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deeper the nonlinear viscoelastic properties. We use
the silicone oil AK 1.000.000 from Wacker as the test
material, since the viscoelastic properties of this sili-
cone oil well represent that of a whole range of silicone
oils with different zero-shear viscosities. Large ampli-
tude oscillatory shear (LAOS) is a commonly used
method to characterize the nonlinear viscoelastic prop-
erties of the materials [20].
         The most common method to quantify LAOS tests
is Fourier transform (FT) rheology [21]. For a sinusoidal
strain input, the stress response could be described by
a Fourier series [22]. Only odd harmonics are included
in these series because the stress signal is assumed to
be of odd symmetry with respect to directionality of
shear strain or shear rate, i.e., the material response is
un changed if the coordinate system is reversed [23].
Another way to quantify nonlinear viscoelasticity in
LAOS is the stress decomposition (SD) technique. Here
the stress response is decomposed to elastic and vis-
cous stresses. The elastic stress should exhibit odd sym-

1      INTRODUCTION

Silicone oils are important viscoelastic fluids, with a
broad range of use from fundamental science to indus-
trial applications [1 – 12]. Linear viscoelastic properties
of silicone oils, usually with rather low zero-shear vis-
cosity, have been studied in a number of papers, as well
as their shear thinning behavior [2, 13]. High viscosity
silicon oils were investigated only in a few cases [14 – 17],
including high-frequency measurements [18, 19]. If the
deformations of the silicone oil are large enough, non-
linear viscoelastic properties control its material re -
sponse. This is of increasing importance, both in poly-
mer research and in engineering applications. Ampli-
tude sweep test were already published in our previous
work [19], but a more extensive analysis has not been
done yet on the nonlinear viscoelasticity of high viscos-
ity silicone oils, to the best of our knowledge. Now we
extend our former investigations and report on LAOS
measurement with high viscosity PDMS to explore
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meter. Earlier results already have shown that this sili-
cone oil is shear thinning, and both the storage and the
loss moduli decrease with increasing oscillation ampli-
tude in an amplitude sweep test. Based on our new LAOS
tests, the total viscoelastic stress response can be safely
considered linear below strain amplitude 1 and angular
frequency 100 rad/s. In the nonlinear regime, the elastic
Lissajous-Bodwitch curves show intracycle strain stiff-
ening whereas the viscous Lissajous-Bodwitch curves
show intracycle shear thinning. We carefully analyzed
also the raw data of our new LAOS tests and discarded
from the LAOS analysis those cases where the input
shear-rate signal was not sinusoidal sufficiently. How-
ever, we successfully utilized these cases as a verifica-
tion of our nonlinear viscoelastic model, a 6 element
White-Metzner type constitutive equation (Equations 9
and 10). The analysis of S in comparison with n3/n1 and
that of T in comparison with e3/e1 gives a more complete
explanation of the nonlinear viscoelastic properties.
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