIX I/O flag.old

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

This subroutine sets the current value of the Fortran POSIX I/O flag and returns the previous
value of the flag. The initial state of the POSIX I/O flag is unspecified.

If a file is opened with a Fortran OPEN statement when the value of the POSIX I/O flag is 1,
the unit is accessed as if the records are newline delimited, even if the file does not contain
records that are delimited by a new line character.

If a file is opened with a Fortran OPEN statement when the value of the POSIX I/O flag is zero,
a connection to a file descriptor is not assumed and the records in the file are not required to
be accessed as if they are newline delimited.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFPUTC
POSIX Subroutine: Outputs a character to logical
unit 6 (stdout).

Module

USE IFPOSIX

Syntax

CALL PXFPUTC (ch,ierror)

(Input) Character. The character to be written.ch

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code. A possible error code is EEND if
the end of the file has been reached.

3293

63

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFGETC

PXFREAD
POSIX Subroutine: Reads from a file.

Module

USE IFPOSIX

Syntax

CALL PXFREAD (ifildes,buf,nbyte,nread,ierror)

(Input) INTEGER(4). The file descriptor of the file to be read from.ifildes

(Output) Character. The buffer that stores the data read from the
file.

buf

(Input) INTEGER(4). The number of bytes to read.nbyte

(Output) INTEGER(4). The number of bytes that were read.nread

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFREAD subroutine reads nbyte bytes from the file specified by ifildes into memory
in buf. The subroutine returns the total number of bytes read into nread. If no error occurs,
the value of nread will equal the value of nbyte.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFWRITE

3294

63 Intel® Fortran Compiler User and Reference Guides

PXFREADDIR
POSIX Subroutine: Reads the current directory
entry.

Module

USE IFPOSIX

Syntax

CALL PXFREADDIR (idirid,jdirent,ierror)

(Input) INTEGER(4). The ID of a directory obtained from
PXFOPENDIR.

idirid

(Output) INTEGER(4). A handle of structure dirent.jdirent

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFREADDIR subroutine reads the entry of the directory associated with idirid into the
structure associated with handle jdirent.

NOTE. To get a handle for an instance of the dirent structure, use PXFSTRUCTCREATE
with the string 'dirent' for the structure name.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFOPENDIR
• PXFREWINDDIR

PXFRENAME
POSIX Subroutine: Changes the name of a file.

Module

USE IFPOSIX

3295

63

Syntax

CALL PXFRENAME (old,lenold,new,lennew,ierror)

(Input) Character. The name of the file to be renamed.old

(Input) INTEGER(4). The length of old string.lenold

(Input) Character. The new file name.new

(Input) INTEGER(4). The length of new string.lennew

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFREWINDDIR
POSIX Subroutine: Resets the position of the
stream to the beginning of the directory.

Module

USE IFPOSIX

Syntax

CALL PXFREWINDDIR (idirid,ierror)

(Input) INTEGER(4). The ID of a directory obtained from
PXFOPENDIR.

idirid

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3296

63 Intel® Fortran Compiler User and Reference Guides

PXFRMDIR
POSIX Subroutine: Removes a directory.

Module

USE IFPOSIX

Syntax

CALL PXFRMDIR (path,ilen,ierror)

(Input) Character. The directory to be removed. It must be empty.path

(Input) INTEGER(4). The length of path string.ilen

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFMKDIR
• PXFCHDIR

PXFSETENV
POSIX Subroutine: Adds a new environment
variable or sets the value of an environment
variable.

Module

USE IFPOSIX

Syntax

CALL PXFSETENV (name,lenname,new,lennew,ioverwrite,ierror)

(Input) Character. The name of the environment variable.name

(Input) INTEGER(4). The length of name.lenname

(Input) Character. The value of the environment variable.new

3297

63

(Input) INTEGER(4). The length of new.lennew

(Input) INTEGER(4). A flag indicating whether to change the value
of the environment variable if it exists.

ioverwrite

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

If name does not exist, PXFSETENV adds it with valuenew.

If name exists, PXFSETENV sets its value to new ifioverwrite is a nonzero number. If
ioverwrite is zero, the value of name is not changed.

If lennew is equal to zero, PXFSETENV sets the value of the environment variable to a string
equal to new after removing any leading or trailing blanks.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3298

63 Intel® Fortran Compiler User and Reference Guides

Example
program test2

use ifposix

character*10 name, new

integer lenname, lennew, ioverwrite, ierror

name = "FOR_NEW"

lenname = 7

new = "ON"

lennew = 2

ioverwrite = 1

CALL PXFSETENV (name, lenname, new, lennew, ioverwrite, ierror)

print *, "name= ", name

print *, "lenname= ", lenname

print *, "new= ", lenname

print *, "lennew= ", lenname

print *, "ierror= ", ierror

end

See Also
• O to P
• PXFGETENV

PXFSETGID (L*X, M*X)
POSIX Subroutine: Sets the effective group ID
of the current process.

Module

USE IFPOSIX

Syntax

CALL PXFSETGID (igid,ierror)

3299

63

(Input) INTEGER(4). The group ID.igid

(Output) INTEGER(4). The error status.ierror
If successful, ierror is set to zero; otherwise, an error code.
If the caller is the superuser, the real and saved group ID's are
also set. This feature allows a program other than root to drop all
of its group privileges, do some un-privileged work, and then
re-engage the original effective group ID in a secure manner.

CAUTION. If the user is root then special care must be taken. PXFSETGID checks the
effective gid of the caller. If it is the superuser, all process-related group ID's are set to
gid. After this has occurred, it is impossible for the program to regain root privileges.

See Also
• O to P
• PXFGETGID

PXFSETPGID (L*X, M*X)
POSIX Subroutine: Sets the process group ID.

Module

USE IFPOSIX

Syntax

CALL PXFSETPGID (ipid,ipgid,ierror)

(Input) INTEGER(4). The process group ID to change.ipid

(Input) INTEGER(4). The new process group ID.ipgid

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFSETPGID subroutine sets the process group ID of the process specified by ipid to
ipgid.

If ipid is zero, the process ID of the current process is used. If ipgid is zero, the process ID
of the process specified by ipid is used.

3300

63 Intel® Fortran Compiler User and Reference Guides

PXFSETPGID can be used to move a process from one process group to another, but both
process groups must be part of the same session. In this case, ipgid specifies an existing
process group to be joined and the session ID of that group must match the session ID of the
joining process.

PXFSETSID (L*X, M*X)
POSIX Subroutine: Creates a session and sets
the process group ID.

Module

USE IFPOSIX

Syntax

CALL PXFSETSID (isid,ierror)

(Output) INTEGER(4). The session ID.isid

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFSETSID subroutine creates a new session if the calling process is not a process group
leader.

The calling process is the leader of the new session and the process group leader for the new
process group. The calling process has no controlling terminal.

The process group ID and session ID of the calling process are set to the PID of the calling
process. The calling process will be the only process in this new process group and in this new
session.

PXFSETUID (L*X, M*X)
POSIX Subroutine: Sets the effective user ID of
the current process.

Module

USE IFPOSIX

Syntax

CALL PXFSETUID (iuid,ierror)

(Output) INTEGER(4). The session ID.iuid

3301

63

(Output) INTEGER(4). The user status.ierror

If successful, ierror is set to zero; otherwise, an error code.

If the effective user ID of the caller is root, the real and saved user ID's are also set. This
feature allows a program other than root to drop all of its user privileges, do some un-privileged
work, and then re-engage the original effective user ID in a secure manner.

CAUTION. If the user is root then special care must be taken. PXFSETUID checks the
effective uid of the caller. If it is the superuser, all process-related user ID's are set to
uid. After this has occurred, it is impossible for the program to regain root privileges.

See Also
• O to P
• PXFGETUID

PXFSIGACTION
POSIX Subroutine: Changes the action associated
with a specific signal. It can also be used to
examine the action of a signal.

Module

USE IFPOSIX

Syntax

CALL PXFSIGACTION (isig,jsigact,josigact,ierror)

(Input) INTEGER(4). The signal number whose action should be
changed.

isig

(Input) INTEGER(4). A handle of structure sigaction. Specifies
the new action for signal isig.

jsigact

(Output) INTEGER(4). A handle of structure sigaction.Stores
the previous action for signal isig.

josigact

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The signal specified in isig can be any valid signal except SIGKILL and SIGSTOP.

3302

63 Intel® Fortran Compiler User and Reference Guides

If jsigact is nonzero, the new action for signal isig is installed from the structure associated
with handle jsigact. If josigact is nonzero, the previous action of the specified signal is
saved in the structure associated with handle josigact where it can be examined.

On Windows* systems, PXFSIGACTION ignores the fields sa_mask and sa_flags in structure
sigaction.

NOTE. To get a handle for an instance of the sigaction structure, use
PXFSTRUCTCREATE with the string 'sigaction' for the structure name.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFSTRUCTCREATE

PXFSIGADDSET (L*X, M*X)
POSIX Subroutine: Adds a signal to the signal
set.

Module

USE IFPOSIX

Syntax

CALL PXFSIGADDSET (jsigset,isigno,ierror)

(Input) INTEGER(4). A handle of structure sigset. This is the set
to add the signal to.

jsigset

(Input) INTEGER(4). The signal number to add to the set.isigno

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFSIGADDSET subroutine adds signal number isigno to the set of signals associated
with handle jsigset. This set of signals is used by PXFSIGACTION as field sa_mask in structure
sigaction. It defines the set of signals that will be blocked during execution of the signal
handler function (the field sa_handler in structure sigaction).

3303

63

On Windows* systems, PXFSIGACTION ignores the field sa_mask in structure sigaction.

NOTE. To get a handle for an instance of the sigset structure, use PXFSTRUCTCREATE
with the string 'sigset' for the structure name.

See Also
• O to P
• PXFSTRUCTCREATE
• PXFSIGDELSET
• PXFSIGACTION

PXFSIGDELSET (L*X, M*X)
POSIX Subroutine: Deletes a signal from the
signal set.

Module

USE IFPOSIX

Syntax

CALL PXFSIGDELSET (jsigset,isigno,ierror)

(Input) INTEGER(4). A handle of structure sigset. This is the set
to delete the signal from.

jsigset

(Input) INTEGER(4). The signal number to delete from the set.isigno

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFSIGDELSET subroutine removes signal number isigno from the set of signals associated
with handle jsigset. This set of signals is used by PXFSIGACTION as field sa_mask in structure
sigaction. It defines the set of signals that will be blocked during execution of the signal
handler function (the field sa_handler in structure sigaction).

On Windows* systems, PXFSIGACTION ignores the field sa_mask in structure sigaction.

NOTE. To get a handle for an instance of the sigset structure, use PXFSTRUCTCREATE
with the string 'sigset' for the structure name.

3304

63 Intel® Fortran Compiler User and Reference Guides

See Also
• O to P
• PXFSTRUCTCREATE
• PXFSIGADDSET
• PXFSIGACTION

PXFSIGEMPTYSET (L*X, M*X)
POSIX Subroutine: Empties a signal set.

Module

USE IFPOSIX

Syntax

CALL PXFSIGEMPTYSET (jsigset,ierror)

(Input) INTEGER(4). A handle of structure sigset. This is the set
to empty.

jsigset

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, nonzero.

The PXFSIGEMPTYSET subroutine initializes the signal set associated with handle jsigset to
empty; all signals are excluded from the set. This set of signals is used by PXFSIGACTION as
field sa_mask in structure sigaction. It defines the set of signals that will be blocked during
execution of the signal handler function (the field sa_handler in structure sigaction).

On Windows* systems, PXFSIGACTION ignores the field sa_mask in structure sigaction.

NOTE. To get a handle for an instance of the sigset structure, use PXFSTRUCTCREATE
with the string 'sigset' for the structure name.

See Also
• O to P
• PXFSTRUCTCREATE
• PXFSIGFILLSET
• PXFSIGACTION

3305

63

PXFSIGFILLSET (L*X, M*X)
POSIX Subroutine: Fills a signal set.

Module

USE IFPOSIX

Syntax

CALL PXFSIGFILLSET (jsigset,ierror)

(Input) INTEGER(4). A handle of structure sigset. This is the set
to fill.

jsigset

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFSIGFILLSET subroutine initializes the signal set associated with handle jsigset to full;
all signals are included into the set. This set of signals is used by PXFSIGACTION as field
sa_mask in structure sigaction. It defines the set of signals that will be blocked during
execution of the signal handler function (the field sa_handler in structure sigaction).

On Windows* systems, PXFSIGACTION ignores the field sa_mask in structure sigaction.

NOTE. To get a handle for an instance of the sigset structure, use PXFSTRUCTCREATE
with the string 'sigset' for the structure name.

See Also
• O to P
• PXFSTRUCTCREATE
• PXFSIGEMPTYSET
• PXFSIGACTION

PXFSIGISMEMBER (L*X, M*X)
POSIX Subroutine: Tests whether a signal is a
member of a signal set.

Module

USE IFPOSIX

3306

63 Intel® Fortran Compiler User and Reference Guides

Syntax

CALL PXFSIGISMEMBER (jsignset,isigno,ismember,ierror)

(Input) INTEGER(4). A handle of structure sigset. This is the set
the signal will be tested in.

jsignset

(Input) INTEGER(4). The signal number to test for membership.isigno

(Output) Logical. The returned result.ismember

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFSIGISMEMBER subroutine tests whether isigno is a member of the set associated with
handle jsignset. If the signal is a member of the set, ismember is set to .TRUE.; otherwise,
.FALSE.. This set of signals is used by PXFSIGACTION as field sa_mask in structure sigaction.
It defines the set of signals that will be blocked during execution of the signal handler function
(the field sa_handler in structure sigaction).

On Windows* systems, PXFSIGACTION ignores the field sa_mask in structure sigaction.

NOTE. To get a handle for an instance of the sigset structure, use PXFSTRUCTCREATE
with the string 'sigset' for the structure name.

See Also
• O to P
• PXFSTRUCTCREATE
• PXFSIGACTION

PXFSIGPENDING (L*X, M*X)
POSIX Subroutine: Examines pending signals.

Module

USE IFPOSIX

Syntax

CALL PXFSIGPENDING (jsigset,ierror)

3307

63

(Input) INTEGER(4). A handle of structure sigaction. The signals
to examine.

jsigset

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFSIGPENDING subroutine is used to examine pending signals (ones that have been
raised while blocked). The signal mask of the pending signals is stored in the signal set associated
with handle jsigset.

PXFSIGPROCMASK (L*X, M*X)
POSIX Subroutine: Changes the list of currently
blocked signals.

Module

USE IFPOSIX

Syntax

CALL PXFSIGPROCMASK (ihow,jsigset,josigset,ierror)

(Input) INTEGER(4). Defines the action for jsigset.ihow

(Input) INTEGER(4). A handle of structure sigset. The signals to
examine.

jsigset

(Input) INTEGER(4). A handle of structure sigset. Stores the
previous mask of blocked signals.

josigset

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The argument ihow indicates the way in which the set is to be changed, and consists of one
of the following constant names:

ActionConstant 1

The resulting set of blocked signals will be
the union of the current signal set and the
jsigset signal set.

SIG_BLOCK

3308

63 Intel® Fortran Compiler User and Reference Guides

ActionConstant 1

The resulting set of blocked signals will be
the current set of blocked signals with the
signals in jsigset removed. It is legal to
attempt to unblock a signal that is not
blocked.

SIG_UNBLOCK

The resulting set of blocked signals will be
the jsigset signal set.

SIG_SETMASK

1These names can be used in PXFCONST or IPXFCONST.

If josigset is non-zero, the previous value of the signal mask is stored in the structure
associated with handle josigset.

See Also
• O to P
• IPXFCONST
• PXFCONST

PXFSIGSUSPEND (L*X, M*X)
POSIX Subroutine: Suspends the process until
a signal is received.

Module

USE IFPOSIX

Syntax

CALL PXFSIGSUSPEND (jsigset,ierror)

(Input) INTEGER(4). A handle of structure sigset. Specifies a set
of signals.

jsigset

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

3309

63

PXFSIGSUSPEND temporarily replaces the signal mask for the process with that given by the
structure associated with the jsigset handle; it then suspends the process until a signal is
received.

PXFSLEEP
POSIX Subroutine: Forces the process to sleep.

Module

USE IFPOSIX

Syntax

CALL PXFSLEEP (iseconds,isecleft,ierror)

(Input) INTEGER(4). The number of seconds to sleep.iseconds

(Output) INTEGER(4). The number of seconds left to sleep.isecleft

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFSLEEP subroutine forces the current process to sleep until seconds iseconds have
elapsed or a signal arrives that cannot be ignored.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFSTAT
POSIX Subroutine: Gets a file's status
information.

Module

USE IFPOSIX

Syntax

CALL PXFSTAT (path,ilen,jstat,ierror)

(Input) Character. The path to the file.path

(Input) INTEGER(4). The length of path string.ilen

(Input) INTEGER(4). A handle of structure stat.jstat

3310

63 Intel® Fortran Compiler User and Reference Guides

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFSTAT subroutine puts the status information for the file specified by path into the
structure associated with handle jstat.

NOTE. To get a handle for an instance of the stat structure, use PXFSTRUCTCREATE
with the string 'stat' for the structure name.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P
• PXFSTRUCTCREATE

PXFSTRUCTCOPY
POSIX Subroutine: Copies the contents of one
structure to another.

Module

USE IFPOSIX

Syntax

CALL PXFSTRUCTCOPY (structname,jhandle1,jhandle2,ierror)

(Input) Character. The name of the structure.structname

(Input) INTEGER(4). A handle to the structure to be copied.jhandle1

(Input) INTEGER(4). A handle to the structure that will receive the
copy.

jhandle2

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3311

63

Example

See the example in PXFSTRUCTCREATE

PXFSTRUCTCREATE
POSIX Subroutine: Creates an instance of the
specified structure.

Module

USE IFPOSIX

Syntax

CALL PXFSTRUCTCREATE (structname,jhandle,ierror)

(Input) Character. The name of the structure.structname
As for any character string, the name must be specified in single
or double quotes; for example, the structure sigaction would be
specified as 'sigaction'. (For more information on available
structures, see below.)

(Output) INTEGER(4). The handle of the newly-created structure.jhandle

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

If your application passes information to the system, you should call one of the PXF(type)SET
subroutines. If your application needs to get information from the structure, you should call
one of the PXF(type)GET subroutines.

The following table shows:

• The structures that are available in the Fortran POSIX library

• The fields within each structure

• The subroutines you must use to access the structure fields

Subroutines for AccessField NamesStructure Name

PXFSIGEMPTYSET 1,
PXFSIGFILLSET 1,
PXFSIGADDSET 1, or
PXFSIGDELSET 1

Fields are hidden.sigset 1

3312

63 Intel® Fortran Compiler User and Reference Guides

Subroutines for AccessField NamesStructure Name

PXFINTGET/PXFINTSET or
PXFINT8GET/PXFINT8SET

sa_handler

sa_mask

sigaction

PXFINTGET/PXFINTSET or
PXFINT8GET/PXFINT8SET

sa_flags

PXFINTGET/PXFINTSET or
PXFINT8GET/PXFINT8SET

For all fields:sysnameutsname

PXFSTRGETnodename

release

version

machine

For all fields:tms_utimetms

PXFINTGET or PXFINT8GETtms_stime

tms_cutime

tms_cstime

PXFSTRGETd_namedirent

For all fields:st_modestat

PXFINTGET or PXFINT8GETst_ino

st_dev

st_nlink

st_uid

st_gid

st_size

st_atime

st_mtime

st_ctime

3313

63

Subroutines for AccessField NamesStructure Name

For all fields:actimeutimbuf

PXFINTGET or PXFINT8GETmodtime

For all fields:l_typeflock 1

PXFINTGET or PXFINT8GETl_whence

l_start

l_len

l_pid

PXFINTGET/PXFINTSET or
PXFINT8GET/PXFINT8SET

c_iflag

c_oflag

termios 1

PXFINTGET/PXFINTSET or
PXFINT8GET/PXFINT8SET

c_cflag

c_lflag
PXFINTGET/PXFINTSET or
PXFINT8GET/PXFINT8SETc_cc

PXFINTGET/PXFINTSET or
PXFINT8GET/PXFINT8SET

PXFAINTGET/PXFAINTSET or
PXFAINT8GET/PXFAINT8SET

PXFSTRGETgr_namegroup 1

PXFINTGET or PXFINT8GETgr_gid

PXFINTGET or PXFINT8GETgr_nmem

PXFESTRGETgr_mem

PXFSTRGETpw_namepasswd 1

PXFINTGET or PXFINT8GETpw_uid

PXFINTGET or PXFINT8GETpw_gid

PXFSTRGETpw_dir

PXFSTRGETpw_shell

3314

63 Intel® Fortran Compiler User and Reference Guides

Subroutines for AccessField NamesStructure Name

1L*X only

As for any character string, you must use single or double quotes when specifying a field name
in a PXF(type)GET or PXF(type)SET subroutine. For example, field name sysname (in structure
utsname) must be specified as 'sysname'.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3315

63

Example
program test4

use ifposix

implicit none

integer(jhandle_size) jhandle1,jhandle2

integer(4) ierror,ilen1

print *," Create a first instance for structure 'utsname' "

call PXFSTRUCTCREATE("utsname",jhandle1,ierror)

if(ierror.NE.0) STOP 'Error: cannot create structure for jhandle1'

print *," Create a second instance for structure 'utsname' "

call PXFSTRUCTCREATE("utsname",jhandle2,ierror)

if(ierror.NE.0) then

call PXFSTRUCTFREE(jhandle1,ierror)

STOP 'test failed - cannot create structure for jhandle2'

end if

print *,"Fill the structure associated with jhandle1 with arbitrary data"

call PXFSTRSET(jhandle1,"sysname","00000000000000",14,ierror)

if(ierror.NE.0) call Error('Error: can't set component sysname for jhandle1')

call PXFSTRSET(jhandle1,"Nodename","11111111111111",14,ierror)

if(ierror.NE.0) call Error('Error: can't set component nodename for jhandle1')

call PXFSTRSET(jhandle1,"RELEASE","22222222222222",14,ierror)

if(ierror.NE.0) call Error('Error: can't set component release for jhandle1')

call PXFSTRSET(jhandle1,"verSION","33333333333333",14,ierror)

if(ierror.NE.0) call Error('Error: can't set component version for jhandle1')

call PXFSTRSET(jhandle1,"machine","44444444444444",14,ierror)

if(ierror.NE.0) call Error('Error: can't set component machine for jhandle1')

print *,"Fill the structure associated with jhandle2 with arbitary data"

call PXFSTRSET(jhandle2,"sysname","aaaaaaaaa",7,ierror)

3316

63 Intel® Fortran Compiler User and Reference Guides

if(ierror.NE.0) call Error('Error: can't set component sysname for jhandle2')

call PXFSTRSET(jhandle2,"Nodename","BBBBBBBBB BBB",14,ierror)

if(ierror.NE.0) call Error('Error: can't set component nodename for jhandle2')

call PXFSTRSET(jhandle2,"RELEASE","cCCC cc-cccnc",12,ierror)

if(ierror.NE.0) call Error('Error: can't set component release for jhandle2')

call PXFSTRSET(jhandle2,"verSION","ddddd",1,ierror)

if(ierror.NE.0) call Error('Error: can't set component version for jhandle2')

call PXFSTRSET(jhandle2,"machine","eeeeeee",6,ierror)

if(ierror.NE.0) call Error('Error: can't set component machine for jhandle2')

print *,"Print contents of the structure associated with jhandle1"

call PRINT_UTSNAME(jhandle1)

print *,"Print contents of the structure associated with jhandle2"

call PRINT_UTSNAME(jhandle2)

print *,"Get operating system info into structure associated with jhandle1"

call PXFUNAME(jhandle1,ierror)

if(ierror.NE.0) call Error('Error: call to PXFUNAME has failed')

print *,"Print contents of the structure associated with jhandle1"

print*," returned from PXFUNAME"

call PRINT_UTSNAME(jhandle1)

print *,"Copy the contents of the structure associated with jhandle1"

print *," into the structure associated with jhandle2"

call PXFSTRUCTCOPY("utsname",jhandle1,jhandle2,ierror)

if(ierror.NE.0) call Error('Error: can't copy jhandle1 contents into jhandle2')

print *,"Print the contents of the structure associated with jhandle2."

print *," It should be the same after copying."

call PRINT_UTSNAME(jhandle2)

print *,"Free memory for instance of structure associated with jhandle1"

call PXFSTRUCTFREE(jhandle1,ierror)

3317

63

if(ierror.NE.0) STOP 'Error: can't free instance of structure for jhandle1'

print *,"Free memory for instance of structure associated with jhandle2"

call PXFSTRUCTFREE(jhandle2,ierror)

if(ierror.NE.0) STOP 'Error: can't free instance of structure for jhandle2'

print *,"Program terminated normally"

call PXFEXIT(0)

end

See Also
• O to P
• PXFSTRUCTFREE
• the example in PXFTIMES

PXFSTRUCTFREE
POSIX Subroutine: Deletes the instance of a
structure.

Module

USE IFPOSIX

Syntax

CALL PXFSTRUCTFREE (jhandle,ierror)

(Input) INTEGER(4). The handle of a structure.jhandle

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFSTRUCTFREE subroutine deletes the instance of the structure associated with handle
jhandle.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

See the example in PXFSTRUCTCREATE, the example in PXFTIMES

3318

63 Intel® Fortran Compiler User and Reference Guides

PXFSYSCONF
POSIX Subroutine: Gets values for system limits
or options.

Module

USE IFPOSIX

Syntax

CALL PXFSYSCONF (name,ival,ierror)

(Input) INTEGER(4). The system option you want information
about.

name

(Output) INTEGER(4). The returned value.ival

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

PXFSYSCONF lets you determine values for system limits or system options at runtime.

The value for name can be any of the following constants:

DescriptionConstant

Indicates the maximum length of the
arguments to the PXFEXEC family of routines.

_SC_ARG_MAX1

Indicates the number of simultaneous
processes per user ID.

_SC_CHILD_MAX1

Indicates the number of clock ticks per
second.

_SC_CLK_TCK

Indicates the maximum number of streams
that a process can have open at any time.

_SC_STREAM_MAX2

Indicates the maximum number of bytes in
a timezone name.

_SC_TZNAME_MAX

Indicates the maximum number of files that
a process can have open at any time.

_SC_OPEN_MAX

3319

63

DescriptionConstant

Indicates whether POSIX-style job control is
supported.

_SC_JOB_CONTROL1

Indicates whether a process has a saved
set-user-ID and a saved set-group-ID.

_SC_SAVED_IDS1

Indicates the year and month the POSIX.1
standard was approved in the format
YYYYMML; the value 199009L indicates the
most recent revision, 1990.

_SC_VERSION1

Indicates the maximum obase value accepted
by the bc(1) utility.

_SC_BC_BASE_MAX1

Indicates the maximum value of elements
that bc(1) permits in an array.

_SC_BC_DIM_MAX1

Indicates the maximum scale value allowed
by bc(1).

_SC_BC_SCALE_MAX1

Indicates the maximum length of a string
accepted by bc(1).

_SC_BC_STRING_MAX1

Indicates the maximum numbers of weights
that can be assigned to an entry of the
LC_COLLATE order keyword in the locale
definition file.

_SC_COLL_WEIGHTS_MAX1

Indicates the maximum number of
expressions that can be nested within
parentheses by expr(1).

_SC_EXPR_NEST_MAX1,3

Indicates the maximum length of a utility's
input line length, either from standard input
or from a file. This includes the length for a
trailing newline.

_SC_LINE_MAX1

3320

63 Intel® Fortran Compiler User and Reference Guides

DescriptionConstant

Indicates the maximum number of repeated
occurrences of a regular expression when the
interval notation \{m,n\} is used.

_SC_RE_DUP_MAX1

Indicates the version of the POSIX.2
standard; it is in the format YYYYMML.

_SC_2_VERSION1

Indicates whether the POSIX.2 C language
development facilities are supported.

_SC_2_DEV1

Indicates whether the POSIX.2 FORTRAN
language development utilities are supported.

_SC_2_FORT_DEV1

Indicates whether the POSIX.2 FORTRAN
runtime utilities are supported.

_SC_2_FORT_RUN1

Indicates whether the POSIX.2 creation of
locates via localedef(1) is supported.

_SC_2_LOCALEDEF1

Indicates whether the POSIX.2 software
development utilities option is supported.

_SC_2_SW_DEV1

Indicates the size of a page (in bytes)._SC_PAGESIZE (or _SC_PAGE_SIZE)

Indicates the number of pages of physical
memory. Note that it is possible for the
product of this value and the value of
_SC_PAGE_SIZE to overflow.

_SC_PHYS_PAGES4

Indicates the number of currently available
pages of physical memory.

_SC_AVPHYS_PAGES4

1L*X only
2The corresponding POSIX macro is STREAM_MAX.
3The corresponding POSIX macro is EXPR_NEST_MAX.
4L*X, W*32, W*64

3321

63

The corresponding macros are defined in <bits/confname.h> on Linux* systems; <unistd.h>
on Mac OS* X systems. The values for argument name can be obtained by using PXFCONST or
IPXFCONST when passing the string names of predefined macros in the appropriate .h file.

See Also
• O to P
• IPXFCONST
• PXFCONST

PXFTCDRAIN (L*X, M*X)
POSIX Subroutine: Waits until all output written
has been transmitted.

Module

USE IFPOSIX

Syntax

CALL PXFTCDRAIN (ifildes,ierror)

(Input) INTEGER(4). The file descriptor associated with the
terminal.

ifildes

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

PXFTCFLOW (L*X, M*X)
POSIX Subroutine: Suspends the transmission
or reception of data.

Module

USE IFPOSIX

Syntax

CALL PXFTCFLOW (ifildes,iaction,ierror)

(Input) INTEGER(4). The file descriptor associated with the
terminal.

ifildes

(Input) INTEGER(4). The action to perform.iaction

3322

63 Intel® Fortran Compiler User and Reference Guides

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFTCFLOW subroutine suspends or resumes transmission or reception of data from the
terminal referred to by ifildes. The action performed depends on the value of iaction, which
must be one of the following constant names:

ActionConstant 1

Output is suspended.TCOOFF

Output is resumed.TCOON

A STOP character is transmitted. This should
cause the terminal to stop transmitting data
to the system.

TCIOFF

A START character is transmitted. This should
cause the terminal to resume transmitting
data to the system.

TCION

1These names can be used in PXFCONST or IPXFCONST.

See Also
• O to P
• IPXFCONST
• PXFCONST

PXFTCFLUSH (L*X, M*X)
POSIX Subroutine: Discards terminal input data,
output data, or both.

Module

USE IFPOSIX

Syntax

CALL PXFTCFLUSH (ifildes,iaction,ierror)

3323

63

(Input) INTEGER(4). The file descriptor associated with the
terminal.

ifildes

(Input) INTEGER(4). The action to perform.iaction

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The action performed depends on the value of iaction, which must be one of the following
constant names:

ActionConstant 1

Discards all data that has been received but
not read.

TCIFLUSH

Discards all data that has been written but
not transmitted.

TCOFLUSH

Discards both data received but not read and
data written but not transmitted. (Performs
TCIFLUSH and TCOFLUSH actions.)

TCIOFLUSH

1These names can be used in PXFCONST or IPXFCONST.

See Also
• O to P
• IPXFCONST
• PXFCONST

PXFTCGETATTR (L*X, M*X)
POSIX Subroutine: Reads current terminal
settings.

Module

USE IFPOSIX

Syntax

CALL PXFTCGETATTR (ifildes,jtermios,ierror)

3324

63 Intel® Fortran Compiler User and Reference Guides

(Input) INTEGER(4). The file descriptor associated with the
terminal.

ifildes

(Output) INTEGER(4). A handle for structure termios. Stores the
terminal settings.

jtermios

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

NOTE. To get a handle for an instance of the termiosstructure, use PXFSTRUCTCREATE
with the string 'termios' for the structure name.

See Also
• O to P
• PXFSTRUCTCREATE
• PXFTCSETATTR

PXFTCGETPGRP (L*X, M*X)
POSIX Subroutine: Gets the foreground process
group ID associated with the terminal.

Module

USE IFPOSIX

Syntax

CALL PXFTCGETPGRP (ifildes,ipgid,ierror)

(Input) INTEGER(4). The file descriptor associated with the
terminal.

ifildes

(Output) INTEGER(4). The returned process group ID.ipgid

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

See Also
• O to P
• PXFTCSETPGRP

3325

63

PXFTCSENDBREAK (L*X, M*X)
POSIX Subroutine: Sends a break to the
terminal.

Module

USE IFPOSIX

Syntax

CALL PXFTCSENDBREAK (ifildes,iduration,ierror)

(Input) INTEGER(4). The file descriptor associated with the
terminal.

ifildes

(Input) INTEGER(4). Indicates how long the break should be.iduration

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFTCSENDBREAK subroutine sends a break (a '\0' with a framing error) to the terminal
associated with ifildes.

PXFTCSETATTR (L*X, M*X)
POSIX Subroutine:Writes new terminal settings.

Module

USE IFPOSIX

Syntax

CALL PXFTCSETATTR (ifildes,ioptacts,jtermios,ierror)

(Input) INTEGER(4). The file descriptor associated with the
terminal.

ifildes

(Input) INTEGER(4). Specifies when the terminal changes take
effect.

ioptacts

(Input) INTEGER(4). A handle for structure termios. Contains the
new terminal settings.

jtermios

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

3326

63 Intel® Fortran Compiler User and Reference Guides

The PXFTCSETATTR subroutine copies all terminal parameters from structure termiosinto the
terminal associated with ifildes. When the terminal settings will change depends on the value
of ioptacts, which must be one of the following constant names:

ActionConstant 1

The changes occur immediately.TCSANOW

The changes occur after all output written to
ifildes has been transmitted.

TCSADRAIN

The changes occur after all output written to
ifildes has been transmitted, and all input
that had been received but not read has been
discarded.

TCSAFLUSH

1These names can be used in PXFCONST or IPXFCONST.

NOTE. To get a handle for an instance of the termiosstructure, use PXFSTRUCTCREATE
with the string 'termios' for the structure name.

See Also
• O to P
• PXFSTRUCTCREATE
• PXFTCGETATTR

PXFTCSETPGRP (L*X, M*X)
POSIX Subroutine: Sets the foreground process
group ID associated with the terminal.

Module

USE IFPOSIX

Syntax

CALL PXFTCSETPGRP (ifildes,ipgid,ierror)

3327

63

(Input) INTEGER(4). The file descriptor associated with the
terminal.

ifildes

(Input) INTEGER(4). The foreground process group ID for ifildes.ipgid

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

See Also
• O to P
• PXFTCGETPGRP

PXFTIME
POSIX Subroutine: Returns the current system
time.

Module

USE IFPOSIX

Syntax

CALL PXFTIME (itime,ierror)

(Output) INTEGER(4). The returned system time.itime

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFTIME subroutine returns the number of seconds since Epoch (00:00:00 UTC, January
1, 1970).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

See the example in PXFTIMES.

3328

63 Intel® Fortran Compiler User and Reference Guides

PXFTIMES
POSIX Subroutine: Returns process times.

Module

USE IFPOSIX

Syntax

CALL PXFTIMES (jtms,itime,ierror)

(Output) INTEGER(4). A handle of structure tms.jtms

(Output) INTEGER(4). The returned time since system startup.itime

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFTIMES subroutine fills the fields of structure tms associated with handle jtms with
components of time that was spent by the current process. The structure fields are:

• tms_utime - User CPU time

• tms_stime - System CPU time

• tms_cutime - User time of child process

• tms_cstime - System time of child process

All members are measured in system clocks. The values can be converted to seconds by dividing
by value ival returned from the following call:

PXFSYSCONF(IPXFCONST('_SC_CLK_TCK'), ival, ierror)

User time is the time charged for the execution of user instructions of the calling process.
System time is the time charged for execution by the system on behalf of the calling process.

NOTE. To get a handle for an instance of the tms structure, use PXFSTRUCTCREATE
with the string 'tms' for the structure name.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3329

63

Example
program test_uname

use ifposix

implicit none

integer(jhandle_size) jtms1, jtms2

integer(4) ierror,i

integer(4),parameter :: n=10000000

integer(SIZEOF_CLOCK_T) itime,time1,time2, user_time1,user_time2

integer(SIZEOF_CLOCK_T) system_time1,system_time2

integer(4) clocks_per_sec, iname

real(8) s, PI

real(8) seconds_user, seconds_system

print *,"Create a first instance for structure 'tms'"

call PXFSTRUCTCREATE("tms",jtms1,ierror)

if(ierror.NE.0) STOP 'Error: cannot create structure for handle jtms1'

print *,"Create a second instance for structure 'tms'"

call PXFSTRUCTCREATE("tms",jtms2,ierror)

if(ierror.NE.0) then

call PXFSTRUCTFREE(jtms1,ierror)

STOP 'Error: cannot create structure for handle jtms2'

end if

print *, 'Do some calculations'

call PXFTIMES(jtms1, itime,ierror)

if(ierror.NE.0) then

call PXFSTRUCTFREE(jtms1,ierror)

call PXFSTRUCTFREE(jtms2,ierror)

STOP 'Error: the first call of PXFTIMES fails'

end if

3330

63 Intel® Fortran Compiler User and Reference Guides

call PXFTIME(time1, ierror)

if(ierror.NE.0) then

call PXFSTRUCTFREE(jtms1,ierror)

call PXFSTRUCTFREE(jtms2,ierror)

STOP 'Error: the first call of PXFTIME fails'

end if

s = 0._8

PI = atan(1._8)*4

do i=0, n

s = s + cos(i*PI/n)*sin(i*PI/n)

end do

print *," s=",s

call PXFTIMES(jtms2, itime,ierror)

if(ierror.NE.0) then

call PXFSTRUCTFREE(jtms1,ierror)

call PXFSTRUCTFREE(jtms2,ierror)

STOP 'Error: the second call of PXFTIMES fails'

end if

call PXFTIME(time2, ierror)

if(ierror.NE.0) then

call PXFSTRUCTFREE(jtms1,ierror)

call PXFSTRUCTFREE(jtms2,ierror)

STOP 'Error: the second call of PXFTIME fails'

end if

!DEC$ IF DEFINED(_M_IA64)

call PXFINT8GET(jtms1,"tms_utime",user_time1,ierror)

call PXFINT8GET(jtms1,"tms_stime",system_time1,ierror)

call PXFINT8GET(jtms2,"tms_utime",user_time2,ierror)

3331

63

call PXFINT8GET(jtms2,"tms_stime",system_time2,ierror)

!DEC$ ELSE

call PXFINTGET(jtms1,"tms_utime",user_time1,ierror)

call PXFINTGET(jtms1,"tms_stime",system_time1,ierror)

call PXFINTGET(jtms2,"tms_utime",user_time2,ierror)

call PXFINTGET(jtms2,"tms_stime",system_time2,ierror)

!DEC$ ENDIF

iname = IPXFCONST("_SC_CLK_TCK")

call PXFSYSCONF(iname,clocks_per_sec, ierror)

if(ierror.NE.0) then

call PXFSTRUCTFREE(jtms1,ierror)

call PXFSTRUCTFREE(jtms2,ierror)

STOP 'Error: the call of PXFSYSCONF fails'

end if

seconds_user = (user_time2 - user_time1)/DBLE(clocks_per_sec)

seconds_system = (system_time2 - system_time1)/DBLE(clocks_per_sec)

print *," The processor time of calculations:"

print *," User code execution(in seconds):", seconds_user

print *," Kernal code execution(in seconds):", seconds_system

print *," Total processor time(in seconds):", seconds_user + seconds_system

print *," Elapsed wall clock time(in seconds):", time2 - time1

print *,"Free memory for instance of structure associated with jtms"

call PXFSTRUCTFREE(jtms1,ierror)

call PXFSTRUCTFREE(jtms2,ierror)

end program

See Also
• O to P
• PXFSTRUCTCREATE

3332

63 Intel® Fortran Compiler User and Reference Guides

PXFTTYNAM (L*X, M*X)
POSIX Subroutine: Gets the terminal pathname.

Module

USE IFPOSIX

Syntax

CALL PXFTTYNAM (ifildes,s,ilen,ierror)

(Input) INTEGER(4). The file descriptor associated with the
terminal.

ifildes

(Output) Character. The returned terminal pathname.s

(Output) INTEGER(4). The length of the string stored in s.ilen

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

PXFUCOMPARE
POSIX Subroutine: Compares two unsigned
integers.

Module

USE IFPOSIX

Syntax

CALL PXFUCOMPARE (i1,i2,icmpr,idiff)

(Input) INTEGER(4). The two unsigned integers to compare.i1, i2

(Output) INTEGER(4). The result of the comparison; one of the
following values:

icmpr

If i1 < i2-1

If i1 = i20

If i1 > i21

(Output) INTEGER(4). The absolute value of the difference.idiff

3333

63

The PXFUCOMPARE subroutine compares two unsigned integers and returns the absolute value
of their difference into idiff.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFUMASK
POSIX Subroutine: Sets a new file creation mask
and gets the previous one.

Module

USE IFPOSIX

Syntax

CALL PXFUMASK (icmask,iprevcmask,ierror)

(Input) INTEGER(4). The new file creation mask.icmask

(Output) INTEGER(4). The previous file creation mask.iprevcmask

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFUNAME
POSIX Subroutine: Gets the operation system
name.

Module

USE IFPOSIX

Syntax

CALL PXFUNAME (jutsname,ierror)

(Input) INTEGER(4). A handle of structure utsname.jutsname

(Output) INTEGER(4). The error status.ierror

3334

63 Intel® Fortran Compiler User and Reference Guides

If successful, ierror is set to zero; otherwise, an error code.

The PXFUNAME subroutine provides information about the operation system. The information
is stored in the structure associated with handle jutsname.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

See the example in PXFSTRUCTCREATE

PXFUNLINK
POSIX Subroutine: Removes a directory entry.

Module

USE IFPOSIX

Syntax

CALL PXFUNLINK (path,ilen,ierror)

(Input) Character. The name of the directory entry to remove.path

(Input) INTEGER(4). The length of path string.ilen

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFUTIME
POSIX Subroutine: Sets file access and
modification times.

Module

USE IFPOSIX

Syntax

CALL PXFUTIME (path,ilen,jutimbuf,ierror)

3335

63

(Input) Character. The path to the file.path

(Input) INTEGER(4). The length of path string.ilen

(Input) INTEGER(4). A handle of structure utimbuf.jutimbuf

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFUTIME subroutine sets access and modification times for the file pointed to by path.
The time values are retrieved from structure utimbuf.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

PXFWAIT (L*X, M*X)
POSIX Subroutine: Waits for a child process.

Module

USE IFPOSIX

Syntax

CALL PXFWAIT (istat,iretpid,ierror)

(Output) INTEGER(4). The returned status of the child process.istat

(Output) INTEGER(4). The process ID of the stopped child process.iretpid

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFWAIT subroutine suspends execution of the current process until a child has exited, or
until a signal is delivered whose action terminates the current process or calls a signal handling
routine. If the child has already exited by the time of the call (a "zombie" process), a return is
immediately made. Any system resources used by the child are freed.

The subroutine returns in iretpid the value of the process ID of the child that exited, or zero
if no child was available. The returned value in istat can be used in subroutines
IPXFWEXITSTATUS, IPXFWSTOPSIG, IPXFWTERMSIG, PXFWIFEXITED, PXFWIFSIGNALLED, and
PXFWIFSTOPPED.

3336

63 Intel® Fortran Compiler User and Reference Guides

Example
program t1

use ifposix

integer(4) ipid, istat, ierror, ipid_ret, istat_ret

print *," the child process will be born"

call PXFFORK(IPID, IERROR)

call PXFGETPID(IPID_RET,IERROR)

if(IPID.EQ.0) then

print *," I am a child process"

print *," My child's pid is", IPID_RET

call PXFGETPPID(IPID_RET,IERROR)

print *," The pid of my parent is",IPID_RET

print *," Now I have exited with code 0xABCD"

call PXFEXIT(Z'ABCD')

else

print *," I am a parent process"

print *," My parent pid is ", IPID_RET

print *," I am creating the process with pid", IPID

print *," Now I am waiting for the end of the child process"

call PXFWAIT(ISTAT, IPID_RET, IERROR)

print *," The child with pid ", IPID_RET," has exited"

if(PXFWIFEXITED(ISTAT)) then

print *, " The child exited normally"

istat_ret = IPXFWEXITSTATUS(ISTAT)

print 10," The low byte of the child exit code is", istat_ret

end if

end if

10 FORMAT (A,Z)

3337

63

end program

See Also
• O to P
• PXFWAITPID
• IPXFWEXITSTATUS
• IPXFWSTOPSIG
• IPXFWTERMSIG
• PXFWIFEXITED
• PXFWIFSIGNALLED
• PXFWIFSTOPPED

PXFWAITPID (L*X, M*X)
POSIX Subroutine: Waits for a specific PID.

Module

USE IFPOSIX

Syntax

CALL PXFWAITPID (ipid,istat,ioptions,iretpid,ierror)

(Input) INTEGER(4). The PID to wait for. One of the following
values:

ipid

ActionValue

Specifies to wait for any child
process whose process group
ID is equal to the absolute
value of ipid.

< -1

Specifies to wait for any child
process; this is the same
behavior as PXFWAIT.

-1

Specifies to wait for any child
process whose process group
ID is equal to that of the
calling process.

0

3338

63 Intel® Fortran Compiler User and Reference Guides

ActionValue

Specifies to wait for the child
whose process ID is equal to
the value of ipid.

> 0

(Output) INTEGER(4). The returned status of the child process.istat

(Input) INTEGER(4). One or more of the following constant values
(which can be passed to PXFCONST or IPXFCONST):

ioptions

ActionValue

Specifies to return immediately
if no child process has exited.

WNOHANG

Specifies to return for child
processes that have stopped,
and whose status has not been
reported.

WUNTRACED

(Output) INTEGER(4). The PID of the stopped child process.iretpid

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFWAITPID subroutine suspends execution of the current process until the child specified
by ipid has exited, or until a signal is delivered whose action terminates the current process
or calls a signal handling routine. If the child specified by ipid has already exited by the time
of the call (a "zombie" process), a return is immediately made. Any system resources used by
the child are freed.

The returned value in istat can be used in subroutines IPXFWEXITSTATUS, IPXFWSTOPSIG,
IPXFWTERMSIG, PXFWIFEXITED, PXFWIFSIGNALLED, and PXFWIFSTOPPED.

See Also
• O to P
• PXFWAIT
• IPXFWEXITSTATUS
• IPXFWSTOPSIG
• IPXFWTERMSIG

3339

63

• PXFWIFEXITED
• PXFWIFSIGNALLED
• PXFWIFSTOPPED

PXFWIFEXITED (L*X, M*X)
POSIX Function: Determines if a child process
has exited.

Module

USE IFPOSIX

Syntax

result = PXFWIFEXITED (istat)

(Output) INTEGER(4). The status of the child process (obtained
from PXFWAIT or PXFWAITPID).

istat

Results

The result type is logical. The result value is .TRUE. if the child process has exited normally;
otherwise, .FALSE..

Example
program t1

use ifposix

integer(4) ipid, istat, ierror, ipid_ret, istat_ret

print *," the child process will be born"

call PXFFORK(IPID, IERROR)

call PXFGETPID(IPID_RET,IERROR)

3340

63 Intel® Fortran Compiler User and Reference Guides

if(IPID.EQ.0) then

print *," I am a child process"

print *," My child's pid is", IPID_RET

call PXFGETPPID(IPID_RET,IERROR)

print *," The pid of my parent is",IPID_RET

print *," Now I have exited with code 0xABCD"

call PXFEXIT(Z'ABCD')

else

print *," I am a parent process"

print *," My parent pid is ", IPID_RET

print *," I am creating the process with pid", IPID

print *," Now I am waiting for the end of the child process"

call PXFWAIT(ISTAT, IPID_RET, IERROR)

print *," The child with pid ", IPID_RET," has exited"

if(PXFWIFEXITED(ISTAT)) then

print *, " The child exited normally"

istat_ret = IPXFWEXITSTATUS(ISTAT)

print 10," The low byte of the child exit code is", istat_ret

end if

end if

10 FORMAT (A,Z)

end program

See Also
• O to P
• PXFWIFSIGNALED
• PXFWIFSTOPPED

3341

63

PXFWIFSIGNALED (L*X, M*X)
POSIX Function: Determines if a child process
has exited because of a signal.

Module

USE IFPOSIX

Syntax

result = PXFWIFSIGNALED (istat)

(Output) INTEGER(4). The status of the child process (obtained
from PXFWAIT or PXFWAITPID).

istat

Results

The result type is logical. The result value is .TRUE. if the child process has exited because of
a signal that was not caught; otherwise, .FALSE..

See Also
• O to P
• PXFWIFEXITED
• PXFWIFSTOPPED

PXFWIFSTOPPED (L*X, M*X)
POSIX Function: Determines if a child process
has stopped.

Module

USE IFPOSIX

Syntax

result = PXFWIFSTOPPED (istat)

(Output) INTEGER(4). The status of the child process (obtained
from PXFWAIT or PXFWAITPID).

istat

3342

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is logical. The result value is .TRUE. if the child process has stopped; otherwise,
.FALSE..

See Also
• O to P
• PXFWIFEXITED
• PXFWIFSIGNALED

PXFWRITE
POSIX Subroutine: Writes to a file.

Module

USE IFPOSIX

Syntax

CALL PXFWRITE (ifildes,buf,nbyte,nwritten,ierror)

(Input) INTEGER(4). The file descriptor for the file to be written
to.

ifildes

(Input) Character. The buffer that contains the data to write into
the file.

buf

(Input) INTEGER(4). The number of bytes to write.nbyte

(Output) INTEGER(4). The returned number of bytes written.nwritten

(Output) INTEGER(4). The error status.ierror

If successful, ierror is set to zero; otherwise, an error code.

The PXFWRITE subroutine writes nbyte bytes from the storage buf into a file specified by file
descriptor ifildes. The subroutine returns the total number of bytes read into nwritten. If
no error occurs, the value of nwritten will equal the value of nbyte.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• O to P

3343

63

• PXFREAD

Q to R

QCMPLX
Elemental Intrinsic Function (Specific):
Converts an argument to COMPLEX(16) type. This
function cannot be passed as an actual argument.

Syntax

result = QCMPLX (x[,y])

(Input) Must be of type integer, real, or complex.x

(Input; optional) Must be of type integer or real. It must not be
present if x is of type complex.

y

Results

The result type is COMPLEX(16) (or COMPLEX*32).

If only one noncomplex argument appears, it is converted into the real part of the result value
and zero is assigned to the imaginary part. If y is not specified and x is complex, the result
value is CMPLX(REAL(x), AIMAG(x)).

If two noncomplex arguments appear, the complex value is produced by converting the first
argument into the real part of the value, and converting the second argument into the imaginary
part.

QCMPLX(x, y) has the complex value whose real part is REAL(x, kind=16) and whose imaginary
part is REAL(y, kind=16).

Example

QCMPLX (-3) has the value (-3.0Q0, 0.0Q0).

QCMPLX (4.1, 2.3) has the value (4.1Q0, 2.3Q0).

See Also
• Q to R
• CMPLX
• DCMPLX

3344

63 Intel® Fortran Compiler User and Reference Guides

• FLOAT
• INT
• IFIX
• REAL
• SNGL

QEXT
Elemental Intrinsic Function (Generic):
Converts a number to quad precision (REAL(16))
type.

Syntax

result = QEXT (a)

(Input) Must be of type integer, real, or complex.a

Results

The result type is REAL(16) (REAL*16). Functions that cause conversion of one data type to
another type have the same effect as the implied conversion in assignment statements.

If a is of type REAL(16), the result is the value of the a with no conversion (QEXT(a) = a).

If a is of type integer or real, the result has as much precision of the significant part of a as a
REAL(16) value can contain.

If a is of type complex, the result has as much precision of the significant part of the real part
of a as a REAL(16) value can contain.

Result TypeArgument TypeSpecific Name 1

REAL(16)INTEGER(1)

REAL(16)INTEGER(2)

REAL(16)INTEGER(4)

REAL(16)INTEGER(8)

REAL(16)REAL(4)QEXT

REAL(16)REAL(8)QEXTD

3345

63

Result TypeArgument TypeSpecific Name 1

REAL(16)REAL(16)

REAL(16)COMPLEX(4)

REAL(16)COMPLEX(8)

REAL(16)COMPLEX(16)

1These specific functions cannot be passed as actual arguments.

Example

QEXT (4) has the value 4.0 (rounded; there are 32 places to the right of the decimal point).

QEXT ((3.4, 2.0)) has the value 3.4 (rounded; there are 32 places to the right of the decimal
point).

QFLOAT
Elemental Intrinsic Function (Generic):
Converts an integer to quad precision (REAL(16))
type.

Syntax

result = QFLOAT (a)

(Input) Must be of type integer.a

Results

The result type is REAL(16) (REAL*16).

Functions that cause conversion of one data type to another type have the same affect as the
implied conversion in assignment statements.

Example

QFLOAT (-4) has the value -4.0 (rounded; there are 32 places to the right of the decimal point).

3346

63 Intel® Fortran Compiler User and Reference Guides

QNUM
Elemental Intrinsic Function (Specific):
Converts a character string to a REAL(16) value.
This function cannot be passed as an actual
argument.

Syntax

result = QNUM (i)

(Input) Must be of type character.i

Results

The result type is REAL(16). The result value is the real value represented by the character
string i.

Example

QNUM ("-174.23") has the value -174.23 of type REAL(16).

QRANSET
Portability Subroutine: Sets the seed for a
sequence of pseudo-random numbers.

Module

USE IFPORT

Syntax

CALL QRANSET (rseed)

(Input) INTEGER(4). The reset value for the seed.rseed

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3347

63

QREAL
Elemental Intrinsic Function (Specific):
Converts the real part of a COMPLEX(16) argument
to REAL(16) type. This is a specific function that
has no generic function associated with it. It cannot
be passed as an actual argument.

Syntax

result = QREAL (a)

(Input) Must be of type COMPLEX(16) (or COMPLEX*32).a

Results

The result type is quad-precision real (REAL(16) or REAL*16).

Example

QREAL ((2.0q0, 3.0q0)) has the value 2.0q0.

See Also
• Q to R
• REAL
• DREAL

QSORT
Portability Subroutine: Performs a quick sort on
an array of rank one.

Module

USE IFPORT

Syntax

CALL QSORT (array,len,isize,compar)

(Input) Any type. One-dimensional array to be sorted.array
If the data type does not conform to one of the predefined
interfaces for QSORT, you may have to create a new interface (see
below).

3348

63 Intel® Fortran Compiler User and Reference Guides

(Input) INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel®

64 architecture and IA-64 architecture. Number of elements in
array.

len

(Input) INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel®

64 architecture and IA-64 architecture. Size, in bytes, of a single
element of array:

isize

• 4 if array is of type REAL(4)

• 8 if array is of type REAL(8) or complex

• 16 if array is of type COMPLEX(8)

(Input) INTEGER(2). Name of a user-defined ordering function
that determines sort order. The type declaration of compar takes
the form:

compar

INTEGER(2) FUNCTION compar(arg1, arg2)
where arg1 and arg2 have the same type as array (above). Once
you have created an ordering scheme, implement your sorting
function so that it returns the following:

• Negative if arg1 should precede arg2

• Zero if arg1 is equivalent to arg2

• Positive if arg1 should follow arg2

Dummy argument compar must be declared as external.
In place of an INTEGER kind, you can specify the constant
SIZEOF_SIZE_T, defined in IFPORT.F90, for argument len or
isize. Use of this constant ensures correct compilation.

NOTE. If you use QSORT with different data types, your program must have a USE
IFPORT statement so that all the calls work correctly. In addition, if you wish to use
QSORT with a derived type or a type that is not in the predefined interfaces, you must
include an overload for the generic subroutine QSORT. Examples of how to do this are
in the portability module's source file, IFPORT.F90.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3349

63

Example
PROGRAM SORTQ

USE IFPORT

integer(2), external :: cmp_function

integer(2) insort(26), i

integer (SIZEOF_SIZE_T) array_len, array_size

array_len = 26

array_size = 2

do i=90,65,-1

insort(i-64)=91 - i

end do

print *, "Before: "

print *,insort

CALL qsort(insort,array_len,array_size,cmp_function)

print *, 'After: '

print *, insort

END

!

integer(2) function cmp_function(a1, a2)

integer(2) a1, a2

cmp_function=a1-a2

end function

RADIX
Inquiry Intrinsic Function (Generic): Returns
the base of the model representing numbers of the
same type and kind as the argument.

Syntax

result = RADIX (x)

3350

63 Intel® Fortran Compiler User and Reference Guides

(Input) Must be of type integer or real; it can be scalar or array
valued.

x

Results

The result is a scalar of type default integer. For an integer argument, the result has the value
r (as defined in Model for Integer Data). For a real argument, the result has the value b (as
defined in Model for Real Data).

Example

If X is a REAL(4) value, RADIX (X) has the value 2.

See Also
• Q to R
• DIGITS
• EXPONENT
• FRACTION
• Data Representation Models

RAISEQQ
Portability Function: Sends a signal to the
executing program.

Module

USE IFPORT

Syntax

result = RAISEQQ (sig)

(Input) INTEGER(4). Signal to raise. One of the following constants
(defined in IFPORT.F90):

sig

• SIG$ABORT - Abnormal termination

• SIG$FPE - Floating-point error

• SIG$ILL - Illegal instruction

• SIG$INT - CTRL+Csignal

• SIG$SEGV - Illegal storage access

3351

63

• SIG$TERM - Termination request

If you do not install a signal handler (with SIGNALQQ, for example), when a signal occurs the
system by default terminates the program with exit code 3.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, nonzero.

If a signal-handling routine for sig has been installed by a prior call to SIGNALQQ, RAISEQQ
causes that routine to be executed. If no handler routine has been installed, the system
terminates the program (the default action).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

See Also
• Q to R
• SIGNALQQ
• SIGNAL
• KILL

RAN
Nonelemental Intrinsic Function (Specific):
Returns the next number from a sequence of
pseudorandom numbers of uniform distribution
over the range 0 to 1. This is a specific function
that has no generic function associated with it. It
cannot be passed as an actual argument.

Syntax

result = RAN (i)

(Input; output) Must be an INTEGER(4) variable or array element.i
It should initially be set to a large, odd integer value. The RAN
function stores a value in the argument that is later used to
calculate the next random number.
There are no restrictions on the seed, although it should be
initialized with different values on separate runs to obtain different
random numbers.

3352

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is REAL(4). The result is a floating-point number that is uniformly distributed
in the range between 0.0 inclusive and 1.0 exclusive. It is set equal to the value associated
with the argument i.

RAN is not a pure function.

Example

In RAN (I), if variable I has the value 3, RAN has the value 4.8220158E-05.

See Also
• Q to R
• RANDOM
• RANDOM_NUMBER

RAND, RANDOM
Portability Functions: Return real random
numbers in the range 0.0 through 1.0.

Module

USE IFPORT

Syntax

result = RAND ([iflag])

result = RANDOM (iflag)

(Input) INTEGER(4). Optional for RAND. Controls the way the
random number is selected.

iflag

Results

The result type is REAL(4). RAND and RANDOM return random numbers in the range 0.0 through
1.0.

Selection processValue of iflag

The generator is restarted and the first
random value is selected.

1

3353

63

Selection processValue of iflag

The next random number in the sequence is
selected.

0

The generator is reseeded using iflag,
restarted, and the first random value is
selected.

Otherwise

When RAND is called without an argument, iflag is assumed to be 0.

There is no difference between RAND and RANDOM. Both functions are included to ensure
portability of existing code that references one or both of them. The intrinsic functions
RANDOM_NUMBER and RANDOM_SEED provide the same functionality.

You can use SRAND to restart the pseudorandom number generator used by RAND.

NOTE. RANDOM is available as a function or subroutine.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

The following example shows how to use both the RANDOM function and the RANDOM
subroutine:

use ifport real(4) ranval

!from libifcore.lib

call seed(1995) ! initialize

!also from for_m_irand.c in libfor

call random(ranval) ! get next random number

print *,ranval

3354

63 Intel® Fortran Compiler User and Reference Guides

!from libifport.lib

ranval = random(1) ! initialize

! same

ranval = random(0) ! get next random number

print *,ranval

end

See Also
• Q to R
• RANDOM_NUMBER
• RANDOM_SEED
• SRAND

RANDOM Subroutine
Portability Subroutine: Returns a pseudorandom
number greater than or equal to zero and less than
one from the uniform distribution.

Module

USE IFPORT

Syntax

CALL RANDOM (ranval)

(Output) REAL(4). Pseudorandom number, 0 ranval< 1, from the
uniform distribution.

ranval

A given seed always produces the same sequence of values from RANDOM.

If SEED is not called before the first call to RANDOM, RANDOM begins with a seed value of one.
If a program must have a different pseudorandom sequence each time it runs, pass the constant
RND$TIMESEED (defined in IFCORE.F90) to SEED before the first call to RANDOM.

3355

63

The portability routines DRAND, DRANDM, IRAND, IRANDM, RAN, RAND, and the RANDOM
portability function and subroutine use the same algorithms and thus return the same answers.
They are all compatible and can be used interchangeably. The algorithm used is a "Prime
Modulus M Multiplicative Linear Congruential Generator," a modified version of the random
number generator by Park and Miller in "Random Number Generators: Good Ones Are Hard to
Find," CACM, October 1988, Vol. 31, No. 10.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

REAL(4) ran

CALL SEED(1995)

CALL RANDOM(ran)

The following example shows how to use both the RANDOM subroutine and the RANDOM
function:

use ifport

real(4) ranval

!from libifcore.lib

call seed(1995) ! initialize

!also from for_m_irand.c in libfor

call random(ranval) ! get next random number

print *,ranval

!from libifport.lib

ranval = random(1) ! initialize

! same

ranval = random(0) ! get next random number

print *,ranval

end

3356

63 Intel® Fortran Compiler User and Reference Guides

See Also
• Q to R
• RANDOM_NUMBER
• SEED
• DRAND and DRANDM
• IRAND and IRANDM
• RAN
• RAND

RANDOM_NUMBER
Intrinsic Subroutine: Returns one pseudorandom
number or an array of such numbers.

Syntax

CALL RANDOM_NUMBER (harvest)

(Output) Must be of type real. It can be a scalar or an array
variable. It is set to contain pseudorandom numbers from the
uniform distribution within the range 0 <= x < 1.

harvest

The seed for the pseudorandom number generator used by RANDOM_NUMBER can be set or
queried with RANDOM_SEED. If RANDOM_SEED is not used, the processor sets the seed for
RANDOM_NUMBER to a processor-dependent value.

The RANDOM_NUMBER generator uses two separate congruential generators together to produce
a period of approximately 10**18, and produces real pseudorandom results with a uniform
distribution in (0,1). It accepts two integer seeds, the first of which is reduced to the range [1,
2147483562]. The second seed is reduced to the range [1, 2147483398]. This means that the
generator effectively uses two 31-bit seeds.

For more information on the algorithm, see the following:

• Communications of the ACM vol 31 num 6 June 1988, titled: Efficient and Portable Combined
Random Number Generators by Pierre L'ecuyer.

• Springer-Verlag New York, N. Y. 2nd ed. 1987, titled: A Guide to Simulation by Bratley, P.,
Fox, B. L., and Schrage, L. E.

3357

63

Example

Consider the following:

REAL Y, Z (5, 5)

! Initialize Y with a pseudorandom number

CALL RANDOM_NUMBER (HARVEST = Y)

CALL RANDOM_NUMBER (Z)

Y and Z contain uniformly distributed random numbers.

The following shows another example:

REAL x, array1 (5, 5)

CALL RANDOM_SEED()

CALL RANDOM_NUMBER(x)

CALL RANDOM_NUMBER(array1)

3358

63 Intel® Fortran Compiler User and Reference Guides

Consider also the following:

program testrand

intrinsic random_seed, random_number

integer size, seed(2), gseed(2), hiseed(2), zseed(2)

real harvest(10)

data seed /123456789, 987654321/

data hiseed /-1, -1/

data zseed /0, 0/

call random_seed(SIZE=size)

print *,"size ",size

call random_seed(PUT=hiseed(1:size))

call random_seed(GET=gseed(1:size))

print *,"hiseed gseed", hiseed, gseed

call random_seed(PUT=zseed(1:size))

call random_seed(GET=gseed(1:size))

print *,"zseed gseed ", zseed, gseed

call random_seed(PUT=seed(1:size))

call random_seed(GET=gseed(1:size))

call random_number(HARVEST=harvest)

print *, "seed gseed ", seed, gseed

print *, "harvest"

print *, harvest

call random_seed(GET=gseed(1:size))

print *,"gseed after harvest ", gseed

end program testrand

See Also
• Q to R
• RANDOM_SEED
• RANDOM

3359

63

• SEED
• DRAND and DRANDM
• IRAND and IRANDM
• RAN
• RAND and RANDOM

RANDOM_SEED
Intrinsic Subroutine (Generic): Changes or
queries the seed (starting point) for the
pseudorandom number generator used by
RANDOM_NUMBER. Intrinsic subroutines cannot
be passed as actual arguments.

Syntax

CALL RANDOM_SEED ([size] [,put] [,get])

(Output; optional) Must be scalar and of type integer. Set to the
number of integers (N) that the processor uses to hold the value
of the seed.

size

(Input; optional) Must be an integer array of rank one and size
greater than or equal to N. It is used to reset the value of the seed.

put

(Output; optional) Must be an integer array of rank one and size
greater than or equal to N. It is set to the current value of the
seed.

get

No more than one argument can be specified. If no argument is specified, a random number
based on the date and time is assigned to the seed.

At run-time, the arguments are examined in the order size then put then get. The first optional
argument in this order that is present determines the behavior of the RANDOM_SEED call.

You can determine the size of the array the processor uses to store the seed by calling
RANDOM_SEED with the size argument (see the second example below).

3360

63 Intel® Fortran Compiler User and Reference Guides

Example

Consider the following:

CALL RANDOM_SEED ! Processor initializes the

! seed randomly from the date

! and time

CALL RANDOM_SEED (SIZE = M) ! Sets M to N

CALL RANDOM_SEED (PUT = SEED (1 : M)) ! Sets user seed

CALL RANDOM_SEED (GET = OLD (1 : M)) ! Reads current seed

The following shows another example:

INTEGER I

INTEGER, ALLOCATABLE :: new (:), old(:)

CALL RANDOM_SEED () ! Processor reinitializes the seed

! randomly from the date and time

CALL RANDOM_SEED (SIZE = I) ! I is set to the size of

! the seed array

ALLOCATE (new(I))

ALLOCATE (old(I))

CALL RANDOM_SEED (GET=old(1:I)) ! Gets the current seed

WRITE(*,*) old

new = 5

CALL RANDOM_SEED (PUT=new(1:I)) ! Sets seed from array

! new

END

See Also
• Q to R
• RANDOM_NUMBER
• SEED
• SRAND

3361

63

RANDU
Intrinsic Subroutine (Generic): Computes a
pseudorandom number as a single-precision value.
Intrinsic subroutines cannot be passed as actual
arguments.

Syntax

CALL RANDU (i1,i2,x)

(Input; output) Must be scalars of type INTEGER(2) or INTEGER(4).
They contain the seed for computing the random number. These
values are updated during the computation so that they contain
the updated seed.

i1, i2

(Output) Must be a scalar of type REAL(4). This is where the
computed random number is returned.

x

The result is returned in x, which must be of type REAL(4). The result value is a pseudorandom
number in the range 0.0 to 1.0. The algorithm for computing the random number value is based
on the values for i1 and i2.

The result value is a pseudorandom number in the range 0.0 to 1.0. The algorithm for computing
the random number value is based on the values for i1 and i2.

If i1 = 0 and i2 = 0, the generator base is set as follows:

x(n + 1) = 2**16 + 3

Otherwise, it is set as follows:

x(n + 1) = (2**16 + 3) * x(n) mod 2**32

The generator base x(n + 1) is stored in i1, i2. The result is x(n + 1) scaled to a real value
y(n + 1), for 0.0 <= y(n + 1) < 1.

Example

Consider the following:

REAL X

INTEGER(2) I, J

...

CALL RANDU (I, J, X)

If I and J are values 4 and 6, X has the value 5.4932479E-04.

3362

63 Intel® Fortran Compiler User and Reference Guides

RANF
Portability Function: Generates a random
number between 0.0 and RAND_MAX.

Module

USE IFPORT

Syntax

result = RANF ()

Results

The result type is REAL(4). The result value is a single-precision pseudo-random number
between 0.0 and RAND_MAX as defined in the C library, normally 0x7FFF 215-1.

The initial seed is set by the following:

CALL SRAND(ISEED)

where ISEED is type INTEGER(4).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

RANGE
Inquiry Intrinsic Function (Generic): Returns
the decimal exponent range in the model
representing numbers with the same kind
parameter as the argument.

Syntax

result = RANGE (x)

(Input) Must be of type integer, real, or complex; it can be scalar
or array valued.

x

Results

The result is a scalar of type default integer.

For an integer argument, the result has the value INT(LOG10(HUGE(x))). For information on
the integer model, see Model for Integer Data.

3363

63

For a real or complex argument, the result has the value INT(MIN (LOG10(HUGE(x)), -LOG10(
TINY(x)))). For information on the real model, see Model for Real Data.

Example

If X is a REAL(4) value, RANGE (X) has the value 37. (HUGE(X) = (1 - 2 -24) x 2 128and TINY(X)
= 2 -126)

See Also
• Q to R
• HUGE
• TINY

RANGET
Portability Subroutine: Returns the current seed.

Module

USE IFPORT

Syntax

CALL RANGET (seed)

(Output) INTEGER(4). The current seed value.seed

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

RANSET
Portability Subroutine: Sets the seed for the
random number generator.

Module

USE IFPORT

Syntax

CALL RANSET (seed)

(Input) REAL(4). The reset value for the seed.seed

3364

63 Intel® Fortran Compiler User and Reference Guides

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

READ Statement
Statement: Transfers input data from external
sequential, direct-access, or internal records.

Syntax

Sequential

Formatted:

READ (eunit, format [, advance] [, asynchronous] [, id] [, pos] [, size] [,
iostat] [, err] [, end] [, eor]) [io-list]

READ form[, io-list]

Formatted - List-Directed:

READ (eunit, *[, asynchronous] [, id] [, pos] [, iostat] [, err] [, end])
[io-list]

READ *[, io-list]

Formatted - Namelist:

READ (eunit, nml-group[, iostat][, err][, end])

READ nml

Unformatted:

READ (eunit [, asynchronous] [, id] [, pos] [, iostat][, err][, end]) [io-list]

Direct-Access
Formatted:

READ (eunit, format, rec [, asynchronous] [, id] [, pos] [, iostat] [, err])
[io-list]

Unformatted:

READ (eunit, rec [, asynchronous] [, id] [, pos] [, iostat] [, err]) [io-list]

Internal

READ (iunit, format [, iostat] [, err] [, end]) [io-list]

3365

63

Is an external unit specifier, optionally prefaced by UNIT=. UNIT=
is required if eunit is not the first specifier in the list.

eunit

Is a format specifier. It is optionally prefaced by FMT= if format
is the second specifier in the list and the first specifier indicates a
logical or internal unit specifier without the optional keyword
UNIT=.

format

For internal READs, an asterisk (*) indicates list-directed
formatting. For direct-access READs, an asterisk is not permitted.

Is an advance specifier (ADVANCE=c-expr). If the value of c-expr
is 'YES', the statement uses advancing input; if the value is 'NO',
the statement uses nonadvancing input. The default value is 'YES'.

advance

Is an asynchronous specifier (ASYNCHRONOUS=i-expr). If the
value of i-expr is 'YES', the statement uses asynchronous input;
if the value is 'NO', the statement uses synchronous input. The
default value is 'NO'.

asynchronous

Is an id specifier (ID=id-var). If ASYNCHRONOUS='YES' is
specified and the operation completes successfully, the id specifier
becomes defined with an implementation-dependent value that

id

can be specified in a future WAIT or INQUIRE statement to identify
the particular data transfer operation. If an error occurs, the id
specifier variable becomes undefined.

Is a pos specifier (POS=p) that indicates a file position in file
storage units in a stream file (ACCESS='STREAM'). It can only be
specified on a file opened for stream access. If omitted, the stream
I/O occurs starting at the next file position after the current file
position.

pos

Is a character count specifier (SIZE=i-var). It can only be
specified for nonadvancing READ statements.

size

Is the name of a variable to contain the completion status of the
I/O operation. Optionally prefaced by IOSTAT=.

iostat

Are branch specifiers if an error (ERR=label), end-of-file
(END=label), or end-of-record (EOR=label) condition occurs.

err, end, eor

EOR can only be specified for nonadvancing READ statements.

Is an I/O list: the names of the variables, arrays, array elements,
or character substrings from which or to which data will be
transferred. Optionally an implied-DO list.

io-list

3366

63 Intel® Fortran Compiler User and Reference Guides

If an item in io-list is an expression that calls a function, that
function must not execute an I/O statement or the EOF intrinsic
function on the same external unit as eunit.
If I/O is to or from a formatted device, io-list cannot contain
derived-type variables, but it can contain components of derived
types. If I/O is to a binary or unformatted device, io-list can
contain either derived type components or a derived type variable.

Is the nonkeyword form of a format specifier (no FMT=).form

Is the format specifier indicating list-directed formatting. (It can
also be specified as FMT=*.)

*

Is the namelist group specification for namelist I/O. Optionally
prefaced by NML=. NML= is required if nml-group is not the
second I/O specifier. For more information, see Namelist Specifier.

nml-group

Is the nonkeyword form of a namelist specifier (no NML=)
indicating namelist I/O.

nml

Is the cell number of a record to be accessed directly. Optionally
prefaced by REC=.

rec

Is an internal unit specifier, optionally prefaced by UNIT=. UNIT=
is required if iunit is not the first specifier in the list. It must be
a character variable. It must not be an array section with a vector
subscript.

iunit

CAUTION. The READ statement can disrupt the results of certain graphics text functions
(such as SETTEXTWINDOW) that alter the location of the cursor. You can avoid the
problem by getting keyboard input with the GETCHARQQ function and echoing the
keystrokes to the screen using OUTTEXT. Alternatively, you can use SETTEXTPOSITION
to control cursor location.

3367

63

Example
DIMENSION ia(10,20)

! Read in the bounds for the array.

! Then read in the array in nested implied-DO lists

! with input format of 8 columns of width 5 each.

READ (6, 990) il, jl, ((ia(i,j), j = 1, jl), i =1, il)

990 FORMAT (2I5, /, (8I5))

! Internal read gives a variable string-represented numbers

CHARACTER*12 str

str = '123456'

READ (str,'(i6)') i

! List-directed read uses no specified format

REAL x, y

INTEGER i, j

READ (*,*) x, y, i, j

See Also
• Q to R
• I/O Lists
• I/O Control List
• Forms for Sequential READ Statements
• Forms for Direct-Access READ Statements
• Forms and Rules for Internal READ Statements
• PRINT
• WRITE
• I/O Formatting

REAL Statement
Statement: Specifies the REAL data type.

Syntax

REAL

3368

63 Intel® Fortran Compiler User and Reference Guides

REAL([KIND=] n)

REAL* n

DOUBLE PRECISION

Is an initialization expression that evaluates to kind 4, 8 or 16.n

Description

If a kind parameter is specified, the real constant has the kind specified. If a kind parameter
is not specified, the kind is default real.

Default real is affected by compiler options specifying real size and by the REAL directive.

The default KIND for DOUBLE PRECISION is affected by compiler option double-size. If this
compiler option is not specified, default DOUBLE PRECISION is REAL(8).

No kind parameter is permitted for data declared with type DOUBLE PRECISION.

REAL(4) and REAL*4 (single precision) are the same data type. REAL(8), REAL*8, and DOUBLE
PRECISION are the same data type.

Example

Entity-oriented examples are:

MODULE DATDECLARE

REAL (8), OPTIONAL :: testval=50.d0

REAL, SAVE :: a(10), b(20,30)

REAL, PARAMETER :: x = 100.

Attribute-oriented examples are:

MODULE DATDECLARE

REAL (8) testval=50.d0

REAL x, a(10), b(20,30)

OPTIONAL testval

SAVE a, b

PARAMETER (x = 100.)

See Also
• Q to R

3369

63

• DOUBLE PRECISION
• REAL directive
• Real Data Types
• General Rules for Real Constants
• REAL(4) Constants
• REAL(8) or DOUBLE PRECISION Constants
• Real and Complex Editing
• Model for Real Data

REAL Directive
General Compiler Directive: Specifies the default
real kind.

Syntax

cDEC$ REAL:{ 4 | 8 | 16 }

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

The REAL directive selects a size of 4 (KIND=4), 8 (KIND=8), or 16 (KIND=16) bytes for default
real numbers. When the directive is in effect, all default real and complex variables are of the
kind specified in the directive. Only numbers specified or implied as REAL without KIND are
affected.

The REAL directive can appear only at the top of a program unit. A program unit is a main
program, an external subroutine or function, a module, or a block data program unit. REAL
cannot appear between program units, or at the beginning of internal subprograms. It does
not affect modules invoked with the USE statement in the program unit that contains it.

3370

63 Intel® Fortran Compiler User and Reference Guides

Example
REAL r ! a 4-byte REAL

WRITE(*,*) KIND(r)

CALL REAL8()

WRITE(*,*) KIND(r) ! still a 4-byte REAL

! not affected by setting in subroutine

END

SUBROUTINE REAL8()

!DEC$ REAL:8

REAL s ! an 8-byte REAL

WRITE(*,*) KIND(s)

END SUBROUTINE

See Also
• Q to R
• REAL
• COMPLEX
• General Compiler Directives

REAL Function
Elemental Intrinsic Function (Generic):
Converts a value to real type.

Syntax

result = REAL (a[,kind])

(Input) Must be of type integer, real, or complex.a

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result type is real. If kind is present, the kind parameter is that specified by kind; otherwise,
the kind parameter of the result is shown in the following table. If the processor cannot represent
the result value in the kind of the result, the result is undefined.

3371

63

Functions that cause conversion of one data type to another type have the same affect as the
implied conversion in assignment statements.

If a is integer or real, the result is equal to an approximation of a. If a is complex, the result
is equal to an approximation of the real part of a.

Result TypeArgument TypeSpecific Name 1

REAL(4)INTEGER(1)

REAL(4)INTEGER(2)FLOATI

REAL(4)INTEGER(4)FLOAT 2, 3

REAL(4)INTEGER(4)REAL 2

REAL(4)INTEGER(8)FLOATK

REAL(4)REAL(4)

REAL(4)REAL(8)SNGL 2, 4

REAL(4)REAL(16)SNGLQ

REAL(4)COMPLEX(4)

REAL(8)COMPLEX(8)

1 These specific functions cannot be passed as actual arguments.
2 The setting of compiler options specifying real size can affect FLOAT, REAL, and SNGL.
3 Or FLOATJ. For compatibility with older versions of Fortran, FLOAT is generic, allowing any
kind of INTEGER argument, and returning a default real result.
4 For compatibility with older versions of Fortran, SNGL is generic, allowing any kind of REAL
argument, and returning a default real result.

Example

REAL (-4) has the value -4.0.

REAL (Y) has the same kind parameter and value as the real part of complex variable Y.

3372

63 Intel® Fortran Compiler User and Reference Guides

See Also
• Q to R
• DFLOAT
• DREAL
• DBLE

RECORD
Statement: Declares a record structure as an
entity with a name.

Syntax

RECORD /structure-name/record-namelist

/structure-name/record-namelist]

. . .

[, /structure-name/record-namelist]

Is the name of a previously declared structure.structure-name

Is a list of one or more variable names, array names, or array
specifications, separated by commas. All of the records named in
this list have the same structure and are allocated separately in
memory.

record-namelist

You can use record names in COMMON and DIMENSION statements, but not in DATA or
NAMELIST statements.

Records initially have undefined values unless you have defined their values in structure
declarations.

STRUCTURE and RECORD constructs have been replaced by derived types, which should be
used in writing new code. See Derived Data Types.

3373

63

Example
STRUCTURE /address/

LOGICAL*2 house_or_apt

INTEGER*2 apt

INTEGER*2 housenumber

CHARACTER*30 street

CHARACTER*20 city

CHARACTER*2 state

INTEGER*4 zip

END STRUCTURE

RECORD /address/ mailing_addr(20), shipping_addr(20)

See Also
• Q to R
• TYPE
• MAP...END MAP
• STRUCTURE...END STRUCTURE
• UNION...END UNION
• Record Structures

RECTANGLE, RECTANGLE_W (W*32, W*64)
Graphics Functions: Draw a rectangle using the
current graphics color, logical write mode, and line
style.

Module

USE IFQWIN

Syntax

result = RECTANGLE (control, x1, y1, x2, y2)

result = RECTANGLE_W (control, wx1, wy1, wx2, wy2)

3374

63 Intel® Fortran Compiler User and Reference Guides

(Input) INTEGER(2). Fill flag. One of the following symbolic
constants (defined in IFQWIN.F90):

control

• $GFILLINTERIOR - Draws a solid figure using the current color
and fill mask.

• $GBORDER - Draws the border of a rectangle using the current
color and line style.

(Input) INTEGER(2). Viewport coordinates for upper-left corner of
rectangle.

x1, y1

(Input) INTEGER(2). Viewport coordinates for lower-right corner
of rectangle.

x2, y2

(Input) REAL(8). Window coordinates for upper-left corner of
rectangle.

wx1, wy1

(Input) REAL(8). Window coordinates for lower-right corner of
rectangle.

wx2, wy2

Results

The result type is INTEGER(2). The result is nonzero if successful; otherwise, 0.

The RECTANGLE function uses the viewport-coordinate system. The viewport coordinates (x1,
y1) and (x2, y2) are the diagonally opposed corners of the rectangle.

The RECTANGLE_W function uses the window-coordinate system. The window coordinates (
wx1, wy1) and (wx2, wy2) are the diagonally opposed corners of the rectangle.

SETCOLORRGB sets the current graphics color. SETFILLMASK sets the current fill mask. By
default, filled graphic shapes are filled solid with the current color.

If you fill the rectangle using FLOODFILLRGB, the rectangle must be bordered by a solid line
style. Line style is solid by default and can be changed with SETLINESTYLE.

NOTE. The RECTANGLE routine described here is a QuickWin routine. If you are trying
to use the Microsoft* Platform SDK version of the Rectangle routine by including the
IFWIN module, you need to specify the routine name as MSFWIN$Rectangle. For more
information, see Building Applications: Special Naming Convention for Certain QuickWin
and Win32 Graphics Routines.

3375

63

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example

This program draws the rectangle shown below.

! Build as a QuickWin or Standard Graphics App.

USE IFQWIN

INTEGER(2) dummy, x1, y1, x2, y2

x1 = 80; y1 = 50

x2 = 240; y2 = 150

dummy = RECTANGLE($GBORDER, x1, y1, x2, y2)

END

See Also
• Q to R
• SETFILLMASK
• GRSTATUS
• LINETO
• POLYGON
• FLOODFILLRGB
• SETLINESTYLE
• SETCOLOR
• SETWRITEMODE

Building Applications: Drawing Lines on the Screen

Building Applications: Graphics Coordinates

3376

63 Intel® Fortran Compiler User and Reference Guides

RECURSIVE
Keyword: Specifies that a subroutine or function
can call itself directly or indirectly. Recursion is
permitted if the keyword is specified in a FUNCTION
or SUBROUTINE statement, or if RECURSIVE is
specified as a compiler option or in an OPTIONS
statement.

Description

If a function is directly recursive and array valued, the keywords RECURSIVE and RESULT must
both be specified in the FUNCTION statement.

The procedure interface is explicit within the subprogram in the following cases:

• When RECURSIVE is specified for a subroutine

• When RECURSIVE and RESULT are specified for a function

The keyword RECURSIVE must be specified if any of the following applies (directly or indirectly):

• The subprogram invokes itself.

• The subprogram invokes a subprogram defined by an ENTRY statement in the same
subprogram.

• An ENTRY procedure in the same subprogram invokes one of the following:

• Itself

• Another ENTRY procedure in the same subprogram

• The subprogram defined by the FUNCTION or SUBROUTINE statement

3377

63

Example
! RECURS.F90

!

i = 0

CALL Inc (i)

END

RECURSIVE SUBROUTINE Inc (i)

i = i + 1

CALL Out (i)

IF (i.LT.20) CALL Inc (i) ! This also works in OUT

END SUBROUTINE Inc

SUBROUTINE Out (i)

WRITE (*,*) i

END SUBROUTINE Out

See Also
• Q to R
• ENTRY
• FUNCTION
• SUBROUTINE
• OPTIONS
• Program Units and Procedures
• recursive compiler option

REDUCTION
Parallel Directive Clause: Performs a reduction
operation on the specified variables.

Syntax

REDUCTION (operator| intrinsic: list)

Is one of the following: +, *, -, .AND., .OR., .EQV., or .NEQV.operator

Is one of the following: MAX, MIN, IAND, IOR, or IEOR.intrinsic

3378

63 Intel® Fortran Compiler User and Reference Guides

Is the name of one or more variables of intrinsic type that are
accessible to the scoping unit. Subobjects cannot be specified.
Each name must be separated by a comma. Deferred-shape and
assumed-size arrays are not allowed.

list

Variables that appear in a REDUCTION clause must be SHARED in the enclosing context. A
private copy of each variable in list is created for each thread as if the PRIVATE clause had
been used. The private copy is initialized according to the operator (see the tablebelow).

At the end of the REDUCTION, the shared variable is updated to reflect the result of combining
the original value of the shared reduction variable with the final value of each of the private
copies using the operator specified. The reduction operators are all associative (except for
subtraction), and the compiler can freely reassociate the computation of the final value; the
partial results of a subtraction reduction are added to form the final value.

The value of the shared variable becomes undefined when the first thread reaches the clause
containing the reduction, and it remains undefined until the reduction computation is complete.
Normally, the computation is complete at the end of the REDUCTION construct.

However, if the REDUCTION clause is used in a construct to which NOWAIT is also applied, the
shared variable remains undefined until a barrier synchronization has been performed. This
ensures that all the threads complete the REDUCTION clause.

The REDUCTION clause must be used in a region or worksharing construct where the reduction
variable is used only in a reduction statement having one of the following forms:

x = x operator expr

x = expr operator x (except for subtraction)

x = intrinsic (x, expr)

x = intrinsic (expr, x)

Some reductions can be expressed in other forms. For instance, a MAX reduction can be
expressed as follows:

IF (x .LT. expr) x = expr

Alternatively, the reduction might be hidden inside a subroutine call. Be careful that the operator
you specify in the REDUCTION clause matches the reduction operation.

The following table lists the operators and intrinsics and their initialization values. The actual
initialization value will be consistent with the data type of the reduction variable.

3379

63

Table 899: Initialization Values for REDUCTION Operators

Initialization ValueOperator

0+

1*

0-

.TRUE..AND.

.FALSE..OR.

.TRUE..EQV.

.FALSE..NEQV.

Table 900: Initialization Values for REDUCTION Intrinsics

Initialization ValueIntrinsic

Smallest representable numberMAX

Largest representable numberMIN

All bits onIAND

0IOR

0IEOR

If a directive allows reduction clauses, the number you can specify is not limited. However,
each variable name can appear in only one of the clauses.

See Also
• Q to R

Optimizing Applications: OpenMP* Directives and Clauses Summary

Optimizing Applications: REDUCTION Clause

Optimizing Applications: Data Scope Attribute Clauses Overview

Optimizing Applications: Parallel Region Directives

3380

63 Intel® Fortran Compiler User and Reference Guides

Optimizing Applications: Worksharing Construct Directives

%REF
Built-in Function: Changes the form of an actual
argument. Passes the argument by reference. In
Intel® Fortran, passing by reference is the default.

Syntax

%REF (a)

(Input) An expression, record name, procedure name, array,
character array section, or array element.

a

You must specify %REF in the actual argument list of a CALL statement or function reference.
You cannot use it in any other context.

The following table lists the Intel Fortran defaults for argument passing, and the allowed uses
of %REF:

%REFDefaultActual Argument Data Type

Expressions:

YesREFLogical

YesREFInteger

YesREFREAL(4)

YesREFREAL(8)

YesREFREAL(16)

YesREFCOMPLEX(4)

YesREFCOMPLEX(8)

YesREFCOMPLEX(16)

YesSee table note 1Character

NoREFHollerith

3381

63

%REFDefaultActual Argument Data Type

YesREFAggregate2

YesREFDerived

Array Name:

YesREFNumeric

YesSee table note 1Character

YesREFAggregate2

YesREFDerived

Procedure Name:

YesREFNumeric

YesSee table note 1Character

1A character argument is passed by address and hidden length.
2In Intel Fortran record structures

The %REF and %VAL functions override related cDEC$ ATTRIBUTE settings.

Example
CHARACTER(LEN=10) A, B

CALL SUB(A, %REF(B))

Variable A is passed by address and hidden length. Variable B is passed by reference.

Note that on Windows systems, compiler option iface determines how the character argument
for variable B is passed.

See Also
• Q to R
• CALL
• %VAL

3382

63 Intel® Fortran Compiler User and Reference Guides

• %LOC
• /iface compiler option

REGISTERMOUSEEVENT (W*32, W*64)
QuickWin Function: Registers the
application-supplied callback routine to be called
when a specified mouse event occurs in a specified
window.

Module

USE IFQWIN

Syntax

result = REGISTERMOUSEEVENT (unit,mouseevents,callbackroutine)

(Input) INTEGER(4). Unit number of the window whose callback
routine on mouse events is to be registered.

unit

(Input) INTEGER(4). One or more mouse events to be handled by
the callback routine to be registered. Symbolic constants (defined
in IFQWIN.F90) for the possible mouse events are:

mouseevents

• MOUSE$LBUTTONDOWN - Left mouse button down

• MOUSE$LBUTTONUP - Left mouse button up

• MOUSE$LBUTTONDBLCLK - Left mouse button double-click

• MOUSE$RBUTTONDOWN - Right mouse button down

• MOUSE$RBUTTONUP - Right mouse button up

• MOUSE$RBUTTONDBLCLK - Right mouse button double-click

• MOUSE$MOVE - Mouse moved

(Input) Routine to be called on the specified mouse event in the
specified window. It must be declared EXTERNAL. For a prototype
mouse callback routine, see Building Applications: Using a Mouse.

callbackroutine

Results

The result type is INTEGER(4). The result is zero or a positive integer if successful; otherwise,
a negative integer that can be one of the following:

3383

63

• MOUSE$BADUNIT - The unit specified is not open, or is not associated with a QuickWin
window.

• MOUSE$BADEVENT - The event specified is not supported.

For every BUTTONDOWN or BUTTONDBLCLK event there is an associated BUTTONUP event.
When the user double clicks, four events happen: BUTTONDOWN and BUTTONUP for the first
click, and BUTTONDBLCLK and BUTTONUP for the second click. The difference between getting
BUTTONDBLCLK and BUTTONDOWN for the second click depends on whether the second click
occurs in the double click interval, set in the system's CONTROL PANEL/MOUSE.

Compatibility

QUICKWIN GRAPHICS LIB

Example

The following example registers the routine CALCULATE, to be called when the user double-clicks
the left mouse button while the mouse cursor is in the child window opened as unit 4:

USE IFQWIN

INTEGER(4) result

OPEN (4, FILE= 'USER')

...

result = REGISTERMOUSEEVENT (4, MOUSE$LBUTTONDBLCLK, CALCULATE)

See Also
• Q to R
• UNREGISTERMOUSEEVENT
• WAITONMOUSEEVENT

REMAPALLPALETTERGB, REMAPPALETTERGB (W*32, W*64)
Graphics Functions: REMAPALLPALETTERGB
remaps a set of Red-Green-Blue (RGB) color values
to indexes recognized by the video hardware.
REMAPPALETTERGB remaps one color index to an
RGB color value.

Module

USE IFQWIN

3384

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = REMAPALLPALETTERGB (colors)

result = REMAPPALETTERGB (index, colors)

(Input) INTEGER(4). Ordered array of RGB color values to be
mapped in order to indexes. Must hold 0-255 elements.

colors

(Input) INTEGER(4). Color index to be reassigned an RGB color.index

(Input) INTEGER(4). RGB color value to assign to a color index.color

Results

The result type is INTEGER(4). REMAPALLPALETTERGB returns 0 if successful; otherwise, -1.
REMAPPALETTERGB returns the previous color assigned to the index.

The REMAPALLPALETTERGB function remaps all of the available color indexes simultaneously
(up to 236; 20 indexes are reserved by the operating system). The colors argument points
to an array of RGB color values. The default mapping between the first 16 indexes and color
values is shown in the following table. The 16 default colors are provided with symbolic constants
in IFQWIN.F90.

ColorIndexColorIndex

$GRAY8$BLACK0

$LIGHTBLUE9$BLUE1

$LIGHTGREEN10$GREEN2

$LIGHTCYAN11$CYAN3

$LIGHTRED12$RED4

$LIGHTMAGENTA13$MAGENTA5

$YELLOW14$BROWN6

$BRIGHTWHITE15$WHITE7

The number of colors mapped can be fewer than 236 if the number of colors supported by the
current video mode is fewer, but at most 236 colors can be mapped by REMAPALLPALETTERGB.
Most Windows graphics drivers support a palette of 256K colors or more, of which only a few

3385

63

can be mapped into the 236 palette indexes at a time. To access and use all colors on the
system, bypass the palette and use direct RGB color functions such as such as SETCOLORRGB
and SETPIXELSRGB.

Any RGB colors can be mapped into the 236 palette indexes. Thus, you could specify a palette
with 236 shades of red. For further details on using different color procedures see Building
Applications: Adding Color Overview.

In each RGB color value, each of the three colors, red, green and blue, is represented by an
eight-bit value (2 hex digits). In the values you specify with REMAPALLPALETTERGB or
REMAPPALETTERGB, red is the rightmost byte, followed by green and blue. The RGB value's
internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 11111111 (hex FF) the
maximum for each of the three components. For example, Z'008080' yields full-intensity red,
Z'00FF00' full-intensity green, Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all
three, resulting in bright white.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
! Build as QuickWin or Standard Graphics App.

USE IFQWIN

INTEGER(4) colors(3)

INTEGER(2) status

colors(1) = Z'00FFFF' ! yellow

colors(2) = Z'FFFFFF' ! bright white

colors(3) = 0 ! black

status = REMAPALLPALETTERGB(colors)

status = REMAPPALETTERGB(INT2(47), Z'45A315')

END

3386

63 Intel® Fortran Compiler User and Reference Guides

See Also
• Q to R
• SETBKCOLORRGB
• SETCOLORRGB
• SETBKCOLOR
• SETCOLOR

Building Applications: Using Color

Building Applications: VGA Color Palette

RENAME
Portability Function: Renames a file.

Module

USE IFPORT

Syntax

result = RENAME (from,to)

(Input) Character*(*). Path of an existing file.from

(Input) Character*(*). The new path for the file (see Caution note
below).

to

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, an error code, such
as:

• EACCES - The file or directory specified by to could not be created (invalid path). This error
is also returned if the drive specified is not currently connected to a device.

• ENOENT - The file or path specified by from could not be found.

• EXDEV - Attempt to move a file to a different device.

CAUTION. This routine can cause data to be lost. If the file specified in to already
exists, RENAME deletes the pre-existing file.

It is possible to rename a file to itself without error.

3387

63

The paths can use forward (/) or backward (\) slashes as path separators and can include
drive letters (if permitted by your operating system).

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
use IFPORT

integer(4) istatus

character*12 old_name, new_name

print *, "Enter file to rename: "

read *, old_name

print *, "Enter new name: "

read *, new_name

ISTATUS = RENAME (old_name, new_name)

See Also
• Q to R
• RENAMEFILEQQ

RENAMEFILEQQ
Portability Function: Renames a file.

Module

USE IFPORT

Syntax

result = RENAMEFILEQQ (oldname,newname)

(Input) Character*(*). Current name of the file to be renamed.oldname

(Input) Character*(*). New name of the file to be renamed.newname

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

3388

63 Intel® Fortran Compiler User and Reference Guides

You can use RENAMEFILEQQ to move a file from one directory to another on the same drive
by giving a different path in the newname parameter.

If the function fails, call GETLASTERRORQQ to determine the reason. One of the following errors
can be returned:

• ERR$ACCES - Permission denied. The file's permission setting does not allow the specified
access.

• ERR$EXIST - The file already exists.

• ERR$NOENT - File or path specified by oldname not found.

• ERR$XDEV - Attempt to move a file to a different device.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

USE IFCORE

INTEGER(4) len

CHARACTER(80) oldname, newname

LOGICAL(4) result

WRITE(*,'(A, \)') ' Enter old name: '

len = GETSTRQQ(oldname)

WRITE(*,'(A, \)') ' Enter new name: '

len = GETSTRQQ(newname)

result = RENAMEFILEQQ(oldname, newname)

END

See Also
• Q to R
• FINDFILEQQ
• RENAME
• GETLASTERRORQQ

3389

63

REPEAT
Transformational Intrinsic Function (Generic):
Concatenates several copies of a string.

Syntax

result = REPEAT (string,ncopies)

(Input) Must be scalar and of type character.string

(Input) Must be scalar and of type integer. It must not be negative.ncopies

Results

The result is a scalar of type character and length ncopies x LEN(string). The kind parameter
is the same as string. The value of the result is the concatenation of ncopies copies of string.

Example

REPEAT ('S', 3) has the value SSS.

REPEAT ('ABC', 0) has the value of a zero-length string.

The following shows another example:

CHARACTER(6) str

str = REPEAT('HO', 3) ! returns HOHOHO

See Also
• Q to R
• SPREAD

RESHAPE
Transformational Intrinsic Function (Generic):
Constructs an array with a different shape from
the argument array.

Syntax

result = RESHAPE (source,shape[,pad] [,order])

(Input) Must be an array. It may be of any data type. It supplies
the elements for the result array. Its size must be greater than or
equal to PRODUCT(shape) if pad is omitted or has size zero.

source

3390

63 Intel® Fortran Compiler User and Reference Guides

(Input) Must be an integer array of up to 7 elements, with rank
one and constant size. It defines the shape of the result array. Its
size must be positive; its elements must not have negative values.

shape

(Input; optional) Must be an array with the same type and kind
parameters as source. It is used to fill in extra values if the result
array is larger than source.

pad

(Input; optional) Must be an integer array with the same shape
as shape. Its elements must be a permutation of (1,2,...,n), where
n is the size of shape. If order is omitted, it is assumed to be
(1,2,...,n).

order

Results

The result is an array of shape shape with the same type and kind parameters as source. The
size of the result is the product of the values of the elements of shape.

In the result array, the array elements of source are placed in the order of dimensions specified
by order. If order is omitted, the array elements are placed in normal array element order.

The array elements of source are followed (if necessary) by the array elements of pad in array
element order. If necessary, additional copies of pad follow until all the elements of the result
array have values.

NOTE. In standard Fortran array element order, the first dimension varies fastest. For
example, element order in a two-dimensional array would be (1,1), (2,1), (3,1) and so
on. In a three-dimensional array, each dimension having two elements, the array element
order would be (1,1,1), (2, 1, 1), (1, 2, 1), (2, 2, 1), (1, 1, 2), (2, 1, 2), (1, 2, 2), (2,
2, 2).

RESHAPE can be used to reorder a Fortran array to match C array ordering before the
array is passed from a Fortran to a C procedure.

Example

RESHAPE ((/3, 4, 5, 6, 7, 8/), (/2, 3/)) has the value

[3 5 7]

[4 6 8].

3391

63

RESHAPE ((/3, 4, 5, 6, 7, 8/), (/2, 4/), (/1, 1/), (/2, 1/)) has the value

[3 4 5 6]

[7 8 1 1].

The following shows another example:

INTEGER AR1(2, 5)

REAL F(5,3,8)

REAL C(8,3,5)

AR1 = RESHAPE((/1,2,3,4,5,6/),(/2,5/),(/0,0/),(/2,1/))

! returns 1 2 3 4 5

! 6 0 0 0 0

!

! Change Fortran array order to C array order

C = RESHAPE(F, (/8,3,5/), ORDER = (/3, 2, 1/))

END

See Also
• Q to R
• PACK
• SHAPE
• TRANSPOSE
• Array Assignment Statements

RESULT
Keyword: Specifies a name for a function result.

Description

Normally, a function result is returned in the function's name, and all references to the function
name are references to the function result.

However, if you use the RESULT keyword in a FUNCTION statement, you can specify a local
variable name for the function result. In this case, all references to the function name are
recursive calls, and the function name must not appear in specification statements.

The RESULT name must be different from the name of the function.

3392

63 Intel® Fortran Compiler User and Reference Guides

Example

The following shows an example of a recursive function specifying a RESULT variable:

RECURSIVE FUNCTION FACTORIAL(P) RESULT(L)

INTEGER, INTENT(IN) :: P

INTEGER L

IF (P == 1) THEN

L = 1

ELSE

L = P * FACTORIAL(P - 1)

END IF

END FUNCTION

The following shows another example:

recursive function FindSame(Aindex,Last,Used) &

& result(FindSameResult)

type(card) Last

integer Aindex, i

logical matched, used(5)

if(Aindex > 5) then

FindSameResult = .true.

return

endif

. . .

See Also
• Q to R
• FUNCTION
• ENTRY
• RECURSIVE
• Program Units and Procedures

3393

63

RETURN
Statement: Transfers control from a subprogram
to the calling program unit.

Syntax

RETURN [expr]

Is a scalar expression that is converted to an integer value if
necessary.

expr

The expr is only allowed in subroutines; it indicates an alternate
return. (An alternate return is an obsolescentfeature in Fortran 95
and Fortran 90.)

Description

When a RETURN statement is executed in a function subprogram, control is transferred to the
referencing statement in the calling program unit.

When a RETURN statement is executed in a subroutine subprogram, control is transferred to
the first executable statement following the CALL statement that invoked the subroutine, or to
the alternate return (if one is specified).

Example

The following shows how alternate returns can be used in a subroutine:

CALL CHECK(A, B, *10, *20, C)

...

10 ...

20 ...

SUBROUTINE CHECK(X, Y, *, *, C)

...

