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for milling, or sometimes to obtain better quality para-
meters in milling (i.e. optimizing the wheat blend for
better technological properties in flour), several empir-
ical rheological instruments are used. The Farinograph
is one of these instruments which has become an in-
dustry standard where technological parameters for
dough mixing such as water absorption, mixing toler-
ance, stability, softening value are recorded [7, 8]. These
values are useful in optimizing formulations for baking
quality especially in terms of determining the optimum
water amount for a specific type of flour, optimizing the
time of mixing to obtain a well-developed dough with
optimal rheology and gas holding capacity and as a re-
sult obtaining baked products with excellent sensory
and textural properties.
         Wheat flour dough has been shown to be linear
vis coelastic below the strains of approximately 0.2 %
depending on the type flour and become highly nonlin-
ear beyond this strain level. Nonlinearity in wheat flour
dough has been attributed to the breakdown of the
elastic gluten protein network. The network is known

1      INTRODUCTION

Starch and gluten are known to be the main con-
stituents of wheat flour; however it contains other
components such as non-starch polysaccharides as well
as lipids [1]. The viscoelasticity of wheat flour dough is
due to gluten and its ability to interact with other com-
ponents of wheat flour while hydrated with adequate
amount of water during mixing. The quality and the
quantity of gluten in wheat flour depends on the
growth conditions and thus to the type of the wheat.
Wheat (Triticum aestivum L.) is classified and traded as
“hard or soft” and “winter or spring” based on the en-
dosperm hardness or texture. Hard wheat flours are
known to have more protein content compared to soft
wheat flours [2 – 5]. Therefore, the type of wheat from
which the flour is milled has a major effect on the rhe-
ological and technological properties of the wheat flour
dough [6]. In order to understand the differences in the
technological quality of the wheat flours, which usually
arise due to the variety of wheat and the method used
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Abstract:
During mixing of wheat flour doughs, the distribution of the gluten network changes as a result of continuously applied large
deformations. Especially gliadin, changes its distribution in the whole network during mixing. It is possible to fundamentally
explain the role of molecular changes in more detail using large amplitude oscillatory measurements (LAOS) in the non-linear
region. Therefore, the purpose of this study is to understand the effect of mixing on the non-linear fundamental rheological
behavior of soft wheat flour dough using LAOS. Dough samples were obtained at 4 different phases of the Farinograph mixing
and LAOS tests were done on each of them. LAOS tets give in depth intracycle understanding of rheology. All samples showed
strain stiffening S and shear thinning T behavior at large strains previously not known in the cereal rheology community.
Increasing mixing time (phase 1 to phase 4) and decreasing frequency resulted in retardation in the break of strain stiffening
as strain increases. The strain stiffening behavior started to decrease for the dough samples at the 3rd and the 4th phases of
mixing. LAOS data enabled us to describe the non-linear rheological changes occurring both in the viscous part largely attrib-
uted to the starch matrix and elastic part largely attributed to the gluten network components of the soft wheat flour dough
under large deformations.
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samples at all phases of mixing and at all frequencies
studied. And generally, these values seemed not to be
affected by mixing for the soft dough samples.

4     CONCLUSIONS

Soft wheat flour dough samples obtained at different
phases of Farinograph mixing showed non-linear be-
havior at strains larger than 0.015 – 0.06 %. As the fre-
quency increased from 1 to 20 rad/s, soft flour dough
samples started to behave more elastically as shown in
Lissajous curves. On the other hand, as the strain in-
creases from 0.01 to 200 % gradually, soft dough sam-
ples started to display more viscously dominated vis-
coelastic character due to the structural breakdown in
the gluten network at high strains and the increasingly
dominant role that starch played because the gluten
network started to break down. The elastic component
of the soft wheat flour dough was affected by mixing
more compared to the viscous component. When Lis-
sajous curves were evaluated at the beginning and at
the end of Farinograph mixing at different frequencies,
more remarkable changes were observed in the elastic
component. Clearly the elastic component of the soft
dough samples influenced the non-linear region more.
This may be attributed to the changes occurring in the
protein fibrils in gluten network at large strains [10].
         The dough samples obtained at the four phases of
mixing showed strain stiffening (S > 0) and shear thin-
ning (T < 0) behavior at all frequencies studied up to the
strain value of 200 %. e3/e1 values showed an increase
supporting the strain stiffening behavior as the strain
increased gradually. However, a decrease in the inten-
sity of e3/e1 values were observed when the strain
reached 44 – 70 %. This strain range may be the critical
strain for the soft wheat flour dough where the gluten
network starts to weaken with increasing strain and the

resulting mechanical energy introduced in the sample.
This critical strain value increased as the frequency de-
creased from 20 to 1 rad/s. When the applied frequency
of oscillation was lower the critical strain values were
higher and the protein fibrils in the gluten network
could recover and align themselves up to these critical
strain levels. The large strain modulus GL increased with
increasing mixing time. Except for the highest frequen-
cy applied, GL values at the 3rd and the 4th phase of
Farinograph mixing were close in magnitude which
showed that the gluten network development stopped
when the sample reached to the 3rd phase of mixing. On
the other hand, the decreasing strain stiffening behav-
ior occurred in the gluten network after the strain val-
ues of 44 – 70 % and the shear thinning behavior ob-
served in the starch matrix as the strain increased can
be regarded as the explanation for the decreasing trend
observed in the Farinograms as the mixing continued.
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Figure 10: Large hL and minimum strain rate viscosity hM
change versus strain rate values for soft dough sample at
10 rad/s.
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