A Study of the Flow Behavior of Prevulcanised Natural Rubber Latex/singlewalled Carbon Nanotubes (SWCNT) Blends Using Rotational Viscometry and Power Law Model

Victor Chike Agbakoba¹, Clarence S. Yah^{2, 3}, Geoffrey S. Simate⁴ and Shanganyane Percy Hlangothi^{1*}

 ¹Centre for Rubber Science & Technology, Nelson Mandela University, University Way, P.O. Box 77000, Port Elizabeth, 6031, South Africa
²Wits Reproductive Health and HIV Institute (Wits RHI), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, P/Bag 3, Wits 2050, South Africa
³Department of Biochemistry and Microbiology, Nelson Mandela University, University Way, P.O. Box 77000, Port Elizabeth, 6031, South Africa
⁴School of Chemical and Metallurgical Engineering, University of Witwatersrand, Johannesburg, P/Bag 3, Wits 2050, South Africa

*Corresponding author: percy.hlangothi@mandela.ac.za

Received: 3.5.2018, Final version: 17.7.2018

ABSTRACT:

This work describes the flow behavior of prevulcanised natural rubber latex (PvNRL) and PvNRL nanoblends containing 0.02, 0.04, 0.06, and 0.08 wt.% of aqueous dispersion of single-walled carbon nanotubes (SWCNT). The assay was performed under varying shear rates (between 0.1–100 1/s) at three separate isothermal temperatures (25, 30, and 35 °C) on a Modular Compact Rheometer (MCR) fitted with a concentric cylinder measuring system. A steady decrease in viscosity upon every single shear rate increment was observed for all the samples analysed. Thus, each measured viscosity was considered an apparent-viscosity; which confirms a typical non-Newtonian flow behavior. PvNRL blends containing highest wt.% SWCNT exhibited higher apparent viscosity at low shear rates, whereas the lowest wt.% SWCNT displayed a lower apparent viscosity, thus signifying a dilution effect. The power law model showed good fitting and successfully predicted the flow behavior within the modelled shear rate region.

Key words:

Prevulcanised natural rubber latex, single-walled carbon nanotubes, flow behavior, shear rate, apparent viscosity, non-Newtonian, shear-thinning

1 INTRODUCTION

The exceptional properties of nanomaterials and their vast application potential has raised great interests, especially in the preparation of natural rubber latex (NRL) nanocomposites [1, 2]. For instance, single-walled carbon nanotubes (SWCNT), have been found to perform as excellent reinforcing filler for NRL at very low loadings due to their high aspect ratio and excellent strength [1, 3]. However, the sp2 hybridized SWCNT are largely insoluble in water and hence require special functionalisation to achieve the desired solubility [1, 2, 4]. Covalent functional groups on the surface of nanomaterials; however, this method comes at the expense of

compromising the structure of pristine SWCNT [5]. Non-covalent functionalisation involves either establishing hydrophobic interaction between an amphiphilic surfactant and the nanomaterial or via enthalpydriven interactions such as π - π , CH- π , NH- π in order to promote solvation [1, 6–8]. Some of the most commonly used molecules for non-covalent dispersion of SWCNT include: sodium dodecyl sulfate (SDS), sodium dodecylbenzene sulfonate (SDBS) and sodium carboxymethyl cellulose (NaCMC). These surfactant systems are preferred because they are water soluble and possess relatively high content of Hydrophyle-Lyphophyle blance (HLB) [9]. It is generally understood that the hydrophobic portion of the amphiphilic surfactant molecule adsorbs onto the surface of SWCNT, and the hydrophilic

This is an extract of the complete reprint-pdf, available at the Applied Rheology website http://www.appliedrheology.org

© Appl. Rheol. 28 (2018) 64175 he DOI: 10.3933/ApplRheol-28-64175 le at the Applied Rheology website 1

ACKNOWLEDGEMENTS

The authors wish to acknowledge the Centre for Rubber Science and Technology and the Department of Civil Engineering (Nelson Mandela University) for their financial support and access to equipment.

REFERENCES

- Ponnamma D, Sung SH, Hong JS, Ahn KH, Varughese K and Thomas S: Influence of non-covalent functionalization of carbon nanotubes on the rheological behavior of natural rubber latex nanocomposites, Eur. Polymer J. 53 (2014) 147–159.
- [2] Mensah B, Kim HG, Lee J-H, Arepalli S, Nah C: Carbon nanotube-reinforced elastomeric nanocomposites: A review, Inter. J. Smart Nano Mater. 6 (2015) 211–238.
- [3] Anand K A, Jose T S, Alex R, Joseph R: Natural rubber-carbon nanotube composites through latex compounding, Inter. J. Polymeric Mater. 59 (2009) 33–44.
- [4] Mohamed A, Anas AK, Bakar SA, Aziz AA, Sagisaka M, Brown P, Eastoe J, Kamari A, Hashim N, Isa IM: Preparation of multiwall carbon nanotubes (mwcnts) stabilised by highly branched hydrocarbon surfactants and dispersed in natural rubber latex nanocomposites, Colloid Polymer Sci. 292 (2014) 3013–3023.
- [5] Ngoy JM, Iyuke SE, Neuse WE, Yah CS: Covalent functionalization for multi-walled carbon nanotube (f-mwcnt)folic acid bound bioconjugate, J. Appl. Sci. 11 (2011) 2700–2711.
- [6] Ghosh OSN, Gayathri S, Sudhakara P, Misra S, Jayaramudu J: Natural rubber nanoblends: Preparation, characterization and applications, Rubber Nano Blends, Springer (2017) 15-65.
- [7] Fujigaya T, Nakashima N: Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants, Sci. Technol. Adv. Mater. 16 (2015) 024802.
- [8] Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, Park CR: Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers, Carbon 50 (2012) 3-33.
- [9] Vaisman L, Wagner HD, Marom G: The role of surfactants in dispersion of carbon nanotubes, Adv. Colloid Interface Sci. 128 (2006) 37–46.
- [10] Sunney SM, Thomas E: Thesis, Cochin University of Science and Technology (2005).
- Batelaan JG, Van Ginkel CG, Balk F: Carboxymethylcellulose (cmc), Handbook of Environmental Chemistry 3 (1992) 329-336.
- [12] Elliot JH, Ganz AJ: Some rheological properties of sodium carboxymethylcellulose solutions and gels, Rheol. Acta 13 (1974) 670-674.
- [13] Calvert KO: Polymer latices and their applications, Applied Science Publishers LTD Essex (1982).
- [14] Claramma N, Mathew N: Thesis, Cochin University of Science and Technology (1997).
- [15] Woon J: Practical latex technology: Over 100 questions answered plus many useful tips and ideas, in Amazon Digital Services LLC (2012)