50 IF (X) 60, 70, 80

60 RETURN

70 RETURN 1

80 RETURN 2

END

3394

63 Intel® Fortran Compiler User and Reference Guides

The value of X determines the return, as follows:

• If X < 0, a normal return occurs and control is transferred to the first executable statement
following CALL CHECK in the calling program.

• If X = = 0, the first alternate return (RETURN 1) occurs and control is transferred to the
statement identified with label 10.

• If X > 0, the second alternate return (RETURN 2) occurs and control is transferred to the
statement identified with label 20.

Note that an asterisk (*) specifies the alternate return. An ampersand (&) can also specify an
alternate return in a CALL statement, but not in a subroutine's dummy argument list.

3395

63

The following shows another example:

SUBROUTINE Loop

CHARACTER in

10 READ (*, '(A)') in

IF (in .EQ. 'Y') RETURN

GOTO 10

! RETURN implied by the following statement:

END

!The following example shows alternate returns:

CALL AltRet (i, *10, *20, *30)

WRITE (*, *) 'normal return'

GOTO 40

10 WRITE (*, *) 'I = 10'

GOTO 40

20 WRITE (*, *) 'I = 20'

GOTO 40

30 WRITE (*, *) 'I = 30'

40 CONTINUE

END

SUBROUTINE AltRet (i, *, *, *)

IF (i .EQ. 10) RETURN 1

IF (i .EQ. 20) RETURN 2

IF (i .EQ. 30) RETURN 3

END

In this example, RETURN 1 specifies the list's first alternate-return label, which is a symbol for
the actual argument *10 in the CALL statement. RETURN 2 specifies the second alternate-return
label, and RETURN 3 specifies the third alternate-return label.

See Also
• Q to R

3396

63 Intel® Fortran Compiler User and Reference Guides

• CALL
• CASE

REWIND
Statement: Positions a sequential or directaccess
file at the beginning of the file (the initial point).
It takes one of the following forms:

Syntax

REWIND ([UNIT=] io-unit[, ERR= label] [, IOSTAT=i-var])

REWIND io-unit

(Input) Is an external unit specifier.io-unit

Is the label of the branch target statement that receives control
if an error occurs.

label

(Output)Is a scalar integer variable that is defined as a positive
integer if an error occurs and zero if no error occurs.

i-var

Description

The unit number must refer to a file on disk or magnetic tape, and the file must be open for
sequential, direct, or append access.

If a REWIND is done on a direct access file, the NEXTREC specifier is assigned a value of 1.

If a file is already positioned at the initial point, a REWIND statement has no effect.

If a REWIND statement is specified for a unit that is not open, it has no effect.

Example

The following statement repositions the file connected to I/O unit 3 to the beginning of the file:

REWIND 3

Consider the following statement:

REWIND (UNIT=9, IOSTAT=IOS, ERR=10)

This statement positions the file connected to unit 9 at the beginning of the file. If an error
occurs, control is transferred to the statement labeled 10, and a positive integer is stored in
variable IOS.

3397

63

The following shows another example:

WRITE (7, '(I10)') int

REWIND (7)

READ (7, '(I10)') int

See Also
• Q to R
• OPEN
• READ
• WRITE
• Data Transfer I/O Statements
• Branch Specifiers

REWRITE
Statement: Rewrites the current record.

Syntax

Formatted:

REWRITE (eunit, format[, iostat] [, err]) [io-list]

Unformatted:

REWRITE (eunit[, iostat][, err]) [io-list]

Is an external unit specifier ([UNIT=]io-unit).eunit

Is a format specifier ([FMT=]format).format

Is a status specifier (IOSTAT=i-var).iostat

Is a branch specifier (ERR=label) if an error condition occurs.err

Is an I/O list.io-list

Description

In the REWRITE statement, data (translated if formatted; untranslated if unformatted) is written
to the current (existing) record in a file with direct access.

The current record is the last record accessed by a preceding, successful sequential or
direct-access READ statement.

3398

63 Intel® Fortran Compiler User and Reference Guides

Between a READ and REWRITE statement, you should not specify any other I/O statement
(except INQUIRE) on that logical unit. Execution of any other I/O statement on the logical unit
destroys the current-record context and causes the current record to become undefined.

Only one record can be rewritten in a single REWRITE statement operation.

The output list (and format specification, if any) must not specify more characters for a record
than the record size. (Record size is specified by RECLin an OPEN statement.)

If the number of characters specified by the I/O list (and format, if any) do not fill a record,
blank characters are added to fill the record.

Example

In the following example, the current record (contained in the relative organization file connected
to logical unit 3) is updated with the values represented by NAME, AGE, and BIRTH:

REWRITE (3, 10, ERR=99) NAME, ,AGE, BIRTH

10 FORMAT (A16, I2, A8)

RGBTOINTEGER (W*32, W*64)
QuickWin Function: Converts three integers
specifying red, green, and blue color intensities
into a four-byte RGB integer for use with RGB
functions and subroutines.

Module

USE IFQWIN

Syntax

result = RGBTOINTEGER (red, green, blue)

(Input) INTEGER(4). Intensity of the red component of the RGB
color value. Only the lower 8 bits of red are used.

red

(Input) INTEGER(4). Intensity of the green component of the RGB
color value. Only the lower 8 bits of green are used.

green

(Input) INTEGER(4). Intensity of the blue component of the RGB
color value. Only the lower 8 bits of blue are used.

blue

Results

The result type is INTEGER(4). The result is the combined RGB color value.

3399

63

In each RGB color value, each of the three colors, red, green, and blue, is represented by an
eight-bit value (2 hex digits). In the value returned with RGBTOINTEGER, red is the rightmost
byte, followed by green and blue. The RGB value's internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex Z'FF') the
maximum for each of the three components. For example, Z'0000FF' yields full-intensity red,
Z'00FF00' full-intensity green, Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all
three, resulting in bright white.

Compatibility

QUICKWIN GRAPHICS LIB

Example
! Build as a QuickWin App.

USE IFQWIN

INTEGER r, g, b, rgb, result

INTEGER(2) status

r = Z'F0'

g = Z'F0'

b = 0

rgb = RGBTOINTEGER(r, g, b)

result = SETCOLORRGB(rgb)

status = ELLIPSE($GFILLINTERIOR,INT2(40), INT2(55), &

INT2(90), INT2(85))

END

See Also
• Q to R
• INTEGERTORGB
• SETCOLORRGB

3400

63 Intel® Fortran Compiler User and Reference Guides

• SETBKCOLORRGB
• SETPIXELRGB
• SETPIXELSRGB
• SETTEXTCOLORRGB

Building Applications: Using QuickWin Overview

RINDEX
Portability Function: Locates the index of the
last occurrence of a substring within a string.

Module

USE IFPORT

Syntax

result = RINDEX (string,substr)

(Input) Character*(*). Original string to search.string

(Input) Character*(*). String to search for.substr

Results

The result type is INTEGER(4). The result is the starting position of the final occurrence of
substrg in string. The result is zero if substring does not occur in string.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

character*80 mainstring

character*4 shortstr

integer(4) where

mainstring="Hello Hello Hello Hello There There There"

shortstr="Hello"

where=rindex(mainstring,shortstr)

! where is 19

3401

63

See Also
• Q to R
• INDEX

RNUM
Elemental Intrinsic Function (Specific):
Converts a character string to a REAL(4) value.
This function cannot be passed as an actual
argument.

Syntax

result = RNUM (i)

(Input) Must be of type character.i

Results

The result type is REAL(4). The result value is the real value represented by the character string
i.

Example

RNUM ("821.003") has the value 821.003 of type REAL(4).

RRSPACING
Elemental Intrinsic Function (Generic):
Returns the reciprocal of the relative spacing of
model numbers near the argument value.

Syntax

result = RRSPACING (x)

(Input) Must be of type real.x

Results

The result type is the same as x. The result has the value | x* b -e| x b p. Parameters b, e, p
are defined in Model for Real Data.

Example

If -3.0 is a REAL(4) value, RRSPACING (-3.0) has the value 0.75 x 2 24.

3402

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

REAL(4) res4

REAL(8) res8, r2

res4 = RRSPACING(3.0) ! returns 1.258291E+07

res4 = RRSPACING(-3.0) ! returns 1.258291E+07

r2 = 487923.3

res8 = RRSPACING(r2) ! returns 8.382458680573952E+015

END

See Also
• Q to R
• SPACING
• Data Representation Models

RSHIFT
Elemental Intrinsic Function (Generic): Shifts
the bits in an integer right by a specified number
of positions. See ISHFT.

RTC
Portability Function: Returns the number of
seconds elapsed since a specific Greenwich mean
time.

Module

USE IFPORT

Syntax

result = RTC()

Results

The result type is REAL(8). The result is the number of seconds elapsed since 00:00:00
Greenwich mean time, January 1, 1970.

3403

63

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

real(8) s, s1, time_spent

INTEGER(4) i, j

s = RTC()

call sleep(4)

s1 = RTC()

time_spent = s1 - s

PRINT *, 'It took ',time_spent, 'seconds to run.'

See Also
• Q to R
• DATE_AND_TIME
• TIME portability routine

RUNQQ
Portability Function: Executes another program
and waits for it to complete.

Module

USE IFPORT

Syntax

result = RUNQQ (filename,commandline)

(Input) Character*(*). File name of a program to be executed.filename

(Input) Character*(*). Command-line arguments passed to the
program to be executed.

commandline

3404

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is INTEGER(2). If the program executed with RUNQQ terminates normally, the
exit code of that program is returned to the program that launched it. If the program fails, -1
is returned.

The RUNQQ function executes a new process for the operating system using the same path,
environment, and resources as the process that launched it. The launching process is suspended
until execution of the launched process is complete.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(2) result

result = RUNQQ('myprog', '-c -r')

END

See also the example in NARGS.

See Also
• Q to R
• NARGS
• SYSTEM
• NARGS

S

SAVE
Statement and Attribute: Causes the values and
definition of objects to be retained after execution
of a RETURN or END statement in a subprogram.

Syntax

The SAVE attribute can be specified in a type declaration statement or a SAVE statement, and
takes one of the following forms:

3405

63

Type Declaration Statement:

type,[att-ls,] SAVE [, att-ls] :: object[, object] ...]

Statement:

SAVE [[::]object[, object] ...]

Is a data type specifier.type

Is an optional list of attribute specifiers.att-ls

Is the name of an object, or the name of a common block enclosed
in slashes (/common-block-name/).

object

Description

In Intel® Fortran, certain variables are given the SAVE attribute, or not, by default:

• The following variables are not saved by default:

• Scalar local variables of intrinsic types INTEGER, REAL, COMPLEX, and LOGICAL without
default initialization

• Variables that are declared AUTOMATIC

• Local variables that are allocatable arrays

• Derived-type variables that are data initialized by default initialization of any of their
components

• RECORD variables that are data initialized by default initialization specified in its
STRUCTURE declaration

• The following variables are saved by default:

• COMMON variables

• Scalar local variables not of intrinsic types INTEGER, REAL, COMPLEX, and LOGICAL of
non-recursive subprograms

• Non-scalar local variables of non-recursive subprograms

• Module variables

• Data initialized by DATA statements

• Local variables that are not described in the preceding two lists are saved by default.

3406

63 Intel® Fortran Compiler User and Reference Guides

NOTE. Certain compiler options, such as -save and -automatic (Linux and Mac OS
X) or /Qsave and /automatic (Windows), and use of OpenMP can change the defaults.

To enhance portability and avoid possible compiler warning messages, Intel recommends that
you use the SAVE statement to name variables whose values you want to preserve between
subprogram invocations.

When a SAVE statement does not explicitly contain a list, all allowable items in the scoping unit
are saved.

A SAVE statement cannot specify the following (their values cannot be saved):

• A blank common

• An object in a common block

• A procedure

• A dummy argument

• A function result

• An automatic object

• A PARAMETER (named) constant

Even though a common block can be included in a SAVE statement, individual variables within
the common block can become undefined (or redefined) in another scoping unit.

If a common block is saved in any scoping unit of a program (other than the main program),
it must be saved in every scoping unit in which the common block appears.

A SAVE statement has no effect in a main program.

Example

The following example shows a type declaration statement specifying the SAVE attribute:

SUBROUTINE TEST()

REAL, SAVE :: X, Y

The following is an example of the SAVE statement:

SAVE A, /BLOCK_B/, C, /BLOCK_D/, E

3407

63

The following shows another example:

SUBROUTINE MySub

COMMON /z/ da, in, a, idum(10)

real(8) x,y

...

SAVE x, y, /z/

! alternate declaration

REAL(8), SAVE :: x, y

SAVE /z/

See Also
• S
• COMMON
• DATA
• RECURSIVE
• MODULE
• MODULE PROCEDURE
• Type Declarations
• Compatible attributes
• SAVE value in CLOSE

SAVEIMAGE, SAVEIMAGE_W (W*32, W*64)
Graphics Functions: Save an image from a
specified portion of the screen into a Windows
bitmap file.

Module

USE IFQWIN

Syntax

result = SAVEIMAGE (filename,ulxcoord,ulycoord, lrxcoord,lrycoord)

result = SAVEIMAGE_W (filename,ulwxcoord,ulwycoord, lrwxcoord,lrwycoord)

(Input) Character*(*). Path of the bitmap file.filename

3408

63 Intel® Fortran Compiler User and Reference Guides

(Input) INTEGER(4). Viewport coordinates for upper-left corner of
the screen image to be captured.

ulxcoord, ulycoord

(Input) INTEGER(4). Viewport coordinates for lower-right corner
of the screen image to be captured.

lrxcoord, lrycoord

(Input) REAL(8). Window coordinates for upper-left corner of the
screen image to be captured.

ulwxcoord, ulwycoord

(Input) REAL(8). Window coordinates for lower-right corner of the
screen image to be captured.

lrwxcoord, lrwycoord

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a negative value.

The SAVEIMAGE function captures the screen image within a rectangle defined by the upper-left
and lower-right screen coordinates and stores the image as a Windows bitmap file specified by
filename. The image is stored with a palette containing the colors displayed on the screen.

SAVEIMAGE defines the bounding rectangle in viewport coordinates. SAVEIMAGE_W defines
the bounding rectangle in window coordinates.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

See Also
• S
• GETIMAGE, GETIMAGE_W
• IMAGESIZE, IMAGESIZE_W
• LOADIMAGE, LOADIMAGE_W
• PUTIMAGE, PUTIMAGE_W

Building Applications: Loading and Saving Images to Files

SCALE
Elemental Intrinsic Function (Generic):
Returns the value of the exponent part (of the
model for the argument) changed by a specified
value.

Syntax

result = SCALE (x,i)

3409

63

(Input) Must be of type real.x

(Input) Must be of type integer.i

Results

The result type is the same as x. The result has the value x x b i. Parameter b is defined in
Model for Real Data.

Example

If 3.0 is a REAL(4) value, SCALE (3.0, 2) has the value 12.0 and SCALE (3.0, 3) has the value
24.0.

The following shows another example:

REAL r

r = SCALE(5.2, 2) !returns 20.8

See Also
• S
• LSHIFT
• Data Representation Models

SCAN
Elemental Intrinsic Function (Generic): Scans
a string for any character in a set of characters.

Syntax

result = SCAN (string, set [, back] [, kind])

(Input) Must be of type character.string

(Input) Must be of type character with the same kind parameter
as string.

set

(Input) Must be of type logical.back

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified
by kind; otherwise, the kind parameter of the result is that of default integer. If the processor
cannot represent the result value in the kind of the result, the result is undefined.

3410

63 Intel® Fortran Compiler User and Reference Guides

If back is omitted (or is present with the value false) and string has at least one character
that is in set, the value of the result is the position of the leftmost character of string that is
in set.

If back is present with the value true and string has at least one character that is in set, the
value of the result is the position of the rightmost character of string that is in set.

If no character of string is in set or the length of string or set is zero, the value of the result
is zero.

The setting of compiler options specifying integer size can affect this function.

Example

SCAN ('ASTRING', 'ST') has the value 2.

SCAN ('ASTRING', 'ST', BACK=.TRUE.) has the value 3.

SCAN ('ASTRING', 'CD') has the value zero.

The following shows another example:

INTEGER i

INTEGER array(2)

i = SCAN ('FORTRAN', 'TR') ! returns 3

i = SCAN ('FORTRAN', 'TR', BACK = .TRUE.) ! returns 5

i = SCAN ('FORTRAN', 'GHA') ! returns 6

i = SCAN ('FORTRAN', 'ora') ! returns 0

array = SCAN ((/'FORTRAN','VISUALC'/),(/'A', 'A'/))

! returns (6, 5)

! Note that when using SCAN with arrays, the string

! elements must be the same length. When using string

! constants, blank pad to make strings the same length.

! For example:

array = SCAN ((/'FORTRAN','MASM '/),(/'A', 'A'/))

! returns (6, 2)

END

3411

63

See Also
• S
• VERIFY

SCANENV
Portability Subroutine: Scans the environment
for the value of an environment variable.

Module

USE IFPORT

Syntax

CALL SCANENV (envname,envtext,envvalue)

(Input) Character*(*). Contains the name of an environment
variable you need to find the value for.

envname

(Output) Character*(*). Set to the full text of the environment
variable if found, or to ' ' if nothing is found.

envtext

(Output) Character*(*). Set to the value associated with the
environment variable if found or to ' ' if nothing is found.

envvalue

SCANENV scans for an environment variable that matches envname
and returns the value or string it is set to.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

SCROLLTEXTWINDOW (W*32, W*64)
Graphics Subroutine: Scrolls the contents of a
text window.

Module

USE IFQWIN

Syntax

CALL SCROLLTEXTWINDOW (rows)

(Input) INTEGER(2). Number of rows to scroll.rows

3412

63 Intel® Fortran Compiler User and Reference Guides

The SCROLLTEXTWINDOW subroutine scrolls the text in a text window (previously defined by
SETTEXTWINDOW). The default text window is the entire window.

The rows argument specifies the number of lines to scroll. A positive value for rows scrolls the
window up (the usual direction); a negative value scrolls the window down. Specifying a number
larger than the height of the current text window is equivalent to calling CLEARSCREEN
($GWINDOW). A value of 0 for rows has no effect.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3413

63

Example
! Build as QuickWin or Standard Graphics app.

USE IFQWIN

INTEGER(2) row, istat

CHARACTER(18) string

TYPE (rccoord) oldpos

CALL SETTEXTWINDOW (INT2(1), INT2(0), &

INT2(25), INT2(80))

CALL CLEARSCREEN ($GCLEARSCREEN)

CALL SETTEXTPOSITION (INT2(1), INT2(1), oldpos)

DO row = 1, 6

string = 'Hello, World # '

CALL SETTEXTPOSITION(row, INT2(1), oldpos)

WRITE(string(15:16), '(I2)') row

CALL OUTTEXT(string)

END DO

istat = displaycursor($GCURSORON)

WRITE(*,'(1x,A\)') 'Hit ENTER'

READ (*,*) ! wait for ENTER

! Scroll window down 4 lines

CALL SCROLLTEXTWINDOW(INT2(-4))

CALL SETTEXTPOSITION (INT2(10), INT2(18), oldpos)

WRITE(*,'(2X,A\)') "Hit ENTER"

READ(*,*) ! wait for ENTER

! Scroll window up 5 lines

CALL SCROLLTEXTWINDOW(INT2(5))

END

3414

63 Intel® Fortran Compiler User and Reference Guides

See Also
• S
• CLEARSCREEN
• GETTEXTPOSITION
• GETTEXTWINDOW
• GRSTATUS
• OUTTEXT
• SETTEXTPOSITION
• SETTEXTWINDOW
• WRAPON

Building Applications: Displaying Character-Based Text

Building Applications: Text Coordinates

SCWRQQ
Portability Subroutine: Returns the floating-point
processor control word.

Module

USE IFPORT

Syntax

CALL SCWRQQ (control)

(Output) INTEGER(2). Floating-point processor control word.control

SCRWQQ performs the same function as the run-time subroutine GETCONTROLFPQQ, and is
provided for compatibility.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

See the example in LCWRQQ.

See Also
• S
• GETCONTROLFPQQ

3415

63

• LCWRQQ

SECNDS Intrinsic Procedure
Elemental Intrinsic Function (Generic):
Provides the system time of day, or elapsed time,
as a floating-point value in seconds. SECNDS can
be used as an intrinsic function or as a portability
function. It is an intrinsic procedure unless you
specify USE IFPORT.

Syntax

This function must not be passed as an actual argument. It is not a pure function, so it cannot
be referenced inside a FORALL construct.

result = SECNDS (x)

(Input) Must be of type real.x

Results

The result type is the same as x. The result value is the time in seconds since midnight - x.
(The function also produces correct results for time intervals that span midnight.)

The value of SECNDS is accurate to 0.01 second, which is the resolution of the system clock.

The 24 bits of precision provide accuracy to the resolution of the system clock for about one
day. However, loss of significance can occur if you attempt to compute very small elapsed times
late in the day.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS LIB

Example

The following shows how to use SECNDS to perform elapsed-time computations:

C START OF TIMED SEQUENCE

T1 = SECNDS(0.0)

C CODE TO BE TIMED

...

DELTA = SECNDS(T1) ! DELTA gives the elapsed time

3416

63 Intel® Fortran Compiler User and Reference Guides

See Also
• S
• DATE_AND_TIME
• RTC
• SYSTEM_CLOCK
• TIME intrinsic procedure
• SECNDS portability routine

SECNDS Portability Routine
Portability Function: Returns the number of
seconds that have elapsed since midnight, less the
value of its argument. SECNDS can be used as an
intrinsic function or as a portability function. It is
an intrinsic procedure unless you specify USE
IFPORT.

Module

USE IFPORT

Syntax

result = SECNDS (time)

(Input) REAL(4). Number of seconds, precise to a hundredth of a
second (0.01), to be subtracted.

time

Results

The result type is REAL(4). The result value is the number of seconds that have elapsed since
midnight, minus time, with a precision of a hundredth of a second (0.01).

To start the timing clock, call SECNDS with 0.0, and save the result in a local variable. To get
the elapsed time since the last call to SECNDS, pass the local variable to SECNDS on the next
call.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3417

63

Example
USE IFPORT

REAL(4) s

INTEGER(4) i, j

s = SECNDS(0.0)

DO I = 1, 100000

J = J + 1

END DO

s = SECNDS(s)

PRINT *, 'It took ',s, 'seconds to run.'

See Also
• S
• DATE_AND_TIME
• RTC
• SYSTEM_CLOCK
• TIME portability routine
• SECNDS intrinsic procedure

SECTIONS
OpenMP* Fortran Compiler Directive: Specifies
one or more blocks of code that must be divided
among threads in the team. Each section is
executed once by a thread in the team.

Syntax

c$OMP SECTIONS [clause[[,] clause] ...]

[c$OMP SECTION]

block

[c$OMP SECTION

block]...

c$OMP END SECTIONS[NOWAIT]

3418

63 Intel® Fortran Compiler User and Reference Guides

Is one of the following: C (or c), !, or * (see Syntax Rules for
Compiler Directives).

c

Is one of the following:clause

• FIRSTPRIVATE (list)
• LASTPRIVATE (list)
• PRIVATE (list)
• REDUCTION (operator | intrinsic : list)

Is a structured block (section) of statements or constructs. Any
constituent section must also be a structured block.

block

You cannot branch into or out of the block.

Each section of code is preceded by a SECTION directive, although the directive is optional for
the first section. The SECTION directives must appear within the lexical extent of the SECTIONS
and END SECTIONS directive pair.

The last section ends at the END SECTIONS directive. Threads that complete execution of their
SECTIONs encounter an implied barrier at the END SECTIONS directive unless NOWAIT is
specified.

SECTIONS directives must be encountered by all threads in a team or by none at all.

Example

In the following example, subroutines XAXIS, YAXIS, and ZAXIS can be executed concurrently:

c$OMP PARALLEL

c$OMP SECTIONS

c$OMP SECTION

CALL XAXIS

c$OMP SECTION

CALL YAXIS

c$OMP SECTION

CALL ZAXIS

c$OMP END SECTIONS

c$OMP END PARALLEL

3419

63

See Also
• S
• OpenMP Fortran Compiler Directives

SEED
Portability Subroutine: Changes the starting
point of the pseudorandom number generator.

Module

USE IFPORT

Syntax

CALL SEED (iseed)

(Input) INTEGER(4). Starting point for RANDOM.iseed

SEED uses iseed to establish the starting point of the pseudorandom number generator. A
given seed always produces the same sequence of values from RANDOM.

If SEED is not called before the first call to RANDOM, RANDOM always begins with a seed value
of one. If a program must have a different pseudorandom sequence each time it runs, pass
the constant RND$TIMESEED (defined in IFPORT.F90) to the SEED routine before the first call
to RANDOM.

This routine is not thread-safe.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

REAL myrand

CALL SEED(7531)

CALL RANDOM(myrand)

See Also
• S
• RANDOM

3420

63 Intel® Fortran Compiler User and Reference Guides

• RANDOM_SEED
• RANDOM_NUMBER

SELECT CASE...END SELECT
Statement: Transfers program control to a
selected block of statements according to the value
of a controlling expression. CASE.

Example
CHARACTER*1 cmdchar

. . .

Files: SELECT CASE (cmdchar)

CASE ('0')

WRITE (*, *) "Must retrieve one to nine files"

CASE ('1':'9')

CALL RetrieveNumFiles (cmdchar)

CASE ('A', 'a')

CALL AddEntry

CASE ('D', 'd')

CALL DeleteEntry

CASE ('H', 'h')

CALL Help

CASE DEFAULT

WRITE (*, *) "Command not recognized; please re-enter"

END SELECT Files

3421

63

SELECTED_CHAR_KIND
Transformational Intrinsic Function (Generic):
Returns the value of the kind type parameter of
the character set named by the argument.

Syntax

result = SELECTED_CHAR_KIND(name)

(Input) Must be scalar and of type default character. Its value
must be 'DEFAULT' or 'ASCII'.

name

Results

The result is a scalar of type default integer.

The result is a scalar of type default integer. The result value is 1 if NAME has the value
'DEFAULT' or 'ASCII'; otherwise, the result value is -1.

SELECTED_INT_KIND
Transformational Intrinsic Function (Generic):
Returns the value of the kind parameter of an
integer data type.

Syntax

result = SELECTED_INT_KIND (r)

(Input) Must be scalar and of type integer.r

Results

The result is a scalar of type default integer. The result has a value equal to the value of the
kind parameter of the integer data type that represents all values n in the range of values n
with -10 r< n < 10 r.

If no such kind type parameter is available on the processor, the result is -1. If more than one
kind type parameter meets the criteria, the value returned is the one with the smallest decimal
exponent range. For more information, see Model for Integer Data.

Example

SELECTED_INT_KIND (6) = 4

3422

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

i = SELECTED_INT_KIND(8) ! returns 4

i = SELECTED_INT_KIND(3) ! returns 2

i = SELECTED_INT_KIND(10) ! returns 8

i = SELECTED_INT_KIND(20) ! returns -1 because 10**20

! is bigger than 2**63

See Also
• S
• SELECTED_REAL_KIND

SELECTED_REAL_KIND
Transformational Intrinsic Function (Generic):
Returns the value of the kind parameter of a real
data type.

Syntax

result = SELECTED_REAL_KIND ([p] [,r])

(Input; optional) Must be scalar and of type integer.p

(Input; optional) Must be scalar and of type integer.r

At least one argument must be present.

Results

If p or r is absent, the result is as if the argument was present with the value zero.

The result is a scalar of type default integer. If both arguments are absent, the result is zero.
Otherwise,the result has a value equal to a value of the kind parameter of a real data type with
decimal precision, as returned by the function PRECISION, of at least p digits and a decimal
exponent range, as returned by the function RANGE, of at least r.

If no such kind type parameter is available on the processor, the result is as follows:

-1 if the precision is not available but the range is available

-2 if the exponent range is not available but the precision is available

-3 if neither is available

3423

63

-4 if real types for the precision and the range are available separately but not together

If more than one kind type parameter value meets the criteria, the value returned is the one
with the smallest decimal precision. Intel Fortran currently does not return -4 for any combination
of p and r. For more information, see Model for Real Data.

Example

SELECTED_REAL_KIND (6, 70) = 8

The following shows another example:

i = SELECTED_REAL_KIND(r=200) ! returns 8

i = SELECTED_REAL_KIND(13) ! returns 8

i = SELECTED_REAL_KIND (100, 200) ! returns -1

i = SELECTED_REAL_KIND (13, 5000) ! returns -2

i = SELECTED_REAL_KIND (100, 5000) ! returns -3

The following example gives a compile-time error:

i = SELECTED_REAL_KIND ()

The following example returns a 0 at run-time to indicate that there was an error:

PROGRAM TEST

CALL F ()

CONTAINS

SUBROUTINE F (P, R)

INTEGER, OPTIONAL :: P, R

PRINT *, SELECTED_REAL_KIND (P=P, R=R) ! prints 0

END SUBROUTINE F

END PROGRAM TEST

See Also
• S
• SELECTED_INT_KIND

3424

63 Intel® Fortran Compiler User and Reference Guides

SEQUENCE
Statement: Preserves the storage order of a
derived-type definition.

Syntax

SEQUENCE

Description

The SEQUENCE statement allows derived types to be used in common blocks and to be
equivalenced.

The SEQUENCE statement appears only as part of derived-type definitions. It causes the
components of the derived type to be stored in the same sequence they are listed in the type
definition. If you do not specify SEQUENCE, the physical storage order is not necessarily the
same as the order of components in the type definition.

If a derived type is a sequence derived type, then any other derived type that includes it must
also be a sequence type.

3425

63

Example
!DEC$ PACK:1

TYPE NUM1_SEQ

SEQUENCE

INTEGER(2)::int_val

REAL(4)::real_val

LOGICAL(2)::log_val

END TYPE NUM1_SEQ

TYPE num2_seq

SEQUENCE

logical(2)::log_val

integer(2)::int_val

real(4)::real_val

end type num2_seq

type (num1_seq) num1

type (num2_seq) num2

character*8 t, t1

equivalence (num1,t)

equivalence (num2,t1)

num1%int_val=2

num1%real_val=3.5

num1%log_val=.TRUE.

t1(1:2)=t(7:8)

t1(3:4)=t(1:2)

t1(5:8)=t(3:6)

print *, num2%int_val, num2%real_val, num2%log_val

end

3426

63 Intel® Fortran Compiler User and Reference Guides

See Also
• S
• Derived Data Types
• Data Types, Constants, and Variables

SETACTIVEQQ (W*32, W*64)
QuickWin Function: Makes a child window active,
but does not give it focus.

Module

USE IFQWIN

Syntax

result = SETACTIVEQQ (unit)

(Input) INTEGER(4). Unit number of the child window to be made
active.

unit

Results

The result type is INTEGER(4). The result is 1 if successful; otherwise, 0.

When a window is made active, it receives graphics output (from ARC, LINETO and OUTGTEXT,
for example) but is not brought to the foreground and does not have the focus. If a window
needs to be brought to the foreground, it must be given the focus. A window is given focus
with FOCUSQQ, by clicking it with the mouse, or by performing I/O other than graphics on it,
unless the window was opened with IOFOCUS='.FALSE.'. By default, IOFOCUS='.TRUE.', except
for child windows opened as unit '*'.

The window that has the focus is always on top, and all other windows have their title bars
grayed out. A window can have the focus and yet not be active and not have graphics output
directed to it. Graphical output is independent of focus.

If IOFOCUS='.TRUE.', the child window receives focus prior to each READ, WRITE, PRINT, or
OUTTEXT. Calls to graphics functions (such as OUTGTEXT and ARC) do not cause the focus to
shift.

Compatibility

QUICKWIN GRAPHICS LIB

3427

63

See Also
• S
• GETACTIVEQQ
• FOCUSQQ
• INQFOCUSQQ

Building Applications: Using QuickWin Overview

Building Applications: Giving a Window Focus and Setting the Active Window

SETBKCOLOR (W*32, W*64)
Graphics Function: Sets the current background
color index for both text and graphics.

Module

USE IFQWIN

Syntax

result = SETBKCOLOR (color)

(Input) INTEGER(4). Color index to set the background color to.color

Results

The result type is INTEGER(4). The result is the previous background color index.

SETBKCOLOR changes the background color index for both text and graphics. The color index
of text over the background color is set with SETTEXTCOLOR. The color index of graphics over
the background color (used by drawing functions such as FLOODFILL and ELLIPSE) is set with
SETCOLOR. These non-RGB color functions use color indexes, not true color values, and limit
the user to colors in the palette, at most 256. For access to all system colors, use
SETBKCOLORRGB, SETCOLORRGB, and SETTEXTCOLORRGB.

Changing the background color index does not change the screen immediately. The change
becomes effective when CLEARSCREEN is executed or when doing text input or output, such
as with READ, WRITE, or OUTTEXT. The graphics output function OUTGTEXT does not affect
the color of the background.

Generally, INTEGER(4) color arguments refer to color values and INTEGER(2) color arguments
refer to color indexes. The two exceptions are GETBKCOLOR and SETBKCOLOR. The default
background color index is 0, which is associated with black unless the user remaps the palette
with REMAPPALETTERGB.

3428

63 Intel® Fortran Compiler User and Reference Guides

NOTE. The SETBKCOLOR routine described here is a QuickWin routine. If you are trying
to use the Microsoft* Platform SDK version of the SetBkColor routine by including the
IFWIN module, you need to specify the routine name as MSFWIN$SetBkColor. For more
information, see Building Applications: Special Naming Convention for Certain QuickWin
and Win32 Graphics Routines.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
USE IFQWIN

INTEGER(4) i

i = SETBKCOLOR(14)

See Also
• S
• SETBKCOLORRGB
• GETBKCOLOR
• REMAPALLPALETTERGB, REMAPPALETTERGB
• SETCOLOR
• SETTEXTCOLOR

Building Applications: Setting Figure Properties

Building Applications: Using Text Colors

Building Applications: Color Mixing

SETBKCOLORRGB (W*32, W*64)
Graphics Function: Sets the current background
color to the given Red-Green-Blue (RGB) value.

Module

USE IFQWIN

Syntax

result = SETBKCOLORRGB (color)

3429

63

(Input) INTEGER(4). RGB color value to set the background color
to. Range and result depend on the system's display adapter.

color

Results

The result type is INTEGER(4). The result is the previous background RGB color value.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an
eight-bit value (2 hex digits). In the value you specify with SETBKCOLORRGB, red is the
rightmost byte, followed by green and blue. The RGB value's internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex Z'FF') the
maximum for each of the three components. For example, Z'0000FF' yields full-intensity red,
Z'00FF00' full-intensity green, Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all
three, resulting in bright white.

The default background color is value 0, which is black. Changing the background color value
does not change the screen immediately, but becomes effective when CLEARSCREEN is executed
or when doing text input or output such as READ, WRITE, or OUTTEXT. The graphics output
function OUTGTEXT does not affect the color of the background.

SETBKCOLORRGB sets the RGB color value of the current background for both text and graphics.
The RGB color value of text over the background color (used by text functions such as OUTTEXT,
WRITE, and PRINT) is set with SETTEXTCOLORRGB. The RGB color value of graphics over the
background color (used by graphics functions such as ARC, OUTGTEXT, and FLOODFILLRGB)
is set with SETCOLORRGB.

SETBKCOLORRGB (and the other RGB color selection functions SETCOLORRGB, and
SETTEXTCOLORRGB) sets the color to a value chosen from the entire available range. The
non-RGB color functions (SETCOLOR, SETBKCOLOR, and SETTEXTCOLOR) use color indexes
rather than true color values. If you use color indexes, you are restricted to the colors available
in the palette, at most 256. Some display adapters (SVGA and true color) are capable of creating
262,144 (256K) colors or more. To access any available color, you need to specify an explicit
RGB value with an RGB color function, rather than a palette index with a non-RGB color function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3430

63 Intel® Fortran Compiler User and Reference Guides

Example
! Build as a QuickWin or Standard Graphics App.

USE IFQWIN

INTEGER(4) oldcolor

INTEGER(2) status, x1, y1, x2, y2

x1 = 80; y1 = 50

x2 = 240; y2 = 150

oldcolor = SETBKCOLORRGB(Z'FF0000') !blue

oldcolor = SETCOLORRGB(Z'FF') ! red

CALL CLEARSCREEN ($GCLEARSCREEN)

status = ELLIPSE($GBORDER, x1, y1, x2, y2)

END

See Also
• S
• GETBKCOLORRGB
• SETCOLORRGB
• SETTEXTCOLORRGB
• SETPIXELRGB
• SETPIXELSRGB
• SETBKCOLOR

Building Applications: Setting Figure Properties

Building Applications: Using Text Colors

Building Applications: Color Mixing

SETCLIPRGN (W*32, W*64)
Graphics Subroutine: Limits graphics output to
part of the screen.

Module

USE IFQWIN

3431

63

Syntax

CALL SETCLIPRGN (x1,y1,x2,y2)

(Input) INTEGER(2). Physical coordinates for upper-left corner of
clipping region.

x1, y1

(Input) INTEGER(2). Physical coordinates for lower-right corner
of clipping region.

x2, y2

The SETCLIPRGN function limits the display of subsequent graphics output and font text output
to that which fits within a designated area of the screen (the "clipping region"). The physical
coordinates (x1, y1) and (x2, y2) are the upper-left and lower-right corners of the rectangle
that defines the clipping region. The SETCLIPRGN function does not change the
viewport-coordinate system; it merely masks graphics output to the screen.

SETCLIPRGN affects graphics and font text output only, such as OUTGTEXT. To mask the screen
for text output using OUTTEXT, use SETTEXTWINDOW.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3432

63 Intel® Fortran Compiler User and Reference Guides

Example

This program draws an ellipse lying partly within a clipping region, as shown below.

! Build as QuickWin or Standard Graphics ap.

USE IFQWIN

INTEGER(2) status, x1, y1, x2, y2

INTEGER(4) oldcolor

x1 = 10; y1 = 50

x2 = 170; y2 = 150

! Draw full ellipse in white

status = ELLIPSE($GBORDER, x1, y1, x2, y2)

oldcolor = SETCOLORRGB(Z'FF0000') !blue

WRITE(*,*) "Hit enter"

READ(*,*)

CALL CLEARSCREEN($GCLEARSCREEN) ! clear screen

CALL SETCLIPRGN(INT2(0), INT2(0), &

INT2(150), INT2(125))

! only part of ellipse inside clip region drawn now

status = ELLIPSE($GBORDER, x1, y1, x2, y2)

END

The following shows the output of this program.

3433

63

See Also
• S
• GETPHYSCOORD
• GRSTATUS
• SETTEXTWINDOW
• SETVIEWORG
• SETVIEWPORT
• SETWINDOW

Building Applications: Graphics Coordinates

Building Applications: Setting Graphics Coordinates

SETCOLOR (W*32, W*64)
Graphics Function: Sets the current graphics
color index.

Module

USE IFQWIN

Syntax

result = SETCOLOR (color)

(Input) INTEGER(2). Color index to set the current graphics color
to.

color

3434

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is INTEGER(2). The result is the previous color index if successful; otherwise,
-1.

The SETCOLOR function sets the current graphics color index, which is used by graphics functions
such as ELLIPSE. The background color index is set with SETBKCOLOR. The color index of text
over the background color is set with SETTEXTCOLOR. These non-RGB color functions use color
indexes, not true color values, and limit the user to colors in the palette, at most 256. For
access to all system colors, use SETCOLORRGB, SETBKCOLORRGB, and SETTEXTCOLORRGB.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
USE IFQWIN

INTEGER(2) color, oldcolor

LOGICAL status

TYPE (windowconfig) wc

status = GETWINDOWCONFIG(wc)

color = wc%numcolors - 1

oldcolor = SETCOLOR(color)

END

See Also
• S
• SETCOLORRGB
• GETCOLOR
• REMAPPALETTERGB
• SETBKCOLOR
• SETTEXTCOLOR
• SETPIXEL
• SETPIXELS

Building Applications: Color Mixing

Building Applications: Setting Figure Properties

3435

63

Building Applications: Using Color

Building Applications: VGA Color Palette

SETCOLORRGB (W*32, W*64)
Graphics Function: Sets the current graphics
color to the specified Red-Green-Blue (RGB) value.

Module

USE IFQWIN

Syntax

result = SETCOLORRGB (color)

(Input) INTEGER(4). RGB color value to set the current graphics
color to. Range and result depend on the system's display adapter.

color

Results

The result type is INTEGER(4). The result is the previous RGB color value.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an
eight-bit value (2 hex digits). In the value you specify with SETCOLORRGB, red is the rightmost
byte, followed by green and blue. The RGB value's internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex Z'FF') the
maximum for each of the three components. For example, Z'0000FF' yields full-intensity red,
Z'00FF00' full-intensity green, Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all
three, resulting in bright white.

SETCOLORRGB sets the RGB color value of graphics over the background color, used by the
following graphics functions: ARC, ELLIPSE, FLOODFILL, LINETO, OUTGTEXT, PIE, POLYGON,
RECTANGLE, and SETPIXEL. SETBKCOLORRGB sets the RGB color value of the current
background for both text and graphics. SETTEXTCOLORRGB sets the RGB color value of text
over the background color (used by text functions such as OUTTEXT, WRITE, and PRINT).

SETCOLORRGB (and the other RGB color selection functions SETBKCOLORRGB, and
SETTEXTCOLORRGB) sets the color to a value chosen from the entire available range. The
non-RGB color functions (SETCOLOR, SETBKCOLOR, and SETTEXTCOLOR) use color indexes

3436

63 Intel® Fortran Compiler User and Reference Guides

rather than true color values. If you use color indexes, you are restricted to the colors available
in the palette, at most 256. Some display adapters (SVGA and true color) are capable of creating
262,144 (256K) colors or more. To access any available color, you need to specify an explicit
RGB value with an RGB color function, rather than a palette index with a non-RGB color function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
! Build as a QuickWin or Standard Graphics App.

USE IFQWIN

INTEGER(2) numfonts

INTEGER(4) oldcolor

TYPE (xycoord) xy

numfonts = INITIALIZEFONTS()

oldcolor = SETCOLORRGB(Z'0000FF') ! red

oldcolor = SETBKCOLORRGB(Z'00FF00') ! green

CALL MOVETO(INT2(200), INT2(100), xy)

CALL OUTGTEXT("hello, world")

END

See Also
• S
• SETBKCOLORRGB
• SETTEXTCOLORRGB
• GETCOLORRGB
• ARC
• ELLIPSE
• FLOODFILLRGB
• SETCOLOR
• LINETO
• OUTGTEXT
• PIE

3437

63

• POLYGON
• RECTANGLE
• REMAPPALETTERGB
• SETPIXELRGB
• SETPIXELSRGB

Building Applications: Color Mixing

Building Applications: Setting Figure Properties

Building Applications: Using Color

SETCONTROLFPQQ
Portability Subroutine: Sets the value of the
floating-point processor control word.

Module

USE IFPORT

Syntax

CALL SETCONTROLFPQQ (controlword)

(Input) INTEGER(2). Floating-point processor control word.controlword

The floating-point control word specifies how various exception conditions are handled by the
floating-point math coprocessor, sets the floating-point precision, and specifies the floating-point
rounding mechanism used.

The control word can be any of the following constants (defined in IFPORT.F90):

DescriptionHex valueParameter name

Infinity control maskZ'1000'FPCW$MCW_IC

Affine infinityZ'1000'FPCW$AFFINE

Projective infinityZ'0000'FPCW$PROJECTIVE

Precision control maskZ'0300'FPCW$MCW_PC

64-bit precisionZ'0300'FPCW$64

53-bit precisionZ'0200'FPCW$53

3438

63 Intel® Fortran Compiler User and Reference Guides

DescriptionHex valueParameter name

24-bit precisionZ'0000'FPCW$24

Rounding control maskZ'0C00'FPCW$MCW_RC

TruncateZ'0C00'FPCW$CHOP

Round upZ'0800'FPCW$UP

Round downZ'0400'FPCW$DOWN

Round to nearestZ'0000'FPCW$NEAR

Exception maskZ'003F'FPCW$MCW_EM

Allow invalid numbersZ'0001'FPCW$INVALID

Allow denormals (very small
numbers)

Z'0002'FPCW$DENORMAL

Allow divide by zeroZ'0004'FPCW$ZERODIVIDE

Allow overflowZ'0008'FPCW$OVERFLOW

Allow underflowZ'0010'FPCW$UNDERFLOW

Allow inexact precisionZ'0020'FPCW$INEXACT

An exception is disabled if its control bit is set to 1. An exception is enabled if its control bit is
cleared to 0.

Setting the floating-point precision and rounding mechanism can be useful if you are reusing
old code that is sensitive to the floating-point precision standard used and you want to get the
same results as on the old machine.

You can use GETCONTROLFPQQ to retrieve the current control word and SETCONTROLFPQQ to
change the control word. Most users do not need to change the default settings. If you need
to change the control word, always use SETCONTROLFPQQ to make sure that special routines
handling floating-point stack exceptions and abnormal propagation work correctly.

For a full discussion of the floating-point control word, exceptions, and error handling, see
Building Applications: The Floating-Point Environment Overview.

3439

63

NOTE. The Intel® Fortran exception handler allows for software masking of invalid
operations, but does not allow the math chip to mask them. If you choose to use the
software masking, be aware that this can affect program performance if you compile
code written for Intel Fortran with another compiler.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(2) status, control, controlo

CALL GETCONTROLFPQQ(control)

WRITE (*, 9000) 'Control word: ', control

! Save old control word

controlo = control

! Clear all flags

control = control .AND. Z'0000'

! Set new control to round up

control = control .OR. FPCW$UP

CALL SETCONTROLFPQQ(control)

CALL GETCONTROLFPQQ(control)

WRITE (*, 9000) 'Control word: ', control

9000 FORMAT (1X, A, Z4)

END

See Also
• S
• GETCONTROLFPQQ
• GETSTATUSFPQQ
• LCWRQQ
• SCWRQQ

3440

63 Intel® Fortran Compiler User and Reference Guides

• CLEARSTATUSFPQQ

Building Applications: Exception Parameters

Building Applications: Floating-Point Control Word Overview

SETDAT
Portability Function: Sets the system date. This
function is only available on Windows* and Linux*
systems.

Module

USE IFPORT

Syntax

result = SETDAT (iyr, imon, iday)

(Input) INTEGER(2) or INTEGER(4). Year (xxxxAD).iyr

(Input) INTEGER(2) or INTEGER(4). Month (1-12).imon

(Input) INTEGER(2) or INTEGER(4). Day of the month (1-31).iday

Results

The result type is LOGICAL(4). The result is .TRUE. if the system date is changed; .FALSE. if
no change is made.

Actual arguments of the function SETDAT can be any valid INTEGER(2) or INTEGER(4)
expression.

Refer to your operating system documentation for the range of permitted dates.

NOTE. On Linux systems, you must have root privileges to execute this function.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3441

63

Example
USE IFPORT

LOGICAL(4) success

success = SETDAT(INT2(1997+1), INT2(2*3), INT2(30))

END

See Also
• S
• GETDAT
• GETTIM
• SETTIM

SETENVQQ
Portability Function: Sets the value of an existing
environment variable, or adds and sets a new
environment variable.

Module

USE IFPORT

Syntax

result = SETENVQQ (varname=value)

(Input) Character*(*). String containing both the name and the
value of the variable to be added or modified. Must be in the form:
varname = value, where varname is the name of an environment
variable and value is the value being assigned to it.

varname=value

Results

The result is of type LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

Environment variables define the environment in which a program executes. For example, the
LIB environment variable defines the default search path for libraries to be linked with a program.

SETENVQQ deletes any terminating blanks in the string. Although the equal sign (=) is an illegal
character within an environment value, you can use it to terminate value so that trailing blanks
are preserved. For example, the string PATH= =sets value to ''.

3442

63 Intel® Fortran Compiler User and Reference Guides

You can use SETENVQQ to remove an existing variable by giving a variable name followed by
an equal sign with no value. For example, LIB= removes the variable LIB from the list of
environment variables. If you specify a value for a variable that already exists, its value is
changed. If the variable does not exist, it is created.

SETENVQQ affects only the environment that is local to the current process. You cannot use it
to modify the command-level environment. When the current process terminates, the
environment reverts to the level of the parent process. In most cases, this is the operating
system level. However, you can pass the environment modified by SETENVQQ to any child
process created by RUNQQ. These child processes get new variables and/or values added by
SETENVQQ.

SETENVQQ uses the C runtime routine _putenv and GETENVQQ uses the C runtime routine
getenv. From the C documentation:

getenv and _putenv use the copy of the environment pointed to by the global variable _environ
to access the environment. getenv operates only on the data structures accessible to the
run-time library and not on the environment segment created for the process by the operating
system.

SETENVQQ and GETENVQQ will not work properly with the Windows* APIs
SetEnvironmentVariable and GetEnvironmentVariable.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

LOGICAL(4) success

success = SETENVQQ("PATH=c:\mydir\tmp")

success = &

SETENVQQ("LIB=c:\mylib\bessel.lib;c:\math\difq.lib")

END

See Also
• S
• GETENVQQ
• RUNQQ

3443

63

SETERRORMODEQQ
Portability Subroutine: Sets the prompt mode
for critical errors that by default generate system
prompts.

Module

USE IFPORT

Syntax

CALL SETERRORMODEQQ (pmode)

(Input) LOGICAL(4). Flag that determines whether a prompt is
displayed when a critical error occurs.

pmode

Certain I/O errors cause the system to display an error prompt. For example, attempting to
write to a disk drive with the drive door open generates an "Abort, Retry, Ignore" message.
When the system starts up, system error prompting is enabled by default (pmode= .TRUE.).
You can also enable system error prompts by calling SETERRORMODEQQ with pmode set to
ERR$HARDPROMPT (defined in IFPORT.F90).

If prompt mode is turned off, critical errors that normally cause a system prompt are silent.
Errors in I/O statements such as OPEN, READ, and WRITE fail immediately instead of being
interrupted with prompts. This gives you more direct control over what happens when an error
occurs. For example, you can use the ERR= specifier to designate an executable statement to
branch to for error handling. You can also take a different action than that requested by the
system prompt, such as opening a temporary file, giving a more informative error message,
or exiting.

You can turn off prompt mode by setting pmode to .FALSE. or to the constant ERR$HARDFAIL
(defined in IFPORT.F90).

Note that SETERRORMODEQQ affects only errors that generate a system prompt. It does not
affect other I/O errors, such as writing to a nonexistent file or attempting to open a nonexistent
file with STATUS='OLD'.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3444

63 Intel® Fortran Compiler User and Reference Guides

Example
!PROGRAM 1

! DRIVE B door open

OPEN (10, FILE = 'B:\NOFILE.DAT', ERR = 100)

! Generates a system prompt error here and waits for the user

! to respond to the prompt before continuing

100 WRITE(*,*) ' Continuing'

END

! PROGRAM 2

! DRIVE B door open

USE IFPORT

CALL SETERRORMODEQQ(.FALSE.)

OPEN (10, FILE = 'B:\NOFILE.DAT', ERR = 100)

! Causes the statement at label 100 to execute

! without system prompt

100 WRITE(*,*) ' Drive B: not available, opening &

&alternative drive.'

OPEN (10, FILE = 'C:\NOFILE.DAT')

END

SETEXITQQ
QuickWin Function: Sets a QuickWin application's
exit behavior.

Module

USE IFQWIN

Syntax

result = SETEXITQQ (exitmode)

3445

63

(Input) INTEGER(4). Determines the program exit behavior. The
following exit parameters are defined in IFQWIN.F90:

exitmode

• QWIN$EXITPROMPT - Displays the following message box:

"Program exited with exit status X. Exit Window?"

where X is the exit status from the program.

If Yes is entered, the application closes the window and
terminates. If No is entered, the dialog box disappears and you
can manipulate the windows as usual. You must then close the
window manually.

• QWIN$EXITNOPERSIST - Terminates the application without
displaying a message box.

• QWIN$EXITPERSIST - Leaves the application open without
displaying a message box.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a negative value.

The default for both QuickWin and Standard Graphics applications is QWIN$EXITPROMPT.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3446

63 Intel® Fortran Compiler User and Reference Guides

Example
! Build as QuickWin Ap

USE IFQWIN

INTEGER(4) exmode, result

WRITE(*,'(1X,A,/)') 'Please enter the exit mode 1, 2 &

or 3 '

READ(*,*) exmode

SELECT CASE (exmode)

CASE (1)

result = SETEXITQQ(QWIN$EXITPROMPT)

CASE (2)

result = SETEXITQQ(QWIN$EXITNOPERSIST)

CASE (3)

result = SETEXITQQ(QWIN$EXITPERSIST)

CASE DEFAULT

WRITE(*,*) 'Invalid option - checking for bad &

return'

IF(SETEXITQQ(exmode) .NE. -1) THEN

WRITE(*,*) 'Error not returned'

ELSE

WRITE(*,*) 'Error code returned'

ENDIF

END SELECT

END

See Also
• S
• GETEXITQQ

Building Applications: Using QuickWin Overview

3447

63

SET_EXPONENT
Elemental Intrinsic Function (Generic):
Returns the value of the exponent part (of the
model for the argument) set to a specified value.

Syntax

result = SET_EXPONENT (x,i)

(Input) Must be of type real.x

(Input) Must be of type integer.i

Results

The result type is the same as x. The result has the value x x b i-e. Parameters b and e are
defined in Model for Real Data. If x has the value zero, the result is zero.

Example

If 3.0 is a REAL(4) value, SET_EXPONENT (3.0, 1) has the value 1.5.

See Also
• S
• EXPONENT
• Data Representation Models

SETFILEACCESSQQ
Portability Function: Sets the file access mode
for a specified file.

Module

USE IFPORT

Syntax

result = SETFILEACCESSQQ (filename,access)

(Input) Character*(*). Name of a file to set access for.filename

3448

63 Intel® Fortran Compiler User and Reference Guides

(Input) INTEGER(4). Constant that sets the access. Can be any
combination of the following flags, combined by an inclusive OR
(such asIOR or OR):

access

• FILE$ARCHIVE - Marked as having been copied to a backup
device.

• FILE$HIDDEN - Hidden. The file does not appear in the directory
list that you can request from the command console.

• FILE$NORMAL - No special attributes (default).

• FILE$READONLY - Write-protected. You can read the file, but
you cannot make changes to it.

• FILE$SYSTEM - Used by the operating system.

The flags are defined in module IFPORT.F90.

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

To set the access value for a file, add the constants representing the appropriate access.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) permit

LOGICAL(4) result

permit = 0 ! clear permit

permit = IOR(FILE$READONLY, FILE$HIDDEN)

result = SETFILEACCESSQQ ('formula.f90', permit)

END

See Also
• S
• GETFILEINFOQQ

3449

63

SETFILETIMEQQ
Portability Function: Sets the modification time
for a specified file.

Module

USE IFPORT

Syntax

result = SETFILETIMEQQ (filename,timedate)

(Input) Character*(*). Name of a file.filename

(Input) INTEGER(4). Time and date information, as packed by
PACKTIMEQQ.

timedate

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

The modification time is the time the file was last modified and is useful for keeping track of
different versions of the file. The process that calls SETFILETIMEQQ must have write access to
the file; otherwise, the time cannot be changed. If you set timedate to FILE$CURTIME (defined
in IFPORT.F90), SETFILETIMEQQ sets the modification time to the current system time.

If the function fails, call GETLASTERRORQQ to determine the reason. It can be one of the
following:

• ERR$ACCES - Permission denied. The file's (or directory's) permission setting does not allow
the specified access.

• ERR$INVAL - Invalid argument; the timedate argument is invalid.

• ERR$MFILE - Too many open files (the file must be opened to change its modification time).

• ERR$NOENT - File or path not found.

• ERR$NOMEM - Not enough memory is available to execute the command; or the available
memory has been corrupted; or an invalid block exists, indicating that the process making
the call was not allocated properly.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3450

63 Intel® Fortran Compiler User and Reference Guides

Example
USE IFPORT

INTEGER(2) day, month, year

INTEGER(2) hour, minute, second, hund

INTEGER(4) timedate

LOGICAL(4) result

CALL GETDAT(year, month, day)

CALL GETTIM(hour, minute, second, hund)

CALL PACKTIMEQQ (timedate, year, month, day, &

hour, minute, second)

result = SETFILETIMEQQ('myfile.dat', timedate)

END

See Also
• S
• PACKTIMEQQ
• UNPACKTIMEQQ
• GETLASTERRORQQ

SETFILLMASK (W*32, W*64)
Graphics Subroutine: Sets the current fill mask
to a new pattern.

Module

USE IFQWIN

Syntax

CALL SETFILLMASK (mask)

(Input) INTEGER(1). One-dimensional array of length 8.mask

There are 8 bytes in mask, and each of the 8 bits in each byte represents a pixel, creating an
8x8 pattern. The first element (byte) of mask becomes the top 8 bits of the pattern, and the
eighth element (byte) of mask becomes the bottom 8 bits.

3451

63

During a fill operation, pixels with a bit value of 1 are set to the current graphics color, while
pixels with a bit value of zero are set to the current background color. The current graphics
color is set with SETCOLORRGB or SETCOLOR. The 8-byte mask is replicated over the entire
fill area. If no fill mask is set (with SETFILLMASK), or if the mask is all ones, solid current color
is used in fill operations.

The fill mask controls the fill pattern for graphics routines (FLOODFILLRGB, PIE, ELLIPSE,
POLYGON, and RECTANGLE).

To change the current fill mask, determine the array of bytes that corresponds to the desired
bit pattern and set the pattern with SETFILLMASK, as in the following example.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3452

63 Intel® Fortran Compiler User and Reference Guides

Example

This program draws six rectangles, each with a different fill mask, as shown below.

! Build as QuickWin or Standard Graphics Ap.

USE IFQWIN

INTEGER(1), TARGET :: style1(8) &

/Z'18',Z'18',Z'18',Z'18',Z'18',Z'18',Z'18',Z'18'/

INTEGER(1), TARGET :: style2(8) &

/Z'08',Z'08',Z'08',Z'08',Z'08',Z'08',Z'08',Z'08'/

INTEGER(1), TARGET :: style3(8) &

/Z'18',Z'00',Z'18',Z'18',Z'18',Z'00',Z'18',Z'18'/

INTEGER(1), TARGET :: style4(8) &

/Z'00',Z'08',Z'00',Z'08',Z'08',Z'08',Z'08',Z'08'/

INTEGER(1), TARGET :: style5(8) &

/Z'18',Z'18',Z'00',Z'18',Z'18',Z'00',Z'18',Z'18'/

INTEGER(1), TARGET :: style6(8) &

/Z'08',Z'00',Z'08',Z'00',Z'08',Z'00',Z'08',Z'00'/

INTEGER(1) oldstyle(8) ! Placeholder for old style

INTEGER loop

INTEGER(1), POINTER :: ptr(:)

CALL GETFILLMASK(oldstyle)

! Make 6 rectangles, each with a different fill

DO loop = 1, 6

SELECT CASE (loop)

CASE (1)

ptr => style1

CASE (2)

ptr => style2

CASE (3)

3453

63

ptr => style3

CASE (4)

ptr => style4

CASE (5)

ptr => style5

CASE (6)

ptr => style6

END SELECT

CALL SETFILLMASK(ptr)

status = RECTANGLE($GFILLINTERIOR,INT2(loop*40+5), &

INT2(90),INT2((loop+1)*40), INT2(110))

END DO

CALL SETFILLMASK(oldstyle) ! Restore old style

READ (*,*) ! Wait for ENTER to be

! pressed

END

The following shows the output of this program.

See Also
• S
• ELLIPSE
• FLOODFILLRGB
• GETFILLMASK
• PIE
• POLYGON

3454

63 Intel® Fortran Compiler User and Reference Guides

• RECTANGLE

Building Applications: Adding Shapes

Building Applications: Setting Figure Properties

SETFONT (W*32, W*64)
Graphics Function: Finds a single font that
matches a specified set of characteristics and
makes it the current font used by the OUTGTEXT
function.

Module

USE IFQWIN

Syntax

result = SETFONT (options)

(Input) Character*(*). String describing font characteristics (see
below for details).

options

Results

The result type is INTEGER(2). The result is the index number (x as used in the nx option) of
the font if successful; otherwise, -1.

The SETFONT function searches the list of available fonts for a font matching the characteristics
specified in options . If a font matching the characteristics is found, it becomes the current
font. The current font is used in all subsequent calls to the OUTGTEXT function. There can be
only one current font.

The options argument consists of letter codes, as follows, that describe the desired font. The
argument is neither case sensitive nor position sensitive.

Name of the desired typeface. It can be any
installed font.

t' fontname'

Character height, where y is the number of
pixels.

hy

Select character width, where x is the number
of pixels.

wx

3455

63

Select only a fixed-space font (do not use
with the p characteristic).

f

Select only a proportional-space font (do not
use with the f characteristic).

p

Select only a vector-mapped font (do not use
with the r characteristic). Roman, Modern,
and Script are examples of vector-mapped

v

fonts, also called plotter fonts. True Type
fonts (for example, Arial, Symbol, and Times
New Roman) are not vector-mapped.

Select only a raster-mapped (bitmapped) font
(do not use with the v characteristic).
Courier, Helvetica, and Palatino are examples
of raster-mapped fonts, also called screen
fonts. True Type fonts are not raster-mapped.

r

Select the bold text format. This parameter
is ignored if the font does not allow the bold
format.

e

Select the underline text format. This
parameter is ignored if the font does not allow
underlining.

u

Select the italic text format. This parameter
is ignored if the font does not allow italics.

i

Select the font that best fits the other
parameters specified.

b

Select font number x, where x is less than or
equal to the value returned by the
INTIALIZEFONTS function.

nx

You can specify as many options as you want, except with nx, which should be used alone. If
you specify options that are mutually exclusive (such as the pairs f/p or r/v), the SETFONT
function ignores them. There is no error detection for incompatible parameters used with nx.

3456

63 Intel® Fortran Compiler User and Reference Guides

If the b option is specified and at least one font is initialized, SETFONT sets a font and returns
0 to indicate success.

In selecting a font, the SETFONT routine uses the following criteria, rated from highest
precedence to lowest:

1. Pixel height

2. Typeface

3. Pixel width

4. Fixed or proportional font

You can also specify a pixel width and height for fonts. If you choose a nonexistent value for
either and specify the b option, SETFONT chooses the closest match.

A smaller font size has precedence over a larger size. If you request Arial 12 with best fit, and
only Arial 10 and Arial 14 are available, SETFONT selects Arial 10.

If you choose a nonexistent value for pixel height and width, the SETFONT function applies a
magnification factor to a vector-mapped font to obtain a suitable font size. This automatic
magnification does not apply if you specify the roption (raster-mapped font), or if you request
a specific typeface and do not specify the b option (best-fit).

If you specify the nx parameter, SETFONT ignores any other specified options and supplies
only the font number corresponding to x.

If a height is given, but not a width, SETFONT computes the a width to preserve the correct
font proportions.

If a width is given, but not a height, SETFONT uses a default height, which may vary from font
type to font type. This may lead to characters that appear distorted, particularly when a very
wide width is specified. This behavior is the same as that of the Windows* API
CreateFontIndirect. A sample program is provided below showing you how to calculate the
correct height for a given width.

The font functions affect only OUTGTEXT and the current graphics position; no other Fortran
Graphics Library output functions are affected by font usage.

For each window you open, you must call INITIALIZEFONTS before calling SETFONT.
INITIALIZEFONTS needs to be executed after each new child window is opened in order for a
subsequent SETFONT call to be successful.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3457

63

Example
! Build as a Graphics ap.

USE IFQWIN

INTEGER(2) fontnum, numfonts

TYPE (xycoord) pos

numfonts = INITIALIZEFONTS ()

! Set typeface to Arial, character height to 18,

! character width to 10, and italic

fontnum = SETFONT ('t''Arial''h18w10i')

CALL MOVETO (INT2(10), INT2(30), pos)

CALL OUTGTEXT('Demo text')

END

3458

63 Intel® Fortran Compiler User and Reference Guides

Another example follows:

! The following program shows you how to compute

! an appropriate font height for a given font width

!

! Build as a Graphics ap.

USE IFQWIN

INTEGER(2) fontnum, numfonts

TYPE (xycoord) pos

TYPE (rccoord) rcc

TYPE (FONTINFO) info

CHARACTER*11 str, str1

CHARACTER*22 str2

real rh

integer h, inw

str = "t'Arial'bih"

str1= " "

numfonts = INITIALIZEFONTS ()

! Default both height and width. This seems to work

! properly. From this setting get the ratio between

! height and width.

fontnum = SETFONT ("t'Arial'")

ireturn = GETFONTINFO(info)

rh = real(info%pixheight)/real(info%avgwidth)

! Now calculate the height for a width of 40

write(*,*) 'Input desired width:'

read(*,*) inw

h =int(inw*rh)

write(str1,'(I3.3)') h

str2 = str//str1

3459

63

print *,str2

fontnum = SETFONT (str2)

CALL MOVETO (INT2(10), INT2(50), pos)

CALL OUTGTEXT('ABCDEFGabcdefg12345!@#$%')

CALL MOVETO (INT2(10), INT2(50+10+h), pos)

CALL OUTGTEXT('123456789012345678901234')

ireturn = GETFONTINFO(info)

call settextposition(4,1, rcc)

print *, info%avgwidth, info%pixheight

END

See Also
• S
• GETFONTINFO
• GETGTEXTEXTENT
• GRSTATUS
• OUTGTEXT
• INITIALIZEFONTS
• SETGTEXTROTATION

Building Applications: Setting the Font and Displaying Text

Building Applications: SHOWFONT.F90 Example

SETGTEXTROTATION (W*32, W*64)
Graphics Subroutine: Sets the orientation angle
of the font text output in degrees. The current
orientation is used in calls to OUTGTEXT.

Module

USE IFQWIN

Syntax

CALL SETGTEXTROTATION (degree-tenths)

3460

63 Intel® Fortran Compiler User and Reference Guides

(Input) INTEGER(4). Angle of orientation, in tenths of degrees, of
the font text output.

degree-tenths

The orientation of the font text output is set in tenths of degrees. Horizontal is 0°, and angles
increase counterclockwise so that 900 (90°) is straight up, 1800 (180°) is upside down and
left, 2700 (270°) is straight down, and so forth. If the user specifies a value greater than 3600
(360°), the subroutine takes a value equal to:

MODULO (user-specified tenths of degrees, 3600)

Although SETGTEXTROTATION accepts arguments in tenths of degrees, only increments of one
full degree differ visually from each other on the screen.

Bitmap fonts cannot be rotated; TruType fonts should be used instead.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
! Build as a Graphics ap.

USE IFQWIN

INTEGER(2) fontnum, numfonts

INTEGER(4) oldcolor, deg

TYPE (xycoord) pos

numfonts = INITIALIZEFONTS ()

fontnum = SETFONT ('t''Arial''h18w10i')

CALL MOVETO (INT2(10), INT2(30), pos)

CALL OUTGTEXT('Straight text')

deg = -1370

CALL SETGTEXTROTATION(deg)

oldcolor = SETCOLORRGB(Z'008080')

CALL OUTGTEXT('Slanted text')

END

See Also
• S

3461

63

• GETGTEXTROTATION

Building Applications: Selecting Display Options

SETLINESTYLE (W*32, W*64)
Graphics Subroutine: Sets the current line style
to a new line style.

Module

USE IFQWIN

Syntax

CALL SETLINESTYLE (mask)

(Input) INTEGER(2). Desired Quickwin line-style mask. (See the
table below.)

mask

The mask is mapped to the style that most closely equivalences the percentage of the bits in
the mask that are set. The style produces lines that cover a certain percentage of the pixels in
that line.

SETLINESTYLE sets the style used in drawing a line. You can choose from the following styles:

AppearanceSelection CriteriaInternal Windows*
Style

QuickWin Mask

____________16 bits onPS_SOLID0xFFFF

----------------11 to 15 bits onPS_DASH0xEEEE

-.-.-.-.-.-.-.-.-.-.10 bits onPS_DASHDOT0xECEC

-..-..-..-..-..-..-..9 bits onPS_DASHDOTDOT0xECCC

........................1 to 8 bits onPS_DOT0xAAAA

0 bits onPS_NULL0x0000

SETLINESTYLE affects the drawing of straight lines as in LINETO, POLYGON, and RECTANGLE,
but not the drawing of curved lines as in ARC, ELLIPSE, or PIE.

The current graphics color is set with SETCOLORRGB or SETCOLOR. SETWRITEMODE affects
how the line is displayed.

3462

63 Intel® Fortran Compiler User and Reference Guides

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
! Build as a Graphics ap.

USE IFQWIN

INTEGER(2) status, style

TYPE (xycoord) xy

style = Z'FFFF'

CALL SETLINESTYLE(style)

CALL MOVETO(INT2(50), INT2(50), xy)

status = LINETO(INT2(300), INT2(300))

END

See Also
• S
• GETLINESTYLE
• GRSTATUS
• LINETO
• POLYGON
• RECTANGLE
• SETCOLOR
• SETWRITEMODE

Building Applications: Adding Shapes

Building Applications: Drawing Lines on the Screen

Building Applications: Setting Figure Properties

3463

63

SETMESSAGEQQ (W*32, W*64)
QuickWin Subroutine: Changes QuickWin status
messages, state messages, and dialog box
messages.

Module

USE IFQWIN

Syntax

CALL SETMESSAGEQQ (msg,id)

(Input) Character*(*). Message to be displayed. Must be a regular
Fortran string, not a C string. Can include multibyte characters.

msg

(Input) INTEGER(4). Identifier of the message to be changed. The
following table shows the messages that can be changed and their
identifiers:

id

MessageId

"Program terminated with exit
code"

QWIN$MSG_TERM

"\nExit Window?"QWIN$MSG_EXITQ

"Finished"QWIN$MSG_FINISHED

"Paused"QWIN$MSG_PAUSED

"Running"QWIN$MSG_RUNNING

"Text Files(*.txt), *.txt; Data
Files(*.dat), *.dat; All
Files(*.*), *.*;"

QWIN$MSG_FILEOPENDLG

"Bitmap Files(*.bmp), *.bmp;
All Files(*.*), *.*;"

QWIN$MSG_BMPSAVEDLG

"Input pending in"QWIN$MSG_INPUTPEND

"Paste input pending"QWIN$MSG_PASTEINPUTPEND

3464

63 Intel® Fortran Compiler User and Reference Guides

MessageId

"Mouse input pending in"QWIN$MSG_MOUSEINPUTPEND

"Select Text in"QWIN$MSG_SELECTTEXT

"Select Graphics in"QWIN$MSG_SELECTGRAPHICS

"Error! Printing Aborted."QWIN$MSG_PRINTABORT

"Error loading printer driver"QWIN$MSG_PRINTLOAD

"No Default Printer."QWIN$MSG_PRINTNODEFAULT

"No Printer Driver."QWIN$MSG_PRINTDRIVER

"Print: Printing Error."QWIN$MSG_PRINTINGERROR

"Printing"QWIN$MSG_PRINTING

"Cancel"QWIN$MSG_PRINTCANCEL

"Printing in progress..."QWIN$MSG_PRINTINPROGRESS

"Help Not Available for Menu
Item"

QWIN$MSG_HELPNOTAVAIL

"Graphic"QWIN$MSG_TITLETEXT

QWIN$MSG_FILEOPENDLG and QWIN$MSG_BMPSAVEDLG control the text in file choosing
dialog boxes and have the following syntax:

"file description, file designation"

You can change any string produced by QuickWin by calling SETMESSAGEQQ with the appropriate
id. This includes status messages displayed at the bottom of a QuickWin application, state
messages (such as "Paused"), and dialog box messages. These messages can include multibyte
characters. (For more information on multibyte characters, see Building Applications: Using
National Language Support Routines Overview.) To change menu messages, use
MODIFYMENUSTRINGQQ.

3465

63

Compatibility

QUICKWIN GRAPHICS LIB

Example
USE IFQWIN

print*, "Hello"

CALL SETMESSAGEQQ('Changed exit text', QWIN$MSG_EXITQ)

See Also
• S
• MODIFYMENUSTRINGQQ

Building Applications: Changing Status Bar and State Messages

Building Applications: Displaying Character-Based Text

SETMOUSECURSOR (W*32, W*64)
Quickwin Function: Sets the shape of the mouse
cursor for the window in focus.

Module

USE IFQWIN

USE IFWIN

Syntax

oldcursor = SETMOUSECURSOR (newcursor)

(Input) INTEGER(4). A Windows HCURSOR value. For many
predefined shapes, LoadCursor(0, shape) is a convenient way to
get a legitimate value. See the list of predefined shapes below.

newcursor

A value of zero prevents the cursor from being displayed.

Results

The result type is INTEGER(4). This is also an HCURSOR Value. The result is the previous cursor
value.

3466

63 Intel® Fortran Compiler User and Reference Guides

The window in focus at the time SETMOUSECURSOR is called has its cursor changed to the
specified value. Once changed, the cursor retains its shape until another call to
SETMOUSECURSOR.

In Standard Graphics applications, units 5 and 6 (the default screen input and output units)
are always considered to be in focus.

The following predefined values for cursor shapes are available:

Cursor ShapePredefined Value

Standard arrow and small hourglassIDC_APPSTARTING

Standard arrowIDC_ARROW

CrosshairIDC_CROSS

Text I-beamIDC_IBEAM

Obsolete valueIDC_ICON

Slashed circleIDC_NO

Obsolete value; use IDC_SIZEALLIDC_SIZE

Four-pointed arrowIDC_SIZEALL

Double-pointed arrow pointing northeast and
southwest

IDC_SIZENESW

Double-pointed arrow pointing north and
south

IDC_SIZENS

Double-pointed arrow pointing northwest and
southeast

IDC_SIZENWSE

Double-pointed arrow pointing west and eastIDC_SIZEWE

Vertical arrowIDC_UPARROW

Hour glassIDC_WAIT

A LoadCursor must be done on these values before they can be used by SETMOUSECURSOR.

3467

63

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
! Build as Standard Graphics or QuickWin

use ifqwin

use ifwin

integer*4 cursor, oldcursor

write(6,*) 'The cursor will now be changed to an hour glass shape'

write(6,*) 'Hit <return> to see the next change'

cursor = LoadCursor(0, IDC_WAIT)

oldcursor = SetMouseCursor(cursor)

read(5,*)

write(6,*) 'The cursor will now be changed to a cross-hair shape'

write(6,*) 'Hit <return> to see the next change'

cursor = LoadCursor(0, IDC_CROSS)

oldcursor = SetMouseCursor(cursor)

read(5,*)

write(6,*) 'The cursor will now be turned off'

write(6,*) 'Hit <return> to see the next change'

oldcursor = SetMouseCursor(0)

read(5,*)

write(6,*) 'The cursor will now be turned on'

write(6,*) 'Hit <return> to see the next change'

oldcursor = SetMouseCursor(oldcursor)

read(5,*)

stop

end

3468

63 Intel® Fortran Compiler User and Reference Guides

SETPIXEL, SETPIXEL_W (W*32, W*64)
Graphics Functions: Set a pixel at a specified
location to the current graphics color index.

Module

USE IFQWIN

Syntax

result = SETPIXEL (x,y)

result = SETPIXEL_W (wx, wy)

(Input) INTEGER(2). Viewport coordinates for target pixel.x, y

(Input) REAL(8). Window coordinates for target pixel.wx, wy

Results

The result type is INTEGER(2). The result is the previous color index of the target pixel if
successful; otherwise, -1 (for example, if the pixel lies outside the clipping region).

SETPIXEL sets the specified pixel to the current graphics color index. The current graphics color
index is set with SETCOLOR and retrieved with GETCOLOR. The non-RGB color functions (such
as SETCOLOR and SETPIXELS) use color indexes rather than true color values.

If you use color indexes, you are restricted to the colors available in the palette, at most 256.
Some display adapters (SVGA and true color) are capable of creating 262,144 (256K) colors
or more. To access any available color, you need to specify an explicit Red-Green-Blue (RGB)
value with an RGB color function, rather than a palette index with a non-RGB color function.
SETPIXELRGB and SETPIXELRGB_W give access to the full color capacity of the system by using
direct color values rather than indexes to a palette.

NOTE. The SETPIXEL routine described here is a QuickWin routine. If you are trying to
use the Microsoft* Platform SDK version of the SetPixel routine by including the IFWIN
module, you need to specify the routine name as MSFWIN$SetPixel. For more information,
see Building Applications: Special Naming Convention for Certain QuickWin and Win32
Graphics Routines.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3469

63

Example
! Build as a Graphics ap.

USE IFQWIN

INTEGER(2) status, x, y

status = SETCOLOR(INT2(2))

x = 10

! Draw pixels.

DO y = 50, 389, 3

status = SETPIXEL(x, y)

x = x + 2

END DO

READ (*,*) ! Wait for ENTER to be pressed

END

See Also
• S
• SETPIXELRGB
• GETPIXEL
• SETPIXELS
• GETPIXELS
• GETCOLOR
• SETCOLOR

Building Applications: Using Color

SETPIXELRGB, SETPIXELRGB_W (W*32, W*64)
Graphics Functions: Set a pixel at a specified
location to the specified Red-Green-Blue (RGB)
color value.

Module

USE IFQWIN

3470

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = SETPIXELRGB (x,y,color)

result = SETPIXELRGB_W (x,y,color)

(Input) INTEGER(2). Viewport coordinates for target pixel.x, y

(Input) REAL(8). Window coordinates for target pixel.wx, wy

(Input) INTEGER(4). RGB color value to set the pixel to. Range
and result depend on the system's display adapter.

color

Results

The result type is INTEGER(4). The result is the previous RGB color value of the pixel.

In each RGB color value, each of the three colors, red, green, and blue, is represented by an
eight-bit value (2 hex digits). In the value you specify with SETPIXELRGB or SETPIXELRGB_W,
red is the rightmost byte, followed by green and blue. The RGB value's internal structure is as
follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex Z'FF') the
maximum for each of the three components. For example, Z'0000FF' yields full-intensity red,
Z'00FF00' full-intensity green, Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all
three, resulting in bright white.

If any of the pixels are outside the clipping region, those pixels are ignored.

SETPIXELRGB (and the other RGB color selection functions such as SETPIXELSRGB,
SETCOLORRGB) sets the color to a value chosen from the entire available range. The non-RGB
color functions (such as SETPIXELS and SETCOLOR) use color indexes rather than true color
values.

If you use color indexes, you are restricted to the colors available in the palette, at most 256.
Some display adapters (SVGA and true color) are capable of creating 262,144 (256K) colors
or more. To access any available color, you need to specify an explicit RGB value with an RGB
color function, rather than a palette index with a non-RGB color function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3471

63

Example
! Build as a Graphics ap.

USE IFQWIN

INTEGER(2) x, y

INTEGER(4) color

DO i = 10, 30, 10

SELECT CASE (i)

CASE(10)

color = Z'0000FF'

CASE(20)

color = Z'00FF00'

CASE (30)

color = Z'FF0000'

END SELECT

! Draw pixels.

DO y = 50, 180, 2

status = SETPIXELRGB(x, y, color)

x = x + 2

END DO

END DO

READ (*,*) ! Wait for ENTER to be pressed

END

See Also
• S
• GETPIXELRGB
• GETPIXELSRGB
• SETCOLORRGB
• SETPIXELSRGB

Building Applications: Color Mixing

3472

63 Intel® Fortran Compiler User and Reference Guides

Building Applications: Drawing a Sine Curve

Building Applications: Using Color

SETPIXELS (W*32, W*64)
Graphics Subroutine: Sets the color indexes of
multiple pixels.

Module

USE IFQWIN

Syntax

CALL SETPIXELS (n, x, y, color)

(Input) INTEGER(4). Number of pixels to set. Sets the number of
elements in the other arguments.

n

(Input) INTEGER(2). Parallel arrays containing viewport coordinates
of pixels to set.

x, y

(Input) INTEGER(2). Array containing color indexes to set the
pixels to.

color

SETPIXELS sets the pixels specified in the arrays x and y to the color indexes in color. These
arrays are parallel: the first element in each of the three arrays refers to a single pixel, the
second element refers to the next pixel, and so on.

If any of the pixels are outside the clipping region, those pixels are ignored. Calls to SETPIXELS
with n less than 1 are also ignored. SETPIXELS is a much faster way to set multiple pixel color
indexes than individual calls to SETPIXEL.

Unlike SETPIXELS, SETPIXELSRGB gives access to the full color capacity of the system by using
direct color values rather than indexes to a palette. The non-RGB color functions (such as
SETPIXELS and SETCOLOR) use color indexes rather than true color values.

If you use color indexes, you are restricted to the colors available in the palette, at most 256.
Some display adapters (SVGA and true color) are capable of creating 262,144 (256K) colors
or more. To access any available color, you need to specify an explicit RGB value with an RGB
color function, rather than a palette index with a non-RGB color function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3473

63

Example
! Build as a Graphics ap.

USE IFQWIN

INTEGER(2) color(9)

INTEGER(2) x(9), y(9), i

DO i = 1, 9

x(i) = 20 * i

y(i) = 10 * i

color(i) = INT2(i)

END DO

CALL SETPIXELS(9, x, y, color)

END

See Also
• S
• GETPIXELS
• SETPIXEL
• SETPIXELSRGB

SETPIXELSRGB (W*32, W*64)
Graphics Subroutine: Sets multiple pixels to the
given Red-Green-Blue (RGB) color.

Module

USE IFQWIN

Syntax

CALL SETPIXELSRGB (n,x,y,color)

(Input) INTEGER(4). Number of pixels to be changed. Determines
the number of elements in arrays x and y.

n

(Input) INTEGER(2). Parallel arrays containing viewport coordinates
of the pixels to set.

x, y

3474

63 Intel® Fortran Compiler User and Reference Guides

(Input) INTEGER(4). Array containing the RGB color values to set
the pixels to. Range and result depend on the system's display
adapter.

color

SETPIXELSRGB sets the pixels specified in the arrays x and y to the RGB color values in color.
These arrays are parallel: the first element in each of the three arrays refers to a single pixel,
the second element refers to the next pixel, and so on.

In each RGB color value, each of the three color values, red, green, and blue, is represented
by an eight-bit value (2 hex digits). In the value you set with SETPIXELSRGB, red is the rightmost
byte, followed by green and blue. The RGB value's internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex Z'FF') the
maximum for each of the three components. For example, Z'0000FF' yields full-intensity red,
Z'00FF00' full-intensity green, Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all
three, resulting in bright white.

A good use for SETPIXELSRGB is as a buffering form of SETPIXELRGB, which can improve
performance substantially. The example code shows how to do this.

If any of the pixels are outside the clipping region, those pixels are ignored. Calls to
SETPIXELSRGB with n less than 1 are also ignored.

SETPIXELSRGB (and the other RGB color selection functions such as SETPIXELRGB and
SETCOLORRGB) sets colors to values chosen from the entire available range. The non-RGB
color functions (such as SETPIXELS and SETCOLOR) use color indexes rather than true color
values.

If you use color indexes, you are restricted to the colors available in the palette, at most 256.
Some display adapters (SVGA and true color) are capable of creating 262,144 (256K) colors
or more. To access any available color, you need to specify an explicit RGB value with an RGB
color function, rather than a palette index with a non-RGB color function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3475

63

Example
! Buffering replacement for SetPixelRGB and

! SetPixelRGB_W. This can improve performance by

! doing batches of pixels together.

USE IFQWIN

PARAMETER (I$SIZE = 200)

INTEGER(4) bn, bc(I$SIZE), status

INTEGER(2) bx(I$SIZE),by(I$SIZE)

bn = 0

DO i = 1, I$SIZE

bn = bn + 1

bx(bn) = i

by(bn) = i

bc(bn) = GETCOLORRGB()

status = SETCOLORRGB(bc(bn)+1)

END DO

CALL SETPIXELSRGB(bn,bx,by,bc)

END

See Also
• S
• GETPIXELSRGB
• SETPIXELRGB
• GETPIXELRGB
• SETPIXELS

Building Applications: Color Mixing

3476

63 Intel® Fortran Compiler User and Reference Guides

SETTEXTCOLOR (W*32, W*64)
Graphics Function: Sets the current text color
index.

Module

USE IFQWIN

Syntax

result = SETTEXTCOLOR (index)

(Input) INTEGER(2). Color index to set the text color to.index

Results

The result type is INTEGER(2). The result is the previous text color index.

SETTEXTCOLOR sets the current text color index. The default value is 15, which is associated
with white unless the user remaps the palette. GETTEXTCOLOR returns the text color index set
by SETTEXTCOLOR. SETTEXTCOLOR affects text output with OUTTEXT, WRITE, and PRINT.

The background color index is set with SETBKCOLOR and returned with GETBKCOLOR. The
color index of graphics over the background color is set with SETCOLOR and returned with
GETCOLOR. These non-RGB color functions use color indexes, not true color values, and limit
the user to colors in the palette, at most 256. To access all system colors, use
SETTEXTCOLORRGB, SETBKCOLORRGB, and SETCOLORRGB.

NOTE. The SETTEXTCOLOR routine described here is a QuickWin routine. If you are
trying to use the Microsoft* Platform SDK version of the SetTextColor routine by including
the IFWIN module, you need to specify the routine name as MSFWIN$SetTextColor. For
more information, see Building Applications: Special Naming Convention for Certain
QuickWin and Win32 Graphics Routines.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3477

63

Example
! Build as a Graphics ap.

USE IFQWIN

INTEGER(2) oldtc

oldtc = SETTEXTCOLOR(INT2(2)) ! green

WRITE(*,*) "hello, world"

END

See Also
• S
• GETTEXTCOLOR
• REMAPPALETTERGB
• SETCOLOR
• SETTEXTCOLORRGB

Building Applications: Color Mixing

Building Applications: Using Color

Building Applications: Using Text Colors

SETTEXTCOLORRGB (W*32, W*64)
Graphics Function: Sets the current text color to
the specified Red-Green-Blue (RGB) value.

Module

USE IFQWIN

Syntax

result = SETTEXTCOLORRGB (color)

(Input) INTEGER(4). RGB color value to set the text color to. Range
and result depend on the system's display adapter.

color

Results

The result type is INTEGER(4). The result is the previous text RGB color value.

3478

63 Intel® Fortran Compiler User and Reference Guides

In each RGB color value, each of the three colors, red, green, and blue, is represented by an
eight-bit value (2 hex digits). In the value you specify with SETTEXTCOLORRGB, red is the
rightmost byte, followed by green and blue. The RGB value's internal structure is as follows:

Larger numbers correspond to stronger color intensity with binary 1111111 (hex Z'FF') the
maximum for each of the three components. For example, Z'0000FF' yields full-intensity red,
Z'00FF00' full-intensity green, Z'FF0000' full-intensity blue, and Z'FFFFFF' full-intensity for all
three, resulting in bright white.

SETTEXTCOLORRGB sets the current text RGB color. The default value is Z'00FFFFFF', which
is full-intensity white. SETTEXTCOLORRGB sets the color used by OUTTEXT, WRITE, and PRINT.
It does not affect the color of text output with the OUTGTEXT font routine. Use SETCOLORRGB
to change the color of font output.

SETBKCOLORRGB sets the RGB color value of the current background for both text and graphics.
SETCOLORRGB sets the RGB color value of graphics over the background color, used by the
graphics functions such as ARC, FLOODFILLRGB, and OUTGTEXT.

SETTEXTCOLORRGB (and the other RGB color selection functions SETBKCOLORRGB and
SETCOLORRGB) sets the color to a value chosen from the entire available range. The non-RGB
color functions (SETTEXTCOLOR, SETBKCOLOR, and SETCOLOR) use color indexes rather than
true color values.

If you use color indexes, you are restricted to the colors available in the palette, at most 256.
Some display adapters (SVGA and true color) are capable of creating 262,144 (256K) colors
or more. To access any available color, you need to specify an explicit RGB value with an RGB
color function, rather than a palette index with a non-RGB color function.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3479

63

Example
! Build as a Graphics ap.

USE IFQWIN

INTEGER(4) oldtc

oldtc = SETTEXTCOLORRGB(Z'000000FF')

WRITE(*,*) 'I am red'

oldtc = SETTEXTCOLORRGB(Z'0000FF00')

CALL OUTTEXT ('I am green'//CHAR(13)//CHAR(10))

oldtc = SETTEXTCOLORRGB(Z'00FF0000')

PRINT *, 'I am blue'

END

See Also
• S
• SETBKCOLORRGB
• SETCOLORRGB
• GETTEXTCOLORRGB
• GETWINDOWCONFIG
• OUTTEXT

Building Applications: Color Mixing

Building Applications: Using Color

Building Applications: Using Text Colors

SETTEXTCURSOR (W*32, W*64)
Graphics Function: Sets the height and width of
the text cursor (the caret) for the window in focus.

Module

USE IFQWIN

Syntax

result = SETTEXTCURSOR (newcursor)

3480

63 Intel® Fortran Compiler User and Reference Guides

(Input) INTEGER(2). The leftmost 8 bits specify the width of the
cursor, and the rightmost 8 bits specify the height of the cursor.
These dimensions can range from 1 to 8, and represent a fraction
of the current character cell size. For example:

newcursor

• Z'0808' - Specifies the full character cell; this is the default
size.

• Z'0108' - Specifies 1/8th of the character cell width, and 8/8th
(or all) of the character cell height.

If either of these dimensions is outside the range 1 to 8, it is forced
to 8.

Results

The result type is INTEGER(2); it is the previous text cursor value in the same format as
newcursor.

NOTE. After calling SETTEXTCURSOR, you must call DISPLAYCURSOR($GCURSORON)
to actually see the cursor.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3481

63

Example
use IFQWIN

integer(2) oldcur

integer(2) istat

type(rccoord) rc

open(10,file='user')

istat = displaycursor($GCURSORON)

write(10,*) 'Text cursor is now character cell size, the default.'

read(10,*)

write(10,*) 'Setting text cursor to wide and low.'

oldcur = settextcursor(Z'0801')

istat = displaycursor($GCURSORON)

read(10,*)

write(10,*) 'Setting text cursor to high and narrow.'

oldcur = settextcursor(Z'0108')

istat = displaycursor($GCURSORON)

read(10,*)

write(10,*) 'Setting text cursor to a dot.'

oldcur = settextcursor(Z'0101')

istat = displaycursor($GCURSORON)

read(10,*)

end

See Also
• S
• DISPLAYCURSOR

3482

63 Intel® Fortran Compiler User and Reference Guides

SETTEXTPOSITION (W*32, W*64)
Graphics Subroutine: Sets the current text
position to a specified position relative to the
current text window.

Module

USE IFQWIN

Syntax

CALL SETTEXTPOSITION (row,column,t)

(Input) INTEGER(2). New text row position.row

(Input) INTEGER(2). New text column position.column

(Output) Derived type rccoord. Previous text position. The derived
type rccoordis defined in IFQWIN.F90 as follows:

TYPE rccoord

INTEGER(2) row ! Row coordinate

INTEGER(2) col ! Column coordinate

END TYPE rccoord

t

Subsequent text output with the OUTTEXT function (as well as standard console I/O statements,
such as PRINT and WRITE) begins at the point (row, column).

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
USE IFQWIN

TYPE (rccoord) curpos

WRITE(*,*) "Original text position"

CALL SETTEXTPOSITION (INT2(6), INT2(5), curpos)

WRITE (*,*) 'New text position'

END

3483

63

See Also
• S
• CLEARSCREEN
• GETTEXTPOSITION
• OUTTEXT
• SCROLLTEXTWINDOW
• SETTEXTWINDOW
• WRAPON

Building Applications: Displaying Character-Based Text

Building Applications: Text Coordinates

Building Applications: Using Text Colors

SETTEXTWINDOW (W*32, W*64)
Graphics Subroutine: Sets the current text
window.

Module

USE IFQWIN

Syntax

CALL SETTEXTWINDOW (r1,c1,r2,c2)

(Input) INTEGER(2). Row and column coordinates for upper-left
corner of the text window.

r1, c1

(Input) INTEGER(2). Row and column coordinates for lower-right
corner of the text window.

r2, c2

SETTEXTWINDOW specifies a window in row and column coordinates where text output to the
screen using OUTTEXT, WRITE, or PRINT will be displayed. You set the text location within this
window with SETTEXTPOSITION.

Text is output from the top of the window down. When the window is full, successive lines
overwrite the last line.

SETTEXTWINDOW does not affect the output of the graphics text routine OUTGTEXT. Use the
SETVIEWPORT function to control the display area for graphics output.

3484

63 Intel® Fortran Compiler User and Reference Guides

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
USE IFQWIN

TYPE (rccoord) curpos

CALL SETTEXTWINDOW(INT2(5), INT2(1), INT2(7), &

INT2(40))

CALL SETTEXTPOSITION (INT2(5), INT2(5), curpos)

WRITE(*,*) "Only two lines in this text window"

WRITE(*,*) "so this line will be overwritten"

WRITE(*,*) "by this line"

END

See Also
• S
• GETTEXTPOSITION
• GETTEXTWINDOW
• GRSTATUS
• OUTTEXT
• SCROLLTEXTWINDOW
• SETTEXTPOSITION
• SETVIEWPORT
• WRAPON

Building Applications: Displaying Character-Based Text

SETTIM
Portability Function: Sets the system time in
your programs. This function is only available on
Windows* and Linux* systems.

Module

USE IFPORT

3485

63

Syntax

result = SETTIM (ihr, imin, isec, i100th)

(Output) INTEGER(4) or INTEGER(2). Hour (0-23).ihr

(Output) INTEGER(4) or INTEGER(2). Minute (0-59).imin

(Output) INTEGER(4) or INTEGER(2). Second (0-59).isec

(Output) INTEGER(4) or INTEGER(2). Hundredths of a second
(0-99).

i100th

Results

The result type is LOGICAL(4). The result is .TRUE. if the system time is changed; .FALSE. if
no change is made.

NOTE. On Linux systems, you must have root privileges to execute this function.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

LOGICAL(4) success

success = SETTIM(INT2(21),INT2(53+3),&

INT2(14*2),INT2(88))

END

See Also
• S
• GETDAT
• GETTIM
• SETDAT

3486

63 Intel® Fortran Compiler User and Reference Guides

SETVIEWORG (W*32, W*64)
Graphics Subroutine: Moves the
viewport-coordinate origin (0, 0) to the specified
physical point.

Module

USE IFQWIN

Syntax

CALL SETVIEWORG (x,y,t)

(Input) INTEGER(2). Physical coordinates of new viewport origin.x, y

(Output) Derived type xycoord. Physical coordinates of the
previous viewport origin. The derived type xycoordis defined in
IFQWIN.F90 as follows:

TYPE xycoord

INTEGER(2) xcoord ! x-coordinate

INTEGER(2) ycoord ! y-coordinate

END TYPE xycoord

t

The xycoordtype variable t, defined in IFQWIN.F90, returns the
physical coordinates of the previous viewport origin.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
USE IFQWIN

TYPE (xycoord) xy

CALL SETVIEWORG(INT2(30), INT2(30), xy)

See Also
• S
• GETCURRENTPOSITION
• GETPHYSCOORD

3487

63

• GETVIEWCOORD
• GETWINDOWCOORD
• GRSTATUS
• SETCLIPRGN
• SETVIEWPORT

Building Applications: Drawing Lines on the Screen

Building Applications: Graphics Coordinates

Building Applications: Setting Graphics Coordinates

SETVIEWPORT (W*32, W*64)
Graphics Subroutine: Redefines the graphics
viewport by defining a clipping region in the same
manner as SETCLIPRGN and then setting the
viewport-coordinate origin to the upper-left corner
of the region.

Module

USE IFQWIN

Syntax

CALL SETVIEWPORT (x1,y1,x2,y2)

(Input) INTEGER(2). Physical coordinates for upper-left corner of
viewport.

x1, y1

(Input) INTEGER(2). Physical coordinates for lower-right corner
of viewport.

x2, y2

The physical coordinates (x1, y1) and (x2, y2) are the upper-left and lower-right corners of
the rectangular clipping region. Any window transformation done with the SETWINDOW function
is relative to the viewport, not the entire screen.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3488

63 Intel® Fortran Compiler User and Reference Guides

Example
USE IFQWIN

INTEGER(2) upx, upy

INTEGER(2) downx, downy

upx = 0

upy = 30

downx= 250

downy = 100

CALL SETVIEWPORT(upx, upy, downx, downy)

See Also
• S
• GETVIEWCOORD
• GETPHYSCOORD
• GRSTATUS
• SETCLIPRGN
• SETVIEWORG
• SETWINDOW

Building Applications: Drawing Lines on the Screen

Building Applications: Graphics Coordinates

Building Applications: Setting Graphics Coordinates

SETWINDOW (W*32, W*64)
Graphics Function: Defines a window bound by
the specified coordinates.

Module

USE IFQWIN

Syntax

result = SETWINDOW (finvert,wx1,wy1,wx2,wy2)

3489

63

(Input) LOGICAL(2). Direction of increase of the y-axis. If finvert
is .TRUE., the y-axis increases from the window bottom to the
window top (as Cartesian coordinates). If finvert is .FALSE., the
y-axis increases from the window top to the window bottom (as
pixel coordinates).

finvert

(Input) REAL(8). Window coordinates for upper-left corner of
window.

wx1, wy1

(Input) REAL(8). Window coordinates for lower-right corner of
window.

wx2, wy2

Results

The result type is INTEGER(2). The result is nonzero if successful; otherwise, 0 (for example,
if the program that calls SETWINDOW is not in a graphics mode).

The SETWINDOW function determines the coordinate system used by all window-relative
graphics routines. Any graphics routines that end in _W (such as ARC_W, RECTANGLE_W, and
LINETO_W) use the coordinate system set by SETWINDOW.

Any window transformation done with the SETWINDOW function is relative to the viewport, not
the entire screen.

An arc drawn using inverted window coordinates is not an upside-down version of an arc drawn
with the same parameters in a noninverted window. The arc is still drawn counterclockwise,
but the points that define where the arc begins and ends are inverted.

If wx1 equals wx2 or wy1 equals wy2, SETWINDOW fails.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

Example
USE IFQWIN

INTEGER(2) status

LOGICAL(2) invert /.TRUE./

REAL(8) upx /0.0/, upy /0.0/

REAL(8) downx /1000.0/, downy /1000.0/

status = SETWINDOW(invert, upx, upy, downx, downy)

3490

63 Intel® Fortran Compiler User and Reference Guides

See Also
• S
• GETWINDOWCOORD
• SETCLIPRGN
• SETVIEWORG
• SETVIEWPORT
• GRSTATUS
• ARC_W
• LINETO_W
• MOVETO_W
• PIE_W
• POLYGON_W
• RECTANGLE_W

Building Applications: Graphics Coordinates

Building Applications: Setting Graphics Coordinates

SETWINDOWCONFIG (W*32, W*64)
QuickWin Function: Sets the properties of a child
window.

Module

USE IFQWIN

Syntax

result = SETWINDOWCONFIG (wc)

3491

63

(Input) Derived type windowconfig. Contains window properties.
The windowconfig derived type is defined in IFQWIN.F90 as
follows:

TYPE windowconfig

INTEGER(2) numxpixels ! Number of pixels on x-axis.

INTEGER(2) numypixels ! Number of pixels on y-axis.

INTEGER(2) numtextcols ! Number of text columns
available.

INTEGER(2) numtextrows ! Number of text rows available.

INTEGER(2) numcolors ! Number of color indexes.

INTEGER(4) fontsize ! Size of default font. Set to

! QWIN$EXTENDFONT when
specifying

! extended attributes, in
which

! case extendfontsize sets
the

! font size.

CHARACTER(80) title ! The window title.

INTEGER(2) bitsperpixel ! The number of bits per pixel.

INTEGER(2) numvideopages ! Unused.

INTEGER(2) mode ! Controls scrolling mode.

INTEGER(2) adapter ! Unused.

INTEGER(2) monitor ! Unused.

INTEGER(2) memory ! Unused.

INTEGER(2) environment ! Unused.

! The next three parameters provide extended font

! attributes.

CHARACTER(32) extendfontname ! The name of the desired
font.

INTEGER(4) extendfontsize ! Takes the same values as

wc

3492

63 Intel® Fortran Compiler User and Reference Guides

fontsize,

! when fontsize is set to

! QWIN$EXTENDFONT.

INTEGER(4) extendfontattributes ! Font attributes such as
bold

! and italic.

END TYPE windowconfig

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

The following value can be used to configure a QuickWin window so that it will show the last
line written and the text cursor (if it is on):

wc%mode = QWIN$SCROLLDOWN

Note that if you scroll the window to another position, you will have to scroll back to the last
line to see your input.

The following values can be used with SETWINDOWCONFIG extended fonts:

Table 908: Style:

Gives no underline, no italic, and a font
weight of 400 out of 1000.

QWIN$EXTENDFONT_NORMAL

Gives underlined characters.QWIN$EXTENDFONT_UNDERLINE

Gives a font weight of 700 out of 1000.QWIN$EXTENDFONT_BOLD

Gives italic characters.QWIN$EXTENDFONT_ITALIC

Table 909: Pitch:

QuickWin default. Equal character widths.QWIN$EXTENDFONT_FIXED_PITCH

Variable character widths.QWIN$EXTENDFONT_VARIABLE_PITCH

Table 910: Font Families:

Variable stroke width, serifed. Times Roman,
Century Schoolbook, etc.

QWIN$EXTENDFONT_FF_ROMAN

3493

63

Variable stroke width, sans-serifed. Helvetica,
Swiss, etc.

QWIN$EXTENDFONT_FF_SWISS

QuickWin default. Constant stroke width,
serifed or sans-serifed. Pica, Elite, Courier,
etc.

QWIN$EXTENDFONT_FF_MODERN

Cursive, etc.QWIN$EXTENDFONT_FF_SCRIPT

Old English, etc.QWIN$EXTENDFONT_FF_DECORATIVE

Table 911: Character Sets:

QuickWin default.QWIN$EXTENDFONT_ANSI_CHARSET

Use this to get Microsoft* LineDraw.QWIN$EXTENDFONT_OEM_CHARSET

Using QWIN$EXTENDFONT_OEM_CHARSET with the font name 'MS LineDraw'C will get the old
DOS-style character set with symbols that can be used to draw lines and boxes. The pitch and
font family items can be specified to help guide the font matching algorithms used by
CreateFontIndirect, the Windows* API used by SETWINDOWCONFIG.

