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1      INTRODUCTION

Maurice Couette [1] introduced concentric cylinders as
a first practical rotational rheometer in 1890. The Cou-
ette rheometer is a simple device, which is widely used
in research and industrial applications. It consists of two
co-axial cylinders and the space between the cylinders
contains the liquid. One of the cylinders can rotate by a
constant torque or with a constant angular velocity giv-
ing rise to shearing of the fluid between the cylinders.
There is a longstanding problem in Couette rheometry,
which is often referred to as the “Couette Inverse Prob-
lem” [2]. This problem arises when extracting the flow
curve from the primary data of rotational rate and
torque obtained from the experiment. This creates two
sources of errors the first one is coupled with the solu-
tion of the integral, which relates the shear rate to the
rotational speed and the second one is due to the effects
of the top and bottom surfaces of the cylinder on the
measured torque, which is used in the fluid model cal-

culation. Equation 1 is the integration which associates
the measured rotational speed to the shear rate:

                                                                                (1)

In Equation 1, Ro and Ri are the outer and inner radius of
the cup and the cylinder (bob), respectively, Ω is the ro-
tational speed, and g· is the shear rate. Firstly, the shear
rate along the gap is not uniformly distributed and
there is still no exact method found to calculate it, un-
less the fluid model is known or assumed. Secondly, the
integral in Equation 1 is an ill-posed integral, be cause
the integral should be inverted to extract g· . This inte-
gral inversion is an even greater problem in the wide
gap rheometry, because numerical differentiation
should be carried out on noisy experimental data,
which requires selecting a suitable algorithm [3]. Eval-
uating the shear rate distribution on a bob was first
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Figure 11 depicts the CFD approach corrected rheometer
value of viscosity for narrow and wide gap of CMC fluid.
As a reference a viscosity curve using the narrow gap
data form Table 4, i.e. η = 55.38 g· -0.54 is also added. As
can be seen, the flow curves for narrow and wide gap
overlap very well, indicating that the correction works
for narrow as well as wide gaps.

5      CONCLUSIONS

A series of experiments and numerical simulations were
performed to find a more precise correction procedure
for Couette rheometry measurements based on predic-
tor-corrector method. By using CFD, the flow fields were
mapped in narrow and wide gap for Newtonian and
non-Newtonian fluids. As this study showed, the shear
rate distribution along the gap for the non-Newtonian
fluid are highly non-linear in the wide gap rheometry.
Therefore, the assumption of the constant shear rate in
the calculations is not correct especially for the wide
gap.
         Traditional Couette inverse procedures which are
based on analytical solution of the problem simplifies
the solution and usually fail to take into account the ef-
fects of the end parts on the inverse calculation of the
flow properties. As this study have shown, the integra-
tion approach, which is widely used in rheometric mea-
surements, overestimates the viscosity of the measured
fluid. This over-estimation is larger for the wide gap and
for non-Newtonian fluids. The standard correction used,
for example the DIN standard, is accurate in correcting
the viscosity of a Newtonian fluid in a narrow gap, but
fails in the wide gap and the non-Newtonian cases.
Moreover, the current correction method by [16] using
CFD as in this study only takes into consideration the end
effects and does account for the effect of the wide gap.
         The torque contribution for different parts of the
bob was estimated in both narrow and wide gaps. Nar-
row gap rheometry is widely accepted as a reference for
the fluid properties while our CFD calculations showed
that there can also be a significant error in non-New-
tonian narrow gap rheometry due to the end effects.
This is especially the case for very high shear thinning
fluids i.e. n < 0.4 for the type of rheometer used in this
study. Previous studies have shown that the end part
torque contributions are largely increased for the non-
Newtonian liquids, but it has not been shown earlier
that the torque contribution by different power-law in-
dices differs using gaps of varying width.
         For the different shear thinning fluids, the torque
contribution was calculated. A different correction fac-
tor CCFD was calculated for some shear thinning and
Newtonian liquids. The more shear thinning the fluids,

the higher the values of the correction factor. This cor-
rection factor was then compared with the correction
factor Ce which is the one commonly used. It was shown
that this approach, neglects the effect of the wide gap
on the measured torque and overestimates the viscos-
ity or consistency index as well, but it follows the same
trend as CFD correction factor. However, for very high
shear thinning fluid, i.e. n < 0.4 the behavior is signifi-
cantly different.
         CFD has the potential to investigate the flow field
details and to understand the physics of the problem.
The integration approach combined with the CFD cal-
culation was used to find the correction coefficients.
The proposed method is independent from experimen-
tal measurement and is easy to apply to the measure-
ment data. Many rheometers are manufactured based
on DIN standard and the flow curve computation fol-
lows the methodology recommended by this standard.
Comparing the DIN standard formulation with the CFD
correction method – and according to the constantly
used correction factor recommended by this standard –
shows that there is a need to apply a better correction
coefficient, especially for non-Newtonian fluids and in
the wide gap rheometry, in order to enhance the accu-
racy of the flow curve calculation.
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