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recovering their original shape when the load is re-
moved. The thermoplastic elastomers include the
styrene-butadiene-styrene (SBS), the styrene-isoprene-
styrene (SIS) and the styrene butadiene rubber (SBR)
copolymers. SBS has a wider application in the paving
industry than the other elastomers probably due to its
acceptable cost, relatively good dispersibility in the
binder and rather excellent properties [3, 6]. Plastomers
are characterized by forming a rigid three-dimensional
network in the asphalt binder to resist rutting [2, 5, 6].
The ethylene vinyl acetate (EVA) copolymer and the
polyethylene (PE) are common examples of plastomers.
         Although the SBR copolymer is not widely used as
a modifier when compared with SBS, it has also been
attracting researchers’ attention due to the benefits of
its addition to the base material. The benefits include
the formation of a reinforced network structure in the
formulation, improvements in the low-temperature
ductility, better adhesive and cohesive properties and
increases in viscosity at high temperatures [1, 3, 5]. This
modifier can be added to the asphalt binders in two
forms: In the pure form and dispersed in water (latex

1      INTRODUCTION

Polymer-modified asphalt binders have been common-
ly used for paving applications due to their great resis-
tance to several pavement distress mechanisms such
as permanent deformation (or rutting), fatigue crack-
ing and thermal cracking. This is especially the case for
streets and highways that are subjected to heavy traffic
loads and extreme temperatures [1, 2]. Other tech-
niques for improving the rheological properties of as-
phalt binders may be used instead of polymer modifi-
cation. Some examples of these techniques include the
selection of good crude sources and adjustments in the
refinery process. Unfortunately, the number of crudes
that can produce better asphalt binders is restricted
and the course of actions that can be taken to control
the refining process is limited [3, 4]. 
         The polymers used most often in modifying as-
phalt binders are broadly grouped into two classes, i.e.
elastomers (or thermoplastic elastomers) and plas-
tomers. Elastomers typically have high elastic respons-
es and resist rutting by deforming under loading and
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higher rutting resistance than the AC+PPA for both pa-
rameters (Gv and Jnr) and the AC+SBR is the less rut re-
sistant material among the modified ones. The change
in the loading-unloading times decreased the Gv values
by 40 – 55 %, whereas the increases in the nonrecover-
able compliances (Figure 3) were of about 100 % for the
same materials and test temperatures (64 and 70 °C).

4     CONCLUSIONS

With respect to the results reported in the present study
and the analysis of the rutting performance of binders
modified with styrene butadiene rubber (SBR), poly -
phos phoric acid (PPA), and a combination of both, the
following conclusions can be reached:
n    The added modifiers, used isolatedly or in combina-
tion, increased the percent recovery R values and de-
creased the nonrecoverable compliance Jnr values of the
base asphalt binder at the typical highest pavement
temperatures of 64 and 70 °C and both 0.1 and 3.2 kPa
stress levels, which indicates that the AC+PPA, the
AC+SBR and the AC+SBR+PPA are less susceptible to
rutting than the base material. In a general context, the
addition of SBR alone yielded the lowest degree of im-
provement (lower R values and higher Jnr values) in the
rheological properties of the base asphalt binder and
the addition of SBR+PPA and PPA yielded the highest
degrees of improvement (higher R values and lower Jnr
values) in the rheological properties of the base mate-
rial.
n    None of the modified asphalt binders showed per-
cent differences in nonrecoverable compliances (Jnr,diff
values) above 75 %, the AC+SBR+PPA shows the highest
Jnr,diff values at 70 °C (highest degrees of stress sensitiv-
ity  and nonlinearity), and the AC+SBR shows the highest
ones at 64 °C. Also, the use of longer creep and recovery
times increased the Jnr,diff values of the modified asphalt
binders and no substantial variations can be seen in the
percent differences of the 50/70 base material.
n    Longer creep and recovery times are detrimental to
the rutting resistance of the asphalt binders in the ex-
tent that they lead to lower percent recoveries (RP val-
ues greater than one) and higher nonrecoverable com-
pliances (RC values greater than one) at 2/18 s than at
1/9 s. In general, the greatest increases in the Jnr values
can be seen in the AC+SBR followed by the base material
and the two formulations with PPA (AC+PPA and
AC+SBR+PPA).
n    Ranking the formulations in terms of higher values
for R and lower values for Jnr, i.e. higher rutting resis-
tances, at the regular creep and recovery times (1/9 s),
the AC+SBR+PPA is the best, followed by the AC+PPA,
the AC+SBR and, as the last one, the pure AC. When the
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creep and recovery times are increased to 2/18 s, the
general effect observed is reduction of %R and increase
of Jnr, i.e. the formulation presents a lower rutting re-
sistance, but the ranking is the same. In other words,
longer creep and recovery times are harmful to the as-
phalt binders but it is possible to obtain the same rank-
ing for the formulations at both creep and recovery
times.
n    The Burgers model fitted the strain data of the mod-
ified asphalt binders with very small deviations from the
original values (average absolute errors lower than 2.7 %)
and the higher elastic responses of the AC+SBR+PPA and
the AC+PPA may be attributed to the pres ence of a lower
amount of viscous strain (higher hM values). The reduc-
tions in these elastic responses at longer creep-recovery
times may be explained by the application of loads for
2 s rather than only 1 s (hM values do not markedly differ
from one loading-unloading condition to the other,
which means that the viscous component of the binder
is simply a function of the loading time applied in the
test).
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