Langevin dynamics modified Velocity Verlet algorithm

Martin Kröger¹

¹Department of Materials, Polymer Physics, ETH Zurich, CH–8093 Zurich, Switzerland http://www.complexfluids.ethz.ch

Notation: Time step Δ , position r, velocity v, force f = f(r), half time step $\Delta' = \Delta/2$ and mass is set to unity. The equations hold for any dimension separately. Create an initial r, initial v, and calculate f = f(r). Each subsequent time step does the following.

Classical Velocity Verlet algorithm

$$v = v + \Delta' f,$$

$$r = r + \Delta v,$$

calculate $f = f(r)$

$$v = v + \Delta' f$$
(1)

typically supplemented by a temperature T control ensuring $\langle v^2 \rangle = k_{\rm B} T$.

Langevin Modified Velocity Verlet algorithm

with particle friction coefficient ζ and at temperature T.

choose
$$\eta$$
 from $\langle \eta \rangle = 0$, $\langle \eta^2 \rangle = 1$
 $v = v + \Delta' f + b\eta$,
 $r = r + cv$,
calculate $f = f(r)$
 $v = av + b\eta + \Delta' f$, (2)

where we abbreviated the constants

$$a = (2 - \zeta \Delta)/(2 + \zeta \Delta), \tag{3}$$

$$b = \sqrt{k_{\rm B} T \zeta \Delta'},\tag{4}$$

$$c = 2\Delta/(2+\zeta\Delta) \tag{5}$$

The modified algorithm 2 does not require a temperature ntrol and reduces to the classical algorithm 1 for the fric-

Comments

control and reduces to the classical algorithm 1 for the frictionless case of $\zeta = 0$ implying $a = 1, b = 0, c = \Delta$. The modified algorithm requires a single independent normal distributed random number η for each coordinate and each time step. In the absence of forces, f = 0, the modified algorithm simplifies to $r = r + c(v + b\eta)$ and

$$v = av + \frac{bc}{\Delta'}\eta \tag{6}$$

If we begin with $v_0 = 0$, and then repeat calculating new velocities $v_{1,2,..,M}$ using eq 6 iteratively, we ultimately generate a Gaussian distributed set of v values with the feature

$$\langle v \rangle = 0, \qquad \langle v^2 \rangle = k_{\rm B}T$$
 (7)

irrespective the precise value for ζ as long as $\zeta > 0$ and thus a < 1. Proof:

$$\langle v^2 \rangle = \frac{1}{M} \sum_{j=0}^{M-1} v_j^2$$

$$= \frac{4b^2 c^2}{M\Delta^2} \sum_{j=0}^{M-1} a^{2j} (M-1-j)$$

$$= \frac{4b^2 c^2}{M\Delta^2} \frac{a^{2M} + M(1-a^2) - 1}{(1-a^2)^2}$$
(8)

and thus

$$\lim_{M \to \infty} \langle v^2 \rangle = \frac{4b^2 c^2}{(1-a^2)\Delta^2} = k_{\rm B}T \tag{9}$$

For larger ζ , the more quickly is the Gaussian approached. For this calculation we assumed $v_0 = 0$. In any case the initial value v_0 becomes irrelevant in the limit $M \to \infty$.

M. Kröger, Models for polymeric and anisotropic liquids (Springer, Berlin, 2005)