If you use SETWINDOWCONFIG to set the variables in windowconfig to -1, the function sets
the highest resolution possible for your system, given the other fields you specify, if any. You
can set the actual size of the window by specifying parameters that influence the window size:
the number of x and y pixels, the number of rows and columns, and the font size. If you do
not call SETWINDOWCONFIG, the window defaults to the best possible resolution and a font
size of 8x16. The number of colors available depends on the video driver used.

If you use SETWINDOWCONFIG, you should specify a value for each field (-1 or your own value
for the numeric fields and a C string for the title, for example, "words of text"C). Using
SETWINDOWCONFIG with only some fields specified can result in useless values for the
unspecified fields.

If you request a configuration that cannot be set, SETWINDOWCONFIG returns .FALSE. and
calculates parameter values that will work and are as close as possible to the requested
configuration. A second call to SETWINDOWCONFIG establishes the adjusted values; for example:

status = SETWINDOWCONFIG(wc)

if (.NOT.status) status = SETWINDOWCONFIG(wc)

3494

63 Intel® Fortran Compiler User and Reference Guides

If you specify values for all four of the size parameters, numxpixels, numypixel, numtextcols,
and numtextrows, the font size is calculated by dividing these values.The default font is Courier
New and the default font size is 8x16. There is no restriction on font size, except that the
window must be large enough to hold it.

Under Standard Graphics, the application attempts to start in Full Screen mode with no window
decoration (window decoration includes scroll bars, menu bar, title bar, and message bar) so
that the maximum resolution can be fully used. Otherwise, the application starts in a window.
You can use ALT+ENTER at any time to toggle between the two modes.

If you are in Full Screen mode and the resolution of the window does not match the resolution
of the video driver, graphics output will be slow compared to drawing in a window.

NOTE. You must call DISPLAYCURSOR($GCURSORON) to make the cursor visible after
calling SETWINDOWCONFIG.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3495

63

Example
USE IFQWIN

TYPE (windowconfig) wc

LOGICAL status /.FALSE./

! Set the x & y pixels to 800X600 and font size to 8x12

wc%numxpixels = 800

wc%numypixels = 600

wc%numtextcols = -1

wc%numtextrows = -1

wc%numcolors = -1

wc%title= "This is a test"C

wc%fontsize = Z'0008000C'

status = SETWINDOWCONFIG(wc) ! attempt to set configuration with above values

! if attempt fails, set with system estimated values

if (.NOT.status) status = SETWINDOWCONFIG(wc)

See Also
• S
• DISPLAYCURSOR
• GETWINDOWCONFIG

Building Applications: Accessing Window Properties

Building Applications: Creating Child Windows

Building Applications: Graphics Coordinates

Building Applications: Selecting Display Options

Building Applications: Setting Graphics Coordinates

Building Applications: Setting the Graphics Mode

Building Applications: Using Fonts from the Graphics Library Overview

Building Applications: VGA Color Palette

3496

63 Intel® Fortran Compiler User and Reference Guides

SETWINDOWMENUQQ (W*32, W*64)
QuickWin Function: Sets a top-level menu as
the menu to which a list of current child window
names is appended.

Module

USE IFQWIN

Syntax

result = SETWINDOWMENUQQ (menuID)

(Input) INTEGER(4). Identifies the menu to hold the child window
names, starting with 1 as the leftmost menu.

menuID

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

The list of current child window names can appear in only one menu at a time. If the list of
windows is currently in a menu, it is removed from that menu. By default, the list of child
windows appears at the end of the Window menu.

Compatibility

QUICKWIN GRAPHICS LIB

3497

63

Example
USE IFQWIN

TYPE (windowconfig) wc

LOGICAL(4) result, status /.FALSE./

! Set title for child window

wc%numxpixels = -1

wc%numypixels = -1

wc%numtextcols = -1

wc%numtextrows = -1

wc%numcolors = -1

wc%fontsize = -1

wc%title= "I am child window name"C

if (.NOT.status) status = SETWINDOWCONFIG(wc)

! put child window list under menu 3 (View)

result = SETWINDOWMENUQQ(3)

END

See Also
• S
• APPENDMENUQQ

Building Applications: Using QuickWin Overview

Building Applications: Customizing QuickWin Applications

Building Applications: Program Control of Menus

SETWRITEMODE (W*32, W*64)
Graphics Function: Sets the current logical write
mode, which is used when drawing lines with the
LINETO, POLYGON, and RECTANGLE functions.

Module

USE IFQWIN

3498

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = SETWRITEMODE (wmode)

(Input) INTEGER(2). Write mode to be set. One of the following
symbolic constants (defined in IFQWIN.F90):

wmode

• $GPSET - Causes lines to be drawn in the current graphics color.
(Default)

• $GAND - Causes lines to be drawn in the color that is the logical
AND of the current graphics color and the current background
color.

• $GOR - Causes lines to be drawn in the color that is the logical
OR of the current graphics color and the current background
color.

• $GPRESET - Causes lines to be drawn in the color that is the
logical NOT of the current graphics color.

• $GXOR - Causes lines to be drawn in the color that is the logical
exclusive OR (XOR) of the current graphics color and the current
background color.

In addition, one of the following binary raster operation constants
can be used (described in the online documentation for the
Windows* API SetROP2):

• $GR2_BLACK

• $GR2_NOTMERGEPEN

• $GR2_MASKNOTPEN

• $GR2_NOTCOPYPEN (same as $GPRESET)

• $GR2_MASKPENNOT

• $GR2_NOT

• $GR2_XORPEN (same as $GXOR)

• $GR2_NOTMASKPEN

• $GR2_MASKPEN (same as $GAND)

• $GR2_NOTXORPEN

• $GR2_NOP

3499

63

• $GR2_MERGENOTPEN

• $GR2_COPYPEN (same as $GPSET)

• $GR2_MERGEPENNOT

• $GR2_MERGEPEN (same as $GOR)

• $GR2_WHITE

Results

The result type is INTEGER(2). The result is the previous write mode if successful; otherwise,
-1.

The current graphics color is set with SETCOLORRGB (or SETCOLOR) and the current background
color is set with SETBKCOLORRGB (or SETBKCOLOR). As an example, suppose you set the
background color to yellow (Z'00FFFF') and the graphics color to purple (Z'FF00FF') with the
following commands:

oldcolor = SETBKCOLORRGB(Z'00FFFF')

CALL CLEARSCREEN($GCLEARSCREEN)

oldcolor = SETCOLORRGB(Z'FF00FF')

If you then set the write mode with the $GAND option, lines are drawn in red (Z'0000FF'); with
the $GOR option, lines are drawn in white (Z'FFFFFF'); with the $GXOR option, lines are drawn
in turquoise (Z'FFFF00'); and with the $GPRESET option, lines are drawn in green (Z'00FF00').
Setting the write mode to $GPSET causes lines to be drawn in the graphics color.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3500

63 Intel® Fortran Compiler User and Reference Guides

Example
! Build as a Graphics ap.

USE IFQWIN

INTEGER(2) result, oldmode

INTEGER(4) oldcolor

TYPE (xycoord) xy

oldcolor = SETBKCOLORRGB(Z'00FFFF')

CALL CLEARSCREEN ($GCLEARSCREEN)

oldcolor = SETCOLORRGB(Z'FF00FF')

CALL MOVETO(INT2(0), INT2(0), xy)

result = LINETO(INT2(200), INT2(200)) ! purple

oldmode = SETWRITEMODE($GAND)

CALL MOVETO(INT2(50), INT2(0), xy)

result = LINETO(INT2(250), INT2(200)) ! red

END

See Also
• S
• GETWRITEMODE
• GRSTATUS
• LINETO
• POLYGON
• PUTIMAGE
• RECTANGLE
• SETCOLOR
• SETLINESTYLE

Building Applications: Setting Figure Properties

3501

63

SETWSIZEQQ (W*32, W*64)
QuickWin Function: Sets the size and position
of a window.

Module

USE IFQWIN

Syntax

result = SETWSIZEQQ (unit, winfo)

(Input) INTEGER(4). Specifies the window unit. Unit numbers 0,
5, and 6 refer to the default startup window only if the program
does not explicitly open them with the OPEN statement. To set the

unit

size of the frame window (as opposed to a child window), set unit
to the symbolic constant QWIN$FRAMEWINDOW (defined in
IFQWIN.F90).
When called from INITIALSETTINGS, SETWSIZEQQ behaves slightly
differently than when called from a user routine after initialization.
See below under Results.

(Input) Derived type qwinfo. Physical coordinates of the window's
upper-left corner, and the current or maximum height and width
of the window's client area (the area within the frame). The derived
type qwinfois defined in IFQWIN.F90 as follows:

TYPE QWINFO

INTEGER(2) TYPE ! request type

INTEGER(2) X ! x coordinate for upper left

INTEGER(2) Y ! y coordinate for upper left

INTEGER(2) H ! window height

INTEGER(2) W ! window width

END TYPE QWINFO

winfo

This function's behavior depends on the value of QWINFO%TYPE,
which can be any of the following:

• QWIN$MIN - Minimizes the window.

• QWIN$MAX - Maximizes the window.

3502

63 Intel® Fortran Compiler User and Reference Guides

• QWIN$RESTORE - Restores the minimized window to its
previous size.

• QWIN$SET - Sets the window's position and size according to
the other values in qwinfo.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, nonzero (unless called
from INITIALSETTINGS). If called from INITIALSETTINGS, the following occurs:

• SETWSIZEQQ always returns -1.

• Only QWIN$SET will work.

The position and dimensions of child windows are expressed in units of character height and
width. The position and dimensions of the frame window are expressed in screen pixels.

The height and width specified for a frame window reflects the actual size in pixels of the frame
window including any borders, menus, and status bar at the bottom.

Compatibility

QUICKWIN GRAPHICS LIB

3503

63

Example
USE IFQWIN

INTEGER(4) result

INTEGER(2) numfonts, fontnum

TYPE (qwinfo) winfo

TYPE (xycoord) pos

! Maximize frame window

winfo%TYPE = QWIN$MAX

result = SETWSIZEQQ(QWIN$FRAMEWINDOW, winfo)

! Maximize child window

result = SETWSIZEQQ(0, winfo)

numfonts = INITIALIZEFONTS()

fontnum = SETFONT ('t''Arial''h50w34i')

CALL MOVETO (INT2(10), INT2(30), pos)

CALL OUTGTEXT("BIG Window")

END

See Also
• S
• GETWSIZEQQ
• INITIALSETTINGS

Building Applications: Using QuickWin Overview

Building Applications: Controlling Size and Position of Windows

SHAPE
Inquiry Intrinsic Function (Generic): Returns
the shape of an array or scalar argument.

Syntax

result = SHAPE (source [, kind])

3504

63 Intel® Fortran Compiler User and Reference Guides

(Input) Is a scalar or array. It may be of any data type. It must
not be an assumed-size array, a disassociated pointer, or an
allocatable array that is not allocated.

source

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result is a rank-one integer array whose size is equal to the rank of source. If kind is
present, the kind parameter of the result is that specified by kind; otherwise, the kind parameter
of the result is that of default integer. If the processor cannot represent the result value in the
kind of the result, the result is undefined.

The value of the result is the shape of source.

The setting of compiler options specifying integer size can affect this function.

Example

SHAPE (2) has the value of a rank-one array of size zero.

If B is declared as B(2:4, -3:1), then SHAPE (B) has the value (3, 5).

3505

63

The following shows another example:

INTEGER VEC(2)

REAL array(3:10, -1:3)

VEC = SHAPE(array)

WRITE(*,*) VEC ! prints 8 5

END

!

! Check if a mask is conformal with an array

REAL, ALLOCATABLE :: A(:,:,:)

LOGICAL, ALLOCATABLE :: MASK(:,:,:)

INTEGER B(3), C(3)

LOGICAL conform

ALLOCATE (A(5, 4, 3))

ALLOCATE (MASK(3, 4, 5))

! Check if MASK and A allocated. If they are, check

! that they have the same shape (conform).

IF(ALLOCATED(A) .AND. ALLOCATED(MASK)) THEN

B = SHAPE(A); C = SHAPE(MASK)

IF ((B(1) .EQ. C(1)) .AND. (B(2) .EQ. C(2)) &

.AND. (B(3) .EQ. C(3))) THEN

conform = .TRUE.

ELSE

conform = .FALSE.

END IF

END IF

WRITE(*,*) conform ! prints F

END

3506

63 Intel® Fortran Compiler User and Reference Guides

See Also
• S
• SIZE

SHARED Clause
Parallel Directive Clause: Specifies variables
that will be shared by all the threads in a team.

Syntax

SHARED (list)

Is the name of one or more variables or common blocks that are
accessible to the scoping unit. Subobjects cannot be specified.
Each name must be separated by a comma, and a named common
block must appear between slashes (/ /).

list

All threads within a team access the same storage area for SHARED data.

SHIFTL
Elemental Intrinsic Function (Specific):
Logically shifts an integer left by a specified
number of bits. This function cannot be passed as
an actual argument.

Syntax

result = SHIFTL (ivalue,ishift)

(Input) Must be of type integer. This is the value to be shifted.ivalue

(Input) Must be of type integer. The value must be positive. This
value is the number of positions to shift.

ishift

Results

The result type is the same as ivalue. The result is the value of ivalue shifted left by ishift
bit positions. Bits shifted off the left end are lost; zeros are shifted in from the opposite end.

SHIFTL (i, j) is the same as ISHFT (i, j).

See Also
• S

3507

63

• ISHFT

SHIFTR
Elemental Intrinsic Function (Specific):
Logically shifts an integer right by a specified
number of bits. This function cannot be passed as
an actual argument.

Syntax

result = SHIFTR (ivalue,ishift)

(Input) Must be of type integer. This is the value to be shifted.ivalue

(Input) Must be of type integer. The value must be positive. This
value is the number of positions to shift.

ishift

Results

The result type is the same as ivalue. The result is the value of ivalue shifted right by ishift
bit positions. Bits shifted off the right end are lost; zeros are shifted in from the opposite end.

SHIFTR (i, j) is the same as ISHFT (i, -j).

See Also
• S
• ISHFT

SHORT
Portability Function: Converts an INTEGER(4)
argument to INTEGER(2) type.

Module

USE IFPORT

Syntax

result = SHORT (int4)

(Input) INTEGER(4). Value to be converted.int4

3508

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is INTEGER(2). The result is equal to the lower 16 bits of int4. If the int4
value is greater than 32,767, the converted INTEGER(2) value is not equal to the original.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) this_one

INTEGER(2) that_one

READ(*,*) this_one

THAT_ONE = SHORT(THIS_ONE)

WRITE(*,10) THIS_ONE, THAT_ONE

10 FORMAT (X," Long integer: ", I16, " Short integer: ", I16)

END

See Also
• S
• INT
• Type Declarations

SIGN
Elemental Intrinsic Function (Generic):
Returns the absolute value of the first argument
times the sign of the second argument.

Syntax

result = SIGN (a, b)

(Input) Must be of type integer or real.a

(Input) Must have the same type and kind parameters as a.b

Results

The result type is the same as a. The value of the result is as follows:

3509

63

• | a | if b > zero and -| a | if b < zero.

• | a | if b is of type integer and is zero.

• If b is of type real and zero and compiler option assume minus0 is not specified, the value
of the result is | a |.

• If b is of type real and zero and compiler option assume minus0 is specified, the processor
can distinguish between positive and negative real zero and the following occurs:

• If b is positive real zero, the value of the result is | a |.

• If b is negative real zero, the value of the result is -| a |.

Result TypeArgument TypeSpecific Name

INTEGER(1)INTEGER(1)BSIGN

INTEGER(2)INTEGER(2)IISIGN1

INTEGER(4)INTEGER(4)ISIGN 2

INTEGER(8)INTEGER(8)KISIGN

REAL(4)REAL(4)SIGN 3

REAL(8)REAL(8)DSIGN 3,4

REAL(16)REAL(16)QSIGN

1 Or HSIGN.
2 Or JISIGN. For compatibility with older versions of Fortran, ISIGN is treated as a generic
function.
3 The setting of compiler options specifying real size can affect SIGN and DSIGN .
4 The setting of compiler options specifying double size can affect DSIGN.

Example

SIGN (4.0, -6.0) has the value -4.0.

SIGN (-5.0, 2.0) has the value 5.0.

3510

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

c = SIGN (5.2, -3.1) ! returns -5.2

c = SIGN (-5.2, -3.1) ! returns -5.2

c = SIGN (-5.2, 3.1) ! returns 5.2

See Also
• S
• ABS
• assume minus0 compiler option

SIN
Elemental Intrinsic Function (Generic):
Produces the sine of x.

Syntax

result = SIN (x)

(Input) Must be of type real or complex. It must be in radians and
is treated as modulo 2*pi.

x

If x is of type complex, its real part is regarded as a value in
radians.

Results

The result type is the same as x.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)SIN

REAL(8)REAL(8)DSIN

REAL(16)REAL(16)QSIN

COMPLEX(4)COMPLEX(4)CSIN 1

COMPLEX(8)COMPLEX(8)CDSIN2

COMPLEX(16)COMPLEX(16)CQSIN

3511

63

Result TypeArgument TypeSpecific Name

1The setting of compiler options specifying real size can affect CSIN.
2This function can also be specified as ZSIN.

Example

SIN (2.0) has the value 0.9092974.

SIN (0.8) has the value 0.7173561.

SIND
Elemental Intrinsic Function (Generic):
Produces the sine of x.

Syntax

result = SIND (x)

(Input) Must be of type real. It must be in degrees and is treated
as modulo 360.

x

Results

The result type is the same as x.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)SIND

REAL(8)REAL(8)DSIND

REAL(16)REAL(16)QSIND

Example

SIND (2.0) has the value 3.4899496E-02.

SIND (0.8) has the value 1.3962180E-02.

3512

63 Intel® Fortran Compiler User and Reference Guides

SINH
Elemental Intrinsic Function (Generic):
Produces a hyperbolic sine.

Syntax

result = SINH (x)

(Input) Must be of type real.x

Results

The result type is the same as x.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)SINH

REAL(8)REAL(8)DSINH

REAL(16)REAL(16)QSINH

Example

SINH (2.0) has the value 3.626860.

SINH (0.8) has the value 0.8881060.

SIGNAL
Portability Function: Controls interrupt signal
handling. Changes the action for a specified signal.

Module

USE IFPORT

Syntax

result = SIGNAL (signum, proc, flag)

(Input) INTEGER(4). Number of the signal to change. The numbers
and symbolic names are listed in a table below.

signum

3513

63

(Input) Name of a signal-processing routine. It must be declared
EXTERNAL. This routine is called only if flag is negative.

proc

(Input) INTEGER(4). If negative, the user's proc routine is called.
If 0, the signal retains its default action; if 1, the signal should be
ignored.

flag

Results

The result type is INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 and IA-64
architectures. The result is the previous value of proc associated with the specified signal. For
example, if the previous value of proc was SIG_IGN, the return value is also SIG_IGN. You
can use this return value in subsequent calls to SIGNAL if the signal number supplied is invalid,
if the flag value is greater than 1, or to restore a previous action definition.

A return value of SIG_ERR indicates an error, in which case a call to IERRNO returns EINVAL.
If the signal number supplied is invalid, or if the flag value is greater than 1, SIGNAL returns
-(EINVAL) and a call to IERRNO returns EINVAL.

An initial signal handler is in place at startup for SIGFPE (signal 8); its address is returned the
first time SIGNAL is called for SIGFPE. No other signals have initial signal handlers.

Be careful when you use SIGNALQQ or the C signal function to set a handler, and then use the
Portability SIGNAL function to retrieve its value. If SIGNAL returns an address that was not
previously set by a call to SIGNAL, you cannot use that address with either SIGNALQQ or C's
signal function, nor can you call it directly. You can, however, use the return value from SIGNAL
in a subsequent call to SIGNAL. This allows you to restore a signal handler, no matter how the
original signal handler was set.

All signal handlers are called with a single integer argument, that of the signal number actually
received. Usually, when a process receives a signal, it terminates. With the SIGNAL function,
a user procedure is called instead. The signal handler routine must accept the signal number
integer argument, even if it does not use it. If the routine does not accept the signal number
argument, the stack will not be properly restored after the signal handler has executed.

Because signal-handler routines are usually called asynchronously when an interrupt occurs,
it is possible that your signal-handler function will get control when a run-time operation is
incomplete and in an unknown state. You cannot use the following kinds of signal-handler
routines:

• Routines that perform low-level (such as FGETC) or high-level (such as READ) I/O.

• Heap routines or any routine that uses the heap routines (such as MALLOC and ALLOCATE).

• Functions that generate a system call (such as TIME).

3514

63 Intel® Fortran Compiler User and Reference Guides

The following table lists signals, their names and values:

DescriptionNumberSymbolic name

Abnormal termination6SIGABRT

Floating-point error8SIGFPE

Kill process9SIGKILL1

Illegal instruction4SIGILL

CTRL+C signal2SIGINT

Illegal storage access11SIGSEGV

Termination request15SIGTERM

1SIGKILL can be neither caught nor ignored.

The default action for all signals is to terminate the program with exit code.

ABORT does not assert the SIGABRT signal. The only way to assert SIGABRT or SIGTERM is to
use KILL.

SIGNAL can be used to catch SIGFPE exceptions, but it cannot be used to access the error code
that caused the SIGFPE. To do this, use SIGNALQQ instead.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3515

63

Example
USE IFPORT

EXTERNAL h_abort

INTEGER(4) iret1, iret2, procnum

iret1 = SIGNAL(SIGABRT, h_abort, -1)

WRITE(*,*) 'Set signal handler. Return = ', iret1

iret2 = KILL(procnum, SIGABRT)

WRITE(*,*) 'Raised signal. Return = ', iret2

END

!

! Signal handler routine

!

INTEGER(4) FUNCTION h_abort (sig_num)

INTEGER(4) sig_num

WRITE(*,*) 'In signal handler for SIG$ABORT'

WRITE(*,*) 'signum = ', sig_num

h_abort = 1

END

See Also
• S
• SIGNALQQ

SIGNALQQ
Portability Function: Registers the function to
be called if an interrupt signal occurs.

Module

USE IFPORT

3516

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = SIGNALQQ (sig,func)

(Input) INTEGER(2). Interrupt type. One of the following constants,
defined in IFPORT.F90:

sig

• SIG$ABORT - Abnormal termination

• SIG$FPE - Floating-point error

• SIG$ILL - Illegal instruction

• SIG$INT - CTRL+CSIGNAL

• SIG$SEGV - Illegal storage access

• SIG$TERM - Termination request

(Input) Function to be executed on interrupt. It must be declared
EXTERNAL.

func

Results

The result type is INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 and IA-64
architectures. The result is a positive integer if successful; otherwise, -1 (SIG$ERR).

SIGNALQQ installs the function func as the handler for a signal of the type specified by sig.
If you do not install a handler, the system by default terminates the program with exit code 3
when an interrupt signal occurs.

The argument func is the name of a function and must be declared with either the EXTERNAL
or IMPLICIT statements, or have an explicit interface. A function described in an INTERFACE
block is EXTERNAL by default, and does not need to be declared EXTERNAL.

NOTE. All signal-handler functions must be declared with the cDEC$ ATTRIBUTES C
option.

When an interrupt occurs, except a SIG$FPE interrupt, the sig argument SIG$INT is passed
to func, and then func is executed.

3517

63

When a SIG$FPE interrupt occurs, the function func is passed two arguments: SIG$FPE and
the floating-point error code (for example, FPE$ZERODIVIDE or FPE$OVERFLOW) which identifies
the type of floating-point exception that occurred. The floating-point error codes begin with
the prefix FPE$ and are defined in IFPORT.F90. Floating-point exceptions are described and
discussed in Building Applications: The Floating-Point Environment Overview.

If func returns, the calling process resumes execution immediately after the point at which it
received the interrupt signal. This is true regardless of the type of interrupt or operating mode.

Because signal-handler routines are normally called asynchronously when an interrupt occurs,
it is possible that your signal-handler function will get control when a run-time operation is
incomplete and in an unknown state. Therefore, do not call heap routines or any routine that
uses the heap routines (for example, I/O routines, ALLOCATE, and DEALLOCATE).

To test your signal handler routine you can generate interrupt signals by calling RAISEQQ,
which causes your program either to branch to the signal handlers set with SIGNALQQ, or to
perform the system default behavior if SIGNALQQ has set no signal handler.

The example below shows a signal handler for SIG$ABORT. A sample signal handler for SIG$FPE
is given in Building Applications: Handling Floating-Point Exceptions.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3518

63 Intel® Fortran Compiler User and Reference Guides

Example
! This program shows a signal handler for

! SIG$ABORT

USE IFPORT

INTERFACE

FUNCTION h_abort (signum)

!DEC$ ATTRIBUTES C :: h_abort

INTEGER(4) h_abort

INTEGER(2) signum

END FUNCTION

END INTERFACE

INTEGER(2) i2ret

INTEGER(4) i4ret

i4ret = SIGNALQQ(SIG$ABORT, h_abort)

WRITE(*,*) 'Set signal handler. Return = ', i4ret

i2ret = RAISEQQ(SIG$ABORT)

WRITE(*,*) 'Raised signal. Return = ', i2ret

END

!

! Signal handler routine

!

INTEGER(4) FUNCTION h_abort (signum)

!DEC$ ATTRIBUTES C :: h_abort

INTEGER(2) signum

WRITE(*,*) 'In signal handler for SIG$ABORT'

WRITE(*,*) 'signum = ', signum

h_abort = 1

END

3519

63

See Also
• S
• RAISEQQ
• SIGNAL
• KILL
• GETEXCEPTIONPTRSQQ

SINGLE
OpenMP* Fortran Compiler Directive: Specifies
that a block of code is to be executed by only one
thread in the team.

Syntax

c$OMP SINGLE [clause[[,] clause] ...]

block

c$OMP END SINGLE [modifier]

Is one of the following: C (or c), !, or * (see Syntax Rules for
Compiler Directives).

c

Is one of the following:clause

• FIRSTPRIVATE (list)
• PRIVATE (list)

Is a structured block (section) of statements or constructs. You
cannot branch into or out of the block.

block

Is one of the following:modifier

• COPYPRIVATE (list)

• NOWAIT

Threads in the team that are not executing this directive wait at the END SINGLE directive
unless NOWAIT is specified.

SINGLE directives must be encountered by all threads in a team or by none at all. It must also
be encountered in the same order by all threads in a team.

3520

63 Intel® Fortran Compiler User and Reference Guides

Example

In the following example, the first thread that encounters the SINGLE directive executes
subroutines OUTPUT and INPUT:

c$OMP PARALLEL DEFAULT(SHARED)

CALL WORK(X)

c$OMP BARRIER

c$OMP SINGLE

CALL OUTPUT(X)

CALL INPUT(Y)

c$OMP END SINGLE

CALL WORK(Y)

c$OMP END PARALLEL

You should not make assumptions as to which thread executes the SINGLE section. All other
threads skip the SINGLE section and stop at the barrier at the END SINGLE construct. If other
threads can proceed without waiting for the thread executing the SINGLE section, you can
specify NOWAIT in the END SINGLE directive.

See Also
• S
• OpenMP Fortran Compiler Directives

SIZE Function
Inquiry Intrinsic Function (Generic): Returns
the total number of elements in an array, or the
extent of an array along a specified dimension.

Syntax

result = SIZE (array [, dim] [, kind])

(Input) Must be an array. It may be of any data type. It must not
be a disassociated pointer or an allocatable array that is not
allocated. It can be an assumed-size array if dim is present with
a value less than the rank of array.

array

3521

63

(Input; optional) Must be a scalar integer with a value in the range
1 to n, where n is the rank of array.

dim

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result is a scalar of type integer. If kind is present, the kind parameter of the result is that
specified by kind; otherwise, the kind parameter of the result is that of default integer. If the
processor cannot represent the result value in the kind of the result, the result is undefined.

If dim is present, the result is the extent of dimension dim in array; otherwise, the result is
the total number of elements in array.

The setting of compiler options specifying integer size can affect this function.

Example

If B is declared as B(2:4, -3:1), then SIZE (B, DIM=2) has the value 5 and SIZE (B) has the
value 15.

The following shows another example:

REAL(8) array (3:10, -1:3)

INTEGER i

i = SIZE(array, DIM = 2) ! returns 5

i = SIZE(array) ! returns 40

See Also
• S
• SHAPE
• Character Count Specifier

SIZEOF
Inquiry Intrinsic Function (Generic): Returns
the number of bytes of storage used by the
argument. It cannot be passed as an actual
argument.

Syntax

result = SIZEOF (x)

3522

63 Intel® Fortran Compiler User and Reference Guides

(Input) Can be a scalar or array. It may be of any data type. It
must not be an assumed-size array.

x

Results

The result type is INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel® 64 architecture and
IA-64 architecture. The result value is the number of bytes of storage used by x.

Example
SIZEOF (3.44) ! has the value 4

SIZEOF ('SIZE') ! has the value 4

SLEEP
Portability Subroutine: Suspends the execution
of a process for a specified interval.

Module

USE IFPORT

Syntax

CALL SLEEP (time)

(Input) INTEGER(4). Length of time, in seconds, to suspend the
calling process.

time

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3523

63

Example
USE IFPORT

integer(4) hold_time

hold_time = 1 !lets the loop execute

DO WHILE (hold_time .NE. 0)

write(*,'(A)') "Enter the number of seconds to suspend"

read(*,*) hold_time

CALL SLEEP (hold_time)

END DO

END

See Also
• S
• SLEEPQQ

SLEEPQQ
Portability Subroutine: Delays execution of the
program for a specified duration.

Module

USE IFPORT

Syntax

CALL SLEEPQQ (duration)

(Input) INTEGER(4). Number of milliseconds the program is to
sleep (delay program execution).

duration

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3524

63 Intel® Fortran Compiler User and Reference Guides

Example
USE IFPORT

INTEGER(4) delay, freq, duration

delay = 2000

freq = 4000

duration = 1000

CALL SLEEPQQ(delay)

CALL BEEPQQ(freq, duration)

END

SNGL
See REAL function.

SORTQQ
Portability Subroutine: Sorts a one-dimensional
array. The array elements cannot be derived types
or record structures.

Module

USE IFPORT

Syntax

CALL SORTQQ (adrarray,count,size)

(Input) INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel®

64 architecture and IA-64 architecture. Address of the array
(returned by LOC).

adrarray

(Input; output) INTEGER(4) on IA-32 architecture; INTEGER(8)
on Intel® 64 architecture and IA-64 architecture. On input, number
of elements in the array to be sorted. On output, number of
elements actually sorted.

count

To be certain that SORTQQ is successful, compare the value
returned in count to the value you provided. If they are the same,
then SORTQQ sorted the correct number of elements.

3525

63

(Input) INTEGER(4). Positive constant less than 32,767 that
specifies the kind of array to be sorted. The following constants,
defined in IFPORT.F90, specify type and kind for numeric arrays:

size

Type of arrayConstant

INTEGER(1)SRT$INTEGER1

INTEGER(2) or equivalentSRT$INTEGER2

INTEGER(4) or equivalentSRT$INTEGER4

INTEGER(8) or equivalentSRT$INTEGER8

REAL(4) or equivalentSRT$REAL4

REAL(8) or equivalentSRT$REAL8

REAL(16) or equivalentSRT$REAL16

If the value provided in size is not a symbolic constant and is less than 32,767, the array is
assumed to be a character array with size characters per element.

CAUTION. The location of the array must be passed by address using the LOC function.
This defeats Fortran type-checking, so you must make certain that the count and size
arguments are correct.

If you pass invalid arguments, SORTQQ attempts to sort random parts of memory. If
the memory it attempts to sort is allocated to the current process, that memory is sorted;
otherwise, the operating system intervenes, the program is halted, and you get a General
Protection Violation message.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3526

63 Intel® Fortran Compiler User and Reference Guides

Example
! Sort a 1-D array

!

USE IFPORT

INTEGER(2) array(10)

INTEGER(2) i

DATA ARRAY /143, 99, 612, 61, 712, 9112, 6, 555, 2223, 67/

! Sort the array

Call SORTQQ (LOC(array), 10, SRT$INTEGER2)

! Display the sorted array

DO i = 1, 10

WRITE (*, 9000) i, array (i)

9000 FORMAT(1X, ' Array(',I2, '): ', I5)

END DO

END

See Also
• S
• BSEARCHQQ
• LOC

SPACING
Elemental Intrinsic Function (Generic):
Returns the absolute spacing of model numbers
near the argument value.

Syntax

result = SPACING (x)

(Input) Must be of type real.x

3527

63

Results

The result type is the same as x. The result has the value b e-p. Parameters b, e, and p are
defined in Model for Real Data. If the result value is outside of the real model range, the result
is TINY(x).

Example

If 3.0 is a REAL(4) value, SPACING (3.0) has the value 2 -22.

The following shows another example:

REAL(4) res4

REAL(8) res8, r2

res4 = SPACING(3.0) ! returns 2.384186E-07

res4 = SPACING(-3.0) ! returns 2.384186E-07

r2 = 487923.3

res8 = SPACING(r2) ! returns 5.820766091346741E-011

See Also
• S
• TINY
• RRSPACING
• Data Representation Models

SPLITPATHQQ
Portability Function: Breaks a file path or
directory path into its components.

Module

USE IFPORT

Syntax

result = SPLITPATHQQ (path,drive,dir,name,ext)

(Input) Character*(*). Path to be broken into components. Forward
slashes (/), backslashes (\), or both can be present in path.

path

(Output) Character*(*). Drive letter followed by a colon.drive

3528

63 Intel® Fortran Compiler User and Reference Guides

(Output) Character*(*). Path of directories, including the trailing
slash.

dir

(Output) Character*(*). Name of file or, if no file is specified in
path, name of the lowest directory. A file name must not include
an extension.

name

(Output) Character*(*). File name extension, if any, including the
leading period (.).

ext

Results

The result type is INTEGER(4). The result is the length of dir.

The path parameter can be a complete or partial file specification.

$MAXPATH is a symbolic constant defined in module IFPORT.F90 as 260.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

CHARACTER($MAXPATH) buf

CHARACTER(3) drive

CHARACTER(256) dir

CHARACTER(256) name

CHARACTER(256) ext

CHARACTER(256) file

INTEGER(4) length

buf = 'b:\fortran\test\runtime\tsplit.for'

length = SPLITPATHQQ(buf, drive, dir, name, ext)

WRITE(*,*) drive, dir, name, ext

file = 'partial.f90'

length = SPLITPATHQQ(file, drive, dir, name, ext)

WRITE(*,*) drive, dir, name, ext

END

3529

63

See Also
• S
• FULLPATHQQ

SPORT_CANCEL_IO (W*32, W*64)
Serial Port I/O Function: Cancels any I/O in
progress to the specified port.

Module

USE IFPORT

Syntax

result = SPORT_CANCEL_IO (port)

(Input) Integer. The port number.port

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error
value.

NOTE. This call also kills the thread that keeps an outstanding read operation to the
serial port. This call must be done before any of the port characteristics are modified.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) iresult

iresult = SPORT_CANCEL_IO(2)

END

See Also
• S

Communications and Communications Functions in the Microsoft* Platform SDK

3530

63 Intel® Fortran Compiler User and Reference Guides

Building Applications: Using the Serial I/O Port Routines

SPORT_CONNECT (W*32, W*64)
Serial Port I/O Function: Establishes the
connection to a serial port and defines certain
usage parameters.

Module

USE IFPORT

Syntax

result = SPORT_CONNECT (port [,options])

(Input) Integer. The port number of connection. The routine will
open COM n, where n is the port number specified.

port

(Input; optional) Integer. Defines the connection options. These
options define how the nnn_LINE routines will work and also effect
the data that is passed to the user. If more than one option is
specified, the operator .OR. should be used between each option.
Options are as follows:

options

DescriptionOption

Removes carriage return (CR)
characters on input.

DL_TOSS_CR

Removes linefeed (LF)
characters on input.

DL_TOSS_LF

Causes SPORT_WRITE_LINE
to add a CR to each record
written.

DL_OUT_CR

Causes SPORT_WRITE_LINE
to add a LF to each record
written.

DL_OUT_LF

Causes SPORT_READ_LINE to
terminate READ when a CR is
encountered.

DL_TERM_CR

3531

63

DescriptionOption

Causes SPORT_READ_LINE to
terminate READ when a LF is
encountered.

DL_TERM_LF

Causes SPORT_READ_LINE to
terminate READ when CR+LF
is encountered.

DL_TERM_CRLF

If options is not specified, the following occurs by default:

(DL_OUT_CR .OR. DL_TERM_CR .OR. DL_TOSS_CR .OR. DL_TOSS_LF)

This specifies to remove carriage returns and linefeeds on input, to follow output lines with a
carriage return, and to return input lines when a carriage return is encountered.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error
value.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) iresult

iresult = SPORT_CONNECT(2)

END

See Also
• S
• SPORT_RELEASE, Communications and Communications Functions in the Microsoft*

Platform SDK

Building Applications: Using the Serial I/O Port Routines

3532

63 Intel® Fortran Compiler User and Reference Guides

SPORT_CONNECT_EX (W*32, W*64)
Serial Port I/O Function: Establishes the
connection to a serial port, defines certain usage
parameters, and defines the size of the internal
buffer for data reception.

Module

USE IFPORT

Syntax

result = SPORT_CONNECT_EX (port [,options] [,BufferSize])

(Input) Integer. The port number of connection. The routine will
open COM n, where n is the port number specified.

port

(Input; optional) Integer. Defines the connection options. These
options define how the nnn_LINE routines will work and also effect
the data that is passed to the user. If more than one option is
specified, the operator .OR. should be used between each option.
Options are as follows:

options

DescriptionOption

Removes carriage return (CR)
characters on input.

DL_TOSS_CR

Removes linefeed (LF)
characters on input.

DL_TOSS_LF

Causes SPORT_WRITE_LINE
to add a CR to each record
written.

DL_OUT_CR

Causes SPORT_WRITE_LINE
to add a LF to each record
written.

DL_OUT_LF

Causes SPORT_READ_LINE to
terminate READ when a CR is
encountered.

DL_TERM_CR

3533

63

DescriptionOption

Causes SPORT_READ_LINE to
terminate READ when a LF is
encountered.

DL_TERM_LF

Causes SPORT_READ_LINE to
terminate READ when CR+LF
is encountered.

DL_TERM_CRLF

If options is not specified, the following occurs by default:

(DL_OUT_CR .OR. DL_TERM_CR .OR. DL_TOSS_CR .OR. DL_TOSS_LF)

This specifies to remove carriage returns and linefeeds on input,
to follow output lines with a carriage return, and to return input
lines when a carriage return is encountered.

(Input; optional) Integer. Size of the internal buffer for data
reception. If BufferSize is not specified, the size of the buffer is
16384 bytes (the default).

BufferSize

The size of the buffer must be 4096 bytes or larger. If you try to specify a size smaller than
4096 bytes, your specification will be ignored and the buffer size will be set to 4096 bytes.

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error
value.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) iresult

iresult = SPORT_CONNECT_EX(2, BufferSize = 8196)

END

See Also
• S

3534

63 Intel® Fortran Compiler User and Reference Guides

• SPORT_CONNECT
• SPORT_RELEASE

Communications and Communications Functions in the Microsoft* Platform SDK

Building Applications: Using the Serial I/O Port Routines

SPORT_GET_HANDLE (W*32, W*64)
Serial Port I/O Function: Returns the Windows*
handle associated with the communications port.
This is the handle that was returned by the
Windows API CreateFile.

Module

USE IFPORT

Syntax

result = SPORT_GET_HANDLE (port,handle)

(Input) Integer. The port number.port

(Output) INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel®

64 architecture and IA-64 architecture. This is the Windows handle
that was returned from CreatFile() on the serial port.

handle

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows error
value.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) iresult

INTEGER(KIND=INT_PTR_KIND()) handle

iresult = SPORT_GET_HANDLE(2, handle)

END

3535

63

See Also
• S

Communications and Communications Functions in the Microsoft* Platform SDK

Building Applications: Using the Serial I/O Port Routines

SPORT_GET_STATE (W*32, W*64)
Serial Port I/O Function: Returns the baud rate,
parity, data bits setting, and stop bits setting of
the communications port.

Module

USE IFPORT

Syntax

result = SPORT_GET_STATE (port [,baud] [,parity] [,dbits] [,sbits])

(Input) Integer. The port number.port

(Output; optional) Integer. The baud rate of the port.baud

(Output; optional) Integer. The parity setting of the port (0-4 =
no, odd, even, mark, space).

parity

(Output; optional) Integer. The data bits for the port.dbits

(Output; optional) Integer. The stop bits for the port (0, 1, 2 = 1,
1.5, 2).

sbits

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error
value.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3536

63 Intel® Fortran Compiler User and Reference Guides

Example
USE IFPORT

INTEGER(4) iresult

INTEGER baud

INTEGER parity

INTEGER dbits

INTEGER sbits

iresult = SPORT_GET_STATE(2, baud, parity, dbits, sbits)

END

See Also
• S
• SPORT_SET_STATE

Communications and Communications Functions in the Microsoft* Platform SDK

Building Applications: Using the Serial I/O Port Routines

SPORT_GET_STATE_EX (W*32, W*64)
Serial Port I/O Function: Returns the baud rate,
parity, data bits setting, stop bits, and other
settings of the communications port.

Module

USE IFPORT

Syntax

result = SPORT_GET_STATE_EX (port[,baud] [,parity] [,dbits] [,sbits] [,Binmode]
[,DTRcntrl]

[,RTScntrl] [,OutCTSFlow] [,OutDSRFlow] [,DSRSense] [,OutXonOff] [,InXonOff]
[,XonLim]

[,XoffLim] [,TXContOnXoff] [,ErrAbort] [,ErrCharEnbl] [,NullStrip]
[,XonChar] [,XoffChar]

[,ErrChar] [,EofChar] [,EvtChar])

3537

63

(Input) Integer. The port number.port

(Input; optional) Integer. The baud rate of the port.baud

(Output; optional) Integer. The parity setting of the port (0-4 =
no, odd, even, mark, space).

parity

(Output; optional) Integer. The data bits for the port.dbits

(Output; optional) Integer. The stop bits for the port (0, 1, 2 = 1,
1.5, 2).

sbits

(Output; optional) Integer. 1 if binary mode is enabled; otherwise,
0. Currently, the value of this parameter is always 1.

Binmode

(Output; optional) Integer. 1 if DTR (data-terminal-ready) flow
control is used; otherwise, 0.

DTRcntrl

(Output; optional) Integer. 1 if RTS (request-to-send) flow control
is used; otherwise, 0.

RTScntrl

(Output; optional) Integer. 1 if the CTS (clear-to-send) signal is
monitored for output flow control; otherwise, 0.

OutCTSFlow

(Output; optional) Integer. 1 if the DSR (data-set-ready) signal is
monitored for output flow control; otherwise, 0.

OutDSRFlow

(Output; optional) Integer. 1 if the communications driver is
sensitive to the state of the DSR signal; otherwise, 0.

DSRSense

(Output; optional) Integer. 1 if XON/XOFF flow control is used
during transmission; otherwise, 0.

OutXonOff

(Output; optional) Integer. 1 if XON/XOFF flow control is used
during reception; otherwise, 0.

InXonOff

(Output; optional) Integer. The minimum number of bytes accepted
in the input buffer before the XON character is set.

XonLim

(Output; optional) Integer. The maximum number of bytes
accepted in the input buffer before the XOFF character is set.

XoffLim

(Output; optional) Integer. 1 if transmission stops when the input
buffer is full and the driver has transmitted the XoffChar character;
otherwise, 0.

TXContOnXoff

(Output; optional) Integer. 1 if read and write operations are
terminated when an error occurs; otherwise, 0.

ErrAbort

(Output; optional) Integer. 1 if bytes received with parity errors
are replaced with the ErrChar character; otherwise, 0.

ErrCharEnbl

3538

63 Intel® Fortran Compiler User and Reference Guides

(Output; optional) Integer. 1 if null bytes are discarded; otherwise,
0.

NullStrip

(Output; optional) Character. The value of the XON character that
is used for both transmission and reception.

XonChar

(Output; optional) Character. The value of the XOFF character that
is used for both transmission and reception.

XoffChar

(Output; optional) Character. The value of the character that is
used to replace bytes received with parity errors.

ErrChar

(Output; optional) Character. The value of the character that is
used to signal the end of data.

EofChar

Output; optional) Character. The value of the character that is
used to signal an event.

EvtChar

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error
value.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3539

63

Example
USE IFPORT

INTEGER(4) iresult

INTEGER(4) port, baud, parity, dbits, sbits

INTEGER(4) OutXonOff, InXonOff, OutDSRFlow

INTEGER(4) OutCTSFlow, DTRcntrl, RTScntrl

INTEGER(4) DSRSense, XonLim, XoffLim

CHARACTER(1) XonChar, XoffChar

iresult = SPORT_GET_STATE_EX(port, baud, parity, dbits, sbits, &

OutXonOff=OutXonOff, InXonOff=InXonOff, OutDSRFlow=OutDSRFlow, &

OutCTSFlow=OutCTSFlow, DTRcntrl=DTRcntrl, RTScntrl=RTScntrl, &

DSRSense = DSRSense, XonChar = XonChar, XoffChar = XoffChar, &

XonLim=XonLim, XoffLim=XoffLim)

END

See Also
• S
• SPORT_GET_STATE
• SPORT_SET_STATE_EX

Communications, Communications Functions, and SetCommState in the Microsoft* Platform
SDK

Building Applications: Using the Serial I/O Port Routines

SPORT_GET_TIMEOUTS (W*32, W*64)
Serial Port I/O Function: Returns the user
selectable timeouts for the serial port.

Module

USE IFPORT

Syntax

result = SPORT_GET_TIMEOUTS (port [,rx_int] [,tx_tot_mult] [,tx_tot_const])

3540

63 Intel® Fortran Compiler User and Reference Guides

(Input) Integer. The port number.port

(Output; optional) INTEGER(4). The receive interval timeout value.rx_int

(Output; optional) INTEGER(4). The transmit multiplier part of the
timeout value.

tx_tot_mult

(Output; optional) INTEGER(4). The transmit constant part of the
timeout value.

tx_tot_const

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error
value.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) iresult

INTEGER*4 rx_int

INTEGER*4 tx_tot_mult

INTEGER*4 tx_tot_const

iresult = SPORT_GET_TIMEOUTS(2, rx_int, tx_tot_mult, tx_tot_const)

END

See Also
• S
• SPORT_SET_TIMEOUTS

Communications and Communications Functions in the Microsoft* Platform SDK

Building Applications: Using the Serial I/O Port Routines

3541

63

SPORT_PEEK_DATA (W*32, W*64)
Serial Port I/O Function: Returns information
about the availability of input data.

Module

USE IFPORT

Syntax

result = SPORT_PEEK_DATA (port [,present] [,count])

(Input) Integer. The port number.port

(Output; optional) Integer. 1 if data is present, 0 if no data has
been read.

present

(Output; optional) Integer. The count of characters that will be
returned by SPORT_READ_DATA.

count

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error
value.

NOTE. CR and LF characters may not be returned depending on the mode specified in
the SPORT_CONNECT() call.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) iresult

INTEGER present

INTEGER count

iresult = SPORT_PEEK_DATA(2, present, count)

END

3542

63 Intel® Fortran Compiler User and Reference Guides

See Also
• S
• SPORT_CONNECT
• SPORT_READ_DATA
• SPORT_PEEK_LINE

Communications and Communications Functions in the Microsoft* Platform SDK

Building Applications: Using the Serial I/O Port Routines

SPORT_PEEK_LINE (W*32, W*64)
Serial Port I/O Function: Returns information
about the availability of input records.

Module

USE IFPORT

Syntax

result = SPORT_PEEK_LINE (port [,present] [,count])

(Input) Integer. The port number.port

(Output; optional) Integer. 1 if data is present, 0 if no data has
been read.

present

(Output; optional) Integer. The count of characters that will be
returned by SPORT_READ_DATA.

count

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error
value.

This routine will only return when a line terminator has been seen - as defined by the mode
specified in the SPORT_CONNECT() call.

NOTE. CR and LF characters may not be returned depending on the mode specified in
the SPORT_CONNECT() call.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3543

63

Example
USE IFPORT

INTEGER(4) iresult

INTEGER present

INTEGER count

iresult = SPORT_PEEK_LINE(2, present, count)

END

See Also
• S
• SPORT_CONNECT
• SPORT_READ_DATA
• SPORT_PEEK_DATA

Communications and Communications Functions in the Microsoft* Platform SDK

Building Applications: Using the Serial I/O Port Routines

SPORT_PURGE (W*32, W*64)
Serial Port I/O Function: Executes the Windows*
API communications function PurgeComm on the
specified port.

Module

USE IFPORT

Syntax

result = SPORT_PURGE (port,function)

(Input) Integer. The port number.port

(Input) INTEGER(4). The function for PurgeComm (see the
Windows documentation).

function

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows error
value.

3544

63 Intel® Fortran Compiler User and Reference Guides

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFWINTY

USE IFPORT

INTEGER(4) iresult

iresult = SPORT_PURGE(2, (PURGE_TXABORT .or. PURGE_RXABORT))

END

See Also
• S

Communications and Communications Functions in the Microsoft* Platform SDK

Building Applications: Using the Serial I/O Port Routines

SPORT_READ_DATA (W*32, W*64)
Serial Port I/O Function: Reads available data
from the specified port. This routine stalls until at
least one character has been read.

Module

USE IFPORT

Syntax

result = SPORT_READ_DATA (port,buffer[,count])

(Input) Integer. The port number.port

(Output) Character*(*). The data that was read.buffer

(Output; optional) Integer. The count of bytes read.count

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error
value.

3545

63

NOTE. CR and LF characters may not be returned depending on the mode specified in
the SPORT_CONNECT() call.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) iresult

INTEGER count

CHARACTER*1024 rbuff

iresult = SPORT_READ_DATA(2, rbuff, count)

END

See Also
• S
• SPORT_CONNECT
• SPORT_PEEK_DATA
• SPORT_READ_LINE
• SPORT_WRITE_DATA

Communications and Communications Functions in the Microsoft* Platform SDK

Building Applications: Using the Serial I/O Port Routines

SPORT_READ_LINE (W*32, W*64)
Serial Port I/O Function: Reads a record from
the specified port. This routine stalls until at least
one record has been read.

Module

USE IFPORT

Syntax

result = SPORT_READ_LINE (port,buffer[, count])

3546

63 Intel® Fortran Compiler User and Reference Guides

(Input) Integer. The port number.port

(Output) Character*(*). The data that was read.buffer

(Output; optional) Integer. The count of bytes read.count

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error
value.

This routine will only return when a line terminator has been seen - as defined by the mode
specified in the SPORT_CONNECT() call.

NOTE. CR and LF characters may not be returned depending on the mode specified in
the SPORT_CONNECT() call.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) iresult

INTEGER count

CHARACTER*1024 rbuff

iresult = SPORT_READ_LINE(2, rbuff, count)

END

See Also
• S
• SPORT_CONNECT
• SPORT_PEEK_LINE
• SPORT_READ_DATA
• SPORT_WRITE_LINE

Building Applications: Using the Serial I/O Port Routines

Communications and Communications Functions in the Microsoft* Platform SDK

3547

63

SPORT_RELEASE (W*32, W*64)
Serial Port I/O Function: Releases a serial port
that was previously connected to (by using
SPORT_CONNECT).

Module

USE IFPORT

Syntax

result = SPORT_RELEASE (port)

(Input) Integer. The port number.port

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error
value.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) iresult

iresult = SPORT_RELEASE(2)

END

See Also
• S
• SPORT_CONNECT

Communications and Communications Functions in the Microsoft* Platform SDK

Building Applications: Using the Serial I/O Port Routines

3548

63 Intel® Fortran Compiler User and Reference Guides

SPORT_SET_STATE (W*32, W*64)
Serial Port I/O Function: Sets the baud rate,
parity, data bits setting, and stop bits setting of
the communications port.

Module

USE IFPORT

Syntax

result = SPORT_SET_STATE (port [,baud] [,parity] [,dbits] [,sbits])

(Input) Integer. The port number.port

(Input; optional) Integer. The baud rate of the port.baud

(Input; optional) Integer. The parity setting of the port (0-4 = no,
odd, even, mark, space).

parity

(Input; optional) Integer. The data bits for the port.dbits

(Input; optional) Integer. The stop bits for the port (0, 1, 2 = 1,
1.5, 2).

sbits

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error
value.

The following restrictions apply:

• The number of data bits must be 5 to 8 bits.

• The use of 5 data bits with 2 stop bits is an invalid combination, as is 6, 7, or 8 data bits
with 1.5 stop bits.

NOTE. This routine must not be used when any I/O is pending. Since a read operation
is always pending after any I/O has been started, you must first call SPORT_CANCEL_IO
before port parameters can be changed.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3549

63

Example
USE IFPORT

INTEGER(4) iresult

iresult = SPORT_SET_STATE(2, 9600, 0, 7, 1)

END

See Also
• S
• SPORT_CANCEL_IO
• SPORT_GET_STATE

Building Applications: Using the Serial I/O Port Routines

Communications, Communications Functions, and SetCommState in the Microsoft* Platform
SDK

SPORT_SET_STATE_EX (W*32, W*64)
Serial Port I/O Function: Sets the baud rate,
parity, data bits setting, stop bits, and other
settings of the communications port.

Module

USE IFPORT

Syntax

result = SPORT_SET_STATE_EX (port [,baud] [,parity] [,dbits] [,sbits]
[,Binmode] [,DTRcntrl]

[,RTScntrl] [,OutCTSFlow] [,OutDSRFlow] [,DSRSense] [,OutXonOff] [,InXonOff]
[,XonLim]

[,XoffLim] [,TXContOnXoff] [,ErrAbort] [,ErrCharEnbl] [,NullStrip]
[,XonChar] [,XoffChar]

[,ErrChar] [,EofChar] [,EvtChar] [,fZeroDCB])

(Input) Integer. The port number.port

(Input; optional) Integer. The baud rate of the port.baud

3550

63 Intel® Fortran Compiler User and Reference Guides

(Input; optional) Integer. The parity setting of the port (0-4 = no,
odd, even, mark, space).

parity

(Input; optional) Integer. The data bits for the port.dbits

(Input; optional) Integer. The stop bits for the port (0, 1, 2 = 1,
1.5, 2).

sbits

(Input; optional) Integer. 1 if binary mode should be enabled;
otherwise, 0. Currently, if this parameter is used, the value must
be 1.

Binmode

(Input; optional) Integer. 1 if DTR (data-terminal-ready) flow
control should be used; otherwise, 0.

DTRcntrl

(Input; optional) Integer. 1 if RTS (request-to-send) flow control
should be used; otherwise, 0.

RTScntrl

(Input; optional) Integer. 1 if the CTS (clear-to-send) signal should
be monitored for output flow control; otherwise, 0.

OutCTSFlow

(Input; optional) Integer. 1 if the DSR (data-set-ready) signal
should be monitored for output flow control; otherwise, 0.

OutDSRFlow

(Input; optional) Integer. 1 if the communications driver should
be sensitive to the state of the DSR signal; otherwise, 0.

DSRSense

(Input; optional) Integer. 1 if XON/XOFF flow control should be
used during transmission; otherwise, 0.

OutXonOff

(Input; optional) Integer. 1 if XON/XOFF flow control should be
used during reception; otherwise, 0.

InXonOff

(Input; optional) Integer. The minimum number of bytes that
should be accepted in the input buffer before the XON character
is set.

XonLim

(Input; optional) Integer. The maximum number of bytes that
should be accepted in the input buffer before the XOFF character
is set.

XoffLim

(Input; optional) Integer. 1 if transmission should be stopped when
the input buffer is full and the driver has transmitted the XoffChar
character; otherwise, 0.

TXContOnXoff

(Input; optional) Integer. 1 if read and write operations should be
terminated when an error occurs; otherwise, 0.

ErrAbort

(Input; optional) Integer. 1 if bytes received with parity errors
should be replaced with the ErrChar character; otherwise, 0.

ErrCharEnbl

3551

63

(Input; optional) Integer. 1 if null bytes should be discarded;
otherwise, 0.

NullStrip

(Input; optional) Character. The value of the XON character that
should be used for both transmission and reception.

XonChar

(Input; optional) Character. The value of the XOFF character that
should be used for both transmission and reception.

XoffChar

(Input; optional) Character. The value of the character that should
be used to replace bytes received with parity errors.

ErrChar

(Input; optional) Character. The value of the character that should
be used to signal the end of data.

EofChar

(Input; optional) Character. The value of the character that should
be used to signal an event.

EvtChar

(Input; optional) Integer. 1 if all settings of the communications
port should be set to zero before parameters are set; otherwise,
0.

fZeroDCB

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error
value.

The following restrictions apply:

• The number of data bits must be 5 to 8 bits.

• The use of 5 data bits with 2 stop bits is an invalid combination, as is 6, 7, or 8 data bits
with 1.5 stop bits.

NOTE. This routine must not be used when any I/O is pending. Since a read operation
is always pending after any I/O has been started, you must first call SPORT_CANCEL_IO
before port parameters can be changed.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3552

63 Intel® Fortran Compiler User and Reference Guides

Example
USE IFPORT

INTEGER(4) iresult

iresult = SPORT_SET_STATE_EX(2, 9600, 0, 7, 1, OutXonOff=1, InXonOff=1, &

XonLim=1024, XoffLim=512, XonChar=CHAR(17), XoffChar=CHAR(19), &

fZeroDCB=1))

END

See Also
• S
• SPORT_CANCEL_IO
• SPORT_GET_STATE
• SPORT_SET_STATE

Communications, Communications Functions, and SetCommState in the Microsoft* Platform
SDK

Building Applications: Using the Serial I/O Port Routines

SPORT_SET_TIMEOUTS (W*32, W*64)
Serial Port I/O Function: Sets the user
selectable timeouts for the serial port.

Module

USE IFPORT

Syntax

result = SPORT_SET_TIMEOUTS (port [,rx_int] [,tx_tot_mult] [,tx_tot_const])

(Input) Integer. The port number.port

(Input; optional) INTEGER(4). The receive interval timeout value.rx_int

(Input; optional) INTEGER(4). The transmit multiplier part of the
timeout value.

tx_tot_mult

(Input; optional) INTEGER(4). The transmit constant part of the
timeout value.

tx_tot_const

3553

63

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error
value.

NOTE. This routine must not be used when any I/O is pending. Since a read operation
is always pending after any I/O has been started, you must first call SPORT_CANCEL_IO
before port parameters can be changed.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) iresult

iresult = SPORT_SET_TIMEOUTS(2, 100, 0, 1000)

END

See Also
• S
• SPORT_CANCEL_IO
• SPORT_GET_TIMEOUTS

Communications and Communications Functions in the Microsoft* Platform SDK

Building Applications: Using the Serial I/O Port Routines

SPORT_SHOW_STATE (W*32, W*64)
Serial Port I/O Function: Displays the state of
a port to standard output.

Module

USE IFPORT

Syntax

result = SPORT_SHOW_STATE (port,level)

3554

63 Intel® Fortran Compiler User and Reference Guides

(Input) Integer. The port number.port

(Input) Integer. Controls the level of detail displayed as follows:level

Basic one line display0

Basic information1

Add modem signal control flow
information

2

Add XON/XOFF information3

Add event character
information

4

Add timeout information11

Add debug information901

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error
value.

NOTE. This routine must not be used when any I/O is pending. Since a read operation
is always pending after any I/O has been started, you must first call SPORT_CANCEL_IO
before port parameters can be changed.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) iresult

iresult = SPORT_SHOW_STATE(2, 0)

END

3555

63

See Also
• S
• SPORT_CANCEL_IO

Communications and Communications Functions in the Microsoft* Platform SDK

Building Applications: Using the Serial I/O Port Routines

SPORT_SPECIAL_FUNC (W*32, W*64)
Serial Port I/O Function: Executes the Windows*
API communications function EscapeCommFunction
on the specified port.

Module

USE IFPORT

Syntax

result = SPORT_SPECIAL_FUNC (port,function)

(Input) Integer. The port number.port

(Input) INTEGER(4). The function to perform.function

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, the result is a
Windows* error value.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) iresult

iresult = SPORT_SPECIAL_FUNC(2, ?)

END

See Also
• S

3556

63 Intel® Fortran Compiler User and Reference Guides

Communications and Communications Functions in the Microsoft* Platform SDK

Building Applications: Using the Serial I/O Port Routines

SPORT_WRITE_DATA (W*32, W*64)
Serial Port I/O Function: Outputs data to the
specified port.

Module

USE IFPORT

Syntax

result = SPORT_WRITE_DATA (port,data[,count])

(Input) Integer. The port number.port

(Input) Character*(*). The data to be output.data

(Input; optional) Integer. The count of bytes to write. If the value
is zero, this number is computed by scanning the data backwards
looking for a non-blank character.

count

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error
value.

NOTE. When hardware (DTR, RTS, etc.) or software (XON/XOFF) flow controls are used,
the functions SPORT_WRITE_DATA and SPORT_WRITE_LINE can write less bytes than
required. When this occurs, the functions return the code ERROR_IO_INCOMPLETE, and
the return value of parameter count contains the number of bytes that were really
written.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3557

63

Example
USE IFPORT

INTEGER(4) iresult

iresult = SPORT_WRITE_DATA(2, 'ATZ'//CHAR(13), 0)

END

See Also
• S
• SPORT_WRITE_LINE
• SPORT_READ_DATA

Communications and Communications Functions in the Microsoft* Platform SDK

Building Applications: Using the Serial I/O Port Routines

SPORT_WRITE_LINE (W*32, W*64)
Serial Port I/O Function: Outputs data, followed
by a record terminator, to the specified port.

Module

USE IFPORT

Syntax

result = SPORT_WRITE_LINE (port,data[,count])

(Input) Integer. The port number.port

(Input) Character*(*). The data to be output.data

(Input; optional) Integer. The count of bytes to write. If the value
is zero, this number is computed by scanning the data backwards
looking for a non-blank character.

count

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, a Windows* error
value.

After the data is output, a line terminator character is added based on the mode used during
the SPORT_CONNECT() call.

3558

63 Intel® Fortran Compiler User and Reference Guides

NOTE. When hardware (DTR, RTS, etc.) or software (XON/XOFF) flow controls are used,
the functions SPORT_WRITE_DATA and SPORT_WRITE_LINE can write less bytes than
required. When this occurs, the functions return the code ERROR_IO_INCOMPLETE, and
the return value of parameter count contains the number of bytes that were really
written.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) iresult

iresult = SPORT_WRITE_LINE(2, 'ATZ', 0)

END

See Also
• S
• SPORT_CONNECT
• SPORT_WRITE_DATA
• SPORT_READ_DATA

Communications and Communications Functions in the Microsoft* Platform SDK

Building Applications: Using the Serial I/O Port Routines

SPREAD
Transformational Intrinsic Function (Generic):
Creates a replicated array with an added dimension
by making copies of existing elements along a
specified dimension.

Syntax

result = SPREAD (source,dim,ncopies)

(Input) Must be a scalar or array. It may be of any data type. The
rank must be less than 7.

source

3559

63

(Input) Must be scalar and of type integer. It must have a value
in the range 1 to n + 1 (inclusive), where n is the rank of source.

dim

Must be scalar and of type integer. It becomes the extent of the
additional dimension in the result.

ncopies

Results

The result is an array of the same type as source and of rank that is one greater than source.

If source is an array, each array element in dimension dim of the result is equal to the
corresponding array element in source.

If source is a scalar, the result is a rank-one array with ncopies elements, each with the value
source.

If ncopies less than or equal to zero, the result is an array of size zero.

Example

SPREAD ("B", 1, 4) is the character array (/"B", "B", "B", "B"/).

B is the array (3, 4, 5) and NC has the value 4.

SPREAD (B, DIM=1, NCOPIES=NC) produces the array

[3 4 5]

[3 4 5]

[3 4 5]

[3 4 5].

SPREAD (B, DIM=2, NCOPIES=NC) produces the array

[3 3 3 3]

[4 4 4 4]

[5 5 5 5].

3560

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

INTEGER AR1(2, 3), AR2(3, 2)

AR1 = SPREAD((/1,2,3/),DIM= 1,NCOPIES= 2) ! returns

! 1 2 3

! 1 2 3

AR2 = SPREAD((/1,2,3/), 2, 2) ! returns 1 1

! 2 2

! 3 3

See Also
• S
• PACK
• RESHAPE

SQRT
Elemental Intrinsic Function (Generic):
Produces the square root of its argument.

Syntax

result = SQRT (x)

(Input) must be of type real or complex. If x is type real, its value
must be greater than or equal to zero.

x

Results

The result type is the same as x. The result has a value equal to the square root of x. A result
of type complex is the principal value, with the real part greater than or equal to zero. When
the real part of the result is zero, the imaginary part of the result has the same sign as the
imaginary part of x , even if the imaginary part of x is a negative real zero.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)SQRT

REAL(8)REAL(8)DSQRT

REAL(16)REAL(16)QSQRT

3561

63

Result TypeArgument TypeSpecific Name

COMPLEX(4)COMPLEX(4)CSQRT 1

COMPLEX(8)COMPLEX(8)CDSQRT2

COMPLEX(16)COMPLEX(16)CQSQRT

1The setting of compiler options specifying real size can affect CSQRT.
2This function can also be specified as ZSQRT.

Example

SQRT (16.0) has the value 4.0.

SQRT (3.0) has the value 1.732051.

The following shows another example:

! Calculate the hypotenuse of a right triangle

! from the lengths of the other two sides.

REAL sidea, sideb, hyp

sidea = 3.0

sideb = 4.0

hyp = SQRT (sidea**2 + sideb**2)

WRITE (*, 100) hyp

100 FORMAT (/ ' The hypotenuse is ', F10.3)

END

SRAND
Portability Subroutine: Seeds the random
number generator used with IRAND and RAND.

Module

USE IFPORT

3562

63 Intel® Fortran Compiler User and Reference Guides

Syntax

CALL SRAND (iseed)

(Input) INTEGER(4). Any value. The default value is 1.iseed

SRAND seeds the random number generator used with IRAND and RAND. Calling SRAND is
equivalent to calling IRAND or RAND with a new seed.

The same value for iseed generates the same sequence of random numbers. To vary the
sequence, call SRAND with a different iseed value each time the program is executed.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
! How many random numbers out of 100 will be between .5 and .6?

USE IFPORT

ICOUNT = 0

CALL SRAND(123)

DO I = 1, 100

X = RAND(0)

IF ((X>.5).AND.(x<.6)) ICOUNT = ICOUNT + 1

END DO

WRITE(*,*) ICOUNT, "numbers between .5 and .6!"

END

See Also
• S
• RAND
• IRAND
• RANDOM_NUMBER
• RANDOM_SEED

3563

63

SSWRQQ
Portability Subroutine: Returns the floating-point
processor status word.

Module

USE IFPORT

Syntax

CALL SSWRQQ (status)

(Output) INTEGER(2). Floating-point processor status word.status

SSWRQQ performs the same function as the run-time subroutine GETSTATUSFPQQ and is
provided for compatibility.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(2) status

CALL SSWRQQ (status)

See Also
• S
• LCWRQQ
• GETSTATUSFPQQ

STAT
Portability Function: Returns detailed information
about a file.

Module

USE IFPORT

3564

63 Intel® Fortran Compiler User and Reference Guides

Syntax

result = STAT (name,statb)

(Input) Character*(*). Name of the file to examine.name

(Output) INTEGER(4) or INTEGER(8). One-dimensional array of
size 12; where the system information is stored. The elements of
statb contain the following values:

statb

Values or NotesDescriptionElement

W*32, W*64:
Always 0

Device the file
resides on

statb(1)

L*X, M*X: System
dependent

W*32, W*64:
Always 0

File inode numberstatb(2)

L*X, M*X: System
dependent

See the table in
Results

Access mode of the
file

statb(3)

W*32, W*64:
Always 1

Number of hard
links to the file

statb(4)

L*X, M*X: System
dependent

W*32, W*64:
Always 1

User ID of ownerstatb(5)

L*X, M*X: System
dependent

W*32, W*64:
Always 1

Group ID of ownerstatb(6)

L*X, M*X: System
dependent

3565

63

Values or NotesDescriptionElement

W*32, W*64:
Always 0

Raw device the file
resides on

statb(7)

L*X, M*X: System
dependent

Size of the filestatb(8)

W*32, W*64: Only
available on
non-FAT file
systems; undefined
on FAT systems

Time when the file
was last accessed1

statb(9)

L*X, M*X: System
dependent

Time when the file
was last modified1

statb(10)

W*32, W*64:
Same as stat(10)

Time of last file
status change1

statb(11)

L*X, M*X: System
dependent

W*32, W*64:
Always 1

Blocksize for file
system I/O
operations

statb(12)

L*X, M*X: System
dependent

1Times are in the same format returned by the TIME function
(number of seconds since 00:00:00 Greenwich mean time,
January 1, 1970).

Results

The result type is INTEGER(4).

3566

63 Intel® Fortran Compiler User and Reference Guides

On Windows* systems, the result is zero if the inquiry was successful; otherwise, the error
code ENOENT (the specified file could not be found). On Linux* and Mac OS* X systems, the
file inquired about must be currently connected to a logical unit and must already exist when
STAT is called; if STAT fails, errnois set.

For a list of other error codes, see IERRNO.

The access mode (the third element of statb) is a bitmap consisting of an IOR of the following
constants:

NotesDescriptionConstantSymbolic name

Type of fileO'0170000'S_IFMT

DirectoryO'0040000'S_IFDIR

Never set on
Windows systems

Character specialO'0020000'S_IFCHR

Never set on
Windows systems

Block specialO'0060000'S_IFBLK

RegularO'0100000'S_IFREG

Never set on
Windows systems

Symbolic linkO'0120000'S_IFLNK

Never set on
Windows systems

SocketO'0140000'S_IFSOCK

Never set on
Windows systems

Set user ID on
execution

O'0004000'S_ISUID

Never set on
Windows systems

Set group ID on
execution

O'0002000'S_ISGID

Never set on
Windows systems

Save swapped textO'0001000'S_ISVTX

Owner's file
permissions

O'0000700'S_IRWXU

3567

63

NotesDescriptionConstantSymbolic name

Always true on
Windows systems

Owner's read
permission

O'0000400'S_IRUSR, S_IREAD

Owner's write
permission

O'0000200'S_IWUSR, S_IWRITE

Based on file
extension (.EXE,
.COM, .CMD, or .BAT)

Owner's execute
permission

O'0000100'S_IXUSR, S_IEXEC

Same as S_IRWXU
on Windows systems

Group's file
permissions

O'0000070'S_IRWXG

Same as S_IRUSR on
Windows systems

Group's read
permission

O'0000040'S_IRGRP

Same as S_IWUSR
on Windows systems

Group's write
permission

O'0000020'S_IWGRP

Same as S_IXUSR on
Windows systems

Group's execute
permission

O'0000010'S_IXGRP

Same as S_IRWXU
on Windows systems

Other's file
permissions

O'0000007'S_IRWXO

Same as S_IRUSR on
Windows systems

Other's read
permission

O'0000004'S_IROTH

Same as S_IWUSR
on Windows systems

Other's write
permission

O'0000002'S_IWOTH

Same as S_IXUSR on
Windows systems

Other's execute
permission

O'0000001'S_IXOTH

STAT returns the same information as FSTAT, but accesses files by name instead of external
unit number.

On Windows systems, LSTAT returns exactly the same information as STAT. On Linux and Mac
OS X systems, if the file denoted by name is a link, LSTAT provides information on the link,
while STAT provides information on the file at the destination of the link.

3568

63 Intel® Fortran Compiler User and Reference Guides

You can also use the INQUIRE statement to get information about file properties.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

CHARACTER*12 file_name

INTEGER(4) info_array(12)

print *, 'Enter file to examine: '

read *, file_name

ISTATUS = STAT (file_name, info_array)

if (.not. istatus) then

print *, info_array

else

print *, 'Error = ',istatus

end if

end

See Also
• S
• INQUIRE
• GETFILEINFOQQ
• FSTAT

Statement Function
Statement: Defines a function in a single
statement in the same program unit in which the
procedure is referenced.

Syntax

fun([d-arg [,d-arg]...]) = expr

Is the name of the statement function.fun

3569

63

Is a dummy argument. A dummy argument can appear only once
in any list of dummy arguments, and its scope is local to the
statement function.

d-arg

Is a scalar expression defining the computation to be performed.expr
Named constants and variables used in the expression must have
been declared previously in the specification part of the scoping
unit or made accessible by use or host association.
If the expression contains a function or statement function
reference, that function must have been defined previously as a
function or statement function in the same program unit.
A statement function reference takes the following form:
fun([a-arg[, a-arg] ...])

Is the name of the statement function.fun

Is an actual argument.a-arg

Description

When a statement function reference appears in an expression, the values of the actual
arguments are associated with the dummy arguments in the statement function definition. The
expression in the definition is then evaluated. The resulting value is used to complete the
evaluation of the expression containing the function reference.

The data type of a statement function can be explicitly defined in a type declaration statement.
If no type is specified, the type is determined by implicit typing rules in effect for the program
unit.

Actual arguments must agree in number, order, and data type with their corresponding dummy
arguments.

Except for the data type, declarative information associated with an entity is not associated
with dummy arguments in the statement function; for example, declaring an entity to be an
array or to be in a common block does not affect a dummy argument with the same name.

The name of the statement function cannot be the same as the name of any other entity within
the same program unit.

Any reference to a statement function must appear in the same program unit as the definition
of that function.

A statement function reference must appear as (or be part of) an expression. The reference
cannot appear on the left side of an assignment statement.

A statement function must not be provided as a procedure argument.

3570

63 Intel® Fortran Compiler User and Reference Guides

Example

The following are examples of statement functions:

REAL VOLUME, RADIUS

VOLUME(RADIUS) = 4.189*RADIUS**3

CHARACTER*10 CSF,A,B

CSF(A,B) = A(6:10)//B(1:5)

The following example shows a statement function and some references to it:

AVG(A,B,C) = (A+B+C)/3.

...

GRADE = AVG(TEST1,TEST2,XLAB)

IF (AVG(P,D,Q) .LT. AVG(X,Y,Z)) STOP

FINAL = AVG(TEST3,TEST4,LAB2) ! Invalid reference; implicit

... ! type of third argument does not

... ! match implicit type of dummy argument

Implicit typing problems can be avoided if all arguments are explicitly typed.

The following statement function definition is invalid because it contains a constant, which
cannot be used as a dummy argument:

REAL COMP, C, D, E

COMP(C,D,E,3.) = (C + D - E)/3.

The following shows another example:

Add (a, b) = a + b

REAL(4) y, x(6)

. . .

DO n = 2, 6

x(n) = Add (y, x(n-1))

END DO

See Also
• S
• FUNCTION

3571

63

• Argument Association
• Use and Host Association

STATIC
Statement and Attribute: Controls the storage
allocation of variables in subprograms (as does
AUTOMATIC). Variables declared as STATIC and
allocated in memory reside in the static storage
area, rather than in the stack storage area.

Syntax

The STATIC attribute can be specified in a type declaration statement or a STATIC statement,
and takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] STATIC [, att-ls] :: v[, v] ...

Statement:

STATIC[::] v[, v] ...

Is a data type specifier.type

Is an optional list of attribute specifiers.att-ls

Is the name of a variable or an array specification. It can be of
any type.

v

STATIC declarations only affect how data is allocated in storage.

If you want to retain definitions of variables upon reentry to subprograms, you must use the
SAVE attribute.

By default, the compiler allocates local scalar variables of non-recursive subprograms in the
static storage area. Local arrays, except for allocatable arrays, are in the static storage area
by default.

The compiler may choose to allocate a variable in temporary (stack or register) storage if it
notices that the variable is always defined before use. Appropriate use of the SAVE attribute
can prevent compiler warnings if a variable is used before it is defined.

To change the default for variables, specify them as AUTOMATIC or specify RECURSIVE in one
of the following ways:

• As a keyword in a FUNCTION or SUBROUTINE statement

• As a compiler option

3572

63 Intel® Fortran Compiler User and Reference Guides

• As an option in an OPTIONS statement

To override any compiler option that may affect variables, explicitly specify the variables as
STATIC.

NOTE. Variables that are data-initialized, and variables in COMMON and SAVE statements
are always static. This is regardless of whether a compiler option specifies recursion.

A variable cannot be specified as STATIC more than once in the same scoping unit.

If the variable is a pointer, STATIC applies only to the pointer itself, not to any associated
target.

Some variables cannot be specified as STATIC. The following table shows these restrictions:

STATICVariable

NoDummy argument

NoAutomatic object

YesCommon block item

NoUse-associated item

NoFunction result

NoComponent of a derived type

A variable can be specified with both the STATIC and SAVE attributes.

If a variable is in a module's outer scope, it can be specified as STATIC.

Example

The following example shows a type declaration statement specifying the STATIC attribute:

INTEGER, STATIC :: ARRAY_A

3573

63

The following example uses a STATIC statement:

...

CONTAINS

INTEGER FUNCTION REDO_FUNC

INTEGER I, J(10), K

REAL C, D, E(30)

AUTOMATIC I, J, K(20)

STATIC C, D, E

...

END FUNCTION

...

INTEGER N1, N2

N1 = -1

DO WHILE (N1)

N2 = N1*2

call sub1(N1, N2)

read *, N1

END DO

CONTAINS

SUBROUTINE sub1 (iold, inew)

INTEGER, intent(INOUT):: iold

integer, STATIC ::N3

integer, intent(IN) :: inew

if (iold .eq. -1) then

N3 = iold

end if

print *, 'New: ', inew, 'N3: ',N3

END subroutine

!

3574

63 Intel® Fortran Compiler User and Reference Guides

END

See Also
• S
• AUTOMATIC
• SAVE
• Type declaration statements
• Compatible attributes
• RECURSIVE
• OPTIONS
• POINTER
• Modules and Module Procedures
• recursive compiler option

STOP
Statement: Terminates program execution before
the end of the program unit.

Syntax

STOP [stop-code]

(Optional) A message. It can be either of the following:stop-code

• A scalar character constant of type default character.

• A non-negative integer less than or equal to 2147483647;
leading zeros are ignored. (The Fortran standard limits
stop-code to at most five digits.)

If stop-code is specified, the STOP statement does the following:

• Writes the specified message to the standard error device.

• Writes one or more of the following messages to the standard error device indicating which
IEEE floating-point exceptions are signaling:

• IEEE_DIVIDE_BY_ZERO is signaling

• IEEE_INVALID is signaling

• IEEE_OVERFLOW is signaling

3575

63

• IEEE_UNDERFLOW is signaling

• Terminates program execution. If stop-code is a character constant, a status of zero is
returned. If stop-code is an integer, a status equal to stop-code is returned.

If stop-code is not specified, the program is terminated, no message is printed, and a status
of zero is returned.

Effect on Windows* Systems

In QuickWin programs, the following is displayed in a message box:

Program terminated with Exit Code stop-code

Effect on Linux* and Mac OS* Systems

Operating system shells (such as bash, sh, csh, etc.) work with one byte exit status. So, when
stop-code is an integer, only the lowest byte is significant. For example, consider the following
statement:

STOP 99999

In this case, the program returns a status equal to 159 because integer 99999 = Z'1869F', and
the lowest byte is equal to Z'9F', which equals 159.

Example

The following examples show valid STOP statements:

STOP 98

STOP 'END OF RUN'

DO

READ *, X, Y

IF (X > Y) STOP 5555

END DO

The following shows another example:

OPEN(1,FILE='file1.dat', status='OLD', ERR=100)

. . .

100 STOP 'ERROR DETECTED!'

END

3576

63 Intel® Fortran Compiler User and Reference Guides

See Also
• S
• EXIT

STRICT and NOSTRICT
General Compiler Directive: STRICT disables
language features not found in the language
standard specified on the command line (Fortran
2003, Fortran 95, or Fortran 90). NOSTRICT (the
default) enables these features.

Syntax

cDEC$ STRICT

cDEC$ NOSTRICT

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

If STRICT is specified and no language standard is specified on the command line, the default
is to disable features not found in Fortran 2003.

The STRICT and NOSTRICT directives can appear only appear at the top of a program unit. A
program unit is a main program, an external subroutine or function, a module, or a block data
program unit. STRICT and NOSTRICT cannot appear between program units, or at the beginning
of internal subprograms. They do not affect any modules invoked with the USE statement in
the program unit that contains them.

3577

63

Example
! NOSTRICT by default

TYPE stuff

INTEGER(4) k

INTEGER(4) m

CHARACTER(4) name

END TYPE stuff

TYPE (stuff) examp

DOUBLE COMPLEX cd ! non-standard data type, no error

cd =(3.0D0, 4.0D0)

examp.k = 4 ! non-standard component designation,

! no error

END

SUBROUTINE STRICTDEMO()

!DEC$ STRICT

TYPE stuff

INTEGER(4) k

INTEGER(4) m

CHARACTER(4) name

END TYPE stuff

TYPE (stuff) samp

DOUBLE COMPLEX cd ! ERROR

cd =(3.0D0, 4.0D0)

samp.k = 4 ! ERROR

END SUBROUTINE

See Also
• M to N
• S

3578

63 Intel® Fortran Compiler User and Reference Guides

• General Compiler Directives
• stand compiler option

Building Applications: Compiler Directives Related to Options

STRUCTURE...END STRUCTURE
Statement: Defines the field names, types of data
within fields, and order and alignment of fields
within a record structure. Fields and structures can
be initialized, but records cannot be initialized.

Syntax

STRUCTURE [/structure-name/] [field-namelist]

field-declaration

[field-declaration]

. . .

[field-declaration]

END STRUCTURE

Is the name used to identify a structure, enclosed by slashes.structure-name
Subsequent RECORD statements use the structure name to refer
to the structure. A structure name must be unique among structure
names, but structures can share names with variables (scalar or
array), record fields, PARAMETER constants, and common blocks.
Structure declarations can be nested (contain one or more other
structure declarations). A structure name is required for the
structured declaration at the outermost level of nesting, and is
optional for the other declarations nested in it. However, if you
wish to reference a nested structure in a RECORD statement in
your program, it must have a name.
Structure, field, and record names are all local to the defining
program unit. When records are passed as arguments, the fields
in the defining structures within the calling and called subprograms
must match in type, order, and dimension.

Is a list of fields having the structure of the associated structure
declaration. A field namelist is allowed only in nested structure
declarations.

field-namelist

3579

63

Also called the declaration body. A field-declaration consists
of any combination of the following:

field-declaration

• Type declarations

These are ordinary Fortran data type declarations.

• Substructure declarations

A field within a structure can be a substructure composed of
atomic fields, other substructures, or a combination of both.

• Union declarations

A union declaration is composed of one or more mapped field
declarations.

• PARAMETER statements

PARAMETER statements can appear in a structure declaration,
but cannot be given a data type within the declaration block.

Type declarations for PARAMETER names must precede the
PARAMETER statement and be outside of a STRUCTURE
declaration, as follows:

INTEGER*4 P

STRUCTURE /ABC/

PARAMETER (P=4)

REAL*4 F

END STRUCTURE

REAL*4 A(P)

The Fortran 90 derived type replaces STRUCTURE and RECORD constructs, and should be used
in writing new code. See Derived Data Types.

Unlike type declaration statements, structure declarations do not create variables. Structured
variables (records) are created when you use a RECORD statement containing the name of a
previously declared structure. The RECORD statement can be considered as a kind of type
declaration statement. The difference is that aggregate items, not single items, are being
defined.

Within a structure declaration, the ordering of both the statements and the field names within
the statements is important, because this ordering determines the order of the fields in records.

3580

63 Intel® Fortran Compiler User and Reference Guides

In a structure declaration, each field offset is the sum of the lengths of the previous fields, so
the length of the structure is the sum of the lengths of its fields. The structure is packed; you
must explicitly provide any alignment that is needed by including, for example, unnamed fields
of the appropriate length.

By default, fields are aligned on natural boundaries; misaligned fields are padded as necessary.
To avoid padding of records, you should lay out structures so that all fields are naturally aligned.

To pack fields on arbitrary byte boundaries, you must specify a compiler option. You can also
specify alignment for fields by using the OPTIONS or PACK general directive.

A field name must not be the same as any intrinsic or user-defined operator (for example, EQ
cannot be used as a field name).

Compatibility

An item can be a RECORD statement that references a previously defined structure type:

STRUCTURE /full_address/

RECORD /full_name/ personsname

RECORD /address/ ship_to

INTEGER*1 age

INTEGER*4 phone

END STRUCTURE

You can specify a particular item by listing the sequence of items required to reach it, separated
by a period (.). Suppose you declare a structure variable, shippingaddress, using the
full_addressstructure defined in the previous example:

RECORD /full_address/ shippingaddress

In this case, the ageitem would then be specified by shippingaddress.age, the first name
of the receiver by shippingaddress.personsname.first_name, and so on.

3581

63

In the following example, the declaration defines a structure named APPOINTMENT.
APPOINTMENTcontains the structure DATE(field APP_DATE) as a substructure. It also contains
a substructure named TIME(field APP_TIME, an array), a CHARACTER*20 array named APP_MEMO,
and a LOGICAL*1 field named APP_FLAG.

STRUCTURE /DATE/

INTEGER*1 DAY, MONTH

INTEGER*2 YEAR

END STRUCTURE

STRUCTURE /APPOINTMENT/

RECORD /DATE/ APP_DATE

STRUCTURE /TIME/ APP_TIME (2)

INTEGER*1 HOUR, MINUTE

END STRUCTURE

CHARACTER*20 APP_MEMO (4)

LOGICAL*1 APP_FLAG

END STRUCTURE

The length of any instance of structure APPOINTMENT is 89 bytes.

3582

63 Intel® Fortran Compiler User and Reference Guides

The following figure shows the memory mapping of any record or record array element with
the structure APPOINTMENT.

3583

63

Figure 100: Memory Map of Structure APPOINTMENT

3584

63 Intel® Fortran Compiler User and Reference Guides

3585

63

See Also
• E to F
• S
• TYPE
• MAP...END MAP
• RECORD
• UNION...END UNION
• PACK Directive
• OPTIONS Directive
• Data Types, Constants, and Variables
• Record Structures

SUBROUTINE
Statement: The initial statement of a subroutine
subprogram. A subroutine subprogram is invoked
in a CALL statement or by a defined assignment
statement, and does not return a particular value.

Syntax

[prefix [prefix]] SUBROUTINE name [([d-arg-list]) [lang-binding]]

[specification-part]

[execution-part]

[CONTAINS

internal-subprogram-part]

END [SUBROUTINE [name]]

(Optional) Is any of the following:prefix

• RECURSIVE

Permits direct recursion to occur.

• PURE

Asserts that the procedure has no side effects.

• ELEMENTAL

3586

63 Intel® Fortran Compiler User and Reference Guides

Acts on one array element at a time. This is a restricted form
of pure procedure.

At most one of each of the above can be specified. You cannot
specify ELEMENTAL and RECURSIVE together. You cannot specify
ELEMENTAL if lang-binding is specified.

Is the name of the subroutine.name

(Optional) Is a list of one or more dummy arguments or alternate
return specifiers (*) .

d-arg-list

(Optional) Takes the following form:lang-binding
BIND (C [, NAME=ext-name])

Is a character scalar initialization expression
that can be used to construct the external
name.

ext-name

Is one or more specification statements, except for the following:specification-part

• INTENT (or its equivalent attribute)

• OPTIONAL (or its equivalent attribute)

• PUBLIC and PRIVATE (or their equivalent attributes)

An automatic object must not appear in a specification statement.
If a SAVE statement is specified, it has no effect.

Is one or more executable constructs or statements, except for
ENTRY or RETURN statements.

execution-part

Is one or more internal subprograms (defining internal procedures).
The internal-subprogram-part is preceded by a CONTAINS
statement.

internal-subprogram-part

Description

A subroutine is invoked by a CALL statement or defined assignment. When a subroutine is
invoked, dummy arguments (if present) become associated with the corresponding actual
arguments specified in the call.

Execution begins with the first executable construct or statement following the SUBROUTINE
statement. Control returns to the calling program unit once the END statement (or a RETURN
statement) is executed.

3587

63

A subroutine subprogram cannot contain a BLOCK DATA statement, a PROGRAM statement, or
a MODULE statement. A subroutine can contain SUBROUTINE and FUNCTION statements to
define internal procedures. ENTRY statements can be included to provide multiple entry points
to the subprogram.

You need an interface block for a subroutine when:

• Calling arguments use argument keywords.

• Some arguments are optional.

• A dummy argument is an assumed-shape array, a pointer, or a target.

• The subroutine extends intrinsic assignment.

• The subroutine can be referenced by a generic name.

• The subroutine is in a dynamic-link library.

If the subroutine is in a DLL and is called from your program, use the option DLLEXPORT or
DLLIMPORT, which you can specify with the ATTRIBUTES directive.

Note that if you specify lang-binding, you have to use the parentheses even if there are no
arguments. For example, without lang-binding you can specify SUBROUTINE F but with
lang-binding you have to specify SUBROUTINE F() BIND (C).

Example

The following example shows a subroutine:

Main Program Subroutine

CALL HELLO_WORLD SUBROUTINE HELLO_WORLD

... PRINT *, "Hello World"

END END SUBROUTINE

3588

63 Intel® Fortran Compiler User and Reference Guides

The following example uses alternate return specifiers to determine where control transfers on
completion of the subroutine:

Main Program Subroutine

CALL CHECK(A,B,*10,*20,C) SUBROUTINE CHECK(X,Y,*,*,Q)

TYPE *, 'VALUE LESS THAN ZERO' ...

GO TO 30 50 IF (Z) 60,70,80

10 TYPE*, 'VALUE EQUALS ZERO' 60 RETURN

GO TO 30 70 RETURN 1

20 TYPE*, 'VALUE MORE THAN ZERO' 80 RETURN 2

30 CONTINUE END

...

The SUBROUTINE statement argument list contains two dummy alternate return arguments
corresponding to the actual arguments *10 and *20 in the CALL statement argument list.

The value of Z determines the return, as follows:

• If Z < zero, a normal return occurs and control is transferred to the first executable statement
following CALL CHECK in the main program.

• If Z = = zero, the return is to statement label 10 in the main program.

• If Z > zero, the return is to statement label 20 in the main program.

(An alternate return is an obsolescent feature in Fortran 90 and Fortran 95.)

The following shows another example:

SUBROUTINE GetNum (num, unit)

INTEGER num, unit

10 READ (unit, '(I10)', ERR = 10) num

END

See Also
• S
• FUNCTION
• INTERFACE
• PURE

3589

63

• ELEMENTAL
• CALL
• RETURN
• ENTRY
• Argument Association
• Program Units and Procedures
• General Rules for Function and Subroutine Subprograms
• Obsolescent and Deleted Language Features

SUM
Transformational Intrinsic Function (Generic):
Returns the sum of all the elements in an entire
array or in a specified dimension of an array.

Syntax

result = SUM (array [,dim] [,mask])

(Input) Must be an array of type integer, real, or complex.array

(Input; optional) Must be a scalar integer with a value in the range
1 to n, where n is the rank of array.

dim

(Input; optional) Must be of type logical and conformable with
array.

mask

Results

The result is an array or a scalar of the same data type as array.

The result is a scalar if dim is omitted or array has rank one.

The following rules apply if dim is omitted:

• If SUM(array) is specified, the result is the sum of all elements of array. If array has size
zero, the result is zero.

• If SUM(array, MASK= mask) is specified, the result is the sum of all elements of array
corresponding to true elements of mask. If array has size zero, or every element of mask
has the value .FALSE., the result is zero.

The following rules apply if dim is specified:

• If array has rank one, the value is the same as SUM(array[,MASK= mask]).

3590

63 Intel® Fortran Compiler User and Reference Guides

• An array result has a rank that is one less than array, and shape (d1, d2, ..., ddim-1, ddim+1,
..., dn), where (d1, d2, ..., dn) is the shape of array.

• The value of element (s1, s2, ..., sdim-1, sdim+1, ..., sn) of SUM(array, dim[, mask]) is equal
to SUM(array(s1, s2, ..., sdim-1, :, sdim+1, ..., sn) [,MASK = mask(s1, s2, ..., sdim-1, :, sdim+1,
..., sn)].

Example

SUM ((/2, 3, 4/)) returns the value 9 (sum of 2 + 3 + 4). SUM ((/2, 3, 4/), DIM=1) returns
the same result.

SUM (B, MASK=B .LT. 0.0) returns the arithmetic sum of the negative elements of B.

C is the array

[1 2 3]

[4 5 6].

SUM (C, DIM=1) returns the value (5, 7, 9), which is the sum of all elements in each column.
5 is the sum of 1 + 4 in column 1. 7 is the sum of 2 + 5 in column 2, and so forth.

SUM (C, DIM=2) returns the value (6, 15), which is the sum of all elements in each row. 6 is
the sum of 1 + 2 + 3 in row 1. 15 is the sum of 4 + 5 + 6 in row 2.

The following shows another example:

INTEGER array (2, 3), i, j(3)

array = RESHAPE((/1, 2, 3, 4, 5, 6/), (/2, 3/))

! array is 1 3 5

! 2 4 6

i = SUM((/ 1, 2, 3 /)) ! returns 6

j = SUM(array, DIM = 1) ! returns [3 7 11]

WRITE(*,*) i, j

END

See Also
• S
• PRODUCT

3591

63

SWP and NOSWP (i64 only)
General Compiler Directives: SWP enables
software pipelining for a DO loop. NOSWP (the
default) disables this software pipelining. These
directives are only available on IA-64 architecture.

Syntax

cDEC$ SWP

cDEC$ NOSWP

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

The SWP directive must precede the DO statement for each DO loop it affects.

The SWP directive does not help data dependence, but overrides heuristics based on profile
counts or lop-sided control flow.

The software pipelining optimization specified by the SWP directive applies instruction scheduling
to certain innermost loops, allowing instructions within a loop to be split into different stages.

This allows increased instruction level parallelism, which can reduce the impact of long-latency
operations, resulting in faster loop execution.

Loops chosen for software pipelining are always innermost loops containing procedure calls
that are inlined. Because the optimizer no longer considers fully unrolled loops as innermost
loops, fully unrolling loops can allow an additional loop to become the innermost loop (see
compiler option -funroll-loops or /Qunroll).

You can request and view the optimization report to see whether software pipelining was applied.

3592

63 Intel® Fortran Compiler User and Reference Guides

Example
!DEC$ SWP

do i = 1, m

if (a(i) .eq. 0) then

b(i) = a(i) + 1

else

b(i) = a(i)/c(i)

endif

enddo

See Also
• M to N
• S
• Syntax Rules for Compiler Directives
• Rules for General Directives that Affect DO Loops
• unroll, Qunroll compiler option

Optimizing Applications: Pipelining for Itanium®-based Architecture

Optimizing Applications: Optimizer Report Generation

SYSTEM
Portability Function: Sends a command to the
shell as if it had been typed at the command line.

Module

USE IFPORT

Syntax

result = SYSTEM (string)

(Input) Character*(*). Operating system command.string

Results

The result type is INTEGER(4). The result is the exit status of the shell command. If -1, use
IERRNO to retrieve the error. Errors can be one of the following:

3593

63

• E2BIG: The argument list is too long.

• ENOENT: The command interpreter cannot be found.

• ENOEXEC: The command interpreter file has an invalid format and is not executable.

• ENOMEM: Not enough system resources are available to execute the command.

On Windows* systems, the calling process waits until the command terminates. To insure
compatibility and consistent behavior, an image can be invoked directly by using the Windows
API CreateProcess() in your Fortran code.

Commands run with the SYSTEM routine are run in a separate shell. Defaults set with the
SYSTEM function, such as current working directory or environment variables, do not affect
the environment the calling program runs in.

The command line character limit for the SYSTEM function is the same limit that your operating
system command interpreter accepts.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) I, errnum

I = SYSTEM("dir > file.lst")

If (I .eq. -1) then

errnum = ierrno()

print *, 'Error ', errnum

end if

END

See Also
• S
• SYSTEMQQ

3594

63 Intel® Fortran Compiler User and Reference Guides

SYSTEM_CLOCK
Intrinsic Subroutine: Returns integer data from
a real-time clock. SYSTEM_CLOCK returns the
number of seconds from 00:00 Coordinated
Universal Time (CUT) on 1 JAN 1970. The number
is returned with no bias. To get the elapsed time,
you must call SYSTEM_CLOCK twice, and subtract
the starting time value from the ending time value.

Syntax

CALL SYSTEM_CLOCK ([count] [, count_rate] [, count_max])

(Output; optional) Must be scalar and of type integer. It is set to
a value based on the current value of the processor clock. The
value is increased by one for each clock count until the value
count_max is reached, and is reset to zero at the next count. (
count lies in the range 0 to count_max.)

count

(Output; optional) Must be scalar and of type integer. It is set to
the number of processor clock counts per second.

count_rate

If the type is INTEGER(2), count_rate is 1000. If the type is
INTEGER(4), count_rate is 10000. If the type is INTEGER(8),
count_rate is 1000000.

(Output; optional) Must be scalar and of type integer. It is set to
the maximum value that count can have, HUGE(0).

count_max

All arguments used must have the same integer kind parameter. If the type is INTEGER(1),
count, count_rate, and count_max are all zero, indicating that there is no clock available to
Intel Fortran with an 8-bit range.

3595

63

Example

Consider the following:

integer(2) :: ic2, crate2, cmax2

integer(4) :: ic4, crate4, cmax4

call system_clock(count=ic2, count_rate=crate2, count_max=cmax2)

call system_clock(count=ic4, count_rate=crate4, count_max=cmax4)

print *, ic2, crate2, cmax2

print *, ic4, crate4, cmax4

end

This program was run on Thursday Dec 11, 1997 at 14:23:55 EST and produced the following
output:

13880 1000 32767

1129498807 10000 2147483647

See Also
• S
• DATE_AND_TIME
• HUGE
• GETTIM

SYSTEMQQ
Portability Function: Executes a system
command by passing a command string to the
operating system's command interpreter.

Module

USE IFPORT

Syntax

result = SYSTEMQQ (commandline)

(Input) Character*(*). Command to be passed to the operating
system.

commandline

3596

63 Intel® Fortran Compiler User and Reference Guides

Results

The result type is LOGICAL(4). The result is .TRUE. if successful; otherwise, .FALSE..

The SYSTEMQQ function lets you pass operating-system commands as well as programs.
SYSTEMQQ refers to the COMSPEC and PATH environment variables that locate the command
interpreter file (usually named COMMAND.COM).

On Windows* systems, the calling process waits until the command terminates. To insure
compatibility and consistent behavior, an image can be invoked directly by using the Windows
API CreateProcess() in your Fortran code.

If the function fails, call GETLASTERRORQQ to determine the reason. One of the following errors
can be returned:

• ERR$2BIG - The argument list exceeds 128 bytes, or the space required for the environment
formation exceeds 32K.

• ERR$NOINT - The command interpreter cannot be found.

• ERR$NOEXEC - The command interpreter file has an invalid format and is not executable.

• ERR$NOMEM - Not enough memory is available to execute the command; or the available
memory has been corrupted; or an invalid block exists, indicating that the process making
the call was not allocated properly.

The command line character limit for the SYSTEMQQ function is the same limit that your
operating system command interpreter accepts.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

LOGICAL(4) result

result = SYSTEMQQ('copy c:\bin\fmath.dat &

c:\dat\fmath2.dat')

See Also
• S
• SYSTEM

3597

63

T to Z

TAN
Elemental Intrinsic Function (Generic):
Produces the tangent of x.

Syntax

result = TAN (x)

(Input) Must be of type real or complex. If x is of type real, it must
be in radians and is treated as modulo 2 * pi.

x

If x is of type complex, its real part is regarded as a value in
radians.

Results

The result type is the same as x.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)TAN

REAL(8)REAL(8)DTAN

REAL(16)REAL(16)QTAN

COMPLEX(4)COMPLEX(4)CTAN1

COMPLEX(8)COMPLEX(8)CDTAN2

COMPLEX(16)COMPLEX(16)CQTAN

1The setting of compiler options specifying real size can affect CTAN.
2This function can also be specified as ZTAN.

Example

TAN (2.0) has the value -2.185040.

TAN (0.8) has the value 1.029639.

3598

63 Intel® Fortran Compiler User and Reference Guides

TAND
Elemental Intrinsic Function (Generic):
Produces the tangent of x.

Syntax

result = TAND (x)

(Input) Must be of type real. It must be in degrees and is treated
as modulo 360.

x

Results

The result type is the same as x.

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)TAND

REAL(8)REAL(8)DTAND

REAL(16)REAL(16)QTAND

Example

TAND (2.0) has the value 3.4920771E-02.

TAND (0.8) has the value 1.3963542E-02.

TANH
Elemental Intrinsic Function (Generic):
Produces a hyperbolic tangent.

Syntax

result = TANH (x)

(Input) Must be of type real.x

Results

The result type is the same as x.

3599

63

Result TypeArgument TypeSpecific Name

REAL(4)REAL(4)TANH

REAL(8)REAL(8)DTANH

REAL(16)REAL(16)QTANH

Example

TANH (2.0) has the value 0.9640276.

TANH (0.8) has the value 0.6640368.

TARGET
Statement and Attribute: Specifies that an object
can become the target of a pointer (it can be
pointed to).

Syntax

The TARGET attribute can be specified in a type declaration statement or a TARGET statement,
and takes one of the following forms:

Type Declaration Statement:

type,[att-ls,] TARGET [, att-ls] :: object[(a-spec)][, object[(a-spec)]]...

Statement:

TARGET [::]object[(a-spec)][, object[(a-spec)]] ...

Is a data type specifier.type

Is an optional list of attribute specifiers.att-ls

Is the name of the object. The object must not be declared with
the PARAMETER attribute.

object

(Optional) Is an array specification.a-spec

Description

A pointer is associated with a target by pointer assignment or by an ALLOCATE statement.

If an object does not have the TARGET attribute or has not been allocated (using an ALLOCATE
statement), no part of it can be accessed by a pointer.

3600

63 Intel® Fortran Compiler User and Reference Guides

Example

The following example shows type declaration statements specifying the TARGET attribute:

TYPE(SYSTEM), TARGET :: FIRST

REAL, DIMENSION(20, 20), TARGET :: C, D

The following is an example of a TARGET statement:

TARGET :: C(50, 50), D

The following fragment is from the program POINTER2.F90 in the <install-dir>/samples
subdirectory:

! An example of pointer assignment.

