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1      INTRODUCTION

Liquid metals, especially gallium-indium alloys, are at-
tracting researchers’ considerable interests because
such materials exhibit liquid characteristics at room
temperature and good thermal conductivity, which
makes them useful for soft robotics, the electricity in-
dustry, micro channels and surface, and within the
medical field [1 – 4]. Compared to mercury, gallium-in-
dium alloy is virtually non-toxic, and has a similar sur-
face tension but with a higher thermal conductivity,
which enables it to have a wide range of applications
as well as safe use in the laboratory and in industry [5,
6]. For instance, many attempts have recently been
made to apply gallium-indium alloy to various research
and industrial fields by utilizing its quick response and
easy control characteristics.
         Viscoelastic properties have undergone extensive
research in fields such as magnetorheological (MR) flu-
ids and MR elastomers [7 – 9], but to broaden the appli-
cation of gallium-indium alloy its material properties
must be quantified, particularly its viscoelasticity. Eu-
stathopoulos and Drevet [10] investigated surface ten-
sion  by experimenting with the flow of liquid metal in

micro-channels, but the resulting measurements have
limited usefulness for understanding the viscoelastic
properties of the oxide skin of liquid metal in air. Galli-
um-indium alloy can be used as sacrificial ‘inks’ for fab-
ricating 2D and 3D microfluidic channels [11]. Larsen et
al. [12] conducted an in-depth study of the viscoelastic-
ity of liquid metal oxide films and their results demon-
strated that oxides of Ga on liquid metal substrates in
atmospheric conditions exhibit a complex variety of
mechanical behavior. Chossat et al. [13] invented a nov-
el soft strain sensor where two liquid conductors: an
ionic solution and a eutectic gallium-indium alloy are
placed into a microchannel, while Bartlett et al. [14] gen-
erated high thermal conductivity in soft elastomers
with elongated liquid metal inclusions that consist of
the gallium-indium alloy and a soft elastomer. Their
sensor demonstrated relatively high accuracy and reli-
ability when measuring large strains. However, if more
research into the viscoelasticity of gallium-indium alloy
is carried out the mechanical properties of their senor
can be better applied. While some research has been
carried out using this low-melting-point alloy vary its
stiffness [15, 16], further research would enable the
characteristics of variable stiffness to be quantified.
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variation rules and approximately the same magni-
tude, but the storage module in the non-linear region
is one-tenth of that in the linear region or critical zone.
This suggests that the gallium-indium alloy in the linear
region is more rigid and is less prone to deformation. A
comparison of the loss modulus in different regions
was shown in Figure 7: In the low frequency region, al-
though the curve of each loss modulus is slightly differ-
ent, the values are similar, whereas in the high angular
frequency region, the loss modulus is very sensitive to
different regions. Basically, the higher the strain ampli-
tude, the lower the loss modulus. For example, G'' at an
amplitude of 0.5 % is more than ten times more than at
an amplitude of 10 % in the high frequency region,
whereas G'' at an amplitude of 1 % is between an am-
plitude of 0.5 and 10 %. With the loss factor, the three
different group of regions show different trends: Be-
cause of G' at an amplitude of 10 % is ten times less than
the others while G'' at an amplitude of 10 % is similar to
the others in the region when the frequency is less than
20 Hz, the loss factor at an amplitude of 10 % is much
higher than the others. Moreover, the loss factor at 1 %
is the lowest of the three because G' at an amplitude of
1 % is similar to an amplitude of 10 % and G'' at an am-
plitude of 1 % is about one-half of that at an amplitude
of 0.5 % while G' and G'' at an amplitude of 10 % are al-
most one-tenth of that at an amplitude of 0.5 %.

