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New Application: Rod-like Micellar Systems



Micellar systems: concentrated suspensions of surfactants

CMC Concentration



Rodlike Micellar Systems:  Shear-Banding

     



Previous Models for Rodlike Micellar Solutions



Current Approach Extends VCM under NET



VCM Central Concept:  A -> B Reaction
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General reaction kinetics in multicomponent systems

• Assume that the system: 
• involves n components, optionally with internal structure and 
• participates in I chemical reactions

• For each component, i = 1, 2, … n, the following primary variables are defined:
• the mass density, ρi
• the momentum density, mi, mi = ρivi

• (optionally) the internal structural tensor parameter density, Ci , Ci = ni ci

where:
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NET Extension for Chemical Reaction Rates

• It preserves standard transition theory kinetics that assigns for the corresponding 
forward (-) and reverse (+) flux of the reaction I, an Arhenius dependence on the 
corresponding affinity:
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• However, a generalized affinity is proposed in order to also accommodate other, 
nonequilibrium, changes associated with the reaction I, such as momentum and 
conformation (for entropy one needs a more general (GENERIC) formulation):
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Corresponding Dissipation Bracket*
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• It duly satisfies Onsager’s reciprocity relations
• It does not affect the overall momentum equation
• It redistributes among the products the excess momentum and conformation

* to within an entropy correction term, not needed for isothermal processes



NET Implementation for Homogeneous Micellar System



Key Element:  Dissipation Induced by the Reaction 



Final Equations



Comparison with the VCM Model



New Model Predictions



Model Non-Dimensionalization & Parameters



Homogeneous Shear Flow Predictions -1



Homogeneous Shear Flow Predictions -2



Comparison Against the VCM Model - 1



Comparison Against the VCM Model - 2



Length:

Non-dimensionalization

Three-Species Model

Dimensionless numbers

Time:

Stress:

Number density:
Conformation:

Pressure:

Viscosity ratio:

Ratios of relaxation times:

Reaction rates:



Three-Species Model: Planar Couette Flow



Three-Species Model: Planar Couette Flow



Three-Species Model: Planar Couette Flow



Conclusions

• We have corrected and significantly extended the description within NET that 
first appeared in our previous work [Beris and Edwards, 1994] of chemical 
reactions taking into account momentum and (for systems with internal 
structure) conformation transfers during each elementary reaction

• The new description allows for reaction rates that are conformation-dependent:  
- This can explain some very recent experiments on DNA scission under 
extension [Muller et al., ICR Lisbon, 2012]
- The new description has been applied to the modeling of a system of 
concentrated rodlike micelles:

• The new model produces very similar, non-monotonic shear stress vs. 
shear rate, predictions for homogeneous shear flows, while being 
thermodynamically consistent and requiring fewer parameters

• The new model can be easily extended to more physically realistic 
situations (for example, allowing for a third species)

• Future work:  Extension of the model to nonhomogeneous flows, along the lines 
of a multifluid approach in order to simulate shear-banding phenomena.  
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Two-Species Model: Uniaxial Extension



Two-Species Model: Uniaxial Extension



Cylindrical Couette Flow*: Shear Banding!

*  Preliminary results based on simplified diffusion model