- [16] Promdsorn S, Chaiyasat P, Chaiyasat A: Heterocoaggulation of natural rubber latex and poly [styrene-co-2-(methacryloyloxy) ethyl trimethylammonium chroride] nanoparticles in advanced materials research, Trans. Tech. Publ. 506 (2012) 299–302.
- [17] Sakdapipanich J, Kalah R, Nimpaiboon A, Ho CC: Influence of mixed layer of proteins and phospholipids on the unique film formation behavior of hevea natural rubber latex, Colloids Surf. A 466 (2015) 100–106.
- [18] Sansatsadeekul J, Sakdapipanich J, Rojruthai P: Characterization of associated proteins and phospholipids in natural rubber latex, J. Biosci. Bioeng. 111 (2011) 628–634.
- [19] Lim H, Misni M: Colloidal and rheological properties of natural rubber latex concentrate, Appl. Rheol. 26 (2016) 15659.
- [20] Chhabra RP: Non-newtonian fluids: An introduction, in Rheology of complex fluids, Krishnan JM, Deshpandeet AP, Springer, New York (2010).
- [21] Rao MA: Flow and functional models for rheological properties of fluid foods, in Rheology of fluid, semisolid, and solid foods, Springer (2014).
- [22] Roberts G, Barnes H, Mackie C: Using the microsoft excel'solver'tool to perform non-linear curve fitting, using a range of non-newtonian flow curves as examples, Appl. Rheol. 11 (2001) 258–276.
- [23] Jahangiri P, Streblow R, Müller D: Simulation of nonnewtonian fluids using modelica, in Proceedings of the 9th International Modelica Conference, Linköping University Electronic Press (2012).
- [24] Corrêa HL, Sousa AMFd, Furtado CRG: Natural rubber latex: Determination and interpretation of flow curves, Polímeros 25 (2015) 365–370.
- [25] Sridee J: Thesis, Suranaree University of Technology (2006).
- [26] Riou I, Bertoncini P, Bizot H, Mevellec J, Buléon A, Chauvet O: Carboxymethylcellulose/single walled carbon nanotube complexes, J. Nanosci. Nanotechnol. 9 (2009) 6176-6180.
- [27] Minami N, Kim Y, Miyashita K, Kazaoui S, Nalini B: Cellulose derivatives as excellent dispersants for singlewall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy, Appl. Phys. Lett. 88 (2006) 093123.
- [28] Rubio-Hernández F, Carrique F, Ruiz-Reina E: The primary electroviscous effect in colloidal suspensions, Adv. Colloid Interface Sci. 107 (2004) 51–60.
- [29] Bowen WR, Jenner F: Electroviscous effects in charged capillaries, J. Colloid Interface Sci. 173 (1995) 388–395.
- [30] Russel WB, Saville DA, Schowalter WR: Colloidal dispersions, Cambridge University Press, Cambridge (1989).
- [31] Russel WB: The rheology of suspensions of charged rigid spheres, J. Fluid Mech. 85 (1978) 209–232.
- [32] Daubert CR, Hudson HM, Foegeding EA, Prabhasankar P: Rheological characterization and electrokinetic phenomena of charged whey protein dispersions of defined sizes, LWT – Food Sci. Technol. 39 (2006) 206–215.
- [33] Dickinson E, Stainsby G: Colloids in food, Applied Science Publishers (1982).
- [34] Krieger IM: Rheology of polymer colloids, Elsevier Applied Science Publishers Ltd. (1985).
- [35] Krieger IM, Eguiluz M: The second electroviscous effect

This is an extract of the complete reprint-pdf, available at the Applied Rheology website http://www.appliedrheology.org

© AppT. Rheol. 28 (2018) 64175 he DOI: 10.3933/AppIRheol-28-64175 le at the Applied Rheology website **9** | http://www.appliedrheology.org in polymer latices, Trans. Soc. Rheol. 20 (1976) 29-45.

- [36] Hill S: Emulsions and foams in Functional properties of food macromolecules, Aspen Publishers, New York, (1998).
- [37] Frollini E, Reed WF, Milas M, Rinaudo M: Polyelectrolytes from polysaccharides: Selective oxidation of guar gum a revisited reaction, Carbohydr. Polymers 27 (1995) 129–135.
- [38] Vardhanabhuti B, Foegeding EA: Rheological properties and characterization of polymerized whey protein isolates, J. Agricul. Food Chem. 47 (1999) 3649 – 3655.
- [39] Verwey EJW: Theory of the stability of lyophobic colloids; on the interaction of parallel plates, The Journal of Physical Chemistry, 51 (1948) 66–97.
- [40] Laxton PB, Berg JC: Gel trapping of dense colloids, J. Colloid Interface Sci. 285 (2005) 152–157.