5      DISCUSSIONS

All the experimental results are based on the linear and
non-linear viscoelastic theory. In the experiments the
viscoelastic properties of different proportions of galli-
um-indium alloy were studied under oscillatory shear
using the amplitude sweep mode and frequency sweep
mode. Regardless of the proportions of gallium-indium
alloy, in the linear region of amplitude (γ0 ≤ γlin), the
storage modulus and loss modulus were independent
of the strain amplitude, whereas in the nonlinear re-
gion with amplitudes from γ0 > γlin, the storage modu-

lus decreased rapidly as the strain amplitude increased,
and the loss modulus first increased and then slowly
decreased. Hence, the behavior of gallium-indium alloy
ranged from mainly elastic at small strain amplitudes
to small viscous at high strain amplitudes. All the sam-
ples behaved roughly the same at temperatures above
their melting point. This suggests that when gallium-
indium alloy is in a liquid state it has almost the same
viscoelasticity. This is possibly because when the tem-
perature is higher than its melting point, the molecular
structure of gallium-indium alloy is almost the same,
so different proportions have almost influence on its
viscoelasticity. In a frequency sweep mode and at the
linear viscoelasticity region, the storage modulus G' is
independent of frequency while the loss modulus G''
had a slight decrease as the frequency increased. In the
non-linear viscoelasticity region, the storage modulus
G' and loss modulus G'' increased as the frequency in-
creased and then dropped until it stabilized at the high
frequency region. The loss factor between the linear re-
gion and non-linear region is quite different, i.e. in the
linear region the gallium-indium alloy was relatively
elastic, and this increased as the frequency increased in
the low frequency region, but then the loss factor in-
creased as the frequency increased in the high frequen-
cy region until it finally stabilized. However, gallium-in-
dium alloy in the non-linear region was relatively vis-
cous, and became more viscous as the frequency in-
creased in the low frequency region, but in the high fre-
quency region the loss factor decrease and then be-
came stable. Since the critical region of gallium-indium
alloy is at an amplitude of 1 %, it is mainly elastic be-
tween the low frequency region and the high frequency
region because in the low frequency region the storage
modulus and loss modulus at an amplitude of 1 % is sim-
ilar to an amplitude of 0.5 %. In the high frequency re-
gion, the storage modulus at an amplitude of 1 % is sim-
ilar to that at an amplitude of 0.5 % while the loss mod-
ulus at an amplitude of 1 % is two times lower than that
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Figure 6: The storage modulus, loss modulus, and loss factor
in the non-linear region.

Figure 7: The plots of the storage modulus G' and the loss
modulus G'' against the angular frequency ω of the 85%
gallium and 15% indium sample at 25°C and strain ampli-
tudes of 0.5, 1, and 10%.



at an amplitude of 0.5 %. Therefore, gallium-indium al-
loy at an amplitude of 1 % in any frequency is relatively
elastic.

6     CONCLUSIONS

In this paper, the dynamic properties of different pro-
portions of gallium-indium alloys, including the stor-
age modulus G', the loss modulus G'', and the loss factor
tan δ = G''/G' were studied experimentally. These para-
meters were measured as a function of oscillating fre-
quency ω and direct strain amplitude γ0. We found the
range of linear viscoelastic strain amplitudes of galli-
um-indium alloy such that when the strain amplitude
was less than γlin (γ0 < γlin), the storage modulus G', loss
modulus G'', and loss factor tan δ of the gallium-indium
alloy is independent of the strain amplitude. Regardless
of the proportions of gallium-indium alloy, i.e. the tem-
perature above their melting points the alloy was liquid
and its viscoelasticity was roughly the same. By com-
paring the storage modulus G', the loss modulus G'',and
the loss factor tan δ in the linear region as well as the
critical region and non-linear region with frequency, we
found that gallium-indium alloy had the strongest rel-
ative elasticity in the critical region. However, the vis-
coelasticity of gallium-indium alloy in a non-Newton-
ian fluid state, and whose temperature is close to melt-
ing point, and gallium-indium alloy in a solid state
whose temperature is lower than the melting point,
cannot be measured with a rheometer, so it needs fur-
ther study.
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