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Dynamics and Thermodynamics 
of Stochastic Nonlinear 
(Mesoscopic) Systems(Mesoscopic) Systems 



Mesoscopic description of 
physical and chemical systems:

• Gibbs (1870-1890s) – complex system in 
equilibrium in terms of ensembles q

• Einstein, Smoluchowski, Langevin – simple 
motions linear dynamics (1900-1910s)motions, linear dynamics (1900 1910s)

• Kramers (1940) – emergent rare events in 
nonlinear systemsnonlinear systems

• Onsager (1953) – general linear dynamical 
ththeory
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Mesoscopic description of a p p
system  - the mathematical tool:

• Kolmogorov (1933) – mathematical theory 
of random variables & stochastic processes p



The Aim of Statistical MechanicsThe Aim of Statistical Mechanics
``to develop a formalism from which one can p

deduce the macroscopic behavior of 
physical systems composed of a large p y y p g
number of molecules from a specification 
of the component molecular species, the p p
laws of force which govern intermolecular 
interactions, and the nature of their 
surroundings.'‘ [Montroll and Green, Ann. 
Rev. Phys. Chem. (1954)]y ( )



The Aim of Statistical Physics 
(now half a century later)(now half a century later)

T d l f li f hi hTo develop a formalism from which one 
can deduce the macroscopic behavior of 

l t f ifi ti fcomplex systems from a specification of 
the components, the laws of force which 

d i d th t f th igovern dynamics, and the nature of their 
surroundings. 



In Traditional Physics:y
• A law of a force is an interaction between 

particles;particles; 
• However, as many physical chemists 

k ll t i f i t fknow well, entropic force is not a force 
between particles; in fact it is an emergent 

tit l ti l l Th Fi k’entity on a population level.  The Fick’s 
law makes no sense on an individual 
B i ti l l lBrownian particle level;

• Still, a force is something that causes a 
system to change. 



What is thermodynamics?What is thermodynamics?

Thermodynamics deals with energy, entropy,  
h i b l d i l i hi itheir balance, and inter-relationships in 

complex systems 
( i hi lk)(no temperature in this talk).



What is Kolmogorov’s 
Stochastic Process?

It i th ti l d i ti f• It is a mathematical description of 
dynamics with “uncertainties”.  It has both 

t j t ti d l tia trajectory perspective and a population 
perspective. They are complementary; 

ith i l t tneither is a complete story.
• Classical dynamics of Newton and 

Laplace has singular distribution, quantum 
dynamics has distribution but no trajectory, 
stochastic process requires both.



For Stochastic Process with 
Continuous Paths

• Its trajectory can be described by a• Its trajectory can be described by a 
stochastic differential equation 
(generalized nonlinear Langevin equation)(generalized nonlinear Langevin equation)

• Its distribution is described by a Fokker-
Pl k (K l f d) tiPlanck (Kolmogorov forward) equation. 
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For Stochastic Process with 
Discrete States & Jumps

• Its trajectory can be described by the 
Bortz-Kalos-Lebowitz-Gillespie algorithm

• Its distribution is described by master 
equationq
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A disclaimer …



“Generalized” Energy, Entropy and gy, py
Free Energy in a Markov System
Let us assume a Markov dynamics has a 

unique stationary (invariant) distribution. This 
means that there is a probability based 

“force” pushing a system from low probability 
to high probability:
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[Haken & Graham, Kubo et al., Nicolis & Lefevere, Ao]



“Generalized” Energy Entropy“Generalized” Energy, Entropy 
and Free Energy – Cont.gy

Then one has the energetics of the system:
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F(t) is also known relative entropy. 



Then we uniquely havesource sinkThen we uniquely have,
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Non-negative energy input Ein
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Energy balance equation for a gy q
subsystem is a generalization of 

energy conservation of anenergy conservation of an 
isolated system:  We interpret y p

this mathematical result as “the 
1st L f th d i ”1st Law of thermodynamics”.



Furthermore we haveFurthermore, we have
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We interpret this mathematical 
result as “the 2nd Law of 

Thermodynamics”Thermodynamics .