REAL, POINTER :: arrow1 (:)

REAL, POINTER :: arrow2 (:)

REAL, ALLOCATABLE, TARGET :: bullseye (:)

ALLOCATE (bullseye (7))

bullseye = 1.

bullseye (1:7:2) = 10.

WRITE (*,'(/1x,a,7f8.0)') 'target ',bullseye

arrow1 => bullseye

WRITE (*,'(/1x,a,7f8.0)') 'pointer',arrow1

. . .

See Also
• T to Z
• ALLOCATE
• ASSOCIATED
• POINTER
• Pointer Assignments
• Pointer Association
• Type Declarations
• Compatible attributes

3601

63

TASK
OpenMP* Fortran Compiler Directive: Defines
a task region.

Syntax

c$OMP TASK [clause[[,] clause] ...]

block

c$OMP END TASK

Is one of the following: C (or c), !, or * (see Syntax Rules for
Compiler Directives).

c

Is one of the following:clause

• DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)
• FIRSTPRIVATE (list)
• IF (scalar_logical_expression)

Specifies that the enclosed code section is to be executed in
parallel only if the scalar_logical_expression evaluates to
.TRUE.. If this clause is not used, the region is executed as if
an IF(.TRUE.) clause were specified.

If the scalar_logical_expression evaluates to .FALSE., the
encountering thread must suspend the current task region and
begin execution of the generated task immediately. The
suspended task region will not be resumed until the generated
task is completed.

This clause is evaluated by the master thread before any data
scope attributes take effect.

Only a single IF clause can appear in the directive.

• PRIVATE (list)
• SHARED (list)
• UNTIED

3602

63 Intel® Fortran Compiler User and Reference Guides

Specifies the task is never tied to the thread that started its
execution. Any thread in the team can resume the task region
after a suspension. For example, during runtime, the compiler
can start the execution of a given task on thread A, break
execution and later resume it on thread B.

Is a structured block (section) of statements or constructs. You
cannot branch into or out of the block (the parallel region).

block

The TASK and END TASK directive pair must appear in the same routine in the executable
section of the code.

The END TASK directive denotes the end of the task.

When a thread encounters a task construct, a task is generated from the code for the associated
structured block. The encountering thread may immediately execute the task, or defer its
execution. In the latter case, any thread in the team may be assigned the task.

A task construct may be nested inside an outer task, but the task region of the inner task is
not a part of the task region of the outer task.

The task construct includes a task scheduling point in the task region of its generating task,
immediately following the generation of the explicit task. Each explicit task region includes a
task scheduling point at its point of completion.

Note that when storage is shared by an explicit task region, you must add proper synchronization
to ensure that the storage does not reach the end of its lifetime before the explicit task region
completes its execution.

3603

63

Example

The following example calculates a Fibonacci number. The Fibonacci sequence is 1,1,2,3,5,8,13,
etc., where the current number is the sum of the previous two numbers. If a call to function
fib is encountered by a single thread in a parallel region, a nested task region will be spawned
to carry out the computation in parallel.

RECURSIVE INTEGER FUNCTION fib(n)

INTEGER n, i, j

IF (n .LT. 2) THEN

fib = n

ELSE

!$OMP TASK SHARED(i)

i = fib(n-1)

!$OMP END TASK

!$OMP TASK SHARED(j)

j = fib(n-2)

!$OMP END TASK

!$OMP TASKWAIT ! wait for the sub-tasks to

! complete before summing

fib = i+j

END IF

END FUNCTION

3604

63 Intel® Fortran Compiler User and Reference Guides

The following example generates a large number of tasks in one thread and executes them
with the threads in the parallel team. While generating these tasks, if the implementation
reaches the limit generating unassigned tasks, the generating loop may be suspended and the
thread used to execute unassigned tasks. When the number of unassigned tasks is sufficiently
low, the thread resumes execution of the task generating loop.

real*8 item(10000000)

integer i

!$omp parallel

!$omp single ! loop iteration variable i is private

do i=1,10000000

!$omp task

! i is firstprivate, item is shared

call process(item(i))

!$omp end task

end do

!$omp end single

!$omp end parallel

end

3605

63

The following example modifies the previous one to use an untied task to generate the
unassigned tasks. If the implementation reaches the limit generating unassigned tasks and the
generating loop is suspended, any other thread that becomes available can resume the task
generation loop.

real*8 item(10000000)

!$omp parallel

!$omp single

!$omp task untied

! loop iteration variable i is private

do i=1,10000000

!$omp task ! i is firstprivate, item is shared

call process(item(i))

!$omp end task

end do

!$omp end task

!$omp end single

!$omp end parallel

See Also
• T to Z
• OpenMP Fortran Compiler Directives
• OpenMP* Fortran Routines
• PARALLEL DO
• TASKWAIT
• SHARED Clause

TASKWAIT
OpenMP* Fortran Compiler Directive: Specifies
a wait on the completion of child tasks generated
since the beginning of the current task.

Syntax

c$OMP TASKWAIT

3606

63 Intel® Fortran Compiler User and Reference Guides

Is one of the following: C (or c), !, or * (see Syntax Rules for
Compiler Directives).

c

The TASKWAIT region includes an implicit task scheduling point in the current task region. The
current task region is suspended at the task scheduling point until execution of all its child tasks
generated before the TASKWAIT region are completed.

See Also
• T to Z
• OpenMP Fortran Compiler Directives
• TASK directive

THREADPRIVATE
OpenMP* Fortran Compiler Directive: Specifies
named common blocks to be private (local) to a
thread; they are global within the thread.

Syntax

c$OMP THREADPRIVATE (/ cb/ [,/ cb/]...)

Is one of the following: C (or c), !, or * (see Syntax Rules for
Compiler Directives).

c

Is the name of the common block you want made private to a
thread. Only named common blocks can be made thread private.
Note that the slashes (/) are required.

cb

Each thread gets its own copy of the common block, so data written to the common block by
one thread is not directly visible to other threads.

During serial portions and MASTER sections of the program, accesses are to the master thread
copy of the common block. On entry to the first parallel region, data in the THREADPRIVATE
common blocks should be assumed to be undefined unless a COPYIN clause is specified in the
PARALLEL directive.

When a common block (which is initialized using DATA statements) appears in a THREADPRIVATE
directive, each thread copy is initialized once prior to its first use. For subsequent parallel
regions, data in THREADPRIVATE common blocks are guaranteed to persist only if the dynamic
threads mechanism has been disabled and if the number of threads are the same for all the
parallel regions.

3607

63

A THREADPRIVATE common block or its constituent variables can appear only in a COPYIN
clause. They are not permitted in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE, SHARED, or
REDUCTION clause. They are not affected by the DEFAULT clause.

Example

In the following example, the common blocks BLK1 and FIELDS are specified as thread private:

COMMON /BLK/ SCRATCH

COMMON /FIELDS/ XFIELD, YFIELD, ZFIELD

c$OMP THREADPRIVATE(/BLK/,/FIELDS/)

c$OMP PARALLEL DEFAULT(PRIVATE) COPYIN(/BLK1/,ZFIELD)

See Also
• T to Z
• OpenMP Fortran Compiler Directives

TIME Intrinsic Procedure
Intrinsic Subroutine (Generic): Returns the
current time as set within the system. TIME can
be used as an intrinsic subroutine or as a portability
function or subroutine. It is an intrinsic procedure
unless you specify USE IFPORT. Intrinsic
subroutines cannot be passed as actual arguments.

Syntax

CALL TIME (buf)

(Output) Is a variable, array, or array element of any data type,
or a character substring. It must contain at least eight bytes
ofstorage.

buf

The date is returned as a 8-byte ASCII character string taking the form hh:mm:ss, where:

is the 2-digit hourhh

is the 2-digit minutemm

is the 2-digit secondss

If buf is of numeric type and smaller than 8 bytes, data corruption can occur.

3608

63 Intel® Fortran Compiler User and Reference Guides

If buf is of character type, its associated length is passed to the subroutine. If buf is smaller
than 8 bytes, the subroutine truncates the date to fit in the specified length. If an array of type
character is passed, the subroutine stores the date in the first array element, using the element
length, not the length of the entire array.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS LIB

Example
CHARACTER*1 HOUR(8)

...

CALL TIME (HOUR)

The length of the first array element in CHARACTER array HOUR is passed to the TIME
subroutine. The subroutine then truncates the time to fit into the 1-character element, producing
an incorrect result.

See Also
• T to Z
• DATE_AND_TIME
• TIME portability routine

TIME Portability Routine
Portability Function or Subroutine: The function
returns the system time, in seconds, since
00:00:00 Greenwich mean time, January 1, 1970.
TIME can be used as an intrinsic subroutine or as
a portability function or subroutine. It is an intrinsic
procedure unless you specify USE IFPORT.

Module

USE IFPORT

Syntax

Function Syntax:

result = TIME()

3609

63

Subroutine Syntax:

CALL TIME (timestr)

(Output) Character*(*). Is the current time, based on a 24-hour
clock, in the form hh:mm:ss, where hh, mm, and ss are two-digit
representations of the current hour, minutes past the hour, and
seconds past the minute, respectively.

timestr

Results

The result type is INTEGER(4). The result value is the number of seconds that have elapsed
since 00:00:00 Greenwich mean time, January 1, 1970.

The subroutine fills a parameter with the current time as a string in the format hh:mm:ss.

The value returned by this routine can be used as input to other portability date and time
functions.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER(4) int_time

character*8 char_time

int_time = TIME()

call TIME(char_time)

print *, 'Integer: ', int_time, 'time: ', char_time

END

See Also
• T to Z
• DATE_AND_TIME
• TIME intrinsic procedure

3610

63 Intel® Fortran Compiler User and Reference Guides

TIMEF
Portability Function: Returns the number of
seconds since the first time it is called, or zero.

Module

USE IFPORT

Syntax

result = TIMEF()

Results

The result type is REAL(4). The result value is the number of seconds that have elapsed since
the first time TIMEF was called.

The first time it is called, TIMEF returns 0.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

INTEGER i, j

REAL(8) elapsed_time

elapsed_time = TIMEF()

DO i = 1, 100000

j = j + 1

END DO

elapsed_time = TIMEF()

PRINT *, elapsed_time

END

See Also
• T to Z
• Date and Time Procedures

3611

63

TINY
Inquiry Intrinsic Function (Generic): Returns
the smallest number in the model representing the
same type and kind parameters as the argument.

Syntax

result = TINY (x)

(Input) Must be of type real; it can be scalar or array valued.x

Results

The result is a scalar with the same type and kind parameters as x. The result has the value b
emin-1. Parameters b and emin are defined in Model for Real Data.

Example

If X is of type REAL(4), TINY (X) has the value 2 -126.

The following shows another example:

REAL(8) r, result

r = 487923.3D0

result = TINY(r) ! returns 2.225073858507201E-308

See Also
• T to Z
• HUGE
• Data Representation Models

TRACEBACKQQ
Run-Time Subroutine: Provides traceback
information. Uses the Intel® Fortran run-time
library traceback facility to generate a stack trace
showing the program call stack as it appeared at
the time of the call to TRACEBACKQQ().

Module

USE IFCORE

3612

63 Intel® Fortran Compiler User and Reference Guides

Syntax

CALL TRACEBACKQQ ([string] [,user_exit_code] [,status] [,eptr])

(Input; optional) CHARACTER*(*). A message string to precede
the traceback output. It is recommended that the string be no
more than 80 characters (one line) since that length appears better

string

on output. However, this limit is not a restriction and it is not
enforced. The string is output exactly as specified; no formatting
or interpretation is done.
If this argument is omitted, no header message string is produced.

(Input; optional) INTEGER(4). An exit code. Two values are
predefined:

user_exit_code

• A value of -1 causes the run-time system to return execution
to the caller after producing traceback.

• A value of zero (the default) causes the application to abort
execution.

Any other specified value causes the application to abort execution
and return the specified value to the operating system.

(Input; optional) INTEGER(4). A status value. If specified, the
run-time system returns the status value to the caller indicating
that the traceback process was successful. The default is not to
return status.

status

Note that a returned status value is only an indication that the
"attempt" to trace the call stack was completed successfully, not
that it produced a useful result.
You can include the file iosdef.forin your program to obtain
symbolic definitions for the possible return values. A return value
of FOR$IOS_SUCCESS (0) indicates success.

(Input; optional) Integer pointer. It is required if calling from a
user-specified exception filter. If omitted, the default in null.

eptr

To trace the stack after an exception has occurred, the runtime
support needs access to the exception information supplied to the
filter by the operating system.
The eptr argument is a pointer to a T_EXCEPTION_POINTERS
structure, which is defined in ifcore.f90. This argument is
optional and is usually omitted. On Windows systems,

3613

63

T_EXCEPTION_POINTERS is returned by the Windows* API
GetExceptionInformation(), which is usually passed to a C
try/except filter function.

The TRACEBACKQQ routine provides a standard way for an application to initiate a stack trace.
It can be used to report application detected errors, debugging, and so forth. It uses the stack
trace support in the Intel Fortran run-time library, and produces the same output that the
run-time library produces for unhandled errors and exceptions.

The error message string normally included by the run-time system is replaced with the
user-supplied message text, or omitted if no string is specified. Traceback output is directed
to the target destination appropriate for the application type, just as it is when traceback is
initiated internally by the run-time system.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example

The following example generates a traceback report with no leading header message, from
wherever the call site is, and aborts execution:

USE IFCORE

CALL TRACEBACKQQ()

The following example generates a traceback report with the user-supplied string as the header,
and aborts execution:

USE IFCORE

CALL TRACEBACKQQ("My application message string")

The following example generates a traceback report with the user-supplied string as the header,
and aborts execution, returning a status code of 123 to the operating system:

USE IFCORE

CALL TRACEBACKQQ(STRING="Bad value for TEMP",USER_EXIT_CODE=123)

3614

63 Intel® Fortran Compiler User and Reference Guides

Consider the following:

...

USE IFCORE

INTEGER(4) RTN_STS

INCLUDE 'IOSDEF.FOR'

...

CALL TRACEBACKQQ(USER_EXIT_CODE=-1,STATUS=RTN_STS)

IF (RTN_STS .EQ. FOR$IOS_SUCCESS) THEN

PRINT *,'TRACEBACK WAS SUCCESSFUL'

END IF

...

This example generates a traceback report with no header string, and returns to the caller to
continue execution of the application. If the traceback process succeeds, a status will be returned
in variable RTN_STS.

For more examples, including one showing an integer pointer, see Building Applications:
Obtaining Traceback Information with TRACEBACKQQ.

See Also
• T to Z
• GETEXCEPTIONPTRSQQ

Building Applications: Using Traceback Information

Building Applications: Run-Time Message Display and Format

Building Applications: Obtaining Traceback Information with TRACEBACKQQ

TRAILZ
Elemental Intrinsic Function (Generic):
Returns the number of trailing zero bits in an
integer.

Syntax

result = TRAILZ (i)

(Input) Must be of type integer or logical.i

3615

63

Results

The result type is the same as i. The result value is the number of trailing zeros in the binary
representation of the integer i.

The model for the interpretation of an integer value as a sequence of bits is shown in Model
for Bit Data.

Example

Consider the following:

INTEGER*8 J, TWO

PARAMETER (TWO=2)

DO J= -1, 40

TYPE *, TRAILZ(TWO**J) ! Prints 64, then 0 up to

ENDDO ! 40 (trailing zeros)

END

TRANSFER
Transformational Intrinsic Function (Generic):
Converts the bit pattern of the first argument
according to the type and kind parameters of the
second argument.

Syntax

result = TRANSFER (source,mold[,size])

(Input) Must be a scalar or array (of any data type).source

(Input) Must be a scalar or array (of any data type). It provides
the type characteristics (not a value) for the result.

mold

(Input; optional) Must be scalar and of type integer. It provides
the number of elements for the output result.

size

Results

The result has the same type and type parameters as mold.

If mold is a scalar and size is omitted, the result is a scalar.

3616

63 Intel® Fortran Compiler User and Reference Guides

If mold is an array and size is omitted, the result is a rank-one array. Its size is the smallest
that is possible to hold all of source.

If size is present, the result is a rank-one array of size size.

If the physical representation of the result is larger than source, the result contains source's
bit pattern in its right-most bits; the left-most bits of the result are undefined.

If the physical representation of the result is smaller than source, the result contains the
right-most bits of source's bit pattern.

Example

TRANSFER (1082130432, 0.0) has the value 4.0 (on processors that represent the values 4.0
and 1082130432 as the string of binary digits 0100 0000 1000 0000 0000 0000 0000 0000).

TRANSFER ((/2.2, 3.3, 4.4/), ((0.0, 0.0))) results in a scalar whose value is (2.2, 3.3).

TRANSFER ((/2.2, 3.3, 4.4/), (/(0.0, 0.0)/)) results in a complex rank-one array of length 2.
Its first element is (2.2,3.3) and its second element has a real part with the value 4.4 and an
undefined imaginary part.

TRANSFER ((/2.2, 3.3, 4.4/), (/(0.0, 0.0)/), 1) results in a complex rank-one array having one
element with the value (2.2, 3.3).

The following shows another example:

COMPLEX CVECTOR(2), CX(1)

! The next statement sets CVECTOR to

! [1.1 + 2.2i, 3.3 + 0.0i]

CVECTOR = TRANSFER((/1.1, 2.2, 3.3, 0.0/), &

(/(0.0, 0.0)/))

! The next statement sets CX to [1.1 + 2.2i]

CX = TRANSFER((/1.1, 2.2, 3.3/) , (/(0.0, 0.0)/), &

SIZE= 1)

WRITE(*,*) CVECTOR

WRITE(*,*) CX

END

3617

63

TRANSPOSE
Transformational Intrinsic Function (Generic):
Transposes an array of rank two.

Syntax

result = TRANSPOSE (matrix)

(Input) Must be a rank-two array. It may be of any data type.matrix

Results

The result is a rank-two array with the same type and kind parameters as matrix. Its shape
is (n, m), where (m, n) is the shape of matrix. For example, if the shape of matrix is (4,6),
the shape of the result is (6,4).

Element (i, j) of the result has the value matrix(j, i), where i is in the range 1 to n, and j is
in the range 1 to m.

Example

B is the array

[2 3 4]

[5 6 7]

[8 9 1].

TRANSPOSE (B) has the value

[2 5 8]

[3 6 9]

[4 7 1].

3618

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

INTEGER array(2, 3), result(3, 2)

array = RESHAPE((/1, 2, 3, 4, 5, 6/), (/2, 3/))

! array is 1 3 5

! 2 4 6

result = TRANSPOSE(array)

! result is 1 2

! 3 4

! 5 6

END

See Also
• T to Z
• RESHAPE
• PRODUCT

TRIM
Transformational Intrinsic Function (Generic):
Returns the argument with trailing blanks removed.

Syntax

result = TRIM (string)

(Input) Must be a scalar of type character.string

Results

The result is of type character with the same kind parameter as string. Its length is the length
of string minus the number of trailing blanks in string.

The value of the result is the same as string, except any trailing blanks are removed. If string
contains only blank characters, the result has zero length.

Example

TRIM (' NAME ') has the value ' NAME'.

TRIM (' C D ') has the value ' C D'.

3619

63

The following shows another example:

! next line prints 28

WRITE(*, *) LEN("I have blanks behind me ")

! the next line prints 23

WRITE(*,*) LEN(TRIM("I have blanks behind me "))

END

See Also
• T to Z
• LEN_TRIM

TTYNAM
Portability Subroutine: Specifies a terminal
device name.

Module

USE IFPORT

Syntax

CALL TTYNAM (string,lunit)

(Output) Character*(*). Name of the terminal device. If the Fortran
logical unit is not connected to a terminal, it returns a string filled
with blanks.

string

(Input) INTEGER(4). A Fortran logical unit number.lunit

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

TYPE Statement (Derived Types)
Statement: Declares a variable to be a derived
type. It specifies the name of the user-defined type
and the types of its components.

Syntax

TYPE [[,type-attr-spec-list] ::] name

3620

63 Intel® Fortran Compiler User and Reference Guides

component-definition

[component-definition]. . .

END TYPE [name]

Is access-spec or BIND (C).type-attr-spec-list

Is the PUBLIC or PRIVATE keyword. The keyword can only be
specified if the derived-type definition is in the specification part
of a module.

access-spec

Is the name of the derived data type. It must not be the same as
the name of any intrinsic type, or the same as the name of a
derived type that can be accessed from a module.

name

Is one or more type declaration statements defining the component
of derived type.

component-definition

The first component definition can be preceded by an optional
PRIVATE or SEQUENCE statement. (Only one PRIVATE or
SEQUENCE statement can appear in a given derived-type
definition.)
If SEQUENCE is present, all derived types specified in component
definitions must be sequence types.
A component definition takes the following form:
type[[, attr] ::] component[(a-spec)] [*char-len] [init-ex]

Is a type specifier. It can be an intrinsic type
or a previously defined derived type. (If the
POINTER attribute follows this specifier, the
type can also be any accessible derived type,
including the type being defined.)

type

Is an optional POINTER attribute for a pointer
component, or an optional DIMENSION or
ALLOCATABLE attribute for an array

attr

component. You cannot specify both the
ALLOCATABLE and POINTER attribute. If
DIMENSION is specified, it can be followed by
an array specification.
Each attribute can only appear once in a given
component-definition.

Is the name of the component being defined.component

3621

63

Is an optional array specification, enclosed in
parentheses. If POINTER or ALLOCATABLE is
specified, the array is deferred shape;

a-spec

otherwise, it is explicit shape. In an
explicit-shape specification, each bound must
be a constant scalar integer expression.
If the array bounds are not specified here,
they must be specified following the
DIMENSION attribute.

Is an optional scalar integer literal constant;
it must be preceded by an asterisk (*). This
parameter can only be specified if the
component is of type CHARACTER.

char-len

Is an initialization expression, or for pointer
components, => NULL(). This is a Fortran 95
feature.

init-ex

If init-ex is specified, a double colon must
appear in the component definition. The equals
assignment symbol (=) can only be specified
for nonpointer components.
The initialization expression is evaluated in
the scoping unit of the type definition.

Description

If a name is specified following the END TYPE statement, it must be the same name that follows
TYPE in the derived type statement.

A derived type can be defined only once in a scoping unit. If the same derived-type name
appears in a derived-type definition in another scoping unit, it is treated independently.

A component name has the scope of the derived-type definition only. Therefore, the same name
can be used in another derived-type definition in the same scoping unit.

Two data entities have the same type if they are both declared to be of the same derived type
(the derived-type definition can be accessed from a module or a host scoping unit).

If the entities are in different scoping units, they can also have the same derived type if they
are declared with reference to different derived-type definitions, and if both derived-type
definitions have all of the following:

• The same name

3622

63 Intel® Fortran Compiler User and Reference Guides

• A SEQUENCE statement (they both have sequence type)

• Components that agree in name, order, and attributes; components cannot be private

If BIND (C) is specified, the following rules apply:

• The derived type cannot be a SEQUENCE type.

• The derived type must have type parameters.

• Each component of the derived type must be a nonpointer, nonallocatable data component
with interoperable type and type parameters.

Example
! DERIVED.F90

! Define a derived-type structure,

! type variables, and assign values

TYPE member

INTEGER age

CHARACTER (LEN = 20) name

END TYPE member

TYPE (member) :: george

TYPE (member) :: ernie

george = member(33, 'George Brown')

ernie%age = 56

ernie%name = 'Ernie Brown'

WRITE (*,*) george

WRITE (*,*) ernie

END

3623

63

The following shows another example of a derived type:

TYPE mem_name

SEQUENCE

CHARACTER (LEN = 20) lastn

CHARACTER (LEN = 20) firstn

CHARACTER (len = 3) cos ! this works because COS is a component name

END TYPE mem_name

TYPE member

TYPE (mem_name) :: name

SEQUENCE

INTEGER age

CHARACTER (LEN = 20) specialty

END TYPE member

In the following example, a and b are both variable arrays of derived type pair:

TYPE (pair)

INTEGER i, j

END TYPE

TYPE (pair), DIMENSION (2, 2) :: a, b(3)

3624

63 Intel® Fortran Compiler User and Reference Guides

The following example shows how you can use derived-type objects as components of other
derived-type objects:

TYPE employee_name

CHARACTER(25) last_name

CHARACTER(15) first_name

END TYPE

TYPE employee_addr

CHARACTER(20) street_name

INTEGER(2) street_number

INTEGER(2) apt_number

CHARACTER(20) city

CHARACTER(2) state

INTEGER(4) zip

END TYPE

Objects of these derived types can then be used within a third derived-type specification, such
as:

TYPE employee_data

TYPE (employee_name) :: name

TYPE (employee_addr) :: addr

INTEGER(4) telephone

INTEGER(2) date_of_birth

INTEGER(2) date_of_hire

INTEGER(2) social_security(3)

LOGICAL(2) married

INTEGER(2) dependents

END TYPE

See Also
• C to D
• E to F

3625

63

• T to Z
• DIMENSION
• MAP...END MAP
• PRIVATE
• PUBLIC
• RECORD
• SEQUENCE
• STRUCTURE...END STRUCTURE
• Derived Data Types
• Default Initialization
• Structure Components
• Structure Constructors

Building Applications: Handling User-Defined Types

Type Declarations
Statement: Explicitly specifies the properties of
data objects or functions.

Syntax

A type declaration statement has the general form:

type[[, att] ... ::] v[/c-list/][, v[/c-list/]] ...

Is one of the following data type specifiers:type
BYTE
INTEGER[([KIND=]k)]
REAL[([KIND=]k)]
DOUBLE PRECISION
COMPLEX[([KIND=]k)]
DOUBLE COMPLEX
CHARACTER[([KIND=]k)]
LOGICAL[([KIND=]k)]
TYPE (derived-type-name)
In the optional kind selector "([KIND=]k)", k is the kind parameter.
It must be an acceptable kind parameter for that data type. If the
kind selector is not present, entities declared are of default type.

3626

63 Intel® Fortran Compiler User and Reference Guides

Kind parameters for intrinsic numeric and logical data types can
also be specified using the *n format, where n is the length (in
bytes) of the entity; for example, INTEGER*4.
See each data type for further information on that type.

Is one of the following attribute specifiers:att

PROTECTEDINTENTALLOCATABLE

PUBLIC1INTRINSICASYNCHRONOUS

SAVEOPTIONALAUTOMATIC

STATICPARAMETERBIND

TARGETPOINTERDIMENSION

VOLATILEPRIVATE1EXTERNAL

1These are access
specifiers.

You can also declare any attribute separately as a statement.

Is the name of a data object or function. It can optionally be
followed by:

att

• An array specification, if the object is an array.

In a function declaration, an array must be a deferred-shape
array if it has the POINTER attribute; otherwise, it must be an
explicit-shape array.

• A character length, if the object is of type character.

• An initialization expression preceded by an = or, for pointer
objects, => NULL().

A function name must be the name of an intrinsic function, external
function, function dummy procedure, or statement function.

Is a list of constants, as in a DATA statement. If v has the
PARAMETER attribute, the c-list cannot be present.

c-list

3627

63

The c-list cannot specify more than one value unless it initializes
an array. When initializing an array, the c-list must contain a
value for every element in the array.

Description

Type declaration statements must precede all executable statements.

In most cases, a type declaration statement overrides (or confirms) the implicit type of an
entity. However, a variable that appears in a DATA statement and is typed implicitly can appear
in a subsequent type declaration only if that declaration confirms the implicit typing.

The double colon separator (::) is required only if the declaration contains an attribute specifier
or initialization; otherwise it is optional.

If att appears, c-list cannot be specified; for example:

INTEGER I /2/ ! Valid

INTEGER, SAVE :: I /2/ ! Invalid

The same attribute must not appear more than once in a given type declaration statement,
and an entity cannot be given the same attribute more than once in a scoping unit.

If the PARAMETER attribute is specified, the declaration must contain an initialization expression.

If => NULL() is specified for a pointer, its initial association status is disassociated.

A variable (or variable subobject) can only be initialized once in an executable program.

The INTENT, VALUE, and OPTIONAL attributes can be specified only for dummy arguments.

The VALUE attribute must not be specified for a dummy procedure.

If a declaration contains an initialization expression, but no PARAMETER attribute is specified,
the object is a variable whose value is initially defined. The object becomes defined with the
value determined from the initialization expression according to the rules of intrinsic assignment.

The presence of initialization implies that the name of the object is saved, except for objects
in named common blocks or objects with the PARAMETER attribute.

The following objects cannot be initialized in a type declaration statement:

• A dummy argument

• A function result

• An object in a named common block (unless the type declaration is in a block data program
unit)

3628

63 Intel® Fortran Compiler User and Reference Guides

• An object in blank common

• An allocatable array

• An external name

• An intrinsic name

• An automatic object

• An object that has the AUTOMATIC attribute

An object can have more than one attribute. The following table lists the compatible attributes:

Table 929: Compatible Attributes

Compatible with:Attribute

AUTOMATIC, ASYNCHRONOUS, DIMENSION
1, PRIVATE, PROTECTED, PUBLIC, SAVE,
STATIC, TARGET, VOLATILE

ALLOCATABLE

ALLOCATABLE, AUTOMATIC, BIND,
DIMENSION, INTENT, OPTIONAL, POINTER,
PROTECTED, PUBLIC, SAVE, STATIC, TARGET,
VALUE, VOLATILE

ASYNCHRONOUS

ALLOCATABLE, ASYNCHRONOUS, BIND,
DIMENSION, POINTER, PROTECTED, TARGET,
VOLATILE

AUTOMATIC

ASYNCHRONOUS, AUTOMATIC, DIMENSION,
EXTERNAL, PRIVATE, PROTECTED, PUBLIC,
SAVE, STATIC, TARGET, VOLATILE

BIND

ALLOCATABLE, ASYNCHRONOUS,
AUTOMATIC, BIND, INTENT, OPTIONAL,
PARAMETER, POINTER, PRIVATE,
PROTECTED, PUBLIC, SAVE, STATIC, TARGET,
VOLATILE

DIMENSION

BIND, OPTIONAL, PRIVATE, PUBLICEXTERNAL

ASYNCHRONOUS, DIMENSION, OPTIONAL,
TARGET, VOLATILE

INTENT

3629

63

Compatible with:Attribute

PRIVATE, PUBLICINTRINSIC

ASYNCHRONOUS, DIMENSION, EXTERNAL,
INTENT, POINTER, TARGET, VALUE, VOLATILE

OPTIONAL

DIMENSION, PRIVATE, PUBLICPARAMETER

ASYNCHRONOUS, AUTOMATIC, DIMENSION
1, OPTIONAL, PRIVATE, PROTECTED, PUBLIC,
SAVE, STATIC, VOLATILE

POINTER

ASYNCHRONOUS, ALLOCATABLE, BIND,
DIMENSION, EXTERNAL, INTRINSIC,
PARAMETER, POINTER, PROTECTED, SAVE,
STATIC, TARGET, VOLATILE

PRIVATE

ALLOCATABLE, ASYNCHRONOUS, BIND,
DIMENSION, POINTER, PRIVATE, PUBLIC,
SAVE, TARGET, VOLATILE

PROTECTED

ASYNCHRONOUS, ALLOCATABLE, BIND,
DIMENSION, EXTERNAL, INTRINSIC,
PARAMETER, POINTER, PROTECTED, SAVE,
STATIC, TARGET, VOLATILE

PUBLIC

ALLOCATABLE, ASYNCHRONOUS, BIND,
DIMENSION, POINTER, PRIVATE,
PROTECTED, PUBLIC, STATIC, TARGET,
VOLATILE

SAVE

ALLOCATABLE, ASYNCHRONOUS, BIND,
DIMENSION, POINTER, PRIVATE,
PROTECTED, PUBLIC, SAVE, TARGET,
VOLATILE

STATIC

ALLOCATABLE, ASYNCHRONOUS,
AUTOMATIC, BIND, DIMENSION, INTENT,
OPTIONAL, PRIVATE, PROTECTED, PUBLIC,
SAVE, STATIC, VALUE, VOLATILE

TARGET

3630

63 Intel® Fortran Compiler User and Reference Guides

Compatible with:Attribute

ASYNCHRONOUS, INTENT (IN only),
OPTIONAL, TARGET

VALUE

ALLOCATABLE, ASYNCHRONOUS,
AUTOMATIC, BIND, DIMENSION, INTENT,
OPTIONAL, POINTER, PRIVATE, PROTECTED,
PUBLIC, SAVE, STATIC, TARGET

VOLATILE

1With deferred shape

Example

The following show valid type declaration statements:

DOUBLE PRECISION B(6)

INTEGER(KIND=2) I

REAL(KIND=4) X, Y

REAL(4) X, Y

LOGICAL, DIMENSION(10,10) :: ARRAY_A, ARRAY_B

INTEGER, PARAMETER :: SMALLEST = SELECTED_REAL_KIND(6, 70)

REAL(KIND (0.0)) M

COMPLEX(KIND=8) :: D

TYPE(EMPLOYEE) :: MANAGER

REAL, INTRINSIC :: COS

CHARACTER(15) PROMPT

CHARACTER*12, SAVE :: HELLO_MSG

INTEGER COUNT, MATRIX(4,4), SUM

LOGICAL*2 SWITCH

REAL :: X = 2.0

TYPE (NUM), POINTER :: FIRST => NULL()

3631

63

The following shows more examples:

REAL a (10)

LOGICAL, DIMENSION (5, 5) :: mask1, mask2

COMPLEX :: cube_root = (-0.5, 0.867)

INTEGER, PARAMETER :: short = SELECTED_INT_KIND (4)

REAL (KIND (0.0D0)) a1

REAL (KIND = 2) b

COMPLEX (KIND = KIND (0.0D0)) :: c

INTEGER (short) k ! Range at least -9999 to 9999

TYPE (member) :: george

See Also
• T to Z
• CHARACTER
• COMPLEX
• DOUBLE COMPLEX
• DOUBLE PRECISION
• INTEGER
• LOGICAL
• REAL
• IMPLICIT
• RECORD
• STRUCTURE
• TYPE
• Type Declaration Statements

DEFINE and UNDEFINE
General Compiler Directives: DEFINE creates a
symbolic variable whose existence or value can be
tested during conditional compilation. UNDEFINE
removes a defined symbol.

Syntax

cDEC$ DEFINE name[= val]

3632

63 Intel® Fortran Compiler User and Reference Guides

cDEC$ UNDEFINE name

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is the name of the variable.name

INTEGER(4). The value assigned to name.val

DEFINE creates and UNDEFINE removes symbols for use with the IF (or IF DEFINED) compiler
directive. Symbols defined with DEFINE directive are local to the directive. They cannot be
declared in the Fortran program.

Because Fortran programs cannot access the named variables, the names can duplicate Fortran
keywords, intrinsic functions, or user-defined names without conflict.

To test whether a symbol has been defined, use the IF DEFINED (name) directive. You can
assign an integer value to a defined symbol. To test the assigned value of name, use the IF
directive. IF test expressions can contain most logical and arithmetic operators.

Attempting to undefine a symbol that has not been defined produces a compiler warning.

The DEFINE and UNDEFINE directives can appear anywhere in a program, enabling and disabling
symbol definitions.

Example
!DEC$ DEFINE testflag

!DEC$ IF DEFINED (testflag)

write (*,*) 'Compiling first line'

!DEC$ ELSE

write (*,*) 'Compiling second line'

!DEC$ ENDIF

!DEC$ UNDEFINE testflag

See Also
• C to D
• T to Z
• IF Directive Construct
• General Compiler Directives
• D compiler option

Building Applications: Compiler Directives Related to Options

3633

63

Building Applications: Using Predefined Preprocessor Symbols

UNION...END UNION
Statements: Define a data area that can be
shared intermittently during program execution by
one or more fields or groups of fields. A union
declaration must be within a structure declaration.

Syntax

Each unique field or group of fields is defined by a separate map declaration.

UNION

map-declaration

map-declaration

[map-declaration]

. . .

[map-declaration]

END UNION

Takes the following form:map-declaration

MAP

field-declaration

[field-declaration]

. . .

[field-declaration]

END MAP

Is a structure declaration or RECORD
statement contained within a union
declaration, a union declaration contained

field-declaration

within a union declaration, or the declaration
of a data field (having a data type) within a
union. It can be of any intrinsic or derived
type.

3634

63 Intel® Fortran Compiler User and Reference Guides

As with normal Fortran type declarations, data can be initialized in field declaration statements
in union declarations. However, if fields within multiple map declarations in a single union are
initialized, the data declarations are initialized in the order in which the statements appear. As
a result, only the final initialization takes effect and all of the preceding initializations are
overwritten.

The size of the shared area established for a union declaration is the size of the largest map
defined for that union. The size of a map is the sum of the sizes of the fields declared within
it.

Manipulating data by using union declarations is similar to using EQUIVALENCE statements.
The difference is that data entities specified within EQUIVALENCE statements are concurrently
associated with a common storage location and the data residing there; with union declarations
you can use one discrete storage location to alternately contain a variety of fields (arrays or
variables).

With union declarations, only one map declaration within a union declaration can be associated
at any point in time with the storage location that they share. Whenever a field within another
map declaration in the same union declaration is referenced in your program, the fields in the
prior map declaration become undefined and are succeeded by the fields in the map declaration
containing the newly referenced field.

Example

In the following example, the structure WORDS_LONG is defined. This structure contains a
union declaration defining two map fields. The first map field consists of three INTEGER*2
variables (WORD_0, WORD_1, and WORD_2), and the second, an INTEGER*4 variable, LONG:

STRUCTURE /WORDS_LONG/

UNION

MAP

INTEGER*2 WORD_0, WORD_1, WORD_2

END MAP

MAP

INTEGER*4 LONG

END MAP

END UNION

END STRUCTURE

3635

63

The length of any record with the structure WORDS_LONG is 6 bytes. The following figure shows
the memory mapping of any record with the structure WORDS_LONG:

Figure 105: Memory Map of Structure WORDS_LONG

In the following example, note how the first 40 characters in the string2 array are overlayed
on 4-byte integers, while the remaining 20 are overlayed on 2-byte integers:

UNION

MAP

CHARACTER*20 string1, CHARACTER*10 string2(6)

END MAP

MAP

INTEGER*2 number(10), INTEGER*4 var(10), INTEGER*2

+ datum(10)

END MAP

END UNION

See Also
• E to F
• T to Z
• STRUCTURE...END STRUCTURE
• Record Structures

3636

63 Intel® Fortran Compiler User and Reference Guides

UNLINK
Portability Function: Deletes the file given by
path.

Module

USE IFPORT

Syntax

result = UNLINK (name)

(Input) Character*(*). Path of the file to delete. The path can use
forward (/) or backward (\) slashes as path separators and can
contain drive letters.

name

Results

The result type is INTEGER(4). The result is zero if successful; otherwise, an error code. Errors
can be one of the following:

• ENOENT: The specified file could not be found.

• EACCES: The specified file is read-only.

You must have adequate permission to delete the specified file.

On Windows systems, you will get the EACCES error if the file has been opened by any process.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

3637

63

Example
USE IFPORT

INTEGER(4) ISTATUS

CHARACTER*20 dirname

READ *, dirname

ISTATUS = UNLINK (dirname)

IF (ISTATUS) then

print *, 'Error ', ISTATUS

END IF

END

See Also
• T to Z
• SYSTEM
• DELDIRQQ

UNPACK
Transformational Intrinsic Function (Generic):
Takes elements from a rank-one array and unpacks
them into another (possibly larger) array under
the control of a mask.

Syntax

result = UNPACK (vector,mask,field)

(Input) Must be a rank-one array. It may be of any data type. Its
size must be at least t, where t is the number of true elements in
mask.

vector

(Input) Must be a logical array. It determines where elements of
vector are placed when they are unpacked.

mask

(Input) Must be of the same type and type parameters as vector
and conformable with mask. Elements in field are inserted into
the result array when the corresponding mask element has the
value false.

field

3638

63 Intel® Fortran Compiler User and Reference Guides

Results

The result is an array with the same shape as mask, and the same type and type parameters
as vector.

Elements in the result array are filled in array element order. If element i of mask is true, the
corresponding element of the result is filled by the next element in vector. Otherwise, it is
filled by field (if field is scalar) or the ith element of field (if field is an array).

Example

N is the array

[0 0 1]

[1 0 1]

[1 0 0],

P is the array (2, 3, 4, 5), and Q is the array

[T F F]

[F T F]

[T T F].

UNPACK (P, MASK=Q, FIELD=N) produces the result

[2 0 1]

[1 4 1]

[3 5 0].

UNPACK (P, MASK=Q, FIELD=1) produces the result

[2 1 1]

[1 4 1]

[3 5 1].

3639

63

The following shows another example:

LOGICAL mask (2, 3)

INTEGER vector(3) /1, 2, 3/, AR1(2, 3)

mask = RESHAPE((/.TRUE.,.FALSE.,.FALSE.,.TRUE.,&

.TRUE.,.FALSE./), (/2, 3/))

! vector = [1 2 3] and mask = T F T

! F T F

AR1 = UNPACK(vector, mask, 8) ! returns 1 8 3

! 8 2 8

END

See Also
• T to Z
• PACK
• RESHAPE
• SHAPE

UNPACKTIMEQQ
Portability Subroutine: Unpacks a packed time
and date value into its component parts.

Module

USE IFPORT

Syntax

CALL UNPACKTIMEQQ (timedate,iyr,imon,iday,ihr,imin,isec)

(Input) INTEGER(4). Packed time and date information.timedate

(Output) INTEGER(2). Year (xxxxAD).iyr

(Output) INTEGER(2). Month (1 - 12).imon

(Output) INTEGER(2). Day (1 - 31).iday

(Output) INTEGER(2). Hour (0 - 23).ihr

(Output) INTEGER(2). Minute (0 - 59).imin

(Output) INTEGER(2). Second (0 - 59).isec

3640

63 Intel® Fortran Compiler User and Reference Guides

GETFILEINFOQQ returns time and date in a packed format. You can use UNPACKTIMEQQ to
unpack these values. Use PACKTIMEQQ to repack times for passing to SETFILETIMEQQ. Packed
times can be compared using relational operators.

Compatibility

CONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIB

Example
USE IFPORT

CHARACTER(80) file

TYPE (FILE$INFO) info

INTEGER(4) handle, result

INTEGER(2) iyr, imon, iday, ihr, imin, isec

file = 'd:\f90ps\bin\t???.*'

handle = FILE$FIRST

result = GETFILEINFOQQ(file, info, handle)

CALL UNPACKTIMEQQ(info%lastwrite, iyr, imon,&

iday, ihr, imin, isec)

WRITE(*,*) iyr, imon, iday

WRITE(*,*) ihr, imin, isec

END

See Also
• T to Z
• PACKTIMEQQ
• GETFILEINFOQQ

UNREGISTERMOUSEEVENT (W*32, W*64)
QuickWin Function: Removes the callback routine
registered for a specified window by an earlier call
to REGISTERMOUSEEVENT.

Module

USE IFQWIN

3641

63

Syntax

result = UNREGISTERMOUSEEVENT (unit,mouseevents)

(Input) INTEGER(4) on IA-32 architecture; INTEGER(8) on Intel®

64 architecture and IA-64 architecture. Unit number of the window
whose callback routine on mouse events is to be unregistered.

unit

(Input) INTEGER(4). One or more mouse events handled by the
callback routine to be unregistered. Symbolic constants (defined
in IFQWIN.F90) for the possible mouse events are:

mouseevents

• MOUSE$LBUTTONDOWN - Left mouse button down

• MOUSE$LBUTTONUP - Left mouse button up

• MOUSE$LBUTTONDBLCLK - Left mouse button double-click

• MOUSE$RBUTTONDOWN - Right mouse button down

• MOUSE$RBUTTONUP - Right mouse button up

• MOUSE$RBUTTONDBLCLK - Right mouse button double-click

• MOUSE$MOVE - Mouse moved

Results

The result type is INTEGER(4). The result is zero or a positive integer if successful; otherwise,
a negative integer that can be one of the following:

• MOUSE$BADUNIT - The unit specified is not open, or is not associated with a QuickWin
window.

• MOUSE$BADEVENT - The event specified is not supported.

Once you call UNREGISTERMOUSEEVENT, QuickWin no longer calls the callback routine specified
earlier for the window when mouse events occur. Calling UNREGISTERMOUSEEVENT when no
callback routine is registered for the window has no effect.

Compatibility

QUICKWIN GRAPHICS LIB

See Also
• T to Z
• REGISTERMOUSEEVENT

3642

63 Intel® Fortran Compiler User and Reference Guides

• WAITONMOUSEEVENT

Building Applications: Using QuickWin Overview

UNROLL and NOUNROLL
General Compiler Directive: Tells the compiler's
optimizer how many times to unroll a DO loop or
disables the unrolling of a DO loop. These directives
can only be applied to iterative DO loops.

Syntax

cDEC$ UNROLL [(n)] -or- cDEC$ UNROLL [=n]

cDEC$ NOUNROLL

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is an integer constant. The range of n is 0 through 255.n

If n is specified, the optimizer unrolls the loop n times. If n is omitted, or if it is outside the
allowed range, the optimizer picks the number of times to unroll the loop.

The UNROLL directive overrides any setting of loop unrolling from the command line.

To use these directives, compiler option O2 or O3 must be set.

Example
cDEC$ UNROLL

do i =1, m

b(i) = a(i) + 1

d(i) = c(i) + 1

enddo

See Also
• M to N
• T to Z
• General Compiler Directives
• Rules for General Directives that Affect DO Loops
• O compiler option

3643

63

UNROLL_AND_JAM and NOUNROLL_AND_JAM
General Compiler Directive: Enables or disables
loop unrolling and jamming. These directives can
only be applied to iterative DO loops.

Syntax

cDEC$ UNROLL_AND_JAM [(n)] -or- cDEC$ UNROLL_AND_JAM [=n]

cDEC$ NOUNROLL_AND_JAM

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is an integer constant. The range of n is 0 through 255.n

Description

If n is specified, the optimizer unrolls the loop n times. If n is omitted, or if it is outside the
allowed range, the optimizer picks the number of times to unroll the loop. The loops are partially
unrolled and then the resulting loops are fused ("jammed") back together.

The UNROLL_AND_JAM directive overrides any setting of loop unrolling from the command line.
It takes precedence over all other unrolling directives, including NOUNROLL.

To use these directives, compiler option O2 or O3 must be set.

Example
cDEC$ UNROLL_AND_JAM = 4

do i =1, m

b(i) = a(c(i)) + 1

enddo

See Also
• T to Z
• General Compiler Directives
• Rules for General Directives that Affect DO Loops
• O compiler option

3644

63 Intel® Fortran Compiler User and Reference Guides

USE
Statement: Gives a program unit accessibility to
public entities in a module.

Syntax

USE [[, mod-nature] ::] name [, rename-list]...

USE [[, mod-nature] ::] name, ONLY : [, only-list]

Is INTRINSIC or NON_INTRINSIC. If INTRINSIC is used, name must
be the name of an intrinsic module. If NON_INTRINSIC is used,
name must be the name of an nonintrinsic module. If mod-nature

mod-nature

is not specified, name must be the name of an intrinsic or
nonintrinsic module. If both are provided, the nonintrinsic module
is used. It is an error to specify a user module and an intrinsic
module of the same name in the same program unit (see
Examples).

Is the name of the module.name

Is one or more items having the following form:rename-list
local-name=> mod-name

Is the name of the entity in the program unit
using the module or is "OPERATOR (op-name)",
where op-name is the name of a defined
operator in the program unit using the module.

local-name

Is the name of a public entity in the module
or is "OPERATOR (op-name)", where op-name
is the name of a public entity in the module.

mod-name

Is the name of a public entity in the module or a generic identifier
(a generic name, a defined operator specified as "OPERATOR
(op-name)",or defined assignment).

only-list

An entity in the only-list can also take the form:
[local-name =>] mod-name

Description

If the USE statement is specified without the ONLY option, the program unit has access to all
public entities in the named module.

3645

63

If the USE statement is specified with the ONLY option, the program unit has access to only
those entities following the option.

If more than one USE statement for a given module appears in a scoping unit, the following
rules apply:

• If one USE statement does not have the ONLY option, all public entities in the module are
accessible, and any rename-lists and only-lists are interpreted as a single, concatenated
rename-list.

• If all the USE statements have ONLY options, all the only-lists are interpreted as a single,
concatenated only-list. Only those entities named in one or more of the only-lists are
accessible.

If two or more generic interfaces that are accessible in a scoping unit have the same name,
the same operator, or are both assignments, they are interpreted as a single generic interface.
Otherwise, multiple accessible entities can have the same name only if no reference to the
name is made in the scoping unit.

The local names of entities made accessible by a USE statement must not be respecified with
any attribute other than PUBLIC or PRIVATE. The local names can appear in namelist group
lists, but not in a COMMON or EQUIVALENCE statement.

3646

63 Intel® Fortran Compiler User and Reference Guides

The following shows examples of the USE statement:

MODULE MOD_A

INTEGER :: B, C

REAL E(25,5), D(100)

END MODULE MOD_A

...

SUBROUTINE SUB_Y

USE MOD_A, DX => D, EX => E ! Array D has been renamed DX and array E

... ! has been renamed EX. Scalar variables B

END SUBROUTINE SUB_Y ! and C are also available to this subrou-

... ! tine (using their module names).

SUBROUTINE SUB_Z

USE MOD_A, ONLY: B, C ! Only scalar variables B and C are

... ! available to this subroutine

END SUBROUTINE SUB_Z

...

You must not specify a user module and an intrinsic module of the same name in the same
program unit. For example, if you specify a user module named ISO_FORTRAN_ENV, then it
is illegal to specify the following in the same program unit:

USE :: ISO_FORTRAN_ENV

USE, INTRINSIC :: ISO_FORTRAN_ENV

3647

63

The following example shows a module containing common blocks:

MODULE COLORS

COMMON /BLOCKA/ C, D(15)

COMMON /BLOCKB/ E, F

...

END MODULE COLORS

...

FUNCTION HUE(A, B)

USE COLORS

...

END FUNCTION HUE

The USE statement makes all of the variables in the common blocks in module COLORS available
to the function HUE.

3648

63 Intel® Fortran Compiler User and Reference Guides

To provide data abstraction, a user-defined data type and operations to be performed on values
of this type can be packaged together in a module. The following example shows such a module:

MODULE CALCULATION

TYPE ITEM

REAL :: X, Y

END TYPE ITEM

INTERFACE OPERATOR (+)

MODULE PROCEDURE ITEM_CALC

END INTERFACE

CONTAINS

FUNCTION ITEM_CALC (A1, A2)

TYPE(ITEM) A1, A2, ITEM_CALC

...

END FUNCTION ITEM_CALC

...

END MODULE CALCULATION

PROGRAM TOTALS

USE CALCULATION

TYPE(ITEM) X, Y, Z

...

X = Y + Z

...

END

The USE statement allows program TOTALS access to both the type ITEM and the extended
intrinsic operator + to perform calculations.

3649

63

The following shows another example:

! Module containing original type declarations

MODULE geometry

type square

real side

integer border

end type

type circle

real radius

integer border

end type

END MODULE

! Program renames module types for local use.

PROGRAM test

USE GEOMETRY,LSQUARE=>SQUARE,LCIRCLE=>CIRCLE

! Now use these types in declarations

type (LSQUARE) s1,s2

type (LCIRCLE) c1,c2,c3

The following shows a defined operator in a USE statement:

USE mymod, OPERATOR(.localop.) => OPERATOR(.moduleop.)

See Also
• T to Z
• Program Units and Procedures
• USE overview

3650

63 Intel® Fortran Compiler User and Reference Guides

%VAL
Built-in Function: Changes the form of an actual
argument. Passes the argument as an immediate
value.

Syntax

%VAL (a)

(Input) An expression, record name, procedure name, array,
character array section, or array element.

a

Description

The argument is passed as follows:

• On IA-32 architecture, as a 32-bit immediate value. If the argument is integer (or logical)
and shorter than 32 bits, it is sign-extended to a 32-bit value. For complex data types, %VAL
passes two 32-bit arguments.

• On Intel® 64 architecture and IA-64 architecture, as a 64-bit immediate value. If the argument
is integer (or logical) and shorter than 64 bits, it is sign-extended to a 64-bit value. For
complex data types, %VAL passes two 64-bit arguments.

You must specify %VAL in the actual argument list of a CALL statement or function reference.
You cannot use it in any other context.

The following tables list the Intel Fortran defaults for argument passing, and the allowed uses
of %VAL:

Table 930: Expressions

%VALDefaultActual Argument Data Type

Yes1REFLogical

Yes1REFInteger

YesREFREAL(4)

Yes2REFREAL(8)

NoREFREAL(16)

3651

63

%VALDefaultActual Argument Data Type

YesREFCOMPLEX(4)

YesREFCOMPLEX(8)

NoREFCOMPLEX(16)

NoSee table note 3Character

NoREFHollerith

NoREFAggregate4

NoREFDerived

Table 931: Array Name

%VALDefaultActual Argument Data Type

NoREFNumeric

NoSee table note 3Character

NoREFAggregate4

NoREFDerived

Table 932: Procedure Name

%VALDefaultActual Argument Data Type

NoREFNumeric

NoSee table note 3Character

The %VAL and %REF functions override related cDEC$ ATTRIBUTE settings.

Example
CALL SUB(2, %VAL(2))

Constant 2 is passed by reference. The second constant 2 is passed by immediate value.

3652

63 Intel® Fortran Compiler User and Reference Guides

1 If a logical or integer value occupies less than 64 bits of storage on Intel® 64 architecture and
IA-64 architecture, or 32 bits of storage on IA-32 architecture, it is converted to the correct
size by sign extension. Use the ZEXT intrinsic function if zero extension is desired.
2 i64 only
3 A character argument is passed by address and hidden length.
4 In Intel Fortran record structures

See Also
• T to Z
• CALL
• %REF
• %LOC

VALUE
Statement and Attribute: Specifies a type of
argument association for a dummy argument.

Syntax

The VALUE attribute can be specified in a type declaration statement or a VALUE statement,
and takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] VALUE [att-ls,] :: arg [, arg] ...

Statement:

VALUE [::] arg [, arg]...

Is a data type specifier.type

Is an optional list of attribute specifiers.att-ls

Is the name of a dummy argument.arg

Description

The VALUE attribute can be used in INTERFACE body or in a procedure. It can only be specified
for dummy arguments. It cannot be specified for a dummy procedure.

When this attribute is specified, the effect is as if the actual argument is assigned to a temporary,
and the temporary is the argument associated with the dummy argument. The actual mechanism
by which this happens is determined by the processor.

3653

63

When the VALUE attribute is used in a type declaration statement, any length type parameter
values must be omitted or they must be specified by initialization expressions.

If the VALUE attribute is specified, you cannot specify a PARAMETER, EXTERNAL, POINTER,
ALLOCATABLE, DIMENSION, VOLATILE, or INTENT (INOUT or OUT) attribute in the same scoping
unit.

Example

The following example shows how the VALUE attribute can be applied in a type declaration
statement.

j = 3

call sub (j)

write (*,*) j ! Writes 3

contains

subroutine sub (i)

integer, value :: I

i = 4

write (*,*) i ! Writes 4

end subroutine sub

end

See Also
• T to Z
• Type Declarations
• Compatible attributes

VECTOR ALIGNED and VECTOR UNALIGNED
General Compiler Directive: Specifies that all
data is aligned or no data is aligned in a DO loop.

Syntax

cDEC$ VECTOR ALIGNED

cDEC$ VECTOR UNALIGNED

3654

63 Intel® Fortran Compiler User and Reference Guides

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Description

These directives override efficiency heuristics in the optimizer. The qualifiers UNALIGNED and
ALIGNED instruct the compiler to use, respectively, unaligned and aligned data movement
instructions for all array references. This disables all the advanced alignment optimizations of
the compiler, such as determining alignment properties from the program context or using
dynamic loop peeling to make references aligned.

CAUTION. The directives VECTOR ALIGNED and VECTOR UNALIGNED should be used
with care. Overriding the efficiency heuristics of the compiler should only be done if you
are absolutely sure the vectorization will improve performance.

Furthermore, instructing the compiler to implement all array references with aligned data
movement instructions will cause a runtime exception if some of the access patterns are
actually unaligned.

See Also
• T to Z
• T to Z
• Rules for General Directives that Affect DO Loops

VECTOR ALWAYS and NOVECTOR
General Compiler Directive: Enables or disables
vectorization of a DO loop.

Syntax

cDEC$ VECTOR ALWAYS

cDEC$ NOVECTOR

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

The VECTOR ALWAYS and NOVECTOR directives override the default behavior of the compiler.
The VECTOR ALWAYS directive also overrides efficiency heuristics of the vectorizer, but it only
works if the loop can actually be vectorized. You should use the IVDEP directive to ignore
assumed dependences.

3655

63

CAUTION. The directive VECTOR ALWAYS should be used with care. Overriding the
efficiency heuristics of the compiler should only be done if you are absolutely sure the
vectorization will improve performance.

Example

The compiler normally does not vectorize DO loops that have a large number of non-unit stride
references (compared to the number of unit stride references).

In the following example, vectorization would be disabled by default, but the directive overrides
this behavior:

!DEC$ VECTOR ALWAYS

do i = 1, 100, 2

! two references with stride 2 follow

a(i) = b(i)

enddo

There may be cases where you want to explicitly avoid vectorization of a loop; for example, if
vectorization would result in a performance regression rather than an improvement. In these
cases, you can use the NOVECTOR directive to disable vectorization of the loop.

In the following example, vectorization would be performed by default, but the directive overrides
this behavior:

!DEC$ NOVECTOR

do i = 1, 100

a(i) = b(i) + c(i)

enddo

See Also
• M to N
• T to Z
• Rules for General Directives that Affect DO Loops

3656

63 Intel® Fortran Compiler User and Reference Guides

VECTOR TEMPORAL and VECTOR NONTEMPORAL (i32, i64em)
General Compiler Directive: Controls how the
"stores" of register contents to storage are
performed (streaming versus non-streaming).
These directives are only available on IA-32
architecture and Intel® 64 architecture.

Syntax

cDEC$ VECTOR TEMPORAL

cDEC$ VECTOR NONTEMPORAL [(var[, var]...)]

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is an optional memory reference in the form of a variable name.val

Description

VECTOR NONTEMPORAL directs the compiler to use non-temporal (that is, streaming) stores.
VECTOR TEMPORAL directs the compiler to use temporal (that is, non-streaming) stores.

By default, the compiler automatically determines whether a streaming store should be used
for each variable.

Streaming stores may cause significant performance improvements over non-streaming stores
for large numbers on certain processors. However, the misuse of streaming stores can
significantly degrade performance.

For more information on this directive, including an example, see Optimizing Applications:
Vectorization Support.

See Also
• T to Z
• T to Z
• Rules for General Directives that Affect DO Loops

3657

63

VECTOR TEMPORAL and VECTOR NONTEMPORAL (i32, i64em)
General Compiler Directive: Controls how the
"stores" of register contents to storage are
performed (streaming versus non-streaming).
These directives are only available on IA-32
architecture and Intel® 64 architecture.

Syntax

cDEC$ VECTOR TEMPORAL

cDEC$ VECTOR NONTEMPORAL [(var[, var]...)]

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Is an optional memory reference in the form of a variable name.val

Description

VECTOR NONTEMPORAL directs the compiler to use non-temporal (that is, streaming) stores.
VECTOR TEMPORAL directs the compiler to use temporal (that is, non-streaming) stores.

By default, the compiler automatically determines whether a streaming store should be used
for each variable.

Streaming stores may cause significant performance improvements over non-streaming stores
for large numbers on certain processors. However, the misuse of streaming stores can
significantly degrade performance.

For more information on this directive, including an example, see Optimizing Applications:
Vectorization Support.

See Also
• T to Z
• T to Z
• Rules for General Directives that Affect DO Loops

3658

63 Intel® Fortran Compiler User and Reference Guides

VECTOR ALIGNED and VECTOR UNALIGNED
General Compiler Directive: Specifies that all
data is aligned or no data is aligned in a DO loop.

Syntax

cDEC$ VECTOR ALIGNED

cDEC$ VECTOR UNALIGNED

Is one of the following: C (or c), !, or *. (See Syntax Rules for
Compiler Directives.)

c

Description

These directives override efficiency heuristics in the optimizer. The qualifiers UNALIGNED and
ALIGNED instruct the compiler to use, respectively, unaligned and aligned data movement
instructions for all array references. This disables all the advanced alignment optimizations of
the compiler, such as determining alignment properties from the program context or using
dynamic loop peeling to make references aligned.

CAUTION. The directives VECTOR ALIGNED and VECTOR UNALIGNED should be used
with care. Overriding the efficiency heuristics of the compiler should only be done if you
are absolutely sure the vectorization will improve performance.

Furthermore, instructing the compiler to implement all array references with aligned data
movement instructions will cause a runtime exception if some of the access patterns are
actually unaligned.

See Also
• T to Z
• T to Z
• Rules for General Directives that Affect DO Loops

3659

63

VERIFY
Elemental Intrinsic Function (Generic): Verifies
that a set of characters contains all the characters
in a string by identifying the first character in the
string that is not in the set.

Syntax

result = VERIFY (string, set [, back] [, kind])

(Input) Must be of type character.string

(Input) Must be of type character with the same kind parameter
as string.

set

(Input; optional) Must be of type logical.back

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified
by kind; otherwise, the kind parameter of the result is that of default integer. If the processor
cannot represent the result value in the kind of the result, the result is undefined.

If back is omitted (or is present with the value false) and string has at least one character
that is not in set, the value of the result is the position of the leftmost character of string
that is not in set.

If back is present with the value true and string has at least one character that is not in set,
the value of the result is the position of the rightmost character of string that is not in set.

If each character of string is in set or the length of string is zero, the value of the result is
zero.

The setting of compiler options specifying integer size can affect this function.

Example

VERIFY ('CDDDC', 'C') has the value 2.

VERIFY ('CDDDC', 'C', BACK=.TRUE.) has the value 4.

VERIFY ('CDDDC', 'CD') has the value zero.

3660

63 Intel® Fortran Compiler User and Reference Guides

The following shows another example:

INTEGER(4) position

position = VERIFY ('banana', 'nbc') ! returns 2

position = VERIFY ('banana', 'nbc', BACK=.TRUE.)

! returns 6

position = VERIFY ('banana', 'nbca') ! returns 0

See Also
• T to Z
• SCAN

VIRTUAL
Statement: Has the same form and effect as the
DIMENSION statement. It is included for
compatibility with PDP-11 FORTRAN.

See Also
• T to Z
• DIMENSION

VOLATILE
Statement and Attribute: Specifies that the value
of an object is entirely unpredictable, based on
information local to the current program unit. It
prevents objects from being optimized during
compilation.

Syntax

The VOLATILE attribute can be specified in a type declaration statement or a VOLATILE
statement, and takes one of the following forms:

Type Declaration Statement:

type, [att-ls,] VOLATILE [, att-ls] :: object[, object] ...

Statement:

VOLATILE [::] object[, object] ...

Is a data type specifier.type

3661

63

Is an optional list of attribute specifiers.att-ls

Is the name of an object, or the name of a common block enclosed
in slashes.

object

A variable or COMMON block must be declared VOLATILE if it can be read or written in a way
that is not visible to the compiler. For example:

• If an operating system feature is used to place a variable in shared memory (so that it can
be accessed by other programs), the variable must be declared VOLATILE.

• If a variable is accessed or modified by a routine called by the operating system when an
asynchronous event occurs, the variable must be declared VOLATILE.

If an array is declared VOLATILE, each element in the array becomes volatile. If a common
block is declared VOLATILE, each variable in the common block becomes volatile.

If an object of derived type is declared VOLATILE, its components become volatile.

If a pointer is declared VOLATILE, the pointer itself becomes volatile.

A VOLATILE statement cannot specify the following:

• A procedure

• A namelist group

Example

The following example shows a type declaration statement specifying the VOLATILE attribute:

INTEGER, VOLATILE :: D, E

The following example shows a VOLATILE statement:

PROGRAM TEST

LOGICAL(KIND=1) IPI(4)

INTEGER(KIND=4) A, B, C, D, E, ILOOK

INTEGER(KIND=4) P1, P2, P3, P4

COMMON /BLK1/A, B, C

VOLATILE /BLK1/, D, E

EQUIVALENCE(ILOOK, IPI)

EQUIVALENCE(A, P1)

EQUIVALENCE(P1, P4)

3662

63 Intel® Fortran Compiler User and Reference Guides

The named common block, BLK1, and the variables D and E are volatile. Variables P1 and P4
become volatile because of the direct equivalence of P1 and the indirect equivalence of P4.

See Also
• T to Z
• Type Declarations
• Compatible attributes

Optimizing Applications: Improving I/O Performance

WAIT
Statement: Performs a wait operation for a
specified pending asynchronous data transfer
operation. It takes one of the following forms:

Syntax

WAIT([UNIT=]io-unit [, END=label] [, EOR=label] [, ERR=label] [, ID=id-var]
[, IOSTAT=i-var])

WAIT io-unit

(Input) Is an external unit specifier.io-unit

(Input) Is the label of the branch target statement that receives
control if an error occurs.

label

(Input) Is a scalar integer variable that is the identifier of a pending
data transfer operation for the specified unit. If it is specified, a
wait operation is performed for that pending operation. If it is
omitted, wait operations are performed for all pending data
transfers for the specified unit.

id-var

(Output) Is a scalar integer variable that is defined as a positive
integer if an error occurs and zero if no error occurs.

i-var

A wait operation completes the processing of a pending data transfer operation. Each wait
operation completes only a single data transfer operation, although a single statement may
perform multiple wait operations.

The WAIT statement specifiers can appear in any order. An I/O unit must be specified, but the
UNIT= keyword is optional if the unit specifier is the first item in the I/O control list.

The EOR= specifier only has effect if the pending data transfer operation is a nonadvancing
read. The END= specifier only has effect if the pending data transfer operation is a READ.

3663

63

Example

The following example shows how the WAIT statement can be applied.

program test

integer, asynchronous, dimension(100) :: array

open (unit=1,file='asynch.dat',asynchronous='YES',&

form='unformatted')

write (1) (i,i=1,100)

rewind (1)

read (1,asynchronous='YES') array

wait(1)

write (*,*) array(1:10)

end

WAITONMOUSEEVENT (W*32, W*64)
QuickWin Function:Waits for the specified mouse
input from the user.

Module

USE IFQWIN

Syntax

result = WAITONMOUSEEVENT (mouseevents,keystate,x,y)

(Input) INTEGER(4). One or more mouse events that must occur
before the function returns. Symbolic constants for the possible
mouse events are:

mouseevents

• MOUSE$LBUTTONDOWN - Left mouse button down

• MOUSE$LBUTTONUP - Left mouse button up

• MOUSE$LBUTTONDBLCLK - Left mouse button double-click

• MOUSE$RBUTTONDOWN - Right mouse button down

• MOUSE$RBUTTONUP - Right mouse button up

• MOUSE$RBUTTONDBLCLK - Right mouse button double-click

3664

63 Intel® Fortran Compiler User and Reference Guides

• MOUSE$MOVE - Mouse moved

(Output) INTEGER(4). Bitwise inclusive OR of the state of the
mouse during the event. The value returned in keystate can be
any or all of the following symbolic constants:

keystate

• MOUSE$KS_LBUTTON - Left mouse button down during event

• MOUSE$KS_RBUTTON - Right mouse button down during event

• MOUSE$KS_SHIFT - SHIFTkey held down during event

• MOUSE$KS_CONTROL - CTRLkey held down during event

(Output) INTEGER(4). X position of the mouse when the event
occurred.

x

(Output) INTEGER(4). Y position of the mouse when the event
occurred.

y

Results

The result type is INTEGER(4). The result is the symbolic constant associated with the mouse
event that occurred if successful. If the function fails, it returns the constant MOUSE$BADEVENT,
meaning the event specified is not supported.

WAITONMOUSEEVENT does not return until the specified mouse input is received from the user.
While waiting for a mouse event to occur, the status bar changes to read "Mouse input pending
in XXX", where XXX is the name of the window. When a mouse event occurs, the status bar
returns to its previous value.

A mouse event must happen in the window that had focus when WAITONMOUSEEVENT was
initially called. Mouse events in other windows will not end the wait. Mouse events in other
windows cause callbacks to be called for the other windows, if callbacks were previously
registered for those windows.

For every BUTTONDOWN or BUTTONDBLCLK event there is an associated BUTTONUP event.
When the user double clicks, four events happen: BUTTONDOWN and BUTTONUP for the first
click, and BUTTONDBLCLK and BUTTONUP for the second click. The difference between getting
BUTTONDBLCLK and BUTTONDOWN for the second click depends on whether the second click
occurs in the double click interval, set in the system's CONTROL PANEL/MOUSE.

Compatibility

QUICKWIN GRAPHICS LIB

3665

63

Example
USE IFQWIN

INTEGER(4) mouseevent, keystate, x, y, result

...

mouseevent = MOUSE$RBUTTONDOWN .OR. MOUSE$LBUTTONDOWN

result = WAITONMOUSEEVENT (mouseevent, keystate, x , y)

!

! Wait until right or left mouse button clicked, then check the keystate

! with the following:

!

if ((MOUSE$KS_SHIFT .AND. keystate) == MOUSE$KS_SHIFT) then &

& write (*,*) 'Shift key was down'

if ((MOUSE$KS_CONTROL .AND. keystate) == MOUSE$KS_CONTROL) then &

& write (*,*) 'Ctrl key was down'

See Also
• T to Z

REGISTERMOUSEEVENT

UNREGISTERMOUSEEVENT

Building Applications: Blocking Procedures

WHERE
Statement and Construct: Lets you use masked
array assignment, which performs an array
operation on selected elements. This kind of
assignment applies a logical test to an array on an
element-by-element basis.

Syntax

Statement:

WHERE (mask-expr1) assign-stmt

3666

63 Intel® Fortran Compiler User and Reference Guides

Construct:

[name:]WHERE (mask-expr1)

[where-body-stmt] ...

[ELSE WHERE(mask-expr2) [name]

[where-body-stmt] ...]

[ELSE WHERE[name]

[where-body-stmt] ...]

END WHERE [name]

Are logical array expressions (called mask expressions).mask-expr1, mask-expr2

Is an assignment statement of the form: array variable = array
expression.

assign-stmt

Is the name of the WHERE construct.name

Is one of the following:where-body-stmt

• An assign-stmt

The assignment can be a defined assignment only if the routine
implementing the defined assignment is elemental.

• A WHERE statement or construct

Description

If a construct name is specified in a WHERE statement, the same name must appear in the
corresponding END WHERE statement. The same construct name can optionally appear in any
ELSE WHERE statement in the construct. (ELSE WHERE cannot specify a different name.)

In each assignment statement, the mask expression, the variable being assigned to, and the
expression on the right side, must all be conformable. Also, the assignment statement cannot
be a defined assignment.

Only the WHERE statement (or the first line of the WHERE construct) can be labeled as a branch
target statement.

3667

63

The following shows an example using a WHERE statement:

INTEGER A, B, C

DIMENSION A(5), B(5), C(5)

DATA A /0,1,1,1,0/

DATA B /10,11,12,13,14/

C = -1

WHERE(A .NE. 0) C = B / A

The resulting array C contains: -1,11,12,13, and -1.

The assignment statement is only executed for those elements where the mask is true. Think
of the mask expression as being evaluated first into a logical array that has the value true for
those elements where A is positive. This array of trues and falses is applied to the arrays A, B
and C in the assignment statement. The right side is only evaluated for elements for which the
mask is true; assignment on the left side is only performed for those elements for which the
mask is true. The elements for which the mask is false do not get assigned a value.

In a WHERE construct, the mask expression is evaluated first and only once. Every assignment
statement following the WHERE is executed as if it were a WHERE statement with " mask-expr1"
and every assignment statement following the ELSE WHERE is executed as if it were a WHERE
statement with ".NOT. mask-expr1". If ELSE WHERE specifies "mask-expr2", it is executed as
"(.NOT. mask-expr1) .AND. mask-expr2" during the processing of the ELSE WHERE statement.

You should be careful if the statements have side effects, or modify each other or the mask
expression.

The following is an example of the WHERE construct:

DIMENSION PRESSURE(1000), TEMP(1000), PRECIPITATION(1000)

WHERE(PRESSURE .GE. 1.0)

PRESSURE = PRESSURE + 1.0

TEMP = TEMP - 10.0

ELSEWHERE

PRECIPITATION = .TRUE.

ENDWHERE

3668

63 Intel® Fortran Compiler User and Reference Guides

The mask is applied to the arguments of functions on the right side of the assignment if they
are considered to be elemental functions. Only elemental intrinsics are considered elemental
functions. Transformational intrinsics, inquiry intrinsics, and functions or operations defined in
the subprogram are considered to be nonelemental functions.

Consider the following example using LOG, an elemental function:

WHERE(A .GT. 0) B = LOG(A)

The mask is applied to A, and LOG is executed only for the positive values of A. The result of
the LOG is assigned to those elements of B where the mask is true.

Consider the following example using SUM, a nonelemental function:

REAL A, B

DIMENSION A(10,10), B(10)

WHERE(B .GT. 0.0) B = SUM(A, DIM=1)

Since SUM is nonelemental, it is evaluated fully for all of A. Then, the assignment only happens
for those elements for which the mask evaluated to true.

Consider the following example:

REAL A, B, C

DIMENSION A(10,10), B(10), C(10)

WHERE(C .GT. 0.0) B = SUM(LOG(A), DIM=1)/C

Because SUM is nonelemental, all of its arguments are evaluated fully regardless of whether
they are elemental or not. In this example, LOG(A) is fully evaluated for all elements in A even
though LOG is elemental. Notice that the mask is applied to the result of the SUM and to C to
determine the right side. One way of thinking about this is that everything inside the argument
list of a nonelemental function does not use the mask, everything outside does.

Example
REAL(4) a(20)

. . .

WHERE (a > 0.0)

a = LOG (a)

!LOG is invoked only for positive elements

END WHERE

3669

63

See Also
• T to Z
• FORALL
• Arrays

WORKSHARE
OpenMP* Fortran Compiler Directive: Divides
the work of executing a block of statements or
constructs into separate units. It also distributes
the work of executing the units to threads of the
team so each unit is only executed once.

Syntax

c$OMP WORKSHARE

block

c$OMP END WORKSHARE[NOWAIT]

Is one of the following: C (or c), !, or * (see Syntax Rules for
Compiler Directives).

c

Is a structured block (section) of statements or constructs. No
branching into or out of the block of code is allowed.

block

The block is executed so that each statement is completed before
the next statement is started and the evaluation of the right hand
side of an assignment is completed before the effects of assigning
to the left hand side occur.
The following are additional rules for this argument:

• block may contain statements which bind to lexically enclosed
PARALLEL constructs. Statements in these PARALLEL constructs
are not restricted.

• block may contain ATOMIC directives and CRITICAL constructs.

• block must only contain array assignment statements, scalar
assignment statements, FORALL statements, FORALL constructs,
WHERE statements, or WHERE constructs.

• block must not contain any user defined function calls unless
the function is ELEMENTAL.

3670

63 Intel® Fortran Compiler User and Reference Guides

If you do not specify the NOWAIT keyword, synchronization is implied following the code.

See Also
• T to Z
• OpenMP Fortran Compiler Directives
• PARALLEL WORKSHARE

WRAPON (W*32, W*64)
Graphics Function: Controls whether text output
is wrapped.

Module

USE IFQWIN

Syntax

result = WRAPON (option)

(Input) INTEGER(2). Wrap mode. One of the following symbolic
constants:

option

• $GWRAPOFF - Truncates lines at right edge of window border.

• $GWRAPON - Wraps lines at window border, scrolling if
necessary.

Results

The result type is INTEGER(2). The result is the previous value of option.

WRAPON controls whether text output with the OUTTEXT function wraps to a new line or is
truncated when the text output reaches the edge of the defined text window.

WRAPON does not affect font routines such as OUTGTEXT.

Compatibility

STANDARD GRAPHICS QUICKWIN GRAPHICS LIB

3671

63

Example
USE IFQWIN

INTEGER(2) row, status2

INTEGER(4) status4

TYPE (rccoord) curpos

TYPE (windowconfig) wc

LOGICAL status

status = GETWINDOWCONFIG(wc)

wc%numtextcols = 80

wc%numxpixels = -1

wc%numypixels = -1

wc%numtextrows = -1

wc%numcolors = -1

wc%fontsize = -1

wc%title = "This is a test"C

wc%bitsperpixel = -1

status = SETWINDOWCONFIG(wc)

status4= SETBKCOLORRGB(#FF0000)

CALL CLEARSCREEN($GCLEARSCREEN)

! Display wrapped and unwrapped text in text windows.

CALL SETTEXTWINDOW(INT2(1),INT2(1),INT2(5),INT2(25))

CALL SETTEXTPOSITION(INT2(1),INT2(1), curpos)

status2 = WRAPON($GWRAPON)

status4 = SETTEXTCOLORRGB(#00FF00)

DO i = 1, 5

CALL OUTTEXT('Here text does wrap. ')

END DO

CALL SETTEXTWINDOW(INT2(7),INT2(10),INT2(11),INT2(40))

3672

63 Intel® Fortran Compiler User and Reference Guides

CALL SETTEXTPOSITION(INT2(1),INT2(1),curpos)

status2 = WRAPON($GWRAPOFF)

status4 = SETTEXTCOLORRGB(#008080)

DO row = 1, 5

CALL SETTEXTPOSITION(INT2(row), INT2(1), curpos)

CALL OUTTEXT('Here text does not wrap. ')

CALL OUTTEXT('Here text does not wrap.')

END DO

READ (*,*) ! Wait for ENTER to be pressed

END

See Also
• T to Z
• OUTTEXT
• SCROLLTEXTWINDOW
• SETTEXTPOSITION
• SETTEXTWINDOW

WRITE Statement
Statement: Transfers output data to external
sequential, direct-access, or internal records.

Syntax

Sequential

Formatted:

WRITE (eunit, format [, advance] [, asynchronous] [, id] [, pos] [, iostat]
[,err]) [io-list]

Formatted - List-Directed:

WRITE (eunit, * [, asynchronous] [, id] [, pos] [, iostat] [, err]) [io-list]

Formatted - Namelist:

WRITE (eunit, nml-group [, asynchronous] [, id] [, pos] [, iostat] [, err])

3673

63

Unformatted:

WRITE (eunit [, asynchronous] [, id] [, pos] [, iostat] [, err]) [io-list]

Direct-Access

Formatted:

WRITE (eunit, format, rec [, asynchronous] [, id] [, pos] [, iostat] [, err])
[io-list]

Unformatted:

WRITE (eunit, rec [, asynchronous] [, id] [, pos] [, iostat] [, err]) [io-list]

Internal

WRITE (iunit, format [, iostat] [, err]) [io-list]

Is an external unit specifier, optionally prefaced by UNIT=. UNIT=
is required if eunit is not the first specifier in the list.

eunit

Is a format specifier. It is optionally prefaced by FMT= if format
is the second specifier in the list and the first specifier indicates a
logical or internal unit specifier without the optional keyword
UNIT=.

format

Is an advance specifier (ADVANCE=c-expr). If the value of c-expr
is 'YES', the statement uses advancing input; if the value is 'NO',
the statement uses nonadvancing input. The default value is 'YES'.

advance

Is an asynchronous specifier (ASYNCHRONOUS=i-expr). If the
value of i-expr is 'YES', the statement uses asynchronous input;
if the value is 'NO', the statement uses synchronous input. The
default value is 'NO'.

asynchronous

Is an id specifier (ID=id-var). If ASYNCHRONOUS='YES' is
specified and the operation completes successfully, the id specifier
becomes defined with an implementation-dependent value that

id

can be specified in a future WAIT or INQUIRE statement to identify
the particular data transfer operation. If an error occurs, the id
specifier variable becomes undefined.

Is a pos specifier (POS=p) that indicates a file position in file
storage units in a stream file (ACCESS='STREAM'). It can only be
specified on a file opened for stream access. If omitted, the stream
I/O occurs starting at the next file position after the current file
position.

pos

3674

63 Intel® Fortran Compiler User and Reference Guides

Is the name of a variable to contain the completion status of the
I/O operation. Optionally prefaced by IOSTAT=.

iostat

Are branch specifiers if an error (ERR=label) condition occurs.err

Is an I/O list: the names of the variables, arrays, array elements,
or character substrings from which or to which data will be
transferred. Optionally an implied-DO list.

io-list

Is the nonkeyword form of a format specifier (no FMT=).form

Is the format specifier indicating list-directed formatting. (It can
also be specified as FMT= *.)

*

Is the namelist group specification for namelist I/O. Optionally
prefaced by NML=. NML= is required if nml-group is not the second
I/O specifier. For more information, see Namelist Specifier.

nml-group

Is the cell number of a record to be accessed directly. Optionally
prefaced by REC=.

rec

Is an internal unit specifier, optionally prefaced by UNIT=. UNIT=
is required if iunit is not the first specifier in the list.

iunit

It must be a character variable. It must not be an array section
with a vector subscript.
If an item in io-list is an expression that calls a function, that
function must not execute an I/O statement or the EOF intrinsic
function on the same external unit as eunit.

Example
! write to file

open(1,FILE='test.dat')

write (1, '(A20)') namedef

! write with FORMAT statement

WRITE (*, 10) (n, SQRT(FLOAT(n)), FLOAT(n)**(1.0/3.0), n = 1, 100)

10 FORMAT (I5, F8.4, F8.5)

The following shows another example:

WRITE(6,'("Expected ",F12.6)') 2.0

See Also
• T to Z

3675

63

• I/O Lists
• I/O Control List
• Forms for Sequential WRITE Statements
• Forms for Direct-Access WRITE Statements
• Forms and Rules for Internal WRITE Statements
• READ
• PRINT
• OPEN
• I/O Formatting

XOR
See IEOR.

ZEXT
Elemental Intrinsic Function (Generic):
Extends an argument with zeros. This function is
used primarily for bit-oriented operations. It cannot
be passed as an actual argument.

Syntax

result = ZEXT (x [,kind])

(Input) Must be of type logical or integer.x

(Input; optional) Must be a scalar integer initialization expression.kind

Results

The result type is integer. If kind is present, the kind parameter of the result is that specified
by kind; otherwise, the kind parameter of the result is that of default integer. If the processor
cannot represent the result value in the kind of the result, the result is undefined.

The result value is x extended with zeros and treated as an unsigned value.

The storage requirements for integer constants are never less than two bytes. Integer constants
within the range of constants that can be represented by a single byte still require two bytes
of storage.

The setting of compiler options specifying integer size can affect this function.

3676

63 Intel® Fortran Compiler User and Reference Guides

Result TypeArgument TypeSpecific Name 1

INTEGER(2)LOGICAL(1)IZEXT

INTEGER(2)LOGICAL(2)

INTEGER(2)INTEGER(1)

INTEGER(2)INTEGER(2)

INTEGER(4)LOGICAL(1)JZEXT

INTEGER(4)LOGICAL(2)

INTEGER(4)LOGICAL(4)

INTEGER(4)INTEGER(1)

INTEGER(4)INTEGER(2)

INTEGER(4)INTEGER(4)

INTEGER(8)LOGICAL(1)KZEXT

INTEGER(8)LOGICAL(2)

INTEGER(8)LOGICAL(4)

INTEGER(8)LOGICAL(8)

INTEGER(8)INTEGER(1)

INTEGER(8)INTEGER(2)

INTEGER(8)INTEGER(4)

INTEGER(8)INTEGER(8)

1These specific functions cannot be passed as actual arguments.

3677

63

Example

Consider the following example:

INTEGER(2) W_VAR /'FFFF'X/

INTEGER(4) L_VAR

L_VAR = ZEXT(W_VAR)

This example stores an INTEGER(2) quantity in the low-order 16 bits of an INTEGER(4) quantity,
with the resulting value of L_VAR being '0000FFFF'X. If the ZEXT function had not been used,
the resulting value would have been 'FFFFFFFF'X, because W_VAR would have been converted
to the left-hand operand's data type by sign extension.

3678

63 Intel® Fortran Compiler User and Reference Guides

64Glossary

A – B – C – D – E – F – G – H – I – K – L – M – N – O – P – Q – R – S – T – U – V – W – Z

Glossary A

A directory path specified in fixed relationship to the root directory. On
Windows* systems, the first character is a backslash (\). On Linux* and
Mac OS* X systems, the first character is a slash (/).

absolute pathname

The screen buffer that is currently displayed in a console's window.active screen buffer

A top-level window of the application with which the user is working. The
Windows system identifies the active window by highlighting its title bar
and border.

active window

A value (a variable, expression, or procedure) passed from a calling program
unit to a subprogram (function or subroutine). See also dummy argument.

actual argument

An explicit-shape array that is a dummy argument to a subprogram. The
term is from FORTRAN 77. See also explicit-shape array.

adjustable array

A reference to a record structure field.aggregate reference

A named array that has the ALLOCATABLE attribute. The array's rank is
specified at compile time, but its bounds are determined at run time. Once
space has been allocated for this type of array, the array has a shape and
can be defined (and redefined) or referenced. It is an error to allocate an
allocatable array that is currently allocated.

allocatable array

Indicates whether an allocatable array or pointer is allocated. An allocation
status is one of: allocated, deallocated, or undefined. An undefined allocation
status means an array can no longer be referenced, defined, allocated, or
deallocated. See also association status.

allocation status

Pertaining to letters and digits.alphanumeric

A subroutine argument that permits control to branch immediately to some
position other than the statement following the call. The actual argument
in an alternate return is the statement label to which control should be
transferred. (An alternate return is an obsolescent feature in Fortran 90.)

alternate return

The American National Standards Institute. An organization through which
accredited organizations create and maintain voluntary industry standards.

ANSI

Can be either of the following:argument

• An actual argument--A variable, expression, or procedure passed from
a calling program unit to a subprogram. See also actual argument.

3679

• A dummy argument--A variable whose name appears in the
parenthesized list followuing the procedure name in a FUNCTION
statement, a SUBROUTINE statement, an ENTRY statement, or a
statement function statement. See also dummy argument.

The relationship (or "matching up") between an actual argument and
dummy argument during the execution of a procedure reference.

argument association

The name of a dummy (formal) argument. The name is used in a
subprogram definition. Argument keywords can be used when the
subprogram is invoked to associate dummy arguments with actual
arguments, so that the subprogram arguments can appear in any order.

argument keyword

Argument keywords are supplied for many of the intrinsic procedures.

A set of scalar data that all have the same type and kind type
parameters. An array can be referenced by element (using a subscript),
by section (using a section subscript list), or as a whole. An array has
a rank (up to 7), bounds, size, and a shape.

array

An individual array element is a scalar object. An array section, which
is itself an array, is a subset of the entire array. Contrast with scalar.
See also bounds, conformable, shape, size, whole array, and zero-sized
array.

A mechanism used to specify a sequence of scalar values that produce
a rank-one array.

array constructor

To construct an array of rank greater than one, you must apply the
RESHAPE intrinsic function to the array constructor.

A scalar (individual) item in an array. An array element is identified by
the array name followed by one or more subscripts in parentheses,
indicating the element's position in the array. For example, B(3) or
A(2,5).

array element

A pointer to an array. See also array and pointer.array pointer

A subobject (or portion) of an array. It consists of the set of array
elements or substrings of this set. The set (or section subscript list) is
specified by subscripts, subscript triplets, or vector subscripts. If the
set does not contain at least one subscript triplet or vector subscript,
the reference indicates an array element, not an array.

array section

A program statement specifying an array name and the number of
dimensions the array contains (its rank). An array specification can
appear in a DIMENSION or COMMON statement, or in a type declaration
statement.

array specification

The American Standard Code for Information Interchange. A 7-bit
character encoding scheme associating an integer from 0 through 127
with 128 characters.

ASCII

3680

64 Intel® Fortran Compiler User and Reference Guides

Usually, a statement that assigns (stores) the value of an expression
on the right of an equal sign to the storage location of the variable to
the left of the equal sign. In the case of Fortran 95/90 pointers, the
storage location is assigned, not the pointer itself.

assignment statement

The relationship that allows an entity to be referenced by different
names in one scoping unit or by the same or different names in more
than one scoping unit. The principal kinds of association are argument,

association

host, pointer, storage, and use association. See also argument
association, host association, pointer association, storage association,
and use association.

Indicates whether or not a pointer is associated with a target. An
association status is one of: undefined, associated, or disassociated.
An undefined association status means a pointer can no longer be

association status

referenced, defined, or deallocated. An undefined pointer can, however,
be allocated, nullified, or pointer assigned to a new target. See also
allocation status.

A dummy argument that assumes the length attribute of the
corresponding actual argument. An asterisk (*) specifies the length of
the dummy character argument.

assumed-length
character argument

A dummy argument array that assumes the shape of its associated
actual argument array. The rank of the array is the number of colons
(:) specified in parentheses.

assumed-shape array

A dummy array whose size (only) is assumed from its associated actual
argument. The upper bound of its last dimension is specified by an
asterisk (*). All other extents (if any) must be specified.

assumed-size array

A property of a data object that can be specified in a type declaration
statement. These properties determine how the data object can be
used in a program.

attribute

Most attributes can be alternatively specified in statements. For
example, the DIMENSION statement has the same meaning as the
DIMENSION attribute appearing in a type declaration statement.

An explicit-shape array that is a local variable in a subprogram. It is
not a dummy argument, and has bounds that are nonconstant
specification expressions. The bounds (and shape) are determined at
entry to the procedure by evaluating the bounds expressions. See also
automatic object.

automatic array

A local data object that is created upon entry to a subprogram and
disappears when the execution of the subprogram is completed. There
are two kinds of automatic objects: arrays (of any data type) and
objects of type CHARACTER. Automatic objects cannot be saved or
initialized.

automatic object

3681

64

An automatic object is not a dummy argument, but is declared with a
specification expression that is not a constant expression. The
specification expression can be the bounds of the array or the length
of the character object.

Glossary B

On Linux* systems, a process for which the command interpreter is
not waiting. Its process group differs from that of its controlling
terminal, so it is blocked from most terminal access. Contrast with
foreground process.

background process

Any window created by a thread other than the foreground thread.background window

A method of data storage in which the least significant bit of a numeric
value spanning multiple bytes is in the highest addressed byte. Contrast
with little endian.

big endian

A constant that is a string of binary (base 2) digits (0 or 1) enclosed
by apostrophes or quotation marks and preceded by the letter B.

binary constant

An operator that acts on a pair of operands. The exponentiation,
multiplication, division, and concatenation operators are binary
operators.

binary operator

A constant that is a binary, octal, or hexadecimal number.bit constant

A contiguous group of bits within a binary pattern; they are specified
by a starting bit position and length. Some intrinsic functions (for
example, IBSET and BTEST) and the intrinsic subroutine MVBITS operate
on bit fields.

bit field

An array of bits that contains data that describes the colors found in a
rectangular region on the screen (or the rectangular region found on
a page of printer paper).

bitmap

A common block (one or more contiguous areas of storage) without a
name. Common blocks are defined by a COMMON statement.

blank common

In general, a group of related items treated as a physical unit. For
example, a block can be a group of constructs or statements that
perform a task; the task can be executed once, repeatedly, or not at
all.

block

A program unit, containing a BLOCK DATA statement and its associated
specification statements, that establishes common blocks and assigns
initial values to the variables in named common blocks. In FORTRAN
77, this was called a block data subprogram.

block data program unit

3682

64 Intel® Fortran Compiler User and Reference Guides

The range of subscript values for elements of an array. The lower bound
is the smallest subscript value in a dimension, and the upper bound is
the largest subscript value in that dimension. Array bounds can be
positive, zero, or negative. These bounds are specified in an array
specification. See also array specification.

bounds

A critical point in a program, at which execution is stopped so that you
can see if the program variables contain the correct values. Breakpoints
are often used to debug programs.

breakpoint

A bitmap that is used to fill the interior of closed shapes, polygons,
ellipses, and paths.

brush

A coordinate that specifies the location of one of the pixels in a brush's
bitmap. The Windows system maps this pixel to the upper left corner
of the window that contains the object to be painted. See also bitmap.

brush origin

See intrinsic procedure.built-in procedure

A group of 8 contiguous bits (binary digits) starting on an addressable
boundary.

byte

A special Unicode character (0xFEFF) that is placed at the beginning of
Unicode text files to indicate that the text is in Unicode format.

byte-order mark

Glossary C

A character in the first position of a printed record that determines the
vertical spacing of the output line.

carriage-control
character

A constant that is a string of printable ASCII characters enclosed by
apostrophes (') or quotation marks (").

character constant

A character constant, variable, function value, or another constant
expression, separated by a concatenation operator (//); for example,
DAY// ' FIRST'.

character expression

The unit of storage for holding a scalar value of default character type
(and character length one) that is not a pointer. One character storage
unit corresponds to one byte of memory.

character storage unit

A sequence of contiguous characters; a character data value. See also
character constant.

character string

One or more contiguous characters in a character string.character substring

A process initiated by another process (the parent). The child process
can operate independently from the parent process. Also, the parent
process can suspend or terminate without affecting the child process.
See also parent process.

child process

A window that has the WS_CHILD style. A child window always appears
within the client area of its parent window. See also parent window.

child window

3683

64

See order of subscript progression.column-major order

Text that documents or explains a program. In free source form, a
comment begins with an exclamation point (!), unless it appears in a
Hollerith or character constant.

comment

In fixed and tab source form, a comment begins with a letter C or an
asterisk (*) in column 1. A comment can also begin with an exclamation
point anywhere in a source line (except in a Hollerith or character
constant) or in column 6 of a fixed-format line. The comment extends
from the exclamation point to the end of the line.
The compiler does not process comments, but shows them in program
listings. See also compiler directive.

A physical storage area shared by one or more program units. This
storage area is defined by a COMMON statement. If the common block
is given a name, it is a named common block; if it is not given a name,
it is a blank common. See also blank common and named common
block.

common block

The source or files that are compiled together to form a single object
file, possibly using interprocedural optimization across source files.

compilation unit

A structured comment that tells the compiler to perform certain tasks
when it compiles a source program unit. Compiler directives are usually
compiler-specific. (Some Fortran compilers call these directives
"metacommands".)

compiler directive

An option (or flag) that can be used on the compiler command line to
override the default behavior of the Intel® Fortran compiler.

compiler option

A constant that is a pair of real or integer constants representing a
complex number; the pair is separated by a comma and enclosed in
parentheses. The first constant represents the real part of the number;

complex constant

the second constant represents the imaginary part. The following types
of complex constants are available on all systems: COMPLEX(KIND=4),
COMPLEX(KIND=8), and COMPLEX(KIND=16).

A data type that represents the values of complex numbers. The value
is expressed as a complex constant. See also data type.

complex type

Part of a derived-type definition. There must be at least one component
(intrinsic or derived type) in every derived-type definition.

component

The combination of two items into one by placing one of the items after
the other. In Fortran 95/90, the concatenation operator (//) is used to
combine character items. See also character expression.

concatenate

Pertains to dimensionality. Two arrays are conformable if they have
the same shape. A scalar is conformable with any array.

conformable

See shape conformance.conformance

3684

64 Intel® Fortran Compiler User and Reference Guides

The inline expansion of small procedures, with conservative heuristics
to limit extra code.

conservative automatic
inlining

An interface that provides input and output to character-mode
applications.

console

A data object whose value does not change during the execution of a
program; the value is defined at the time of compilation. A constant
can be named (using the PARAMETER attribute or statement) or

constant

unnamed. An unnamed constant is called a literal constant. The value
of a constant can be numeric or logical, or it can be a character string.
Contrast with variable.

An expression whose value does not change during program execution.constant expression

A series of statements starting with a DO, SELECT CASE, IF, FORALL,
or WHERE statement, and ending with the appropriate termination
statement.

construct

Pertaining to entities that are adjacent (next to one another) without
intervening blanks (spaces); for example, contiguous characters or
contiguous areas of storage.

contiguous

A format descriptor that directly displays text or affects the conversions
performed by subsequent data edit descriptors. Except for the slash
descriptor, control edit descriptors are nonrepeatable.

control edit descriptor

A statement that alters the normal order of execution by transferring
control to another part of a program unit or a subprogram. A control
statement can be conditional (such as the IF construct or computed
GO TO statement) or unconditional (such as the STOP or GO TO
statement).

control statement

An object used to synchronize the threads of a single process. Only one
thread at a time can own a critical-section object.

critical section

Glossary D

A style of programming in which you define types to represent objects
in your program, define a set of operations for objects of each type,
and restrict the operations to only this set, making the types abstract.
The Fortran 95/90 modules, derived types, and defined operators,
support this programming paradigm.

data abstraction

A repeatable format descriptor that causes the transfer or conversion
of data to or from its internal representation. In FORTRAN 77, this term
was called a field descriptor.

data edit descriptor

A data object that has a data type. It is the result of the evaluation of
an expression, or the result of the execution of a function reference
(the function result).

data entity

3685

64

A unit of data (or value) to be processed. Includes constants, variables,
arrays, character substrings, or records.

data item

A constant, variable, or subobject (part) of a constant or variable. Its
type may be specified implicitly or explicitly.

data object

The properties and internal representation that characterize data and
functions. Each intrinsic and user-defined data type has a name, a set
of operators, a set of values, and a way to show these values in a

data type

program. The basic intrinsic data types are integer, real, complex,
logical, and character. The data value of an intrinsic data type depends
on the value of the type parameter. See also type parameter.

See type declaration statement.data type declaration

The form *n appended to Intel® Fortran-specific data type names. For
example, in REAL*4, the *4 is the data type length specifier.

data type length
specifier

A bug where the execution of thread A is blocked indefinitely waiting
for thread B to perform some action, while thread B is blocked waiting
for thread A. For example, two threads on opposite ends of a named

deadlock

pipe can become deadlocked if each thread waits to read data written
by the other thread. A single thread can also deadlock itself. See also
thread.

See specification statement.declaration

An internal representation of a procedure name or variable name that
contains information about where it is declared; for procedures, the
information includes how it is called. Decorated names are mainly of
interest in mixed-language programming, when calling Fortran routines
from other languages.

decorated name

The kind for character constants if no kind type parameter is specified.
Currently, the only kind type parameter for character constants is
CHARACTER(1), the default character kind.

default character

The kind for complex constants if no kind type parameter is specified.
The default complex kind is affected by compiler options specifying
double size. If no compiler option is specified, default complex is
COMPLEX(4) (COMPLEX*8). See also default real.

default complex

The kind for integer constants if no kind type parameter is specified.
The default integer kind is affected by the INTEGER directive, the
OPTIONS statement, and by compiler options specifying integer size.
If none of these are specified, default integer is INTEGER(4)
(INTEGER*4).

default integer

If a command line option affecting integer size has been specified, the
integer has the kind specified, unless it is outside the range of the kind
specified by the option. In this case, the kind type of the integer is the
smallest integer kind which can hold the integer.

3686

64 Intel® Fortran Compiler User and Reference Guides

The kind for logical constants if no kind type parameter is specified.
The default logical kind is affected by the INTEGER directive, the
OPTIONS statement, and by compiler options specifying integer size.
If none of these are specified, default logical is LOGICAL(4)
(LOGICAL*4). See also default integer.

default logical

The kind for real constants if no kind type parameter is specified. The
default real kind is affected by compiler options specifying real size and
by the REAL directive. If neither of these is specified, default real is
REAL(4) (REAL*4).

default real

If a real constant is encountered that is outside the range for the
default, an error occurs.

An array pointer (an array with the POINTER attribute) or an allocatable
array (an array with the ALLOCATABLE attribute). The size in each
dimension is determined by pointer assignment or when the array is
allocated.

deferred-shape array

The array specification contains a colon (:) for each dimension of the
array. No bounds are specified.

A property of variables. A variable is definable if its value can be
changed by the appearance of its name or designator on the left of an
assignment statement. An example of a variable that is not definable
is an allocatable array that has not been allocated.

definable

For a data object, the property of having or being given a valid value.defined

An assignment statement that is not intrinsic, but is defined by a
subroutine and an ASSIGNMENT(=) interface block. See also derived
type and interface block.

defined assignment

An operation that is not intrinsic, but is defined by a function
subprogram containing a generic interface block with the specifier
OPERATOR. See also derived type and interface block.

defined operation

A computational floating-point result smaller than the lowest value in
the normal range of a data type (the smallest representable normalized
number). You cannot write a constant for a denormalized number.

denormalized number

A data type that is user-defined and not intrinsic. It requires a type
definition to name the type and specify its components (which can be
intrinsic or user-defined types). A structure constructor can be used to
specify a value of derived type. A component of a structure is referenced
using a percent sign (%).

derived type

Operations on objects of derived types (structures) must be defined
by a function with an OPERATOR interface. Assignment for derived
types can be defined intrinsically, or be redefined by a subroutine with
an ASSIGNMENT(=) interface. Structures can be used as procedure
arguments and function results, and can appear in input and output
lists. Also called a user-defined type. See also record, the first definition.

3687

64

A name that references a subobject (part of a data object) that can be
defined and referenced separately from other parts of the data object.
A designator is the name of the object followed by a selector that selects
the subobject. For example, B(3) is a designator for an array element.
Also called a subobject designator. See also selector and subobject.

designator

A range of values for one subscript or index of an array. An array can
have from 1 to 7 dimensions. The number of dimensions is the rank of
the array.

dimension

See bounds.dimension bounds

A method for retrieving or storing data in which the data (record) is
identified by the record number, or the position of the record in the
file. The record is accessed directly (nonsequentially); therefore, all
information is equally accessible. Also called random access. Contrast
with sequential access.

direct access

See Dynamic Link Library.DLL

A mapping of characters to their identifying numeric values, in which
each value is 2 bytes wide. Double-byte character sets are sometimes
used for languages that have more than 256 characters.

double-byte character
set (DBCS)

A processor approximation to the value of a real number that occupies
8 bytes of memory and can assume a positive, negative, or zero value.
The precision is greater than a constant of real (single-precision) type.

double-precision
constant

For the precise ranges of the double-precision constants, see Building
Applications: Data Representation Overview. See also denormalized
number.

A program that is the user interface to the language compiler. It accepts
command line options and file names and causes one or more language
utilities or system programs to process each file.

driver program

The sharing of memory locations between dummy (formal) arguments
and other dummy arguments or COMMON variables that are assigned.

dummy aliasing

A variable whose name appears in the parenthesized list following the
procedure name in a FUNCTION statement, a SUBROUTINE statement,
an ENTRY statement, or a statement function statement. A dummy

dummy argument

argument takes the value of the corresponding actual argument in the
calling program unit (through argument association). Also called a
formal argument.

