
© Appl. Rheol. 26 (2016) 65050 |   DOI: 10.3933/ApplRheol-26-65050 |   1 |

1      INTRODUCTION

The quality and homogeneity in properties of hybrid
materials with nano-sized fillers depends highly on the
quality of dispersion of the fillers in the matrix. Often,
the desired properties of the end-material are achieved
with a well dispersed filler. For example, the mechanical
and optical properties of particle-reinforced hybrid ma-
terials strongly correlate with the dispersion quality of
filler in the matrix, and so does the electrical conduc-
tivity in CNTs composites. Song and Youn investigated
different dispersion states of CNTs in epoxy resins [1]
and demonstrated that well dispersed CNTs/epoxy
composites showed higher tensile modulus than poorly
dispersed ones. In a second study, they could prove that
if the CNTs were well dispersed in the epoxy matrix,
they could form a conductive three-dimensional net-
work even with low filler contents [2]. The wear resis-
tance of transparent nanoparticle-filled polymer-coat-

ings is also influenced by the particle dispersion in the
matrix [3, 4]. Filler-agglomerates in the composite may
act as stress concentrators and therefore reduce its ten-
sile strength.
         Dispersion quality and means to achieve it in hy-
brid materials has been the object of many studies re-
ported in the literature. One approach to avoid the for-
mation of agglomerates is by functionalisation of the
filler. In order to enhance the dispersion of the filler in
a matrix, the particle surface can be chemically modi-
fied with a dispersant and therefore sterically stabilize
the dispersion [5 – 8]. Another approach is to break
down agglomerates by mechanical shearing. In con-
ventional plastics processing the required shear force
to individualize particles in the polymer melt is gener-
ated by specially shaped twin-screws or shear rolls
[9 – 12]. Another method to enhance the dispersion
quality, reported in references [3, 11, 13], proposes to
match the refractive index between the filler and the
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tion is confirmed by the model experiments: The
matched system shows the largest value for the ratio
of the fitting parameter. The value of A decreases with
increasing mismatch of the dispersions. To reach reli-
able results, resting times of up to 20000 s would be
needed. Due to partial evaporation of the solvent, this
was not possible with the currently used solvent mix-
ture. However, our values measured at long resting
times (> 1800 s) gave valuable information about the
network strength, and therefore showed that the
method of Galindo-Rosales et al. can be applied to the
present system [19].
         A further analysis can be carried out considering
the position and shift of the crossover point. As present-
ed in Figure 10, the lower resting times show rather un-
reliable results. Again longer resting times, such as
3600 s, and a better match of the refractive indices of
solvent mixture and nanoparticles lead to higher values
in deformation at the crossover point. The constant val-
ue of strain at crossover for the dispersion with refrac-
tive index 1.480 indicates the formation of agglomer-
ates in the mixture and thus no or a weak gel network.
Whereas the high or still increasing deformations at
crossover of the dispersions with refractive indices
1.470 and 1.460 show the build-up of a strong gel net-
work, which can withstand more strain before breaking
up. This is in agreement with Ren et al [31], who stated
that the crossover point occurs at higher deformations
as the gel network strength increases.

4     CONCLUSIONS AND OUTLINE

In conclusion, through model experiments with a series
of dispersions with increasing mismatch in refractive
indices, we have shown by using rheological methods
that matching of the refractive indices of both the filler
and the matrix leads to a strong gel network, every-
thing else being similar. Mismatched dispersions, on
the other hand, showed a weaker gel network, hence a
lower dispersion quality and the probable formation of
agglomerates. Furthermore, the particle-solvent inter-
action was reduced compared to that of the matched
system. Therefore, we can conclude that, following the-
ory, van der Waals forces are indeed larger in mis-
matched systems than in matched ones, and transpar-
ent suspensions should lead to better dispersion and
stronger network formation. The actual size of the ag-
glomerates could not be determined by traditional
methods such as static light scattering and photon cor-
relation spectroscopy, although more specific imaging
techniques such as Cryo-TEM might be an option for
further investigation. Also, care had to be taken to pre-
vent solvent evaporation during testing. Nonetheless,
we have also validated the use of rheological methods
to assess quality of dispersions, as rather simple to im-
plement and a macroscopic method of analysis.
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Figure 10: Position of the deformation of the crossover point
depending on the refractive indices of the dispersions and
resting time.
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