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ABSTRACT:

Self-consolidating concrete (SCC) is very sensitive to delays or stoppages between successive lifts during casting, especially
given that vibration is prohibited with this highly flowable type of concrete. The investigation reported in this paper seeks to
quantify the effect of mixture proportioning on thixotropy along with the resulting effect on interfacial bond strength of hard-
ened material that could result from successive lifts. The suitability of the equivalent mortar phase to simplify testing protocols
and appropriately predict SCC properties was given particular attention; the concrete-equivalent-mortar (CEM) mixtures are
derived from SCC by eliminating the coarse aggregate fraction and replacing it by an equivalent quantity of sand having equal
surface area. Tests results have shown that SCC and CEM mixtures prepared with combinations of increased cement content,
silica fume, and/or viscosity-modifier led to higher levels of thixotropy. Yet, the responses determined using SCC were higher
by around 1.6 times than those of CEM, given the differences in unit weight and air content between both materials. Good

correlations are established between thixotropy and interfacial bond strengths of SCC and CEM mixtures.
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1 INTRODUCTION

Highly flowable self-consolidating concrete (SCC) typi-
cally exhibits thixotropic behavior characterized by re-
duced apparent viscosity during motion, yet with rela-
tively fast recovery when left at rest. The reduced vis-
cosity is necessary during concrete agitation to facili-
tate placement by gravity with improved filling ability
[1,2]. As soon as placement is completed, the reversible
phenomenon of thixotropy associated with build-up of
cementitious structure takes place over time. Earlier
studies showed that lack of structural recovery can lead
to reduced material stability including bleeding and
segregation that can weaken the quality of interface
between aggregate and cement paste with direct ef-
fects on permeability, bond to steel, and mechanical
properties [3, 4]. Also, fast restructuring could be par-
ticularly beneficial to reduce the lateral stresses devel-
oped on vertical formworks [5]. In contrast, however,
high thixotropic SCC exhibiting fast recovery could not
be appropriate during successive casting lifts, as this
would create cold joints and weak interfaces in the

hardened structure. Some researchers reported me-
chanical and bond losses reaching 60 % due to weak
SCCinterfacestogetherwithincreased vulnerability to-
wards porosity and permeability alongtheinterface [6].

In literature, thixotropy is typically evaluated un-
der motion [1, 5], i.e. by subjecting the material to given
shearing regime and recording the structural break-
down curves over time. However, when placement is
completed, several authors focused their studies on the
recovery aspect of thixotropy, as this could be more
practically relevant in terms of SCC performance and
strength development after casting. For example, Bill-
berg [7] measured the increase of SCC yield stress 7, at
rest by slowly rotating the concrete rheometer in order
to distinguish the reversible flocculation due to
thixotropy from the irreversible evolution due to nor-
mal slump loss. Using this methodology, the author
showed that 7, increases linearly with resting time.
Roussel [8] proposed a model that predicts the varia-
tions of 7, developed over time as a function of thixo-
tropy as 7o (trest) = To(to) + Arnixtrest, Where tog is the rest-
ing time and A, structuration rate determined as the
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Figure 12: Relationships between Ar,; and drop in bond
strength for SCC and CEM mixtures.

4 SUMMARY AND CONCLUSIONS

This research project is undertaken to evaluate the
practical consequences of thixotropy on the drop inin-
terfacial bond strength resulting from successive SCC
placement lifts. The suitability of the CEM approach to
simplify testing protocols and appropriately predict
SCC performance was investigated; the CEM possesses
the same concrete composition, except that the coarse
aggregate fraction greaterthan 4.75 mmis replaced by
an equivalent quantity of sand having equal surface
area. Good correlations were established between
HRWR demand, air content, unit weight, and bleeding
of SCCand CEM. Mixtures prepared with combinations
of increased cement content, silica fume, or VMA led
to higher A7, magnitude; nevertheless, the responses
determined using CEM were lower by around 1.6 times
than those of SCC. Knowing the static nature of tests
realized, the decrease in CEM thixotropy was related
toreduced unitweightand higherair contentthan cor-
responding SCC. The coarse aggregate fraction is ex-
pected to play a secondary role, as it mainly influences
the internal friction and collision during dynamic con-
ditions. A set-up inspired from ASTM C1042 Test
Method was developed to evaluate the effect of delays
between successive casting lifts on interfacial bond
strength of hardened material. Regardless of SCC or
CEM, mixtures filled without interruption exhibited in-
creased bond compared to similar mixtures castintwo
layers implying, in other words, that multi-layers cast-
ing creates weak interfaces in the hardened material.
The highestbond strength drop occurred for highly sta-
ble with Az,;, higher than 0.75 Pa/s and unstable mix-
tures with A, less than 0.2 Pa/s. In the former case,
the drop in bond was related to the extremely low
bleed water that creates dry-skin layer on top surface
of the first cast, and consequently leads to reduced ad-
hesion with the second layer. In contrast, the decrease
in bond for unstable mixtures was related to excessive-
ly increased bleed water, thus reducing homogeneity
of specimen togetherwithincreased w/cthat weakens
the diagonal section.
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