A dummy argument that is an array.dummy array

A dummy argument that is a pointer.dummy pointer

A dummy argument that is specified as a procedure or appears in a
procedure reference. The corresponding actual argument must be a
procedure.

dummy procedure

3688

64 Intel® Fortran Compiler User and Reference Guides

A separate source module compiled and linked independently of the
applications that use it. Applications access the DLL through procedure
calls. The code for a DLL is not included in the user's executable image,
but the compiler automatically modifies the executable image to point
to DLL procedures at run time.

Dynamic Link Library
(DLL)

Glossary E

A descriptor in a format specification. It can be a data edit descriptor,
control edit descriptor, or string edit descriptor. See also control edit
descriptor, data edit descriptor, and string edit descriptor.

edit descriptor

See array element.element

Pertains to an intrinsic operation, intrinsic procedure, or assignment
statement that is independently applied to either of the following:

elemental

• The elements of an array

• Corresponding elements of a set of conformable arrays and scalars

The condition that exists when all records in a file open for sequential
access have been read.

end-of-file

A general term referring to any Fortran 95/90 concept; for example, a
constant, a variable, a program unit, a statement label, a common
block, a construct, an I/O unit and so forth.

entity

A symbolic variable that represents some element of the operating
system, such as a path, a filename, or other literal data.

environment variable

An integer value denoting an I/O error condition, obtained by using the
IOSTAT keyword in an I/O statement.

error number

For floating-point numbers, values outside the range of normalized
numbers, including denormal (subnormal) numbers, infinity,
Not-a-Number (NaN) values, zero, and other architecture-defined
numbers.

exceptional values

A CASE, DO, IF, WHERE, or FORALL construct.executable construct

A set of program units that include only one main program.executable program

A statement that specifies an action to be performed or controls one
or more computational instructions.

executable statement

A procedure interface whose properties are known within the scope of
the calling program, and do not have to be assumed. These properties
are the names of the procedure and its dummy arguments, the
attributes of a procedure (if it is a function), and the attributes and
order of the dummy arguments.

explicit interface

3689

64

The following have explicit interfaces:

• Internal and module procedures (explicit by definition)

• Intrinsic procedures

• External procedures that have an interface block

• External procedures that are defined by the scoping unit and are
recursive

• Dummy procedures that have an interface block

An array whose rank and bounds are specified when the array is
declared.

explicit-shape array

A data reference or a computation formed from operators, operands,
and parentheses. The result of an expression is either a scalar value
or an array of scalar values.

expression

The size of (number of elements in) one dimension of an array.extent

A sequence of records that exists in a medium external to the executing
program.

external file

A procedure that is contained in an external subprogram. External
procedures can be used to share information (such as source files,
common blocks, and public data in modules) and can be used
independently of other procedures and program units. Also called an
external routine.

external procedure

A subroutine or function that is not contained in a main program,
module, or another subprogram. A module is not a subprogram.

external subprogram

Glossary F

Can be either of the following:field

• A set of contiguous characters, considered as a single item, in a
record or line.

• A substructure of a STRUCTURE declaration.

See data edit descriptor.field descriptor

The comma (,) or slash (/) that separates edit descriptors in a format
specification.

field separator

The total number of characters in the field. See also field, the first
definition.

field width

3690

64 Intel® Fortran Compiler User and Reference Guides

A collection of logically related records. If the file is in internal storage,
it is an internal file; if the file is on an input/output device, it is an
external file.

file

The way records are accessed (and stored) in a file. The Fortran 95/90
file access modes are sequential and direct.

file access

A unique identifier that the system assigns to a file when the file is
opened or created. A file handle is valid until the file is closed.

file handle

The way records in a file are physically arranged on a storage device.
Fortran 95/90 files can have sequential or relative organization.

file organization

A file format in which all the records are the same length.fixed-length record type

A collection of registers that control the behavior of floating-point (FP)
machine instructions and indicate the current FP status. The
floating-point environment may include rounding mode controls,
exception masks, flush-to-zero controls, exception status flags, and
other floating-point related features.

floating-point
environment

The window to which keyboard input is directed.focus window

On Linux* systems, a process for which the command interpreter is
waiting. Its process group is the same as that of its controlling terminal,
so the process is allowed to read from or write to the terminal. Contrast
with background process.

foreground process

The window the user is currently working with. The system assigns a
slightly higher priority to the thread that created the foreground window
than it does to other threads.

foreground window

An unformatted file that contains data from a foreign platform, such
as data from a CRAY*, IBM*, or big endian IEEE* machine.

foreign file

A specific arrangement of data. A FORMAT statement specifies how
data is to be read or written.

format

The part of a FORMAT statement that specifies explicit data
arrangement. It is a list within parentheses that can include edit
descriptors and field separators. A character expression can also specify
format; the expression must evaluate to a valid format specification.

format specification

Data written to a file by using formatted I/O statements. Such data
contains ASCII representations of binary values.

formatted data

An I/O statement specifying a format for data transfer. The format
specified can be explicit (specified in a format specification) or implicit
(specified using list-directed or namelist formatting). Contrast with
unformatted I/O statement. See also list-directed I/O statement and
namelist I/O statement.

formatted I/O
statement

The outermost parent window in QuickWin.frame window

3691

64

A series of statements that perform some operation and return a single
value (through the function or result name) to the calling program unit.
A function is invoked by a function reference in a main program unit
or a subprogram unit.

function

In Fortran 95/90, a function can be used to define a new operator or
extend the meaning of an intrinsic operator symbol. The function is
invoked by the appearance of the new or extended operator in the
expression (along with the appropriate operands). For example, the
symbol * can be defined for logical operands, extending its intrinsic
definition for numeric operands. See also function subprogram,
statement function, and subroutine.

Used in an expression to invoke a function, it consists of the function
name and its actual arguments. A function reference returns a value
(through the function or result name) that is used to evaluate the calling
expression.

function reference

The result value associated with a particular execution or call to a
function. This result can be of any data type (including derived type)
and can be array-valued. In a FUNCTION statement, the RESULT option
can be used to give the result a name different from the function name.
This option is required for a recursive function that directly calls itself.

function result

A sequence of statements beginning with a FUNCTION (or optional
OPTIONS) statement that is not in an interface block and ending with
the corresponding END statement. See also function.

function subprogram

Glossary G

A generic name, operator, or assignment specified in an INTERFACE
statement that is associated with all of the procedures within the
interface block. Also called a generic specification.

generic identifier

An entity (a program unit, common block, or external procedure) that
can be used with the same meaning throughout the executable program.
A global entity has global scope; it is accessible throughout an
executable program. See also local entity.

global entity

A data structure (for example, global COMMON) or shareable image
section potentially available to all processes in the system.

global section

Glossary H

A value (often, but not always, a 32-bit integer) that identifies some
operating system resource, for example, a window or a process. The
handle value is returned from an operating system call when the

handle

3692

64 Intel® Fortran Compiler User and Reference Guides

resource is created; your program then passes that value as an
argument to subsequent operating system routines to identify which
resource is being accessed.
Your program should consider the handle value a "private" type and
not try to interpret it as having any specific meaning (for example, an
address).

A constant that is a string of hexadecimal (base 16) digits (range 0 to
9, or an uppercase or lowercase letter in the range A to F) enclosed by
apostrophes or quotation marks and preceded by the letter Z.

hexadecimal constant

A constant that is a string of printable ASCII characters preceded by
nH, where n is the number of characters in the string (including blanks
and tabs).

Hollerith constant

Either the main program or subprogram that contains an internal
procedure, or the module that contains a module procedure. The data
environment of the host is available to the (internal or module)
procedure.

host

The process by which a module procedure, internal procedure, or
derived-type definition accesses the entities of its host.

host association

Glossary I

A procedure interface whose properties (the collection of names,
attributes, and arguments of the procedure) are not known within the
scope of the calling program, and have to be assumed. The information
is assumed by the calling program from the properties of the procedure
name and actual arguments in the procedure call.

implicit interface

The mechanism by which the data type for a variable is determined by
the beginning letter of the variable name.

implicit typing

A .LIB file that contains information about one or more dynamic-link
libraries (DLLs), but does not contain the DLL's executable code. To
provide the information needed to resolve the external references to
DLL functions, the linker uses an import library when building an
executable module of a process.

import library

Can be either of the following:index

• The variable used as a loop counter in a DO statement.

• An intrinsic function specifying the starting position of a substring
inside a string.

The assignment of an initial value to a variable.initialize

3693

64

A form of constant expression that is used to specify an initial value
for an entity.

initialization expression

An optimization that replaces a subprogram reference (CALL statement
or function invocation) with the replicated code of the subprogram.

inlining

The data that a program reads or writes. Also, devices to read and
write data.

input/output (I/O)

An intrinsic function whose result depends on properties of the principal
argument, not the value of the argument.

inquiry function

A constant that is a whole number with no decimal point. It can have
a leading sign and is interpreted as a decimal number.

integer constant

An attribute of a dummy argument that is not a procedure or a pointer.
It indicates whether the argument is used to transfer data into the
procedure, out of the procedure, or both.

intent

A process that must periodically get user input to do its work. Contrast
with background process.

interactive process

See procedure interface.interface

The sequence of statements starting with an INTERFACE statement
and ending with the corresponding END INTERFACE statement.

interface block

The sequence of statements in an interface block starting with a
FUNCTION or SUBROUTINE statement and ending with the
corresponding END statement. Also called a procedure interface body.

interface body

The designated internal storage space (or variable buffer) that is
manipulated during input and output. An internal file can be a character
variable, character array, character array element, or character

internal file

substring. In general, an internal file contains one record. However, an
internal file that is a character array has one record for each array
element.

A procedure (other than a statement function) that is contained within
an internal subprogram. The program unit containing an internal
procedure is called the host of the internal procedure. The internal

internal procedure

procedure (which appears between a CONTAINS and END statement)
is local to its host and inherits the host's environment through host
association.

A subprogram contained in a main program or another subprogram.internal subprogram

Describes entities defined by the Fortran 95/90 language (such as data
types and procedures). Intrinsic entities can be used freely in any
scoping unit.

intrinsic

A subprogram supplied as part of the Fortran 95/90 library that performs
array, mathematical, numeric, character, bit manipulation, and other
miscellaneous functions. Intrinsic procedures are automatically available

intrinsic procedure

3694

64 Intel® Fortran Compiler User and Reference Guides

to any Fortran 95/90 program unit (unless specifically overridden by
an EXTERNAL statement or a procedure interface block). Also called a
built-in or library procedure.

To call upon; used especially with reference to subprograms. For
example, to invoke a function is to execute the function.

invoke

The number of executions of the DO range, which is determined as
follows:
[(terminal value - initial value + increment value) / increment
value]

iteration count

Glossary K

See argument keyword and statement keyword.keyword

Indicates the range of an intrinsic data type; for example:
INTEGER(KIND=2). For real and complex types, it also indicates
precision. If a specific kind parameter is not specified, the kind is the

kind type parameter

default for that type (for example, default integer). See also default
character, default complex, default integer, default logical, and default
real.

Glossary L

An integer, from 1 to 5 digits long, that precedes a statement and
identifies it. For example, labels can be used to refer to a FORMAT
statement or branch target statement.

label

An Intel® Fortran language element or interpretation that is not part of
the Fortran 95 standard.

language extension

A sequence of one or more characters that have an indivisible
interpretation. A lexical token is the smallest meaningful unit (a basic
language element) of a Fortran 95/90 statement; for example,
constants, and statement keywords.

lexical token

Files that contain functions, subroutines, and data that can be used by
Fortran programs.

library routines

For example: one library contains routines that handle the various
differences between Fortran and C in argument passing and data types;
another contains run-time functions and subroutines for Windows*
graphics and QuickWin* applications.
Some library routines are intrinsic (automatically available) to Fortran;
others may require a specific USE statement to access the module
defining the routines. See also intrinsic procedure.

3695

64

A source form record consisting of 0 or more characters. A standard
Fortran 95/90 line is limited to a maximum of 132 characters.

line

A system program that creates an executable program from one or
more object files produced by a language compiler or assembler. The
linker resolves external references, acquires referenced library routines,
and performs other processing required to create Linux* and Windows*
executable files.

linker

An implicit, formatted I/O statement that uses an asterisk (*) specifier
rather than an explicit format specification. See also formatted I/O
statement and namelist I/O statement.

list-directed I/O
statement

A printed copy of a program.listing

A constant without a name; its value is directly specified in a program.
See also named constant.

literal constant

A method of data storage in which the least significant bit of a numeric
value spanning multiple bytes is in the lowest addressed byte. This is
the method used on Intel® systems. Contrast with big endian.

little endian

An entity that can be used only within the context of a subprogram (its
scoping unit); for example, a statement label. A local entity has local
scope. See also global entity.

local entity

A level of optimization enabling optimizations within the source program
unit and recognition of common expressions. See also optimization.

local optimization

A name defined in a program unit that is not accessible outside of that
program unit.

local symbol

A constant that specifies the value .TRUE. or .FALSE..logical constant

An integer or logical constant, variable, function value, or another
constant expression, joined by a relational or logical operator. The
logical expression is evaluated to a value of either true or false. For
example, .NOT. 6.5 + (B .GT. D).

logical expression

A symbol that represents an operation on logical expressions. The
logical operators are .AND., .OR., .NEQV., .XOR., .EQV., and .NOT..

logical operator

A channel in memory through which data transfer occurs between the
program and the device or file. See also unit identifier.

logical unit

Four contiguous bytes (32 bits) starting on any addressable byte
boundary. Bits are numbered 0 to 31. The address of the longword is
the address of the byte containing bit 0. When the longword is

longword

interpreted as a signed integer, bit 31 is the sign bit. The value of signed
integers is in the range -2**31 to 2**31-1. The value of unsigned
integers is in the range 0 to 2**32-1.

A group of statements that are executed repeatedly until an ending
condition is reached.

loop

3696

64 Intel® Fortran Compiler User and Reference Guides

See bounds.lower bounds

Glossary M

The first program unit to receive control when a program is run; it
exercises control over subprograms. The main program usually contains
a PROGRAM statement (or does not contain a SUBROUTINE, FUNCTION,
or BLOCK DATA statement). Contrast with subprogram.

main program

On Linux* and Mac OS* X systems, an argument to the make command
containing a sequence of entries that specify dependencies. On
Windows* systems, a file passed to the NMAKE utility containing a

makefile

sequence of entries that specify dependencies. The contents of a
makefile override the system built-in rules for maintaining, updating,
and regenerating groups of programs.
For more information on makefiles on Linux and Mac OS X systems,
see make(1). For more information on using makefiles on Windows
systems, see Building Applications: Makefile Command-Line Syntax.

An array section with a vector subscript having two or more elements
with the same value.

many-one array section

In an OpenMP* Fortran program, the thread that creates a team of
threads when a parallel region (PARALLEL directive construct) is
encountered. The statements in the parallel region are then executed

master thread

in parallel by each thread in the team. At the end of the parallel region,
the team threads synchronize and only the master thread continues
execution. See also thread.

A Linux* and Mac OS* X catalog that contains the diagnostic message
text of errors that can occur during program execution (run time).

message file

See compiler directive.metacommand

Data not aligned on a natural boundary. See also natural boundary.misaligned data

A program unit that contains specifications and definitions that other
program units can access (unless the module entities are declared
PRIVATE). Modules are referenced in USE statements.

module

A subroutine or function that is not an internal procedure and is
contained in a module. The module procedure appears between a
CONTAINS and END statement in its host module, and inherits the host
module's environment through host association. A module procedure
can be declared PRIVATE to the module; it is public by default.

module procedure

A character set in which each character is identified by using more than
one byte. Although Unicode characters are 2 bytes wide, the Unicode
character set is not referred to by this term.

multibyte character set

3697

64

The ability of an operating system to execute several programs (tasks)
at once.

multitasking

The ability of an operating system to execute different parts of a
program, called threads, simultaneously. If the system supports parallel
processing, multiple processors may be used to execute the threads.

multithreading

Glossary N

Identifies an entity within a Fortran program unit (such as a variable,
function result, common block, named constant, procedure, program
unit, namelist group, or dummy argument).

name

A name can contain letters, digits, underscores (_), and the dollar
sign ($) special character. The first character must be a letter or a
dollar sign. In FORTRAN 77, this term was called a symbolic name.

Pertains to argument, host, or use association. See also argument
association, host association, and use association.

name association

A common block (one or more contiguous areas of storage) with a
name. Common blocks are defined by a COMMON statement.

named common block

A constant that has a name. In FORTRAN 77, this term was called a
symbolic constant.

named constant

An implicit, formatted I/O statement that uses a namelist group specifier
rather than an explicit format specifier. See also formatted I/O
statement and list-directed I/O statement.

namelist I/O statement

Not-a-Number. The condition that results from a floating-point operation
that has no mathematical meaning; for example, zero divided by zero.

NaN

The virtual address of a data item that is the multiple of the size of its
data type. For example, a REAL(8) (REAL*8) data item aligned on
natural boundaries has an address that is a multiple of eight.

natural boundary

A record that is aligned on a hardware-specific natural boundary; each
field is naturally aligned. (For more information, see Optimizing
Applications: Setting Data Type and Alignment.) Contrast with packed
record.

naturally aligned record

The placing of one entity (such as a construct, subprogram, format
specification, or loop) inside another entity of the same kind. For
example, nesting a loop within another loop (a nested loop), or nesting
a subroutine within another subroutine (a nested subroutine).

nesting

A Fortran 95/90 statement that describes program attributes, but does
not cause any action to be taken when the program is executed.

nonexecutable
statement

3698

64 Intel® Fortran Compiler User and Reference Guides

The state of an object used for synchronization in one of the wait
functions is either signaled or nonsignaled. A nonsignaled state can
prevent the wait function from returning. See also wait function.

nonsignaled

A numeric constant, variable, or function value, or combination of these,
joined by numeric operators and parentheses, so that the entire
expression can be evaluated to produce a single numeric value. For
example, -L or X+(Y-4.5*Z).

numeric expression

A symbol designating an arithmetic operation. In Fortran 95/90, the
symbols +, -, *, /, and ** are used to designate addition, subtraction,
multiplication, division, and exponentiation, respectively.

numeric operator

The unit of storage for holding a non-pointer scalar value of type default
real, default integer, or default logical. One numeric storage unit
corresponds to 4 bytes of memory.

numeric storage unit

Integer, real, or complex type.numeric type

Glossary O

See data object.object

The binary output of a language processor (such as an assembler or
compiler), which can either be executed or used as input to the linker.

object file

A feature of FORTRAN 77 that is considered to be redundant in Fortran
95/90. These features are still in frequent use.

obsolescent feature

A constant that is a string of octal (base 8) digits (range of 0 to 7)
enclosed by apostrophes or quotation marks and preceded by the letter
O.

octal constant

The passive element in an expression on which an operation is
performed. Every expression must have at least one operand. For
example, in I .NE. J, I and J are operands. Contrast with operator.

operand

A computation involving one or two operands.operation

The active element in an expression that performs an operation. An
expression can have zero or more operators. Intrinsic operators are
arithmetic (+, -, *, /, and **) or logical (.AND., .NOT., and so on). For
example, in I .NE. J, .NE. is the operator.

operator

Executable programs can define operators which are not intrinsic.

The process of producing efficient object or executing code that takes
advantage of the hardware architecture to produce more efficient
execution.

optimization

3699

64

A dummy argument that has the OPTIONAL attribute (or is included in
an OPTIONAL statement in the procedure definition). This kind of
argument does not have to be associated with an actual argument when
its procedure is invoked.

optional argument

A characteristic of a multidimensional array in which the leftmost
subscripts vary most rapidly. Also called column-major order.

order of subscript
progression

An error condition occurring when an arithmetic operation yields a result
that is larger than the maximum value in the range of a data type.

overflow

Glossary P

A record that starts on an arbitrary byte boundary; each field starts in
the next unused byte. Contrast with naturally aligned record.

packed record

The filling of unused positions in a field or character string with dummy
data (such as zeros or blanks).

pad

The simultaneous use of more than one processor (CPU) to execute a
program.

parallel processing

Can be either of the following:parameter

• In general, any quantity of interest in a given situation; often used
in place of the term "argument".

• A Fortran 95/90 named constant.

A process that initiates and controls another process (child). The parent
process defines the environment for the child process. Also, the parent
process can suspend or terminate without affecting the child process.
See also child process.

parent process

A window that has one or more child windows. See also child window.parent window

The path from the root directory to a subdirectory or file. See also root.pathname

A connection that allows one program to get its input directly from the
output of another program.

pipe

A combination of operating system and hardware that provides a distinct
environment in which to use a software product (for example, Windows*
2000 on processors using IA-32 architecture).

platform

Is one of the following:pointer

• A Fortran 95/90 pointer

3700

64 Intel® Fortran Compiler User and Reference Guides

A data object that has the POINTER attribute. To be referenced or
defined, it must be "pointer-associated" with a target (have storage
space associated with it). If the pointer is an array, it must be
pointer-associated to have a shape. See also pointer association.

• An integer pointer

A data object that contains the address of its paired variable. This
is also called a Cray* pointer.

The association of a pointer with a target by the execution of a pointer
assignment statement or the execution of an assignment statement
for a data object of derived type having the pointer as a subobject.

pointer assignment

The association of storage space to a Fortran 95/90 pointer by means
of a target. A pointer is associated with a target after pointer assignment
or the valid execution of an ALLOCATE statement.

pointer association

The number of significant digits in a real number. See also
double-precision constant, kind type parameter, and single-precision
constant.

precision

The simplest form of an expression. A primary can be any of the
following data objects:

primary

• A constant

• A constant subobject (parent is a constant)

• A variable (scalar, structure, array, or pointer; an array cannot be
assumed size)

• An array constructor

• A structure constructor

• A function reference

• An expression in parentheses

The initial thread of a process. Also called the main thread or thread
1. See also thread.

primary thread

A computation that can be invoked during program execution. It can
be a subroutine or function, an internal, external, dummy or module
procedure, or a statement function. A subprogram can define more
than one procedure if it contains an ENTRY statement. See also
subprogram.

procedure

3701

64

The statements that specify the name and characteristics of a procedure,
the name and characteristics of each dummy argument, and the generic
identifier (if any) by which the procedure can be referenced. The
characteristics of a procedure are fixed, but the remainder of the
interface can change in different scoping units.

procedure interface

If these properties are all known within the scope of the calling program,
the procedure interface is explicit; otherwise it is implicit (deduced from
its reference and declaration).

A virtual address space, security profile, a set of threads that execute
in the address space of the process, and a set of resources visible to
all threads executing in the process. Several thread objects can be
associated with a single process.

process object

A set of instructions that can be compiled and executed by itself.
Program blocks contain a declaration and an executable section.

program

A particular common block or local data area for a particular routine
containing equivalence groups.

program section

The fundamental component of an executable program. A sequence of
statements and comment lines. It can be a main program, a module,
an external subprogram, or a block data program unit.

program unit

Glossary Q

Four contiguous words (64 bits) starting on any addressable byte
boundary. Bits are numbered 0 to 63. (Bit 63 is used as the sign bit.)
A quadword is identified by the address of the word containing the
low-order bit (bit 0). The value of a signed quadword integer is in the
range -2**63 to 2**63-1.

quadword

Glossary R

See direct access.random access

The number of dimensions of an array. A scalar has a rank of zero.rank

A data structure comprising scalar elements with the same data type
and organized as a simple linear sequence. See also scalar.

rank-one object

A constant that is a number written with a decimal point, exponent, or
both. It can have single precision (REAL(KIND=4)), double precision
(REAL(KIND=8)), or quad precision (REAL(KIND=16)).

real constant

Can be either of the following:record

3702

64 Intel® Fortran Compiler User and Reference Guides

• A set of logically related data items (in a file) that is treated as a
unit; such a record contains one or more fields. This definition applies
to I/O records and items that are declared in a record structure.

• One or more data items that are grouped in a structure declaration
and specified in a RECORD statement.

The method used to store and retrieve records in a file.record access

A block of statements that define the fields in a record. The block begins
with a STRUCTURE statement and ends with END STRUCTURE. The
name of the structure must be specified in a RECORD statement.

record structure
declaration

The property that determines whether records in a file are all the same
length, of varying length, or use other conventions to define where one
record ends and another begins.

record type

Pertains to a subroutine or function that directly or indirectly references
itself.

recursion

Can be any of the following:reference

• For a data object, the appearance of its name, designator, or
associated pointer where the value of the object is required. When
an object is referenced, it must be defined.

• For a procedure, the appearance of its name, operator symbol, or
assignment symbol that causes the procedure to be executed.
Procedure reference is also called "calling" or "invoking" a procedure.

• For a module, the appearance of its name in a USE statement.

An expression containing one relational operator and two operands of
numeric or character type. The result is a value that is true or false.
For example, A-C .GE. B+2 or DAY .EQ. 'MONDAY'.

relational expression

The symbols used to express a relational condition or expression. The
relational operators are (.EQ., .NE., .LT., .LE., .GT., and .GE.).

relational operator

A file organization that consists of a series of component positions,
called cells, numbered consecutively from 1 to n. Intel Fortran uses
these numbered, fixed-length cells to calculate the component's physical
position in the file.

relative file organization

A directory path expressed in relation to any directory other than the
root directory. Contrast with absolute pathname.

relative pathname

On Windows* systems, the top-level directory on a disk drive; it is
represented by a backslash (\). For example, C:\ is the root directory
for drive C.

root

On Linux* systems, the top-level directory in the file system; it is
represented by a slash (/).

3703

64

A subprogram; a function or procedure. See also function, subroutine,
and procedure.

routine

The time during which a computer executes the statements of a
program.

run time

Glossary S

A variable that retains its association status, allocation status, definition
status, and value after execution of a RETURN or END statement in the
scoping unit containing the declaration.

saved object

Pertaining to data items with a rank of zero. A single data object of any
intrinsic or derived data type. Contrast with array. See also rank-one
object.

scalar

A reference to a scalar variable, scalar record field, or array element
that resolves into a single data item (having a data type) and can be
assigned a value with an assignment statement. It is similar to a scalar
reference, but it excludes constants, character substrings, and
expressions.

scalar memory
reference

A reference to a scalar variable, scalar record field, derived-type
component, array element, constant, character substring, or expression
that resolves into a single data item having a data type.

scalar reference

A variable name specifying one storage location.scalar variable

A number indicating the location of the decimal point in a real number
and, if there is no exponent, the size of the number on input.

scale factor

The portion of a program in which a declaration or a particular name
has meaning. Scope can be global (throughout an executable program),
scoping unit (local to the scoping unit), or statement (within a
statement, or part of a statement).

scope

The part of the program in which a name has meaning. It is one of the
following:

scoping unit

• A program unit or subprogram

• A derived-type definition

• A procedure interface body

Scoping units cannot overlap, though one scoping unit can contain
another scoping unit. The outer scoping unit is called the host scoping
unit.

Coordinates relative to the upper left corner of the screen.screen coordinates

3704

64 Intel® Fortran Compiler User and Reference Guides

A subscript list (enclosed in parentheses and appended to the array
name) indicating a portion (section) of an array. At least one of the
subscripts in the list must be a subscript triplet or vector subscript. The
number of section subscripts is the rank of the array. See also array
section, subscript, subscript triplet, and vector subscript.

section subscript

A value (which can be assigned to a variable) that is required in order
to properly determine the result of a calculation; for example, the
argument i in the random number generator (RAN) function syntax:
y = RAN (i)

seed

A mechanism for designating the following:selector

• Part of a data object (an array element or section, a substring, a
derived type, or a structure component)

• The set of values for which a CASE block is executed

A set ordered by a one-to-one correspondence with the numbers 1
through n, where n is the total number of elements in the sequence.
A sequence can be empty (contain no elements).

sequence

A method for retrieving or storing data in which the data (record) is
read from, written to, or removed from a file based on the logical order
(sequence) of the record in the file. (The record cannot be accessed
directly.) Contrast with direct access.

sequential access

A file organization in which records are stored one after the other, in
the order in which they were written to the file.

sequential file
organization

The rank and extents of an array. Shape can be represented by a
rank-one array (vector) whose elements are the extents in each
dimension.

shape

Pertains to the rule concerning operands of binary intrinsic operations
in expressions: to be in shape conformance, the two operands must
both be arrays of the same shape, or one or both of the operands must
be scalars.

shape conformance

The use of a comma (,) to terminate the field of a numeric data edit
descriptor. This technique overrides the field width (w) specification in
the data edit descriptor and therefore avoids padding of the input field.
The comma can only terminate fields less than w characters long. See
also data edit descriptor.

short field termination

The software mechanism used to indicate that an exception condition
(abnormal event) has been detected. For example, a signal can be
generated by a program or hardware error, or by request of another
program.

signal

3705

64

A processor approximation of the value of a real number that occupies
4 bytes of memory and can assume a positive, negative, or zero value.
The precision is less than a constant of double-precision type. For the

single-precision
constant

precise ranges of the single-precision constants, see Building
Applications: Data Representation Overview. See also denormalized
number.

The total number of elements in an array (the product of the extents).size

A program or portion of a program library, such as an object file, or
image file.

source file

A restricted expression that is of type integer and has a scalar value.
This type of expression appears only in the declaration of array bounds
and character lengths.

specification expression

A nonexecutable statement that provides information about the data
used in the source program. Such a statement can be used to allocate
and initialize variables, arrays, records, and structures, and define other
characteristics of names used in a program.

specification statement

An instruction in a programming language that represents a step in a
sequence of actions or a set of declarations. In Fortran 95/90, an
ampersand can be used to continue a statement from one line to
another, and a semicolon can be used to separate several statements
on one line.

statement

There are two main classes of statements: executable and
nonexecutable.

A computing procedure defined by a single statement in the same
program unit in which the procedure is referenced.

statement function

A statement that defines a statement function. Its form is the statement
function name (followed by its optional dummy arguments in
parentheses), followed by an equal sign (=), followed by a numeric,
logical, or character expression.

statement function
definition

A statement function definition must precede all executable statements
and follow all specification statements.

A word that begins the syntax of a statement. All program statements
(except assignment statements and statement function definitions)
begin with a statement keyword. Examples are INTEGER, DO, IF, and
WRITE.

statement keyword

See label.statement label

A variable whose storage is allocated for the entire execution of a
program.

static variable

3706

64 Intel® Fortran Compiler User and Reference Guides

The relationship between two storage sequences when the storage unit
of one is the same as the storage unit of the other. Storage association
is provided by the COMMON and EQUIVALENCE statements. For
modules, pointers, allocatable arrays, and automatic data objects, the
SEQUENCE statement defines a storage order for structures.

storage association

An addressable unit of main memory.storage location

A sequence of any number of consecutive storage units. The size of a
storage sequence is the number of storage units in the storage
sequence. A sequence of storage sequences forms a composite storage
sequence. See also storage association and storage unit.

storage sequence

In a storage sequence, the number of storage units needed to represent
one real, integer, logical, or character value. See also character storage
unit, numeric storage unit, and storage sequence.

storage unit

The increment between subscript values that can optionally be specified
in a subscript triplet. If it is omitted, it is assumed to be one.

stride

A format descriptor that transfers characters to an output record.string edit descriptor

Can be either of the following:structure

• A scalar data object of derived (user-defined) type.

• An aggregate entity containing one or more fields or components.

Can be either of the following:structure component

• One of the components of a structure.

• An array whose elements are components of the elements of an
array of derived type.

A mechanism that is used to specify a scalar value of a derived type.
A structure constructor is the name of the type followed by a
parenthesized list of values for the components of the type.

structure constructor

Part of a data object (parent object) that can be referenced and defined
separately from other parts of the data object. A subobject can be an
array element, an array section, a substring, a derived type, or a
structure component. Subobjects are referenced by designators and
can be considered to be data objects themselves. See also designator.

subobject

See designator.subobject designator

A function or subroutine subprogram that can be invoked from another
program unit to perform a specific task. A subprogram can define more
than one procedure if it contains an ENTRY statement. Contrast with
main program. See also procedure.

subprogram

3707

64

A procedure that can return many values, a single value, or no value
to the calling program unit (through arguments). A subroutine is invoked
by a CALL statement in another program unit.

subroutine

In Fortran 95/90, a subroutine can also be used to define a new form
of assignment (defined assignment), which is different from those
intrinsic to Fortran 90. Such assignments are invoked with an
ASSIGNMENT(=) interface block rather than the CALL statement. See
also function, statement function, and subroutine subprogram.

A sequence of statements starting with a SUBROUTINE (or optional
OPTIONS) statement and ending with the corresponding END statement.
See also subroutine.

subroutine subprogram

A scalar integer expression (enclosed in parentheses and appended to
the array name) indicating the position of an array element. The number
of subscripts is the rank of the array. See also array element.

subscript

An item in a section subscript list specifying a range of values for the
array section. A subscript triplet contains at least one colon and has
three optional parts: a lower bound, an upper bound, and a stride.
Contrast with vector subscript. See also array section and section
subscript.

subscript triplet

A contiguous portion of a scalar character string. Do not confuse this
with the substring selector in an array section, where the result is
another array section, not a substring.

substring

See name.symbolic name

The formal structure of a statement or command string.syntax

Glossary T

The named data object associated with a pointer (in the form
pointer-object => target). A target is declared in a type declaration
statement that contains the TARGET attribute. See also pointer and
pointer association.

target

Part of a program that can run at the same time as other parts, usually
with some form of communication and/or synchronization among the
threads. See also multithreading.

thread

An intrinsic function that is not an elemental or inquiry function. A
transformational function usually changes an array actual argument
into a scalar result or another array, rather than applying the argument
element by element.

transformational
function

Can be either of the following:truncation

3708

64 Intel® Fortran Compiler User and Reference Guides

• A technique that approximates a numeric value by dropping its
fractional value and using only the integer portion.

• The process of removing one or more characters from the left or
right of a number or string.

A nonexecutable statement specifying the data type of one or more
variables: an INTEGER, REAL, DOUBLE PRECISION, COMPLEX, DOUBLE
COMPLEX, CHARACTER, LOGICAL, or TYPE statement. In Fortran 95/90,
a type declaration statement may also specify attributes for the
variables. Also called a type declaration or type specification.

type declaration
statement

Defines an intrinsic data type. The type parameters are kind and length.
The kind type parameter (KIND=) specifies the range for the integer
data type, the precision and range for real and complex data types,

type parameter

and the machine representation method for the character and logical
data types. The length type parameter (LEN=) specifies the length of
a character string. See also kind type parameter.

Glossary U

For a derived type or a structure, a component that is of intrinsic type
or has the POINTER attribute, or an ultimate component of a component
that is a derived type and does not have the POINTER attribute.

ultimate component

An operator that operates on one operand. For example, the minus
sign in -A and the .NOT. operator in .NOT. (J .GT. K).

unary operator

For a data object, the property of not having a determinate value.undefined

An error condition occurring when the result of an arithmetic operation
yields a result that is smaller than the minimum value in the range of
a data type. For example, in unsigned arithmetic, underflow occurs
when a result is negative. See also denormalized number.

underflow

Data written to a file by using unformatted I/O statements; for example,
binary numbers.

unformatted data

An I/O statement that does not contain format specifiers and therefore
does not translate the data being transferred. Contrast with formatted
I/O statement.

unformatted I/O
statement

A record that is transmitted in internal format between internal and
external storage.

unformatted record

The identifier that specifies an external unit or internal file. The identifier
can be any one of the following:

unit identifier

• An integer expression whose value must be zero or positive

3709

64

• An asterisk (*) that corresponds to the default (or implicit) I/O unit

• The name of a character scalar memory reference or character array
name reference for an internal file

Also called a device code, or logical unit number.

A unit of storage for holding a pointer or a scalar that is not a pointer
and is of type other than default integer, default character, or default
real.

unspecified storage unit

See bounds.upper bounds

The process by which the entities in a module are made accessible to
other scoping units (through a USE statement in the scoping unit).

use association

See defined assignment.user-defined
assignment

See defined operation.user-defined operator

See derived type.user-defined type

Glossary V

A data object (stored in a memory location) whose value can change
during program execution. A variable can be a named data object, an
array element, an array section, a structure component, or a substring.
In FORTRAN 77, a variable was always scalar and named. Contrast with
constant.

variable

A numeric expression enclosed in angle brackets (<>) that can be used
in a FORMAT statement. If necessary, it is converted to integer type
before use.

variable format
expression

A file format in which records may be of different lengths.variable-length record
type

A rank-one array of integer values used as a section subscript to select
elements from a parent array. Unlike a subscript triplet, a vector
subscript specifies values (within the declared bounds for the dimension)
in an arbitrary order. Contrast with subscript triplet. See also array
section and section subscript.

vector subscript

Glossary W

A function that blocks the execution of a calling thread until a specified
set of conditions has been satisfied.

wait function

3710

64 Intel® Fortran Compiler User and Reference Guides

An array reference (for example, in a type declaration statement) that
consists of the array name alone, without subscript notation. Whole
array operations affect every element in the array. See also array.

whole array

Glossary Z

An array with at least one dimension that has at least one extent of
zero. A zero-sized array has a size of zero and contains no elements.
See also array.

zero-sized array

3711

64

Index
_

in names 1748
__INTEL_COMPILER_BUILD_DATE symbol 153
__INTEL_COMPILER symbol 153
_DLL symbol 153
_FTN _ALLOC 116
_M_AMD64 symbol 153
_M_IA64 symbol 153
_M_IX86 symbol 153
_M_X64 symbol 153
_MT symbol 153
_OPENMP symbol 153
_PGO_INSTRUMENT symbol 153
_VF_VER_ symbol 153
_WIN32 symbol 153
_WIN64 symbol 153
,

as external field separator 2031
using to separate input data 2066

;
as source statement separator 1752

:
in array specifications 1809, 1853, 1857, 1859, 1860

!
as comment indicator 1757

!DEC$ 2159
/

in slash editing 2077
/? compiler option 663
// 1823, 2473
/= 1823
/1 compiler option 764, 935
/4I2 compiler option 691
/4I4 compiler option 691

/4I8 compiler option 691
/4L132 compiler option 565
/4L72 compiler option 565
/4L80 compiler option 565
/4Na compiler option 498
/4Naltparam compiler option 478
/4Nb compiler option 511
/4Nd compiler option 1099
/4Nf compiler option 588
/4Nportlib compiler option 469, 471
/4Ns compiler option 1063
/4R16 compiler option 1046
/4R8 compiler option 1046
/4Ya compiler option 498
/4Yaltparam compiler option 478
/4Yb compiler option 511
/4Yd compiler option 1099
/4Yf compiler option 638
/4Yportlib compiler option 469, 471
/4Ys compiler option 1063
/align compiler option 472
/allow

fpp_comments compiler option 476
/altparam compiler option 478
/arch compiler option 480
/architecture compiler option 480
/asmattr

all compiler option 483
machine compiler option 483
none compiler option 483
source compiler option 483

/asmfile compiler option 485
/assume

bscc compiler option 486

3713

/assume (continued)
buffered_io compiler option 486
byterecl compiler option 486
cc_omp compiler option 486
dummy_aliases compiler option 486
ieee_fpe_flags compiler option 486
minus0 compiler option 486
none compiler option 486
old_boz compiler option 486
old_logical_ldio compiler option 486
old_maxminloc compiler option 486
old_unit_star compiler option 486
old_xor compiler option 486
protect_constants compiler option 486
protect_parens compiler option 486
realloc_lhs compiler option 486
source_include compiler option 486
std_mod_proc_name compiler option 486
underscore compiler option 486

/auto compiler option 498
/automatic compiler option 498
/bigobj compiler option 506
/bintext compiler option 507
/CB compiler option 511
/ccdefault

default compiler option 510
fortran compiler option 510
list compiler option 510

/c compiler option 509
/C compiler option 511
/check

all compiler option 511
arg_temp_created compiler option 511
bounds compiler option 511
none compiler option 511
output_conversion compiler option 511
uninit compiler option 511

/check compiler option 511
/compile-only compiler option 509
/convert

big_endian compiler option 517
cray compiler option 517
fdx compiler option 517
fgx compiler option 517
ibm compiler option 517
little_endian compiler option 517
native compiler option 517
vaxd compiler option 517
vaxg compiler option 517

/CU compiler option 511
/dbglibs compiler option 524
/D compiler option 522
/debug compiler option 529
/debug-parameters

all compiler option 532
none compiler option 532
used compiler option 532

/define compiler option 522
/d-lines compiler option 523, 856
/dll compiler option 553
/double-size compiler option 554
/E compiler option 561
/EP compiler option 562
/error-limit compiler option 547, 871
/exe compiler option 563
/extend-source compiler option 565
/extfor compiler option 566
/extfpp compiler option 567
/extlnk compiler option 567
/f66 compiler option 570
/f77rtl compiler option 572
/Fa compiler option 573
/FA compiler option 573
/fast compiler option 577
/F compiler option 569
/Fe compiler option 563, 581
/FI compiler option 588
/fixed compiler option 588
/floating divide-by-zero 1714
/floating invalid 1714
/floating overflow 1714
/floating underflow 1714
/fltconsistency compiler option 590
/Fm compiler option 593
/Fo compiler option 600
/fp compiler option 601, 606, 1677, 1684

how to use 1684
/fpconstant compiler option 616
/fpe-all compiler option 620
/fpe compiler option 617, 1714
/fpp compiler option 625, 889, 1232

fpp options you can specify by using 1232
/fpscomp

all compiler option 627
filesfromcmd compiler option 627
general compiler option 627
ioformat compiler option 627
ldio_spacing compiler option 627

3714

Intel® Fortran Compiler User and Reference Guides

/fpscomp (continued)
libs compiler option 627
logicals compiler option 627
none compiler option 627

/fpscomp compiler option 627
/FR compiler option 638
/free compiler option 638
/G2 compiler option 651
/G2-p9000 compiler option 651
/G5 compiler option 653
/G6 compiler option 653
/G7 compiler option 653
/GB compiler option 653
/Ge compiler option 656
/gen-interfaces compiler option 657
/Gm compiler option 660, 670
/Gs compiler option 660
/GS compiler option 640, 641, 661
/Gz compiler option 662, 670
/heap-arrays compiler option 662
/help compiler option 663
/homeparams compiler option 665
/hotpatch compiler option 666
/I compiler option 667
/iface

cref compiler option 670
cvf compiler option 670
default compiler option 670
mixed_str_len_arg compiler option 670
stdcall compiler option 670
stdref compiler option 670

/iface compiler option 670
/include compiler option 667
/inline

all compiler option 674
manual compiler option 674
none compiler option 674
size compiler option 674
speed compiler option 674

/intconstant compiler option 690
/integer-size compiler option 691
/LD compiler option 553, 710
/libdir

all compiler option 710
automatic compiler option 710
none compiler option 710
user compiler option 710

/libdir compiler option 710

/libs
dll compiler option 712
qwin compiler option 712
qwins compiler option 712
static compiler option 712

/link compiler option 715
/logo compiler option 716
/map compiler option 720
/MD compiler option 726
/MDd compiler option 726
/MDs compiler option 712, 728
/MDsd compiler option 712, 728
/MG compiler option 1108
/ML compiler option 712, 733
/MLd compiler option 712, 733
/module compiler option 734
/MP compiler option 735, 743
/MT compiler option 739
/MTd compiler option 739
/MW compiler option 712
/MWs compiler option 712
/names

as_is compiler option 744
lowercase compiler option 744
uppercase compiler option 744

/nbs compiler option 486
/nodefine compiler option 522
/noinclude compiler option 1116
/Oa compiler option 573
/Ob compiler option 680, 758
/object compiler option 760
/O compiler option 753
/Od compiler option 761
/Og compiler option 763
/Op compiler option 590
/optimize compiler option 753
/Os compiler option 800
/Ot compiler option 802
/Ow compiler option 582
/Ox compiler option 753
/Oy compiler option 598, 600, 803
/P compiler option 827
/pdbfile compiler option 822
/preprocess-only compiler option 827
/Qansi-alias compiler option 479, 847
/Qauto_scalar compiler option 496, 848
/Qauto compiler option 498
/Qautodouble compiler option 1046
/Qax compiler option 500, 850, 1310

3715

Index

/Qchkstk compiler option 853
/Qcommon-args compiler option 486
/Qcomplex-limited-range compiler option 516, 855
/Qcpp compiler option 625, 889
/Qdiag compiler option 533, 539, 857, 863
/Qdiag-disable compiler option 533, 539, 857, 863
/Qdiag-dump compiler option 538, 862
/Qdiag-enable

sc compiler option 533, 539, 857, 863
sc-include compiler option 544, 867
sc-parallel compiler option 545, 869
sv-include compiler option 544, 867

/Qdiag-enable compiler option 533, 539, 857, 863
/Qdiag-error compiler option 533, 539, 857, 863
/Qdiag-error-limit compiler option 547, 871
/Qdiag-file-append compiler option 550, 873
/Qdiag-file compiler option 548, 872
/Qdiag-id-numbers compiler option 551, 875
/Qdiag-once compiler option 552, 876
/Qdiag-remark compiler option 533, 539, 857, 863
/Qdiag-warning compiler option 533, 539, 857, 863
/Qd-lines compiler option 523, 856
/Qdps compiler option 478
/Qdyncom compiler option 560, 877
/Qextend-source compiler option 565
/Qfast-transcendentals compiler option 578, 879
/Qfma compiler option 593, 880
/Qfnalign compiler option 574, 882
/Qfnsplit compiler option 597, 883
/Qfpp compiler option 625, 889
/Qfp-port compiler option 611, 884
/Qfp-relaxed compiler option 612, 885
/Qfp-speculation compiler option 613, 886
/Qfp-stack-check compiler option 615, 888
/Qftz compiler option 643, 891, 1689, 1714
/Qglobal-hoist compiler option 658, 893
/QIA64-fr32 compiler option 894
/QIfist compiler option 1008, 1044
/Qimsl compiler option 895
/Qinline-debug-info compiler option 676, 896
/Qinline-dllimport compiler option 897
/Qinline-factor compiler option 677, 898
/Qinline-forceinline compiler option 679, 900
/Qinline-max-per-compile compiler option 682, 901
/Qinline-max-per-routine compiler option 683, 903
/Qinline-max-size compiler option 685, 905
/Qinline-max-total-size compiler option 687, 906
/Qinline-min-size compiler option 688, 908
/Qinstruction compiler option 730, 911

/Qinstrument-functions compiler option 586, 912
/Qip compiler option 693, 914
/QIPF-fltacc compiler option 698, 919
/QIPF-flt-eval-method0 compiler option 696, 917
/QIPF-fma compiler option 593, 880
/QIPF-fp-relaxed compiler option 612, 885
/Qip-no-inlining compiler option 694, 915
/Qip-no-pinlining compiler option 695, 916
/Qipo-c compiler option 701, 922
/Qipo compiler option 699, 920, 1501
/Qipo-jobs compiler option 702, 923
/Qipo-S compiler option 704, 925
/Qipo-separate compiler option 705, 926
/Qivdep-parallel compiler option 707, 927
/Qkeep-static-consts compiler option 589, 928
/Qlocation compiler option 929
/Qlowercase compiler option 744
/Qmap-opts compiler option 721, 931
/Qmkl compiler option 732, 933
/Qnobss-init compiler option 746, 934
/Qonetrip compiler option 764, 935
/Qopenmp compiler option 765, 936
/Qopenmp-lib compiler option 766, 937, 1321
/Qopenmp-link compiler option 768, 939
/Qopenmp-profile compiler option 770, 940
/Qopenmp-report compiler option 771, 942
/Qopenmp-stubs compiler option 772, 943
/Qopenmp-threadprivate compiler option 774, 944
/Qopt-block-factor compiler option 775, 946
/Qoption compiler option 969
/Qopt-jump-tables compiler option 776, 947
/Qopt-loadpair compiler option 778, 948
/Qopt-mem-bandwidth compiler option 780, 949
/Qopt-mod-versioning compiler option 782, 951
/Qopt-multi-version-aggressive compiler option 783,
952
/Qopt-prefetch compiler option 784, 953
/Qopt-prefetch-initial-values compiler option 786, 955
/Qopt-prefetch-issue-excl-hint compiler option 787, 956
/Qopt-prefetch-next-iteration compiler option 788, 957
/Qopt-ra-region-strategy compiler option 790, 959,

1606
example 1606

/Qopt-report compiler option 791, 960, 1260
/Qopt-report-file compiler option 793, 962
/Qopt-report-help compiler option 794, 963
/Qopt-report-phase compiler option 795, 964
/Qopt-report-routine compiler option 796, 965
/Qopt-streaming-stores compiler option 797, 966

3716

Intel® Fortran Compiler User and Reference Guides

/Qopt-subscript-in-range compiler option 799, 968
/Qpad compiler option 806, 971
/Qpad-source compiler option 807, 972
/Qpar-adjust-stack compiler option 974
/Qpar-affinity compiler option 808, 975
/Qparallel compiler option 819, 986
/Qpar-num-threads compiler option 810, 977
/Qpar-report compiler option 811, 978
/Qpar-schedule compiler option 814, 980
/Qpar-threshold compiler option 818, 984
/Qpc compiler option 821, 987
/Qprec compiler option 737, 989
/Qprec-div compiler option 825, 990
/Qprec-sqrt compiler option 826, 991
/Qprof-data-order compiler option 829, 992
/Qprof-dir compiler option 830, 994
/Qprof-file compiler option 832, 995
/Qprof-func-order compiler option 834, 996
/Qprof-gen

srcpos compiler option 1530, 1532, 1552
/Qprof-gen:srcpos compiler option

code coverage tool 1532
test priorization tool 1552

/Qprof-gen compiler option 836, 998, 1530
/Qprof-genx compiler option 836, 998
/Qprof-hotness-threshold compiler option 838, 1000
/Qprof-src-dir compiler option 840, 1001
/Qprof-src-root compiler option 841, 1003
/Qprof-src-root-cwd compiler option 843, 1005
/Qprof-use compiler option 845, 1006, 1532, 1561

code coverage tool 1532
profmerge utility 1561

/Qrcd compiler option 1008, 1044
/Qrct compiler option 1009, 1045
/Qsafe-cray-ptr compiler option 1010, 1051
/Qsave compiler option 1012, 1053
/Qsave-temps compiler option 1013, 1054
/Qscalar-rep compiler option 1015, 1056
/Qsfalign compiler option 1016
/Qsox compiler option 1017, 1062
/Qtcheck compiler option 1019, 1072
/Qtcollect compiler option 1020, 1073
/Qtcollect-filter compiler option 1021, 1075
/Qtprofile compiler option 1023, 1078
/Qtrapuv compiler option 642, 1024
/Qunroll-aggressive compiler option 1027, 1086
/Qunroll compiler option 1026, 1085
/Quppercase compiler option 744
/Quse-asm compiler option 1028, 1088

/Quse-msasm-symbols compiler option 1029
/Quse-vcdebug compiler option 1030
/Qvc compiler option 1031
/Qvec compiler option 1032, 1090
/Qvec-guard-write compiler option 1033, 1091
/Qvec-report compiler option 1034, 1092
/Qvec-threshold compiler option 1036, 1094
/Qvms compiler option 1095
/Qx compiler option 1038, 1112, 1306
/Qzero compiler option 1042, 1121
/real-size compiler option 1046
/recursive compiler option 1047
/reentrancy

async compiler option 1049
none compiler option 1049
threaded compiler option 1049

/RTCu compiler option 511
/S compiler option 1050
/source compiler option 1061
/stand

f03 compiler option 1063
f90 compiler option 1063
f95 compiler option 1063
none compiler option 1063

/stand compiler option 1063
/static compiler option 1065
/syntax-only compiler option 1070
/Tf compiler option 1061
/threads compiler option 1077
/traceback compiler option 1080
/u compiler option 1083
/U compiler option 1084
/undefine compiler option 1084
/us compiler option 486
/V compiler option 1090
/vms compiler option 1095
/W0 compiler option 1099
/W1 compiler option 1099
/warn

alignments compiler option 1099
all compiler option 1099
declarations compiler option 1099
errors compiler option 1099
general compiler option 1099
ignore_loc compiler option 1099
interfaces compiler option 1099
none compiler option 1099
stderrors compiler option 1099
truncated_source compiler option 1099

3717

Index

/warn (continued)
uncalled compiler option 1099
unused compiler option 1099
usage compiler option 1099

/warn compiler option 1099
/watch

all compiler option 1105
cmd compiler option 1105
none compiler option 1105
source compiler option 1105

/watch compiler option 1105
/WB compiler option 1106
/w compiler option 1098, 1099
/what compiler option 1107
/winapp compiler option 1108
/X compiler option 1116
/Z7 compiler option 529, 650, 1119, 1122
/Zd compiler option 529, 1121
/Zi compiler option 529, 650, 1119, 1122
/Zl compiler option 710
/Zp compiler option 472, 1124
/Zs compiler option 1070, 1124
/Zx compiler option 1124
.a files 261
.AND. 1825
.asm files 121
.def files 121
.DLL files 121, 261
.dpi file 1532, 1552, 1561
.dylib files 261
.dyn file 1532, 1552, 1561
.dyn files 1520, 1530
.EQ. 1823
.EQV. 1825
.EXE files 121, 257

creating 257
.f90 files 121
.f files 121
.for files 121, 257
.fpp files 121
.GE. 1823
.GT. 1823
.i90 files 121
.i files 121
.LE. 1823
.lib files 261
.LT. 1823
.MAP files 103
.MOD files 258

.NE. 1823

.NEQV. 1825

.NOT. 1825

.obj files 121, 257

.o files 121

.OR. 1825

.rbj files 121

.RES files 121

.so files 261

.spi file 1532, 1552

.XOR. 1825
(/.../) 1812
[...] 1812
$

implicit type in names 1800
in names 1748

*
as comment indicator 1757
in CHARACTER statements 1849
in format specifier 1984
in unit specifier 197, 1983

\ editing 2079
%

in non-Fortran procedures 1935
%LOC 2978, 3166

using with integer pointers 3166
%REF 3381
%VAL 3651
1823
1823
== 1823
=> 1840
> 1823
>= 1823
-132 compiler option 565
-1 compiler option 764, 935
-66 compiler option 570
-72 compiler option 565
-80 compiler option 565
-align compiler option 472
-allow fpp_comments compiler option 476
-altparam compiler option 478
-ansi-alias compiler option 479, 847
-arch compiler option 480
-assume 2underscores compiler option 486
-assume bscc compiler option 486
-assume buffered_io compiler option 486
-assume byterecl compiler option 486
-assume cc_omp compiler option 486

3718

Intel® Fortran Compiler User and Reference Guides

-assume dummy_aliases compiler option 486
-assume ieee_fpe_flags compiler option 486
-assume minus0 compiler option 486
-assume none compiler option 486
-assume old_boz compiler option 486
-assume old_logical_ldio compiler option 486
-assume old_maxminloc compiler option 486
-assume old_unit_star compiler option 486
-assume old_xor compiler option 486
-assume protect_constants compiler option 486
-assume protect_parens compiler option 486
-assume realloc_lhs compiler option 486
-assume source_include compiler option 486
-assume std_mod_proc_name compiler option 486
-assume underscore compiler option 486
-auto compiler option 498
-autodouble compiler option 1046
-automatic compiler option 498
-auto-scalar compiler option 496, 848
-ax compiler option 500, 850, 1310
-B compiler option 503
-Bdynamic compiler option (Linux* only) 504
-Bstatic compiler option (Linux* only) 508
-CB compiler option 511
-ccdefault default compiler option 510
-ccdefault fortran compiler option 510
-ccdefault list compiler option 510
-c compiler option 509
-C compiler option 511
-check all compiler option 511
-check arg_temp_created compiler option 511
-check bounds compiler option 511
-check compiler option 511
-check none compiler option 511
-check output_conversion compiler option 511
-check pointers compiler option 511
-check uninit compiler option 511
-cm compiler option 1099
-common-args compiler option 486
-complex-limited-range compiler option 516, 855
-convert big_endian compiler option 517
-convert cray compiler option 517
-convert fdx compiler option 517
-convert fgx compiler option 517
-convert ibm compiler option 517
-convert little_endian compiler option 517
-convert native compiler option 517
-convert vaxd compiler option 517
-convert vaxg compiler option 517

-cpp compiler option 625, 889
-CU compiler option 511
-cxxlib compiler option 520
-cxxlib-gcc compiler option 520
-cxxlib-nostd compiler option 520
-D compiler option 522
-DD compiler option 523, 856
-debug compiler option 526
-debug-parameters all compiler option 532
-debug-parameters none compiler option 532
-debug-parameters used compiler option 532
-diag compiler option 533, 539, 857, 863
-diag-disable compiler option 533, 539, 857, 863
-diag-dump compiler option 538, 862
-diag-enable compiler option 533, 539, 857, 863
-diag-enable sc compiler option 533, 539, 857, 863
-diag-enable sc-include compiler option 544, 867
-diag-enable sc-parallel compiler option 545, 869
-diag-enable sv-include compiler option 544, 867
-diag-error compiler option 533, 539, 857, 863
-diag-error-limit compiler option 547, 871
-diag-file-append compiler option 550, 873
-diag-file compiler option 548, 872
-diag-id-numbers compiler option 551, 875
-diag-once compiler option 552, 876
-diag-remark compiler option 533, 539, 857, 863
-diag-warning compiler option 533, 539, 857, 863
-d-lines compiler option 523, 856
-double-size compiler option 554
-dps compiler option 478
-dryrun compiler option 556
-dynamiclib compiler option (Mac OS* X only) 559
-dynamic-linker compiler option (Linux* only) 558
-dyncom compiler option 560, 877
-e03 compiler option 1099
-e90 compiler option 1099
-e95 compiler option 1099
-E compiler option 561
-EP compiler option 562
-error-limit compiler option 547, 871
-extend-source compiler option 565
-f66 compiler option 570
-f77rtl compiler option 572
-falias compiler option 573
-falign-functions compiler option 574, 882
-falign-stack compiler option 575
-fast compiler option 577
-fast-transcendentals compiler option 578, 879
-fcode-asm compiler option 580

3719

Index

-fexceptions compiler option 581
-ffnalias compiler option 582
-FI compiler option 588
-finline compiler option 583
-finline-functions compiler options 584
-finline-limit compiler option 585
-finstrument-functions compiler options 586, 912
-fixed compiler option 588
-fkeep-static-consts compiler option 589, 928
-fltconsistency compiler option 590
-fma compiler option (Linux* only) 593, 880
-fmath-errno compiler option 594
-fminshared compiler option 596
-fnsplit compiler option (Linux* only) 597, 883
-fomit-frame-pointer compiler option 598, 600, 803
-fp compiler option 598, 600, 803
-fpconstant compiler option 616
-fpe-all compiler option 620
-fpe compiler option 617
-fpic compiler option 623
-fpie compiler option (Linux* only) 624
-fp-model compiler option 601, 606, 1677, 1684

how to use 1684
-fpp compiler option 625, 889, 1232

fpp options you can specify by using 1232
-fp-port compiler option 611, 884
-fp-relaxed compiler option 612, 885
-fpscomp all compiler option 627
-fpscomp compiler option 627
-fpscomp filesfromcmd compiler option 627
-fpscomp general compiler option 627
-fpscomp ioformat compiler option 627
-fpscomp ldio_spacing compiler option 627
-fpscomp libs compiler option 627
-fpscomp logicals compiler option 627
-fpscomp none compiler option 627
-fp-speculation compiler option 613, 886
-fp-stack-check compiler option 615, 888
-fr32 compiler option (Linux* only) 637
-FR compiler option 638
-free compiler option 638
-fsource-asm compiler option 639
-fstack-protector compiler option 640, 641, 661
-fstack-security-check compiler option 640, 641, 661
-fsyntax-only compiler option 1070
-ftrapuv compiler option 642, 1024
-ftz compiler option 643, 891, 1689
-func-groups compiler option 833
-funroll-loops compiler option 1026, 1085

-fverbose-asm compiler option 646
-fvisibility compiler option 647
-g compiler option 650, 1119, 1122
-gdwarf-2 compiler option 655
-gen-interfaces compiler option 657
-global-hoist compiler option 658, 893
-heap-arrays compiler option 662
-help compiler option 663
-i2 compiler option 691
-i4 compiler option 691
-i8 compiler option 691
-I compiler option 667
-idirafter compiler option 669
-i-dynamic compiler option 1058
-implicitnone compiler option 1099
-inline-debug-info compiler option (Linux* only) 676,
896
-inline-factor compiler option 677, 898
-inline-forceinline compiler option 679, 900
-inline-level compiler option 680, 758
-inline-max-per-compile compiler option 682, 901
-inline-max-per-routine compiler option 683, 903
-inline-max-size compiler option 685, 905
-inline-max-total-size compiler option 687, 906
-inline-min-size compiler option 688, 908
-intconstant compiler option 690
-integer-size compiler option 691
-ip compiler option 693, 914
-IPF-fltacc compiler option 698, 919
-IPF-flt-eval-method0 compiler option 696, 917
-IPF-fma compiler option 593, 880
-IPF-fp-relaxed compiler option 612, 885
-ip-no-inlining compiler option 694, 915
-ip-no-pinlining compiler option 695, 916
-ipo-c compiler option 701, 922
-ipo compiler option 699, 920, 1501
-ipo-jobs compiler option (Linux* only) 702, 923
-ipo-S compiler option 704, 925
-ipo-separate compiler option 705, 926
-i-static compiler option 1068
-isystem compiler option 706
-ivdep-parallel compiler option (Linux* only) 707, 927
-l compiler option 708
-L compiler option 709
-logo compiler option 716
-lowercase compiler option 744
-m32 compiler option 719
-m64 compiler option 719
-map-opts compiler option 721, 931

3720

Intel® Fortran Compiler User and Reference Guides

-march=pentium3 compiler option 723
-march=pentium4 compiler option 723
-march=pentium compiler option 723
-mcmodel=large compiler option (Linux* only) 724
-mcmodel=medium compiler option (Linux* only) 724
-mcmodel=small compiler option (Linux* only) 724
-m compiler option 717
-mcpu compiler option 740
-mdynamic-no-pic compiler option (Mac OS* X only)
729
-mieee-fp compiler option 590
-minstruction compiler option 730, 911
-mixed-str-len-arg compiler option 670
-mkl compiler option 732, 933
-module compiler option 734
-mp1 compiler option 737, 989
-mp compiler option 590
-mrelax compiler option (Linux* only) 738
-mtune compiler option 740
-multiple-processes compiler option 735, 743
-names as_is compiler option 744
-names lowercase compiler option 744
-names uppercase compiler option 744
-nbs compiler option 486
-no-bss-init compiler option 746, 934
-nodefaultlibs compiler option 747
-nodefine compiler option 522
-nofor-main compiler option 748
-nolib-inline compiler option 749
-nostartfiles compiler option 750
-nostdinc compiler option 1116
-nostdlib compiler option 751
-nus compiler option 486
-Ob compiler option 680, 758
-o compiler option 752
-O compiler option 753
-onetrip compiler option 764, 935
-openmp compiler option 765, 936
-openmp-lib compiler option 766, 937, 1321
-openmp-link compiler option 768, 939
-openmp-profile compiler option (Linux* only) 770, 940
-openmp-report compiler option 771, 942
-openmp-stubs compiler option 772, 943
-openmp-threadprivate compiler option 774, 944
-opt-block-factor compiler option 775, 946
-opt-jump-tables compiler option 776, 947
-opt-loadpair compiler option 778, 948
-opt-malloc-options compiler option 779

-opt-mem-bandwidth compiler option (Linux* only)
780, 949
-opt-mod-versioning compiler option 782, 951
-opt-multi-version-aggressive compiler option 783, 952
-opt-prefetch compiler option 784, 953
-opt-prefetch-initial-values compiler option 786, 955
-opt-prefetch-issue-excl-hint compiler option 787, 956
-opt-prefetch-next-iteration compiler option 788, 957
-opt-ra-region-strategy compiler option 790, 959,

1606
example 1606

-opt-report compiler option 791, 960, 1260
-opt-report-file compiler option 793, 962
-opt-report-help compiler option 794, 963
-opt-report-phase compiler option 795, 964
-opt-report-routine compiler option 796, 965
-opt-streaming-stores compiler option 797, 966
-opt-subscript-in-range compiler option 799, 968
-Os compiler option 800
-pad compiler option 806, 971
-pad-source compiler option 807, 972
-par-affinity compiler option (Linux* only) 808, 975
-parallel compiler option 819, 986
-par-num-threads compiler option 810, 977
-par-report compiler option 811, 978
-par-schedule compiler option 814, 980
-par-threshold compiler option 818, 984
-pc compiler option 821, 987
-p compiler option 805
-P compiler option 827
-pg compiler option 805
-pie compiler option (Linux* only) 823
-prec-div compiler option 825, 990
-prec-sqrt compiler option 826, 991
-preprocess-only compiler option 827
-print-multi-lib compiler option 828
-prof-data-order compiler options 829, 992
-prof-dir compiler option 830, 994
-prof-file compiler option 832, 995
-prof-func-groups compiler option 833
-prof-func-order compiler options 834, 996
-prof-gen

srcpos compiler option 1530, 1532, 1552
-prof-gen:srcpos compiler option

code coverage tool 1532
test priorization tool 1552

-prof-gen compiler option 836, 998, 1520, 1530
related options 1520

-prof-genx compiler option 836, 998

3721

Index

-prof-hotness-threshold compiler option 838, 1000
-prof-src-dir compiler option 840, 1001
-prof-src-root compiler option 841, 1003
-prof-src-root-cwd compiler option 843, 1005
-prof-use compiler option 845, 1006, 1520, 1532,

1561
code coverage tool 1532
profmerge utility 1561
related options 1520

-Qinstall compiler option 910
-Qlocation compiler option 929
-Qoption compiler option 969
-qp compiler option 805
-r16 compiler option 1046
-r8 compiler option 1046
-rcd compiler option 1008, 1044
-rct compiler option 1009, 1045
-real-size compiler option 1046
-recursive compiler option 1047
-reentrancy async compiler option 1049
-reentrancy none compiler option 1049
-reentrancy threaded compiler option 1049
-RTCu compiler option 511
-safe-cray-ptr compiler option 1010, 1051
-save compiler option 1012, 1053
-save-temps compiler option 1013, 1054
-scalar-rep compiler option 1015, 1056
-S compiler option 1050
-shared compiler option (Linux* only) 1057
-shared-intel compiler option 1058
-shared-libgcc compiler option 1060
-sox compiler option 1017, 1062
-stand compiler option 1063
-stand f03 compiler option 1063
-stand f90 compiler option 1063
-stand f95 compiler option 1063
-stand none compiler option 1063
-static compiler option (Linux* only) 1065
-static-intel compiler option 1068
-staticlib compiler option (Mac OS* X only) 1066
-static-libgcc compiler option 1069
-std03 compiler option 1063
-std90 compiler option 1063
-std95 compiler option 1063
-std compiler option 1063
-syntax-only compiler option 1070
-tcheck compiler option (Linux* only) 1019, 1072
-tcollect compiler option 1020, 1073
-tcollect-filter compiler option 1021, 1075

-T compiler option (Linux* only) 1071
-Tf compiler option 1061
-threads compiler option 1077
-tprofile compiler option (Linux* only) 1023, 1078
-traceback compiler option 1080
-tune pn1 compiler option 1081
-tune pn2 compiler option 1081
-tune pn3 compiler option 1081
-tune pn4 compiler option 1081
-u compiler option 1099
-U compiler option 1084
-unroll-aggressive compiler option 1027, 1086
-unroll compiler option 1026, 1085
-uppercase compiler option 744
-us compiler option 486
-use-asm compiler option 1028, 1088
-v compiler option 1089
-V compiler option 1090
-vec compiler option 1032, 1090
-vec-guard-write compiler option 1033, 1091
-vec-report compiler option 1034, 1092
-vec-threshold compiler option 1036, 1094
-vms compiler option 1095
-W0 compiler option 1099
-W1 compiler option 1099
-Wa compiler option 1098
-warn alignments compiler option 1099
-warn all compiler option 1099
-warn compiler option 1099
-warn declarations compiler option 1099
-warn errors compiler option 1099
-warn general compiler option 1099
-warn ignore_loc compiler option 1099
-warn interfaces compiler option 1099
-warn none compiler option 1099
-warn stderrors compiler option 1099
-warn truncated_source compiler option 1099
-warn uncalled compiler option 1099
-warn unused compiler option 1099
-warn usage compiler option 1099
-watch all compiler option 1105
-watch cmd compiler option 1105
-watch compiler option 1105
-watch none compiler option 1105
-watch source compiler option 1105
-WB compiler option 1106
-w compiler option 1098, 1099
-what compiler option 1107
-Wl compiler option 1110

3722

Intel® Fortran Compiler User and Reference Guides

-Wp compiler option 1111
-x compiler option 1038, 1112, 1306
-X compiler option 1116
-Xlinker compiler option 1118
-y compiler option 1070
-zero compiler option 1042, 1121
-Zp compiler option 472, 1124

5 unit specifier 197
6 unit specifier 197

A
A 2062

edit descriptor 2062
ABORT 2319
About box

function specifying text for 2320
ABOUTBOXQQ 2320
ABS 2321
absolute spacing function 3527
absolute value function 2321, 3509
ACCEPT 2323
ACCESS 2104, 2125, 2324

specifier for INQUIRE 2104
specifier for OPEN 2125

accessibility attributes
PRIVATE 3196
PUBLIC 3208

accessibility of modules 3196, 3208
accessing arrays efficiently 1623
access methods for files 1979
access mode function 3448
access of entities

private 3196
public 3208

accuracy
and numerical data I/O 181

ACHAR 2325
ACOS 2326
ACOSD 2327
ACOSH 2328
ACTION 2104, 2125

specifier for INQUIRE 2104
specifier for OPEN 2125

actual arguments 511, 1920, 1947, 2650, 2927
external procedures as 2650
functions not allowed as 1947

actual arguments (continued)
intrinsic functions as 2927
option checking before calls 511

additional language features 2195
address

function allocating 2990
function returning 2409
subroutine freeing allocated 2694
subroutine prefetching data from 3037

adjustable arrays 1853
ADJUSTL 2328
ADJUSTR 2329
ADVANCE 1988, 3365, 3673

specifier for READ 3365
specifier for WRITE 3673

advanced PGO options 1530
advancing i/o 1988
advancing record I/O 238
advantages of internal procedures 261
advantages of modules 258
AIMAG 2330
AIMAX0 2995
AIMIN0 3028
AINT 2331
AJMAX0 2995
AJMIN0 3028
AKMAX0 2995
AKMIN0 3028
ALARM 2333
ALIAS 2334, 2376

option for ATTRIBUTES directive 2376
aliases 1475, 1660
aliasing

option specifying assumption in functions 582
option specifying assumption in programs 573

ALIGN 2377
option for ATTRIBUTES directive 2377

aligning data 472, 1613, 1642
option for 472

alignment 472, 1475, 1613, 1642, 1658, 1671, 3124
directive affecting 3124
example 1475
option affecting 472
options 1671
strategy 1475, 1671

alignment of common external data 285
ALL 2335

3723

Index

ALLOCATABLE 1242, 1352, 1453, 1532, 1605, 1611,
1623, 1660, 2337, 2377

arrays as arguments 1623
basic block 1532
code coverage 1532
code for OpenMP* 1352
coding guidelines for 1611
data flow 1453
effects of compiler options on allocation 1660
OpenMP* 1242
option for ATTRIBUTES directive 2377
performance 1352
pipelining 1605
visual presentation 1532

allocatable arrays 293, 1860, 1875, 1876, 1878,
2338, 2340, 2517

allocation of 1876
allocation status of 1876
as dynamic objects 1875
creating 2338
deallocation of 1878
freeing memory associated with 2517
function determining status of 2340
how to specify 1860
mixed-language programming 293

allocatable objects
option checking for unallocated 511

ALLOCATE 1840, 1875, 2338
dynamic allocation 1875
pointer assignments 1840

ALLOCATED 2340
allocating registers 1606
allocation

of allocatable arrays 1876
of pointer targets 1877

allocation status of allocatable arrays 1876
ALLOW_NULL 2378

option for ATTRIBUTES directive 2378
ALOG 2979
alternate return 2191, 2429, 3394, 3586

specifier for 2429
alternate return arguments 1928
AMAX0 2995
AMAX1 2995
AMIN0 3028
AMIN1 3028
AMOD 3040
amount of data storage

system parameters for 438

analyzing applications 1247, 1250, 1251
Intel(R) Debugger 1250
Intel(R) Threading Tools 1250

AND 2821
angle brackets

for variable format expressions 2086
ANINT 2342
ANSI character codes for Windows* Systems 2211,

2214, 2215
chart 2215

ANY 2344
apostrophe editing 2083
APPENDMENUQQ 2345
application characteristics 1251
application performance 1251
applications

option specifying code optimization for 753
application tests 1552
ARC 2348
ARC_W 2348
arccosine

function returning hyperbolic 2328
function returning in degrees 2327
function returning in radians 2326

architectures
coding guidelines for 1693
option generating instructions for 480, 1081

arcs
drawing elliptical 2348
function testing for endpoints of 2714

arcsine
function returning hyperbolic 2352
function returning in degrees 2351
function returning in radians 2350

arctangent
function returning hyperbolic 2368
function returning in degrees 2368
function returning in degrees (complex) 2367
function returning in radians 2365
function returning in radians (complex) 2365

argument aliasing 1475, 1623, 1630, 1658
alignment in vectorization 1475
efficient compilation of 1658
rules for improving I/O performance 1630
using efficiently 1623

argument association 1920, 2183, 2185, 2186
name 2183
pointer 2185
storage 2186

3724

Intel® Fortran Compiler User and Reference Guides

argument inquiry procedures
table of 2260

argument intent 2919
argument keywords 1750, 1949

BACK 1949
DIM 1949
in intrinsic procedures 1949
KIND 1949
MASK 1949

argument passing
in mixed-language programming 266, 280, 281
using %REF 3381
using %VAL 3651

argument presence function 3192
arguments 1920, 1923, 1924, 1925, 1926, 1927,

1928, 1929, 2650, 2716, 2919, 2927, 2977,
2978, 3118, 3192, 3381, 3651

actual 1920
alternate return 1928
array 1924
association of 1920
assumed-length character 1926
character constants as 1927
dummy 1920, 1924
dummy procedure 1929
function determining presence of optional 3192
function returning address of 2977, 2978
Hollerith constants as 1927
intent of 2919
optional 1923, 3118
passing by immediate value 3651
passing by reference 3381
pointer 1925
subroutine returning command-line 2716
using external and dummy procedures as 2650
using intrinsic procedures as 2927

arithmetic exception handling
/fpe options for floating-point data 1714
integer overflow 1709

arithmetic IF 2191, 2873
arithmetic shift

function performing left 2594, 3507
function performing left or right 2941
function performing right 2594, 3508

array 1694
ARRAY_VISUALIZER 2378

option for ATTRIBUTES directive 2378
array arguments 1924

array assignment 1838, 2163, 2682, 3666
masking in 2682, 3666
rules for directives that affect 2163

array association 2189
array constructors 1812, 1838

implied-DO in 1838
array declarations 1853
array descriptor

data items passing 1857, 1860, 3163
subroutine creating in memory 2668

array descriptors 295
array element order 1804
array elements 1804, 1807, 2189, 2420, 2636, 2998,

3002, 3031, 3035, 3201, 3590
association of 2189
association using EQUIVALENCE 2636
function performing binary search for 2420
function returning location of maximum 2998
function returning location of minimum 3031
function returning maximum value of 3002
function returning minimum value of 3035
function returning product of 3201
function returning sum of 3590
referencing 1804
storage of 1804

array expressions 1838
array functions

categories of 1953
for construction 3024, 3134, 3559, 3638
for inquiry 2340, 2958, 3504, 3521
for location 2998, 3031
for manipulation 2494, 2632, 3390, 3618
for reduction 2335, 2344, 2490, 3002, 3035, 3201,
3590

array operation 1694
array pointers 293, 1860

mixed-language programming 293
array procedures

table of 2265
arrays 295, 1786, 1798, 1800, 1803, 1804, 1807,

1809, 1810, 1812, 1817, 1838, 1853, 1857,
1859, 1860, 1863, 1875, 1876, 1878, 2335,
2337, 2338, 2340, 2344, 2490, 2494, 2540,
2586, 2632, 2682, 2958, 2993, 2998, 3002,
3024, 3031, 3035, 3064, 3072, 3073, 3134,
3163, 3166, 3348, 3390, 3504, 3521, 3525,
3559, 3590, 3618, 3638, 3661, 3666

adjustable 1853
allocatable 2337

3725

Index

arrays (continued)
allocation of allocatable 1876
assigning values to 1838
associating group name with 3064
as structure components 1786
as subobjects 1798
assumed-shape 1857
assumed-size 1859
as variables 1798
automatic 1853
bounds of 1800
conformable 1800
constructors 1812
creating allocatable 2338
data type of 1800
deallocation of allocatable 1878
declaring 1853, 2540
declaring using POINTER 3163
deferred-shape 1860
defining constants for 1812
determining allocation of allocatable 2340
duplicate elements in 1810
dynamic association of 1875
elements in 1804
explicit-shape 1853
extending 3390, 3559
extent of 1800
function adding a dimension to 3559
function combining 3024
function counting number of true in 2490
function determining allocation of 2340
function determining all true in 2335
function determining any true in 2344
function packing 3134
function performing circular shift of 2494
function performing dot-product multiplication of
2586
function performing end-off shift on 2632
function performing matrix multiplication on 2993
function replicating 3559
function reshaping 3390
function returning codepage in 3072
function returning language and country
combinations in 3073
function returning location of maximum value in
2998
function returning location of minimum value in
3031
function returning lower bounds of 2958

arrays (continued)
function returning maximum value of elements in
3002
function returning minimum value of elements in
3035
function returning shape of 3504
function returning size (extent) of 3521
function returning sum of elements in 3590
function transposing rank-two 3618
function unpacking 3638
logical test element-by-element of 2682, 3666
making equivalent 1863
masked assignment of 2682, 3666
mixed-language programming 295
number of storage elements for 2540
properties of 1800
rank of 1800
referencing 1817
row-major order 295
sections of 1807
shape of 1800
size of 1800
subroutine performing quick sort on 3348
subroutine sorting one-dimensional 3525
subscript triplets in 1809
using POINTER to declare 3163, 3166
vector subscripts in 1810
volatile 3661
whole 1803

array sections 1807, 1809, 1810, 1838
assigning values to 1838
many-one 1810, 1838
subscript triplets in 1809
vector subscripts in 1810

array specifications 1853, 1857, 1859, 1860
assumed-shape 1857
assumed-size 1859
deferred-shape 1860
explicit-shape 1853

array subscripts 1804
array transposition 3618
array type declaration statements 1853
array variables 1838
ASCII character codes for Linux* and Mac OS* X
Systems 2219
ASCII character codes for Windows* Systems 2211,

2212, 2213
chart 1 2212
chart 2 2213

3726

Intel® Fortran Compiler User and Reference Guides

ASCII location
function returning character in specified position
2444
function returning position of character in 2325

ASIN 2350
ASIND 2351
ASINH 2352
assembler

option passing options to 1098
option producing objects through 1028, 1088

assembler output
generating 103

assembly files 103
assembly listing file 165, 483, 485, 646, 1050

option compiling to 1050
option producing with compiler comments 646
option specifying generation of 485
option specifying the contents of 483

ASSIGN 2352
assigned GO TO 2810
assigning values to arrays 1838
ASSIGNMENT 1942
assignments

array 1838
defined 1839, 2354
derived-type 1837
element array 2682
generalized masked array 2682
generic 1942
intrinsic 1833
intrinsic computational 2357
masked array 3666
masked array (generalization of) 2682
pointer 1840

assignment statements 1833, 1834, 1836, 1838,
2163, 2354

array 1838
character 1836
defining nonintrinsic 2354
directives that affect array 2163
logical 1836
numeric 1834

ASSOCIATED 1840, 2360
using to determine pointer assignment 1840

ASSOCIATEVARIABLE 2126
specifier for OPEN 2126

association 1863, 1875, 1920, 2181, 2183, 2185,
2186, 2189, 2473, 2636

argument 1920

association (continued)
argument name 2183
argument pointer 2185
argument storage 2186
array 2189
common 2473
dynamic 1875
equivalence 2636
example of 2181
host 2183
name 2183
storage 2186
types of 2181
use 2183
using EQUIVALENCE 1863

ASSUME_ALIGNED 2362
assumed-length character arguments 1920, 1926
assumed-length character functions 2191
assumed-shape arrays 1623, 1857
assumed-size arrays 1859
asterisk (*)

as alternate return specifier 3586
as assumed-length character specifier 1849, 1926
as CHARACTER length specifier 1849, 1926
as dummy argument 1928
as function type length specifier 2705
as unit specifier 197

ASYNCHRONOUS 1988, 2105, 2126, 2363
specifier for INQUIRE 2105
specifier for OPEN 2126

asynchronous i/o 1988, 2363
attribute and statement denoting 2363

asynchronous I/O 253
ATAN 2365
ATAN2 2365
ATAN2D 2367
ATAND 2368
ATANH 2368
ATOMIC 1364, 2369

using 1364
A to Z Reference 2247
ATTRIBUTES 268, 274, 280, 312, 2371, 2376, 2377,

2378, 2381, 2382, 2383, 2384, 2385, 2386,
2387, 2388, 2389, 2390, 2393, 2394

ALIAS option 2376
ALIGN option 2377
ALLOCATABLE option 2377
ALLOW_NULL option 2378
and calling conventions 280, 312

3727

Index

ATTRIBUTES (continued)
and external naming conventions 274
ARRAY_VISUALIZER option 2378
C option 2378, 2390
DECORATE option 2381
DLLEXPORT option 2382, 2383
DLLIMPORT option 2382, 2383
EXTERN option 2384
FORCEINLINE option 2384, 2385, 2388
IGNORE_LOC option 2385
INLINE option 2384, 2385, 2388
in mixed-language programs 268
MIXED_STR_LEN_ARG option 2386, 2389
NO_ARG_CHECK option 2387
NOINLINE option 2384, 2385, 2388
NOMIXED_STR_LEN_ARG option 2386, 2389
REFERENCE option 2389, 2393
STDCALL option 2378, 2390
VALUE option 2389, 2393
VARYING option 2394

ATTRIBUTES ALIAS 2376
ATTRIBUTES ALIGN 2377
ATTRIBUTES ALLOCATABLE 2377
ATTRIBUTES ALLOW_NULL 2378
ATTRIBUTES ARRAY_VISUALIZER 2378
ATTRIBUTES C 2378, 2390
ATTRIBUTES DECORATE 2381
ATTRIBUTES DLLEXPORT 2382, 2383
ATTRIBUTES DLLIMPORT 2382, 2383
ATTRIBUTES EXTERN 2384
ATTRIBUTES FORCEINLINE 2384, 2385, 2388
attributes for data 2337, 2363, 2371, 2402, 2414,

2540, 2650, 2919, 2927, 3118, 3148, 3163,
3196, 3205, 3208, 3405, 3572, 3600, 3626,
3653, 3661

ALLOCATABLE 2337
ASYNCHRONOUS 2363
AUTOMATIC 2402
BIND 2414
declaring 3626
DIMENSION 2540
directive affecting 2371
EXTERNAL 2650
INTENT 2919
INTRINSIC 2927
OPTIONAL 3118
PARAMETER 3148
POINTER 3163
PRIVATE 3196

attributes for data (continued)
PROTECTED 3205
PUBLIC 3208
SAVE 3405
STATIC 3572
summary of compatible 3626
TARGET 3600
VALUE 3653
VOLATILE 3661

ATTRIBUTES IGNORE_LOC 2385
ATTRIBUTES INLINE 2384, 2385, 2388
ATTRIBUTES MIXED_STR_LEN_ARG 2386, 2389
ATTRIBUTES NO_ARG_CHECK 2387
ATTRIBUTES NOINLINE 2384, 2385, 2388
ATTRIBUTES NOMIXED_STR_LEN_ARG 2386, 2389
ATTRIBUTES REFERENCE 2389, 2393
ATTRIBUTES STDCALL 2378, 2390
ATTRIBUTES VALUE 2389, 2393
ATTRIBUTES VARYING 2394
AUTOAddArg 2395
AUTOAllocateInvokeArgs 2397
AUTODeallocateInvokeArgs 2397
AUTOGetExceptInfo 2398
AUTOGetProperty 2398
AUTOGetPropertyByID 2400
AUTOGetPropertyInvokeArgs 2400
AUTOInvoke 2401
AUTOMATIC 2402
automatic arrays 662, 1853

option putting on heap 662
automatic optimizations 1301, 1302
automation routines

table of 2314
auto-parallelization 1242, 1287, 1447, 1451, 1453

diagnostic 1287
enabling 1451
environment variables 1451
guidelines 1453
overview 1447
programming with 1453
threshold 1287

auto-parallelized loops 1287
auto-parallelizer 811, 818, 819, 978, 984, 986, 1242,

1287, 1447
controls 1242, 1287
enabling 1242
option controlling level of diagnostics for 811, 978
option enabling generation of multithreaded code
819, 986

3728

Intel® Fortran Compiler User and Reference Guides

auto-parallelizer (continued)
option setting threshold for loops 818, 984

AUTO routines
AUTOAddArg 2395
AUTOAllocateInvokeArgs 2397
AUTODeallocateInvokeArgs 2397
AUTOGetExceptInfo 2398
AUTOGetProperty 2398
AUTOGetPropertyByID 2400
AUTOGetPropertyInvokeArgs 2400
AUTOInvoke 2401
AUTOSetProperty 2405
AUTOSetPropertyByID 2406
AUTOSetPropertyInvokeArgs 2407
table of 2314

AUTOSetProperty 2405
AUTOSetPropertyByID 2406
AUTOSetPropertyInvokeArgs 2407
autovectorization 1696
auto-vectorization 1242, 1611
autovectorization of innermost loops 1696
auto-vectorizer 1310, 1459, 1658, 1660

allocation of stacks 1658, 1660
checking of stacks 1660
optimization for systems based on IA-32
architecture 1310

avoid
EQUIVALENCE statements 1636
inefficient data types 1636, 1696
mixed arithmetic expressions 1636, 1696
slow arithmetic operators 1636
small integer data items 1636
unnecessary operations in DO loops 1636

B
B 2045

edit descriptor 2045
BABS 2321
BACK 1949
backslash editing 2079
BACKSPACE 2407
BADDRESS 2409
BARRIER 1364, 2409

using 1364
base of model

function returning 3350
BBCLR 2825

BBITS 2826
BBSET 2827
BBTEST 2422
BDIM 2539
BEEPQQ 2410
BESJ0 2411
BESJ1 2411
BESJN 2411
Bessel functions

functions computing double-precision values of
2511
functions computing single-precision values of 2411
portability routines calculating 326

BESY0 2411
BESY1 2411
BESYN 2411
Bezier curves

functions drawing 3169, 3175
BIAND 2821
BIC 2412
BIEOR 2870
BIG_ENDIAN 2130

value for CONVERT specifier 2130
big-endian data 1658, 1664

conversion of little-endian data to 1664
big endian numeric format

porting notes 187
BINARY 2105
binary constants 1792, 2199

alternative syntax for 2199
binary direct files 208, 2136
binary editing (B) 2045
binary files 208
binary operations 1818
binary patterns

functions that shift 1951
binary raster operation constants 3498
binary sequential files 208, 2136
binary transfer of data

function performing 3616
binary values

transferring 2045
BIND 2414
BIOR 2929
BIS 2412
BIT 2416
BIT_SIZE 2416
BitBlt 3216
bit constants 1792

3729

Index

bit data
model for 2227

BITEST 2422
bit fields

function extracting 2826
functions operating on 1951
references to 1951
subroutine copying 3062

bit functions 1951, 1953
categories of 1953

bitmap file
function displaying image from 2976

bit model 2227
bit operation procedures

table of 2277
bit patterns

function performing circular shift on 2945
function performing left shift on 2943
function performing logical shift on 2943
function performing right shift on 2943

bit representation procedures
table of 2277

bits
floating-point precision bits 1711
function arithmetically shifting left 2594, 3507
function arithmetically shifting left or right 2941
function arithmetically shifting right 2594, 3508
function clearing to zero 2825
function extracting sequences of 2826
function logically shifting left or right 2943, 2947
function performing exclusive OR on 2870
function performing inclusive OR on 2929
function performing logical AND on 2821
function returning number of 2416
function reversing value of 2824
function rotating left or right 2942
function setting to 1 2827
function testing 2422
model for data 2227
precision 1711
precision bits 1711

bitwise AND
function performing 2821

bitwise complement
function returning 3106

BIXOR 2870
BJTEST 2422
BKTEST 2422

BLANK 2106, 2127
specifier for INQUIRE 2106
specifier for OPEN 2127

blank common 2473
blank editing 2073, 2074

BN 2073
BZ 2074

blank interpretation 2073
blank padding 208
block constructs 1883, 2433, 2575, 2584, 2682, 2876,

3666
CASE 2433
DO 2575, 2584
FORALL 2682
IF 2876
WHERE 3666

BLOCK DATA 2417, 2473
and common blocks 2473

block data program units 1745, 1897, 2417, 2473
and common blocks 2473
effect of using DATA in 2417
in EXTERNAL 2417

block DO 2575
terminal statements for 2575

BLOCKSIZE 2106, 2127
specifier for INQUIRE 2106
specifier for OPEN 2127

BMOD 3040
BMVBITS 3062
BN 2073
BNOT 3106
bounds 511, 1800, 2958

function returning lower 2958
option checking 511

branching 1883, 2433, 2876
and CASE 2433
and IF 2876

branch specifiers 357, 1986
END 357
EOR 357
ERR 357

branch statements 1883
branch target statements 1883, 1986

in data transfer 1986
breakpoints

use in locating source of run-time errors 359
BSEARCHQQ 2420
BSHFT 2943
BSHFTC 2945

3730

Intel® Fortran Compiler User and Reference Guides

BSIGN 3509
BTEST 2422
BUFFERCOUNT 2128
BUFFERED 2106, 2128

specifier for INQUIRE 2106
specifier for OPEN 2128

buffers 326, 1630
portability routines that read and write 326
UBC system 1630

build environment
selecting 95

building applications
overview 93

built-in functions 1935, 2978, 3381, 3651
%LOC 2978
%REF 3381
%VAL 3651

BYTE 2424
BZ 2074

C
C 2378, 2390

option for ATTRIBUTES directive 2378, 2390
C_ASSOCIATED 2424
C_F_POINTER 2425
C_F_PROCPOINTER 2426
C_FUNLOC 2427
C_LOC 2427
C/C++ and Fortran

summary of programming issues 264
C/C++ interoperability 264
CABS 2321
cache

function returning size of a level in memory 2429
subroutine prefetching data on 3037

cache hints
directive providing 3023

CACHESIZE 2429
cache size intrinsic 1638
CALL 2429

using to invoke a function 2429
callback routines

predefined QuickWin 2345, 2907, 3043
registering for mouse events 3383
unregistering for mouse events 3641

calling conventions
and ATTRIBUTES directive 266

calling conventions (continued)
mixed-language programming 266
option specifying 670

calling conventions and attributes directive
in mixed-language programs 268

calling conventions for arguments
in mixed-language programs 280

calling C procedures from Fortran programs 312
capturing IPO output 1501
CARRIAGECONTROL 2107, 2129

specifier for INQUIRE 2107
specifier for OPEN 2129

carriage control 510, 2089, 2129
option specifying for file display 510
specifying 2129

CASE 2433
CASE DEFAULT 2433
case index 2433
case-sensitive names 108, 266, 285
CCOS 2486
CDABS 2321
CDCOS 2486
CDEXP 2647
CDFLOAT 2440
CDLOG 2979
CDSIN 3511
CDSQRT 3561
CDTAN 3598
CEILING 2441
CEXP 2647
CHANGEDIRQQ 2442
CHANGEDRIVEQQ 2443
changing number of threads 1342, 1352, 1360, 1371,

1392, 1611, 1636, 1660
floating-point stacks 1660
for efficiency in Intel Fortran 1636
guidelines for Intel Architectures 1611
in parallel region directives 1360
in worksharing construct directives 1371
preparing for OpenMP* programming 1352
specifying 1342
stacks 1660
summary table of 1392

CHAR 2444
CHARACTER 178, 1849, 2445

data type representation 178
in type declaration statements 1849

CHARACTER*(*) 1849, 2191
character assignment statements 1836

3731

Index

Character Constant and Hollerith Arguments 1927
character constant arguments 1927
character constants 1780, 1781, 1927, 2083

as arguments 1927
C strings in 1781
in format specifiers 2083

character count editing (Q) 2080
character count specifier 1989
character data

specifying output of 2083
character data type 178, 1779, 1780, 1781, 1783,

2186, 2500
constants 1780
conversion rules with DATA 2500
C strings 1781
default kind 1779
representation of 178
storage 2186
substrings 1783

character declarations 1849
character editing (A) 2062
character expressions 1823, 2961

comparing values of 1823
function returning length of 2961

character functions
categories of 1953

character length
specifying 1779

character objects
specifying length of 1849

character operands 1823
character procedures

table of 2275
characters

carriage-control for printing 2129
function returning 2444
function returning next available 2653, 2722
function returning position of 2820, 2829
function writing to file 2692
overview of Fortran 1745
portability routines that read and write 326

character sets 1750, 2211, 2214, 2216, 3410
ANSI 2214
ASCII 2211
Fortran 95/90 1750
function scanning for characters in 3410
Intel Fortran 1750
key codes 2216

character storage unit 2186

character string
function adjusting to the left 2328
function adjusting to the right 2329
function concatenating copies of 3390
function locating index of last occurrence of
substring in 3401
function locating last nonblank character in 2975
function reading from keyboard 2787
function returning length minus trailing blanks 2962
function returning length of 2961
function scanning for characters in 3410
function trimming blanks from 3619
option affecting backslash character in 486
subroutine sending to screen (including blanks)
3130, 3133
subroutine sending to screen (special fonts) 3130

character string edit descriptors 2083
character string editing 2083
character strings

as edit descriptors 2083
comparing 3660
function checking for all characters in 3660
mixed-language programming 301

character substrings 1783, 1865
making equivalent 1865

character type declaration statements 1849
character type functions 2705
character values

transferring 2062
character variables 1779
charts for character and key codes 2211
CHDIR 2446, 3231

POSIX version of 3231
check compiler option 359
checking

floating-point stacks 1691
stacks 1691

Checking the Floating-point Stack State 1691
child window

function appending list of names to menu 3497
function making active 3427
function returning unit number of active 2714
function setting properties of 3491

CHMOD 2449, 3232
POSIX version of 3232

chunk size
in DO directive 2579

C interoperability 306

3732

Intel® Fortran Compiler User and Reference Guides

circles
functions drawing 2597

circular shift
function performing 2945

clauses
COPYIN 2485
COPYPRIVATE 2485, 3520
data scope attribute 2166
DEFAULT 2521, 3139
DEFAULT FIRSTPRIVATE 2521
DEFAULT NONE 2521
DEFAULT PRIVATE 2521
DEFAULT SHARED 2521
FIRSTPRIVATE 2579, 2657, 3139, 3418, 3520
IF 3139
LASTPRIVATE 2579, 2957, 3418
NOWAIT 2579, 3418, 3520
NUM_THREADS 3139
ORDERED 2579
PRIVATE 2579, 3139, 3200, 3418, 3520
REDUCTION 2579, 3139, 3378, 3418
SCHEDULE 2579
SHARED 3139

CLEARSCREEN 2451
CLEARSTATUSFPQQ 2452
CLICKMENUQQ 2455
clip region

subroutine setting 3431, 3488
CLOCK 2456
CLOCKX 2457
CLOG 2979
CLOSE 2457
CLOSE statement 234
closing files

CLOSE statement 234
CMPLX 2459
code

option generating for specified CPU 723
option generating processor-specific 500, 717, 850
option generating specialized and optimized
processor-specific 1038, 1112

code coverage tool 1532
color scheme 1532
dynamic counters in 1532
exporting data 1532
syntax of 1532

code-coverage tool
option gathering information for 836, 998

code layout 1506

codepage
function setting current 3096
function setting for current console 3095
subroutine retrieving current 3082

codepage number
function returning for console codepage 3081
function returning for system codepage 3081

codepages
function returning array of 3072

colon
in array specifications 1809, 1853, 1857, 1859,
1860

colon editing 2079
color index

function returning current 2725
function returning for multiple pixels 2781
function returning for pixel 2777
function returning text 2789
function setting current 3434
function setting for multiple pixels 3473
function setting for pixel 3469

color RGB value
function returning current 2727
function setting current 3436

COMAddObjectReference 2460
combined parallel and worksharing constructs 1359
combining arrays 3024
combining source forms 1761
COMCLSIDFromProgID 2461
COMCLSIDFromString 2461
COMCreateObjectByGUID 2462
COMCreateObjectByProgID 2463
COMGetActiveObjectByGUID 2463
COMGetActiveObjectByProgID 2464
COMGetFileObject 2465
COMInitialize 2465
COMIsEqualGUID 2468
comma

as external field separator 2031
using to separate input data 2066

COMMAND_ARGUMENT_COUNT 2468
command arguments

function returning number of 2468
command interpreter

function sending system command to 3596
command invoking a program

subroutine returning 2730
command line

redirecting output from 113

3733

Index

command line (continued)
running applications from 118
using the ifort command 107
using with Intel(R) Fortran 95

command-line arguments
function returning index of 2823
function returning number of 2823, 3066
subroutine returning full 2731
subroutine returning specified 2716

command-line syntax
for make and nmake command 114

command-line window
setting search paths for .mod files 258
setting search paths for include files 260

comment indicator
general rules for 1752

comment lines 1752, 1754, 1757
for fixed and tab source 1757
for free source 1754

COMMITQQ 2471
COMMON 1870, 2473

interaction with EQUIVALENCE 1870
common block association 2473
common blocks 116, 560, 877, 1870, 2417, 2473,

3124, 3207, 3405, 3425, 3661
allocating 116
defining initial values for variables in named 2417
directive modifying alignment of data in 3124
directive modifying characteristics of 3207
effect in SAVE 3405
EQUIVALENCE interaction with 1870
extending 1870
option enabling dynamic allocation of 560, 877
using derived types in 3425
volatile 3661

common external data
mixed-language programming 285

compilation
efficient 1658
optimizing 1658

compilation control statements 2157
compilation phases 99
compilation units 596, 1514

option to prevent linking as shareable object 596
compile and link

using the ifort command to 108
compiler

default actions 102
overview 81, 87

compiler (continued)
saving information in your executable 104
using from the command line 107

compiler directives 140, 2159, 2160, 2164, 2253,
2334, 2362, 2369, 2371, 2409, 2492, 2518,
2522, 2544, 2579, 2657, 2664, 2695, 2833,
2884, 2916, 2949, 2984, 2992, 3022, 3023,
3026, 3098, 3099, 3100, 3103, 3105, 3108,
3109, 3114, 3123, 3124, 3129, 3136, 3139,
3142, 3143, 3145, 3146, 3147, 3189, 3207,
3370, 3418, 3520, 3577, 3592, 3602, 3606,
3607, 3632, 3643, 3644, 3654, 3655, 3657,
3658, 3659, 3670

ALIAS 2334
ASSUME_ALIGNED 2362
ATOMIC 2164, 2369
ATTRIBUTES 2371
BARRIER 2164, 2409
CRITICAL 2164, 2492
DECLARE and NODECLARE 2518
DEFINE and UNDEFINE 2522, 3632
DISTRIBUTE POINT 2544
DO 2164, 2579
ENDIF 2884
FIXEDFORMLINESIZE 2657
FLUSH 2164, 2664
FREEFORM and NOFREEFORM 2695, 3098
general 2160
IDENT 2833
IF Construct 2884
IF DEFINED 2884
INTEGER 2916
IVDEP 2949
LOOP COUNT 2984
MASTER 2164, 2992
MEMORYTOUCH (i64) 3022
MEMREF_CONTROL (i64) 3023
MESSAGE 3026
OBJCOMMENT 3114
OpenMP Fortran 2164
OPTIMIZE and NOOPTIMIZE 3099, 3123
OPTIONS 3124
ORDERED 2164, 3129
overview of parallel 2164
PACK 3136
PARALLEL DO 2164, 3145
PARALLEL loop 3142, 3143
PARALLEL OpenMP Fortran 2164, 3139
PARALLEL SECTIONS 2164, 3146

3734

Intel® Fortran Compiler User and Reference Guides

compiler directives (continued)
PARALLEL WORKSHARE 2164, 3147
PREFETCH and NOPREFETCH 3100, 3189
prefixes for 2159
PSECT 3207
REAL 3370
rules for 2159
SECTION 2164, 3418
SECTIONS 2164, 3418
SINGLE 2164, 3520
STRICT and NOSTRICT 3103, 3577
SWP and NOSWP (i64) 3105, 3592
table of general 2253
table of OpenMP 2253
TASK 2164, 3602
TASKWAIT 2164, 3606
THREADPRIVATE 2164, 3607
UNROLL_AND_JAM and NOUNROLL_AND_JAM 3644
UNROLL and NOUNROLL 3108, 3643
VECTOR ALIGNED and VECTOR UNALIGNED 3654,
3659
VECTOR ALWAYS and NOVECTOR 3109, 3655
VECTOR NONTEMPORAL (i32, i64em) 3657, 3658
VECTOR TEMPORAL (i32, i64em) 3657, 3658
WORKSHARE 2164, 3670

compiler error conditions 331
compiler installation

option specifying root directory for 910
compiler limits 438
compiler messages 331
compiler optimization 1302
compiler optimizations 431, 1301
compiler options

affecting DOUBLE PRECISION KIND 554
affecting INTEGER KIND 691
affecting REAL KIND 1046
cross-reference tables of 1127, 1178
deprecated and removed 457
general rules for 465
how to display functional groupings 443
mapping between operating systems 138
new 444
option displaying list of 663
option mapping to equivalents 721, 931
option saving in executable or object file 1017,
1062
overview 137
overview of descriptions of 465
quick reference summary of 1127, 1178

compiler options (continued)
statement confirming 3122
statement overriding 3122
summary of Linux and Mac OS X options 1178
summary of Windows options 1127

compiler options used for debugging 161
compiler reports 1258, 1260, 1263, 1273, 1288,

