Langevin dynamics modified Velocity Verlet algorithm

Martin Kröger ${ }^{1}$
${ }^{l}$ Department of Materials, Polymer Physics, ETH Zurich, CH-8093 Zurich, Switzerland http://www.complexfluids.ethz.ch

Notation: Time step Δ, position r, velocity v, force $f=$ $f(r)$, half time step $\Delta^{\prime}=\Delta / 2$ and mass is set to unity. The equations hold for any dimension separately. Create an initial r, initial v, and calculate $f=f(r)$. Each subsequent time step does the following.

Classical Velocity Verlet algorithm

$$
\begin{align*}
v= & v+\Delta^{\prime} f \\
r= & r+\Delta v \\
& \text { calculate } f=f(r) \\
v= & v+\Delta^{\prime} f \tag{1}
\end{align*}
$$

typically supplemented by a temperature T control ensuring $\left\langle v^{2}\right\rangle=k_{\mathrm{B}} T$.

Langevin Modified Velocity Verlet algorithm

with particle friction coefficient ζ and at temperature T.
choose η from $\langle\eta\rangle=0,\left\langle\eta^{2}\right\rangle=1$

$$
\begin{aligned}
& v=v+\Delta^{\prime} f+b \eta \\
& r=r+c v
\end{aligned}
$$

calculate $f=f(r)$
$v=a v+b \eta+\Delta^{\prime} f$,
where we abbreviated the constants

$$
\begin{align*}
a & =(2-\zeta \Delta) /(2+\zeta \Delta), \tag{3}\\
b & =\sqrt{k_{\mathrm{B}} T \zeta \Delta^{\prime}} \tag{4}\\
c & =2 \Delta /(2+\zeta \Delta) \tag{5}
\end{align*}
$$

Comments

The modified algorithm 2 does not require a temperature control and reduces to the classical algorithm 1 for the frictionless case of $\zeta=0$ implying $a=1, b=0, c=\Delta$. The modified algorithm requires a single independent normal distributed random number η for each coordinate and each time step. In the absence of forces, $f=0$, the modified algorithm simplifies to $r=r+c(v+b \eta)$ and

$$
\begin{equation*}
v=a v+\frac{b c}{\Delta^{\prime}} \eta \tag{6}
\end{equation*}
$$

If we begin with $v_{0}=0$, and then repeat calculating new velocities $v_{1,2, .,, M}$ using eq 6 iteratively, we ultimately generate a Gaussian distributed set of v values with the feature

$$
\begin{equation*}
\langle v\rangle=0, \quad\left\langle v^{2}\right\rangle=k_{\mathrm{B}} T \tag{7}
\end{equation*}
$$

irrespective the precise value for ζ as long as $\zeta>0$ and thus $a<1$. Proof:

$$
\begin{align*}
\left\langle v^{2}\right\rangle & =\frac{1}{M} \sum_{j=0}^{M-1} v_{j}^{2} \\
& =\frac{4 b^{2} c^{2}}{M \Delta^{2}} \sum_{j=0}^{M-1} a^{2 j}(M-1-j) \\
& =\frac{4 b^{2} c^{2}}{M \Delta^{2}} \frac{a^{2 M}+M\left(1-a^{2}\right)-1}{\left(1-a^{2}\right)^{2}} \tag{8}
\end{align*}
$$

and thus

$$
\begin{equation*}
\lim _{M \rightarrow \infty}\left\langle v^{2}\right\rangle=\frac{4 b^{2} c^{2}}{\left(1-a^{2}\right) \Delta^{2}}=k_{\mathrm{B}} T \tag{9}
\end{equation*}
$$

For larger ζ, the more quickly is the Gaussian approached. For this calculation we assumed $v_{0}=0$. In any case the initial value v_{0} becomes irrelevant in the limit $M \rightarrow \infty$.
[1] M. Kröger, Models for polymeric and anisotropic liquids (Springer, Berlin, 2005)