Non-positive free energy changep gy g
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An alternative interpretation:An alternative interpretation:
Ein is also known as house-

Q
Boltzmann’s thesis

keeping heat Qhk
(Oono and Paniconi, 1998)

Prigogine’s thesis

(Oono and Paniconi, 1998)
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Two origins of irreversibility, ep is p
the total entropy production. 



For System with DetailedFor System with Detailed 
Balance:
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This is known to Gibbs: While forThis is known to Gibbs: While for 
canonical ensemble the 

appropriate potential function is 
free energy not entropy but thefree energy, not entropy, but the 
origin of 2nd Law is still entropy 

production.



For System with detailedFor System with detailed 
balance and uniform stationary 

distribution:
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This is a microcanonical ensemble.



Entropy Balance Equation py q
(de Groot and Mazur, 1962)
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Bergmann & Lebowitz (1955)]





Now Nonlinear Stochastic 
DynamicsDynamics … 



We consider Markov processesWe consider Markov processes 
with continuous path: 
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W ld lik t i t dWe would like to introduce a 
symmetric-anti-symmetricsymmetric anti symmetric 

decomposition for L[f ].  To do 
th t i t d ithat, we introduce an inner 

product:product:
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Then we haveThen we have
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More importantlyMore importantly
For dynamics with only the 
symmetric part
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The symmetric and anti-
symmetric parts of the dynamicssymmetric parts of the dynamics 

generalize nicely Fourier’s g y
dissipative dynamics (heat 

eq ation) and Ne ton’sequation) and Newton’s 
conservative dynamics (volume y (

preserving).





I. PrigogineI. Prigogine 
Nobel Lecture (1977)

[L]et us emphasize that one hundred fifty 
years after its formulation the second law ofyears after its formulation, the second law of 

thermodynamics still appears more as a 
program than a well defined theory in theprogram than a well defined theory in the 

usual sense, as nothing precise (except the 
sign) is said about the entropy productionsign) is said about the entropy production. 

Even the range of validity of this inequality is 
left unspecifiedleft unspecified.



Our Major ClaimOur Major Claim

For complex systems the thermodynamicFor complex systems, the thermodynamic 
laws are consequences of (nonlinear) 

dynamical descriptions of a system withdynamical descriptions of a system with 
stochastic. The mathematical theory of 
stochastic processes for mesoscopicstochastic processes for mesoscopic 
systems supports a (equilibrium and 

nonequilibrium) thermodynamic structurenonequilibrium) thermodynamic structure 
which consists of both 1st and 2nd Laws.



The validity of non-equilibirumThe validity of non equilibirum 
thermodynamics, therefore, no 

longer relies on “local equilibriumlonger relies on local equilibrium 
assumption” as in the past.  Rather 

th b d i hift d t th lidit fthe burden is shifted to the validity of 
a Markovian description of a natural 
process, be it from physics, biology, 
economics, or sociology. There is , gy

absolutely no assumption on 
linearity!linearity! 



Thermodynamic relations are y
not natural laws; they are 

th ti l th ithmathematical theorems with 
applications in nature.  pp

Dynamics is more 
f d t l it i th d l ffundamental; it is the model for 

natural phenomena.natural phenomena.  



Thermodynamic relations are y
not natural laws; they are 

th ti l th ithmathematical theorems with 
applications in nature.  pp

Dynamics is more 
f d t l it i th d l ffundamental; it is the model for 

natural phenomena.natural phenomena.  
Thermodynamics, however, is 

absolute.



Two further developments inTwo further developments in 
the making:

(1) Temperature as a measure(1) Temperature as a measure 
of “distance” between a 

mesoscopic system and its 
deterministic limit; zeroth lawdeterministic limit; zeroth law 

and third laws;;



(2) Stochastic Partial Differential 
Equations with real physical 

space (i e reaction diffusion)space (i.e., reaction-diffusion)

P Chi f li• Pope-Ching formalism;
• This is essentially the fluctuating 

hydrodynamic formalism;
• Again, Langevin and Fokker-Planck are g , g

just two different perspectives of a same 
dynamic process. y p





Thank You!