1294, 1510
High-Level Optimization (HLO) 1273
Interprocedural Optimizations (IPO) 1263
report generation 1260
requesting with xi* tools 1510
software pipelining 1288
vectorization 1294

compiler reports quick reference 1258
compiler versions

option displaying 1107
option displaying information about 716

compile-time bounds check
option changing to warning 1106

compile-time messages
option issuing for nonstandard Fortran 1063

compiling 99, 107, 114
files from the command line 107
using makefiles 114

compiling and linking
for optimization 100
from the command line 107
mixed-language programs 311

compiling large programs 1504
compiling with IPO 1501
COMPL 2479
complementary error function

function returning 2641
COMPLEX 1774, 2478
COMPLEX(16) 1774, 1777, 3344

constants 1777
function converting to 3344

COMPLEX(4) 1774, 1775, 2459
constants 1775
function converting to 2459

COMPLEX(8) 1774, 1776, 2516
constants 1776
function converting to 2516

COMPLEX(KIND=16) representation 1731
COMPLEX(KIND=4) representation 1730
COMPLEX(KIND=8) representation 1731
COMPLEX*16 1774
COMPLEX*32 1774

3735

Index

COMPLEX*8 1774
complex constants

rules for 1775
complex data

mixed-language programming 290
complex data type 171, 290, 1730, 1731, 1774, 1775,

1776, 1777, 2186, 2459, 2516
constants 1775, 1776, 1777
default kind 1774
function converting to 2459, 2516
handling 290
mixed-language programming 290
native IEEE representation (COMPLEX*16) 1731
native IEEE representation (COMPLEX*32) 1731
native IEEE representation (COMPLEX*8) 1730
ranges for 171
storage 2186

complex editing 2060
complex number

function resulting in conjugate of 2482
function returning the imaginary part of 2330

complex operations
option enabling algebraic expansion of 516, 855

complex values
transferring 2049, 2060

COMPLINT 2479
COMPLLOG 2479
COMPLREAL 2479
computed GO TO 2811
COMQueryInterface 2479
COMReleaseObject 2480
COM routines

COMAddObjectReference 2460
COMCLSIDFromProgID 2461
COMCLSIDFromString 2461
COMCreateObjectByGUID 2462
COMCreateObjectByProgID 2463
COMGetActiveObjectByGUID 2463
COMGetActiveObjectByProgID 2464
COMGetFileObject 2465
COMInitialize 2465
COMIsEqualGUID 2468
COMQueryInterface 2479
COMReleaseObject 2480
COMStringFromGUID 2481
COMUninitialize 2482
table of 2314

COMStringFromGUID 2481
COMUninitialize 2482

concatenation of strings
function performing 3390

concatenation operator 1823
conditional check

option performing in a vectorized loop 1033, 1091
conditional compilation

directive testing value during 2522, 3632
option defining symbol for 153, 522
option enabling or disabling 486

conditional DO 2584
conditional parallel region execution 1242, 1287,

1360, 1371, 1512
auto-parallelizer diagnostics 1242, 1287
data scope attributes 1371
inline expansion 1512

configuration files 157
using 157

conformable arrays 1800
conformance

to language standards 1741
CONJG 2482
conjugate

function calculating 2482
connecting to files 3115
console

option displaying information to 1105
console codepage

function returning number for 3081
console keystrokes

function checking for 3158
constant expressions 1828
constants 1763, 1766, 1771, 1772, 1773, 1775, 1776,

1777, 1779, 1780, 1812, 3148
array 1812
character 1780
COMPLEX(16) 1777
COMPLEX(4) 1775
COMPLEX(8) 1776
DOUBLE COMPLEX 1776
DOUBLE PRECISION 1772
integer 1766
literal 1763
logical 1779
named 3148
REAL(16) 1773
REAL(4) 1771
REAL(8) 1772

constructors
array 1812

3736

Intel® Fortran Compiler User and Reference Guides

constructors (continued)
structure 1790

constructs 1883, 2433, 2575, 2584, 2682, 2876, 3666
CASE 2433
DO 2575, 2584
FORALL 2682
IF 2876
WHERE 3666

CONTAINS 1898, 1918, 2483
in internal procedures 1918
in modules and module procedures 1898

continuation indicator
general rules for 1752

continuation lines
for fixed and tab source 1757
for free source 1754

CONTINUE 2484
control 1883, 3394

returning to calling program unit 3394
control characters for printing 2089, 2129
control constructs 1883
control edit descriptors 2068, 2070, 2071, 2072,

2073, 2074, 2077, 2079, 2080
backslash 2079
BN 2073
BZ 2074
colon 2079
dollar sign 2079
for blanks 2073
forms for 2068
positional 2070
Q 2080
S 2072
Scale factor 2074
sign 2071
slash 2077
SP 2072
SS 2072
T 2070
TL 2071
TR 2071
X 2071

controlling expression
using to evaluate block of statements 2433

control list 1981
control-list specifiers 1981, 1983, 1984, 1985, 1986,

1988, 1989
defining variable for character count 1989
for advancing or nonadvancing i/o 1988

control-list specifiers (continued)
for asynchronous i/o 1988
for transfer of control 1986
identifying the i/o status 1985
identifying the record number 1985
identifying the unit 1983
indicating the format 1984
indicating the namelist group 1985

control procedures
table of 2258

control statements 1883, 2258
table of 2258

control transfer 1883, 1885, 2429, 2433, 2603, 2810,
2811, 2813, 2873, 2875, 2876, 3394

with arithmetic if 2873
with branch statements 1883
with CALL 2429
with CASE 2433
with DO 1885
with END 2603
with GO TO 2810, 2811, 2813
with IF construct 2876
with logical IF 2875
with RETURN 3394

control variables
function setting value of dialog 2562

control word
floating-point 1710
setting and retrieving floating-point 1706
subroutines returning floating-point 2732, 3415
subroutines setting floating-point 2959, 3438

conventions
in the documentation 81

conversion
double-precision to single-precision type 3371
effect of data magnitude on G format 2058
from integers to RGB color value 3399
from RGB color value to component values 2917
function performing logical 2983
function resulting in COMPLEX(16) type 3344
function resulting in complex type 2459
function resulting in double-complex type 2516
function resulting in integer type 2910
function resulting in quad-precision type 3345,
3346, 3347, 3348
function resulting in real type 3371, 3402
function resulting in single-precision type 2887,
3371

3737

Index

conversion (continued)
functions resulting in double-precision type 2513,
2536, 2537, 2574, 2593, 2833
INTEGER(2) to INTEGER(4) 2983
INTEGER(4) to INTEGER(2) 3508
record structures to derived types 2201
to nearest integer 2441, 2663
to truncated integer 2910

conversion rules for numeric assignment 1834
CONVERT 181, 194, 195, 196, 2107, 2130

specifier for INQUIRE 2107
specifier for OPEN 181, 194, 195, 196, 2130

coordinates
subroutine converting from physical to viewport
2798
subroutine converting from viewport to physical
2775
subroutine returning for current graphics position
2735

COPYIN 1342, 2485, 3139, 3145, 3146, 3607
for THREADPRIVATE common blocks 3607
in PARALLEL directive 3139
in PARALLEL DO directive 3145
in PARALLEL SECTIONS directive 3146
summary of data scope attribute clauses 1342

COPYPRIVATE 2485, 3520
in SINGLE directive 3520

correct usage of countable loop 1466
COS 1466, 2486

correct usage of 1466
COSD 2487
COSH 2488
cosine

function returning 2486, 2487
function returning hyperbolic 2488
function with argument in degrees 2487
function with argument in radians 2486

COTAN 2488
COTAND 2489
cotangent

function returning 2488, 2489
function with argument in degrees 2489
function with argument in radians 2488

COUNT 2490
counters for dynamic profile 1579
country

function setting current 3096
subroutine retrieving current 3082

CPU
option generating code for specified 723
option performing optimizations for specified 740

CPU_TIME 2492
CPU dispatch

automatic 1310
CPU time 1511, 1552, 1611, 1643, 2492, 2515, 2595,

2643
DPI lists 1552
for inline function expansion 1511
function returning elapsed 2515, 2595, 2643
multithreaded applications 1611

CQABS 2321
CQCOS 2486
CQEXP 2647
CQLOG 2979
CQSIN 3511
CQSQRT 3561
CQTAN 3598
CRAY 2130

value for CONVERT specifier 2130
CreateFile

creating a jacket to 2148
create libraries using IPO 1508
CreateProcess 1495
CreateThread 1481
CRITICAL 2492
critical errors

subroutine controlling prompt for 3444
cross-iteration dependencies 1352
cross reference

of Linux and Mac OS X options 1178
of Windows options 1127
Quick Reference Guide and Cross Reference 1127,
1178

C run-time exceptions 426, 2751
function returning pointer to 2751

CSHIFT 2494
CSIN 3511
CSMG 2497
CSQRT 3561
C strings 1781
C-style escape sequence 1781
CTAN 3598
CTIME 2497
C-type character string 1781
currency string

function returning for current locale 3074

3738

Intel® Fortran Compiler User and Reference Guides

current date
subroutines returning 2506, 2507, 2508, 2509,
2738, 2830, 2832

current locale
function returning information about 3083

cursor
function controlling display of 2543
function setting the shape of 3466

CYCLE 2498

D
D 2052

edit descriptor 2052
DABS 2321
DACOS 2326
DACOSD 2327
DACOSH 2328
DASIN 2350
DASIND 2351
DASINH 2352
data

compiler option affecting 116
locating unaligned 164

DATA 2500
data alignment 1642
data conversion rules

for numeric assignment 1834
data edit descriptors 2039, 2040, 2042, 2044, 2045,

2046, 2048, 2050, 2052, 2054, 2056, 2058,
2061, 2062, 2065

A 2062
B 2045
D 2052
default widths for 2065
E 2052
EN 2054
ES 2056
F 2050
forms for 2040
G 2058
I 2044
L 2061
O 2046
rules for numeric 2042
Z 2048

data editing
specifying format for 1984

data file
converting unformatted files 210
handling I/O errors 353
limitations in converting unformatted files 1721
RECL units for unformatted files 187

dataflow analysis 1242, 1447
data format

alignment 1475, 1671
alignment of common external 285
allocatable arrays in mixed-language programming
293
array pointers in mixed-language programming
293
arrays in mixed-language programming 295
big endian unformatted file formats 181
character strings in mixed-language programming
301
common external in mixed-language programming
285
dependence 1287, 1605
exchanging and accessing in mixed-language
programming 280, 289
floating-point 1724
formats for unformatted files 181
little endian unformatted file formats 181
methods of specifying 188
mixed-language programming 289
nonnative numeric formats 181
options 1660
partitioning 1453
passing as arguments in mixed-language
programming 266, 280
pointers in mixed-language programming 294
porting non-native data 187
prefetching 1581, 1591
scope attribute clauses 1342
sharing 1242
statement controlling 2685
strings in mixed-language programming 301
structure 1475
structures in mixed-language programming 305
type 1242, 1459, 1636
user-defined types in mixed-language programming
305
VAX* floating-point formats 181

data initialization 2500
DATAN 2365
DATAN2 2365
DATAN2D 2367

3739

Index

DATAND 2368
DATANH 2368
data objects 1763, 2186, 2371, 2500, 2609, 2636,

3064, 3163, 3373, 3405, 3579, 3626, 3661
assigning initial values to 2500
associating with group name 3064
association of 2186
declaring type of 3626
directive specifying properties of 2371
record structure 2609, 3373, 3579
retaining properties of 3405
specifying pointer 3163
storage association of 2636
unpredictable values of 3661

data ordering optimization 1566
data prefetches 1602
data representation 432, 2223, 2224, 2225, 2227

and portability considerations 432
model for bit 2227
model for integer 2224
model for real 2225

data representation models 2223
intrinsic functions providing data for 2223

data scope attribute clauses 1342, 2166
data storage

and portability considerations 432
argument passing in mixed-language programming
266, 280
association 2186
common external in mixed-language programming
285
mixed-language programming 289

data transfer 1979, 2077, 2136, 3616
function for binary 3616
indicating end of 2077
specifying mode of 2136

data transfer statements 1979, 1980, 1981, 1983,
1984, 1985, 1986, 1988, 1989, 1990, 1991,
1995, 2323, 3194, 3365, 3398, 3673

ACCEPT 2323
ADVANCE specifier in 1988
ASYNCHRONOUS specifier in 1988
components of 1980
control list in 1981
control specifiers in 1981
END specifier in 1986
EOR specifier in 1986
ERR specifier in 1986
FMT specifier in 1984

data transfer statements (continued)
i/o lists in 1990
implied-do lists in 1995
input 2323, 3365
IOSTAT specifier in 1985
list items in 1991
NML specifier in 1985
output 3194, 3398, 3673
PRINT 3194
READ 3365
REC specifier in 1985
REWRITE 3398
SIZE specifier in 1989
UNIT specifier in 1983
WRITE 3673

data type
declarations 3626
explicit 1799
implicit 1800
specifying for variables 1799

data types 171, 174, 176, 178, 179, 181, 188, 266,
280, 289, 293, 294, 295, 301, 305, 1613,
1698, 1728, 1729, 1730, 1731, 1763, 1765,
1769, 1774, 1778, 1779, 1784, 1799, 1800,
1821, 1847, 2186, 2424, 2445, 2478, 2530,
2587, 2588, 2617, 2889, 2915, 2982, 3368,
3620, 3626

allocatable arrays in mixed-language programming
293
array pointers in mixed-language programming
293
arrays in mixed-language programming 295
big endian unformatted file formats 181
BYTE 2424
CHARACTER 1779, 2445
character representation 178
character strings in mixed-language programming
301
COMPLEX 1728, 1774, 2478
declaring 3626
derived 1784, 2530, 2617, 3620
DOUBLE COMPLEX 1728, 1774, 2587
DOUBLE PRECISION 1728, 1769, 2588
efficiency 1698
explicit 1799
formats for unformatted files 181
Hollerith representation 179
IEEE S_float representation (COMPLEX*8) 1730
IEEE S_float representation (REAL*4) 1728

3740

Intel® Fortran Compiler User and Reference Guides

data types (continued)
IEEE T_float representation (COMPLEX*16) 1731
IEEE T_float representation (COMPLEX*32) 1731
IEEE T_float representation (REAL*8) 1729
implicit 1800
INTEGER 174, 1765, 2915
intrinsic 1763
little endian unformatted file formats 181
LOGICAL 176, 1778, 2982
methods of using nonnative formats 188
mixed-language programming 289
native data representation 171
native IEEE* floating-point representation 1728
noncharacter 1847
obtaining unformatted numeric formats 188
of scalar variables 1799
passing as arguments in mixed-language
programming 266, 280
pointers in mixed-language programming 294
ranges for denormalized native floating-point data
171
ranges for native numeric types 171
ranking in expressions 1821
REAL 1728, 1769, 3368
statement overriding default for names 2889
storage for 171
storage requirements for 2186
strings in mixed-language programming 301
structures in mixed-language programming 305
user-defined

in mixed-language programming 305
DATE 2506, 2507, 2508, 2509, 2738, 2830, 2832,

2952, 2953, 3076, 3441, 3640
function returning for current locale 3076
function returning Julian 2952, 2953
function setting 3441
routine to prevent Year 2000 problem 2509
subroutines returning 2508, 2509, 2738, 2830,
2832
subroutines returning current system 2506, 2507,
2508, 2509
subroutine unpacking a packed 3640

DATE_AND_TIME 2509
DATE4 2508
date and time

routine returning as ASCII string 2652
subroutine packing values for 3138
subroutine returning 4-digit year 2509
subroutine returning current system 2509

date and time format
for NLS functions 3083

date and time routines
table of 2263

DAZ flag 1689
DBESJ0 2511
DBESJ1 2511
DBESJN 2511
DBESY0 2511
DBESY1 2511
DBESYN 2511
DBLE 2513
DCLOCK 2515
DCMPLX 2516
DCONJG 2482
DCOS 2486
DCOSD 2487
DCOSH 2488
DCOTAN 2488
DCOTAND 2489
DDIM 2539
deadlocks 1491
DEALLOCATE 2517
debugger

Intel(R) Debugger (IDB) 168
limitations 168
multithread programs 168
use in locating run-time error source 359

debugging 110, 161, 168, 526, 529, 3026
directive specifying string for 3026
executables 110
multithread programs 168
option affecting information generated 526, 529
option specifying settings to enhance 526, 529
preparing Fortran programs for debugging 161

debugging Fortran programs 161
debugging statement indicator

for fixed and tab source 1757
for free source 1754

debug information
option generating for PARAMETERs used 532
option generating full 650, 1119, 1122
option requesting Visual C++ compatible 1030
option saving to program database file 822

debug library
option searching for unresolved references in 524

debug statements
option compiling 523, 856

3741

Index

decimal exponents
function returning range of 3363

decimal precision
function returning 3189

declarations 1845, 2250, 2623, 3634
MAP 2623, 3634
table of procedures for data 2250
UNION 2623, 3634

declaration statements 1845, 1847, 1849, 1852, 1853
for arrays 1853
for character types 1849
for derived types 1852
for noncharacter types 1847

DECLARE 140, 2518
equivalent compiler option for 140

DECODE 2519
DECORATE 2381

option for ATTRIBUTES directive 2381
decorated name 268, 276
DEFAULT 1342, 1345, 2382, 2521, 3139, 3145, 3146

in PARALLEL directive 3139
in PARALLEL DO directive 3145
in PARALLEL SECTIONS directive 3146
option for ATTRIBUTES directive 2382
summary of data scope attribute clauses 1342
using 1345

default actions of the compiler 102
DEFAULTFILE 2133
default file name 2134
DEFAULT FIRSTPRIVATE 2521
default initialization 1785
default libraries 97
DEFAULT NONE 2521
default pathnames 227
DEFAULT PRIVATE 2521
DEFAULT SHARED 2521
default tools 97
default widths for data edit descriptors 2065
deferred-shape arrays 1623, 1860
DEFINE 140, 153, 2522, 3632

equivalent compiler option for 140
using to detect preprocessor symbols 153

defined assignment 1839, 2354
defined operations 1827, 1940
defined variables 1798
DEFINE FILE 2523
defining generic assignment 1942
defining generic operators 1940
DELDIRQQ 2525

DELETE
alternative syntax for statement 2200

DELETEMENUQQ 2527
DELETE value for CLOSE(DISPOSE) or CLOSE(STATUS)
2457
DELFILESQQ 2528
DELIM 2108, 2133

specifier for INQUIRE 2108
specifier for OPEN 2133

denormal exceptions 1611, 1694
denormalized numbers (IEEE*) 171, 1722, 1728

double-precision range 171
exponent value of 1728
NaN values 1722
S_float range 171
single-precision range 171
T_float range 171

denormal numbers 1611, 1688
flush-to-zero 1611

denormal results
option flushing to zero 643, 891

denormals 1688
denormals-are-zero 1611
dependence analysis

directive assisting 2949
deprecated compiler options 457
dequeuing 1364
DERF 2640
DERFC 2641
derived data types 1784
derived-type assignments 1837
derived-type components 1623, 1784, 1785, 1786

default initialization of 1785
referencing 1786

derived-type data
components of 1784, 1785
definition of 1785

derived-type declaration statements 1852
derived-type definition 1784, 1785, 3425

preserving the storage order of 3425
derived-type items

directive specifying starting address of 3136
derived types 305, 1784, 1786, 1790, 1817, 1837,

2530, 2617, 3425, 3620
assignments with 1837
components of 1786
declaring 2530, 2617, 3620
equivalencing 3425
mixed-language programming 305

3742

Intel® Fortran Compiler User and Reference Guides

derived types (continued)
referencing 1817
specifying scalar values of 1790
storage for 1784
using in common blocks 3425

derived type statement 2530, 2617, 3620
determining parallelization 1242
development environment

choosing 95
devenv command 129
devices

associating with units 3115
logical 197

devices and files 197
device-specific blocksize 1630
DEXP 2647
DFLOAT 2536
DFLOATI 2537
DFLOATJ 2537
DFLOATK 2537
DFLOTI 2536
DFLOTJ 2536
DFLOTK 2536
diag compiler option 331
diagnostic messages

option affecting which are issued 533, 539, 857,
863, 1099
option controlling auto-parallelizer 533, 539, 811,
857, 863, 978
option controlling display of 533, 539, 857, 863
option controlling OpenMP 533, 539, 857, 863
option controlling OpenMP parallelizer 771, 942
option controlling source control 533, 539, 857,
863
option controlling vectorizer 533, 539, 857, 863,
1034, 1092
option displaying ID number values of 551, 875
option enabling or disabling 533, 539, 857, 863
option enabling parallel lint 545, 869
option issuing only once 552, 876
option printing enabled 538, 862
option processing include files and source files for
544, 867
option sending to file 548, 872
option stopping compilation after printing 538, 862

diagnostic reports 1287
diagnostics 336, 1242, 1287, 1461

auto-parallelizer 1242, 1287

dialog boxes
assigning event handlers to controls in 2565
deallocating memory associated with 2573
displaying modeless 2557
function assigning event handlers to controls 2565
functions displaying 2555
functions initializing 2551
message for modeless 2552
subroutine closing 2546
subroutine setting title of 2572
subroutine updating the display of 2547

dialog box messages
subroutine setting 3464

dialog control boxes
function sending a message to 2561

dialog control variable
functions retrieving state of 2549
functions setting value of 2562

dialog routines 2312, 2546, 2547, 2549, 2551, 2552,
2555, 2557, 2561, 2562, 2565, 2567, 2568,
2572, 2573

DLGEXIT 2546
DLGFLUSH 2547
DLGGET 2549
DLGGETCHAR 2549
DLGGETINT 2549
DLGGETLOG 2549
DLGINIT 2551
DLGINITWITHRESOURCEHANDLE 2551
DLGISDLGMESSAGE 2552
DLGISDLGMESSAGEWITHDLG 2552
DLGMODAL 2555, 2567
DLGMODALWITHPARENT 2555
DLGMODELESS 2557
DLGSENDCTRLMESSAGE 2561
DLGSET 2562
DLGSETCHAR 2562
DLGSETCTRLEVENTHANDLER 2565
DLGSETINT 2562
DLGSETLOG 2562
DLGSETRETURN 2567
DLGSETSUB 2568
DLGSETTITLE 2572
DLGUNINIT 2573
table of 2312

difference operators 1379
differential coverage 1532
DIGITS 2538
DIM 2539

3743

Index

DIMAG 2330
DIMENSION 2540
dimensions 1800, 2958

function returning lower bounds of 2958
DINT 2331
DIRECT 2109
direct-access files 208, 246

RECL values 246
direct access mode 1979
direct-access READ statements 2012, 2013

rules for formatted 2013
rules for unformatted 2013

direct-access WRITE statements 2026, 2027
rules for formatted 2026
rules for unformatted 2027

direct file access 210
direction keys

function determining behavior of 3150
directive prefixes 2159
directives 140, 146, 1596, 1613, 2159, 2160, 2164,

2334, 2362, 2369, 2371, 2409, 2492, 2518,
2522, 2544, 2579, 2657, 2664, 2695, 2833,
2884, 2916, 2949, 2984, 2992, 3022, 3023,
3026, 3098, 3099, 3100, 3103, 3105, 3108,
3109, 3114, 3123, 3124, 3129, 3136, 3139,
3142, 3143, 3145, 3146, 3147, 3189, 3207,
3370, 3418, 3520, 3577, 3592, 3602, 3606,
3607, 3632, 3643, 3644, 3654, 3655, 3657,
3658, 3659, 3670

ALIAS 2334
ASSUME_ALIGNED 2362
ATOMIC 2164, 2369
ATTRIBUTES 2371
BARRIER 2164, 2409
commons 1613
compiler 140
CRITICAL 2164, 2492
dcommons 1613
DECLARE 2518
DEFINE 2522, 3632
DISTRIBUTE POINT 2544
DO 2579
FIXEDFORMLINESIZE 2657
FLUSH 2664
fpp 146
FREEFORM 2695, 3098
general 2160
IDENT 2833
IF 2884

directives (continued)
IF DEFINED 2884
INTEGER 2916
IVDEP 1596, 2949
LOOP COUNT 2984
MASTER 2164, 2992
MEMORYTOUCH (i64) 3022
MEMREF_CONTROL (i64) 3023
MESSAGE 3026
NODECLARE 2518
NOFREEFORM 2695, 3098
NOOPTIMIZE 3099, 3123
NOPARALLEL loop 3142, 3143
NOPREFETCH 3100, 3189
NOSTRICT 3103, 3577
NOSWP (i64) 3105, 3592
NOUNROLL 3108, 3643
NOUNROLL_AND_JAM 3644
NOVECTOR 1596, 3109, 3655
OBJCOMMENT 3114
OPTIMIZE 3099, 3123
OPTIONS 3124
ORDERED 2164, 3129
overview of parallel 2164
PACK 3136
PARALLEL DO 2164, 3145
PARALLEL loop 3142, 3143
PARALLEL OpenMP Fortran 2164, 3139
PARALLEL SECTIONS 2164, 3146
PARALLEL WORKSHARE 2164, 3147
PREFETCH 3100, 3189
prefixes for 2159
PSECT 3207
REAL 3370
records 1613
SECTION 2164, 3418
SECTIONS 2164, 3418
sequence 1613
SINGLE 2164, 3520
STRICT 3103, 3577
structure 1613
SWP (i64) 3105, 3592
syntax rules for 2159
TASK 2164, 3602
TASKWAIT 2164, 3606
THREADPRIVATE 2164, 3607
UNDEFINE 2522, 3632
UNROLL 3108, 3643
UNROLL_AND_JAM 3644

3744

Intel® Fortran Compiler User and Reference Guides

directives (continued)
VECTOR 1596
VECTOR ALIGNED 3654, 3659
VECTOR ALWAYS 1596, 3109, 3655
VECTOR NONTEMPORAL 1596
VECTOR NONTEMPORAL (i32, i64em) 3657, 3658
VECTOR TEMPORAL (i32, i64em) 3657, 3658
VECTOR UNALIGNED 3654, 3659
WORKSHARE 2164, 3670

directives for OpenMP* 1359, 1360, 1364, 1371
ATOMIC 1364
BARRIER 1364
CRITICAL 1364
DO 1371
END DO 1371
END PARALLEL 1360
END PARALLEL DO 1359
END PARALLEL SECTIONS 1359
END SECTIONS 1371
END SINGLE 1371
FLUSH 1364
MASTER 1364
ORDERED 1364
PARALLEL 1360
PARALLEL DO 1359
PARALLEL SECTIONS 1359
PARALLEL WORKSHARE 1359
SECTION 1371
SECTIONS 1371
SINGLE 1371
WORKSHARE 1359

directory
function changing the default 2446
function creating 2989
function deleting 2525
function returning full path of 2703
function returning path of current working 2737
function specifying current as default 2442
inquiring about properties of 2903
option adding to start of include path 706
option specifying for executables 503
option specifying for includes and libraries 503

directory path
function splitting into components 3528

directory procedures
table of 2288

disabling
efficient use of 1630
function splitting 1520

disabling (continued)
inlining 1512

disabling optimization 1314
disassociated pointer 3110, 3112

function returning 3110
DISPLAYCURSOR 2543
DISPOSE 2134

specifier for OPEN 2134
DISPOSE specifier for CLOSE 2457
DISP specifier for CLOSE 2457
DISTRIBUTE POINT 1591, 2544

using 1591
division expansion 431
DLGEXIT 2546
DLGFLUSH 2547
DLGGET 2549
DLGGETCHAR 2549
DLGGETINT 2549
DLGGETLOG 2549
DLGINIT 2551
DLGINITWITHRESOURCEHANDLE 2551
DLGISDLGMESSAGE 2552
DLGISDLGMESSAGEWITHDLG 2552
DLGMODAL 2555
DLGMODALWITHPARENT 2555
DLGMODELESS 2557
DLGSENDCTRLMESSAGE 2561
DLGSET 2562
DLGSETCHAR 2562
DLGSETCTRLEVENTHANDLER 2565
DLGSETINT 2562
DLGSETLOG 2562
DLGSETRETURN 2567
DLGSETSUB 2568
DLGSETTITLE 2572
DLGUNINIT 2573
DLLEXPORT 2382, 2383

option for ATTRIBUTES directive 2382, 2383
DLLIMPORT 2382, 2383

option for ATTRIBUTES directive 2382, 2383
dllimport functions

option controlling inlining of 897
DLOG 2979
DLOG10 2980
DMAX1 2995
DMIN1 3028
DMOD 3040
DNINT 2342
DNUM 2574

3745

Index

DO 1886, 2162, 2575, 2579, 2584
block 1886
directive 2579
iteration 1886, 2575
loop control 1886
nonblock 1886
rules for directives that affect 2162
WHILE 2584

DO constructs 1398, 1466, 1611, 1623, 1636, 1886,
1888, 1891, 2484, 2498, 2575, 2584, 2645

execution of 1886
extended range of 1891
forms for 1886
immediate termination of 2645
interrupting 2498
nested 1888
numbers 1398, 1611, 1636
order of 1623
termination statement for labeled 2484
WHILE 2584

Documentation
conventions for 81
platform labels in 81

dollar sign ()
in names 1748

dollar sign editing 2079
DO loop iterations

option specifying scheduling algorithm for 814, 980
DO loops

directive assisting dependence analysis of 2949
directive controlling unrolling and jamming 3644
directive enabling non-streaming stores 3657, 3658
directive enabling prefetching of arrays in 3100,
3189
directive enabling software pipelining for 3105,
3592
directive enabling streaming stores 3657, 3658
directive enabling vectorization of 3109, 3655
directive facilitating auto-parallelization for 3142,
3143
directive specifying alignment of data in 3654, 3659
directive specifying distribution for 2544
directive specifying the count for 2984
directive specifying the unroll count for 3108, 3643
enabling jamming 3644
limiting loop unrolling 3108, 3643
option executing at least once 764, 935
rules for directives that affect 2162
statement terminating 2604

DO loops (continued)
statement to skip iteration of 2498
statement transferring control from 2645
terminal statement for 2484

DOT_PRODUCT 2586
dot-product multiplication

function performing 2586
double colon separator 3626
DOUBLE COMPLEX 554, 1776, 2516, 2587

constants 1776
function converting to 2516
option specifying default KIND for 554

DOUBLE PRECISION 554, 1772, 2513, 2536, 2537,
2574, 2588, 2593, 2833

constants 1772
functions converting to 2513, 2536, 2537, 2574,
2593, 2833
option specifying default KIND for 554

double-precision product
function producing 2589

double-precision real 1769
double-precision real editing (D) 2052
DO WHILE 2584
DO WHILE loops 2584, 2604, 2645

statement terminating 2604
statement transferring control from 2645

DPROD 2589
DRAND 2590
DRANDM 2590
DRANSET 2592
DREAL 2593
drive

function returning available space on 2741
function returning path of 2740
function returning total size of 2741
function specifying current as default 2443

drive procedures
table of 2288

driver tool commands
option specifying to show and execute 1089
option specifying to show but not execute 556

drives
function returning available 2744

DSHIFTL 2594
DSHIFTR 2594
DSIGN 3509
DSIN 3511
DSIND 3512
DSINH 3513

3746

Intel® Fortran Compiler User and Reference Guides

DSQRT 3561
DTAN 3598
DTAND 3599
DTANH 3599
DTIME 2595
dual-core 1242
dual core thread affinity 1418
dummy arguments 1623, 1630, 1785, 1857, 1859,

1920, 1929, 2919, 3118, 3653
default initialization of derived-type 1785
optional 3118
specifying argument association for 3653
specifying intended use of 2919
specifying intent for 2919
taking shape from an array 1857
taking size from an array 1859

dummy procedure arguments 1929
dummy procedures 1897, 1929, 2650

interfaces for 1929
using as actual arguments 2650

dumping profile information 1576, 1578
DYLD_LIBRARY_PATH environment variable 129
dynamic allocation 1875
dynamic association 1875
dynamic information 1398, 1519, 1530, 1574, 1576,

1579
dumping profile information 1576
files 1530
resetting profile counters 1579
threads 1398

dynamic-information files 1520
dynamic libraries

option invoking tool to generate 559
dynamic linker

option specifying an alternate 558
dynamic-linking of libraries

option enabling 504
dynamic-link libraries (DLLs)

option searching for unresolved references in 726,
728
option specifying the name of 563

dynamic memory allocation 1875
dynamic objects 1875
dynamic shared object

option producing a 1057
dyn files 1520, 1530, 1574, 1576, 1579

E
E 2052

edit descriptor 2052
ebp register

option determining use in optimizations 598, 600,
803

edit descriptor 2079
edit descriptors 2031, 2039, 2044, 2045, 2046, 2048,

2050, 2052, 2054, 2056, 2058, 2061, 2062,
2068, 2070, 2071, 2072, 2073, 2074, 2077,
2079, 2080, 2083, 2084, 2086, 2685

A 2062
apostrophe 2083
B 2045
backslash 2079
BN 2073
BZ 2074
character string 2083
colon 2079
control 2068
D 2052
data 2039
dollar sign 2079
E 2052
EN 2054
ES 2056
F 2050
for interpretation of blanks 2073
G 2058
H 2084
Hollerith 2084
I 2044
L 2061
O 2046
P 2074
Q 2080
quotation mark 2083
repeatable 2039
repeat specifications for 2086
S 2072
scale factor 2074
slash 2077
SP 2072
SS 2072
summary 2031
T 2070
TL 2071
TR 2071

3747

Index

edit descriptors (continued)
X 2071
Z 2048

edit lists 2031
efficiency 1696
efficient 1242, 1512, 1520, 1623, 1630, 1636, 1658

auto-parallelizer 1242
compilation 1658
implied-DO loop collapsing 1630
inlining 1512
parallelizer 1242
PGO options 1520
use of arrays 1623
use of record buffers 1630

efficient data types 1698
ELEMENTAL 2596, 2705, 3586

in functions 2705
in subroutines 3586

elemental intrinsic procedures 1934, 1947
references to 1934

elemental user-defined procedures 2596
element array assignment 2682
elements

function returning number of 3521
ELLIPSE 2597
ELLIPSE_W 2597
ellipses

functions drawing 2597
elliptical arcs

drawing 2348
ELSE WHERE 2600
EN 2054
ENCODE 2601
END 357, 1986, 2603, 3365, 3405

retaining data after execution of 3405
specifier for READ 3365
using the specifier 357, 1986

END DO 2604
ENDFILE 2605
endian

big and little types 181
endian data 1242, 1342, 1360, 1379, 1383, 1398,

1402, 1451, 1466, 1475, 1530, 1574, 1576,
1578, 1611, 1630, 1664

and OpenMP* extension routines 1402
auto-parallelization 1451
denormal 1611
dumping profile information 1576
for auto-parallelization 1451

endian data (continued)
for little endian conversion 1664
for profile-guided optimization 1574
FORT_BUFFERED 1630
loop constructs 1466
OMP_NUM_THREADS 1360
OMP_SCHEDULE 1342
OpenMP* 1383
parallel program development 1242
PROF_DIR 1574
PROF_DUMP_INTERVAL 1578
routines overriding 1398
using OpenMP* 1379
using profile-guided optimization 1530
vectorization 1475

ENDIF directive 2884
end-of-file condition

function checking for 2629
intrinsic checking for 2939

end-of-file record
function checking for 2629
retaining data after execution of 3405
statement writing 2605

end-off shift on arrays
function performing 2632

end-of-record condition
i/o specifier for 1986
intrinsic checking for 2940

END PARALLEL DO 1359
using 1359

END WHERE 2626
engineering-notation editing (EN) 2054
enhancing optimization 1251
enhancing performance 1251
entities

private 3196
public 3208

ENTRY 1944, 1945, 2627
in functions 1944
in subroutines 1945

entry points 1944, 1945, 2627
for function subprograms 1944
for subroutine subprograms 1945

environment variables
compile-time 129
converting nonnative numeric data 190
F_UFMTENDIAN 192
FOR_GENERATE_DEBUG_EXCEPTION 132
FORT_CONVERT_ext 132, 189

3748

Intel® Fortran Compiler User and Reference Guides

environment variables (continued)
FORT_CONVERT.ext 132, 189
FORT_CONVERTn 132, 190
FORTn 132
function adding new 3442
function returning value of 2748
function scanning for 3412
function setting value of 3442
run-time 132
setting 129
setting with ifortvars file 127
subroutine getting the value of 2745
used with traceback information 412

EOF 2629
EOR 357, 1986, 3365

specifier for READ 3365
using the specifier 357

EOSHIFT 2632
EPSILON 2635
EQUIVALENCE 1636, 1863, 1865, 1870, 2636

effect on run-time efficiency 1636
interaction with COMMON 1870
using with arrays 1863
using with substrings 1865

equivalence association 2636
equivalent arrays

making 1863
equivalent substrings

making 1865
ERF 2640
ERFC 2641
ERR 357, 1986, 3365, 3673

specifier for READ 3365
specifier for WRITE 3673
using the specifier 357

errno names 2871
error

subroutine sending last detected to standard error
stream 3159

error codes 361, 2871
error conditions

i/o specifier for 1986
subroutine returning information on 2642

error functions
functions returning 2640, 2641

error handling 353, 357, 358
overriding default 357
processing performed by Intel(R) Fortran RTL 353
supplementing default 357

error handling (continued)
user controls in I/O statements 358

error handling procedures
table of 2288

error messages 361
error numbers 2871
errors

during build process 331
FPCW$24 1710
FPCW$53 1710
FPCW$64 1710
FPCW$AFFINE 1710
FPCW$CHOP 1710
FPCW$DENORMAL 1710
FPCW$DOWN 1710
FPCW$INEXACT 1710
FPCW$INVALID 1710
FPCW$MCW_EM 1710
FPCW$MCW_IC 1710
FPCW$MCW_PC 1710
FPCW$MCW_RC 1710
FPCW$NEAR 1710
FPCW$OVERFLOW 1710
FPCW$PROJECTIVE 1710
FPCW$UNDERFLOW 1710
FPCW$UP 1710
FPCW$ZERODIVIDE 1710
FPU control word 1710
functions returning most recent run-time 2769,
2770
in multithread applications 1492
list of 361
locating run-time 359
loss of precision 1732
loss of precision errors 1732
methods of handling 357
option issuing for nonstandard Fortran 1063
option specifying maximum number of 547, 871
overflow errors 1732
rounding 1733
Run-Time Library 353
subroutine returning message for last detected
2712
underflow errors 1732
when building 331

ERRSNS 2642
ERR specifier for CLOSE 2457
ES 2056

3749

Index

escape sequence
C-style 1781

ETIME 2643
example programs

and traceback iinformation 415
exception handler

overriding 411
exception handling

option generating table of 581
exception parameters 1711
exceptions

debugging 164
locating source of 359

exclude code 1532
code coverage tool 1532

exclusive hint
option causing prefetches for stores with 787, 956

exclusive OR 1825, 2870
function performing 2870

executable
creating 110
saving compiler information in 104

executable statements 1746
execution

stopping program 3575
subroutine delaying for a program 3524
subroutine suspending for a process 3523

execution control 1883
execution environment routines 1398
execution flow 1453
execution mode 1402
EXIST 2109
EXIT 2645, 2646
exit behavior

function returning QuickWin 2753
function setting QuickWin 3445

exit codes
Fortran 358

exit parameters
function setting QuickWin 3445

ExitThread 1481
EXP 2647
explicit format 2031
explicit interface 295, 1935, 1937, 2923

Fortran array descriptor format 295
specifying 2923
when required 1937

explicit-shape arrays 1398, 1520, 1530, 1532, 1552,
1561, 1574, 1576, 1579, 1611, 1623, 1630,
1658, 1853

.dpi 1520, 1532, 1552, 1561

.dyn 1520, 1530, 1532, 1552, 1561, 1574, 1576,
1579
.spi 1532, 1552
formatted 1630
OpenMP* header 1398
optimizing 1611
pgopti.dpi 1532
pgopti.spi 1532
source 1530, 1658
unformatted 1630

explicit typing 1799
EXPONENT 2649
exponential procedures

table of 2269
exponential values

function returning 2647
exponents

function returning range of decimal 3363
expressions 696, 917, 1817, 1818, 1820, 1821, 1823,

1825, 1828, 1831, 2086, 2682, 3666
character 1823
data type of numeric 1821
effect of parentheses in numeric 1820
element array 2682
generalized masked array 2682
initialization 1828
logical 1825
masked array 3666
numeric 1818
option evaluating floating-point 696, 917
relational 1823
specification 1831
variable format 2086

extended intrinsic operators 1940
extensions

using 430
extent

function returning 3521
EXTERN 2384
EXTERNAL 1930, 2195, 2417, 2650

effect of block data program unit in 2417
effect on intrinsic procedures 1930
FORTRAN-66 interpretation of 2195

external data
mixed-language programming 285

3750

Intel® Fortran Compiler User and Reference Guides

external field separators 2066
external files 197, 1979, 3115

associating with units 3115
definition of 197
preconnected units 197

external functions
statement specifying entry point for 2627

external linkage with C 2414
external names

option specifying interpretation of 744
external naming conventions

mixed-language programming 274
external procedures 1745, 1897, 1918, 2148, 2334,

2650
directive specifying alternate name for 2334
interfaces of 1918
using as actual arguments 2650
using to open a file 2148

external subprograms 1745
external unit buffer

subroutine flushing 2666
external unit number 6

function writing a character to 3215
external user-defined names

option appending underscore to 486
external user-written functions

using to open files 2148

F
F 2050

edit descriptor 2050
F_UFMTENDIAN environment variable 132
F90_dyncom routine 116
F90 files 121
FDATE 2652
FDX 2130

value for CONVERT specifier 2130
FGETC 2653, 3250

POSIX version of 3250
FGX 2130

value for CONVERT specifier 2130
fields in common blocks 285
fields in record structures 1721
field width 2040, 2044, 2045, 2046, 2048, 2050, 2052

for B descriptor 2045
for D descriptor 2052
for E descriptor 2052

field width (continued)
for F descriptor 2050
for I descriptor 2044
for O descriptor 2046
for Z descriptor 2048

FILE 2134
specifier for OPEN 2134

file access methods 208
file access mode

function setting 3448
file extensions

option specifying additional Fortran 566
option specifying for FPP 567
option specifying for passage to linker 568
output files 122
supported by ifort command 121

file management procedures
table of 2288

file name
default 2134

filenames
specifying default 227

file numeric format
specifying 2130

file operation statements
BACKSPACE 2407
DELETE 2526
ENDFILE 2605
INQUIRE 2903
OPEN 3115
REWIND 3397

file operation statements in CLOSE 2457
file path

function splitting into components 3528
file position

functions returning 2702, 2785
specifying in OPEN 2139

file position statements
BACKSPACE 2407
ENDFILE 2605
REWIND 3397

file record length 222
file records 213
file record types 213
files

accessing with INCLUDE 2895
carriage control for terminal display 2129
combining at compilation 2895
disconnecting 2457

3751

Index

files (continued)
example of specifying name and pathname 358
function changing access mode of 2449
function deleting 2528
function finding specified 2656
function renaming 3387, 3388
function repositioning 2696
function returning full path of 2703
function returning information about 2697, 2754,
2986, 3564
function setting modification time for 3450
functions returning current position of 2702, 2785
function using path to delete 3637
input 121
internal 209
key 437
opening 3115
option specifying Fortran 1061
organization 208
repositioning to first record 3397
routine testing access mode of 2324
scratch 209
statement requesting properties of 2903
temporary 124
types of 1979
types of Microsoft* Fortran PowerStation compatible
246
using external user-written function to open 2148

file sharing 236, 2144
specifying 2144

file structure
specifying 2136

fill mask
functions using 2658, 2661
subroutine setting to new pattern 3451

fill shapes
subroutine returning pattern used to 2759

FIND 2655
FINDFILEQQ 2656
FIRSTPRIVATE 1342, 1346, 1371, 2521, 2579, 2657,

3139, 3145, 3146, 3418, 3520
in DEFAULT clause 2521
in DO directive 2579
in PARALLEL directive 3139
in PARALLEL DO directive 3145
in PARALLEL SECTIONS directive 3146
in SECTIONS directive 3418
in SINGLE directive 3520
in worksharing constructs 1371

FIRSTPRIVATE (continued)
summary of data scope attribute clauses 1342
using 1346

fixed-format source lines 1759
FIXEDFORMLINESIZE 140, 2657

equivalent compiler option for 140
fixed-length record type 213
fixed source format 588, 1757, 1759, 2191, 2657,

2695, 3098
directive for specifying 2695, 3098
directive setting line length for 2657
lines in 1759
option specifying file is 588

FLOAT 3371
FLOATI 3371
floating-point accuracy

option disabling optimizations affecting 698, 919
floating-point array operation 1694
floating-point calculations

option controlling semantics of 601, 606
Floating-point Compiler Options 1677
floating-point control procedures

table of 2273
floating-point control word 1706, 1710, 2732, 2959,

3415, 3438
subroutines returning 2732, 3415
subroutines setting 2959, 3438

floating-point conversion limitations 1721
floating-point data types 171, 181, 188, 1721, 1728,

1729, 1769
conversion limitations 1721
CRAY* big endian formats 181
digits of precision for REAL*4 1728
digits of precision for REAL*8 1729
IBM big endian formats 181
IEEE* big endian formats 181
IEEE* S_float 181, 1728
IEEE* T_float 181, 1728
methods of specifying nonnative formats 188
nonnative formats 181
normal and denormalized values of native formats
171
obtaining unformatted numeric formats 188
values for constants 171
VAX* D_float format 181
VAX* F_float format 181
VAX* G_float format 181

floating-point exception flags
function returning settings of 2672

3752

Intel® Fortran Compiler User and Reference Guides

floating-point exception flags (continued)
function setting 2674

floating-point exception handling for program
option allowing some control over 617

floating-point exception handling for routines
option allowing some control over 620

floating-point exceptions 1694, 1699, 1700, 1711,
1714

/fpe compiler option 1714
denormal exceptions 1694
exception parameters 1711
Fortran 1700
Fortran console applications 1714
Fortran DLL applications 1714
Fortran QuickWin applications 1714
Fortran Standard Graphics applications 1714
Fortran Windows applications 1714
types of 1714

floating-point inquiry procedures
table of 2273

floating-point numbers
exception parameters for 1711
formats for 1721
functions returning parameters 1725
loss of precision errors 1732
overflow errors 1732
overview 1675
overview of 1721
precision bits 1711
representation of 1724
rounding errors 1732, 1733
rounding flags 1711
special values 1722
underflow errors 1732

floating-point operations
option controlling semantics of 601, 606
option enabling combining of 593, 880
option improving consistency of 590
option rounding results of 611, 884
option specifying mode to speculate for 613, 886

Floating-point Operations
programming tradeoffs 1681

floating-point performance 1693
floating-point precision

option controlling for significand 821, 987
option improving for divides 825, 990
option improving for square root 826, 991
option improving general 737, 989

floating-point precision (continued)
option maintaining while disabling some
optimizations 590

floating-point registers
option disabling use of high 637, 894

floating-point representation 1728
floating-point rounding flags 1711
floating-point stack 615, 888, 1721

option checking 615, 888
floating-point status word

parameters of 1709
setting and retrieving 1706
subroutine clearing exception flags in 2452
subroutines returning 2785, 3564

floating-point unit (FPU) 1706
FLOATJ 3371
FLOATK 3371
float-to-integer conversion

option enabling fast 1008, 1044
FLOODFILL 2658
FLOODFILL_W 2658
FLOODFILLRGB 2661
FLOODFILLRGB_W 2661
FLOOR 2663
flow dependency in loops 1584
fltconsistency compiler option 431
FLUSH 2664, 2666
flush-to-zero mode 1611
FMT 1984, 3365, 3673

specifier for READ 3365
specifier for WRITE 3673

focus
determining which window has 2902
setting 2667

FOCUSQQ 2667
font

function setting for OUTGTEXT 3455
function setting orientation angle for OUTGTEXT
3460

font characteristics
function returning 2762

font-related library functions 2762, 2764, 2899, 3130,
3455
fonts

function initializing 2899
function returning characteristics of 2762
function returning orientation of text for 2766
function returning size of text for 2764
function setting for OUTGTEXT 3455

3753

Index

fonts (continued)
function setting orientation angle for text 3460

FOR_ACCEPT environment variable 132
FOR_DEFAULT_PRINT_DEVICE environment variable
132
FOR_DESCRIPTOR_ASSIGN 2668
FOR_DIAGNOSTIC_LOG_FILE environment variable 132
FOR_DISABLE_DIAGNOSTIC_DISPLAY environment
variable 132
FOR_DISABLE_STACK_TRACE environment variable
132
FOR_ENABLE_VERBOSE_STACK_TRACE environment
variable 132
FOR_FMT_TERMINATOR environment variable 132
FOR_FULL_SRC_FILE_SPEC environment variable 132
FOR_GENERATE_DEBUG_EXCEPTION environment
variable 132
FOR_GET_FPE 2672
FOR_IGNORE_EXCEPTIONS environment variable 132
for_iosdef.for file 358
FOR_NOERROR_DIALOGS environment variable 132
FOR_PRINT environment variable 132
for_rtl_finish_ 2673
for_rtl_init_ 2674
FOR_SET_FPE 2674
FOR_SET_REENTRANCY 2681
FOR_TYPE environment variable 132
FORALL 2682
FORCEINLINE 2384, 2385, 2388

option for ATTRIBUTES directive 2384, 2385, 2388
fordef.for file 1703
FOR files 121
FORM 2110, 2136

specifier for INQUIRE 2110
specifier for OPEN 2136

FORMAT 2031, 2685
specifications 2031

format control
terminating 2079

format lists 2031
format of data

default for list-directed output 2019
explicit 2031
implicit 2031
list-directed input 2000
list-directed output 2019
namelist input 2003
namelist output 2021
rules for numeric 2042

format of data (continued)
specifying file numeric 2130
using character string edit descriptors 2083
using control edit descriptors 2068
using data edit descriptors 2039

format of thread routines 1484
format specifications 2031, 2090

character 2031
interaction with i/o lists 2090
summary of edit descriptors 2031

format specifier 1984
FORMATTED 2110

specifier for INQUIRE 2110
formatted direct-access READ statements 2013
formatted direct-access WRITE statements 2026
formatted direct files 208
formatted files 208, 1630, 2136

direct-access 208
formatted i/o 2000, 2003, 2019, 2021, 2031

list-directed input 2000
list-directed output 2019
namelist input 2003
namelist output 2021

formatted records 1979, 2089
printing of 2089

formatted sequential files 208
formatted sequential READ statements 1999
formatted sequential WRITE statements 2018
forms for control edit descriptors 2068
forms for data edit descriptors 2040
forms for DO constructs 1886
FORT_BUFFERED environment variable 132, 1630
FORT_CONVERT_ext environment variable 132, 189
FORT_CONVERT.ext environment variable 132, 189
FORT_CONVERT environment variable 189, 190
FORT_CONVERTn environment variable 132, 190
fortcom.exe file 437
FORTn environment variable 132
Fortran 2003 features 1741
FORTRAN 66

option applying semantics of 570
FORTRAN-66 interpretation of EXTERNAL 2195
FORTRAN 77

option using run-time behavior of 572
option using semantics for kind parameters 690

FORTRAN 77 language standard 429
Fortran 90

directive enabling or disabling extensions to 3103,
3577

3754

Intel® Fortran Compiler User and Reference Guides

Fortran 90 (continued)
obsolescent features in 2193

Fortran 90 language standard 187, 429
using RECL units for unformatted files 187

Fortran 95
deleted features in 2191
directive enabling or disabling extensions to 3103,
3577
obsolescent features in 2191

Fortran 95/90 character set 1750
Fortran 95/90 pointers 3163
Fortran 95 language standard 429
Fortran and Assembly

summary of programming issues 264
Fortran and C/C++*

data types 289
external names 275
summary of programming issues 264
using interface blocks 279

Fortran and MASM
data types 289
external names 275
using interface blocks 279

Fortran array descriptor format 295
Fortran characters 1745
Fortran console applications

floating-point exceptions 1714
Fortran DLL applications

floating-point exceptions 1714
Fortran executables

creating 257
Fortran Language Standards 429
Fortran PowerStation

compatibility with 246
Fortran preprocessor (FPP)

list of options 1232
option affecting end-of-line comments 476
option defining symbol for 153, 522
option passing options to 1111
option running on files 625, 889
option sending output to a file 827
option sending output to stdout 561, 562

Fortran procedures
tables of 2248

Fortran programs
debugging 161

Fortran QuickWin applications
floating-point exceptions 1714

Fortran source files
compiling 99, 108

Fortran Standard Graphics applications
floating-point exceptions 1714

Fortran standards
and extensions 430

Fortran Standard type aliasability rules
option affecting adherence to 479, 847

Fortran statements
tables of 2248

Fortran Windows* applications
floating-point exceptions 1714

FP_CLASS 2691
FPATH environment variable 129
fpe compiler option 359
fpp

directives 146
introduction 143

fpp.exe file 437
fpp files

option to keep 143
fpp options

list of 1232
FPSW$DENORMAL 1709
FPSW$INEXACT 1709
FPSW$INVALID 1709
FPSW$MSW_EM 1709
FPSW$OVERFLOW 1709
FPSW$UNDERFLOW 1709
FPSW$ZERODIVIDE 1709
FPU rounding control

option setting to truncate 1009, 1045
FPUTC 2692, 3256

POSIX version of 3256
FRACTION 2693
FREE 2694
FREEFORM 140, 2695, 3098

equivalent compiler option for 140
free source format 638, 1754, 2695, 3098

directive specifying 2695, 3098
option specifying file is 638

FSEEK 2696, 3257
POSIX version of 3257

FSTAT 2697, 3258
POSIX version of 3258

FTELL 2702, 3258
POSIX version of 3258

FTELLI8 2702
ftrapuv compiler option 359

3755

Index

FTZ flag 1689
FTZ mode 1611
FULLPATHQQ 2703
FUNCTION 2705
function entry and exit points

option determining instrumentation of 586, 912
function expansion 1514
function grouping

option enabling or disabling 833
function grouping optimization 1566
function ordering optimization 1566
function order list 1520, 1573

enabling or disabling 1520
function order lists 1566
function preemption 1511
function profiling

option compiling and linking for 805
function references 1916
function result 1853, 3392

as explicit-shape array 1853
specifying different name for 3392

functions 574, 882, 1897, 1915, 1916, 1944, 1947,
2429, 2650, 2705, 3377, 3392, 3569

defining in a statement 3569
effect of ENTRY in 1944
elemental intrinsic 1947
ELEMENTAL keyword in 2705
EXTERNAL 2650
general rules for 1915
generic 1947
inquiry 1947
invoking 1916
invoking in a CALL statement 2429
not allowed as actual arguments 1947
option aligning on byte boundary 574, 882
PURE keyword in 2705
RECURSIVE keyword in 2705, 3377
references to 1916
RESULT keyword in 2705, 3392
specific 1947
statement 3569
that apply to arrays 1947
transformational 1947

functions not allowed as actual arguments
table of 1947

function splitting
option enabling or disabling 597, 883

G
G 2058

edit descriptor 2058
effect of data magnitude on format conversions
2058

gcc C++ run-time libraries
include file path 669
option adding a directory to second 669
option specifying to link to 520

GCCROOT environment variable 129
general compiler directives 1260, 1310, 1453, 1459,

1461, 1511, 1519, 1520, 1573, 1591, 1595,
1602, 1605, 1611, 1636, 2159, 2160, 2253

affecting data prefetches 1591, 1602
affecting software pipelining 1591, 1605
for auto-parallelization 1453
for IA-32 architecture 1611
for improving run-time efficiency 1636
for inlining functions 1511
for profile-guided optimization 1519
for vectorization 1459, 1461
instrumented code 1520
processor-specific code 1310
profile-optimized executable 1520
profiling information 1573
reports 1260
rules for 2159
table of 2253

general directives 2160, 2334, 2362, 2371, 2518,
2522, 2544, 2657, 2695, 2833, 2884, 2916,
2949, 2984, 3026, 3098, 3099, 3100, 3103,
3105, 3108, 3109, 3114, 3123, 3124, 3136,
3142, 3143, 3189, 3207, 3370, 3577, 3592,
3632, 3643, 3644, 3654, 3655, 3657, 3658,
3659

ALIAS 2334
ASSUME_ALIGNED 2362
ATTRIBUTES 2371
DECLARE 2518
DEFINE 2522, 3632
DISTRIBUTE POINT 2544
ENDIF 2884
FIXEDFORMLINESIZE 2657
FREEFORM 2695, 3098
IDENT 2833
IF 2884
IF DEFINED 2884
INTEGER 2916

3756

Intel® Fortran Compiler User and Reference Guides

general directives (continued)
IVDEP 2949
LOOP COUNT 2984
MESSAGE 3026
NODECLARE 2518
NOFREEFORM 2695, 3098
NOOPTIMIZE 3099, 3123
NOPARALLEL 3142, 3143
NOPREFETCH 3100, 3189
NOSTRICT 3103, 3577
NOSWP (i64) 3105, 3592
NOUNROLL 3108, 3643
NOUNROLL_AND_JAM 3644
NOVECTOR 3109, 3655
OBJCOMMENT 3114
OPTIMIZE 3099, 3123
OPTIONS 3124
PACK 3136
PARALLEL 3142, 3143
PREFETCH 3100, 3189
PSECT 3207
REAL 3370
STRICT 3103, 3577
SWP (i64) 3105, 3592
UNDEFINE 2522, 3632
UNROLL 3108, 3643
UNROLL_AND_JAM 3644
VECTOR ALIGNED 3654, 3659
VECTOR ALWAYS 3109, 3655
VECTOR NONTEMPORAL (i32, i64em) 3657, 3658
VECTOR TEMPORAL (i32, i64em) 3657, 3658
VECTOR UNALIGNED 3654, 3659

generalized editing (G) 2058
general rules for numeric editing 2042
generic assignment 1942
generic identifier 2923
generic interface 1938, 2923
generic intrinsic functions

references to 1930
generic name 2176, 2923

references to 2176
generic operators 1940
generic procedures 1930, 1938, 2175

references to 1930
references to intrinsic 1930
unambiguous references to 2175

generic references 2176
gen-interfaces compiler option 331
GERROR 2712

GET_COMMAND 2730
GET_COMMAND_ARGUMENT 2731
GET_ENVIRONMENT_VARIABLE 2745
GETACTIVEQQ 2714
GETARCINFO 2714
GETARG 2716, 3259

POSIX version of 3259
GETBKCOLOR 2718
GETBKCOLORRGB 2719
GETC 2722, 3260

POSIX version of 3260
GETCHARQQ 2723
GETCOLOR 2725
GETCOLORRGB 2727
GETCONTROLFPQQ 1710, 1711, 2732

example of 1711
using to return the control word value 1710

GETCURRENTPOSITION 2735
GETCURRENTPOSITION_W 2735
GetCurrentProcess 1495
GetCurrentProcessId 1495
GetCurrentThreadId 1481
GETCWD 2737, 3261

POSIX version of 3261
GETDAT 2738
GETDRIVEDIRQQ 2740
GETDRIVESIZEQQ 2741
GETDRIVESQQ 2744
GETENV 2745
GETENVQQ 2748
GETEXCEPTIONPTRSQQ 2751
GetExitCodeProcess 1495
GetExitCodeThread 1481
GETEXITQQ 2753
GETFILEINFOQQ 2754
GETFILLMASK 2759
GETFONTINFO 2762
GETGID 2764
GETGTEXTEXTENT 2764
GETGTEXTROTATION 2766
GETHWNDQQ 2767
GETIMAGE 2768, 2888

function returning memory needed for 2888
GETIMAGE_W 2768
GetLastError 1492
GETLASTERROR 2769
GETLASTERRORQQ 2770
GETLINESTYLE 2772
GETLOG 2774

3757

Index

GETPHYSCOORD 2775
GETPID 2777
GETPIXEL 2777
GETPIXEL_W 2777
GETPIXELRGB 2779
GETPIXELRGB_W 2779
GETPIXELS 2781
GETPIXELSRGB 2782
GETPOS 2785
GETPOSI8 2785
GETSTATUSFPQQ 2785
GETSTRQQ 2787
GETTEXTCOLOR 2789
GETTEXTCOLORRGB 2790
GETTEXTPOSITION 2792
GETTEXTWINDOW 2793
GetThreadPriority 1481
GETTIM 2795
GETTIMEOFDAY 2796
GETUID 2796
GETUNITQQ 2797
GETVIEWCOORD 2798
GETVIEWCOORD_W 2798
GETWINDOWCONFIG 2799
GETWINDOWCOORD 2804
GETWRITEMODE 2805
GETWSIZEQQ 2806
global entities 1748
global external Fortran data

mixed-language programming 285
global scope 2171
glossary

A 3679
B 3682
C 3683
D 3685
E 3689
F 3690
G 3692
H 3692
I 3693
K 3695
L 3695
M 3697
N 3698
O 3699
P 3700
Q 3702
R 3702

glossary (continued)
S 3704
T 3708
U 3709
V 3710
W 3710
Z 3711

GMTIME 2808
GOTO 2810, 2811, 2813
GO TO 2810, 2811, 2813

assigned 2810
computed 2811
unconditional 2813

graphics applications
option creating and linking 1108

graphics output
function returning background color index for 2718
function returning background RGB color for 2719
function setting background color index for 3428
function setting background RGB color for 3429
subroutine limiting to part of screen 3431

graphics position
subroutine moving to a specified point 3058
subroutine returning coordinates for current 2735

graphics routines
ARC and ARC_W 2348
CLEARSCREEN 2451
DISPLAYCURSOR 2543
ELLIPSE and ELLIPSE_W 2597
FLOODFILL and FLOODFILL_W 2658
FLOODFILLRGB and FLOODFILLRGB_W 2661
function returning status for 2814
GETARCINFO 2714
GETBKCOLOR 2718
GETBKCOLORRGB 2719
GETCOLOR 2725
GETCOLORRGB 2727
GETCURRENTPOSITION and
GETCURRENTPOSITION_W 2735
GETFILLMASK 2759
GETFONTINFO 2762
GETGTEXTEXTENT 2764
GETGTEXTROTATION 2766
GETIMAGE and GETIMAGE_W 2768
GETLINESTYLE 2772
GETPHYSCOORD 2775
GETPIXEL and GETPIXEL_W 2777
GETPIXELRGB and GETPIXELRGB_W 2779
GETPIXELS 2781

3758

Intel® Fortran Compiler User and Reference Guides

graphics routines (continued)
GETPIXELSRGB 2782
GETTEXTCOLOR 2789
GETTEXTCOLORRGB 2790
GETTEXTPOSITION 2792
GETTEXTWINDOW 2793
GETVIEWCOORD and GETVIEWCOORD_W 2798
GETWINDOWCOORD 2804
GETWRITEMODE 2805
GRSTATUS 2814
IMAGESIZE and IMAGESIZE_W 2888
INITIALIZEFONTS 2899
LINETO and LINETO_W 2966
LINETOAR 2968
LINETOAREX 2970
LOADIMAGE and LOADIMAGE_W 2976
MOVETO and MOVETO_W 3058
OUTGTEXT 3130
OUTTEXT 3133
PIE and PIE_W 3160
POLYBEZIER and POLYBEZIER_W 3169
POLYBEZIERTO and POLYBEZIERTO_W 3175
POLYGON and POLYGON_W 3181
POLYLINEQQ 3185
PUTIMAGE and PUTIMAGE_W 3216
RECTANGLE and RECTANGLE_W 3374
REMAPALLPALETTERGB and REMAPPALETTERGB
3384
SAVEIMAGE and SAVEIMAGE_W 3408
SCROLLTEXTWINDOW 3412
SETBKCOLOR 3428
SETBKCOLORRGB 3429
SETCLIPRGN 3431
SETCOLOR 3434
SETCOLORRGB 3436
SETFILLMASK 3451
SETFONT 3455
SETGTEXTROTATION 3460
SETLINESTYLE 3462
SETPIXEL and SETPIXEL_W 3469
SETPIXELRGB and SETPIXELRGB_W 3470
SETPIXELS 3473
SETPIXELSRGB 3474
SETTEXTCOLOR 3477
SETTEXTCOLORRGB 3478
SETTEXTCURSOR 3480
SETTEXTPOSITION 3483
SETTEXTWINDOW 3484
SETVIEWORG 3487

graphics routines (continued)
SETVIEWPORT 3488
SETWINDOW 3489
SETWRITEMODE 3498
table of 2282
WRAPON 3671

graphics viewport
subroutine redefining 3488

Greenwich mean time
function returning seconds and milliseconds since
2796
function returning seconds since 3403
subroutine returning 2808

group ID
function returning 2764

GRSTATUS 2814
GXX_INCLUDE environment variable 129
GXX_ROOT environment variable 129

H
H 2084

edit descriptor 2084
HABS 2321
handle

function returning unit number of window 2797
handlers

function establishing for IEEE exceptions 2867
HBCLR 2825
HBITS 2826
HBSET 2827
HDIM 2539
help

using in Microsoft Visual Studio* 79
heuristics

affecting software pipelining 2384, 2385, 2388
for inlining functions 2384, 2385, 2388
overriding optimizer efficiency 3654, 3659
overriding vectorizer efficiency 3109, 3655

hexadecimal constants 1792, 1793, 2199
alternative syntax for 2199

hexadecimal editing (Z) 2048
hexadecimal values

transferring 2048
HFIX 2910
HIAND 2821
hidden-length character arguments

option specifying convention for passing 670

3759

Index

HIEOR 2870
high-level optimization 1273
high-level optimizer 1260, 1581
high performance 1239
high performance programming 1242, 1260, 1310,

1519, 1581, 1611, 1630
applications for 1581
dispatch options for 1310
guidelines for 1611
improving performance 1630
list 1630
options for 1310
parsing 1630
performance 1630
processors for 1242, 1310
report generation 1260

HIOR 2929
HIXOR 2870
HLO 1273, 1581

reports 1273
HMOD 3040
HMVBITS 3062
HNOT 3106
Hollerith arguments 1927
Hollerith constants 179, 1792, 1794

representation of 179
Hollerith editing 2084
Hollerith values

transferring 2062
host association 2183
host computer name

function returning 2819
HOSTNAM 2819
HOSTNM 2819
hotness threshold

option setting 838, 1000
hot patching

option preparing a routine for 666
hotspots 1247
HSHFT 2943
HSHFTC 2945
HSIGN 3509
HTEST 2422
HUGE 2820
hyperbolic arccosine

function returning 2328
hyperbolic arcsine

function returning 2352

hyperbolic arctangent
function returning 2368

hyperbolic cosine
function returning 2488

hyperbolic sine
function returning 3513

hyperbolic tangent
function returning 3599

Hyper-Threading Technology
parallel loops 1454
thread pools 1454

I
I 2044

edit descriptor 2044
I/O

asynchronous 253
choosing optimal record type 213
data formats for unformatted files 181
file sharing 236
list-directed input 2000
list-directed output 2019
namelist input 2003
namelist output 2021
record 213
specifying record length for efficiency 213

I/O buffers
flushing and closing 2319

I/O control list 1981, 1983, 1984, 1985, 1986, 1988,
1989

advance specifier 1988
asynchronous specifier 1988
branch specifiers 1986
character count specifier 1989
format specifier 1984
I/O status specifier 1985
id specifier 1989
namelist specifier 1985
pos specifier 1989
record specifier 1985
unit specifier 1983

I/O editing
overview of 2031

I/O error conditions
subroutine returning information on 2642

I/O formatting 2031

3760

Intel® Fortran Compiler User and Reference Guides

I/O lists 1990, 1991, 1995, 2090
how to specify 1990
implied-do lists in 1995
interaction with format specifications 2090
simple list items in 1991

I/O procedures
table of 2252

I/O statements
ACCEPT 2323
BACKSPACE 2407
DELETE 2526
ENDFILE 2605
forms of 203
INQUIRE 2903
list of 201
OPEN 3115
PRINT 3194
READ 3365
REWIND 3397
REWRITE 3398
WRITE 3673

I/O statements in CLOSE 2457
I/O statement specifiers 235
I/O status specifier 1985
I/O units 1983
IA-32 architecture based applications

HLO 1581
methods of parallelization 1242
options 1306, 1310
targeting 1306, 1310
using intrinsics in 1638

IA-64 architecture based applications
auto-vectorization in 1242
HLO 1581
methods of parallelization 1242
options 1313
pipelining for 1605
report generation 1260
targeting 1313
using intrinsics in 1638

IABS 2321
IACHAR 2820
IADDR 2409
IAND 2821
IARG 2823
IARGC 2823
ias.exe file 437
IBCHNG 2824
IBCLR 2825

IBITS 2826
IBM 2130

value for CONVERT specifier 2130
IBM* character set 2213
IBSET 2827
ICHAR 2829
ID 1989, 2111, 3365, 3673

specifier for INQUIRE 2111
specifier for READ 3365
specifier for WRITE 3673

IDATE 2830, 2831
IDATE4 2832
IDB 164
IDB (see Intel(R) Debugger) 161
IDENT 2833
IDFLOAT 2833
IDIM 2539
IDINT 2910
idis.exe file 437
IDNINT 3071
IEEE_ARITHMETIC 1908
IEEE_CLASS 2834
IEEE_COPY_SIGN 2835
IEEE_EXCEPTIONS 1909
IEEE_FEATURES 1910
IEEE_FLAGS 2861
IEEE_GET_FLAG 2835
IEEE_GET_HALTING_MODE 2836
IEEE_GET_ROUNDING_MODE 2837
IEEE_GET_STATUS 2838
IEEE_GET_UNDERFLOW_MODE 2839
IEEE_HANDLER 2867
IEEE_IS_FINITE 2839
IEEE_IS_NAN 2840
IEEE_IS_NEGATIVE 2841
IEEE_IS_NORMAL 2841
IEEE_LOGB 2842
IEEE_NEXT_AFTER 2843
IEEE_REM 2844
IEEE_RINT 2844
IEEE_SCALB 2845
IEEE_SELECTED_REAL_KIND 2846
IEEE_SET_FLAG 2847
IEEE_SET_HALTING_MODE 2847
IEEE_SET_ROUNDING_MODE 2848
IEEE_SET_STATUS 2849
IEEE_SET_UNDERFLOW_MODE 2850
IEEE_SUPPORT_DATATYPE 2851
IEEE_SUPPORT_DENORMAL 2852

3761

Index

IEEE_SUPPORT_DIVIDE 2852
IEEE_SUPPORT_FLAG 2853
IEEE_SUPPORT_HALTING 2854
IEEE_SUPPORT_INF 2854
IEEE_SUPPORT_IO 2855
IEEE_SUPPORT_NAN 2856
IEEE_SUPPORT_ROUNDING 2856
IEEE_SUPPORT_SQRT 2857
IEEE_SUPPORT_STANDARD 2858
IEEE_SUPPORT_UNDERFLOW_CONTROL 2859
IEEE_UNORDERED 2860
IEEE_VALUE 2860
IEEE*

floating-point formats 1724
floating-point values 1722
nonnative big endian data 181
S_float data 1728
S_float data ranges 171
S_float representation (COMPLEX*8) 1730
T_float data 1728, 1729
T_float data ranges 171
T_float representation (COMPLEX*16) 1731
T_float representation (COMPLEX*32) 1731
X_floating format 1729

IEEE* exceptions
function clearing status of 2861
function establishing a handler for 2867
function getting or setting status of 2861

IEEE* flags
function clearing 2861
function getting or setting 2861

IEEE* floating-point representation 1728
IEEE* intrinsic modules

function an integer value rounded according to the
current rounding mode 2844
function assigning a value to an exception flag.
2847
function creating IEEE value 2860
function restoring state of the floating-point
environment 2849
function returning argument with copied sign 2835
function returning exponent of radix-independent
floating-point number 2845
function returning FP value equal to unbiased
exponent of argument 2842
function returning IEEE class 2834
function returningnext representable value after X
toward Y 2843

IEEE* intrinsic modules (continued)
function returning result value from a remainder
operation 2844
function returning value of the kind parameter of
an IEEE REAL data type 2846
function returning whether expection flag is
signaling 2835
function returning whether IEEE value is finite 2839
function returning whether IEEE value is negative
2841
function returning whether IEEE value is normal
2841
function returning whether IEEE value is
Not-a-number(NaN) 2840
function returning whether one or more of the
arguments is Not-a-Number (NaN) 2860
function returning whether processor supports
ability to control the underflow mode 2859
function returning whether processor supports IEEE
arithmetic 2851
function returning whether processor supports IEEE
base conversion rounding during formatted I/O
2855
function returning whether processor supports IEEE
denormalized numbers 2852
function returning whether processor supports IEEE
divide 2852
function returning whether processor supports IEEE
exceptions 2853
function returning whether processor supports IEEE
features defined in the standard 2858
function returning whether processor supports IEEE
halting 2854
function returning whether processor supports IEEE
infinities 2854
function returning whether processor supports IEEE
Not-a-Number feature 2856
function returning whether processor supports IEEE
rounding mode 2856
function returning whether processor supports IEEE
SQRT 2857
function setting current underflow mode 2850
function storing current rounding mode 2837
function storing current state of floating-point
environment 2838
function storing current underflow mode 2839
function storing halting mode for exception 2836
function that controls halting or continuation after
an exception. 2847

3762

Intel® Fortran Compiler User and Reference Guides

IEEE* intrinsic modules (continued)
function that sets rounding mode. 2848

IEEE* numbers
function testing for NaN values 2948

IEEE equivalent function
IEEE logb function 2842
IEEE nextafter function 2843
IEEE rem function 2844
IEEE scalb function 2845
IEEE unordered 2860

IEEE intrinsic modules
IEEE_ARITHMETIC 1908
IEEE_EXCEPTIONS 1909
IEEE_FEATURES 1910
Quick Reference Tables 1911

IEEE intrinsic modules and procedures 1906
IEOR 2870
IERRNO 2712, 2871

subroutine returning message for last error
detected by 2712

If 2873
IF 2873, 2875, 2876, 2884, 3139, 3145, 3146

arithmetic 2873
clause in PARALLEL directive 3139
clause in PARALLEL DO directive 3145
clause in PARALLEL SECTIONS directive 3146
directive for conditional compilation 2884
logical 2875

IF DEFINED 2884
IFIX 2910
ifl.exe file 437
IFLOATI 2887
IFLOATJ 2887
ifmt.mod 1481
ifort

output files 122
ifort.cfg file 437
ifort.exe file 437
ifortcfg environment variable 129
ifort command

examples 109
redirecting output 113
requesting listing file using 103
syntax for 108
using 107

ifortvars.bat file 331, 437
ifortvars.sh file 331
IFPORT portability module

overview 325

IFPORT portability module (continued)
using 325

IGNORE_LOC 2385
option for ATTRIBUTES directive 2385

IIABS 2321
IIAND 2821
IIBCLR 2825
IIBITS 2826
IIBSET 2827
IIDIM 2539
IIDINT 2910
IIDNNT 3071
IIEOR 2870
IIFIX 2910
IINT 2910
IIOR 2929
IIQINT 2910
IIQNNT 3071
IISHFT 2943
IISHFTC 2945
IISIGN 3509
IIXOR 2870
IJINT 2910
ILEN 2888
ILO 1260
IMAG 2330
images

function displaying from bitmap file 2976
function returning storage size of 2888
function saving into Windows bitmap file 3408
transferring from memory to screen 3216

IMAGESIZE 2888
IMAGESIZE_W 2888
IMAX0 2995
IMAX1 2995
IMIN0 3028
IMIN1 3028
IMOD 3040
IMPLICIT 1930, 2889

effect on intrinsic procedures 1930
implicit format 2031
implicit interface 1935, 2923
IMPLICIT NONE 2889
implicit typing 1800, 2889

overriding default 2889
implied-DO lists 1995
implied-DO loop 1636, 1995

list in i/o lists 1995
IMPORT 2891

3763

Index

improving 1345, 1630, 1636
code 1636
I/O performance 1630
run-time performance 1636

IMSL* libraries
option letting you link to 895

IMVBITS 3062
INCHARQQ 2892
INCLUDE 102, 260, 2895

directory searched for filenames 102, 260
INCLUDE environment variable 129
include file path

option adding a directory to 667
option removing standard directories from 1116

INCLUDE files
option specifying directory to search for 129
searching for 260
using 260

INCLUDE lines 2895
including files during compilation 2895
inclusive OR 1825, 2929

function performing 2929
incremental linking

linker option specifying treatment of 413
INDEX 2898
index for last occurrence of substring

function locating 3401
ININT 3071
initialization expressions 1785, 1828, 3626

for derived-type components 1785
inquiry functions allowed in 1828
in type declaration statements 3626
transformational functions allowed in 1828

initialization values for reduction variables 1348
INITIALIZEFONTS 2899
initializing variables 2500
INITIALSETTINGS 2900
INLINE 2384, 2385, 2388

option for ATTRIBUTES directive 2384, 2385, 2388
inlined code

option producing source position information for
676, 896

inline function expansion
option disabling 749
option specifying level of 674, 680, 758

inlining 585, 679, 682, 683, 685, 687, 688, 694, 695,
900, 901, 903, 905, 906, 908, 915, 916,
1511, 1512, 1514, 1519, 1636, 1658

compiler directed 1512

inlining (continued)
developer directed 1514
option disabling full and partial 694, 915
option disabling partial 695, 916
option forcing 679, 900
option specifying lower limit for large routines 685,
905
option specifying maximum size of function for 585
option specifying maximum times for a routine
683, 903
option specifying maximum times for compilation
unit 682, 901
option specifying total size routine can grow 687,
906
option specifying upper limit for small routine 688,
908
preemption 1511

inlining options
option specifying percentage multiplier for 677,
898

INMAX 2901
INOT 3106
input/output editing 2031
input/output lists 1990
input/output statements 2095
input and output files 121
input and output procedures

table of 2252
input data

terminating short fields of 2066
input file extensions 121
input statements for data transfer

ACCEPT 2323
READ 3365

INQFOCUSQQ 2902
INQUIRE 2104, 2105, 2106, 2107, 2108, 2109, 2110,

2111, 2112, 2113, 2114, 2115, 2116, 2117,
2118, 2119, 2120, 2903

ACCESS specifier 2104
ACTION specifier 2104
ASYNCHRONOUS specifier 2105
BINARY specifier 2105
BLANK specifier 2106
BLOCKSIZE specifier 2106
BUFFERED specifier 2106
CARRIAGECONTROL specifier 2107
CONVERT specifier 2107
DELIM specifier 2108
DIRECT specifier 2109

3764

Intel® Fortran Compiler User and Reference Guides

INQUIRE (continued)
EXIST specifier 2109
FORMATTED specifier 2110
FORM specifier 2110
ID specifier 2111
IOFOCUS specifier 2111
MODE specifier 2112
NAMED specifier 2112
NAME specifier 2112
NEXTREC specifier 2113
NUMBER specifier 2113
OPENED specifier 2113
ORGANIZATION specifier 2114
PAD specifier 2114
PENDING specifier 2114
POSITION specifier 2116
POS specifier 2115
READ specifier 2116
READWRITE specifier 2117
RECL specifier 2117
RECORDTYPE specifier 2117
SEQUENTIAL specifier 2118
SHARE specifier 2119
UNFORMATTED specifier 2120
WRITE specifier 2120

INQUIRE statement 232
inquiry functions 1947, 2340, 2360, 2416, 2429,

2468, 2538, 2629, 2635, 2820, 2823, 2888,
2914, 2955, 2958, 2961, 2977, 2997, 3030,
3066, 3070, 3189, 3192, 3350, 3363, 3504,
3521, 3522, 3612

ALLOCATED 2340
ASSOCIATED 2360
BIT_SIZE 2416
CACHESIZE 2429
COMMAND_ARGUMENT_COUNT 2468
DIGITS 2538
EOF 2629
EPSILON 2635
for argument presence 3192
for arrays 2340, 2958, 3504, 3521
for bits 2416
for character length 2961
for numeric models

DIGITS 2538
EPSILON 2635
HUGE 2820
MAXEXPONENT 2997
MINEXPONENT 3030

inquiry functions (continued)
for numeric models (continued)

PRECISION 3189
RADIX 3350
RANGE 3363
TINY 3612

for pointers 2360
HUGE 2820
IARGC 2823
ILEN 2888
INT_PTR_KIND 2914
KIND 2955
LBOUND 2958
LEN 2961
LOC 2977
MAXEXPONENT 2997
MINEXPONENT 3030
NARGS 3066
NEW_LINE 3070
PRECISION 3189
PRESENT 3192
RADIX 3350
RANGE 3363
SHAPE 3504
SIZE 3521
SIZEOF 3522
TINY 3612

INSERTMENUQQ 2907
instruction-level parallelism 1242
instrumentation 1021, 1075, 1519, 1520, 1530, 1576,

1660
compilation 1530
execution 1530
feedback compilation 1530
generating 1520
option enabling or disabling for specified functions
1021, 1075
preventing aliasing 1660
program 1519

INT 2910
INT_PTR_KIND 2914
INT1 2910
INT2 2910
INT4 2910
INT8 2910
INTC 2913
INTEGER 140, 1765, 2915, 2916

compiler directive 2916
equivalent compiler option for 140

3765

Index

INTEGER (continued)
type 1765, 2915

INTEGER(1) 1765
INTEGER(2) 1765
INTEGER(4) 1765
INTEGER(8) 1765
INTEGER(KIND=1) representation 175
INTEGER(KIND=2) representation 175
INTEGER(KIND=4) representation 176
INTEGER(KIND=8) representation 176
INTEGER*1 1765
INTEGER*2 1765
INTEGER*4 1765
INTEGER*8 1765
integer constants 1765, 1766
integer data

function returning kind type parameter for 3422
model for 2224

integer data representations 174
integer data type 171, 174, 181, 188, 1765, 1766,

2186, 2910, 2915
constants 1766
declarations and options 171, 174
default kind 1765
function converting to 2910
methods of specifying endian format 188
nonnative formats 181
ranges 1765
storage 2186

integer edit descriptors 2044
integer editing (I) 2044
INTEGER KIND to hold address

function returning 2914
integer model 2224, 2820, 3612

function returning largest number in 2820
function returning smallest number in 3612

integer pointers 294, 1010, 1051, 3166
mixed-language programming 294
option affecting aliasing of 1010, 1051

integers
converting to RGB values 3399
directive specifying default kind 2916
function converting KIND=2 to KIND=4 2983
function converting KIND=4 to KIND=2 3508
function converting to quad-precision type 3346
function converting to single-precision type 2887,
3371
function multiplying two 64-bit signed 3061
function multiplying two 64-bit unsigned 3060

integers (continued)
function performing bit-level test for 2416
function returning difference between 2539
function returning leading zero bits in 2960
function returning maximum positive 2901
function returning number of 1 bits in 3187
function returning parity of 3188
function returning trailing zero bits in 3615
function returning two's complement length of 2888
functions converting to double-precision type 2536,
2537, 2833
models for data 2224
subroutine performing bit-level set and clear for
2412

INTEGERTORGB 2917
INTEL_LICENSE_FILE environment variable 129
INTEL_PROF_DUMP_CUMULATIVE environment variable
1574
INTEL_PROF_DUMP_INTERVAL environment variable
1574
Intel(R) 64 applications 115
Intel(R) 64 architecture based applications

HLO 1581
methods of parallelization 1242
options 1306, 1310
targeting 1306, 1310
using intrinsics in 1638

Intel(R) architectures 1611
Intel(R) compatibility libraries for OpenMP* 1321
Intel(R) compiler-generated code 1658
Intel(R) Debugger 161, 168
Intel(R)-extended intrinsics 1638
Intel(R) extension environment variables 1383
Intel(R) extension routines 1402
Intel(R) Fortran

compiler options 137
file extensions passed to compiler 121
handling run-time errors 351
intrinsic data types 1763
portability considerations 429
running Fortran applications 118
using the debugger 161

Intel(R) Fortran character set 1750
Intel(R) Fortran Compiler command prompt window 95
Intel(R) Fortran language extensions 2233
Intel(R) linking tools 1497
Intel(R) MKL

option letting you link to 732, 933

3766

Intel® Fortran Compiler User and Reference Guides

Intel(R) Trace Collector API
option inserting probes to call 1020, 1073

Intel(R) Visual Fortran
creating multithread applications 1479

Intel-provided libraries
option linking dynamically 1058
option linking statically 1068

INTENT 2919
intent of arguments 2919
interaction between format specifications and i/o lists
2090
INTERFACE 2923
INTERFACE ASSIGNMENT 2923
interface blocks 279, 657, 1839, 1938, 1940, 1942,

2923, 3047, 3053
for generic names 1938
for mixed-language programming 279
generic identifier in 2923
module procedures in 3047, 3053
option generating for routines 657
pure procedures in 2923
using ASSIGNMENT(=) 1839
using generic assignment in 1942
using generic operators in 1940
using generic procedures in 1938

INTERFACE OPERATOR 2923
interfaces 295, 1918, 1929, 1935, 1937, 1938, 2923

and Fortran array descriptor format 295
explicit 1935, 2923
generic 1938
implicit 1935, 2923
of dummy procedures 1929
of external procedures 1918
of internal procedures 1918
procedures requiring explicit 1937

INTERFACE TO 2926
intermediate files

option saving during compilation 1013, 1054
intermediate language scalar optimizer 1260
intermediate representation (IR) 1497, 1501
intermediate results 1630

using memory for 1630
internal address

function returning 2977
internal files 197, 209, 1918, 1979

interfaces of 1918
rules for using 197

internal procedures 261, 1745, 1897, 1918, 2483
advantages of 261

internal READ statements 2014
rules for 2014

internal subprograms 1636, 1745, 2483
CONTAINS statement 2483

internal WRITE statements 2027
rules for 2027

interoperability with C 306, 2414
interprocedural optimizations 100, 584, 693, 699,

914, 920, 1260, 1263, 1497, 1500, 1501,
1504, 1506, 1508, 1512, 1519, 1578, 1658

capturing intermediate output 1501
code layout 1506
compilation 1497
compiling 1501
compiling and linking for 100
considerations 1504
creating libraries 1508
initiating 1578
issues 1504
large programs 1504
linking 1497, 1501
option enabling additional 693, 914
option enabling between files 699, 920
option enabling for single file compilation 584
options 1500
overview 1497
performance 1504
reports 1263
using 1501
whole program analysis 1497
xiar 1508
xild 1508
xilibtool 1508

interrupt signal
registering a function to call for 3516

interrupt signal handling
function controlling 3513

INTRINSIC 2927
intrinsic assignment 1833, 1834, 1836, 1837, 1838,

2357
array 1838
character 1836
derived-type 1837
logical 1836
numeric 1834

intrinsic data types 1763, 2019, 2186
default formats for list-directed output 2019
storage requirements for 2186

3767

Index

intrinsic function
IEEE_CLASS 2834
IEEE_IS_FINITE 2839
IEEE_IS_NAN 2840
IEEE_IS_NEGATIVE 2841
IEEE_IS_NORMAL 2841
IEEE_LOGB 2842
IEEE_NEXT_AFTER 2843
IEEE_REM 2844
IEEE_RINT 2844
IEEE_SCALB 2845
IEEE_SELECTED_REAL_KIND 2846
IEEE_SET_FLAG 2847
IEEE_SET_HALTING_MODE 2847
IEEE_SUPPORT_DATATYPE 2851
IEEE_SUPPORT_DENORMAL 2852
IEEE_SUPPORT_DIVIDE 2852
IEEE_SUPPORT_FLAG 2853
IEEE_SUPPORT_HALTING 2854
IEEE_SUPPORT_INF 2854
IEEE_SUPPORT_IO 2855
IEEE_SUPPORT_NAN 2856
IEEE_SUPPORT_ROUNDING 2856
IEEE_SUPPORT_SQRT 2857
IEEE_SUPPORT_STANDARD 2858
IEEE_SUPPORT_UNDERFLOW_CONTROL 2859
IEEE_UNORDERED 2860
IEEE_VALUE 2860

intrinsic functions 1930, 1947, 1953, 2223, 2321,
2325, 2326, 2327, 2328, 2329, 2330, 2331,
2335, 2340, 2342, 2344, 2350, 2351, 2352,
2360, 2365, 2367, 2368, 2409, 2416, 2422,
2429, 2441, 2444, 2459, 2468, 2482, 2486,
2487, 2488, 2489, 2490, 2494, 2513, 2516,
2536, 2538, 2539, 2574, 2586, 2589, 2593,
2594, 2629, 2632, 2635, 2647, 2649, 2663,
2691, 2693, 2820, 2821, 2823, 2824, 2825,
2826, 2827, 2829, 2835, 2870, 2888, 2898,
2910, 2914, 2929, 2939, 2940, 2941, 2942,
2943, 2945, 2947, 2948, 2953, 2955, 2956,
2958, 2960, 2961, 2962, 2963, 2965, 2973,
2974, 2977, 2979, 2980, 2983, 2990, 2993,
2995, 2997, 2998, 3002, 3022, 3024, 3028,
3030, 3031, 3035, 3040, 3054, 3060, 3061,
3066, 3069, 3070, 3071, 3106, 3110, 3134,
3187, 3188, 3189, 3192, 3201, 3344, 3345,
3346, 3347, 3348, 3350, 3352, 3363, 3371,
3390, 3402, 3409, 3410, 3422, 3423, 3448,
3504, 3507, 3508, 3509, 3511, 3512, 3513,

intrinsic functions (continued)
3521, 3522, 3527, 3559, 3561, 3590, 3598,
3599, 3612, 3615, 3616, 3618, 3619, 3638,
3660

ABS 2321
ACHAR 2325
ACOS 2326
ACOSD 2327
ACOSH 2328
ADJUSTL 2328
ADJUSTR 2329
AIMAG 2330
AINT 2331
ALL 2335
ALLOCATED 2340
AND 2821
ANINT 2342
ANY 2344
ASIN 2350
ASIND 2351
ASINH 2352
ASSOCIATED 2360
ATAN 2365
ATAN2 2365
ATAN2D 2367
ATAND 2368
ATANH 2368
BADDRESS 2409
BIT_SIZE 2416
BTEST 2422
CACHESIZE 2429
categories of 1953
CEILING 2441
CHAR 2444
CMPLX 2459
COMMAND_ARGUMENT_COUNT 2468
CONJG 2482
COS 2486
COSD 2487
COSH 2488
COTAN 2488
COTAND 2489
COUNT 2490
CSHIFT 2494
DBLE 2513
DCMPLX 2516
DFLOAT 2536
DIGITS 2538
DIM 2539

3768

Intel® Fortran Compiler User and Reference Guides

intrinsic functions (continued)
DNUM 2574
DOT_PRODUCT 2586
DPROD 2589
DREAL 2593
DSHIFTL 2594
DSHIFTR 2594
EOF 2629
EOSHIFT 2632
EPSILON 2635
EXP 2647
EXPONENT 2649
FLOAT 3371
FLOOR 2663
for data representation models 2223
FP_CLASS 2691
FRACTION 2693
HUGE 2820
IACHAR 2820
IAND 2821
IARG 2823
IARGC 2823
IBCHNG 2824
IBCLR 2825
IBITS 2826
IBSET 2827
ICHAR 2829
IEEE_COPY_SIGN 2835
IEOR 2870
IFIX 2910
ILEN 2888
INDEX 2898
INT 2910
INT_PTR_KIND 2914
INUM 2929
IOR 2929
IS_IOSTAT_END 2939
IS_IOSTAT_EOR 2940
ISHA 2941
ISHC 2942
ISHFT 2943
ISHFTC 2945
ISHL 2947
ISNAN 2948
IXOR 2870
JNUM 2953
KIND 2955
KNUM 2956
LBOUND 2958

intrinsic functions (continued)
LEADZ 2960
LEN 2961
LEN_TRIM 2962
LGE 2963
LGT 2965
LLE 2973
LLT 2974
LOC 2977
LOG 2979
LOG10 2980
LOGICAL 2983
LSHFT 2943
LSHIFT 2943
MALLOC 2990
MATMUL 2993
MAX 2995
MAXEXPONENT 2997
MAXLOC 2998
MAXVAL 3002
MCLOCK 3022
MERGE 3024
MIN 3028
MINEXPONENT 3030
MINLOC 3031
MINVAL 3035
MOD 3040
MODULO 3054
MULT_HIGH_SIGNED (i64) 3061
MULT_HIGH (i64) 3060
NARGS 3066
NEAREST 3069
NEW_LINE 3070
NINT 3071
NOT 3106
NULL 3110
NUMARG 2823
OR 2929
PACK 3134
POPCNT 3187
POPPAR 3188
PRECISION 3189
PRESENT 3192
PRODUCT 3201
QCMPLX 3344
QEXT 3345
QFLOAT 3346
QNUM 3347
QREAL 3348

3769

Index

intrinsic functions (continued)
RADIX 3350
RAN 3352
RANGE 3363
REAL 3371
references to generic 1930
REPEAT 3390
RESHAPE 3390
RNUM 3402
RRSPACING 3402
RSHFT 2943
RSHIFT 2943
SCALE 3409
SCAN 3410
SELECTED_CHAR_KIND 3422
SELECTED_INT_KIND 3422
SELECTED_REAL_KIND 3423
SET_EXPONENT 3448
SHAPE 3504
SHIFTL 3507
SHIFTR 3508
SIGN 3509
SIN 3511
SIND 3512
SINH 3513
SIZE 3521
SIZEOF 3522
SNGL 3371
SPACING 3527
SPREAD 3559
SQRT 3561
SUM 3590
TAN 3598
TAND 3599
TANH 3599
TINY 3612
TRAILZ 3615
TRANSFER 3616
TRANSPOSE 3618
TRIM 3619
UNPACK 3638
VERIFY 3660
XOR 2870

intrinsic modules 1900, 1901, 1904, 1906
IEEE 1906
ISO_C_BINDING 1901
ISO_FORTRAN_ENV 1904

intrinsic procedures 1930, 1934, 1947, 1949, 2927
and EXTERNAL 1930

intrinsic procedures (continued)
and IMPLICIT 1930
argument keywords in 1949
classes of 1947
elemental 1947
nonelemental 1947
references to elemental 1934
references to generic 1930
scope of name 1930
using as actual arguments 2927

intrinsics 1602
intrinsic subroutine

IEEE_GET_FLAG 2835
IEEE_GET_HALTING_MODE 2836
IEEE_GET_ROUNDING_MODE 2837
IEEE_GET_STATUS 2838
IEEE_GET_UNDERFLOW_MODE 2839
IEEE_SET_ROUNDING_MODE 2848
IEEE_SET_STATUS 2849
IEEE_SET_UNDERFLOW_MODE 2850

intrinsic subroutines 1947, 1975, 2492, 2506, 2509,
2642, 2646, 2694, 2716, 2730, 2731, 2745,
2830, 3037, 3055, 3062, 3357, 3360, 3362,
3595, 3608

categories of 1975
CPU_TIME 2492
DATE 2506
DATE_AND_TIME 2509
ERRSNS 2642
EXIT 2646
FREE 2694
GET_COMMAND 2730
GET_COMMAND_ARGUMENT 2731
GET_ENVIRONMENT_VARIABLE 2745
GETARG 2716
IDATE 2830
MM_PREFETCH 3037
MOVE_ALLOC 3055
MVBITS 3062
RANDOM_NUMBER 3357
RANDOM_SEED 3360
RANDU 3362
SYSTEM_CLOCK 3595
TIME 3608

introduction to Building Applications 93
introduction to Compiler options 443
introduction to Optimizing Applications 1239
introduction to the Language Reference 1737
INUM 2929

3770

Intel® Fortran Compiler User and Reference Guides

inverse cosine
function returning in degrees 2327
function returning in radians 2326

inverse sine
function returning in degrees 2351
function returning in radians 2350

inverse tangent
function returning in degrees 2368
function returning in degrees (complex) 2365
function returning in radians 2365
function returning in radians (complex) 2367

invoking Intel(R) Fortran Compiler 95
IOFOCUS 2111, 2137

specifier for INQUIRE 2111
specifier for OPEN 2137

IOR 2929
IOSTAT 358, 361, 1985, 3365, 3673

errors returned to 361
specifier for READ 3365
specifier for WRITE 3673
symbolic definitions in iosdef.for 358
using 358

IOSTAT specifier for CLOSE 2457
IPO

options 1229
option specifying jobs during the link phase of 702,
923

IPXFARGC 2931
IPXFCONST 2932
IPXFLENTRIM 2932
IPXFWEXITSTATUS 2933
IPXFWSTOPSIG 2935
IPXFWTERMSIG 2936
IQINT 2910
IQNINT 3071
IR 1497, 1501
IRAND 2936
IRANDM 2936
IRANGET 2938
IRANSET 2938
IS_IOSTAT_END 2939
IS_IOSTAT_EOR 2940
ISATTY 2939
ISHA 2941
ISHC 2942
ISHFT 2943
ISHFTC 2945
ISHL 2947
ISIGN 3509

ISNAN 2948
ISO_C_BINDING 1901
ISO_C_BINDING derived types 1901
ISO_C_BINDING intrinsic module 1901, 1904

derived types 1901
named constants 1901
procedures 1904

ISO_C_BINDING named constants 1901
ISO_C_BINDING procedures 1904, 2424, 2425, 2426,

2427
C_ASSOCIATED 2424
C_F_POINTER 2425
C_F_PROCPOINTER 2426
C_FUNLOC 2427
C_LOC 2427

ISO_FORTRAN_ENV 1904
ISO_FORTRAN_ENV intrinsic module 1904
iteration count 2575
iteration loop control 1886
iterative DO loops 1886
ITIME 2948
IVDEP 1474, 1581, 2949

effect of compiler option on 1474
effect when tuning applications 1581

IVDEP directive 1596
IXOR 2870
IZEXT 3676

J
JABS 2951
Japan Industry Standard characters 3011
JDATE 2952
JDATE4 2953
JFIX 2910
JIAND 2821
JIBCLR 2825
JIBITS 2826
JIBSET 2827
JIDIM 2539
JIDINT 2910
JIDNNT 3071
JIEOR 2870
JIFIX 2910
JINT 2910
JIOR 2929
JIQINT 2910

3771

Index

JIS characters
converting to JMS 3011

JISHFT 2943
JISHFTC 2945
JISIGN 3509
JIXOR 2870
JMAX0 2995
JMAX1 2995
JMIN0 3028
JMIN1 3028
JMOD 3040
JMS characters

converting to JIS 3011
JMVBITS 3062
JNINT 3071
JNOT 3106
JNUM 2953
jump tables

option enabling generation of 776, 947
JZEXT 3676

K
KDIM 2539
KEEP value for CLOSE(DISPOSE) or CLOSE(STATUS)
2457
keyboard character

function returning ASCII value of 2892
keyboard procedures

table of 2264
key code charts 2211
key codes 2216, 2217, 2218

chart 1 2217
chart 2 2218

keystroke
function checking for 3158
function returning next 2723

keywords 1750
KIABS 2321
KIAND 2821
KIBCLR 2825
KIBITS 2826
KIBSET 2827
KIDIM 2539
KIDINT 2910
KIDNNT 3071
KIEOR 2870
KIFIX 2910

KILL 2954, 3279
POSIX version of 3279

KIND 2916, 2955, 3370
directive specifying default for integers 2916
directive specifying default for reals 3370

kind type parameter 174, 176, 1763, 1770, 2955,
2983, 3422, 3423, 3626

declaring for data 3626
function changing logical 2983
function returning for character data 3422
function returning for integer data 3422
function returning for real data 3423
function returning value of 2955
INTEGER declarations 174
LOGICAL declarations 176
restriction for real constants 1770

KINT 2910
KIOR 2929
KIQINT 2910
KIQNNT 3071
KISHFT 2943
KISHFTC 2945
KISIGN 3509
KMAX0 2995
KMAX1 2995
KMIN0 3028
KMIN1 3028
KMOD 3040
KMP_AFFINITY 1383, 1418

modifier 1418
offset 1418
permute 1418
type 1418

KMP_ALL_THREADS 1383
KMP_BLOCKTIME 1383
KMP_LIBRARY 1383, 1406
KMP_MONITOR_STACKSIZE 1383
KMP_STACKSIZE 1383
KMP_VERSION 1383
KMVBITS 3062
KNINT 3071
KNOT 3106
KNUM 2956
KZEXT 3676

3772

Intel® Fortran Compiler User and Reference Guides

L
L 2061

edit descriptor 2061
label assignment 2352
labels 81, 1752, 2352, 2575, 2810, 2811, 2813, 2873

assigning 2352
general rules for 1752
in DO constructs 2575
platform 81
statement transferring control to 2813
statement transferring control to assigned 2810
statement transferring control to one of three 2873
statement transferring control to specified 2811

language and country combinations
function returning array of 3073

language compatibility 1741
language extensions

and portability 429
built-in functions 2236
character sets 2234
compilation control statements 2236
compiler directives 2239
convention for 81
C Strings 2235
data in expressions 2235
directive enabling or disabling Intel Fortran 3103,
3577
dollar sign () allowed in names 2234
file operation statements 2237
for execution control 2235
for source forms 2233
general directives 2239
Hollerith constants 2235
i/o formatting 2237
i/o statements 2236
Intel Fortran 2233
intrinsic procedures 2240
language features for compatibility 2244
number of characters in names 2234
run-time library routines 2245
specification statements 2235
summary of 2233
syntax for intrinsic data types 2234

language features for compatibility 2244
Language Reference

overview 1737
language standards 429, 1741

and portability 429

language standards (continued)
conformance 1741

language summary tables 2248
LASTPRIVATE 1342, 1346, 2579, 2957, 3145, 3146,

3418
in DO directive 2579
in PARALLEL DO directive 3145
in PARALLEL SECTIONS directive 3146
in SECTIONS directive 3418
summary of data scope attribute clauses 1342
using 1346

LBOUND 1860, 2958
in pointer assignment 1860

LCWRQQ 2959
LD_LIBRARY_PATH environment variable 129
LEADZ 2960
left shift

function performing arithmetic 2941
function performing circular 2942
function performing logical 2947

LEN 1779, 1849, 2961
in CHARACTER data type 1779
in declaration statements 1849

LEN_TRIM 2962
LEN= 1779, 1849

in CHARACTER data type 1779
in declaration statements 1849

length
specifying for character objects 1849

length specifier in character declarations 1849
lexical string comparisons

function determining 2974
function determining 2973
function determining > 2965
function determining > or = 2963

