Langevin dynamics modified Velocity Verlet algorithm
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Notation: Time step A, position 7, velocity v, force f =
f(r), half time step A’ = A/2 and mass is set to unity. The
equations hold for any dimension separately. Create an initial
r, initial v, and calculate f = f(r). Each subsequent time
step does the following.

Classical Velocity Verlet algorithm

v = v+ A'f,
r = r+ Av,
calculate f = f(r)
v =uv+Af ey

typically supplemented by a temperature 1" control ensuring
<’U2> = ]CBT

Langevin Modified Velocity Verlet algorithm

with particle friction coefficient ¢ and at temperature 7.

choose 7 from (n) = 0, (n?) =1
v = v+ A'f+bn,

r = r+cv,
calculate f = f(r)
v = av+bn+ A'f, ()

where we abbreviated the constants

a = (2-CA)/(2+¢A), 3)
b = VksTCA, “)
c = 2A/(2+¢A) o)

Comments

The modified algorithm 2 does not require a temperature
control and reduces to the classical algorithm 1 for the fric-
tionless case of ( = 0 implying a = 1,5 = 0, ¢ = A. The
modified algorithm requires a single independent normal dis-
tributed random number 7 for each coordinate and each time
step. In the absence of forces, f = 0, the modified algorithm
simplifies to » = r + ¢(v + bn) and

b
v = av+KC,n (6)

If we begin with vy = 0, and then repeat calculating new ve-
locities vy 2, as using eq 6 iteratively, we ultimately generate
a Gaussian distributed set of v values with the feature

() =0, (") =ksT )
irrespective the precise value for ¢ as long as ¢ > 0 and thus
a < 1. Proof:
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For larger ¢, the more quickly is the Gaussian approached. For
this calculation we assumed vy = 0. In any case the initial
value vg becomes irrelevant in the limit M — oo.
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