LGE 2963
LGT 2965
libgcc library

option linking dynamically 1060
option linking statically 1069

libraries 97, 319, 321, 325, 329, 504, 508, 747, 828,
1065, 1360, 1398, 1402, 1630, 1638, 1643

creating shared 321
default 97
IFPORT portability module 325
libifcore.lib 1638
math 329
OpenMP* run-time routines 1398, 1402
option enabling dynamic linking of 504

3773

Index

libraries (continued)
option enabling static linking of 508
option preventing linking with shared 1065
option preventing use of standard 747
option printing location of system 828
static 319

libraries used when linking 331
library

option searching in specified directory for 709
option to search for 708

library directory paths when linking 331
library exception handler

overriding 411
library functions 1360, 1398, 1402, 1511

Intel extension 1402
OpenMP* run-time routines 1398
to control number of threads 1360

library math functions
option testing errno after calls to 594

library routines 323, 2148, 2229, 2230, 2247, 2248
how to use 323
module 2229
OpenMP Fortran 2230
using to open files 2148

library search path
directive placing in file 3114

license file
specifying the location of 129

limitations of mixed-language programming 264
limits

Intel(R) Visual Fortran compiler 438
line length

directive setting for fixed-source format 2657
lines

function drawing 2966
function drawing between arrays 2968, 2970
function drawing within an array 3185

line style
function returning 2772
subroutine setting 3462

LINETO 2966
LINETO_W 2966
LINETOAR 2968
LINETOAREX 2970
linker

option passing linker option relax to 738
option passing linker option to 1118
option passing options to 715, 1110
option telling to read commands from file 1071

linker (continued)
option to prevent running 109
request threaded run-time library 101
using from the command line 107
viewing libraries used 331

linker diagnostic messages 331
linker error conditions 331
linker library directory paths 331
linker options for search libraries

option including in object files 710
linking

option preventing use of startup files and libraries
when 751
option preventing use of startup files when 750
option suppressing 109, 509

linking options 1229
linking tools 1229, 1497, 1504, 1508

xild 1497, 1504, 1508
xilibtool 1508
xilink 1497, 1504

linking with IPO 1501
link map file

generating 103
option generating 720

Linux* compiler options
-1 764, 935
-132 565
-66 570
-72 565
-80 565
-align 472
-allow fpp_comments 476
-altparam 478
-ansi-alias 479, 847
-arch 480
-assume 486
-auto 498
-auto_scalar 496, 848
-autodouble 1046
-automatic 498
-ax 500, 850
-B 503
-Bdynamic 504
-Bstatic 508
-c 509
-C 511
-CB 511
-ccdefault 510
-check 511

3774

Intel® Fortran Compiler User and Reference Guides

Linux* compiler options (continued)
-cm 1099
-common-args 486
-complex-limited-range 516, 855
-convert 517
-cpp 625, 889
-CU 511
-cxxlib 520
-cxxlib-gcc 520
-cxxlib-nostd 520
-D 522
-DD 523, 856
-debug 526
-debug-parameters 532
-diag 533, 539, 857, 863
-diag-dump 538, 862
-diag-enable sc-include 544, 867
-diag-enable sc-parallel 545, 869
-diag-error-limit 547, 871
-diag-file 548, 872
-diag-file-append 550, 873
-diag-id-numbers 551, 875
-diag-once 552, 876
-d-lines 523, 856
-double-size 554
-dps 478
-dryrun 556
-dynamic-linker 558
-dyncom 560, 877
-E 561
-e03 1099
-e90 1099
-e95 1099
-EP 562
-error-limit 547, 871
-extend-source 565
-f66 570
-f77rtl 572
-falias 573
-falign-functions 574, 882
-falign-stack 575
-fast 577
-fast-transcendentals 578, 879
-fcode-asm 580
-fexceptions 581
-ffnalias 582
-FI 588
-finline 583
-finline-functions 584

Linux* compiler options (continued)
-finline-limit 585
-finstrument-functions 586, 912
-fixed 588
-fkeep-static-consts 589, 928
-fltconsistency 590
-fma 593, 880
-fmath-errno 594
-fminshared 596
-fnsplit 597, 883
-fomit-frame-pointer 598, 600, 803
-fp 598, 600, 803
-fpconstant 616
-fpe 617
-fpe-all 620
-fpic 623
-fpie 624
-fp-model 601, 606
-fpp 625, 889
-fp-port 611, 884
-fp-relaxed 612, 885
-fpscomp 627
-fp-speculation 613, 886
-fp-stack-check 615, 888
-FR 638
-fr32 637
-free 638
-fsource-asm 639
-fstack-protector 640, 641, 661
-fstack-security-check 640, 641, 661
-fsyntax-only 1070
-ftrapuv 642, 1024
-ftz 643, 891
-funroll-loops 1026, 1085
-fverbose-asm 646
-fvisibility 647
-g 650, 1119, 1122
-gdwarf-2 655
-gen-interfaces 657
-global-hoist 658, 893
-heap-arrays 662
-help 663
-I 667
-i2 691
-i4 691
-i8 691
-idirafter 669
-i-dynamic 1058
-inline-debug-info 676, 896

3775

Index

Linux* compiler options (continued)
-inline-factor 677, 898
-inline-forceinline 679, 900
-inline-level 680, 758
-inline-max-per-compile 682, 901
-inline-max-per-routine 683, 903
-inline-max-size 685, 905
-inline-max-total-size 687, 906
-inline-min-size 688, 908
-intconstant 690
-integer-size 691
-ip 693, 914
-IPF-fltacc 698, 919
-IPF-flt-eval-method0 696, 917
-IPF-fma 593, 880
-IPF-fp-relaxed 612, 885
-ip-no-inlining 694, 915
-ip-no-pinlining 695, 916
-ipo 699, 920
-ipo-c 701, 922
-ipo-jobs 702, 923
-ipo-S 704, 925
-ipo-separate 705, 926
-i-static 1068
-isystem 706
-ivdep-parallel 707, 927
-l 708
-L 709
-logo 716
-lowercase 744
-m 717
-m32 719
-m64 719
-map-opts 721, 931
-march 723
-mcmodel 724
-mcpu 740
-mieee-fp 590
-minstruction 730, 911
-mixed-str-len-arg 670
-mkl 732, 933
-module 734
-mp 590
-mp1 737, 989
-mrelax 738
-mtune 740
-multiple-processes 735, 743
-names 744
-nbs 486

Linux* compiler options (continued)
-no-bss-init 746, 934
-nodefaultlibs 747
-nofor_main 748
-nolib-inline 749
-nostartfiles 750
-nostdinc 1116
-nostdlib 751
-nus 486
-o 752
-O 753
-Ob 680, 758
-onetrip 764, 935
-openmp 765, 936
-openmp-lib 766, 937
-openmp-link 768, 939
-openmp-profile 770, 940
-openmp-report 771, 942
-openmp-stubs 772, 943
-openmp-threadprivate 774, 944
-opt-block-factor 775, 946
-opt-jump-tables 776, 947
-opt-loadpair 778, 948
-opt-malloc-options 779
-opt-mem-bandwidth 780, 949
-opt-mod-versioning 782, 951
-opt-multi-version-aggressive 783, 952
-opt-prefetch 784, 953
-opt-prefetch-initial-values 786, 955
-opt-prefetch-issue-excl-hint 787, 956
-opt-prefetch-next-iteration 788, 957
-opt-ra-region-strategy 790, 959
-opt-report 791, 960
-opt-report-file 793, 962
-opt-report-help 794, 963
-opt-report-phase 795, 964
-opt-report-routine 796, 965
-opt-streaming-stores 797, 966
-opt-subscript-in-range 799, 968
-Os 800
-p 805
-P 827
-pad 806, 971
-pad-source 807, 972
-par-affinity 808, 975
-parallel 819, 986
-par-num-threads 810, 977
-par-report 811, 978
-par-schedule 814, 980

3776

Intel® Fortran Compiler User and Reference Guides

Linux* compiler options (continued)
-par-threshold 818, 984
-pc 821, 987
-pg 805
-pie 823
-prec-div 825, 990
-prec-sqrt 826, 991
-preprocess-only 827
-print-multi-lib 828
-prof-data-order 829, 992
-prof-dir 830, 994
-prof-file 832, 995
-prof-func-groups 833
-prof-func-order 834, 996
-prof-gen 836, 998
-prof-genx 836, 998
-prof-hotness-threshold 838, 1000
-prof-src-dir 840, 1001
-prof-src-root 841, 1003
-prof-src-root-cwd 843, 1005
-prof-use 845, 1006
-Qinstall 910
-Qlocation 929
-Qoption 969
-qp 805
-r16 1046
-r8 1046
-rcd 1008, 1044
-rct 1009, 1045
-real-size 1046
-recursive 1047
-reentrancy 1049
-RTCu 511
-S 1050
-safe-cray-ptr 1010, 1051
-save 1012, 1053
-save-temps 1013, 1054
-scalar-rep 1015, 1056
-shared 1057
-shared-intel 1058
-shared-libgcc 1060
-sox 1017, 1062
-stand 1063
-static 1065
-static-intel 1068
-static-libgcc 1069
-std 1063
-std03 1063
-std90 1063

Linux* compiler options (continued)
-std95 1063
-syntax-only 1070
-T 1071
-tcheck 1019, 1072
-tcollect 1020, 1073
-tcollect-filter 1021, 1075
-Tf 1061
-threads 1077
-tprofile 1023, 1078
-traceback 1080
-tune 1081
-u 1099
-U 1084
-unroll 1026, 1085
-unroll-aggressive 1027, 1086
-uppercase 744
-us 486
-use-asm 1028, 1088
-v 1089
-V 1090
-vec 1032, 1090
-vec-guard-write 1033, 1091
-vec-report 1034, 1092
-vec-threshold 1036, 1094
-vms 1095
-w 1098, 1099
-W0 1099
-W1 1099
-Wa 1098
-warn 1099
-watch 1105
-WB 1106
-what 1107
-Wl 1110
-Wp 1111
-x 1038, 1112
-X 1116
-Xlinker 1118
-y 1070
-zero 1042, 1121
-Zp 472, 1124

list-directed formatting
input 2000
output 2019

list-directed i/o
default formats for output 2019
input 2000
output 2019

3777

Index

list-directed i/o (continued)
restrictions for input 2000

list-directed I/O 208
list-directed input 2000
list-directed output 2019
list-directed statements

READ 2000
WRITE 2019

list-drected I/O statements 203
list items in i/o lists 1991
literal constants 1763
LITTLE_ENDIAN 2130

value for CONVERT specifier 2130
little-endian-to-big-endian conversion 1664
LLE 2973
LLT 2974
LNBLNK 2975
LOADIMAGE 2976
LOADIMAGE_W 2976
loadpair optimization

option enabling 778, 948
LOC 2977, 3166

using with integer pointers 3166
locale

function returning currency string for current 3074
function returning date for current 3076
function returning information about current 3083
function returning number string for current 3078
function returning time for current 3079

local scope 2171
local variables

option allocating to static memory 1012, 1053
option allocating to the run-time stack 498

locating run-time errors
using traceback information 412

locations
specifying alternative 99

lock routines 1398
LOG 2979
LOG10 2980
logarithm

function returning base 10 2980
function returning common 2980
function returning natural 2979

logarithmic procedures
table of 2269

LOGICAL 2982, 2983
LOGICAL(1) 1778
LOGICAL(2) 1778

LOGICAL(4) 1778
LOGICAL(8) 1778
LOGICAL*1 1778
LOGICAL*2 1778
LOGICAL*4 1778
LOGICAL*8 1778
logical AND

function performing 2821
logical assignment statements 1836
logical complement

function returning 3106
logical constants 1779
logical conversion

function performing 2983
logical data

mixed-language programming 290
logical data representation 176
logical data type 176, 187, 290, 1778, 1779, 2186

constants 1779
converting nonnative data 187
declaring 176
default kind 1778
differences with nonnative formats 187
mixed-language programming 290
ranges 176
representation 176
storage 2186

logical devices 197
logical editing (L) 2061
logical expressions 1825, 2875

conditional execution based on value of 2875
evaluating 1825

logical IF statement 2875
logical operations 1825

data types resulting from 1825
logical operators 1825
logical records 208
logical shift

function performing 2943
function performing left 2943
function performing right 2943

logical unit number
function testing whether it's a terminal 2939

logical units
assigning files to 205

logical values
transferring 2061

login name
subroutine returning 2774

3778

Intel® Fortran Compiler User and Reference Guides

LONG 2983
loop blocking factor

option specifying 775, 946
loop control 1886, 2575

DO WHILE 1886
iterative 1886
simple 1886

LOOP COUNT 1591, 2984
and loop distribution 1591

loop directives
DISTRIBUTE POINT 2544
general rules for 2162
IVDEP 2949
LOOP COUNT 2984
PARALLEL and NOPARALLEL 3142, 3143
PREFETCH and NOPREFETCH 3100, 3189
SWP and NOSWP (i64) 3105, 3592
UNROLL_AND_JAM and NOUNROLL_AND_JAM 3644
UNROLL and NOUNROLL 3108, 3643
VECTOR ALIGNED and VECTOR UNALIGNED 3654,
3659
VECTOR ALWAYS and NOVECTOR 3109, 3655
VECTOR NONTEMPORAL (i32, i64em) 3657, 3658
VECTOR TEMPORAL (i32, i64em) 3657, 3658

loop interchange 1638
loops 775, 946, 1026, 1027, 1085, 1086, 1242, 1453,

1462, 1466, 1581, 1583, 1584, 1591, 1595,
1611, 1623, 1630, 1638, 1647, 1658, 1886,
1888, 2498, 2575, 2645, 2876, 3108, 3643,
3644

anti dependency 1584
collapsing 1630
constructs 1466
controlling number of times unrolled 3108, 3643
count 1591, 1595
dependencies 1453
distribution 1581, 1591
DO 2575
DO WHILE 1886
enabling jamming 3644
flow dependency 1584
IF 2876
independence 1584
interchange 1581, 1611, 1638, 1647
iterative 1886
limiting loop unrolling 3108, 3643
manual transformation 1647
nested DO 1888
option specifying blocking factor for 775, 946

loops (continued)
option specifying maximum times to unroll 1026,
1085
option using aggressive unrolling for 1027, 1086
output dependency 1584
parallelization 1242, 1453, 1462
reductions 1584
simple 1886
skipping DO 2498
terminating DO 2645
transformations 1581, 1638, 1658
unrolling 1583, 1595
using for arrays 1623
vectorization 1462

loop unrolling 1260, 1461, 1581, 1583, 1595
limitations of 1583
support for 1595
using the HLO optimizer 1260, 1581

lower bounds
function returning 2958

lowercase names
case-sensitivity 274, 275, 276

LSHFT 2943
LSHIFT 2943
LSTAT 2986
LST files 103
LTIME 2987

M
machine epsilon 1727
Mac OS* X compiler options

-1 764, 935
-132 565
-66 570
-72 565
-80 565
-align 472
-allow fpp_comments 476
-altparam 478
-ansi-alias 479, 847
-arch 480
-assume 486
-auto 498
-auto_scalar 496, 848
-autodouble 1046
-automatic 498
-ax 500, 850

3779

Index

Mac OS* X compiler options (continued)
-B 503
-c 509
-C 511
-CB 511
-ccdefault 510
-check 511
-cm 1099
-common-args 486
-complex-limited-range 516, 855
-convert 517
-cpp 625, 889
-CU 511
-cxxlib 520
-cxxlib-gcc 520
-cxxlib-nostd 520
-D 522
-DD 523, 856
-debug 526
-debug-parameters 532
-diag 533, 539, 857, 863
-diag-dump 538, 862
-diag-enable sc-include 544, 867
-diag-enable sc-parallel 545, 869
-diag-error-limit 547, 871
-diag-file 548, 872
-diag-file-append 550, 873
-diag-id-numbers 551, 875
-diag-once 552, 876
-d-lines 523, 856
-double-size 554
-dps 478
-dryrun 556
-dynamiclib 559
-dyncom 560, 877
-E 561
-e03 1099
-e90 1099
-e95 1099
-EP 562
-error-limit 547, 871
-extend-source 565
-f66 570
-f77rtl 572
-falias 573
-falign-functions 574, 882
-falign-stack 575
-fast 577
-fast-transcendentals 578, 879

Mac OS* X compiler options (continued)
-fcode-asm 580
-fexceptions 581
-ffnalias 582
-FI 588
-finline 583
-finline-functions 584
-finline-limit 585
-finstrument-functions 586, 912
-fixed 588
-fkeep-static-consts 589, 928
-fltconsistency 590
-fmath-errno 594
-fminshared 596
-fomit-frame-pointer 598, 600, 803
-fp 598, 600, 803
-fpconstant 616
-fpe 617
-fpe-all 620
-fpic 623
-fp-model 601, 606
-fpp 625, 889
-fp-port 611, 884
-fpscomp 627
-fp-speculation 613, 886
-fp-stack-check 615, 888
-FR 638
-free 638
-fsource-asm 639
-fstack-protector 640, 641, 661
-fstack-security-check 640, 641, 661
-fsyntax-only 1070
-ftrapuv 642, 1024
-ftz 643, 891
-funroll-loops 1026, 1085
-fverbose-asm 646
-fvisibility 647
-g 650, 1119, 1122
-gdwarf-2 655
-gen-interfaces 657
-global-hoist 658, 893
-heap-arrays 662
-help 663
-I 667
-i2 691
-i4 691
-i8 691
-idirafter 669
-i-dynamic 1058

3780

Intel® Fortran Compiler User and Reference Guides

Mac OS* X compiler options (continued)
-inline-factor 677, 898
-inline-forceinline 679, 900
-inline-level 680, 758
-inline-max-per-compile 682, 901
-inline-max-per-routine 683, 903
-inline-max-size 685, 905
-inline-max-total-size 687, 906
-inline-min-size 688, 908
-intconstant 690
-integer-size 691
-ip 693, 914
-ip-no-inlining 694, 915
-ip-no-pinlining 695, 916
-ipo 699, 920
-ipo-c 701, 922
-ipo-S 704, 925
-ipo-separate 705, 926
-i-static 1068
-isystem 706
-l 708
-L 709
-logo 716
-lowercase 744
-m 717
-m32 719
-m64 719
-map-opts 721, 931
-march=pentium4 723
-mcpu 740
-mdynamic-no-pic 729
-mieee-fp 590
-minstruction 730, 911
-mixed_str_len_arg 670
-mkl 732, 933
-module 734
-mp 590
-mp1 737, 989
-mtune 740
-multiple-processes 735, 743
-names 744
-nbs 486
-no-bss-init 746, 934
-nodefaultlibs 747
-nofor-main 748
-nolib-inline 749
-nostartfiles 750
-nostdinc 1116
-nostdlib 751

Mac OS* X compiler options (continued)
-nus 486
-o 752
-O 753
-Ob 680, 758
-onetrip 764, 935
-openmp 765, 936
-openmp-link 768, 939
-openmp-report 771, 942
-openmp-stubs 772, 943
-opt-block-factor 775, 946
-opt-jump-tables 776, 947
-opt-malloc-options 779
-opt-multi-version-aggressive 783, 952
-opt-ra-region-strategy 790, 959
-opt-report 791, 960
-opt-report-file 793, 962
-opt-report-help 794, 963
-opt-report-phase 795, 964
-opt-report-routine 796, 965
-opt-streaming-stores 797, 966
-opt-subscript-in-range 799, 968
-p 805
-P 827
-pad 806, 971
-pad-source 807, 972
-parallel 819, 986
-par-num-threads 810, 977
-par-report 811, 978
-par-schedule 814, 980
-par-threshold 818, 984
-pc 821, 987
-pg 805
-prec-div 825, 990
-prec-sqrt 826, 991
-preprocess-only 827
-print-multi-lib 828
-prof-data-order 829, 992
-prof-dir 830, 994
-prof-file 832, 995
-prof-func-groups 833
-prof-func-order 834, 996
-prof-gen 836, 998
-prof-genx 836, 998
-prof-src-dir 840, 1001
-prof-src-root 841, 1003
-prof-src-root-cwd 843, 1005
-prof-use 845, 1006
-Qinstall 910

3781

Index

Mac OS* X compiler options (continued)
-Qlocation 929
-Qoption 969
-qp 805
-r16 1046
-r8 1046
-rcd 1008, 1044
-rct 1009, 1045
-real-size 1046
-recursive 1047
-reentrancy 1049
-RTCu 511
-S 1050
-safe-cray-ptr 1010, 1051
-save 1012, 1053
-save-temps 1013, 1054
-scalar-rep 1015, 1056
-shared-intel 1058
-shared-libgcc 1060
-stand 1063
-static-intel 1068
-staticlib 1066
-static-libgcc 1069
-std 1063
-std03 1063
-std90 1063
-std95 1063
-syntax-only 1070
-Tf 1061
-threads 1077
-traceback 1080
-tune 1081
-u 1099
-U 1084
-unroll 1026, 1085
-unroll-aggressive 1027, 1086
-uppercase 744
-us 486
-use-asm 1028, 1088
-v 1089
-V 1090
-vec 1032, 1090
-vec-guard-write 1033, 1091
-vec-report 1034, 1092
-vec-threshold 1036, 1094
-vms 1095
-w 1098, 1099
-W1 1099
-Wa 1098

Mac OS* X compiler options (continued)
-warn 1099
-watch 1105
-WB 1106
-what 1107
-Wl 1110
-Wp 1111
-x 1038, 1112
-X 1116
-Xlinker 1118
-y 1070
-zero 1042, 1121
-Zp 472, 1124

main program 1897, 1898, 2603, 3203
statement identifying 3203
statement terminating 2603

maintainability 1344, 1402, 1474, 1611, 1636, 1696
access 1611
allocation 1402
copying data in 1344
dependency 1474
layout 1611

main thread
option adjusting the stack size for 974

make command 114
MAKEDIRQQ 2989
makefiles

command-line syntax 114
MALLOC 2990, 3166

using with integer pointers 3166
mantissa in real model 2225
manual transformations 1647
many-one array section 1810, 1838
MAP 103, 2623, 3634

files 103
MASK 1949
masked array assignment 2682, 3666

generalization of 2682
mask expressions

function combining arrays using 3024
function counting true elements using 2490
function determining all true using 2335
function determining any true using 2344
function finding location of maximum value using
2998
function finding location of minimum value using
3031
function packing array using 3134

3782

Intel® Fortran Compiler User and Reference Guides

mask expressions (continued)
function returning maximum value of elements
using 3002
function returning minimum value of elements
using 3035
function returning product of elements using 3201
function returning sum of elements using 3590
function unpacking array using 3638
in ELSEWHERE 3666
in FORALL 2682
in WHERE 3666

mask pattern
subroutine setting newone for fill 3451

MASTER 2992
master thread

copying data in 2485
specifying code to be executed by 2992

math functions
option enabling faster code sequences for 612, 885

math libraries 329
MATMUL 2993
matrix multiplication

function performing 2993
MAX 2995
MAX0 2995
MAX1 2995
MAXEXPONENT 2997
maximum exponent

function returning 2997
maximum value

function returning 2995
function returning location of 2998

maximum value of array elements
function returning 3002

MAXLOC 2998
MAXREC 2138
MAXVAL 3002
MBCharLen 3004
MBConvertMBToUnicode 3005
MBConvertUnicodeToMB 3007
MBCS routines

table of 2301
MBCurMax 3008
MBINCHARQQ 3009
MBINDEX 3010
MBJISToJMS 3011
MBJMSToJIS 3011
MBLead 3012
MBLen 3013

MBLen_Trim 3014
MBLEQ 3015
MBLGE 3015
MBLGT 3015
MBLLE 3015
MBLLT 3015
MBLNE 3015
MBNext 3017
MBPrev 3018
MBSCAN 3019
MBStrLead 3020
MBVERIFY 3021
MCLOCK 3022
memory

dynamically allocating 2338
freeing space associated with allocatable arrays
2517
freeing space associated with pointer targets 2517
function allocating 2990
subroutine freeing allocated 2694
using EQUIVALENCE to share 1863

memory aliasing 1638
memory allocation procedures

table of 2264
memory bandwidth

option enabling tuning and heuristics for 780, 949
memory cache

function returning size of a level in 2429
memory deallocation procedures

table of 2264
memory dependency

option specifying no loop-carried following IVDEP
707, 927

memory file system 1630
memory layout

option changing variable and array 806, 971
memory loads

option enabling optimizations to move 658, 893
memory location

directive updating dynamically 3022
memory model

option specifying large 724
option specifying small or medium 724
option to use specific 724

memory space
deallocating 2517

MEMORYTOUCH 3022
MEMREF_CONTROL 3023

3783

Index

menu command
function simulating selection of 2455

menu items
function changing callback routine of 3043
function changing text string of 3045
function deleting 2527
function inserting 2907
function modifying the state of 3042

menus
function appending child window list to 3497
function appending item to 2345
function inserting item in 2907
function setting top-level for append list 3497

menu state
constants indicating 2345, 2907, 3042

MERGE 3024
MESSAGE 3026
message box

function displaying 3026
function specifying text for About 2320

MESSAGEBOXQQ 3026
messages

display of run-time 353
meaning of severity to run-time system 353
run-time error 361
run-time format 353

methods of specifying the data format 188
Microsoft* Fortran PowerStation

option specifying compatibility with 627
Microsoft* Visual C++

option specifying compatibility with 1031
Microsoft* Visual Studio

option specifying compatibility with 1031
Microsoft Fortran PowerStation

compatibility with 246
compatible file types 246

midnight
function returning seconds since 3416

MIN 3028
MIN0 3028
MIN1 3028
MINEXPONENT 3030
minimum exponent

function returning 3030
minimum value

function returning 3028
function returning location of 3031

minimum value of array elements
function returning 3035

MINLOC 3031
MINVAL 3035
misaligned data 1475
miscellaneous run-time procedures

table of 2317
MIXED_STR_LEN_ARG 2386, 2389

option for ATTRIBUTES directive 2386, 2389
mixed language programming

calling subprograms 263
mixed-language programming 264, 266, 274, 275,

276, 280, 281, 283, 285, 289, 290, 293,
294, 301, 305, 306

adjusting case of names 276
adjusting naming conventions in 274, 275
allocatable arrays in 293
array pointers in 293
calling conventions in 266
exchanging and accessing data in 280
handling data types in 289
integer pointers in 294
limitations 264
naming conventions 274
numeric data types in 290
overview of issues 264
passing arguments in 281
return values 290, 301
summary of issues 264
user-defined types in 305
using common external data in 285
using modules in 283

mixed-language programs 268, 274, 275, 278, 279,
311, 312

compiling and linking 311
mixed-language projects

programming with 263
mixed-mode expressions 1821
mixing vectorizable types in a loop 1461, 1623

using effectively 1623
MM_PREFETCH 3037
MMX(TM) 1459
mock object files 1501
MOD 3040
MODE 2112, 2138

specifier for INQUIRE 2112
specifier for OPEN 2138

model
for bit data 2227
for integer data 2224
for real data 2225

3784

Intel® Fortran Compiler User and Reference Guides

models for data representation 2223, 2224, 2225,
2227

bit 2227
integer 2224
real 2225

MODIFYMENUFLAGSQQ 3042
MODIFYMENUROUTINEQQ 3043
MODIFYMENUSTRINGQQ 3045
MODULE 3047
module entities 2183, 3205

attribute limiting use of 3205
module files

option specifying directory for 734
module naming conventions 278
MODULE PROCEDURE 3053
module procedures 1897, 1898, 1918, 2923, 3047,

3053
in interface blocks 2923
in modules 3047
internal procedures in 1918

module references 1899
modules 258, 283, 325, 1745, 1897, 1898, 1899,

3047, 3196, 3208, 3645
accessibility of entities in 3196, 3208, 3645
advantages of 258
allowing access to 3645
common blocks in 1898
defining 3047
IFPORT 325
overview of 1745
private entities in 3196
public entities in 3208
references to 1899
use in mixed-language programming 283
USE statement in 3645

module subprograms 1898, 2483
CONTAINS statement 2483

MODULO 3054
modulo computation

function returning 3054
modulo operations

option enabling versioning of 782, 951
mouse cursor

function setting the shape of 3466
mouse events

function registering callback routine for 3383
function unregistering callback routine for 3641
function waiting for 3664

mouse input
function waiting for 3664

MOVBE instructions
option generating 730, 911

MOVE_ALLOC 3055
MOVETO 3058
MOVETO_W 3058
MULT_HIGH 3060
MULT_HIGH_SIGNED 3061
multibyte characters 107, 3008, 3009, 3010, 3012,

3015, 3019, 3020, 3021
function performing context-sensitive test for 3020
function returning first 3012
function returning length for codepage 3008
function returning number and character 3009
functions comparing strings of 3015
incharqq function for 3009
index function for 3010
scan function for 3019
verify function for 3021

multibyte-character string
function converting to codepage 3007
function converting to Unicode 3005
function returning length (including blanks) 3013
function returning length (no blanks) 3014
function returning length of first character in 3004
function returning position of next character in
3017
function returning position of previous character in
3018

multidimensional arrays
construction of 1812, 3390
conversion between vectors and 3134, 3638
storage of 1804

multiple processes
option creating 735, 743
routines for working with 1495

multiple processes vs multiple threads 1495
multithread 1479
multithread applications 101, 118, 1049, 1479, 1480,

1481, 1488, 1491, 1492
compiling and linking 101
creating 1479
critical applications 1488
errors in 1492
events 1488
handling errors in 1492
modules for 1481
mutex 1488

3785

Index

multithread applications (continued)
option generating reentrant code for 1049
overview of 1479
programming considerations 1480
routines for 1492
semaphore 1488
sharing data 1480
sharing resources 1488
suspending a thread 1491
synchronizing threads 1488, 1491
table of 1492
thread local storage 1491
writing 1480

multithreaded programs 168, 1242, 1447, 1611
debugging 168

multithreading 1406, 1453, 1630, 1658, 1671
data 1658, 1671
records 1671
storage 1630

multithreading concepts 1479
multi-threading performance

option aiding analysis of 1023, 1078
multithreads 1479
MVBITS 3062
MXCSR register 1689

N
NAME 2112, 2138

specifier for INQUIRE 2112
specifier for OPEN 2138

name association 2183, 2185, 2186
argument 2183
pointer 2185
storage 2186

NAMED 2112
named common 2417, 2473

defining initial values for variables in 2417
named constants 1763, 3148
NAMELIST 3064
namelist external records

alternative form for 2200
namelist formatting 1985, 2003, 2021

input 2003
output 2021

namelist group 2003, 2021, 3064
prompting for information about 2003

namelist I/O 208, 2003, 2021
input 2003
output 2021

namelist input 2003
comments in 2003

namelist output 2021
namelist records 2003
namelists 3064
namelist specifier 1985
namelist statements

READ 2003
WRITE 2021

names 1748, 1799, 2171, 2175, 2180, 2181, 2889,
3064, 3148, 3203

associating with constant value 3148
associating with group 3064
association of 2181
explicit typing of 1799
first character in 1748
in PARAMETER statements 3148
length allowed 1748
of main programs 3203
overriding default data typing of 2889
resolving references to nonestablished 2180
scope of 2171
statement defining default types for user-defined
2889
unambiguous 2175

naming conventions
mixed-language programming 274

NaN values
function testing for 2948

NARGS 3066
NATIVE 2130

value for CONVERT specifier 2130
native and nonnative numeric formats 181
natural alignment 1613
NEAREST 3069
nearest different number

function returning 3069
nearest integer

function returning 3071
nested and group repeat specifications 2086
nested DO constructs 1888
nested IF constructs 2876
NEW_LINE 3070
new line character

function returning 3070
NEXTREC 2113

3786

Intel® Fortran Compiler User and Reference Guides

NINT 3071
NLS date and time format 3083
NLSEnumCodepages 3072
NLSEnumLocales 3073
NLSFormatCurrency 3074
NLSFormatDate 3076
NLSFormatNumber 3078
NLSFormatTime 3079
NLS functions

date and time format 3083
MBCharLen 3004
MBConvertMBToUnicode 3005
MBConvertUnicodeToMB 3007
MBCurMax 3008
MBINCHARQQ 3009
MBINDEX 3010
MBJISToJMS and MBJMSToJIS 3011
MBLead 3012
MBLen 3013
MBLen_Trim 3014
MBLEQ 3015
MBLGE 3015
MBLGT 3015
MBLLE 3015
MBLLT 3015
MBLNE 3015
MBNext 3017
MBPrev 3018
MBSCAN 3019
MBStrLead 3020
MBVERIFY 3021
NLSEnumCodepages 3072
NLSEnumLocales 3073
NLSFormatCurrency 3074
NLSFormatDate 3076
NLSFormatNumber 3078
NLSFormatTime 3079
NLSGetEnvironmentCodepage 3081
NLSGetLocale 3082
NLSGetLocaleInfo 3083
NLSSetEnvironmentCodepage 3095
NLSSetLocale 3096
table of 2301

NLSGetEnvironmentCodepage 3081
NLSGetLocale 3082
NLSGetLocaleInfo 3083
NLS language

function setting current 3096
subroutine retrieving current 3082

NLS locale parameters
table of 3083

NLS parameters
table of 3083

NLSSetEnvironmentCodepage 3095
NLSSetLocale 3096
nmake command 114
NML 1985, 3365, 3673

specifier for READ 3365
specifier for WRITE 3673

NO_ARG_CHECK 2387
option for ATTRIBUTES directive 2387

NODECLARE 140, 2518
equivalent compiler option for 140

NOFREEFORM 140, 2695, 3098
equivalent compiler option for 140

NOINLINE 2384, 2385, 2388
option for ATTRIBUTES directive 2384, 2385, 2388

NOMIXED_STR_LEN_ARG 2386, 2389
option for ATTRIBUTES directive 2386, 2389

nonadvancing i/o 1988
nonadvancing I/O 208
nonadvancing record I/O 238
nonblock DO 2575

terminal statements for 2575
noncharacter data types 1847
noncharacter type declaration statements 1847
nondecimal numeric constants 1792, 1795

determining the data type of 1795
nonelemental functions 1947
nonexecutable statements 1746
non-Fortran procedures

references to 1935
referencing with %LOC 2978

nonnative data
porting 187

nonrepeatable edit descriptors 2031, 2068
non-unit memory access 1638
NOOPTIMIZE 140, 3099, 3123

equivalent compiler option for 140
NOPARALLEL 3142, 3143
NOPREFETCH 1602, 3100, 3189

using 1602
normalized floating-point number 1722
NOSHARED 2138
NOSTRICT 140, 3103, 3577

equivalent compiler option for 140
NOSWP 1605, 3105, 3592

using 1605

3787

Index

NOT 3106
Not-a-Number (NaN) 1722, 2948

function testing for 2948
NOUNROLL 3108, 3643
NOUNROLL_AND_JAM 3644
NOVECTOR 3109, 3655
NOVECTOR directive 1596
NOWAIT 2579, 2664, 3378, 3418, 3520

effect on implied FLUSH directive 2664
effect with REDUCTION clause 3378
in END DO directive 2579
in END SECTIONS directive 3418
in END SINGLE directive 3520

NUL 2345
predefined QuickWin routine 2345

NULL 3110
NULLIFY 1875, 3112

overview of dynamic allocation 1875
NUM_THREADS 3139, 3145

in PARALLEL directive 3139
in PARALLEL DO directive 3145

NUMARG 2823
NUMBER 2113
number string

function returning for current locale 3078
numeric assignment statements 1834
numeric constants

complex 1775
integer 1766
nondecimal 1792
real 1769

numeric conversion
limitations of 1721

numeric data
size limits for A editing 2065

numeric data types
conversion rules with DATA 2500
mixed-language programming 290

numeric expressions 1818, 1820, 1821, 1823
comparing values of 1823
data type of 1821
using parentheses in 1820

numeric format
specifying 2042, 2130
specifying with /convert 196
specifying with OPEN(CONVERT=) 194
specifying with OPTIONS statement 195

numeric functions
categories of 1953

numeric functions (continued)
models defining 2223

numeric models 2223, 2224, 2225, 2227, 2820, 3612
bit 2227
integer 2224
querying parameters in 2820, 3612
real 2225

numeric nondecimal constants 1792, 1795
determining the data type of 1795

numeric operators 1818
precedence of 1818

numeric parameters
functions returning 1725
retrieving parameters of 1725

numeric procedures
table of 2267

numeric routines 1953
numeric storage unit 2186

O
O 2046

edit descriptor 2046
OBJCOMMENT 140, 3114

equivalent compiler option for 140
object file

directive specifying library search path 3114
option generating one per source file 705, 926
option increasing number of sections in 506
option placing a text string into 507
option specifying name for 760

object module
directive specifying identifier for 2833

obj files 1658
OBJ files 121
octal constants 1792, 1793, 2199

alternative syntax for 2199
octal editing (O) 2046
octal values

transferring 2046
of allocatable arrays 1878
of pointer targets 1880
OMP_DYNAMIC 1383
OMP_NESTED 1383
OMP_NUM_THREADS 1383
OMP_SCHEDULE 1383

3788

Intel® Fortran Compiler User and Reference Guides

OMP directives 1242, 1299, 1321, 1326, 1352, 1359,
1360, 1364, 1370, 1371, 1375, 1379, 1383,
1398, 1406, 1418

advanced issues 1375
compatibility libraries 1321, 1406
compatibility with other compilers 1321
debugging 1375
directives 1359, 1360, 1364, 1370, 1371
environment variables 1383, 1418
guidelines for using libraries 1321
KMP_AFFINITY 1383, 1418
KMP_ALL_THREADS 1383
KMP_BLOCKTIME 1383
KMP_LIBRARY 1383
KMP_MONITOR_STACKSIZE 1383
KMP_STACKSIZE 1383
KMP_VERSION 1383
legacy libraries 1321, 1406
library file names 1406
object-level interoperability 1321
OMP_DYNAMIC 1383
OMP_NESTED 1383
OMP_NUM_THREADS 1383
OMP_SCHEDULE 1383
omp.h 1375
parallel processing thread model 1326
performance 1375
reports 1299
run-time library routines 1398
source compatibility 1321
support libraries 1406

ONLY 3645
keyword in USE statement 3645

OPEN 181, 187, 194, 213, 358, 2120, 2125, 2126,
2127, 2128, 2129, 2130, 2133, 2134, 2136,
2137, 2138, 2139, 2140, 2141, 2143, 2144,
2146, 2147, 2148, 3115

ACCESS specifier 2125
ACTION specifier 2125
ASSOCIATEVARIABLE specifier 2126
BLANK specifier 2127
BLOCKSIZE specifier 2127
BUFFERCOUNT specifier 2128
BUFFERED specifier 2128
CARRIAGECONTROL specifier 2129
CONVERT specifier 181, 194, 2130
DEFAULTFILE specifier 2133
defaults for converting nonnative data 187
DELIM specifier 2133

OPEN (continued)
DISPOSE specifier 2134
example of ERR specifier 358
example of FILE specifier 358
example of IOSTAT specifier 358
FILE specifier 2134
FORM specifier 2136
IOFOCUS specifier 2137
MAXREC specifier 2138
MODE specifier 2138
NAME specifier 2138
NOSHARED specifier 2138
ORGANIZATION specifier 2138
PAD specifier 2139
POSITION specifier 2139
READONLY specifier 2140
RECL specifier

option to specify units 213
units for unformatted files 187

RECORDSIZE specifier 2143
RECORDTYPE specifier 2143
SHARED specifier 2146
SHARE specifier 2144
STATUS specifier 2146
table of specifiers and values 2120
TITLE specifier 2147
TYPE specifier 2148
USEROPEN specifier 2148

OPENED 2113
specifier for INQUIRE 2113

opening files 228, 3115
OPEN statement 228

OpenMP*
option controlling diagnostics 771, 942
option enabling 765, 936
option enabling analysis of applications 770, 940
option enabling programs in sequential mode 772,
943
option specifying threadprivate 774, 944

OpenMP* Fortran directives 1352, 1364, 1379, 1392,
1402, 2159, 2164, 2166, 2167, 2168, 2253,
2369, 2409, 2492, 2579, 2664, 2992, 3129,
3139, 3145, 3146, 3147, 3418, 3520, 3602,
3606, 3607, 3670

ATOMIC 2369
BARRIER 2409
clauses for 1392, 2166
conditional compilation of 2167
CRITICAL 2492

3789

Index

OpenMP* Fortran directives (continued)
DO 2579
examples of 1379
features of 1352
FLUSH 2664
for synchronization 1364
for worksharing 1352
Intel extensions for 1402
MASTER 2992
nesting and binding rules 2168
ORDERED 3129
PARALLEL 3139
PARALLEL DO 3145
PARALLEL SECTIONS 3146
PARALLEL WORKSHARE 3147
programming using 1352
SECTION 3418
SECTIONS 3418
SINGLE 3520
syntax of 2159
table of 2253
TASK 3602
TASKWAIT 3606
THREADPRIVATE 3607
WORKSHARE 3670

OpenMP* run-time library
option controlling which is linked to 768, 939
option specifying 766, 937

OpenMP* run-time library routines 2230
OpenProcess 1495
OPEN statement 228
operands 1817, 1818, 1825

in logical expressions 1825
in numeric expressions 1818

operating system
portability considerations 432

operations
character 1823
complex 1821
conversion to higher precision 1821
defined 1827
integer 1821
numeric 1818
real 1821

operator precedence
summary of 1827

operators 1817, 1818, 1823, 1825, 1827, 1940
binary 1818
generic 1940

operators (continued)
logical 1825
numeric 1818
precedence of 1827
relational 1823
unary 1818

optimal records to improve performance 1245, 1247,
1251, 1260, 1302, 1314, 1591, 1605, 1630

analyzing applications 1251
application-specific 1251
hardware-related 1251
library-related 1251
methodology 1247
options

restricting 1314
setting 1314

OS-related 1251
reports 1260, 1591, 1605
resources 1245
restricting 1314
setting 1314
strategies 1251
system-related 1251

optimization
compiling and linking for 100
controlling unrolling and jamming 3644
directive affecting 3099, 3123
limiting loop unrolling 3108, 3643
loop unrolling 3108, 3643
option disabling all 753
option enabling global 763
option enabling prefetch insertion 784, 953
option generating single assembly file from multiple
files 704, 925
option generating single object file from multiple
files 701, 922
option specifying code 753
preventing with VOLATILE 3661
specified by ATOMIC directive 2369
specified by SWP and NOSWP directives (i64)
3105, 3592
specified by UNROLL_AND_JAM and
NOUNROLL_AND_JAM directives 3644
specified by UNROLL and NOUNROLL directives
3108, 3643

optimization report
option displaying phases for 794, 963
option generating for routines with specified text
796, 965

3790

Intel® Fortran Compiler User and Reference Guides

optimization report (continued)
option generating to stderr 791, 960
option specifying detail level of 791, 960
option specifying name for 793, 962
option specifying phase to use for 795, 964

optimizations 761, 800, 802, 1239, 1242, 1301, 1302,
1306, 1313, 1314, 1519, 1520, 1581, 1591,
1658

compilation process 1301
default level of 1658
for specific processors 1306
high-level language 1581
option disabling all 761
option enabling all speed 802
option enabling many speed 800
options for IA-32 architecture 1306
options for IA-64 architecture 1313
options for Intel(R) 64 architecture 1306
overview of 1301, 1519
parallelization 1242
PGO methodology 1520
profile-guided 1519
profile-guided optimization 1520
support features for 1591

optimization support 1239
OPTIMIZE 140, 3099, 3123

equivalent compiler option for 140
optimizer report generation 1260
optimizing 1239, 1251, 1638

applications 1251
helping the compiler 1638
overview 1239
technical applications 1251

optimizing performance 1247
OPTIONAL 3118
optional arguments 1923, 3118, 3192

function determining presence of 3192
optional plus sign in output fields 2071
option mapping tool 138
options

compiler 137
precedence using CONVERT 194
specifying unformatted file floating-point format
195

OPTIONS 3122, 3124
options for efficient compilation 1658
options for IA-32 architectures 1310
options used for IPO 1229, 1500
OptReport support 1260

OR 2929
ORDERED 1364, 1371, 1392, 2579, 3129, 3145

clause in DO directive 2579
clause in PARALLEL DO directive 3145
example of 1364
in DO directives 1371
overview of OpenMP* directives and clauses 1392

order of subscript progression 1804
ORGANIZATION 2114, 2138

specifier for INQUIRE 2114
specifier for OPEN 2138

OUTGTEXT 2764, 2766, 3130, 3455, 3460
related routines 2764, 2766, 3455, 3460

output
displaying to screen 3194

output files
option specifying name for 752
producing 122

output statements for data transfer
PRINT 3194
REWRITE 3398
WRITE 3673

OUTTEXT 3133, 3671
effect of WRAPON 3671

overflow 1360, 1398, 1595, 1605, 1660
call to a runtime library routine 1398
loop unrolling 1595
software pipelining 1605
the threads number 1360

overriding vectorization 1596
overview 157, 168, 325, 1239, 1242, 1302, 1342,

1658
configuration files 157
IFPORT portability module 325
of data scope attribute clauses 1342
of debugging multithreaded programs 168
of optimizing compilation 1658
of optimizing for specific processors 1302
of parallelism 1242
portability library 325
response files 157

overview of Building Applications 93

P
P 2074

edit descriptor 2074

3791

Index

PACK 140, 3134, 3136
equivalent compiler option for 140

packed array
function creating 3134

packed structures 1642
PACKTIMEQQ 3138
PAD 2114, 2139

specifier for INQUIRE 2114
specifier for OPEN 2139

padding for blanks 208
padding short source lines

for fixed and tab source 1757
for free source 1754

page keys
function determining behavior of 3150

PARALLEL 1351, 2164, 3139, 3142, 3143
general directive 3142, 3143
OpenMP* Fortran directive 2164, 3139
using SHARED clause in 1351

parallel compiler directives 2164
parallel construct 1352
PARALLEL DO 1342, 1344, 1345, 1346, 1348, 1351,

1359, 1364, 1392, 3145
and synchronization constructs 1364
example of 1359
SCHEDULE clause 1342
summary of OpenMP* directives and clauses 1392
using COPYIN clause in 1344
using DEFAULT clause in 1345
using FIRSTPRIVATE clause in 1346
using LASTPRIVATE clause in 1346
using PRIVATE clause in 1346
using REDUCTION clause in 1348
using SHARED clause in 1351

parallel invocations with makefile 1520
parallelism 1242, 1398, 1447
parallelization 545, 869, 1242, 1287, 1447, 1453,

1462
diagnostic 1287
option enabling analysis in source code 545, 869

parallel library routines 2230
parallel lint 1331
PARALLEL OpenMP* directive 1344, 1345, 1346, 1348,
1351, 1364, 1392
parallel processing 1326, 1352

thread model 1326
parallel programming 1239, 1242
parallel region

directive defining 3139

parallel region (continued)
option specifying number of threads to use in 810,
977

parallel regions 1360, 1392
directive defining 1360
directives affecting 1360
library routine affecting 1360

PARALLEL SECTIONS 1344, 1345, 1346, 1348, 1351,
1359, 1364, 1392, 3146

and synchronization constructs 1364
example of 1359
summary of OpenMP* directives 1392
using COPYIN clause in 1344
using DEFAULT clause in 1345
using FIRSTPRIVATE clause in 1346
using LASTPRIVATE clause in 1346
using PRIVATE clause in 1346
using REDUCTION clause in 1348
using SHARED clause in 1351

PARALLEL WORKSHARE 1359, 3147
using 1359

PARAMETER 478, 3148
option allowing alternative syntax 478

parentheses
effect in character expressions 1823
effect in logical expressions 1825
effect in numeric expressions 1820, 1821

partial association 2186
PASSDIRKEYSQQ 3150
passing 1623

array arguments efficiently 1623
passing by reference

%REF 3381
path

function splitting into components 3528
PATH environment variable 129
pathnames

specifying default 227
pattern used to fill shapes

subroutine returning 2759
PAUSE 3156
PEEKCHARQQ 3158
PENDING

specifier for INQUIRE 2114
performance 1696
performance analyzer 1643
performance issues with IPO 1504
PERROR 3159
PGO 1519

3792

Intel® Fortran Compiler User and Reference Guides

PGO API
_PGOPTI_Prof_Dump_And_Reset 1579
_PGOPTI_Prof_Reset 1579
_PGOPTI_Set_Interval_Prof_Dump 1578
enable 1573

pgopti.dpi file 1520, 1574
pgopti.spi file 1552
PGO tools 1532, 1552, 1561

code coverage tool 1532
profmerge 1561
proforder 1561
test prioritization tool 1552

pgouser.h header file 1573
physical coordinates

subroutine converting from viewport coordinates
2775
subroutine converting to viewport coordinates 2798

PIE 3160
PIE_W 3160
pie graphic

function testing for endpoints of 2714
pie-shaped wedge

function drawing 3160
pipelining 1242, 1591, 1605

affect of LOOP COUNT on 1591
for IA-64 architecture based applications 1605

pixel
function returning color index for 2777
function returning RGB color value for 2779
function setting color index for 3469
function setting RGB color value for 3470

pixels
function returning color index for multiple 2781
function returning RGB color value for multiple 2782
function setting color index for multiple 3473
function setting RGB color value for multiple 3474

platform labels 81
POINTER 1840, 1875, 3112, 3163, 3166

attribute 1840, 1875, 3112
integer 3166

pointer aliasing 783, 952, 1660
option using aggressive multi-versioning check for
783, 952

pointer arguments 1925, 1937
requiring explicit interface 1937

pointer assignment 1840
pointer association function 2360
pointer association status 1925

pointers
allocating 2338
assigning values to targets of 1833, 2357
assignment of 1840
associating with targets 1840, 3600
CRAY-style 3166
disassociating 2517
disassociating from targets 3112
dynamic association of 1875
Fortran 95/90 3163
function retuning association status of 2360
function returning disassociated 3110
initial association status of 3112
initializing 3110
integer 3166
nullifying 3112
option checking for disassociated 511
option checking for uninitialized 511
referencing 3163
volatile 3661
when storage space is created for 1875

pointer targets 1875, 1877, 1880, 2338, 2517, 3600
allocation of 1877
as dynamic objects 1875
creating 2338
deallocation of 1880
freeing memory associated with 2517

POLYBEZIER 3169
POLYBEZIER_W 3169
POLYBEZIERTO 3175
POLYBEZIERTO_W 3175
POLYGON 3181
POLYGON_W 3181
polygons

function drawing 3181
POLYLINEQQ 3185
POPCNT 3187
POPPAR 3188
portability considerations

and data representation 432
and the operating system 432
data transportability 433
overview 429
recommendations 430
using IFPORT portability module 325

portability library
overview 325

portability routines 326, 430, 2288, 2319, 2324,
2333, 2410, 2411, 2412, 2416, 2420, 2440,

3793

Index

portability routines (continued)
2442, 2443, 2446, 2449, 2452, 2456, 2457,
2479, 2497, 2507, 2508, 2511, 2515, 2525,
2528, 2537, 2590, 2592, 2595, 2643, 2652,
2653, 2656, 2666, 2692, 2696, 2697, 2702,
2703, 2722, 2732, 2737, 2738, 2740, 2741,
2744, 2745, 2748, 2754, 2764, 2769, 2770,
2774, 2777, 2785, 2795, 2796, 2808, 2819,
2831, 2832, 2833, 2861, 2867, 2871, 2887,
2901, 2913, 2936, 2938, 2939, 2948, 2951,
2952, 2953, 2954, 2959, 2975, 2983, 2986,
2987, 2989, 3138, 3215, 3347, 3348, 3351,
3353, 3355, 3363, 3364, 3387, 3388, 3401,
3403, 3404, 3412, 3415, 3417, 3420, 3438,
3441, 3442, 3444, 3448, 3450, 3485, 3508,
3513, 3516, 3523, 3524, 3525, 3528, 3530,
3531, 3533, 3535, 3536, 3537, 3540, 3542,
3543, 3544, 3545, 3546, 3548, 3549, 3550,
3553, 3554, 3556, 3557, 3558, 3562, 3564,
3593, 3596, 3609, 3611, 3620, 3637, 3640

ABORT 2319
ACCESS 2324
ALARM 2333
BEEPQQ 2410
BESJN 2411
BESYN 2411
BIC 2412
BIS 2412
BIT 2416
BSEARCHQQ 2420
CDFLOAT 2440
CHANGEDIRQQ 2442
CHANGEDRIVEQQ 2443
CHDIR 2446
CHMOD 2449
CLEARSTATUSFPQQ 2452
CLOCK 2456
CLOCKX 2457
COMPLINT 2479
COMPLLOG 2479
COMPLREAL 2479
CSMG 2497
CTIME 2497
DATE 2507
DATE4 2508
DBESJN 2511
DBESYN 2511
DCLOCK 2515
DELDIRQQ 2525

portability routines (continued)
DELFILESQQ 2528
DFLOATI 2537
DFLOATJ 2537
DFLOATK 2537
DRAND 2590
DRANDM 2590
DRANSET 2592
DTIME 2595
ETIME 2643
FDATE 2652
FGETC 2653
FINDFILEQQ 2656
FLUSH 2666
FPUTC 2692
FSEEK 2696
FSTAT 2697
FTELL 2702
FTELLI8 2702
FULLPATHQQ 2703
GETC 2722
GETCONTROLFPQQ 2732
GETCWD 2737
GETDAT 2738
GETDRIVEDIRQQ 2740
GETDRIVESIZEQQ 2741
GETDRIVESQQ 2744
GETENV 2745
GETENVQQ 2748
GETFILEINFOQQ 2754
GETGID 2764
GETLASTERROR 2769
GETLASTERRORQQ 2770
GETLOG 2774
GETPID 2777
GETPOS 2785
GETPOSI8 2785
GETSTATUSFPQQ 2785
GETTIM 2795
GETTIMEOFDAY 2796
GETUID 2796
GMTIME 2808
HOSTNAM 2819
IDATE 2831
IDATE4 2832
IDFLOAT 2833
IEEE_FLAGS 2861
IEEE_HANDLER 2867
IERRNO 2871

3794

Intel® Fortran Compiler User and Reference Guides

portability routines (continued)
IFLOATI 2887
IFLOATJ 2887
INMAX 2901
INTC 2913
IRAND and IRANDM 2936
IRANGET 2938
IRANSET 2938
ISATTY 2939
ITIME 2948
JABS 2951
JDATE 2952
JDATE4 2953
KILL 2954
LCWRQQ 2959
LNBLNK 2975
LONG 2983
LSTAT 2986
LTIME 2987
MAKEDIRQQ 2989
PACKTIMEQQ 3138
PUTC 3215
QRANSET 3347
QSORT 3348
RAISEQQ 3351
RAND 3353
RANDOM function 3353
RANDOM subroutine 3355
RANF 3363
RANGET 3364
RANSET 3364
recommendations 430
RENAME 3387
RENAMEFILEQQ 3388
RINDEX 3401
RTC 3403
RUNQQ 3404
SCANENV 3412
SCWRQQ 3415
SECNDS 3417
SEED 3420
SETCONTROLFPQQ 3438
SETDAT 3441
SETENVQQ 3442
SETERRORMODEQQ 3444
SETFILEACCESSQQ 3448
SETFILETIMEQQ 3450
SETTIM 3485
SHORT 3508

portability routines (continued)
SIGNAL 3513
SIGNALQQ 3516
SLEEP 3523
SLEEPQQ 3524
SORTQQ 3525
SPLITPATHQQ 3528
SPORT_CANCEL_IO 3530
SPORT_CONNECT 3531
SPORT_CONNECT_EX 3533
SPORT_GET_HANDLE 3535
SPORT_GET_STATE 3536
SPORT_GET_STATE_EX 3537
SPORT_GET_TIMEOUTS 3540
SPORT_PEEK_DATA 3542
SPORT_PEEK_LINE 3543
SPORT_PURGE 3544
SPORT_READ_DATA 3545
SPORT_READ_LINE 3546
SPORT_RELEASE 3548
SPORT_SET_STATE 3549
SPORT_SET_STATE_EX 3550
SPORT_SET_TIMEOUTS 3553
SPORT_SHOW_STATE 3554
SPORT_SPECIAL_FUNC 3556
SPORT_WRITE_DATA 3557
SPORT_WRITE_LINE 3558
SRAND 3562
SSWRQQ 3564
STAT 3564
SYSTEM 3593
SYSTEMQQ 3596
table of 2288
TIME 3609
TIMEF 3611
TTYNAM 3620
UNLINK 3637
UNPACKTIMEQQ 3640

POS 1989, 2115, 3365, 3673
specifier for INQUIRE 2115
specifier for READ 3365
specifier for WRITE 3673

POSITION 2116, 2139
specifier for INQUIRE 2116
specifier for OPEN 2139

positional editing 2070, 2071
T 2070
TL 2071
TR 2071

3795

Index

positional editing (continued)
X 2071

position-independent code
option generating 623, 624

position-independent executable
option producing 823

position-independent external references
option generating code with 729

position of file
functions returning 2702, 2785
specifying 2139

POSIX* routines 2304, 2931, 2932, 2933, 2935,
2936, 3220, 3221, 3223, 3224, 3226, 3227,
3228, 3229, 3230, 3231, 3232, 3233, 3234,
3235, 3236, 3237, 3238, 3239, 3241, 3242,
3243, 3244, 3245, 3248, 3250, 3251, 3252,
3254, 3256, 3257, 3258, 3259, 3260, 3261,
3262, 3263, 3264, 3265, 3268, 3269, 3271,
3272, 3273, 3274, 3275, 3276, 3277, 3278,
3279, 3280, 3281, 3282, 3283, 3284, 3288,
3289, 3291, 3292, 3293, 3294, 3295, 3296,
3297, 3299, 3300, 3301, 3302, 3303, 3304,
3305, 3306, 3307, 3308, 3309, 3310, 3311,
3312, 3318, 3319, 3322, 3323, 3324, 3325,
3326, 3327, 3328, 3329, 3333, 3334, 3335,
3336, 3338, 3340, 3342, 3343

IPXFARGC 2931
IPXFCONST 2932
IPXFLENTRIM 2932
IPXFWEXITSTATUS (L*X, M*X) 2933
IPXFWSTOPSIG (L*X, M*X) 2935
IPXFWTERMSIG (L*X, M*X) 2936
PXF(type)GET 3220
PXF(type)SET 3221
PXFA(type)SET 3224
PXFACCESS 3226
PXFACHARGET 3223
PXFACHARSET 3224
PXFADBLGET 3223
PXFADBLSET 3224
PXFAGET 3223
PXFAINT8GET 3223
PXFAINT8SET 3224
PXFAINTGET 3223
PXFAINTSET 3224
PXFALARM 3227
PXFALGCLGET 3223
PXFALGCLSET 3224
PXFAREALGET 3223

POSIX* routines (continued)
PXFAREALSET 3224
PXFASTRGET 3223
PXFASTRSET 3224
PXFCALLSUBHANDLE 3228
PXFCFGETISPEED (L*X, M*X) 3229
PXFCFGETOSPEED (L*X, M*X) 3229
PXFCFSETISPEED (L*X, M*X) 3230
PXFCFSETOSPEED (L*X, M*X) 3231
PXFCHARGET 3220
PXFCHARSET 3221
PXFCHDIR 3231
PXFCHMOD 3232
PXFCHOWN (L*X, M*X) 3233
PXFCLEARENV 3233
PXFCLOSE 3234
PXFCLOSEDIR 3234
PXFCONST 3235
PXFCREAT 3236
PXFCTERMID 3237
PXFDBLGET 3220
PXFDBLSET 3221
PXFDUP 3237
PXFDUP2 3237
PXFE(type)GET 3238
PXFE(type)SET 3239
PXFECHARGET 3238
PXFECHARSET 3239
PXFEDBLGET 3238
PXFEDBLSET 3239
PXFEINT8GET 3238
PXFEINT8SET 3239
PXFEINTGET 3238
PXFEINTSET 3239
PXFELGCLGET 3238
PXFELGCLSET 3239
PXFEREALGET 3238
PXFEREALSET 3239
PXFESTRGET 3238
PXFESTRSET 3239
PXFEXECV 3241
PXFEXECVE 3242
PXFEXECVP 3243
PXFEXIT 3244
PXFFASTEXIT 3244
PXFFCNTL (L*X, M*X) 3245
PXFFDOPEN 3248
PXFFFLUSH 3250
PXFFGETC 3250

3796

Intel® Fortran Compiler User and Reference Guides

POSIX* routines (continued)
PXFFILENO 3251
PXFFORK (L*X, M*X) 3252
PXFFPATHCONF 3254
PXFFPUTC 3256
PXFFSEEK 3257
PXFFSTAT 3258
PXFFTELL 3258
PXFGETARG 3259
PXFGETATTY 3260
PXFGETC 3260
PXFGETCWD 3261
PXFGETEGID (L*X, M*X) 3261
PXFGETENV 3262
PXFGETEUID (L*X, M*X) 3263
PXFGETGID (L*X, M*X) 3263
PXFGETGRGID (L*X, M*X) 3264
PXFGETGRNAM (L*X, M*X) 3264
PXFGETGROUPS (L*X, M*X) 3265
PXFGETLOGIN 3268
PXFGETPGRP (L*X, M*X) 3269
PXFGETPID 3269
PXFGETPPID 3271
PXFGETPWNAM (L*X, M*X) 3272
PXFGETPWUID (L*X, M*X) 3273
PXFGETSUBHANDLE 3274
PXFGETUID (L*X, M*X) 3275
PXFINT8GET 3220
PXFINT8SET 3221
PXFINTGET 3220
PXFINTSET 3221
PXFISBLK 3275
PXFISCHR 3276
PXFISCONST 3276
PXFISDIR 3277
PXFISFIFO 3278
PXFISREG 3278
PXFKILL 3279
PXFLGCLGET 3220
PXFLGCLSET 3221
PXFLINK 3280
PXFLOCALTIME 3281
PXFLSEEK 3282
PXFMKDIR 3283
PXFMKFIFO (L*X, M*X) 3284
PXFOPEN 3284
PXFOPENDIR 3288
PXFPATHCONF 3289
PXFPAUSE 3291

POSIX* routines (continued)
PXFPIPE 3292
PXFPOSIXIO 3292
PXFPUTC 3293
PXFREAD 3294
PXFREADDIR 3295
PXFREALGET 3220
PXFREALSET 3221
PXFRENAME 3295
PXFREWINDDIR 3296
PXFRMDIR 3297
PXFSETENV 3297
PXFSETGID (L*X, M*X) 3299
PXFSETPGID (L*X, M*X) 3300
PXFSETSID (L*X, M*X) 3301
PXFSETUID (L*X, M*X) 3301
PXFSIGACTION 3302
PXFSIGADDSET (L*X, M*X) 3303
PXFSIGDELSET (L*X, M*X) 3304
PXFSIGEMPTYSET (L*X, M*X) 3305
PXFSIGFILLSET (L*X, M*X) 3306
PXFSIGISMEMBER (L*X, M*X) 3306
PXFSIGPENDING (L*X, M*X) 3307
PXFSIGPROCMASK (L*X, M*X) 3308
PXFSIGSUSPEND (L*X, M*X) 3309
PXFSLEEP 3310
PXFSTAT 3310
PXFSTRGET 3220
PXFSTRSET 3221
PXFSTRUCTCOPY 3311
PXFSTRUCTCREATE 3312
PXFSTRUCTFREE 3318
PXFSYSCONF 3319
PXFTCDRAIN (L*X, M*X) 3322
PXFTCFLOW (L*X, M*X) 3322
PXFTCFLUSH (L*X, M*X) 3323
PXFTCGETATTR (L*X, M*X) 3324
PXFTCGETPGRP (L*X, M*X) 3325
PXFTCSENDBREAK (L*X, M*X) 3326
PXFTCSETATTR (L*X, M*X) 3326
PXFTCSETPGRP (L*X, M*X) 3327
PXFTIME 3328
PXFTIMES 3329
PXFTTYNAM (L*X, M*X) 3333
PXFUCOMPARE 3333
PXFUMASK 3334
PXFUNAME 3334
PXFUNLINK 3335
PXFUTIME 3335

3797

Index

POSIX* routines (continued)
PXFWAIT (L*X, M*X) 3336
PXFWAITPID (L*X, M*X) 3338
PXFWIFEXITED (L*X, M*X) 3340
PXFWIFSIGNALED (L*X, M*X) 3342
PXFWIFSTOPPED (L*X, M*X) 3342
PXFWRITE 3343
table of 2304

PRECISION 3189
precision in real model 2225, 3189

function querying 3189
preconnected units 197
predefined QuickWin routines 2345, 2907, 3043
preempting functions 1511
PREFETCH 1589, 1602, 3100, 3189

options used for 1589
using 1602

prefetches before a loop
option enabling 786, 955

prefetches for memory access in next iteration
option enabling 788, 957

prefetches of data 1589, 1602, 3037, 3100, 3189
directive enabling 3100, 3189
optimizations for 1589
subroutine peforming 3037

prefetch insertion
option enabling 784, 953

preparing code 1352
preprocessing directives

fpp 146
preprocessor

fpp 143
preprocessor definitions

option undefining all previous 1083
option undefining for a symbol 1083

preprocessor symbols
predefined 153

PRESENT 3192
pretested DO 2584
PRINT 3194
PRINT/DELETE value for CLOSE(DISPOSE) or
CLOSE(STATUS) 2457
printing of formatted records 2089
printing to the screen 3194
PRINT value for CLOSE(DISPOSE) or CLOSE(STATUS)
2457
prioritizing application tests 1552, 1611

achieving optimum performance for 1611

PRIVATE 1342, 1345, 1346, 1348, 1360, 1371, 1392,
2521, 2579, 3139, 3145, 3146, 3196, 3200,
3418, 3520

in DEFAULT clause 1345, 2521
in DO directive 2579
in PARALLEL directive 3139
in PARALLEL DO directive 3145
in PARALLEL SECTIONS directive 3146
in SECTIONS directive 3418
in SINGLE directive 3520
in the DO directive 1371
relationship to REDUCTION clause 1348
summary of data scope attribute clauses 1342,
1392
used in PARALLEL directive 1360
using 1346

private entities 3196, 3645
procedure interface 1897, 1935, 1937, 1938, 1940,

1942, 2923
defining generic assignment 1942
defining generic names 1938
defining generic operators 1940
when explicit is required 1937

procedure names 275
procedure references 2175, 2176, 2179, 2180

resolving generic 2176
resolving nonestablished 2180
resolving specific 2179
unambiguous generic 2175

procedures
BLOCK DATA 2417
declaring external 2650
declaring intrinsic 2927
defining generic assignment for 1942
defining generic names for 1938
defining generic operators for 1940
directive specifying properties of 2371
dummy 1929
elemental user-defined 2596
external 1745, 1918
function computing address of 2978
generic 1938
interface blocks for mixed-language programming
279
interfaces to 1935, 2923
internal 1745, 1918
intrinsic 1947
mixed-language programming 279
module 1898, 2923, 3047, 3053

3798

Intel® Fortran Compiler User and Reference Guides

procedures (continued)
overview of intrinsic 1947
preventing side effects in 3212
pure user-defined 3212
recursive 3377
references to generic 1930
references to non-Fortran 1935
requiring explicit interface 1937
resolving references to 2175
specifying explicit interface for 2923
specifying intrinsic 2927
table of i/o 2252

procedures that require explicit interfaces 1937
process

function executing a new 3404
function returning ID of 2777
function returning user ID of 2796

processes
working with multiple 1495

processes and threads 1479
concepts for multithreaded applications 1479

processes and threads/concepts for multithreaded
applications 1479
process execution

subroutine suspending 3523
process ID

function returning 2777
function sending signal to 2954

processor
option optimizing for specific 651, 653, 740

processor clock
subroutine returning data from 3595

processors
targeting IA-32 architecture processors using
options 1306
targeting IA-64 architecture processors using
options 1313
targeting Intel(R) 64 architecture processors using
options 1306

processor-specific code
option generating 500, 850
option generating and optimizing 1038, 1112

processor time
function returning 2515
subroutine returning 2492

PRODUCT 3201
product of array elements

function returning 3201
PROF_DIR environment variable 1574

PROF_DUMP_INTERVAL environment variable
(deprecated) 1574
PROF_NO_CLOBBER environment variable 1574
profile data records

option affecting search for 840, 1001
option letting you use relative paths when searching
for 841, 843, 1003, 1005

profile-guided optimization 1519, 1520, 1530, 1566,
1573, 1574, 1578, 1579

API support 1573
data ordering optimization 1566
dumping profile information 1579
environment variables 1574
example of 1530
function grouping optimization 1566
function ordering optimization 1566
function order lists optimization 1566
interval profile dumping 1578
options 1520
overview 1519
phases 1530
resetting dynamic profile counters 1579
resetting profile information 1579
support 1573
usage model 1519

profile-optimized code 1520, 1573, 1576, 1578, 1579
dumping 1576, 1578
generating information 1573
resetting dynamic counters for 1579

profiling
option enabling use of information from 845, 1006
option instrumenting a program for 836, 998
option specifying directory for output files 830, 994
option specifying name for summary 832, 995

profiling information
option enabling function ordering 834, 996
option using to order static data items 829, 992

profmerge 1561
profmerge.exe file 437
proforder.exe file 437
PROGRAM 3203
program control

transferring to CASE construct 2433
program control procedures

table of 2258
program control statements

table of 2258
program execution

statement suspending 3156

3799

Index

program execution (continued)
stopping 3575
subroutine delaying 3524
subroutine terminating 2646

program loops 1326, 1447
parallel processing model 1326

programming
mixed language 306

programming practices 430
program name 3203
programs 95, 101, 168, 257, 258, 261, 264, 356,

553, 573, 577, 748, 1479, 1480, 1897, 3404
advantages of internal procedures 261
advantages of modules 258
choosing development environment 95
debugging multithread 168
Fortran executables 257
mixed-language issues in 264
multithread 101, 1479
option linking as DLL 553
option maximizing speed in 577
option specifying aliasing should be assumed in
573
option specifying non-Fortran 748
running within another program 3404
structuring 257
values returned at termination of 356
writing 1480

program structure 1745
program termination

values returned 356
program unit call procedures

table of 2249
program unit definition procedures

table of 2249
program units 1745, 1746, 1897, 1898, 1914, 2171,

2181, 2417, 2603, 2705, 3047, 3203, 3394,
3586, 3645

allowing access to module 3645
block data 2417
external subprograms 1914
function 2705
main 1898, 3203
module 3047
order of statements in 1746
returning control to 3394
scope of 2171
statement terminating 2603
subroutine 3586

program units (continued)
types of association for 2181

program units and procedures 1897
projects

errors during build 331
prompt

subroutine controlling for critical errors 3444
PROTECTED 3205
prototyping procedures 279
PSECT 3207
pseudorandom number generators

RAN 3352
RANDOM 3353, 3355, 3420
RANDOM_NUMBER 3357
RANDU 3362
subroutine changing seed for 3360, 3420
subroutine querying seed for 3360

PUBLIC 3208
public entities 3208, 3645

renaming 3645
PURE 2705, 3212, 3586

in functions 2705
in subroutines 3586

pure procedures 2596, 2682, 2923, 3212
in FORALLs 2682
in interface blocks 2923
restricted form of 2596

PUTC 3215, 3293
POSIX version of 3293

PUTIMAGE 3216
PUTIMAGE_W 3216
PXF(type)GET 3220
PXF(type)SET 3221
PXFA(type)SET 3224
PXFACCESS 3226
PXFACHARGET 3223
PXFACHARSET 3224
PXFADBLGET 3223
PXFADBLSET 3224
PXFAGET 3223
PXFAINT8GET 3223
PXFAINT8SET 3224
PXFAINTGET 3223
PXFAINTSET 3224
PXFALARM 3227
PXFALGCLGET 3223
PXFALGCLSET 3224
PXFAREALGET 3223
PXFAREALSET 3224

3800

Intel® Fortran Compiler User and Reference Guides

PXFASTRGET 3223
PXFASTRSET 3224
PXFCALLSUBHANDLE 3228
PXFCFGETISPEED 3229
PXFCFGETOSPEED 3229
PXFCFSETISPEED 3230
PXFCFSETOSPEED 3231
PXFCHARGET 3220
PXFCHARSET 3221
PXFCHDIR 3231
PXFCHMOD 3232
PXFCHOWN 3233
PXFCLEARENV 3233
PXFCLOSE 3234
PXFCLOSEDIR 3234
PXFCONST 3235
PXFCREAT 3236
PXFCTERMID 3237
PXFDBLGET 3220
PXFDBLSET 3221
PXFDUP 3237
PXFDUP2 3237
PXFE(type)GET 3238
PXFE(type)SET 3239
PXFECHARGET 3238
PXFECHARSET 3239
PXFEDBLGET 3238
PXFEDBLSET 3239
PXFEINT8GET 3238
PXFEINT8SET 3239
PXFEINTGET 3238
PXFEINTSET 3239
PXFELGCLGET 3238
PXFELGCLSET 3239
PXFEREALGET 3238
PXFEREALSET 3239
PXFESTRGET 3238
PXFESTRSET 3239
PXFEXECV 3241
PXFEXECVE 3242
PXFEXECVP 3243
PXFEXIT 3244
PXFFASTEXIT 3244
PXFFCNTL 3245
PXFFDOPEN 3248
PXFFFLUSH 3250
PXFFGETC 3250
PXFFILENO 3251
PXFFORK 3252

PXFFPATHCONF 3254
PXFFPUTC 3256
PXFFSEEK 3257
PXFFSTAT 3258
PXFFTELL 3258
PXFGETARG 3259
PXFGETATTY 3260
PXFGETC 3260
PXFGETCWD 3261
PXFGETEGID 3261
PXFGETENV 3262
PXFGETEUID 3263
PXFGETGID 3263
PXFGETGRGID 3264
PXFGETGRNAM 3264
PXFGETGROUPS 3265
PXFGETLOGIN 3268
PXFGETPGRP 3269
PXFGETPID 3269
PXFGETPPID 3271
PXFGETPWNAM 3272
PXFGETPWUID 3273
PXFGETSUBHANDLE 3274
PXFGETUID 3275
PXFINT8GET 3220
PXFINT8SET 3221
PXFINTGET 3220
PXFINTSET 3221
PXFISBLK 3275
PXFISCHR 3276
PXFISCONST 3276
PXFISDIR 3277
PXFISFIFO 3278
PXFISREG 3278
PXFKILL 3279
PXFLGCLGET 3220
PXFLGCLSET 3221
PXFLINK 3280
PXFLOCALTIME 3281
PXFLSEEK 3282
PXFMKDIR 3283
PXFMKFIFO 3284
PXFOPEN 3284
PXFOPENDIR 3288
PXFPATHCONF 3289
PXFPAUSE 3291
PXFPIPE 3292
PXFPOSIXIO 3292
PXFPUTC 3293

3801

Index

PXFREAD 3294
PXFREADDIR 3295
PXFREALGET 3220
PXFREALSET 3221
PXFRENAME 3295
PXFREWINDDIR 3296
PXFRMDIR 3297
PXFSETENV 3297
PXFSETGID 3299
PXFSETPGID 3300
PXFSETSID 3301
PXFSETUID 3301
PXFSIGACTION 3302
PXFSIGADDSET 3303
PXFSIGDELSET 3304
PXFSIGEMPTYSET 3305
PXFSIGFILLSET 3306
PXFSIGISMEMBER 3306
PXFSIGPENDING 3307
PXFSIGPROCMASK 3308
PXFSIGSUSPEND 3309
PXFSLEEP 3310
PXFSTAT 3310
PXFSTRGET 3220
PXFSTRSET 3221
PXFSTRUCTCOPY 3311
PXFSTRUCTCREATE 3312
PXFSTRUCTFREE 3318
PXFSYSCONF 3319
PXFTCDRAIN 3322
PXFTCFLOW 3322
PXFTCFLUSH 3323
PXFTCGETATTR 3324
PXFTCGETPGRP 3325
PXFTCSENDBREAK 3326
PXFTCSETATTR 3326
PXFTCSETPGRP 3327
PXFTIME 3328
PXFTIMES 3329
PXFTTYNAM 3333
PXFUCOMPARE 3333
PXFUMASK 3334
PXFUNAME 3334
PXFUNLINK 3335
PXFUTIME 3335
PXFWAIT 3336
PXFWAITPID 3338
PXFWIFEXITED 3340
PXFWIFSIGNALED 3342

PXFWIFSTOPPED 3342
PXFWRITE 3343

Q
Q 2080

edit descriptor 2080
QABS 2321
QACOS 2326
QACOSD 2327
QACOSH 2328
QARCOS 2326
QASIN 2350
QASIND 2351
QASINH 2352
QATAN 2365
QATAN2 2365
QATAN2D 2367
QATAND 2368
QATANH 2368
QCMPLX 3344
QCONJG 2482
QCOS 2486
QCOSD 2487
QCOSH 2488
QCOTAN 2488
QCOTAND 2489
QDIM 2539
QERF 2640
QERFC 2641
QEXP 2647
QEXT 3345
QEXTD 3345
QFLOAT 3346
QIMAG 2330
QINT 2331
QLOG 2979
QLOG10 2980
QMAX1 2995
QMIN1 3028
QMOD 3040
QNINT 2342
QNUM 3347
QRANSET 3347
QREAL 3348
QSIGN 3509
QSIN 3511
QSIND 3512

3802

Intel® Fortran Compiler User and Reference Guides

QSINH 3513
QSORT 3348
QSQRT 3561
QTAN 3598
QTAND 3599
QTANH 3599
Qtrapuv compiler option 359
quad-precision product

function producing 2589
quick reference 1258, 1302, 1500, 1520

automatic optimizations 1302
compiler reports 1258
IPO options 1500
PGO options 1520

quick reference summary
of Linux options 1178
of Mac OS X options 1178
of Windows options 1127

quick sort
subroutine performing on arrays 3348

QuickWin
initializing with user-defined settings 2900

QuickWin functions
ABOUTBOXQQ 2320
APPENDMENUQQ 2345
CLICKMENUQQ 2455
DELETEMENUQQ 2527
FOCUSQQ 2667
GETACTIVEQQ 2714
GETEXITQQ 2753
GETHWNDQQ 2767
GETUNITQQ 2797
GETWINDOWCONFIG 2799
GETWSIZEQQ 2806
INCHARQQ 2892
INITIALIZEFONTS 2899
INITIALSETTINGS 2900
INQFOCUSQQ 2902
INSERTMENUQQ 2907
MESSAGEBOXQQ 3026
MODIFYMENUFLAGSQQ 3042
MODIFYMENUROUTINEQQ 3043
MODIFYMENUSTRINGQQ 3045
PASSDIRKEYSQQ 3150
REGISTERMOUSEEVENT 3383
RGBTOINTEGER 3399
SETACTIVEQQ 3427
SETEXITQQ 3445
SETMOUSECURSOR 3466

QuickWin functions (continued)
SETWINDOWCONFIG 3491
SETWINDOWMENUQQ 3497
SETWSIZEQQ 3502
UNREGISTERMOUSEEVENT 3641
WAITONMOUSEEVENT 3664

QuickWin procedures
table of 2279

QuickWin routines
predefined 2345, 2907, 3043

QuickWin subroutines
INTEGERTORGB 2917
SETMESSAGEQQ 3464

quotation mark editing 2083

R
RADIX 2224, 2225, 3350

function returning 3350
in integer model 2224
in real model 2225

RAISEQQ 3351
RAN 3352
RAND 3353
RANDOM 3353, 3355
RANDOM_NUMBER 3357, 3360

subroutine modifying or querying the seed of 3360
RANDOM_SEED 3360
random access I/O 208
random number generators

IRAND 3562
RAND 3562
subroutine seeding 3562

random number procedures
table of 2262

random numbers
DRAND 2590
DRANDM 2590
function returning double-precision 2590
IRAND 2936
IRANDM 2936
RAN 3352
RAND and RANDOM 3353
RANDOM 3355
RANDOM_NUMBER 3357
RANDU 3362

RANDU 3362
RANF 3363

3803

Index

RANGE 3363
ranges

for complex constants 171
for integer constants 171
for logical constants 171
for real constants 171

RANGET 3364
RANSET 3364
READ 1630, 1664, 1671, 2116, 3365

and alignment 1671
efficient use of 1630
specifier for INQUIRE 2116
using for little-to-big endian conversion 1664

READONLY 2140
READWRITE 2117
REAL 140, 1769, 2049, 2513, 3368, 3370, 3371

compiler directive 140, 3370
data type 1769, 3368
editing 2049
function 3371
function converting to double precision 2513

REAL(16) 1729, 1769, 1773
constants 1773
representation 1729

REAL(4) 1728, 1769, 1771
constants 1771
representation 1728

REAL(8) 1729, 1769, 1772
constants 1772
representation 1729

REAL*16 1769
REAL*4 1769
REAL*8 1769
real and complex editing 2049
real constants

rules for 1770
real conversion

function performing 3371
real-coordinate graphics

function converting to double precision 2513
function converting to quad precision 3345

real data
directive specifying default kind 3370
function returning kind type parameter for 3423
model for 2225

real data type 171, 1728, 1729, 1769, 1770, 1771,
1772, 1773, 2186, 2225, 2513, 3368

constants 1770, 1771, 1772, 1773
default kind 1769

real data type (continued)
function converting to double precision 2513
models for 2225
native IEEE* representation 1728
range for REAL*4 1728
range for REAL*8 1729
ranges for 171
storage 2186

real editing 2049, 2050, 2052, 2054, 2056, 2058
conversion 2058
E and D 2052
EN 2054
engineering notation 2054
ES 2056
F 2050
G 2058
scientific notation 2056
with exponents 2052
without exponents 2050

real model 2225, 2635, 2649, 2693, 2820, 3612
function returning exponent part in 2649
function returning fractional part in 2693
function returning largest number in 2820
function returning number closest to unity in 2635
function returning smallest number in 3612

real numbers
directive specifying default kind 3370
function resulting in single-precision type 3371
function returning absolute spacing of 3527
function returning ceiling of 2441
function returning class of IEEE 2691
function returning difference between 2539
function returning floor of 2663
function returning fractional part for model of 3448
function returning scale of model for 3409
function rounding 2342
function truncating 2331

real-time clock
subroutine returning data from 3595

real values
transferring 2049, 2050, 2058
transferring in exponential form 2052
transferring using engineering notation 2054
transferring using scientific notation 2056

REC 1985, 3365, 3673
specifier for READ 3365
specifier for WRITE 3673

reciprocal
function returning 3402

3804

Intel® Fortran Compiler User and Reference Guides

RECL 1630, 2117, 2141
specifier for INQUIRE 2117
specifier for OPEN 1630, 2141

RECORD 3373
record access 223
record I/O 238
record I/O statement specifiers 235
record length 222
record number

identifying for data transfer 1985
record position

specifying 237
records

function checking for end-of-file 2629
option specifying padding for 807, 972
repositioning to first 3397
rewriting 3398
specifying line terminator for formatted files 213
statement to delete 2526
statement writing end-of-file 2605
types of 213, 1979

RECORDSIZE 2143
record specifier 1985, 2200

alternative syntax for 2200
record structure fields 2204, 2609, 3579

references to 2204
record structure items

directive specifying starting address of 3136
record structures 305, 2201, 2209, 2609, 2623, 3124,

3373, 3579, 3634
aggregate assignment 2209
converting to Fortran 95/90 derived types 2201
directive modifying alignment of data in 3124
in mixed-language programming 305
MAP declarations in 2623, 3634
UNION declarations in 2623, 3634

record transfer 225
RECORDTYPE 2117, 2143

specifier for INQUIRE 2117
specifier for OPEN 2143

record type
converting nonnative data using OPEN defaults 187

record types 213
RECTANGLE 3374
RECTANGLE_W 3374
rectangles

functions drawing 3374
subroutines storing screen image defined by 2768

recursion 3377

RECURSIVE 2705, 3377, 3586
in functions 2705
in subroutines 3586

recursive execution
option specifying 1047

recursive procedures 2705, 3377, 3586
as functions 2705
as subroutines 3586

redirecting output 113
redistributable libraries 315
REDUCTION 1342, 1348, 1360, 1371, 1392, 2579,

3139, 3145, 3146, 3378, 3418
in DO directive 2579
in PARALLEL directive 3139
in PARALLEL DO directive 3145
in PARALLEL SECTIONS directive 3146
in SECTIONS directive 3418
in the DO directive 1371
summary of data scope attribute clauses 1342,
1392
used in PARALLEL directive 1360
using 1348
variables 1348

reductions in loops 1584
reentrancy protection

function controlling 2681
REFERENCE 2389, 2393

option for ATTRIBUTES directive 2389, 2393
references

function 1914
module 1899
to elemental intrinsic procedures 1934
to generic intrinsic functions 1930
to generic procedures 1930
to nonestablished names 2180
to non-Fortran procedures 1935

register allocation 1606
register allocator

option selecting method for partitioning 790, 959
REGISTERMOUSEEVENT 3383
relational expressions 1823
relational operators 1823
relative errors 1727
relative files 2526, 3702

statement to delete records from 2526
relative spacing

function returning reciprocal of 3402
remainder

functions returning 3040

3805

Index

REMAPALLPALETTERGB 3384
REMAPPALETTERGB 3384
Remapping RGB values for video hardware 3384
removed compiler options 457
RENAME 3387
RENAMEFILEQQ 3388
REPEAT 3390
repeatable edit descriptors 2031, 2039
repeat specification 2039, 2068, 2083, 2086

nested and group 2086
replicated arrays

function creating 3559
report generation

dynamic profile counters 1579
improving 1636
Intel extension 1402
OpenMP* run-time 1398
profile information 1579
slowing down 1658
timing 1398
using compiler commands 1260
using xi* tools 1510

report software pipelining (SWP) 1288
RESHAPE 3390
resolving generic references 2176
resolving procedure references 2175
resolving specific references 2179
response files 157, 158

using 158
restricted expressions 1831
restricting optimization 1314
restrictions

in using traceback information 413
RESULT 2705, 3377, 3392

defining explicit interface 3377
keyword in functions 2705

result name 2705, 3392
in functions 2705

result variables 1937, 2627, 2705, 3392
in ENTRY 2627
requiring explicit interface 1937

ResumeThread 1491
RETURN 3394, 3405

retaining data after execution of 3405
return values

placement in argument list 290, 301
REWIND 3397
REWRITE 3398

RGB color
subroutine converting into components 2917

RGB color values
function converting integer to 3399
function remapping 3384
function returning current 2727
function returning for multiple pixels 2782
function returning for pixel 2779
function returning text 2790
function setting current 3436
function setting for multiple pixels 3474
function setting for pixel 3470
function setting text 3478

RGB components
subroutine converting color into 2917

RGBTOINTEGER 3399
right shift

function performing arithmetic 2941
function performing circular 2942
function performing logical 2947

RINDEX 3401
RNUM 3402
root procedures

table of 2269
rounding

function performing 3069
rounding errors 1727, 1733

machine epsilon 1727
magnitude of 1727
relative 1727
ULPs 1727

rounding flags 1711
routine entry

option specifying the stack alignment to use on
575

routine entry and exit points
option determining instrumentation of 586, 912

routines
module 2229
OpenMP Fortran 2230
run-time library 2229
storing in shareable libraries 261

RRSPACING 3402
RSHFT 2943
RSHIFT 2943
RTC 3403
running applications

from the command line 118
RUNQQ 3404

3806

Intel® Fortran Compiler User and Reference Guides

run-time checking 1310
run-time environment

function cleaning up 2673
function initializing 2674

run-time environment variables 132
run-time error messages 353, 359, 361, 412

format 353
locating 359
locating cause 359
using traceback information 412
where displayed 353

run-time error processing
default 353

run-time errors
functions returning most recent 2769, 2770

Run-Time Library (RTL)
error processing performed by 353
function controlling reentrancy protection for 2681
option searching for unresolved references in
multithreaded 726, 739, 1077
option searching for unresolved references in
single-threaded 733
option specifying which to link to 712
requesting traceback 412

run-time performance
improving 1693

run-time routines
COMMITQQ 2471
FOR_DESCRIPTOR_ASSIGN 2668
FOR_GET_FPE 2672
for_rtl_finish_ 2673
for_rtl_init_ 2674
FOR_SET_FPE 2674
FOR_SET_REENTRANCY 2681
GERROR 2712
GETCHARQQ 2723
GETEXCEPTIONPTRSQQ 2751
GETSTRQQ 2787
PEEKCHARQQ 3158
PERROR 3159
TRACEBACKQQ 3612

S
S 2072

edit descriptor 2072
S_floating format 1771

sample code
array_calc program 110

sample of timing 1643
sample programs

and traceback information 415
SAVE 3405
SAVEIMAGE 3408
SAVEIMAGE_W 3408
SAVE value for CLOSE(DISPOSE) or CLOSE(STATUS)
2457
scalar clean-up iterations 1475, 1660

allocation of 1660
scalar replacement

option enabling during loop transformation 1015,
1056
option using aggressive multi-versioning check for
783, 952

scalars 1798, 1799, 1800, 3504, 3704
as subobjects 1798
as variables 1798
function returning shape of 3504
typing of 1799, 1800

scalar variables
data types of 1799
option allocating to the run-time stack 496, 848

SCALE 3409
scale factor 2074
scale factor editing (P) 2074
SCAN 3410
SCANENV 3412
SCHEDULE 1342, 1371, 2579, 3145

AUTO 2579
DYNAMIC 1342
GUIDED 1342
in DO directive 2579
in PARALLEL DO directive 3145
RUNTIME 1342
STATIC 1342
using in DO directives 1371
using to specify types and chunk sizes 1342

scientific-notation editing (ES) 2056
scope 2171, 2175

of unambiguous procedure references 2175
scoping units 1746, 2171, 3645

statements restricted in 1746
with more than one USE 3645

scratch files 209
screen area

erasing and filling 2451

3807

Index

screen images
subroutines storing rectangle 2768

screen output
displaying 3194

SCROLLTEXTWINDOW 3412
SCWRQQ 3415
SECNDS 3416, 3417
seconds

function returning since Greenwich mean time 3403
function returning since midnight 3416
function returning since TIMEF was called 3611

SECTION 3418
SECTIONS 3418
SEED 3420
seeds

subroutine changing for RAND and IRAND 3562
subroutine changing for RANDOM 3420
subroutine modifying or querying for
RANDOM_NUMBER 3360
subroutine returning 2938, 3364
subroutine setting 2592, 2938, 3364

SELECT CASE 2433
SELECTED_CHAR_KIND 3422
SELECTED_INT_KIND 3422
SELECTED_REAL_KIND 3423
semaphores 1488
semicolon (;)

as source statement separator 1752
SEQUENCE 3425
SEQUENTIAL 2118

specifier for INQUIRE 2118
sequential access mode 1979
sequential file access 210
sequential files 1979, 2407

positioning at beginning 2407
sequential READ statements 1998, 1999, 2000, 2003,

2011
rules for formatted 1999
rules for list-directed 2000
rules for namelist 2003
rules for unformatted 2011

sequential WRITE statements 2017, 2018, 2019,
2021, 2025

rules for formatted 2018
rules for list-directed 2019
rules for namelist 2021
rules for unformatted 2025

serial execution 1352

serial port I/O routines
SPORT_CANCEL_IO 3530
SPORT_CONNECT 3531
SPORT_CONNECT_EX 3533
SPORT_GET_HANDLE 3535
SPORT_GET_STATE 3536
SPORT_GET_STATE_EX 3537
SPORT_GET_TIMEOUTS 3540
SPORT_PEEK_DATA 3542
SPORT_PEEK_LINE 3543
SPORT_PURGE 3544
SPORT_READ_DATA 3545
SPORT_READ_LINE 3546
SPORT_RELEASE 3548
SPORT_SET_STATE 3549
SPORT_SET_STATE_EX 3550
SPORT_SET_TIMEOUTS 3553
SPORT_SHOW_STATE 3554
SPORT_SPECIAL_FUNC 3556
SPORT_WRITE_DATA 3557
SPORT_WRITE_LINE 3558

SET_EXPONENT 3448
SETACTIVEQQ 3427
SETBKCOLOR 3428
SETBKCOLORRGB 3429
SETCLIPRGN 3431
SETCOLOR 3434
SETCOLORRGB 3436
SETCONTROLFPQQ 1710, 1711, 3438

example of 1711
using to set the control word value 1710

SETDAT 3441
SETENVQQ 3442
SETERRORMODEQQ 3444
SETEXITQQ 3445
SETFILEACCESSQQ 3448
SETFILETIMEQQ 3450
SETFILLMASK 3451
SETFONT 3455
SETGTEXTROTATION 3460
SETLINESTYLE 3462
SETMESSAGEQQ 3464
SETMOUSECURSOR 3466
SETPIXEL 3469
SETPIXEL_W 3469
SETPIXELRGB 3470
SETPIXELRGB_W 3470
SETPIXELS 3473
SETPIXELSRGB 3474

3808

Intel® Fortran Compiler User and Reference Guides

SETTEXTCOLOR 3477
SETTEXTCOLORRGB 3478
SETTEXTCURSOR 3480
SETTEXTPOSITION 3483
SETTEXTWINDOW 3484
SetThreadPriority 1481
SETTIM 3485
setting

compiler options on the command line 137
environment variables 129

SETVIEWORG 3487
SETVIEWPORT 3488
SETWINDOW 3489
SETWINDOWCONFIG 3491
SETWINDOWMENUQQ 3497
SETWRITEMODE 3498
SETWSIZEQQ 3502
SHAPE 3504
shape of array

function constructing new 3390
function returning 3504
statement defining 2540

shapes
subroutine returning pattern used to fill 2759

SHARE 2119, 2144
specifier for INQUIRE 2119
specifier for OPEN 2144

shareable libraries 261
SHARED 2146, 2521, 3139, 3145, 3146, 3507

clause in PARALLEL directive 3139
clause in PARALLEL DO directive 3145
clause in PARALLEL SECTIONS directive 3146
specification in DEFAULT clause 2521
specifier for OPEN 2146

shared libraries 321
shared memory access

requesting threaded program execution 101
shared object

option producing a dynamic 1057
shared scalars 1379
shared scoping 1352
shared variables 1348
sharing

specifying file 2144
shell

function sending system command to 3593
SHIFTL 3507
SHIFTR 3508
SHORT 3508

short field termination 2066
side effects of procedures

preventing 3212
SIGN 3509
signal 410
SIGNAL 3513
signal handling 410
SIGNALQQ 3516
signals

debugging 164
function changing the action for 3513
function sending to executing program 3351
function sending to process ID 2954

signed infinity 1722
sign editing 2071, 2072

S 2072
SP 2072
SS 2072

signed zero 1722
significant digits

function returning number of 2538
SIN 3511
SIND 3512
sine

function returning 3511, 3512
function returning hyperbolic 3513
function with argument in degrees 3512
function with argument in radians 3511

SINGLE 3520
single-precision constants

option evaluating as double precision 616
single-precision real 1611, 1636, 1769, 2910

function converting to truncated integer 2910
SINH 3513
SIZE 1989, 3365, 3521

specifier for READ 3365
SIZEOF 3522
size of arrays

function returning 3521
system parameters for 438

size of executable programs
system parameters for 438

slash editing 2077
SLEEP 3523
SLEEPQQ 3524
SMP systems 1447
SNGL 3371
SNGLQ 3371

3809

Index

software pipelining 1242, 1288, 1591, 1605
affect of LOOP COUNT on 1591
for IA-64 architecture based applications 1605
optimization 1605
reports 1288

sorting a one-dimensional array 3525
SORTQQ 3525
source code 276, 429, 1636, 1754, 1757, 1761

case-sensitivity of names 276
fixed and tab form of 1757
free form of 1754
porting between systems 429
useable for all source forms 1761

source code analysis 336, 342, 344, 345, 346, 347
C/C++-specific analysis 346
Fortran-specific analysis 345
interprocedural analysis 342
local program analysis 344
OpenMP* analysis 347

source code format 1752
source code useable for all source forms 1761
source comments 1752
source files

compiling and linking a single 107
source forms

combining 1761
fixed and tab 1757
free 1754
overview of 1745, 1752

source lines
padding fixed and tab source 1757
padding free source 1754

SP 2072
edit descriptor 2072

space
allocating for arrays and pointer targets 2338
deallocating for arrays and pointer targets 2517
disassociating for pointers 3112

SPACING 3527
speaker

subroutine sounding 2410
speaker procedures

table of 2264
specialized code 1242, 1310, 1611
specification expressions 1831

inquiry functions allowed in 1831
transformational functions allowed in 1831

specifications
table of procedures for data 2250

specification statements 1845
specific names

references to 2179
specific references 2179
specifying carriage control 2129
specifying file numeric format 2130

precedence 2130
specifying file position 2139
specifying file sharing 2144
specifying file structure 2136
specifying symbol visibility 1669
specifying variables 1799, 2250

table of procedures 2250
SPLITPATHQQ 3528
SPORT_CANCEL_IO 3530
SPORT_CONNECT 3531
SPORT_CONNECT_EX 3533
SPORT_GET_HANDLE 3535
SPORT_GET_STATE 3536
SPORT_GET_STATE_EX 3537
SPORT_GET_TIMEOUTS 3540
SPORT_PEEK_DATA 3542
SPORT_PEEK_LINE 3543
SPORT_PURGE 3544
SPORT_READ_DATA 3545
SPORT_READ_LINE 3546
SPORT_RELEASE 3548
SPORT_SET_STATE 3549
SPORT_SET_STATE_EX 3550
SPORT_SET_TIMEOUTS 3553
SPORT_SHOW_STATE 3554
SPORT_SPECIAL_FUNC 3556
SPORT_WRITE_DATA 3557
SPORT_WRITE_LINE 3558
SPREAD 3559
SQRT 3561
square root

function returning 3561
SRAND 3562
SS 2072

edit descriptor 2072
SSE 1459, 1611

optimizing 1611
SSE2 1459
SSWRQQ 3564
stack

option disabling checking for routines in 660
option enabling probing 853
option specifying reserve amount 569

3810

Intel® Fortran Compiler User and Reference Guides

stack (continued)
size for threads 1481

stack alignment
option specifying for functions 1016

stack probing
option enabling 853

stacks 1658, 1660
stack storage

allocating variables to 2402
stack variables

option initializing to NaN 642, 1024
standard directories

option removing from include search path 1116
standard error

redirecting command-line output 113
standard error output file 331
standard error stream

subroutine sending a message to 3159
standard output

redirecting command-line output 113
standards

Fortran 95 or Fortran 90 checking 121, 430
language 429

STAT 3564
statement field

option specifying the length of 565
statement functions 1636, 1897, 2191, 3569
statement labels 1752
statements

ACCEPT 2323
ALLOCATABLE 2337
ALLOCATE 2338
arithmetic IF 2873
ASSIGN 2352
assigned GO TO 2810
assignment 1833
ASYNCHRONOUS 2363
AUTOMATIC 2402
BACKSPACE 2407
BIND 2414
BLOCK DATA 2417
BYTE 2424
CALL 2429
CASE 2433
CHARACTER 2445
classes of 1746
CLOSE 2457
COMMON 2473
COMPLEX 2478

statements (continued)
computed GO TO 2811
conditional execution based on logical expression
2875
conditionally executing groups of 2876
CONTAINS 2483
CONTINUE 2484
control 1883
CYCLE 2498
DATA 2500
data transfer 1979
DEALLOCATE 2517
declaration 1845
DECODE 2519
DEFINE FILE 2523
DELETE 2526
derived type 2530, 2617, 3620
DIMENSION 2540
DO 2575
DOUBLE COMPLEX 2587
DOUBLE PRECISION 2588
DO WHILE 2584
ELSE WHERE 2600, 3666
ENCODE 2601
END 2603
END DO 2604
ENDFILE 2605
END WHERE 2626
ENTRY 2627
EQUIVALENCE 1863, 2636
executable 1746
EXIT 2645
EXTERNAL 2650
FIND 2655
FLUSH 2666
FORALL 2682
FORMAT 2685
FUNCTION 2705
IF - arithmetic 2873
IF construct 2876
IF - logical 2875
IMPLICIT 2889
IMPORT 2891
input/output 2095
INQUIRE 2903
INTEGER 2915
INTENT 2919
INTERFACE 2923
INTERFACE TO 2926

3811

Index

statements (continued)
INTRINSIC 2927
LOGICAL 2982
MAP 2623, 3634
MODULE 3047
MODULE PROCEDURE 3053
NAMELIST 3064
nonexecutable 1746
NULLIFY 3112
OPEN 3115
OPTIONAL 3118
OPTIONS 3122
order in program units 1746
PARAMETER 3148
PAUSE 3156
POINTER 3163
POINTER - Integer 3166
PRINT 3194
PRIVATE 3196
PROGRAM 3203
PUBLIC 3208
READ 3365
REAL 3368
RECORD 3373
repeatedly executing 2575
repeatedly executing while true 2584
restricted in scoping units 1746
RETURN 3394
REWIND 3397
REWRITE 3398
SAVE 3405
SELECT CASE 2433
SEQUENCE 3425
specification 1845
statement function 3569
STATIC 3572
STOP 3575
STRUCTURE 2609, 3579
SUBROUTINE 3586
TARGET 3600
TYPE 2530, 2617, 3620
type declaration 1846, 3626
unconditional GO TO 2813
UNION 2623, 3634
USE 3645
VALUE 3653
VIRTUAL 3661
VOLATILE 3661
WAIT 3663

statements (continued)
WHERE 3666
WRITE 3673

statement scope 2171
statement separator 1752
state messages

subroutine setting 3464
STATIC 3572
static libraries 261, 319, 1066

option invoking tool to generate 1066
static storage

allocating variables to 3572
STATUS 2146

specifier for OPEN 2146
status messages

subroutine setting 3464
status of graphics routines

function returning 2814
STATUS specifier for CLOSE 2457
status word

setting and retrieving floating-point 1706
subroutine clearing exception flags in floating-point
2452
subroutines returning floating-point 2785, 3564

STDCALL 2378, 2390
option for ATTRIBUTES directive 2378, 2390

STOP 3575
storage

association 2186, 2636
defining blocks of 2473
dynamically allocating 2338
freeing 2517
function returning byte-size of 3522
sequence 2186
sharing areas of 2636
units 2186

storage association 2186
using ENTRY 2186

storage item
function returning address of 2977

storage sequence 2186
storage units 2186
storing data per thread 1491
strategies for optimization 1251
Stream_CR records 213
Stream_LF records 213, 1630
Streaming SIMD Extensions 1461, 1611, 1671

record 1671

3812

Intel® Fortran Compiler User and Reference Guides

streaming stores
option generating for optimization 797, 966

stream record type 213
STRICT 140, 3103, 3577

equivalent compiler option for 140
stride 1809
string edit descriptors 2083, 2084

apostrophe 2083
H 2084
quotation mark 2083

strings
function concatenating copies of 3390
function locating last nonblank character in 2975
function returning length minus trailing blanks 2962
function returning length of 2961
mixed-language programming 301
writing unknown length to file or device 2084

STRUCTURE 2609, 3579
structure components 1786
structure constructors 1790
structure declarations 2203
structures

derived-type 2530, 2617, 3620
record 2201, 2203

structuring your program 257
SUBMIT/DELETE value for CLOSE(DISPOSE) or
CLOSE(STATUS) 2457
SUBMIT value for CLOSE(DISPOSE) or CLOSE(STATUS)
2457
subnormal numbers 1688
subobjects 1798
subprograms 263, 1914, 2417, 2603, 2650, 2705,

2927, 3047, 3053, 3394, 3586
BLOCK DATA 2417
effect of RETURN in 3394
function 2705
module 3047, 3053
statement returning control from 2603
subroutine 3586
user-written 1914
using as actual arguments 2650, 2927

SUBROUTINE 3586
subroutine references 2429
subroutines 1897, 1915, 1945, 1947, 2333, 2429,

2627, 2650, 3377, 3586
effect of ENTRY in 1945
ELEMENTAL keyword in 3586
EXTERNAL 2650
function running at specified time 2333

subroutines (continued)
general rules for 1915
intrinsic 1947
invoking 2429
PURE keyword in 3586
RECURSIVE keyword in 3377, 3586
statement specifying entry point for 2627
transferring control to 2429

subroutines in the OpenMP* run-time library 1398,
1406, 1447, 1591, 1595, 1596, 1602

for loop unrolling 1595
for OpenMP* 1406
for optimization 1591
for prefetching 1602
for vectorization 1596
parallel run-time 1447

subscript list 1800, 1804, 1807
referencing array elements 1804, 1807

subscript progression 1804
subscripts 1804
subscript triplets 1807, 1809
substrings 1783, 1865, 2898, 3401

function locating index of last occurrence of 3401
function returning starting position of 2898
making equivalent 1865

substructure declarations
for record structures 2204

SUM 3590
sum of array elements

function returning 3590
support

for symbolic debugging 165
SuspendThread 1491
suspension

of program execution 3156
SWP 1288, 1605, 3105, 3592

SWP reports 1288
using 1605

symbolic constants
defining floating-point status and control 1706

symbolic names 522, 1748
option associating with an optional value 522

symbol names
option using dollar sign when producing 1029

symbols
predefined preprocessor 153

symbol visibility 647, 1669
option specifying 647
specifying 1669

3813

Index

symbol visibility on Linux* 1669
symbol visibility on Mac OS* X 1669
synchronization 1242, 1326, 1360, 1364, 1402, 1447,

1479, 1481, 1491
changing the number of 1360
concepts for multithread applications 1479
constructs 1364
creating multithread applications 1479
parallel processing model for 1326
starting and stopping 1481
synchronizing 1491
thread-level parallelism 1242
thread sleep time 1402

synchronizing multithread programs 1480, 1491
syntax

for the ifort command 108
option checking for correct 1070

SYSTEM 3593
SYSTEM_CLOCK 3595
system calls

using to open files 2148
system codepage

function returning number for 3081
system command

function sending to command interpreter 3596
function sending to shell 3593

system date
function setting 3441

system errors
subroutine returning information on 2642

system parameters for language elements 438
system procedures

table of 2288
system prompt

subroutine controlling for critical errors 3444
SYSTEMQQ 3596
system subprograms

CPU_TIME 2492
DATE 2506
DATE_AND_TIME 2509
EXIT 2646
IDATE 2831
SECNDS 3417
SYSTEM_CLOCK 3595
TIME 3608

system time
function converting to ASCII string 2456, 2497
intrinsic returning 3608
subroutine returning 3609

system time (continued)
subroutine setting 3485

T
T 2070

edit descriptor 2070
T_floating format 1772
tab-format source lines 1760
tab source format 1757, 1760

lines in 1760
TAN 3598
TAND 3599
tangent

function returning 3598, 3599
function returning hyperbolic 3599
function with argument in degrees 3599
function with argument in radians 3598

TANH 3599
TARGET 3600
targeting 1306, 1310, 1313

IA-32 architecture processors 1306
Intel(R) 64 architecture processors 1306
Itanium(R) 2 processors 1313
run-time checking 1310

targets
allocation of pointer 1877
assigning values to 1833, 2357
associating with pointers 1840, 3600
as variables 1840
creating storage for 2338
deallocation of pointer 1880
declaration of 3600
requiring explicit interface 1937

TASK 3602
task region

directive defining 3602
TASKWAIT 3606
technical applications 1251
TEMP environment variable 129
temporary files 124

option to keep 124
terminal

subroutine specifying device name for 3620
terminal statements for DO constructs 2575
TerminateProcess 1495
TerminateThread 1481

3814

Intel® Fortran Compiler User and Reference Guides

terminating format control (
) 2079

terminating short fields of input data 2066
ternary raster operation constants 3216
test prioritization tool 1552

examples 1552
options 1552
requirements 1552

text
function controlling truncation of 3671
function controlling wrapping of 3671
function returning orientation of 2766
function returning width for use with OUTGTEXT
2764
subroutine sending to screen (including blanks)
3130, 3133
subroutine sending to screen (special fonts) 3130

text color
function returning RGB value of 2790

text color index
function returning 2789
function returning RGB value of 2790
function setting 3477
function setting RGB value of 3478

text cursor
function setting height and width of 3480

text files
line including 2895

text output
function returning background color index for 2718
function returning background RGB color for 2719
function setting background color index for 3428
function setting background RGB color for 3429

text position
subroutine returning 2792
subroutine setting 3483

text window
subroutine returning boundaries of 2793
subroutine scrolling the contents of 3412
subroutine setting boundaries of 3484

thread affinity 808, 975, 1418
option specifying 808, 975

threaded applications
option enabling analysis of 1019, 1072

threaded program execution
requesting 101

threading 1479
thread local storage 1491
thread pooling 1454

THREADPRIVATE 3607
thread routine format 1484
threads

compiling and linking multithread applications 101
thread stacks 1488
threshold control for auto-parallelization 1287, 1398,

1461
OpenMP* routines for 1398
reordering 1461

TIME 2333, 2509, 2795, 2808, 2948, 2987, 3022,
3079, 3485, 3608, 3609, 3640

ALARM function for subroutines 2333
function returning accounting of 3022
function returning for current locale 3079
routines returning current system 3608, 3609
subroutine returning 2509, 2795
subroutine returning Greenwich mean 2808
subroutine returning in array 2948
subroutine returning local zone 2987
subroutine setting system 3485
subroutine unpacking a packed 3640

time and date
routine returning as ASCII string 2652
subroutine packing values for 3138
subroutine returning 4-digit year 2509
subroutine returning current system 2509

TIMEF 3611
TINY 3612
TITLE 2147

specifier for OPEN 2147
TL 2071

edit descriptor 2071
TMPDIR environment variable 129
TMP environment variable 129
tool options 1532, 1552, 1561

code coverage tool 1532
profmerge 1561
proforder 1561
test prioritization 1552

tools 97, 99, 929, 969, 1532
default 97
option passing options to 969
option specifying directory for supporting 929
specifying alternative 99

topology maps 1418
total association 2186
TR 2071

edit descriptor 2071

3815

Index

traceback
function returning argument eptr for TRACEBACKQQ
2751
subroutine aiding in 3612

traceback compiler option 359
traceback information

obtaining with TRACEBACKQQ routine 426
option providing 1080
restrictions in using 413
sample programs 415
tradeoffs in using 413
using 412

TRACEBACKQQ 426, 3612
using 426

tradeoffs
in using traceback information 413

TRAILZ 3615
transcendental functions

option replacing calls to 578, 879
TRANSFER 3616
transfer of data

function performing binary 3616
transformational functions 1828, 1831, 1947, 2335,

2344, 2490, 2494, 2586, 2632, 2993, 2998,
3002, 3031, 3035, 3110, 3134, 3201, 3390,
3422, 3423, 3559, 3590, 3616, 3618, 3619,
3638

ALL 2335
allowed in initialization expressions 1828
allowed in specification expressions 1831
ANY 2344
COUNT 2490
CSHIFT 2494
DOT_PRODUCT 2586
EOSHIFT 2632
MATMUL 2993
MAXLOC 2998
MAXVAL 3002
MINLOC 3031
MINVAL 3035
NULL 3110
PACK 3134
PRODUCT 3201
REPEAT 3390
RESHAPE 3390
SELECTED_CHAR_KIND 3422
SELECTED_INT_KIND 3422
SELECTED_REAL_KIND 3423
SPREAD 3559

transformational functions (continued)
SUM 3590
TRANSFER 3616
TRANSPOSE 3618
TRIM 3619
UNPACK 3638

transportability of data 433
TRANSPOSE 3618
transposed arrays

function producing 3618
trigonometric functions 2269
trigonometric procedures 2269
TRIM 3619
troubleshooting 331, 435

during application development 435
TTYNAM 3620
twos complement

function returning length in 2888
TYPE 2148, 2530, 2617, 3194, 3620

for derived types 2530, 2617, 3620
specifier for OPEN 2148

type aliasability rules
option affecting adherence to 479, 847

type conversion procedures
table of 2267

type declarations 2203, 3626
within record structures 2203

type declaration statements 1846, 1847, 1849, 1852,
1853, 3626

array 1853
attributes in 3626
character 1849
derived 1852
double colon separator in 3626
initialization expressions in 3626
noncharacter 1847

U
UBC buffers 1630
UBOUND

in pointer assignment 1860
ULPs 1727
unaligned data 164, 1099, 1613

option warning about 1099
unambiguous generic procedure references 2175
unambiguous references 2175
unary operations 1818

3816

Intel® Fortran Compiler User and Reference Guides

unbuffered WRITEs 1630
uncalled routines

option warning about 1099
unconditional DO 2575
unconditional GO TO 2813
undeclared symbols

option warning about 1099
UNDEFINE 2522, 3632
undefined variables 1798
underflow 1611, 1660
underscore (_)

in names 1748
UNFORMATTED 2120

specifier for INQUIRE 2120
unformatted data

and nonnative numeric formats 181
unformatted direct-access READ statements 2013
unformatted direct-access WRITE statements 2027
unformatted direct files 208
unformatted files 187, 188, 190, 194, 195, 196, 208,

1630, 2136
converting nonnative data 187
direct-access 208
methods of specifying endian format 188
obtaining numeric specifying format 188
using /convert option to specify format 196
using environment variable method to specify
format 190
using OPEN(CONVERT=) method to specify format
194
using OPTIONs/CONVERT to specify format 195

unformatted numeric data
option specifying format of 517

unformatted records 1979
unformatted sequential files 208
unformatted sequential READ statements 2011
unformatted sequential WRITE statements 2025
Unicode* characters 102
uninitialized variables

option checking for 511
UNION 2623, 3634
UNIT 197, 1983, 3365, 3673

specifier for READ 3365
specifier for WRITE 3673
using for external files 197
using for internal files 197

unit number
function testing whether it's a terminal 2939

unit number 6
function writing a character to 3215

unit numbers 197
units 1983, 2457, 2903, 3115

disconnecting 2457
opening 3115
statement requesting properties of 2903

UNIT specifier for CLOSE 2457
UNLINK 3637
UNPACK 3638
unpacked array

function creating 3638
UNPACKTIMEQQ 3640
UNREGISTERMOUSEEVENT 3641
UNROLL 3108, 3643
UNROLL_AND_JAM 3644
UNTIED clause 3602
unused variables

option warning about 1099
unvectorizable copy 1461
usage rules 1352
USE 3645
use association 2183
user

function returning group ID of 2764
function returning ID of 2796
subroutine returning login name of 2774

user-defined procedures
elemental 2596
keyword preventing side effects in 3212
pure 3212

user-defined types 305, 1784
mixed-language programming 305

user-defined TYPE statement 2530, 2617, 3620
user functions 1242, 1346, 1352, 1360, 1371, 1379,

1398, 1447, 1512, 1514, 1530, 1574, 1611,
1630, 1636, 1638, 1643, 1660

automatic 1660
auto-parallelization 1242, 1447
dynamic libraries 1398
EQUIVALENCE statements 1636
floating-point conversions 1611
formatted or unformatted files 1630
implied-DO loops 1630
intrinsics 1638
length of 1630
loop assigns for 1346
memory 1630
noniterative worksharing SECTIONS 1371

3817

Index

user functions (continued)
OpenMP* 1379
PGO environment 1574
private scoping for 1352
profile-guided optimization 1530
slow arithmetic operators 1636
timing for an application 1643
unbuffered WRITEs 1630
worksharing 1360

user ID
function returning 2796

USEROPEN 2148
USEROPEN specifier 238
user-written subprograms 1914
using an external user-written function to open files
2148
using the compiler and linker from the command line
107
using the IFPORT portability module 325
utilities 1532, 1561

profmerge 1561
proforder 1561

V
VALUE 2389, 2393, 3653

option for ATTRIBUTES directive 2389, 2393
variable format expressions 2086
variables 283, 589, 691, 746, 928, 934, 1012, 1042,

1046, 1053, 1121, 1748, 1750, 1763, 1779,
1798, 1799, 1800, 1817, 1833, 1840, 1846,
2250, 2352, 2357, 2371, 2402, 2473, 2500,
2518, 2522, 2530, 2617, 2705, 2889, 3064,
3392, 3405, 3572, 3620, 3632

allocating to stack storage 2402
allocating to static storage 3572
assigning initial values to 2500
assigning value of label to 2352
assigning values to 1833, 2357
associating with group name 3064
automatic 2402
character 1779
data types of scalar 1799
declaring automatic 2402
declaring derived-type 2530, 2617, 3620
declaring static 3572
declaring type for 1846
directive creating symbolic 2522, 3632

variables (continued)
directive declaring properties of 2371
directive generating warnings for undeclared 2518
directive testing value of 2522, 3632
direct sharing of 2473
explicit typing of 1799
giving initial values to 2500
how they become defined or undefined 1798
implicit typing of 1800
initializing 2500
length of name 1748
namelist 3064
on the stack 2402
option initializing to zero 1042, 1121
option placing in DATA section 746, 934
option placing in static memory 1012, 1053
option saving always 589, 928
option specifying default kind for integer 691
option specifying default kind for logical 691
option specifying default kind for real 1046
referencing 1817
result 2705, 3392
retaining in memory 3572
saving values of 3405
statement defining default types for user-defined
2889
static 3572
storage association of 2473
table of procedures that declare 2250
targets as 1840
truncation of values assigned to 1833
typing of scalar 1799, 1800
undefined 2518
using keyword names for 1750
using modules in mixed-language programming
283

VARYING 2394
option for ATTRIBUTES directive 2394

VAXD 2130
value for CONVERT specifier 2130

VAXG 2130
value for CONVERT specifier 2130

VECTOR ALIGNED 3654, 3659
VECTOR ALWAYS 3109, 3655
VECTOR ALWAYS directive 1596
vector copy 1242, 1294, 1459, 1461, 1475, 1596

examples 1475
options 1459
options for 1242

3818

Intel® Fortran Compiler User and Reference Guides

vector copy (continued)
overview 1459
programming guidelines 1459, 1461
reports 1294
support for 1596

VECTOR directive 1596
vectorization

option disabling 1032, 1090
option setting threshold for loops 1036, 1094

vectorizer
option controlling diagnostics reported by 1034,
1092

vectorizing 1461, 1466, 1519
loops 1466, 1519

VECTOR NONTEMPORAL 3657, 3658
VECTOR NONTEMPORAL directive 1596
vectors

function performing dot-product multiplication of
2586
subscripts in 1807, 1810

vector subscripts 1807, 1810
VECTOR TEMPORAL 3657, 3658
VECTOR UNALIGNED 3654, 3659
VERIFY 3660
version

option displaying for driver and compiler 1107
option displaying information about 716
option saving in executable or object file 1017,
1062

viewport area
subroutine erasing and filling 2451
subroutine redefining 3488

viewport-coordinate origin
subroutine moving 3487
subroutine setting 3488

viewport coordinates
functions filling (color index) 2658
functions filling (RGB) 2661
subroutine converting to physical coordinates 2775
subroutine converting to Windows coordinates 2804
subroutines converting from physical coordinates
2798

viewport origin
subroutine moving 3487

VIRTUAL 3661
VMS* Compatibility

option specifying 1095
VOLATILE 1630, 3661

using for loop collapsing 1630

W
WAIT 3663
WaitForMultipleObjects 1491
WaitForSingleObject 1491
WAITONMOUSEEVENT 3664
warn compiler option 331
warning messages

controlling issue of 331
directive generating for undeclared variables 2518
directive modifying for data alignment 3124
floating-point overflow (run-time) 1714
floating-point underflow (run-time) 1714

watch compiler option 331
WB compiler option 331
WHERE 2600, 2626, 3666

ELSE WHERE block in 2600
statement ending 2626

WHILE 2584
whole arrays 1803
whole program analysis 1497
WINABOUT 2345

predefined QuickWin routine 2345
WINARRANGE 2345

predefined QuickWin routine 2345
WINCASCADE 2345

predefined QuickWin routine 2345
WINCLEARPASTE 2345

predefined QuickWin routine 2345
WINCOPY 2345

predefined QuickWin routine 2345
window

function making child active 3427
function returning unit number of active child 2714
subroutine scrolling the contents of text 3412

window area
function defining coordinates for 3489
subroutine erasing and filling 2451

window handle
function returning unit number of 2797

Windows
function converting unit number to handle 2767
function returning position of 2806
function returning properties of 2799
function returning size of 2806
function returning unit number of 2797
function setting position of 3502
function setting properties of child 3491
function setting size of 3502

3819

Index

Windows (continued)
setting focus to 2667
subroutine returning boundaries of text 2793
subroutine scrolling the contents of text 3412
subroutine setting boundaries of text 3484

Windows* API
BitBlt 3216
CreateFile 2148, 3535
CreateFontIndirect 3455, 3491
CreateProcess 3593, 3596
EscapeCommFunction 3556
GetEnvironmentVariable 2748
GetExceptionInformation 3612
PurgeComm 3544
SetEnvironmentVariable 2748
SetFileApisToANSI 3096
SetFileApisToOEM 3096
SetROP2 3498

Windows* applications
option creating and linking 1108

Windows* bitmap file
function saving an image into 3408

Windows* compiler options
/? 663
/1 764, 935
/4I2 691
/4I4 691
/4I8 691
/4L72 565
/4L80 565
/4Na 498
/4Naltparam 478
/4Nb 511
/4Nd 1099
/4Nf 588
/4Nportlib 469, 471
/4Ns 1063
/4R16 1046
/4R8 1046
/4Ya 498
/4Yaltparam 478
/4Yb 511
/4Yd 1099
/4Yf 638
/4Yportlib 469, 471
/4Ys 1063
/align 472
/allow:fpp_comments 476
/altparam 478

Windows* compiler options (continued)
/arch 480
/architecture 480
/asmattr 483
/asmfile 485
/assume 486
/auto 498
/automatic 498
/bigobj 506
/bintext 507
/c 509
/C 511
/CB 511
/ccdefault 510
/check 511
/cm 588
/compile-only 509
/convert 517
/CU 511
/D 522
/d_lines 523, 856
/dbglibs 524
/debug 529
/debug-parameters 532
/define 522
/dll 553
/double-size 554
/E 561
/EP 562
/error-limit 547, 871
/exe 563
/extend-source 565
/extfor 566
/extfpp 567
/extlnk 568
/F 569
/f66 570
/f77rtl 572
/Fa 573
/FA 573
/fast 577
/Fe 563, 581
/FI 588
/fixed 588
/fltconsistency 590
/Fm 593
/Fo 600
/fp 601, 606
/fpconstant 616

3820

Intel® Fortran Compiler User and Reference Guides

Windows* compiler options (continued)
/fpe 617
/fpe-all 620
/fpp 625, 889
/fpscomp 627
/FR 638
/free 638
/G2 651
/G2-p9000 651
/G5 653
/G6 653
/G7 653
/GB 653
/Ge 656
/gen-interfaces 657
/Gm 660, 670
/Gs 660
/GS 640, 641, 661
/Gz 662, 670
/heap-arrays 662
/help 663
/homeparams 665
/hotpatch 666
/I 667
/iface 670
/include 667
/inline 674
/intconstant 690
/integer-size 691
/LD 553, 710
/libdir 710
/libs 712
/link 715
/logo 716
/map 720
/MD 726
/MDd 726
/MDsd 712, 728
/MG 1108
/ML 712, 733
/MLd 712, 733
/module 734
/MP 735, 743
/MT 739
/MTd 739
/MW 712
/MWs 712
/names 744
/nbs 486

Windows* compiler options (continued)
/noinclude 1116
/O 753
/Ob 680, 758
/object 760
/Od 761
/Og 763
/Op 590
/optimize 753
/Os 800
/Ot 802
/Ox 753
/Oy 598, 600, 803
/P 827
/pdbfile 822
/preprocess-only 827
/prof-func-order 834, 996
/Qansi-alias 479, 847
/Qauto 498
/Qauto_scalar 496, 848
/Qautodouble 1046
/Qax 500, 850
/Qchkstk 853
/Qcommon-args 486
/Qcomplex-limited-range 516, 855
/Qcpp 625, 889
/Qdiag 533, 539, 857, 863
/Qdiag-dump 538, 862
/Qdiag-enable:sc-include 544, 867
/Qdiag-enable:sc-parallel 545, 869
/Qdiag-error-limit 547, 871
/Qdiag-file 548, 872
/Qdiag-file-append 550, 873
/Qdiag-id-numbers 551, 875
/Qdiag-once 552, 876
/Qd-lines 523, 856
/Qdps 478
/Qdyncom 560, 877
/Qextend-source 565
/Qfast-transcendentals 578, 879
/Qfma 593, 880
/Qfnalign 574, 882
/Qfnsplit 597, 883
/Qfpp 625, 889
/Qfp-port 611, 884
/Qfp-relaxed 612, 885
/Qfp-speculation 613, 886
/Qfp-stack-check 615, 888
/Qftz 643, 891

3821

Index

Windows* compiler options (continued)
/Qglobal-hoist 658, 893
/QIA64-fr32 894
/QIfist 1008, 1044
/Qimsl 895
/Qinline-debug-info 676, 896
/Qinline-dllimport 897
/Qinline-factor 677, 898
/Qinline-forceinline 679, 900
/Qinline-max-per-compile 682, 901
/Qinline-max-per-routine 683, 903
/Qinline-max-size 685, 905
/Qinline-max-total-size 687, 906
/Qinline-min-size 688, 908
/Qinstruction 730, 911
/Qinstrument-functions 586, 912
/Qip 693, 914
/QIPF-fltacc 698, 919
/QIPF-flt-eval-method0 696, 917
/QIPF-fma 593, 880
/QIPF-fp-relaxed 612, 885
/Qip-no-inlining 694, 915
/Qip-no-pinlining 695, 916
/Qipo 699, 920
/Qipo-c 701, 922
/Qipo-jobs 702, 923
/Qipo-S 704, 925
/Qipo-separate 705, 926
/Qivdep-parallel 707, 927
/Qkeep-static-consts 589, 928
/Qlocation 929
/Qlowercase 744
/Qmap-opts 721, 931
/Qmkl 732, 933
/Qnobss-init 746, 934
/Qonetrip 764, 935
/Qopenmp 765, 936
/Qopenmp-lib 766, 937
/Qopenmp-link 768, 939
/Qopenmp-profile 770, 940
/Qopenmp-report 771, 942
/Qopenmp-stubs 772, 943
/Qopenmp-threadprivate 774, 944
/Qopt-block-factor 775, 946
/Qoption 969
/Qopt-jump-tables 776, 947
/Qopt-loadpair 778, 948
/Qopt-mem-bandwidth 780, 949
/Qopt-mod-versioning 782, 951

Windows* compiler options (continued)
/Qopt-multi-version-aggressive 783, 952
/Qopt-prefetch 784, 953
/Qopt-prefetch-initial-values 786, 955
/Qopt-prefetch-issue-excl-hint 787, 956
/Qopt-prefetch-next-iteration 788, 957
/Qopt-ra-region-strategy 790, 959
/Qopt-report 791, 960
/Qopt-report-file 793, 962
/Qopt-report-help 794, 963
/Qopt-report-phase 795, 964
/Qopt-report-routine 796, 965
/Qopt-streaming-stores 797, 966
/Qopt-subscript-in-range 799, 968
/Qpad 806, 971
/Qpad-source 807, 972
/Qpar-adjust-stack 974
/Qpar-affinity 808, 975
/Qparallel 819, 986
/Qpar-num-threads 810, 977
/Qpar-report 811, 978
/Qpar-schedule 814, 980
/Qpar-threshold 818, 984
/Qpc 821, 987
/Qprec 737, 989
/Qprec-div 825, 990
/Qprec-sqrt 826, 991
/Qprof-data-order 829, 992
/Qprof-dir 830, 994
/Qprof-file 832, 995
/Qprof-gen 836, 998
/Qprof-genx 836, 998
/Qprof-hotness-threshold 838, 1000
/Qprof-src-dir 840, 1001
/Qprof-src-root 841, 1003
/Qprof-src-root-cwd 843, 1005
/Qprof-use 845, 1006
/Qrcd 1008, 1044
/Qrct 1009, 1045
/Qsafe-cray-ptr 1010, 1051
/Qsave 1012, 1053
/Qsave-temps 1013, 1054
/Qscalar-rep 1015, 1056
/Qsfalign 1016
/Qsox 1017, 1062
/Qtcheck 1019, 1072
/Qtcollect 1020, 1073
/Qtcollect-filter 1021, 1075
/Qtprofile 1023, 1078

3822

Intel® Fortran Compiler User and Reference Guides

Windows* compiler options (continued)
/Qtrapuv 642, 1024
/Qunroll 1026, 1085
/Qunroll-aggressive 1027, 1086
/Quppercase 744
/Quse-asm 1028, 1088
/Quse-msasm-symbols 1029
/Quse-vcdebug 1030
/Qvc 1031
/Qvec 1032, 1090
/Qvec-guard-write 1033, 1091
/Qvec-report 1034, 1092
/Qvec-threshold 1036, 1094
/Qvms 1095
/Qx 1038, 1112
/Qzero 1042, 1121
/real-size 1046
/recursive 1047
/reentrancy 1049
/RTCu 511
/S 1050
/source 1061
/stand 1063
/static 1065
/syntax-only 1070
/Tf 1061
/threads 1077
/traceback 1080
/u 1083
/U 1084
/undefine 1084
/us 486
/V 1090
/vms 1095
/w 1098, 1099
/W0 1099
/W1 1099
/warn 1099
/watch 1105
/WB 1106
/what 1107
/winapp 1108
/X 1116
/Z7 529, 650, 1119, 1122
/Zd 529, 1121
/Zi 529, 650, 1119, 1122
/Zl 710
/Zp 472, 1124
/Zs 1070, 1124

Windows* compiler options (continued)
/Zx 1124

Windows* coordinates
functions filling (color index) 2658
functions filling (RGB) 2661
subroutine converting from viewport coordinates
2804
subroutines converting from physical coordinates
2798

Windows* fonts
initializing 2899

Windows* properties
function returning 2799
function setting 3491, 3502

window unit number
function converting to handle 2767

WINEXIT 2345
predefined QuickWin routine 2345

WINFULLSCREEN 2345
predefined QuickWin routine 2345

WININDEX 2345
predefined QuickWin routine 2345

WININPUT 2345
predefined QuickWin routine 2345

WINPASTE 2345
predefined QuickWin routine 2345

WINPRINT 2345
predefined QuickWin routine 2345

WINSAVE 2345
predefined QuickWin routine 2345

WINSELECTALL 2345
predefined QuickWin routine 2345

WINSELECTGRAPHICS 2345
predefined QuickWin routine 2345

WINSELECTTEXT 2345
predefined QuickWin routine 2345

WINSIZETOFIT 2345
predefined QuickWin routine 2345

WINSTATE 2345
predefined QuickWin routine 2345

WINSTATUS 2345
predefined QuickWin routine 2345

WINTILE 2345
predefined QuickWin routine 2345

WINUSING 2345
predefined QuickWin routine 2345

worker thread 1406
working directory

function returning path of 2740

3823

Index

WORKSHARE 1359, 3670
using 1359

worksharing 1242, 1359, 1360, 1371, 1392, 1447,
3147, 3670

directives 1359, 1371
WRAPON 3671
WRITE 2120, 3673

specifier for INQUIRE 2120
write mode

function returning logical 2805
function setting logical 3498

write operations
function committing to physical device 2471

X
X 2071

edit descriptor 2071
X_floating format 1777
xiar 1504, 1508
xild 1497, 1504, 1508
xilib 1508
xilib.exe file 437

xilibtool 1508
xilink 1497, 1504, 1508
xilink.exe file 437
XOR 2870

Y
year

subroutine returning 4-digit 2509

Z
ZABS 2321
ZCOS 2486
Z edit descriptor 2048
zero-extend function 3676
zero-size array sections 1807
ZEXP 2647
ZEXT 3676
ZLOG 2979
ZSIN 3511
ZSQRT 3561
ZTAN 3598

3824

Intel® Fortran Compiler User and Reference Guides

	Intel(R) Fortran Compiler User and Reference Guides
	Contents
	Legal Information
	Getting Help and Support
	Introduction
	Introducing the Intel(R) Fortran Compiler
	Notational Conventions
	Related Information

	Building Applications
	Overview: Building Applications
	

	Introduction: Basic Concepts
	Choosing Your Development Environment
	Invoking the Intel® Fortran Compiler
	Default Tools
	Specifying Alternative Tools and Locations
	Compilation Phases
	Compiling and Linking for Optimization
	Compiling and Linking Multithread Programs
	What the Compiler Does by Default
	Generating Listing and Map Files
	Saving Compiler Information in your Executable

	Building Applications from the Command Line
	Using the Compiler and Linker from the Command Line
	Syntax for the ifort Command
	Examples of the ifort Command
	Creating, Running, and Debugging an Executable Program
	Redirecting Command-Line Output to Files
	Using Makefiles to Compile Your Application
	Specifying Memory Models to use with Systems Based on Intel® 64 Architecture
	Allocating Common Blocks
	Running Fortran Applications from the Command Line

	Input and Output Files
	Understanding Input File Extensions
	Producing Output Files
	Temporary Files Created by the Compiler or Linker

	Setting Environment Variables
	Using the ifortvars File to Specify Location of Components
	Setting Compile-Time Environment Variables
	Setting Run-Time Environment Variables

	Using Compiler Options
	Compiler Options Overview
	Using the Option Mapping Tool
	Compiler Directives Related to Options

	Preprocessing
	Using the fpp Preprocessor
	Using fpp Directives
	Using Predefined Preprocessor Symbols

	Using Configuration Files and Response Files
	Configuration Files and Response Files Overview
	Using Configuration Files
	Using Response Files

	Debugging
	Debugging Fortran Programs
	Preparing Your Program for Debugging
	Locating Unaligned Data
	Debugging a Program that Encounters a Signal or Exception
	Debugging and Optimizations
	Debugging Multithreaded Programs

	Data and I/O
	Data Representation
	Data Representation Overview
	Integer Data Representations
	Integer Data Representations Overview
	INTEGER(KIND=1) Representation
	INTEGER(KIND=2) Representation
	INTEGER(KIND=4) Representation
	INTEGER(KIND=8) Representation

	Logical Data Representations
	Character Representation
	Hollerith Representation

	Using Traceback Information
	Supported Native and Nonnative Numeric Formats
	Porting Nonnative Data
	Specifying the Data Format
	Methods of Specifying the Data Format
	Environment Variable FORT_CONVERT.ext or FORT_CONVERT_ext Method
	Environment Variable FORT_CONVERTn Method
	Environment Variable F_UFMTENDIAN Method
	OPEN Statement CONVERT Method
	OPTIONS Statement Method
	Compiler Option -convert or /convert Method

	Fortran I/O
	Devices and Files Overview
	Logical Devices
	Types of I/O Statements
	Forms of I/O Statements
	Assigning Files to Logical Units
	File Organization
	Internal Files and Scratch Files
	File Access and File Structure
	File Records
	Record Types
	Record Length
	Record Access
	Record Transfer
	Specifying Default Pathnames and File Names
	Opening Files: OPEN Statement
	Obtaining File Information: INQUIRE Statement
	Closing Files: CLOSE Statement
	Record I/O Statement Specifiers
	File Sharing on Linux* OS and Mac OS* X Systems
	Specifying the Initial Record Position
	Advancing and Nonadvancing Record I/O
	User-Supplied OPEN Procedures: USEROPEN Specifier
	Microsoft Fortran PowerStation Compatible Files
	Using Asynchronous I/O

	Structuring Your Program
	Structuring Your Program Overview
	Creating Fortran Executables
	Using Module (.mod) Files
	Using Include Files
	Advantages of Internal Procedures
	Storing Object Code in Static Libraries
	Storing Routines in Shareable Libraries

	Programming with Mixed Languages
	Programming with Mixed Languages Overview
	Calling Subprograms from the Main Program
	Summary of Mixed-Language Issues
	Adjusting Calling Conventions in Mixed-Language Programming
	Adjusting Calling Conventions in Mixed-Language Programming Overview
	ATTRIBUTES Properties and Calling Conventions

	Adjusting Naming Conventions in Mixed-Language Programming
	Adjusting Naming Conventions in Mixed-Language Programming Overview
	C/C++ Naming Conventions
	Procedure Names for Fortran, C, C++, and MASM
	Reconciling the Case of Names
	Fortran Module Names and ATTRIBUTES

	Prototyping a Procedure in Fortran
	Exchanging and Accessing Data in Mixed-Language Programming
	Exchanging and Accessing Data in Mixed-Language Programming
	Passing Arguments in Mixed-Language Programming
	Using Modules in Mixed-Language Programming
	Using Common External Data in Mixed-Language Programming

	Handling Data Types in Mixed-Language Programming
	Handling Data Types in Mixed-Language Programming Overview
	Handling Numeric, Complex, and Logical Data Types
	Handling Fortran Array Pointers and Allocatable Arrays
	Handling Integer Pointers
	Handling Arrays and Fortran Array Descriptors
	Handling Character Strings
	Handling User-Defined Types

	Intel(R) Fortran/Visual Basic* Mixed-Language Programs
	Interoperability with C
	Compiling and Linking Intel® Fortran/C Programs
	Calling C Procedures from an Intel® Fortran Program

	Using Libraries
	Supplied Libraries
	Creating Static Libraries
	Creating Shared Libraries
	Calling Library Routines
	Portability Considerations
	Portability Library Overview
	Using the IFPORT Portability Module
	Portability Routines

	Math Libraries

	Error Handling
	Handling Compile Time Errors
	Understanding Errors During the Build Process
	Compiler Message Catalog Support
	Using Source Code Verification
	Source Checker Overview
	Interprocedural Analysis
	Local Program Analysis
	Fortran-specific Analysis
	C/C++ specific Analysis
	OpenMP* Analysis

	Handling Run-Time Errors
	Understanding Run-Time Errors
	Run-Time Default Error Processing
	Run-Time Message Display and Format
	Values Returned at Program Termination
	Methods of Handling Errors
	Using the END, EOR, and ERR Branch Specifiers
	Using the IOSTAT Specifier and Fortran Exit Codes
	Locating Run-Time Errors
	List of Run-Time Error Messages
	Signal Handling (Linux* OS and Mac OS* X only)
	Overriding the Default Run-Time Library Exception Handler
	Using Traceback Information
	Using Traceback Information Overview
	Tradeoffs and Restrictions in Using Traceback
	Sample Programs and Traceback Information
	Obtaining Traceback Information with TRACEBACKQQ

	Portability Considerations
	Portability Considerations Overview
	Understanding Fortran Language Standards
	Understanding Fortran Language Standards Overview
	Using Standard Features and Extensions
	Using Compiler Optimizations

	Minimizing Operating System-Specific Information
	Storing and Representing Data
	Formatting Data for Transportability

	Troubleshooting
	Troubleshooting Your Application

	Reference Information
	Key Compiler Files Summary
	Compiler Limits

	Compiler Options
	Overview: Compiler Options
	New Options
	Deprecated and Removed Compiler Options

	Alphabetical Compiler Options
	Compiler Option Descriptions and General Rules
	0-9
	1
	4I2, 4I4, 4I8
	4L72, 4L80, 4L132
	4Na, 4Ya
	4Naltparam, 4Yaltparam
	4Nb,4Yb
	4Nd,4Yd
	4Nf
	4Nportlib, 4Yportlib
	4Ns,4Ys
	4R8,4R16
	4Yf
	4Nportlib, 4Yportlib
	66
	72,80,132

	A
	align
	allow
	altparam
	ansi-alias, Qansi-alias
	arch
	architecture
	asmattr
	asmfile
	assume
	auto, Qauto
	auto-scalar, Qauto-scalar
	autodouble, Qautodouble
	automatic
	ax, Qax

	B
	B
	Bdynamic
	bigobj
	bintext
	Bstatic

	C
	c
	C
	CB
	ccdefault
	check
	cm
	common-args, Qcommon-args
	compile-only
	complex-limited-range, Qcomplex-limited-range
	convert
	cpp, Qcpp
	CU
	cxxlib

	D
	D
	d-lines, Qd-lines
	dbglibs
	DD
	debug (Linux* OS and Mac OS* X)
	debug (Windows* OS)
	debug-parameters
	define
	diag, Qdiag
	diag-dump, Qdiag-dump
	diag, Qdiag
	diag-enable sc-include, Qdiag-enable:sc-include
	diag-enable sc-parallel, Qdiag-enable:sc-parallel
	diag-error-limit, Qdiag-error-limit
	diag-file, Qdiag-file
	diag-file-append, Qdiag-file-append
	diag-id-numbers, Qdiag-id-numbers
	diag-once, Qdiag-once
	dll
	double-size
	dps, Qdps
	dryrun
	dumpmachine
	dynamic-linker
	dynamiclib
	dyncom, Qdyncom

	E
	E
	e90, e95, e03
	EP
	error-limit
	exe
	extend-source
	extfor
	extfpp
	extlnk

	F
	F (Windows*)
	f66
	f77rtl
	Fa
	FA
	falias
	falign-functions, Qfnalign
	falign-stack
	fast
	fast-transcendentals, Qfast-transcendentals
	fcode-asm
	Fe
	fexceptions
	ffnalias
	FI
	finline
	finline-functions
	finline-limit
	finstrument-functions, Qinstrument-functions
	fixed
	fkeep-static-consts, Qkeep-static-consts
	fltconsistency
	Fm
	fma, Qfma
	fmath-errno
	fminshared
	fnsplit, Qfnsplit
	fomit-frame-pointer, Oy
	Fo
	fomit-frame-pointer, Oy
	fp-model, fp
	fp-model, fp
	fp-port, Qfp-port
	fp-relaxed, Qfp-relaxed
	fp-speculation, Qfp-speculation
	fp-stack-check, Qfp-stack-check
	fpconstant
	fpe
	fpe-all
	fpic
	fpie
	fpp, Qfpp
	fpscomp
	FR
	fr32
	free
	fsource-asm
	fstack-security-check, GS
	fstack-security-check, GS
	fsyntax-only
	ftrapuv, Qtrapuv
	ftz, Qftz
	func-groups
	funroll-loops
	fverbose-asm
	fvisibility

	G
	g, Zi, Z7
	G2, G2-p9000
	G5, G6, G7
	gdwarf-2
	Ge
	gen-interfaces
	global-hoist, Qglobal-hoist
	Gm
	Gs
	fstack-security-check, GS
	Gz

	H
	heap-arrays
	help
	homeparams
	hotpatch

	I
	I
	i-dynamic
	i-static
	i2, i4, i8
	idirafter
	iface
	implicitnone
	include
	inline
	inline-debug-info, Qinline-debug-info
	inline-factor, Qinline-factor
	inline-forceinline, Qinline-forceinline
	inline-level, Ob
	inline-max-per-compile, Qinline-max-per-compile
	inline-max-per-routine, Qinline-max-per-routine
	inline-max-size, Qinline-max-size
	inline-max-total-size, Qinline-max-total-size
	inline-min-size, Qinline-min-size
	intconstant
	integer-size
	ip, Qip
	ip-no-inlining, Qip-no-inlining
	ip-no-pinlining, Qip-no-pinlining
	IPF-flt-eval-method0, QIPF-flt-eval-method0
	IPF-fltacc, QIPF-fltacc
	IPF-fma, QIPF-fma
	IPF-fp-relaxed, QIPF-fp-relaxed
	ipo, Qipo
	ipo-c, Qipo-c
	ipo-jobs, Qipo-jobs
	ipo-S, Qipo-S
	ipo-separate, Qipo-separate
	isystem
	ivdep-parallel, Qivdep-parallel

	L
	l
	L
	LD
	libdir
	libs
	link
	logo
	lowercase, Qlowercase

	M
	m
	m32, m64
	map
	map-opts, Qmap-opts
	march
	mcmodel
	mcpu
	MD
	MDs
	mdynamic-no-pic
	MG
	mieee-fp
	minstruction, Qinstruction
	mixed-str-len-arg
	mkl, Qmkl
	ML
	module
	mp
	multiple-processes, MP
	mp1, Qprec
	mrelax
	MT
	mtune
	multiple-processes, MP
	MW
	MWs

	N
	names
	nbs
	no-bss-init, Qnobss-init
	nodefaultlibs
	nodefine
	nofor-main
	noinclude
	nolib-inline
	nostartfiles
	nostdinc
	nostdlib
	nus

	O
	o
	O
	inline-level, Ob
	object
	Od
	Og
	onetrip, Qonetrip
	Op
	openmp, Qopenmp
	openmp-lib, Qopenmp-lib
	openmp-link, Qopenmp-link
	openmp-profile, Qopenmp-profile
	openmp-report, Qopenmp-report
	openmp-stubs, Qopenmp-stubs
	openmp-threadprivate, Qopenmp-threadprivate
	opt-block-factor, Qopt-block-factor
	opt-jump-tables, Qopt-jump-tables
	opt-loadpair, Qopt-loadpair
	opt-malloc-options
	opt-mem-bandwidth, Qopt-mem-bandwidth
	opt-mod-versioning, Qopt-mod-versioning
	opt-multi-version-aggressive, Qopt-multi-version-aggressive
	opt-prefetch, Qopt-prefetch
	opt-prefetch-initial-values, Qopt-prefetch-initial-values
	opt-prefetch-issue-excl-hint, Qopt-prefetch-issue-excl-hint
	opt-prefetch-next-iteration, Qopt-prefetch-next-iteration
	opt-ra-region-strategy, Qopt-ra-region-strategy
	opt-report, Qopt-report
	opt-report-file, Qopt-report-file
	opt-report-help, Qopt-report-help
	opt-report-phase, Qopt-report-phase
	opt-report-routine, Qopt-report-routine
	opt-streaming-stores, Qopt-streaming-stores
	opt-subscript-in-range, Qopt-subscript-in-range
	optimize
	Os
	Ot
	Ox
	fomit-frame-pointer, Oy

	P
	p
	P
	pad, Qpad
	pad-source, Qpad-source
	par-affinity, Qpar-affinity
	par-num-threads, Qpar-num-threads
	par-report, Qpar-report
	par-runtime-control, Qpar-runtime-control
	par-schedule, Qpar-schedule
	par-threshold, Qpar-threshold
	parallel, Qparallel
	pc, Qpc
	pdbfile
	pg
	pie
	prec-div, Qprec-div
	prec-sqrt, Qprec-sqrt
	preprocess-only
	print-multi-lib
	prof-data-order, Qprof-data-order
	prof-dir, Qprof-dir
	prof-file, Qprof-file
	prof-func-groups
	prof-func-order, Qprof-func-order
	prof-gen, Qprof-gen
	prof-genx, Qprof-genx
	prof-hotness-threshold, Qprof-hotness-threshold
	prof-src-dir, Qprof-src-dir
	prof-src-root, Qprof-src-root
	prof-src-root-cwd, Qprof-src-root-cwd
	prof-use, Qprof-use

	Q
	ansi-alias, Qansi-alias
	auto, Qauto
	auto-scalar, Qauto-scalar
	autodouble, Qautodouble
	ax, Qax
	Qchkstk
	common-args, Qcommon-args
	complex-limited-range, Qcomplex-limited-range
	cpp, Qcpp
	d-lines, Qd-lines
	diag, Qdiag
	diag-dump, Qdiag-dump
	diag, Qdiag
	diag-enable sc-include, Qdiag-enable:sc-include
	diag-enable sc-parallel, Qdiag-enable:sc-parallel
	diag-error-limit, Qdiag-error-limit
	diag-file, Qdiag-file
	diag-file-append, Qdiag-file-append
	diag-id-numbers, Qdiag-id-numbers
	diag-once, Qdiag-once
	dps, Qdps
	dyncom, Qdyncom
	Qextend-source
	fast-transcendentals, Qfast-transcendentals
	fma, Qfma
	falign-functions, Qfnalign
	fnsplit, Qfnsplit
	fp-port, Qfp-port
	fp-relaxed, Qfp-relaxed
	fp-speculation, Qfp-speculation
	fp-stack-check, Qfp-stack-check
	fpp, Qfpp
	ftz, Qftz
	global-hoist, Qglobal-hoist
	QIA64-fr32
	QIfist
	Qimsl
	inline-debug-info, Qinline-debug-info
	Qinline-dllimport
	inline-factor, Qinline-factor
	inline-forceinline, Qinline-forceinline
	inline-max-per-compile, Qinline-max-per-compile
	inline-max-per-routine, Qinline-max-per-routine
	inline-max-size, Qinline-max-size
	inline-max-total-size, Qinline-max-total-size
	inline-min-size, Qinline-min-size
	Qinstall
	minstruction, Qinstruction
	finstrument-functions, Qinstrument-functions
	ip, Qip
	ip-no-inlining, Qip-no-inlining
	ip-no-pinlining, Qip-no-pinlining
	IPF-flt-eval-method0, QIPF-flt-eval-method0
	IPF-fltacc, QIPF-fltacc
	IPF-fma, QIPF-fma
	IPF-fp-relaxed, QIPF-fp-relaxed
	ipo, Qipo
	ipo-c, Qipo-c
	ipo-jobs, Qipo-jobs
	ipo-S, Qipo-S
	ipo-separate, Qipo-separate
	ivdep-parallel, Qivdep-parallel
	fkeep-static-consts, Qkeep-static-consts
	Qlocation
	lowercase, Qlowercase
	map-opts, Qmap-opts
	mkl, Qmkl
	no-bss-init, Qnobss-init
	onetrip, Qonetrip
	openmp, Qopenmp
	openmp-lib, Qopenmp-lib
	openmp-link, Qopenmp-link
	openmp-profile, Qopenmp-profile
	openmp-report, Qopenmp-report
	openmp-stubs, Qopenmp-stubs
	openmp-threadprivate, Qopenmp-threadprivate
	opt-block-factor, Qopt-block-factor
	opt-jump-tables, Qopt-jump-tables
	opt-loadpair, Qopt-loadpair
	opt-mem-bandwidth, Qopt-mem-bandwidth
	opt-mod-versioning, Qopt-mod-versioning
	opt-multi-version-aggressive, Qopt-multi-version-aggressive
	opt-prefetch, Qopt-prefetch
	opt-prefetch-initial-values, Qopt-prefetch-initial-values
	opt-prefetch-issue-excl-hint, Qopt-prefetch-issue-excl-hint
	opt-prefetch-next-iteration, Qopt-prefetch-next-iteration
	opt-ra-region-strategy, Qopt-ra-region-strategy
	opt-report, Qopt-report
	opt-report-file, Qopt-report-file
	opt-report-help, Qopt-report-help
	opt-report-phase, Qopt-report-phase
	opt-report-routine, Qopt-report-routine
	opt-streaming-stores, Qopt-streaming-stores
	opt-subscript-in-range, Qopt-subscript-in-range
	Qoption
	qp
	pad, Qpad
	pad-source, Qpad-source
	Qpar-adjust-stack
	par-affinity, Qpar-affinity
	par-num-threads, Qpar-num-threads
	par-report, Qpar-report
	par-runtime-control, Qpar-runtime-control
	par-schedule, Qpar-schedule
	par-threshold, Qpar-threshold
	parallel, Qparallel
	pc, Qpc
	mp1, Qprec
	prec-div, Qprec-div
	prec-sqrt, Qprec-sqrt
	prof-data-order, Qprof-data-order
	prof-dir, Qprof-dir
	prof-file, Qprof-file
	prof-func-order, Qprof-func-order
	prof-gen, Qprof-gen
	prof-genx, Qprof-genx
	prof-hotness-threshold, Qprof-hotness-threshold
	prof-src-dir, Qprof-src-dir
	prof-src-root, Qprof-src-root
	prof-src-root-cwd, Qprof-src-root-cwd
	prof-use, Qprof-use
	rcd, Qrcd
	rct, Qrct
	safe-cray-ptr, Qsafe-cray-ptr
	save, Qsave
	save-temps, Qsave-temps
	scalar-rep, Qscalar-rep
	Qsfalign
	sox, Qsox
	tcheck, Qtcheck
	tcollect, Qtcollect
	tcollect-filter, Qtcollect-filter
	tprofile, Qtprofile
	ftrapuv, Qtrapuv
	unroll, Qunroll
	unroll-aggressive, Qunroll-aggressive
	uppercase, Quppercase
	use-asm, Quse-asm
	Quse-msasm-symbols
	Quse-vcdebug
	Qvc
	vec, Qvec
	vec-guard-write, Qvec-guard-write
	vec-report, Qvec-report
	vec-threshold, Qvec-threshold
	x, Qx
	zero, Qzero

	R
	r8, r16
	rcd, Qrcd
	rct, Qrct
	real-size
	recursive
	reentrancy
	RTCu

	S
	S
	safe-cray-ptr, Qsafe-cray-ptr
	save, Qsave
	save-temps, Qsave-temps
	scalar-rep, Qscalar-rep
	shared
	shared-intel
	shared-libgcc
	source
	sox, Qsox
	stand
	static
	staticlib
	static-intel
	static-libgcc
	std, std90, std95, std03
	std, std90, std95, std03
	std, std90, std95, std03
	std, std90, std95, std03
	syntax-only

	T
	T
	tcheck, Qtcheck
	tcollect, Qtcollect
	tcollect-filter, Qtcollect-filter
	Tf
	threads
	tprofile, Qtprofile
	traceback
	tune

	U
	u (Linux* and Mac OS* X)
	u (Windows*)
	U
	undefine
	unroll, Qunroll
	unroll-aggressive, Qunroll-aggressive
	uppercase, Quppercase
	us
	use-asm, Quse-asm

	V
	v
	V (Linux* and Mac OS* X)
	V (Windows*)
	vec, Qvec
	vec-guard-write, Qvec-guard-write
	vec-report, Qvec-report
	vec-threshold, Qvec-threshold
	vms

	W
	w
	W0, W1
	W0, W1
	Wa
	warn
	watch
	WB
	what
	winapp
	Winline
	Wl
	Wp

	X
	x, Qx
	X
	Xlinker

	Y
	y

	Z
	g, Zi, Z7
	Zd
	zero, Qzero
	g, Zi, Z7
	Zl
	Zp
	Zs
	Zx

	Quick Reference Guides and Cross References
	Windows* OS Quick Reference Guide and Cross Reference
	Linux* OS and Mac OS* X Quick Reference Guide and Cross Reference

	Related Options
	Linking Tools and Options
	Fortran Preprocessor Options

	Optimizing Applications
	Intel(R) Fortran Optimizing Applications
	Overview: Optimizing Applications
	Optimizing with the Intel® Compiler
	Optimizing for Performance
	Overview of Parallelism Method
	Quick Reference Lists
	Other Resources

	Evaluating Performance
	Performance Analysis
	Using a Performance Enhancement Methodology
	Intel® Performance Analysis Tools and Libraries
	Performance Enhancement Strategies
	Using Compiler Reports
	Compiler Reports Overview
	Compiler Reports Quick Reference
	Generating Reports
	Interprocedural Optimizations (IPO) Report
	Profile-guided Optimization (PGO) Report
	High-level Optimization (HLO) Report
	High Performance Optimizer (HPO) Report
	Parallelism Report
	Software Pipelining (SWP) Report (Linux* and Windows*)
	Vectorization Report
	OpenMP* Report

	Using Compiler Optimizations
	Automatic Optimizations Overview
	Enabling Automatic Optimizations
	Targeting IA-32 and Intel(R) 64 Architecture Processors Automatically
	Targeting Multiple IA-32 and Intel(R) 64 Architecture Processors for Run-time Performance
	Targeting IA-64 Architecture Processors Automatically
	Restricting Optimizations

	Using Parallelism: OpenMP* Support
	OpenMP* Support Overview
	OpenMP* Options Quick Reference
	OpenMP* Source Compatibility and Interoperability with Other Compilers
	Using OpenMP*
	Parallel Processing Model
	Verifying OpenMP* Using Parallel Lint
	OpenMP* Clauses"
	Data Scope Attribute Clauses Overview
	Specifying Schedule Type and Chunk Size
	COPYIN Clause
	DEFAULT Clause
	PRIVATE, FIRSTPRIVATE, and LASTPRIVATE Clauses
	REDUCTION Clause
	SHARED Clause

	OpenMP* Directives
	Programming with OpenMP*
	Combined Parallel and Worksharing Constructs
	Parallel Region Directives
	Synchronization Constructs
	THREADPRIVATEthreadprivate Directive
	Worksharing Construct Directives
	Tasking Directives

	OpenMP* Advanced Issues
	OpenMP* Examples
	Libraries, Directives, Clauses, and Environmental Variables
	OpenMP* Environment Variables
	OpenMP* Directives and Clauses Summary
	OpenMP* Library Support
	OpenMP* Run-time Library Routines
	Intel Extension Routines to OpenMP*
	OpenMP* Support Libraries
	Using the OpenMP Compatibility Libraries
	Thread Affinity Interface (Linux* and Windows*)

	Using Parallelism: Automatic Parallelization
	Auto-parallelization Overview
	Auto-Parallelization Options Quick Reference
	Auto-parallelization: Enabling, Options, Directives, and Environment Variables
	Programming with Auto-parallelization
	Programming for Multithread Platform Consistency

	Using Parallelism: Automatic Vectorization
	Automatic Vectorization Overview
	Automatic Vectorization Options Quick Reference
	Programming Guidelines for Vectorization
	Vectorization and Loops
	Loop Constructs
	Absence of Loop-carried Memory Dependency with IVDEP Directive
	Vectorization Examples

	Using Parallelism: Multi-Threaded Applications
	Creating Multithread Applications Overview
	Basic Concepts of Multithreading
	Developing Multithread Applications
	Writing a Multithread Program Overview
	Modules for Multithread Programs
	Starting and Stopping Threads
	Thread Routine Format
	Sharing Resources
	Thread Local Storage
	Synchronizing Threads
	Handling Errors in Multithread Programs
	Table of Multithread Routines
	Working with Multiple Processes

	Using Interprocedural Optimization (IPO)
	Interprocedural Optimization (IPO) Overview
	Interprocedural Optimization (IPO) Quick Reference
	Using IPO
	IPO-Related Performance Issues
	IPO for Large Programs
	Understanding Code Layout and Multi-Object IPO
	Creating a Library from IPO Objects
	Requesting Compiler Reports with the xi* Tools
	Inline Expansion of Functions
	Inline Function Expansion
	Compiler Directed Inline Expansion of User Functions
	Developer Directed Inline Expansion of User Functions

	Using Profile-Guided Optimization (PGO)
	Profile-Guided Optimizations Overview
	Profile-Guided Optimization (PGO) Quick Reference
	Profile an Application
	PGO Tools
	PGO Tools Overview
	code coverage Tool
	test prioritization Tool
	profmerge and proforder Tools
	Using Function Order Lists, Function Grouping, Function Ordering, and Data Ordering Optimizations
	Comparison of Function Order Lists and IPO Code Layout

	PGO API Support
	API Support Overview
	PGO Environment Variables
	Dumping Profile Information
	Interval Profile Dumping
	Resetting the Dynamic Profile Counters
	Dumping and Resetting Profile Information

	Using High-Level Optimization (HLO)
	High-Level Optimizations (HLO) Overview
	Loop Unrolling
	Loop Independence
	Prefetching with Options

	Optimization Support Features
	Optimization Support Features Overview
	Loop Support
	Loop Unrolling Support
	Vectorization Support
	Prefetching Support
	Software Pipelining Support (IA-64 Architecture)
	About Register Allocation

	Programming Guidelines
	Coding Guidelines for Intel® Architectures
	Setting Data Type and Alignment
	Using Arrays Efficiently
	Improving I/O Performance
	Improving Run-time Efficiency
	Using Fortran Intrinsics
	Understanding Run-time Performance
	Understanding Data Alignment
	Timing Your Application
	Applying Optimization Strategies
	Optimizing the Compilation Process
	Optimizing the Compilation Process Overview
	Efficient Compilation
	Stacks: Automatic Allocation and Checking
	Little-endian-to-Big-endian Conversion (IA-32 Architecture)
	Symbol Visibility Attribute Options (Linux* and Mac OS* X)
	Data Alignment Options

	Floating-point Operations
	Overview: Floating-point Operations
	Floating-point Options Quick Reference
	Understanding Floating-point Operations
	Programming Tradeoffs in Floating-point Applications
	Floating-point Optimizations
	Using the -fp-model (/fp) Option
	Denormal Numbers
	Floating-point Environment
	Setting the FTZ and DAZ Flags
	Checking the Floating-point Stack State

	Tuning Performance
	Overview: Tuning Performance
	Avoiding Exact Floating-point Comparison
	Handling Floating-point Array Operations in a Loop Body
	Reducing the Impact of Denormal Exceptions
	Avoiding Mixed Data Type Arithmetic Expressions
	Using Efficient Data Types

	Handling Floating-point Exceptions
	Overview: Controlling Floating-point Exceptions
	Handling Floating-point Exceptions
	File fordef.for and Its Usage
	Setting and Retrieving Floating-point Status and Control Words (IA-32)
	Overview: Setting and Retrieving Floating-point Status and Control Word
	Understanding Floating-point Status Word
	Floating-point Control Word Overview
	Using Exception, Precision, and Rounding Parameters

	Handling Floating-point Exceptions with the -fpe or /fpe Compiler Option
	Using the -fpe or /fpe Compiler Options
	Understanding the Impact of Application Types

	Understanding IEEE Floating-point Operations
	Overview: Understanding IEEE Floating-point Standard
	Floating-point Formats
	Limitations of Numeric Conversion
	Special Values
	Representing Floating-point Numbers
	Floating-point Representation
	Retrieving Parameters of Numeric Representations
	ULPs, Relative Error, and Machine Epsilon
	Native IEEE Floating-point Representation
	Overview: Native IEEE* Floating-point Representations
	REAL(KIND=4) (REAL) Representation
	REAL(KIND=8) (DOUBLE PRECISION) Representation
	REAL(KIND=16) Representation
	COMPLEX(KIND=4) (COMPLEX) Representation
	COMPLEX(KIND=8) (DOUBLE COMPLEX) Representation
	COMPLEX(KIND=16) Representation

	Handling Exceptions and Errors
	Loss of Precision Errors
	Rounding Errors

	Language Reference
	Overview: Language Reference
	New Language Features

	Conformance, Compatibility, and Fortran 2003 Features
	Language Standards Conformance
	Language Compatibility
	Fortran 2003 Features

	Program Structure, Characters, and Source Forms
	Program Structure
	Statements
	Names
	Keywords

	Character Sets
	Source Forms
	Free Source Form
	Fixed and Tab Source Forms
	Fixed-Format Lines
	Tab-Format Lines

	Source Code Useable for All Source Forms

	Data Types, Constants, and Variables
	Intrinsic Data Types
	Integer Data Types
	Integer Constants

	Real Data Types
	General Rules for Real Constants
	REAL(4) Constants
	REAL(8) or DOUBLE PRECISION Constants
	REAL(16) Constants

	Complex Data Types
	General Rules for Complex Constants
	COMPLEX(4) Constants
	COMPLEX(8) or DOUBLE COMPLEX Constants
	COMPLEX(16) Constants

	Logical Data Types
	Logical Constants

	Character Data Type
	Character Constants
	C Strings in Character Constants
	Character Substrings

	Derived Data Types
	Derived-Type Definition
	Default Initialization
	Structure Components
	Structure Constructors

	Binary, Octal, Hexadecimal, and Hollerith Constants
	Binary Constants
	Octal Constants
	Hexadecimal Constants
	Hollerith Constants
	Determining the Data Type of Nondecimal Constants

	Variables
	Data Types of Scalar Variables
	Specification of Data Type
	Implicit Typing Rules

	Arrays
	Whole Arrays
	Array Elements
	Array Sections
	Subscript Triplets
	Vector Subscripts

	Array Constructors

	Expressions and Assignment Statements
	Expressions
	Numeric Expressions
	Using Parentheses in Numeric Expressions
	Data Type of Numeric Expressions

	Character Expressions
	Relational Expressions
	Logical Expressions
	Defined Operations
	Summary of Operator Precedence
	Initialization and Specification Expressions
	Initialization Expressions
	Specification Expressions

	Assignment Statements
	Intrinsic Assignments
	Numeric Assignment Statements
	Logical Assignment Statements
	Character Assignment Statements
	Derived-Type Assignment Statements
	Array Assignment Statements

	Defined Assignments
	Pointer Assignments
	WHERE Statement and Construct Overview
	FORALL Statement and Construct Overview

	Specification Statements
	Type Declaration Statements
	Declaration Statements for Noncharacter Types
	Declaration Statements for Character Types
	Declaration Statements for Derived Types
	Declaration Statements for Arrays
	Explicit-Shape Specifications
	Assumed-Shape Specifications
	Assumed-Size Specifications
	Deferred-Shape Specifications

	ALLOCATABLE Attribute and Statement Overview
	ASYNCHRONOUS Attribute and Statement Overview
	AUTOMATIC and STATIC Attributes and Statements Overview
	BIND Attribute and Statement Overview
	COMMON Statement Overview
	DATA Statement Overview
	DIMENSION Attribute and Statement Overview
	EQUIVALENCE Statement Overview
	Making Arrays Equivalent
	Making Substrings Equivalent
	EQUIVALENCE and COMMON Interaction

	EXTERNAL Attribute and Statement Overview
	IMPLICIT Statement Overview
	INTENT Attribute and Statement Overview
	INTRINSIC Attribute and Statement Overview
	NAMELIST Statement Overview
	OPTIONAL Attribute and Statement Overview
	PARAMETER Attribute and Statement Overview
	POINTER Attribute and Statement Overview
	PROTECTED Attribute and Statement Overview
	PUBLIC and PRIVATE Attributes and Statements Overview
	SAVE Attribute and Statement Overview
	TARGET Attribute and Statement Overview
	VALUE Attribute and Statement Overview
	VOLATILE Attribute and Statement Overview

	Dynamic Allocation
	ALLOCATE Statement Overview
	Allocation of Allocatable Arrays
	Allocation of Pointer Targets

	DEALLOCATE Statement Overview
	Deallocation of Allocatable Arrays
	Deallocation of Pointer Targets

	NULLIFY Statement Overview

	Execution Control
	Branch Statements
	Unconditional GO TO Statement Overview
	Computed GO TO Statement Overview
	The ASSIGN and Assigned GO TO Statements Overview
	Arithmetic IF Statement Overview

	CALL Statement Overview
	CASE Constructs Overview
	CONTINUE Statement Overview
	DO Constructs Overview
	Forms for DO Constructs
	Execution of DO Constructs
	Iteration Loop Control
	Nested DO Constructs
	Extended Range

	DO WHILE Statement Overview
	CYCLE Statement Overview
	EXIT Statement Overview

	END Statement Overview
	IF Construct and Statement Overview
	IF Construct Overview
	IF Statement Overview

	PAUSE Statement Overview
	RETURN Statement Overview
	STOP Statement Overview

	Program Units and Procedures
	Main Program
	Modules and Module Procedures
	Module References
	USE Statement

	Intrinsic Modules
	ISO_C_BINDING
	Named Constants
	Intrinsic Module Procedures

	ISO_FORTRAN_ENV
	IEEE Intrinsic Modules and Procedures
	IEEE_ARITHMETIC Intrinsic Module
	IEEE_EXCEPTIONS Intrinsic Module
	IEEE_FEATURES Intrinsic Module
	IEEE Intrinsic Modules Quick Reference Tables

	Block Data Program Units
	Functions, Subroutines, and Statement Functions
	General Rules for Function and Subroutine Subprograms
	Recursive Procedures
	Pure Procedures
	Elemental Procedures

	Functions
	RESULT Keyword Overview
	Function References

	Subroutines
	Statement Functions

	External Procedures
	Internal Procedures
	Argument Association
	Optional Arguments
	Array Arguments
	Pointer Arguments
	Assumed-Length Character Arguments
	Character Constant and Hollerith Arguments
	Alternate Return Arguments
	Dummy Procedure Arguments
	References to Generic Procedures
	References to Generic Intrinsic Functions
	References to Elemental Intrinsic Procedures

	References to Non-Fortran Procedures

	Procedure Interfaces
	Determining When Procedures Require Explicit Interfaces
	Defining Explicit Interfaces
	Defining Generic Names for Procedures
	Defining Generic Operators
	Defining Generic Assignment

	CONTAINS Statement Overview
	ENTRY Statement Overview
	ENTRY Statements in Function Subprograms
	ENTRY Statements in Subroutine Subprograms

	IMPORT Statement Overview

	Intrinsic Procedures
	Argument Keywords in Intrinsic Procedures
	Overview of Bit Functions
	Categories and Lists of Intrinsic Procedures
	Categories of Intrinsic Functions
	Intrinsic Subroutines

	Data Transfer I/O Statements
	Records and Files
	Components of Data Transfer Statements
	I/O Control List
	Unit Specifier
	Format Specifier
	Namelist Specifier
	Record Specifier
	I/O Status Specifier
	Branch Specifiers
	Advance Specifier
	Asynchronous Specifier
	Character Count Specifier
	ID Specifier
	POS Specifier

	I/O Lists
	Simple List Items in I/O Lists
	Implied-DO Lists in I/O Lists

	READ Statements
	Forms for Sequential READ Statements
	Rules for Formatted Sequential READ Statements
	Rules for List-Directed Sequential READ Statements
	Rules for Namelist Sequential READ Statement
	Rules for Unformatted Sequential READ Statements

	Forms for Direct-Access READ Statements
	Rules for Formatted Direct-Access READ Statements
	Rules for Unformatted Direct-Access READ Statements

	Forms for Stream READ Statements
	Forms and Rules for Internal READ Statements

	ACCEPT Statement Overview
	WRITE Statements
	Forms for Sequential WRITE Statements
	Rules for Formatted Sequential WRITE Statements
	Rules for List-Directed Sequential WRITE Statements
	Rules for Namelist Sequential WRITE Statements
	Rules for Unformatted Sequential WRITE Statements

	Forms for Direct-Access WRITE Statements
	Rules for Formatted Direct-Access WRITE Statements
	Rules for Unformatted Direct-Access WRITE Statements

	Forms for Stream WRITE Statements
	Forms and Rules for Internal WRITE Statements

	PRINT and TYPE Statements Overview
	REWRITE Statement Overview

	I/O Formatting
	Format Specifications
	Data Edit Descriptors
	Forms for Data Edit Descriptors
	General Rules for Numeric Editing
	Integer Editing
	I Editing
	B Editing
	O Editing
	Z Editing

	Real and Complex Editing
	F Editing
	E and D Editing
	EN Editing
	ES Editing
	G Editing
	Complex Editing

	Logical Editing (L)
	Character Editing (A)
	Default Widths for Data Edit Descriptors
	Terminating Short Fields of Input Data

	Control Edit Descriptors
	Forms for Control Edit Descriptors
	Positional Editing
	T Editing
	TL Editing
	TR Editing
	X Editing

	Sign Editing
	SP Editing
	SS Editing
	S Editing

	Blank Editing
	BN Editing
	BZ Editing

	Scale-Factor Editing (P)
	Slash Editing (/)
	Colon Editing (:)
	Dollar-Sign ($) and Backslash (\) Editing
	Character Count Editing (Q)

	Character String Edit Descriptors
	Character Constant Editing
	H Editing

	Nested and Group Repeat Specifications
	Variable Format Expressions
	Printing of Formatted Records
	Interaction Between Format Specifications and I/O Lists

	File Operation I/O Statements
	BACKSPACE Statement Overview
	CLOSE Statement Overview
	DELETE Statement Overview
	ENDFILE Statement Overview
	FLUSH Statement Overview
	INQUIRE Statement Overview
	ACCESS Specifier
	ACTION Specifier
	ASYNCHRONOUS Specifier
	BINARY Specifier (W*32, W*64)
	BLANK Specifier
	BLOCKSIZE Specifier
	BUFFERED Specifier
	CARRIAGECONTROL Specifier
	CONVERT Specifier
	DELIM Specifier
	DIRECT Specifier
	EXIST Specifier
	FORM Specifier
	FORMATTED Specifier
	ID Specifier
	IOFOCUS Specifier (W*32, W*64)
	MODE Specifier
	NAME Specifier
	NAMED Specifier
	NEXTREC Specifier
	NUMBER Specifier
	OPENED Specifier
	ORGANIZATION Specifier
	PAD Specifier
	PENDING Specifier
	POS Specifier
	POSITION Specifier
	READ Specifier
	READWRITE Specifier
	RECL Specifier
	RECORDTYPE Specifier
	SEQUENTIAL Specifier
	SHARE Specifier
	UNFORMATTED Specifier
	WRITE Specifier

	OPEN Statement Overview
	ACCESS Specifier
	ACTION Specifier
	ASSOCIATEVARIABLE Specifier
	ASYNCHRONOUS Specifier
	BLANK Specifier
	BLOCKSIZE Specifier
	BUFFERCOUNT Specifier
	BUFFERED Specifier
	CARRIAGECONTROL Specifier
	CONVERT Specifier
	DEFAULTFILE Specifier
	DELIM Specifier
	DISPOSE Specifier
	FILE Specifier
	FORM Specifier
	IOFOCUS Specifier (W*32, W*64)
	MAXREC Specifier
	MODE Specifier
	NAME Specifier
	NOSHARED Specifier
	ORGANIZATION Specifier
	PAD Specifier
	POSITION Specifier
	READONLY Specifier
	RECL Specifier
	RECORDSIZE Specifier
	RECORDTYPE Specifier
	SHARE Specifier
	SHARED Specifier
	STATUS Specifier
	TITLE Specifier (W*32, W*64)
	TYPE Specifier
	USEROPEN Specifier

	REWIND Statement Overview
	WAIT Statement Overview

	Compilation Control Lines and Statements
	Directive Enhanced Compilation
	Syntax Rules for Compiler Directives
	General Compiler Directives
	Rules for General Directives that Affect DO Loops
	Rules for Loop Directives that Affect Array Assignment Statements

	OpenMP* Fortran Compiler Directives
	Data Scope Attribute Clauses
	Conditional Compilation Rules
	Nesting and Binding Rules

	Scope and Association
	Scope
	Unambiguous Generic Procedure References
	Resolving Procedure References
	References to Generic Names
	References to Specific Names
	References to Nonestablished Names

	Association
	Name Association
	Argument Association
	Use and Host Association

	Pointer Association
	Storage Association
	Storage Units and Storage Sequence
	Array Association

	Deleted and Obsolescent Language Features
	Deleted Language Features in Fortran 95
	Obsolescent Language Features in Fortran 95
	Obsolescent Language Features in Fortran 90

	Additional Language Features
	FORTRAN 66 Interpretation of the EXTERNAL Statement
	Alternative Syntax for the PARAMETER Statement
	Alternative Syntax for Binary, Octal, and Hexadecimal Constants
	Alternative Syntax for a Record Specifier
	Alternative Syntax for the DELETE Statement
	Alternative Form for Namelist External Records
	Record Structures
	Structure Declarations
	Type Declarations within Record Structures
	Substructure Declarations

	References to Record Fields
	Aggregate Assignment

	Additional Character Sets
	Character and Key Code Charts for Windows* OS
	ASCII Character Codes for Windows* Systems
	ASCII Character Codes Chart 1
	ASCII Character Codes Chart 2: IBM* Character Set

	ANSI Character Codes for Windows* Systems
	ANSI Character Codes Chart

	Key Codes for Windows* Systems
	Key Codes Chart 1
	Key Codes Chart 2

	ASCII Character Set for Linux* OS and Mac OS* X

	Data Representation Models
	Model for Integer Data
	Model for Real Data
	Model for Bit Data

	Run-Time Library Routines
	Module Routines
	OpenMP* Fortran Routines

	Summary of Language Extensions
	Source Forms
	Names
	Character Sets
	Intrinsic Data Types
	Constants
	Expressions and Assignment
	Specification Statements
	Execution Control
	Program Units and Procedures
	Compilation Control Lines and Statements
	Built-In Functions
	I/O Statements
	I/O Formatting
	File Operation Statements
	Compiler Directives
	Intrinsic Procedures
	Additional Language Features
	Run-Time Library Routines

	A to Z Reference
	Language Summary Tables
	Statements for Program Unit Calls and Definitions
	Statements Affecting Variables
	Statements for Input and Output
	Compiler Directives
	Program Control Statements and Procedures
	Inquiry Intrinsic Functions
	Random Number Intrinsic Procedures
	Date and Time Intrinsic Subroutines
	Keyboard and Speaker Library Routines
	Statements and Intrinsic Procedures for Memory Allocation and Deallocation
	Intrinsic Functions for Arrays
	Intrinsic Functions for Numeric and Type Conversion
	Trigonometric, Exponential, Root, and Logarithmic Intrinsic Procedures
	Intrinsic Functions for Floating-Point Inquiry and Control
	Character Intrinsic Functions
	Intrinsic Procedures for Bit Operation and Representation
	QuickWin Library Routines (W*32, W*64)
	Graphics Library Routines (W*32, W*64)
	Portability Library Routines
	National Language Support Library Routines (W*32, W*64)
	POSIX* Library Procedures
	Dialog Library Routines (W*32, W*64)
	COM and Automation Library Routines (W*32, W*64))
	Miscellaneous Run-Time Library Routines
	Intrinsic Functions Not Allowed as Actual Arguments

	A to B
	ABORT
	ABOUTBOXQQ (W*32, W*64)
	ABS
	ACCEPT
	ACCESS
	ACHAR
	ACOS
	ACOSD
	ACOSH
	ADJUSTL
	ADJUSTR
	AIMAG
	AINT
	ALARM
	ALIAS
	ALL
	ALLOCATABLE
	ALLOCATE
	ALLOCATED
	AND
	ANINT
	ANY
	APPENDMENUQQ (W*32, W*64)
	ARC, ARC_W (W*32, W*64)
	ASIN
	ASIND
	ASINH
	ASSIGN - Label Assignment
	Assignment(=) - Defined Assignment
	Assignment - Intrinsic
	ASSOCIATED
	ASSUME_ALIGNED
	ASYNCHRONOUS
	ATAN
	ATAN2
	ATAN2D
	ATAND
	ATANH
	ATOMIC
	ATTRIBUTES
	ATTRIBUTES ALIAS
	ATTRIBUTES ALIGN
	ATTRIBUTES ALLOCATABLE
	ATTRIBUTES ALLOW_NULL
	ATTRIBUTES ARRAY_VISUALIZER (W*32, W*64)
	ATTRIBUTES C
	ATTRIBUTES DECORATE
	ATTRIBUTES DEFAULT
	ATTRIBUTES DLLEXPORT (W*32, W*64)
	ATTRIBUTES DLLEXPORT (W*32, W*64)
	ATTRIBUTES EXTERN
	ATTRIBUTES FORCEINLINE
	ATTRIBUTES IGNORE_LOC
	ATTRIBUTES FORCEINLINE
	ATTRIBUTES MIXED_STR_LEN_ARG and NOMIXED_STR_LEN_ARG
	ATTRIBUTES NO_ARG_CHECK
	ATTRIBUTES FORCEINLINE
	ATTRIBUTES MIXED_STR_LEN_ARG and NOMIXED_STR_LEN_ARG
	ATTRIBUTES REFERENCE
	ATTRIBUTES C
	ATTRIBUTES REFERENCE
	ATTRIBUTES VARYING

	AUTOAddArg (W*32, W*64)
	AUTOAllocateInvokeArgs (W*32, W*64)
	AUTODeallocateInvokeArgs (W*32, W*64)
	AUTOGetExceptInfo (W*32, W*64)
	AUTOGetProperty (W*32, W*64)
	AUTOGetPropertyByID (W*32, W*64)
	AUTOGetPropertyInvokeArgs (W*32, W*64)
	AUTOInvoke (W*32, W*64)
	AUTOMATIC
	AUTOSetProperty (W*32, W*64)
	AUTOSetPropertyByID (W*32, W*64)
	AUTOSetPropertyInvokeArgs (W*32, W*64)
	BACKSPACE
	BADDRESS
	BARRIER
	BEEPQQ
	BESJ0, BESJ1, BESJN, BESY0, BESY1, BESYN
	BIC, BIS
	BIND
	BIT
	BIT_SIZE
	BLOCK DATA
	BSEARCHQQ
	BTEST
	BYTE

	C to D
	C_ASSOCIATED
	C_F_POINTER
	C_F_PROCPOINTER
	C_FUNLOC
	C_LOC
	CACHESIZE
	CALL
	CASE
	CDFLOAT
	CEILING
	CHANGEDIRQQ
	CHANGEDRIVEQQ
	CHAR
	CHARACTER
	CHDIR
	CHMOD
	CLEARSCREEN (W*32, W*64)
	CLEARSTATUSFPQQ
	CLICKMENUQQ (W*32, W*64)
	CLOCK
	CLOCKX
	CLOSE
	CMPLX
	COMAddObjectReference (W*32, W*64)
	COMCLSIDFromProgID (W*32, W*64)
	COMCLSIDFromString (W*32, W*64)
	COMCreateObjectByGUID (W*32, W*64)
	COMCreateObjectByProgID (W*32, W*64)
	COMGetActiveObjectByGUID (W*32, W*64)
	COMGetActiveObjectByProgID (W*32, W*64)
	COMGetFileObject (W*32, W*64)
	COMInitialize (W*32, W*64)
	COMIsEqualGUID (W*32, W*64)
	COMMAND_ARGUMENT_COUNT
	COMMITQQ
	COMMON
	COMPLEX
	COMPLINT, COMPLREAL, COMPLLOG
	COMQueryInterface (W*32, W*64)
	COMReleaseObject (W*32, W*64)
	COMStringFromGUID (W*32, W*64)
	COMUninitialize (W*32, W*64)
	CONJG
	CONTAINS
	CONTINUE
	COPYIN
	COPYPRIVATE
	COS
	COSD
	COSH
	COTAN
	COTAND
	COUNT
	CPU_TIME
	CRITICAL
	CSHIFT
	CSMG
	CTIME
	CYCLE
	DATA
	DATE Intrinsic Procedure
	DATE Portability Routine
	DATE4
	DATE_AND_TIME
	DBESJ0, DBESJ1, DBESJN, DBESY0, DBESY1, DBESYN
	DBLE
	DCLOCK
	DCMPLX
	DEALLOCATE
	DECLARE and NODECLARE
	DECODE
	DEFAULT
	DEFINE
	DEFINE FILE
	DELDIRQQ
	DELETE
	DELETEMENUQQ (W*32, W*64)
	DELFILESQQ
	Derived Type (TYPE)
	DFLOAT
	DFLOATI, DFLOATJ, DFLOATK
	DIGITS
	DIM
	DIMENSION
	DISPLAYCURSOR
	DISTRIBUTE POINT
	DLGEXIT
	DLGFLUSH
	DLGGET, DLGGETINT, DLGGETLOG, DLGGETCHAR
	DLGINIT, DLGINITWITHRESOURCEHANDLE
	DLGISDLGMESSAGE
	DLGMODAL, DLGMODALWITHPARENT
	DLGMODELESS
	DLGSENDCTRLMESSAGE
	DLGSET, DLGSETINT, DLGSETLOG, DLGSETCHAR
	DLGSETCTRLEVENTHANDLER
	DLGSETRETURN
	DLGSETSUB
	DLGSETTITLE
	DLGUNINIT
	DNUM
	DO
	DO Directive
	DO WHILE
	DOT_PRODUCT
	DOUBLE COMPLEX
	DOUBLE PRECISION
	DPROD
	DRAND, DRANDM
	DRANSET
	DREAL
	DSHIFTL
	DSHIFTR
	DTIME

	E to F
	ELEMENTAL
	ELLIPSE, ELLIPSE_W (W*32, W*64)
	ELSE
	ELSE Directive
	ELSEIF Directive
	ELSE IF
	ELSE WHERE
	ENCODE
	END
	END DO
	ENDIF Directive
	END IF
	ENDFILE
	END FORALL
	END INTERFACE
	END MAP
	END SELECT
	END STRUCTURE
	Derived Type (TYPE)
	END UNION
	END WHERE
	ENTRY
	EOF
	EOSHIFT
	EPSILON
	EQUIVALENCE
	ERF
	ERFC
	ERRSNS
	ETIME
	EXIT Statement
	EXIT Subroutine
	EXP
	EXPONENT
	EXTERNAL
	FDATE
	FGETC
	FIND
	FINDFILEQQ
	FIRSTPRIVATE
	FIXEDFORMLINESIZE
	FLOAT
	FLOODFILL, FLOODFILL_W (W*32, W*64)
	FLOODFILLRGB, FLOODFILLRGB_W (W*32, W*64)
	FLOOR
	FLUSH Directive
	FLUSH Statement
	FLUSH Subroutine
	FOCUSQQ (W*32, W*64)
	FOR_DESCRIPTOR_ASSIGN (W*32, W*64)
	FOR_GET_FPE
	FOR_RTL_FINISH_
	FOR_RTL_INIT_
	FOR_SET_FPE
	FOR_SET_REENTRANCY
	FORALL
	FORMAT
	FP_CLASS
	FPUTC
	FRACTION
	FREE
	FREEFORM
	FSEEK
	FSTAT
	FTELL, FTELLI8
	FULLPATHQQ
	FUNCTION

	G
	GERROR
	GETACTIVEQQ (W*32, W*64)
	GETARCINFO (W*32, W*64)
	GETARG
	GETBKCOLOR (W*32, W*64)
	GETBKCOLORRGB (W*32, W*64)
	GETC
	GETCHARQQ
	GETCOLOR (W*32, W*64)
	GETCOLORRGB (W*32, W*64)
	GET_COMMAND
	GET_COMMAND_ARGUMENT
	GETCONTROLFPQQ
	GETCURRENTPOSITION, GETCURRENTPOSITION_W (W*32, W*64)
	GETCWD
	GETDAT
	GETDRIVEDIRQQ
	GETDRIVESIZEQQ
	GETDRIVESQQ
	GETENV
	GET_ENVIRONMENT_VARIABLE
	GETENVQQ
	GETEXCEPTIONPTRSQQ (i32, i64em)
	GETEXITQQ (W*32, W*64)
	GETFILEINFOQQ
	GETFILLMASK (W*32, W*64)
	GETFONTINFO (W*32, W*64)
	GETGID
	GETGTEXTEXTENT (W*32, W*64)
	GETGTEXTROTATION (W*32, W*64)
	GETHWNDQQ (W*32, W*64)
	GETIMAGE, GETIMAGE_W
	GETLASTERROR
	GETLASTERRORQQ
	GETLINESTYLE (W*32, W*64)
	GETLOG
	GETPHYSCOORD (W*32, W*64)
	GETPID
	GETPIXEL, GETPIXEL_W (W*32, W*64)
	GETPIXELRGB, GETPIXELRGB_W (W*32, W*64)
	GETPIXELS (W*32, W*64)
	GETPIXELSRGB (W*32, W*64)
	GETPOS, GETPOSI8
	GETSTATUSFPQQ
	GETSTRQQ
	GETTEXTCOLOR (W*32, W*64)
	GETTEXTCOLORRGB (W*32, W*64)
	GETTEXTPOSITION (W*32, W*64)
	GETTEXTWINDOW (W*32, W*64)
	GETTIM
	GETTIMEOFDAY
	GETUID
	GETUNITQQ (W*32, W*64)
	GETVIEWCOORD, GETVIEWCOORD_W (W*32, W*64)
	GETWINDOWCONFIG (W*32, W*64)
	GETWINDOWCOORD (W*32, W*64)
	GETWRITEMODE (W*32, W*64)
	GETWSIZEQQ (W*32, W*64)
	GMTIME
	GOTO - Assigned
	GOTO - Computed
	GOTO - Unconditional
	GRSTATUS (W*32, W*64)

	H to I
	HOSTNAM
	HUGE
	IACHAR
	IAND
	IARGC
	IBCHNG
	IBCLR
	IBITS
	IBSET
	ICHAR
	IDATE Intrinsic Procedure
	IDATE Portability Routine
	IDATE4
	IDENT
	IDFLOAT
	IEEE_CLASS
	IEEE_COPY_SIGN
	IEEE_GET_FLAG
	IEEE_GET_HALTING_MODE
	IEEE_GET_ROUNDING_MODE
	IEEE_GET_STATUS
	IEEE_GET_UNDERFLOW_MODE
	IEEE_IS_FINITE
	IEEE_IS_NAN
	IEEE_IS_NEGATIVE
	IEEE_IS_NORMAL
	IEEE_LOGB
	IEEE_NEXT_AFTER
	IEEE_REM
	IEEE_RINT
	IEEE_SCALB
	IEEE_SELECTED_REAL_KIND
	IEEE_SET_FLAG
	IEEE_SET_HALTING_MODE
	IEEE_SET_ROUNDING_MODE
	IEEE_SET_STATUS
	IEEE_SET_UNDERFLOW_MODE
	IEEE_SUPPORT_DATATYPE
	IEEE_SUPPORT_DENORMAL
	IEEE_SUPPORT_DIVIDE
	IEEE_SUPPORT_FLAG
	IEEE_SUPPORT_HALTING
	IEEE_SUPPORT_INF
	IEEE_SUPPORT_IO
	IEEE_SUPPORT_NAN
	IEEE_SUPPORT_ROUNDING
	IEEE_SUPPORT_SQRT
	IEEE_SUPPORT_STANDARD
	IEEE_SUPPORT_UNDERFLOW_CONTROL
	IEEE_UNORDERED
	IEEE_VALUE
	IEEE_FLAGS
	IEEE_HANDLER
	IEOR
	IERRNO
	IF - Arithmetic
	IF - Logical
	IF Construct
	IF Directive Construct
	IF DEFINED Directive
	IFIX
	IFLOATI, IFLOATJ
	ILEN
	IMAGESIZE, IMAGESIZE_W (W*32, W*64)
	IMPLICIT
	IMPORT
	INCHARQQ (W*32, W*64)
	INCLUDE
	INDEX
	INITIALIZEFONTS (W*32, W*64)
	INITIALSETTINGS (W*32, W*64)
	INMAX
	INQFOCUSQQ (W*32, W*64)
	INQUIRE
	INSERTMENUQQ (W*32, W*64)
	INT
	INTC
	INT_PTR_KIND
	INTEGER
	INTEGER Directive
	INTEGERTORGB (W*32, W*64)
	INTENT
	INTERFACE
	INTERFACE TO
	INTRINSIC
	INUM
	IOR
	IPXFARGC
	IPXFCONST
	IPXFLENTRIM
	IPXFWEXITSTATUS (L*X, M*X)
	IPXFWSTOPSIG (L*X, M*X)
	IPXFWTERMSIG (L*X, M*X)
	IRAND, IRANDM
	IRANGET
	IRANSET
	ISATTY
	IS_IOSTAT_END
	IS_IOSTAT_EOR
	ISHA
	ISHC
	ISHFT
	ISHFTC
	ISHL
	ISNAN
	ITIME
	IVDEP
	IXOR

	J to L
	JABS
	JDATE
	JDATE4
	JNUM
	KILL
	KIND
	KNUM
	LASTPRIVATE
	LBOUND
	LCWRQQ
	LEADZ
	LEN
	LEN_TRIM
	LGE
	LGT
	LINETO, LINETO_W (W*32, W*64)
	LINETOAR (W*32, W*64)
	LINETOAREX (W*32, W*64)
	LLE
	LLT
	LNBLNK
	LOADIMAGE, LOADIMAGE_W (W*32, W*64)
	LOC
	%LOC
	LOG
	LOG10
	LOGICAL
	LOGICAL Function
	LONG
	LOOP COUNT
	LSHIFT
	LSTAT
	LTIME

	M to N
	MAKEDIRQQ
	MALLOC
	END MAP
	MASTER
	MATMUL
	MAX
	MAXEXPONENT
	MAXLOC
	MAXVAL
	MBCharLen
	MBConvertMBToUnicode
	MBConvertUnicodeToMB
	MBCurMax
	MBINCHARQQ
	MBINDEX
	MBJISToJMS, MBJMSToJIS
	MBLead
	MBLen
	MBLen_Trim
	MBLGE, MBLGT, MBLLE, MBLLT, MBLEQ, MBLNE
	MBNext
	MBPrev
	MBSCAN
	MBStrLead
	MBVERIFY
	MCLOCK
	MEMORYTOUCH (i64 only)
	MEMREF_CONTROL (i64 only)
	MERGE
	MESSAGE
	MESSAGEBOXQQ (W*32, W*64)
	MIN
	MINEXPONENT
	MINLOC
	MINVAL
	MM_PREFETCH
	MOD
	MODIFYMENUFLAGSQQ (W*32, W*64)
	MODIFYMENUROUTINEQQ (W*32, W*64)
	MODIFYMENUSTRINGQQ (W*32, W*64)
	MODULE
	MODULE PROCEDURE
	MODULO
	MOVE_ALLOC
	MOVETO, MOVETO_W (W*32, W*64)
	MULT_HIGH (i64 only)
	MULT_HIGH_SIGNED (i64 only)
	MVBITS
	NAMELIST
	NARGS
	NEAREST
	NEW_LINE
	NINT
	NLSEnumCodepages
	NLSEnumLocales
	NLSFormatCurrency
	NLSFormatDate
	NLSFormatNumber
	NLSFormatTime
	NLSGetEnvironmentCodepage
	NLSGetLocale
	NLSGetLocaleInfo
	NLSSetEnvironmentCodepage
	NLSSetLocale
	FREEFORM
	NOOPTIMIZE
	NOPREFETCH
	NOSTRICT
	NOSWP (i64 only)
	NOT
	NOUNROLL
	NOVECTOR
	NULL
	NULLIFY

	O to P
	OBJCOMMENT
	OPEN
	OPTIONAL
	OPTIONS Statement
	NOOPTIMIZE
	OPTIONS Directive
	OR
	ORDERED
	OUTGTEXT (W*32, W*64)
	OUTTEXT (W*32, W*64)
	PACK Function
	PACK Directive
	PACKTIMEQQ
	PARALLEL
	PARALLEL ALWAYS
	PARALLEL ALWAYS
	PARALLEL DO
	PARALLEL SECTIONS
	PARALLEL WORKSHARE
	PARAMETER
	PASSDIRKEYSQQ (W*32, W*64)
	PAUSE
	PEEKCHARQQ
	PERROR
	PIE, PIE_W (W*32, W*64)
	POINTER - Fortran 95/90
	POINTER - Integer
	POLYBEZIER, POLYBEZIER_W (W*32, W*64)
	POLYBEZIERTO, POLYBEZIERTO_W (W*32, W*64)
	POLYGON, POLYGON_W (W*32, W*64)
	POLYLINEQQ (W*32, W*64)
	POPCNT
	POPPAR
	PRECISION
	NOPREFETCH
	PRESENT
	PRINT
	PRIVATE Statement
	PRIVATE Clause
	PRODUCT
	PROGRAM
	PROTECTED
	PSECT
	PUBLIC
	PURE
	PUTC
	PUTIMAGE, PUTIMAGE_W (W*32, W*64)
	PXF(type)GET
	PXF(type)SET
	PXFA(type)GET
	PXFA(type)SET
	PXFACCESS
	PXFALARM
	PXFCALLSUBHANDLE
	PXFCFGETISPEED (L*X, M*X)
	PXFCFGETOSPEED (L*X, M*X)
	PXFCFSETISPEED (L*X, M*X)
	PXFCFSETOSPEED (L*X, M*X)
	PXFCHDIR
	PXFCHMOD
	PXFCHOWN (L*X, M*X)
	PXFCLEARENV
	PXFCLOSE
	PXFCLOSEDIR
	PXFCONST
	PXFCREAT
	PXFCTERMID
	PXFDUP, PXFDUP2
	PXFE(type)GET
	PXFE(type)SET
	PXFEXECV
	PXFEXECVE
	PXFEXECVP
	PXFEXIT, PXFFASTEXIT
	PXFFCNTL (L*X, M*X)
	PXFFDOPEN
	PXFFFLUSH
	PXFFGETC
	PXFFILENO
	PXFFORK (L*X, M*X)
	PXFFPATHCONF
	PXFFPUTC
	PXFFSEEK
	PXFFSTAT
	PXFFTELL
	PXFGETARG
	PXFGETATTY
	PXFGETC
	PXFGETCWD
	PXFGETEGID (L*X, M*X)
	PXFGETENV
	PXFGETEUID (L*X, M*X)
	PXFGETGID (L*X, M*X)
	PXFGETGRGID (L*X, M*X)
	PXFGETGRNAM (L*X, M*X)
	PXFGETGROUPS (L*X, M*X)
	PXFGETLOGIN
	PXFGETPGRP (L*X, M*X)
	PXFGETPID
	PXFGETPPID
	PXFGETPWNAM (L*X, M*X)
	PXFGETPWUID (L*X, M*X)
	PXFGETSUBHANDLE
	PXFGETUID (L*X, M*X)
	PXFISBLK
	PXFISCHR
	PXFISCONST
	PXFISDIR
	PXFISFIFO
	PXFISREG
	PXFKILL
	PXFLINK
	PXFLOCALTIME
	PXFLSEEK
	PXFMKDIR
	PXFMKFIFO (L*X, M*X)
	PXFOPEN
	PXFOPENDIR
	PXFPATHCONF
	PXFPAUSE
	PXFPIPE
	PXFPOSIXIO
	PXFPUTC
	PXFREAD
	PXFREADDIR
	PXFRENAME
	PXFREWINDDIR
	PXFRMDIR
	PXFSETENV
	PXFSETGID (L*X, M*X)
	PXFSETPGID (L*X, M*X)
	PXFSETSID (L*X, M*X)
	PXFSETUID (L*X, M*X)
	PXFSIGACTION
	PXFSIGADDSET (L*X, M*X)
	PXFSIGDELSET (L*X, M*X)
	PXFSIGEMPTYSET (L*X, M*X)
	PXFSIGFILLSET (L*X, M*X)
	PXFSIGISMEMBER (L*X, M*X)
	PXFSIGPENDING (L*X, M*X)
	PXFSIGPROCMASK (L*X, M*X)
	PXFSIGSUSPEND (L*X, M*X)
	PXFSLEEP
	PXFSTAT
	PXFSTRUCTCOPY
	PXFSTRUCTCREATE
	PXFSTRUCTFREE
	PXFSYSCONF
	PXFTCDRAIN (L*X, M*X)
	PXFTCFLOW (L*X, M*X)
	PXFTCFLUSH (L*X, M*X)
	PXFTCGETATTR (L*X, M*X)
	PXFTCGETPGRP (L*X, M*X)
	PXFTCSENDBREAK (L*X, M*X)
	PXFTCSETATTR (L*X, M*X)
	PXFTCSETPGRP (L*X, M*X)
	PXFTIME
	PXFTIMES
	PXFTTYNAM (L*X, M*X)
	PXFUCOMPARE
	PXFUMASK
	PXFUNAME
	PXFUNLINK
	PXFUTIME
	PXFWAIT (L*X, M*X)
	PXFWAITPID (L*X, M*X)
	PXFWIFEXITED (L*X, M*X)
	PXFWIFSIGNALED (L*X, M*X)
	PXFWIFSTOPPED (L*X, M*X)
	PXFWRITE

	Q to R
	QCMPLX
	QEXT
	QFLOAT
	QNUM
	QRANSET
	QREAL
	QSORT
	RADIX
	RAISEQQ
	RAN
	RAND, RANDOM
	RANDOM
	RANDOM_NUMBER
	RANDOM_SEED
	RANDU
	RANF
	RANGE
	RANGET
	RANSET
	READ
	REAL Statement
	REAL Directive
	REAL Function
	RECORD
	RECTANGLE, RECTANGLE_W (W*32, W*64)
	RECURSIVE
	REDUCTION
	%REF
	REGISTERMOUSEEVENT (W*32, W*64)
	REMAPALLPALETTERGB, REMAPPALETTERGB (W*32, W*64)
	RENAME
	RENAMEFILEQQ
	REPEAT
	RESHAPE
	RESULT
	RETURN
	REWIND
	REWRITE
	RGBTOINTEGER (W*32, W*64)
	RINDEX
	RNUM
	RRSPACING
	RSHIFT
	RTC
	RUNQQ

	S
	SAVE
	SAVEIMAGE, SAVEIMAGE_W (W*32, W*64)
	SCALE
	SCAN
	SCANENV
	SCROLLTEXTWINDOW (W*32, W*64)
	SCWRQQ
	SECNDS Intrinsic Procedure
	SECNDS Portability Routine
	SECTIONS
	SEED
	END SELECT
	SELECTED_CHAR_KIND
	SELECTED_INT_KIND
	SELECTED_REAL_KIND
	SEQUENCE
	SETACTIVEQQ (W*32, W*64)
	SETBKCOLOR (W*32, W*64)
	SETBKCOLORRGB (W*32, W*64)
	SETCLIPRGN (W*32, W*64)
	SETCOLOR (W*32, W*64)
	SETCOLORRGB (W*32, W*64)
	SETCONTROLFPQQ
	SETDAT
	SETENVQQ
	SETERRORMODEQQ
	SETEXITQQ
	SET_EXPONENT
	SETFILEACCESSQQ
	SETFILETIMEQQ
	SETFILLMASK (W*32, W*64)
	SETFONT (W*32, W*64)
	SETGTEXTROTATION (W*32, W*64)
	SETLINESTYLE (W*32, W*64)
	SETMESSAGEQQ (W*32, W*64)
	SETMOUSECURSOR (W*32, W*64)
	SETPIXEL, SETPIXEL_W (W*32, W*64)
	SETPIXELRGB, SETPIXELRGB_W (W*32, W*64)
	SETPIXELS (W*32, W*64)
	SETPIXELSRGB (W*32, W*64)
	SETTEXTCOLOR (W*32, W*64)
	SETTEXTCOLORRGB (W*32, W*64)
	SETTEXTCURSOR (W*32, W*64)
	SETTEXTPOSITION (W*32, W*64)
	SETTEXTWINDOW (W*32, W*64)
	SETTIM
	SETVIEWORG (W*32, W*64)
	SETVIEWPORT
	SETWINDOW (W*32, W*64)
	SETWINDOWCONFIG (W*32, W*64)
	SETWINDOWMENUQQ (W*32, W*64)
	SETWRITEMODE (W*32, W*64)
	SETWSIZEQQ (W*32, W*64)
	SHAPE
	SHARED
	SHIFTL
	SHIFTR
	SHORT
	SIGN
	SIN
	SIND
	SINH
	SIGNAL
	SIGNALQQ
	SINGLE
	SIZE
	SIZEOF
	SLEEP
	SLEEPQQ
	SNGL
	SORTQQ
	SPACING
	SPLITPATHQQ
	SPORT_CANCEL_IO
	SPORT_CONNECT
	SPORT_CONNECT_EX
	SPORT_GET_HANDLE
	SPORT_GET_STATE
	SPORT_GET_STATE_EX
	SPORT_GET_TIMEOUTS
	SPORT_PEEK_DATA
	SPORT_PEEK_LINE
	SPORT_PURGE
	SPORT_READ_DATA
	SPORT_READ_LINE
	SPORT_RELEASE
	SPORT_SET_STATE
	SPORT_SET_STATE_EX
	SPORT_SET_TIMEOUTS
	SPORT_SHOW_STATE
	SPORT_SPECIAL_FUNC
	SPORT_WRITE_DATA
	SPORT_WRITE_LINE
	SPREAD
	SQRT
	SRAND
	SSWRQQ
	STAT
	Statement Function
	STATIC
	STOP
	NOSTRICT
	END STRUCTURE
	SUBROUTINE
	SUM
	NOSWP (i64 only)
	SYSTEM
	SYSTEM_CLOCK
	SYSTEMQQ

	T to Z
	TAN
	TAND
	TANH
	TARGET
	TASK
	TASKWAIT
	THREADPRIVATE
	TIME Intrinsic Procedure
	TIME Portability Routine
	TIMEF
	TINY
	TRACEBACKQQ
	TRAILZ
	TRANSFER
	TRANSPOSE
	TRIM
	TTYNAM
	Derived Type (TYPE)
	Type Declarations
	DEFINE
	END UNION
	UNLINK
	UNPACK
	UNPACKTIMEQQ
	UNREGISTERMOUSEEVENT (W*32, W*64)
	NOUNROLL
	UNROLL_AND_JAM
	USE
	%VAL
	VALUE
	VECTOR ALIGNED
	NOVECTOR
	VECTOR TEMPORAL and VECTOR NONTEMPORAL (i32, i64em)
	VECTOR TEMPORAL and VECTOR NONTEMPORAL (i32, i64em)
	VECTOR ALIGNED
	VERIFY
	VIRTUAL
	VOLATILE
	WAIT
	WAITONMOUSEEVENT (W*32, W*64)
	WHERE
	WORKSHARE
	WRAPON (W*32, W*64)
	WRITE
	XOR
	ZEXT

	Glossary
	Glossary A
	Glossary B
	Glossary C
	Glossary D
	Glossary E
	Glossary F
	Glossary G
	Glossary H
	Glossary I
	Glossary K
	Glossary L
	Glossary M
	Glossary N
	Glossary O
	Glossary P
	Glossary Q
	Glossary R
	Glossary S
	Glossary T
	Glossary U
	Glossary V
	Glossary W
	Glossary Z

	Index

